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摘要

密度泛函理論，特別是 Kohn–Sham(KS)密度泛函理論，[1]因其高計算效率

成為量子計算領域被廣泛應用的方法。然而，KS密度泛函理論假設了基態密度

具有非交互作用純態勢可代表性，這甚至限制了精確的 KS密度泛函理論處理多

參考系統的能力。為了從根本擺脫此限制，熱輔助佔據密度泛函理論已被開發。

[2–4]模擬結果顯示，熱輔助佔據密度泛函理論在單參考系統表現類似 KS密度泛

函理論，在多參考系統則優於 KS密度泛函理論。其中，熱輔助佔據密度泛函理

論展現了藉由分數佔據軌域描述靜態關聯能的能力。

如同線性響應含時密度泛函理論和即時含時密度泛函理論，[5]線性響應含時

熱輔助佔據密度泛函理論已被提出並應用於獲取激發能。[6]這篇論文將把熱輔助

佔據密度泛函理論擴展為即時熱輔助佔據密度泛函理論，不做線性響應理論常見

的微擾近似以求更廣的適用性。過去作品中未完好定義的 Hartree交換關聯 theta

作用量泛函也會一併修正。我們應用模擬氫分子系統，並討論線性響應理論無法

處理的高諧波產生。模擬結果顯示，適當 θ的即時熱輔助佔據密度泛函理論在單

參考系統表現類似即時含時密度泛函理論。在多參考系統，足夠大 θ的即時熱輔

助佔據密度泛函理論則修復了限制自旋表述與非限制自旋表述被破壞的對稱。

關鍵字：即時熱輔助佔據密度泛函理論、即時含時密度泛函理論、含時熱輔助佔
據密度泛函理論

i



doi:10.6342/NTU202303862



doi:10.6342/NTU202303862

Abstract

Density functional theory (DFT), specifically Kohn–Sham DFT (KS-DFT),[1] is a

widespread method in the field of quantum computation due to its high computational

efficiency. However, KS-DFT assumes the ground-state density to be non-interacting

pure-state (NI-PS) vs-representable, which limits the ability of even exact KS-DFT to

handle multi-reference systems. To relieve this limitation, thermally assisted-occupation

DFT (TAO-DFT) has been developed.[2–4] Simulation results suggest that TAO-DFT per-

forms similarly toKS-DFT for single-reference systems, while outperformingKS-DFT for

multi-reference systems. In particular, TAO-DFT is shown to describe static correlation

through fractional orbital occupations.

Similar to linear-response time-dependent DFT (LR-TD-DFT) and real-time time-

dependent DFT (RT-TD-DFT),[5] LR-TD-TAO-DFT has been proposed and utilized to

extract excitation energies.[6] In this thesis, we aim to extend TAO-DFT to real-time TAO-

DFT. The often made small perturbation aprroximation in LR theory is dropped for uni-
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versality. The ill-defined Hartree–exchange–correlation-theta (HXCθ) action functional

in the previous work is also revised. Specifically, we apply RT-TAO-DFT to hydrogen

molecules. The phenomenon of high harmonic generation (HHG), which falls outside the

scope of LR theory, is simulated and discussed. Simulation results suggest that RT-TAO-

DFT with suitable θ performs similar to RT-TD-DFT for single-reference systems. While

for multi-reference systems, RT-TAO-DFT with sufficiently large θ fixes the symmetry-

breaking issue between spin-restricted and spin-unrestricted formulations.

Keywords: real-time thermally assisted-occupation density functional theory, real-time

time-dependent density functional theory, time-dependent thermally assisted-occupation

density functional theory
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Chapter 1 Introduction

By applying the Born–Oppenheimer (BO) approximation,[7, 8] the positions of the

atomic nuclei are considered as predetermined fixed parameters. Ideally, the famous

Schrödinger equation can be solved for the ground state(s) and excited states to extract

relevant information of physical interest. However, even with the BO approximations,

the Schrödinger equation is only exactly solvable for a few of simple systems. For most

systems, applying numerical methods is a must and only approximated solutions are ob-

tained.

Configuration interaction (CI) and coupled cluster (CC) are popular wave function-

based methods which provide rather accurate approximated solutions. They are known

for systematically improvability and exactness at the limit of complete bases. However,

the computational cost grows rapidly as system enlarges, limiting applicable systems to

small or medium ones. Differently, density functional theory (DFT) transforms the wave

function problems to ground-state electron density ones, which are less computationally

demanding. In comparison, while wave function-based methods are often considered to

be more accurate than DFT, the superior efficiency and reasonable accuracy of DFT make

it possibly the only viable methods for large systems.

The theoretical basis of DFT relies on theHohenberg–Kohn (HK) theorems,[9] which

1
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establish a one-to-one mapping between the ground-state density and the external poten-

tial up to an additive constant. Moreover, even with degenerate ground states, the ground-

state densities each maps to the same external potential up to an additive constant, which

in turn uniquely determines the Hamiltonian.[10] Now because by definition degenerate

states share the same energies, the possible one-to-many mapping between the Hamilto-

nian and the possible degenerate states leads to nothing but a one-to-one mapping between

the Hamiltonian and the ground-state or excitation energies. Ground-state and excitation

energies still can be written as functionals of the ground-state density. Therefore, if only

the ground-state or excitation energies or any other density-related observable of the par-

ticular ground state is of interest, the problem becomes finding the particular ground-state

density and the energy functionals of the ground-state density, hence the name of the the-

ory.

To find the ground-state density, the HK theorems provide a variational principle.

The ground-state energy functional of a system consists of a system-dependent external

potential term and a system-independent universal functional. The ground-state energy

functional gives the global minimum if and only if the input density is (one of) the ground-

state density(ies) associated with the external potential. In other words, after inserting

all reasonable densities (any non-negative differentiable function that gives the correct

electron number[11] under the constrained search formulation[12, 13]), the one(s) that

give(s) the minimum is(are) the ground-state density(ies) associated with the external po-

tential. DFT is a formally exact theory, with the inexactness arising from the unknown

and thus necessarily approximated universal functional. The universal functional contains

all system-indepenednt energy contributions, which equals to the sum of the interacting

kinetic energy and the electron-electron repulsion energy. Of which, the approximations

2



doi:10.6342/NTU202303862

for the kinetic energy often lead to significant errors.[8, 14]

Kohn–Sham DFT (KS-DFT)[1] circumvents this problem by considering a fictitious

non-interacting system, whose (assumed non-degenerate) ground-state density is identical

to the (assumed non-degenerate) true ground-state density in the true interacting system.

This consideration is equivalent to assuming that the true ground-state density can be rep-

resented by a pure (assumed non-degenerate) ground state of a non-interacting Hamilto-

nian with potential vs (i.e., non-interacting pure-state (NI-PS) vs-representable). If this

assumption holds, by the HK theorems, the corresponding external potential of the non-

interacting system is uniquely determined up to an additive constant, known as the KS

potential. The form of the KS potential (which depends on the ground-state density) is

provided in KS-DFT. However, since the ground-state density is unknown prior to simu-

lations, a self-consistent scheme with a reasonable guessed density is often required.

KS-DFT is a formally exact theory, with the inexactness arising from the unknown

and thus necessarily approximated exchange–correlation (XC) energy functional. The

advantage of KS-DFT is that the (non-interacting) kinetic energy is treated exactly with

the introduction of KS orbitals (see below), which are preferred over the unknown and thus

necessarily approximated density functional of non-interacting kinetic energy.[8] To sum

up, the problem of finding the true ground-state density in the true interacting system and

the ground-state energy functional, is transformed into finding the ground-state density in

the fictitious non-interacting system and the XC functional, which is easier for the non-

interacting nature and more accurate for the exact treatment of the non-interacting kinetic

energy.

In KS-DFT, owing to the non-interacting nature of the fictitious system, the multi-

3
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electron Hamiltonian can be written as the sum of one-electron Hamiltonians. Introuduc-

ing so-called KS orbitals as a basis, for a Nel-electron system, the ground-state density is

obtained by filling the lowest Nel KS orbitals according to the Aufbau principle. How-

ever, not all densities are NI-PS vs-representable.[13, 15–18] If the ground-state density

is not NI-PS vs-representable, then even the exact KS-DFT would fail to achieve self-

consistency, otherwise the density is by definition NI-PS vs-representable and contradicts

the premise.

Given a complete set of atomic or molecular orbitals, the exact Nel-electron wave

function can be exactly expanded as a linear combination of many Slater determinants,

each constructed withNel of the orbitals. If the wave function is predominantly one deter-

minant, it is termed a “single-reference” wave function. Otherwise, if the wave function

has primary contributions of multiple determinants, it is termed a “multi-reference” wave

function. For our interest, the exact ground-state wave function is primarily dominated

by the determinant with the lowest energy. In this case, if low-energy determinants or

high-energy determinants non-negligibly contribute, it is said to have strong “static cor-

relation” or “dynamic correlation”, respectively.[19] Such systems are sometimes called

“strongly correlated systems.” While the descriptions of “low energy” and “high energy”

are somewhat ambiguous that the static correlation and the dynamic correlation are not

clearly separable, in many cases the static correlation is associated with degenerate or

nearly degenerate determinants. Such determinants are not preferred over the others, and

the corresponding distributions of electrons are static in the sense that we term it ”static

correlation.”

While we are not to conclude none of the ground-state densities of multi-reference

systems is NI-PS vs-representable, it is often true that such densities are not NI-PS vs-

4
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representable.[16] In such cases, even the exact KS-DFT fails to achieve self-consistency,

as mentioned above.

On the other hand, thermally assisted-occupation DFT (TAO-DFT)[2–4] considers a

fictitious non-interacting system (ensemble) at temperature θ whose ground-state density

is identical to the (assumed non-degenerate) true ground-state density in the true interact-

ing system. TAO-DFT assumes the true ground-state density to be non-interacting thermal

ensemble (NI-TE) vs-representable, rather than NI-PS vs-representable as assumed in KS-

DFT. The assumption of NI-TE vs-representability is more likely to hold because NI-PS

vs-representability implies NI-TE vs-representability, but not vice versa. If the assumption

of NI-TE vs-representability holds, byMermin’s theorems,[20] the corresponding external

potential of the non-interacting system (ensemble) is uniquely determined up to an additive

constant, known as the TAO potential. The form of the TAO potential (which depends on

the ground-state density) is provided in TAO-DFT. However, since the ground-state den-

sity is unknown prior to simulations, a self-consistent scheme with a reasonable guessed

density is often required.

TAO-DFT is a formally exact theory, with the inexactness arising from the unknown

and thus necessarily approximated XC energy functional and the θ-dependent energy func-

tional. The advantage of TAO-DFT is that it performs similarly to KS-DFT for single-

reference systems, while outperforming KS-DFT for multi-reference systems, with a cost

comparable to KS-DFT.[2] To sum up, the problem of finding the true ground-state den-

sity in the true interacting system and the ground-state energy functional, is transformed

into finding the ground-state density in the fictitious non-interacting system (ensemble)

at temperature θ, the XC functional, and the θ functional, which is easier for the same

reason as KS-DFT. It is worth mentioning that when θ is set to zero, TAO-DFT reduces to

5
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KS-DFT.[2]

In TAO-DFT, owing to the non-interacting nature of the fictitious system (ensemble),

the multi-electron Hamiltonian can be written as the sum of one-electron Hamiltonians.

Introducing so-called TAO orbitals as a basis, for a Nel-electron system, the ground-state

density is obtained by filling TAO orbitals according to the Fermi–Dirac distribution.[21–

23] For multi-reference systems, where even the exact KS-DFT may fail, TAO-DFT has

been shown to describe static correlation through fractional orbital occupations.

Various XC functionals and θ functionals have been adopted in TAO-DFT, includ-

ing the local density approximation (LDA),[2] the generalized-gradient approximation

(GGA),[3] and hybrid functionals.[4, 24] Self-consistent schemes to determine system-

dependent θ[25] and a simple model to determine system-independent θ[26] have been

proposed. Ab initio molecular dynamics (AIMD) combined with TAO-DFT have been

used to study dynamical properties.[27] For practical applications, numerous systems have

been studied.[28–41]

To summarize, the goal is to solve the time-independent Schrödinger equation, which

leads to the development of KS-DFT and TAO-DFT for their balance performance be-

tween cost and accuracy. However, KS-DFT and TAO-DFT are limited to the ground-state

energy or any other density-related observables of the ground state, despite theoretically

being able to determine excitation energies.[10] Naturally, if the goal is to solve the time-

dependent Schrödinger equation for the time-dependent state with a given initial state, we

expect an extension of DFT. Hence comes time-dependent (TD) DFT, which not only al-

lows for the general study of time-dependent dynamics, but also enables determinations

of excitation energies.

6
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As the HK theorems are to DFT, the Runge–Gross (RG) theorem[42] establishes the

one-to-one mapping between the time-dependent electron density and the time-dependent

external potential up to a time-dependent additive function, for any fixed initial state. To

clarify, “the time-dependent electron density” and “the time-dependent external potential”

refer to the electron density and the external potential at all times between the initial time

t0 and the final time t1, not just at some instants between. In other words, given any fixed

initial state, the time-dependent density uniquely determines the time-dependent external

potential up to a time-dependent additive function, along with the time-dependent Hamil-

tonian, the time-dependent wave function, and all time-dependent observables. Therefore,

while it may be hard to explicitly write down the mappings, the mappings do exist and all

time-dependent observables can be written as functionals of the time-dependent density

and the fixed initial state.[8] The original problem of solving for the time-dependent state

is equivalent to find the time-dependent density and the relevant density functionals, sim-

ilar to ground-state DFT.

To find the density functional is a comprehensive topic. The simplest one is the time-

dependent density itself, then ones directly obtainable from the time-dependent density

(e.g., the dipole moment and the number of electrons). The time-dependent density is the

fundation of the whole theory, and we will focus on this part.

Impressed by the power of KS-DFT, we would like to develop a KS-like TD-DFT

scheme. Specifically, given an initial state |Ψ(t0)〉 to find the time-dependent density, we

consider a fictitious non-interacting system with an initial state |Ψ′(t0)〉 that produces the

true time-dependent density in the true interacting system. Thus comes the van Leeuwen

theorem,[43] which says if the chosen initial state |Ψ′(t0)〉 produces the true initial density

and the true initial time derivative of the density, then the external potential of the non-

7
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interacting system producing the true time-dependent density in the true interacting system

exists and is uniquely determined up to an additive constant, known as the TDKS potential.

The form of the TDKS potential is provided by Runge and Gross.[42]

TD-DFT is a formally exact theory, with the inexactness arising from the unknown

and thus necessarily approximated XC action functional. To sum up, given an initial state

|Ψ(t0)〉, the problem of finding the true time-dependent density in the true interacting

system, is transformed into finding the XC action functional and an initial state |Ψ′(t0)〉

satisfying the aforementioned conditions, propagating the initial state |Ψ′(t0)〉 to get the

time-dependent state |Ψ′(t)〉, and evaluating the time-dependent density in the fictitious

non-interacting system.

While not strictly necessary, in most applications the given (assigned) initial state

|Ψ(t0)〉 is the (assumed non-degenerate) ground state. Because in such cases, we may use

KS-DFT to find the initial state |Ψ′(t0)〉 that produces the true ground-state density and

zero time derivative of the density. However, as mentioned previously, even the exact KS-

DFT may fail in multi-reference systems. This underscores the importance of alternative

methods as TAO-DFT and its TD-extention, which handle such challenging systems in a

more reliable framework.

TD-DFT is a powerful method for simulating systems with time-dependent external

potentials, belonging to which linear-response (LR) TD-DFT is widely used to extract

low-lying excitation energies. In LR-TD-DFT, one assumes that the external potential is

weakly perturbed (small perturbation approximation). By studying the response of the

system, i.e., solving the linear-response equations, excitation energies and transition den-

sities are extracted.

8
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On the other hand, real-time (RT) TD-DFT does not make the small perturbation ap-

proximation and in principle allow for finding all time-dependent observables. It can be

used to find excitation energies (including high-lying ones) or to simulate non-linear phe-

nomena, e.g., high harmonic generation (HHG).[5] In RT-TD-DFT, the time-dependent

density is explicitly obtained, which enables the studying of electron dynamics, photo-

chemistry, laser–matter interaction, and so on.

As the similarities between TAO-DFT and KS-DFT, the TAO version of LR-TD-

DFT, namely LR-TD-TAO-DFT or simply TDTAO, has been proposed and used to extract

low-lying excitation energies.[6] However, because of the missing definition of the TAO

wave function in the previous work, the Hartree–exchange–correlation–theta (HXCθ) ac-

tion functional is ill-defined.

In this work, we aim to address the issue of the ill-defined HXCθ action functional,

and to propose the TAO version of RT-TD-DFT, namely RT-TD-TAO-DFT. We will refer

to this new theory as RT-TAO to distinguish it from TDTAO. To assess RT-TAO, HHG

is simulated for hydrogen molecules, and we would compare the results with those from

RT-TD-DFT. We will refer to KS-DFT, LR-TD-DFT, and RT-TD-DFT as KS schemes,

and refer to TAO-DFT, TDTAO, and RT-TAO as TAO schemes.

9
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Chapter 2 Theory

2.1 Ground-State TAO-DFT

Here we give a review of ground-state TAO-DFT, adapting from the work of Chai.[2–

4] This serves as a refresher for those familiar with ground-state TAO-DFT.

TAO-DFT aims to determine the (assumed non-degenerate) true ground-state density

of an interacting system by finding the ground-state density in a fictitious non-interacting

system (ensemble). In the spin-restricted formulation, the procedure is as follows:

1. Choose a value for θ. System-independent values provided by a simple model may

be a good option.[26]

2. Initialize the density n0(r) with a guessed density.

3. Construct the TAO potential vs(r) using the expression:

vs(r) = v(r) +
∫

d3r′
n0(r′)
‖r− r′‖

+
δEKS

XC[n0]

δn0(r)
+

δEθ[n0]

δn0(r)
(2.1)

where v(r) is the external potential, EKS
XC[n0] is the exchange–correlation functional

defined in KS-DFT, and Eθ[n0] is defined in TAO-DFT.

11
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4. Solve the following equation for orbital energies ϵi and TAO orbitals ϕi(r):

(
−1

2
∇2

r + vs(r)
)
ϕi(r) = ϵiϕi(r) (2.2)

5. For a Nel-electron system, solve the equation:

∞∑
i=1

{1 + exp[(ϵi − µ)/θ]}−1 = Nel (2.3)

for the chemical potential µ.

6. Determine the occupation numbers fi using:

fi = {1 + exp[(ϵi − µ)/θ]}−1 (2.4)

7. Update the density n0(r) according to:

n0(r) =
∞∑
i=1

fiϕ
∗
i (r)ϕi(r) (2.5)

8. Repeat steps 3 to 7 until achieving self-consistency (i.e., the difference between the

old and the new n0(r) is negligible).

9. The most recent n0(r) is the true ground-state density in the true interacting system.

For the spin-unrestricted formulation, the procedure is similar to the spin-restricted

one with a few modifications:

1. Choose a value for θ. System-independent values provided by a simple model may

be a good option.[26]

12
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2. Initialize the spin densities nσ
0 (r) with guessed densities, where σ = α or β repre-

sents spin-up or spin-down, respectively. Initialize the total density n0(r) with the

sum of the spin densities:

n0(r) = nα
0 (r) + nβ

0 (r) (2.6)

3. Construct the TAO potentials vσs (r) using the expressions:

vσs (r) = v(r) +
∫

d3r′
n0(r′)
‖r− r′‖

+
δEKS

XC[n
α
0 , n

β
0 ]

δnσ
0 (r)

+
δEθ[n

α
0 , n

β
0 ]

δnσ
0 (r)

(2.7)

where v(r) is the external potential, EKS
XC[n

α
0 , n

β
0 ] is the exchange–correlation func-

tional defined in KS-DFT, and Eθ[n
α
0 , n

β
0 ] is defined in TAO-DFT.

4. Solve the following equations for orbital energies ϵσi and spin TAO orbitals ϕσ
i (r):

(
−1

2
∇2

r + vσs (r)
)
ϕσ
i (r) = ϵσi ϕ

σ
i (r) (2.8)

5. For a system with Nα
el spin-up electrons and Nβ

el spin-down electrons, solve the

equations:
∞∑
i=1

{1 + exp[(ϵσi − µσ)/θ]}−1 = Nσ
el (2.9)

for the chemical potentials µσ.

6. Determine the occupation numbers fσ
i using:

fσ
i = {1 + exp[(ϵσi − µσ)/θ]}−1 (2.10)

13
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7. Update the spin densities nσ
0 (r) by:

nσ
0 (r) =

∞∑
i=1

fσ
i ϕ

σ∗
i (r)ϕσ

i (r) (2.11)

and update the total density n0(r) using eq. (2.6).

8. Repeat steps 3 to 7 until achieving self-consistency (i.e., the difference between the

old and the new n0(r) is negligible).

9. The most recent n0(r) is the true ground-state density in the true interacting system.

2.2 LR-TD-TAO-DFT

In this section, our focus is to address a defect in the previous work.[6]When it comes

to TD-DFT, it is crucial to approximate the XC action functional. Similarly, in TDTAO,

we have to approximate the HXCθ action functional. The particular functional, denoted

as AHXCθ[n], holds a central position in TDTAO and is defined by:

AHXCθ[n] ≡ BTAO[n]− B[n] (2.12)

where

BTAO[n] = ATAO[n] +

∫ t1

t0

dt
∫

d3r vs(r, t)n(r, t) (2.13)

and

B[n] = A[n] +

∫ t1

t0

dt
∫

d3r v(r, t)n(r, t) (2.14)

14
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are universal action functionals. Here, ATAO[n] and A[n] represent the total action func-

tionals of the TAO system and the true interacting system, respectively, given by:

ATAO[n] =

∫ t1

t0

dt 〈ΨTAO[n](t)|
(
i
∂

∂t
− Ĥs(t)

)
|ΨTAO[n](t)〉 (2.15)

and

A[n] =

∫ t1

t0

dt 〈Ψ[n](t)|
(
i
∂

∂t
− Ĥ(t)

)
|Ψ[n](t)〉 (2.16)

respectively. Here, ΨTAO[n](t) and Ψ[n](t), Ĥs(t) and Ĥ(t) are the wave functions and

the Hamiltonians of the TAO system and the true interacting system, respectively.

However, please note the wave function of the TAO system (ensemble) ΨTAO[n](t)

is currently undefined, which consequently raises issues with the definition of AHXCθ[n].

This issue will be addressed in the subsequent sections.

Suppose we have the necessary approximations for AHXCθ[n], and that ΨTAO[n](t) is

well-defined. In such case, the expression for vs(r, t) is given by:

vs(r, t) = v(r, t)+ δAHXCθ[n]

δn(r, t)
+i

〈
Ψ[n](t1)

∣∣∣∣δΨ[n; t1]

δn(r, t)

〉
−i

〈
ΨTAO[n](t1)

∣∣∣∣δΨTAO[n; t1]

δn(r, t)

〉
(2.17)

If we define vHXCθ[n](r, t) as:

vHXCθ[n](r, t) ≡ vs(r, t)− v(r, t) (2.18)

Using this definition, we can express vs(r, t) as the sum of v(r, t) and vHXCθ[n](r, t):

vs(r, t) = v(r, t) + vHXCθ[n](r, t) (2.19)

15
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where vHXCθ[n](r, t) is given by:

vHXCθ[n](r, t) =
δAHXCθ[n]

δn(r, t)
+ i

〈
Ψ[n](t1)

∣∣∣∣δΨ[n; t1]

δn(r, t)

〉
− i

〈
ΨTAO[n](t1)

∣∣∣∣δΨTAO[n; t1]

δn(r, t)

〉
(2.20)

2.3 From Generalizations of Theorems to RT-TAO

The generalization of the HK theorems to grand canonical ensembles was accom-

plished by Mermin.[20] In such case, consider the temperature θ (which is the product of

the Boltzmann constant kB and the absolute temperature Tel) and the chemical potential µ,

the equilibrium mixed state can be written as a functional of the equilibrium density. Li

extended the RG theorems to ensembles.[44, 45] Given any fixed initial mixed state, the

time-dependent mixed state can be written as a functional of the time-dependent density.

Furthermore, Pribram-Jones extended the van Leeuwen theorem to ensembles within

LR region,[46] and Dufty extended it generally.[47] Although a complete characterization

of the necessary conditions is not provided, these works demonstrate the existence and

uniqueness of the external potential in the non-interacting system (ensemble) up to an

additive constant that yields the true time-dependent density in the true interacting system.

For simplicity, we will neglect the consideration of electron spins in the following

discussions, although it can be easily incorporated with appropriate treatment. Unless

noted otherwise, atomic units are assumed.

As mentioned in chapter 1, our goal is to find the true time-dependent density in the

true interacting system n(r, t). To achieve this, we aim to develop a RT-TAO scheme anal-

ogous to TD-DFT. Specifically, given an initial state |Ψ(t0)〉, we consider a fictitious non-

16
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interacting ensemble with an initial mixed state Γ̂s(t0) that yields the true time-dependent

density n(r, t) in the true interacting system.

Similar to TD-DFT, while not strictly necessary, we will focus on the cases where

the given (assigned) initial state |Ψ(t0)〉 is the (assumed non-degenerate) ground state.

Because in such cases, TAO-DFT can be used to find the initial mixed state Γ̂s(t0) that

yields the true ground-state density n(r, t0) = n0(r) and zero time derivative of density

∂n
∂t
(r, t0) = 0. The initial mixed state Γ̂s(t0) is defined to be a grand canonical ensem-

ble with the temperature θ and the chemical potential µ, which is implicit in TAO-DFT.

The time-dependent TAO ensemble is then defined by propagating according to the time-

dependent Schrödinger equation or the von Neumann equation. Because for t > t0, the

time-dependent mixed state Γ̂s(t) in general deviates from equilibrium, we refer to this

mixed state as the TAO ensemble to distinguish it from the equilibrium grand canonical

ensemble.

Based on the generalization of the van Leeuwen theorem to ensembles,[47] we ex-

pect or assume the existence and uniqueness of the external potential vs(r, t) in the non-

interacting ensemble up to an additive constant that yields the true time-dependent density

in the true interacting system. This potential is known as the RT-TAO potential. The form

of the RT-TAO potential vs(r, t) is provided in section 2.7.

RT-TAO is a formally exact theory, with the inexactness arising from the unknown

and thus necessarily approximated XCθ action functional AXCθ[n]. Moreover, by the HK

theorems,[9] the given (assigned) initial (assumed non-degenerate) ground state |Ψ(t0)〉

can also be written as a functional of the ground state density n0(r) = n(r, t0). In other

words, the initial state |Ψ(t0)〉 dependence can be incorporated into the time-dependent

17
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density n(r, t). Apply this to the RG theorems,[42] we conclude all time-dependent prop-

erties can be written as functionals of the time-dependent density n(r, t) alone. Specifi-

cally, the time-dependent state |Ψ(t)〉 can be written as

|Ψ(t)〉 = |Ψ[n](t)〉 (2.21)

To sum up, given (assigned) an initial state as the (assumed non-degenerate) ground

state, the problem of finding the true time-dependent density n(r, t) in the true interacting

system, is transformed into finding the XCθ functional AXCθ[n] and an initial mixed state

Γ̂s(t0) yielding the true initial density n(r, t0) = n0(r) and zero time derivative of the

density ∂n
∂t
(r, t0) = 0 with TAO-DFT, propagating the initial mixed state Γ̂s(t0) to obtain

the time-dependent mixed state Γ̂s(t), and evaluating the time-dependent density n(r, t)

in the fictitious non-interacting ensemble.

The form of the RT-TAO potential vs(r, t) would be derived in section 2.7, with the

problem of finding the XCθ functional AXCθ[n] relieved if adopting the adiabatic approx-

imation[8] (section 2.9). As for the other part, one may notice the explicit information

of the initial mixed state Γ̂s(t0) or the time-dependent mixed state Γ̂s(t) is unnecessary,

but only the time-dependent density n(r, t) is of interest. In the following sections, we

would move from the formulation of mixed states to one-electron states to benefit from

its simplicity.

18



doi:10.6342/NTU202303862

2.4 Expression of the TAO Ensemble

The Hamiltonian of the fictitious non-interacting ensemble can be written as[48, 49]

Ĥs(t) =
∞⊕

N=0

ĤN
s (t) (2.22)

where the symbol “
⊕

” denotes a direct sum, and

ĤN
s (t) = T̂N + V̂ N

s (t) (2.23)

is the N -electron Hamiltonian, with Ĥ0
s (t) = 0 (the vacuum state has no energy).[48, 49]

It includes the kinetic energy term

T̂N =
N∑
j=1

(
−1

2
∇2

rj

)
(2.24)

and the RT-TAO potential term

V̂ N
s (t) =

N∑
j=1

vs(rj, t) (2.25)

For instance, let |us(t)〉 denotes any element in this space:[48]

|us(t)〉 =
∞⊕

N=0

∣∣uN
s (t)

〉
(2.26)

where
∣∣uN

s (t)
〉
is any element in the N -electron Hilbert space, with |u0

s(t)〉 = |0〉 the

vacuum state.[48, 49] In such case, we have[48]

Ĥs(t) |us(t)〉 =
∞⊕

N=0

ĤN
s (t)

∣∣uN
s (t)

〉
(2.27)
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One may loosely understand as when acting on aN -electron state, theN -electron Hamil-

tonian should be used.[50]

To explicitly write down the time-dependent mixed state Γ̂s(t), we introduce the

states |Φk(t)〉 that form a complete orthonormal basis, each with a definite energy Ek

and a definite number of electrons Nk at the initial time:

Ĥs(t0) |Φk(t0)〉 = Ek |Φk(t0)〉 (2.28)

Equation (2.28) implies that the initial states |Φk(t0)〉 are eigenstates of the initial Hamil-

tonian of the fictitious non-interacting ensemble Ĥs(t0). An example of such a basis is

provided in section 2.5.

Expressed in this basis, the initial density operator describing the initial mixed state

Γ̂s(t0) (which is defined to be a grand canonical ensemble in section 2.3) is

Γ̂s(t0) =
∞∑
k=0

wk |Φk(t0)〉〈Φk(t0)| (2.29)

where the weights wk are time-independent and given by

wk =
e−(Ek−µNk)/θ∑∞
l=0 e

−(El−µNl)/θ
(2.30)

By the time-dependent Schrödinger equation

i
∂

∂t
|Φk(t)〉 = Ĥs(t) |Φk(t)〉 (2.31)
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we can propagate the initial states |Φk(t0)〉 to get the time-dependent mixed state Γ̂s(t):

Γ̂s(t) =
∞∑
k=0

wk |Φk(t)〉〈Φk(t)| (2.32)

This expression follows the definition of the time-dependent mixed state in the fictitious

non-interacting ensemble given in section 2.3.

2.5 From One-Electron States to a Basis of Fock Space

Consider an one-electron Hamiltonian given by

ĥs(t) = −1

2
∇2

r + vs(r, t) (2.33)

We can find a set of normalized one-electron states |ϕi(t)〉, each initially having an or-

bital energy ϵi and containing one electron, such that they satisfy the time-independent

Schrödinger equation:

ĥs(t0) |ϕi(t0)〉 = ϵi |ϕi(t0)〉 (2.34)

By the time-dependent Schrödinger equation

i
∂

∂t
|ϕi(t)〉 = ĥs(t) |ϕi(t)〉 (2.35)

we can propagate the initial one-electron states |ϕi(t0)〉 to get the time-dependent one-

electron states |ϕi(t)〉.

Since the initial one-electron states |ϕi(t0)〉 can be viewed as normalized eigenstates

of the initial one-electron Hamiltonian ĥs(t0), they form a complete orthonormal basis

for the one-electron Hilbert space.[51] It can be shown that the propagator Û(t, t0) which
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transforms |ϕi(t0)〉 into |ϕi(t)〉:

|ϕi(t)〉 = Û(t, t0) |ϕi(t0)〉 (2.36)

remains unitary even with a time-dependent Hamiltonian ĥs(t).[51] Consequently, the

time-dependent one-electron states |ϕi(t)〉 preseve orthonormality and constantly form a

complete orthonormal basis for the one-electron Hilbert space.

Next consider a normalized anti-symmetrized two-electron state. Because the system

in consideration is non-interacting, we can directly fill up two orbitals, say ϕi(r, t) and

ϕj(r, t). This state can be expressed as a Slater determinant:

|ϕiϕj(t)〉− =
1√
2!

(∣∣ϕ1
i (t)

〉
⊗

∣∣ϕ2
j(t)

〉
−
∣∣ϕ1

j(t)
〉
⊗
∣∣ϕ2

i (t)
〉)

(2.37)

Here, the symbol “⊗” represents the direct product, and a general discussion including

interaction can be found in the note of Solovej.[48] The superscripts 1 and 2 are appended

to emphasize the respective electron. We now claim the states |Φ0(t)〉 = |0〉 , |Φ1(t)〉 =

|ϕ1(t)〉 , |Φ2(t)〉 = |ϕ2(t)〉 , . . . , |Φ3(t)〉 = |ϕ1ϕ2(t)〉− , |Φ4(t)〉 = |ϕ1ϕ3(t)〉− , . . . form a

basis satisfying all the conditions specified in section 2.4.

Since the one-electron states |ϕi(t)〉 form a complete orthonormal basis for the one-

electron Hilbert space, the two-electron states |ϕiϕj(t)〉− form a complete orthonormal

basis for the two-electron Hilbert space. Similarly, the three-electron states |ϕiϕjϕl(t)〉−

form a complete orthonormal basis for the three-electron Hilbert space, and so on. There-

fore, the states |Φk(t)〉 defined above, including the vacuum state, one-electron states, and

anti-symmetrized multi-electron states, form a complete basis for the Fock space.

As for the orthonormality, knowing the states |Φk(t)〉 can be expressed as a linear
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combination of the basis:

|Φk(t)〉 = ak |0〉 ⊕
∞∑
i=0

aki |ϕi(t)〉 ⊕
∞∑
i=0

∞∑
i<j

akij |ϕiϕj(t)〉− ⊕ · · · (2.38)

where for a given k, only one of ak, aki , akij, . . . is 1 and others are 0. The inner product of

two states Φk′(t) and Φk(t) is by definition:[52, 53]

〈Φk′(t)|Φk(t)〉 =
(
ak

′
)∗
ak 〈0|0〉+

∞∑
i=0

∞∑
j=0

(
ak

′

i

)∗
akj 〈ϕi(t)|ϕj(t)〉

+
∞∑
i=0

∞∑
i<j

∞∑
l=0

∞∑
l<m

(
ak

′

ij

)∗
aklm 〈ϕiϕj(t)|− |ϕlϕm(t)〉− + · · · (2.39)

By the orthonormality of the basis for respectiveN -electron Hilbert space, this expression

simplifies to:

〈Φk′(t)|Φk(t)〉 = ak
′
ak +

∞∑
i=0

ak
′

i a
k
i +

∞∑
i=0

∞∑
i<j

ak
′

ija
k
ij + · · · (2.40)

= δk′k (2.41)

Thus, the states |Φk(t)〉 form an orthonormal basis for the Fock space.

As a concrete example, the state |Φ3(t)〉, which in the coordinate representation (ex-

cluding spin) is given by:

Φ3(r1, r2, t) =
1√
2!
(ϕ1(r1, t)ϕ2(r2, t)− ϕ2(r1, t)ϕ1(r2, t)) (2.42)
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By eq. (2.34) we have

(
−1

2
∇2

r1 + vs(r1, t0)
)
ϕ1(r1, t0) = ϵ1ϕ1(r1, t0) (2.43)(

−1

2
∇2

r2 + vs(r2, t0)
)
ϕ1(r2, t0) = ϵ1ϕ1(r2, t0) (2.44)(

−1

2
∇2

r1 + vs(r1, t0)
)
ϕ2(r1, t0) = ϵ2ϕ2(r1, t0) (2.45)(

−1

2
∇2

r2 + vs(r2, t0)
)
ϕ2(r2, t0) = ϵ2ϕ2(r2, t0) (2.46)

By multiplying appropriate factors on both sides of each equation, we obtain the following

equations:

(
−1

2
∇2

r1 + vs(r1, t0)
)
ϕ1(r1, t0)ϕ2(r2, t0) = ϵ1ϕ1(r1, t0)ϕ2(r2, t0) (2.47)(

−1

2
∇2

r2 + vs(r2, t0)
)
ϕ2(r1, t0)ϕ1(r2, t0) = ϵ1ϕ2(r1, t0)ϕ1(r2, t0) (2.48)(

−1

2
∇2

r1 + vs(r1, t0)
)
ϕ2(r1, t0)ϕ1(r2, t0) = ϵ2ϕ2(r1, t0)ϕ1(r2, t0) (2.49)(

−1

2
∇2

r2 + vs(r2, t0)
)
ϕ1(r1, t0)ϕ2(r2, t0) = ϵ2ϕ1(r1, t0)ϕ2(r2, t0) (2.50)

((2.47) + (2.50)− (2.49)− (2.48)) multiplied by 1√
2!
, we obtain:

(
−1

2
∇2

r1 + vs(r1, t0)−
1

2
∇2

r2 + vs(r2, t0)
)
Φ3(r1, r2, t0) = (ϵ1 + ϵ2)Φ3(r1, r2, t0)

(2.51)

which corresponds to eq. (2.28) in the coordinate representation with k = 3. This equation

gives us the energy of |Φ3(t)〉 as:

E3 = ϵ1 + ϵ2 (2.52)

The number of electrons of |Φ3(t)〉 is apparently N3 = 2. Therefore, the state |Φ3(t)〉
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initially possesses a definite energyE3 and a definite number of electronsN3, and satisfies

eq. (2.28). Similar arguments can be made for other values of k.

In summary, we have shown that the states |Φk(t)〉 form a basis satisfying all the

conditions specified in section 2.4, as we claimed.

For completeness, we further show the consistency between eqs. (2.31) and (2.35).

Starting with eq. (2.35):

i
∂

∂t
ϕ1(r1, t) =

(
−1

2
∇2

r1 + vs(r1, t)
)
ϕ1(r1, t) (2.53)

i
∂

∂t
ϕ1(r2, t) =

(
−1

2
∇2

r2 + vs(r2, t)
)
ϕ1(r2, t) (2.54)

i
∂

∂t
ϕ2(r1, t) =

(
−1

2
∇2

r1 + vs(r1, t)
)
ϕ2(r1, t) (2.55)

i
∂

∂t
ϕ2(r2, t) =

(
−1

2
∇2

r2 + vs(r2, t)
)
ϕ2(r2, t) (2.56)

By multiplying appropriate factors on both sides of each equation, we obtain:

iϕ2(r2, t)
∂

∂t
ϕ1(r1, t) =

(
−1

2
∇2

r1 + vs(r1, t)
)
ϕ1(r1, t)ϕ2(r2, t) (2.57)

iϕ2(r1, t)
∂

∂t
ϕ1(r2, t) =

(
−1

2
∇2

r2 + vs(r2, t)
)
ϕ2(r1, t)ϕ1(r2, t) (2.58)

iϕ1(r2, t)
∂

∂t
ϕ2(r1, t) =

(
−1

2
∇2

r1 + vs(r1, t)
)
ϕ2(r1, t)ϕ1(r2, t) (2.59)

iϕ1(r1, t)
∂

∂t
ϕ2(r2, t) =

(
−1

2
∇2

r2 + vs(r2, t)
)
ϕ1(r1, t)ϕ2(r2, t) (2.60)

((2.57) + (2.60)− (2.59)− (2.58)) multiplied by 1√
2!
, we obtain:

i
∂

∂t
Φ3(r1, r2, t) =

(
−1

2
∇2

r1 + vs(r1, t)−
1

2
∇2

r2 + vs(r2, t)
)
Φ3(r1, r2, t) (2.61)

This equation corresponds to eq. (2.31) in the coordinate representationwith k = 3. There-
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fore, the equations are consistent. Similar arguments can be made for other values of k.

2.6 Ensemble Average Evaluated by One-Electron States

As discussed in section 2.3, we here deduce the formulation of one-electron states

from that of mixed states. Consider an operator Ô[48]

Ô =
∞⊕

N=1

ÔN (2.62)

where the operator ÔN is the sum of one-body operators ôj acting on the electron j

ÔN =
N∑
j=1

ôj (2.63)

Note that eq. (2.62) implicitly introduces the zero operator 0̂.[53]

Ô = 0̂⊕ Ô1 ⊕ Ô2 ⊕ · · · (2.64)

We will demonstrate that the expectation value of Ô for the TAO ensemble (ensemble

average of Ô) at any time t can be evaluated by one-electron states |ϕi(t)〉 and the Fermi–

Dirac function fi[54, 55]

〈
Ô
〉
Γ̂s

(t) =
∞∑
i=1

fi 〈ϕi(t)|ô|ϕi(t)〉 (2.65)

where it is recognized that the one-body operator ô and one-electron states |ϕi(t)〉 live in

the same one-electron Hilbert space. The Fermi–Dirac function is given by

fi = {1 + exp[(ϵi − µ)/θ]}−1 (2.4)
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Alternatively, if we introduce the one-electron density operator γ̂s(t) defined by

γ̂s(t) =
∞∑
i=1

fi |ϕi(t)〉〈ϕi(t)| (2.66)

then it can be shown that 〈
Ô
〉
Γ̂s

(t) = tr(γ̂s(t)ô) (2.67)

is equivalent to eq. (2.65).

Firstly, from standard textbooks,[8, 51, 56] we know the ensemble average of an

operator Ô for the TAO ensemble is given by the trace of the product of the density operator

Γ̂s(t) and the operator Ô 〈
Ô
〉
Γ̂s

(t) = tr
(
Γ̂s(t)Ô

)
(2.68)

Now, we introduce states |Φk′(t)〉 which form a basis satisfying all conditions specified in

section 2.4 (|Φ0(t)〉 = |0〉 without loss of generality). The ensemble average of Ô can be

expressed as a sum over this basis

〈
Ô
〉
Γ̂s

(t) =
∞∑

k′=0

〈Φk′(t)|Γ̂s(t)Ô|Φk′(t)〉 (2.69)

Expanding the time-dependent mixed state Γ̂s(t) by eq. (2.32) with the same basis |Φk(t)〉,

we get 〈
Ô
〉
Γ̂s

(t) =
∞∑
k=0

∞∑
k′=0

wk 〈Φk′(t)|Φk(t)〉 〈Φk(t)|Ô|Φk′(t)〉 (2.70)

By the orthonormality of the basis |Φk(t)〉, we have

〈
Ô
〉
Γ̂s

(t) =
∞∑
k=0

wk 〈Φk(t)|Ô|Φk(t)〉 (2.71)
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Since 〈0|0̂|0〉 = 0, eq. (2.71) can be further simplified to

〈
Ô
〉
Γ̂s

(t) =
∞∑
k=1

wk 〈Φk(t)|Ô|Φk(t)〉 (2.72)

Finally, by eq. (2.63), we obtain

〈
Ô
〉
Γ̂s

(t) =
∞∑
k=1

wk

Nk∑
j=1

〈Φk(t)|ôj|Φk(t)〉 (2.73)

Now, because the states |Φk(t)〉 are anti-symmetrized such that electrons are indis-

tinguishable, the Nk terms in eq. (2.73) equal, and the summation over j is equivalent to

multiplying by Nk

Nk∑
j=1

〈Φk(t)|ôj|Φk(t)〉 = Nk 〈Φk(t)|ôj|Φk(t)〉 (2.74)

The term 〈Φk(t)|ôj|Φk(t)〉 can be expressed as

〈Φk(t)|ôj|Φk(t)〉 =
∑
i

(Nk − 1)!

Nk!

〈
ϕj
i (t)

∣∣ôj∣∣ϕj
i (t)

〉
=

∑
i

1

Nk

〈ϕi(t)|ô|ϕi(t)〉 (2.75)

where the summation is over all occuring one-electron states
∣∣ϕj

i (t)
〉
of the electron j, the

term Nk! is the coefficient introduced for anti-symmetrization, and the term (Nk − 1)!

is the number of terms relating to changing indices of the (Nk − 1) electrons other than

the electron j. In the last equality, the index j is dropped, and it is recognized that the

one-body operator ô and one-electron states |ϕi(t)〉 live in the same one-electron Hilbert

space.
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Starting from eqs. (2.73) to (2.75), we have

〈
Ô
〉
Γ̂s

(t) =
∞∑
k=1

wk

∑
i

〈ϕi(t)|ô|ϕi(t)〉 (2.76)

Next, we introduce nk
i , which is the occupation number of the orbital ϕi(r, t) for the state

|Φk(t)〉. Apparently, the occupation numbers nk
i are time-independent, and we have

〈
Ô
〉
Γ̂s

(t) =
∞∑
k=1

wk

∞∑
i=1

nk
i 〈ϕi(t)|ô|ϕi(t)〉 (2.77)

The summation over i is now independent of k, so we can interchange the two summations

and get 〈
Ô
〉
Γ̂s

(t) =
∞∑
i=1

∞∑
k=1

〈ϕi(t)|ô|ϕi(t)〉wkn
k
i (2.78)

Also, the term 〈ϕi(t)|ô|ϕi(t)〉 is independent of k, so we can move it out of the summation

over k and obtain 〈
Ô
〉
Γ̂s

(t) =
∞∑
i=1

〈ϕi(t)|ô|ϕi(t)〉
∞∑
k=1

wkn
k
i (2.79)

Because n0
i = 0 for all i,

∑∞
k=1 wkn

k
i =

∑∞
k=0 wkn

k
i and we have

〈
Ô
〉
Γ̂s

(t) =
∞∑
i=1

〈ϕi(t)|ô|ϕi(t)〉
∞∑
k=0

wkn
k
i (2.80)

The summation over k is nothing but the mean occupation number 〈ni〉Γ̂s
of an orbital

ϕi(r, t). This can be shown by considering the corresponding operator n̂i such that

n̂i |Φk(t)〉 = nk
i |Φk(t)〉 (2.81)
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By eq. (2.71), we have

〈ni〉Γ̂s
(t) =

∞∑
k=0

wk 〈Φk(t)|n̂i|Φk(t)〉 =
∞∑
k=0

wk 〈Φk(t)|nk
i |Φk(t)〉 =

∞∑
k=0

wkn
k
i (2.82)

On the left hand side, we drop the hat of n̂i which is a mere emphasis of the operator.

Because wk and nk
i are time-independent, so is the summation, and we can drop the time-

dependence and obtain
∞∑
k=0

wkn
k
i = 〈ni〉Γ̂s

(2.83)

Finally, because the TAO ensemble Γ̂s(t) is initially a grand canonical ensemble, we

have

〈ni〉Γ̂s
= {1 + exp[(ϵi − µ)/θ]}−1 ≡ fi (2.84)

which is the Fermi–Dirac function, with the derivation provided in standard textbooks.[56]

Combining eqs. (2.80), (2.83) and (2.84), we obtain eq. (2.65) as required.

To show that eq. (2.67) is equivalent to eq. (2.65), we start with eq. (2.67) and intro-

duce one-electron states |ϕi′(t)〉 as follows:

〈
Ô
〉
Γ̂s

(t) =
∞∑
i′=1

〈ϕi′(t)|γ̂s(t)ô|ϕi′(t)〉 (2.85)

Next, we expand the one-electron density operator γ̂s(t) by eq. (2.66) with the same basis

|ϕi(t)〉: 〈
Ô
〉
Γ̂s

(t) =
∞∑
i=1

∞∑
i′=1

fi 〈ϕi′(t)|ϕi(t)〉 〈ϕi(t)|ô|ϕi′(t)〉 (2.86)

By the orthonormality of the basis |ϕi(t)〉, we get:

〈
Ô
〉
Γ̂s

(t) =
∞∑
i=1

fi 〈ϕi(t)|ô|ϕi(t)〉 (2.65)
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which is eq. (2.65) as required.

2.7 Expression of the RT-TAO Potential

To obtain the expression of the RT-TAO potential, we begin with the generalization

of the RG theorems to ensembles, which allows the time-dependent mixed state Γ̂s(t)

to be written as a functional of the time-dependent density n(r, t) and the initial mixed

state Γ̂s(t0).[44] The equilibrium mixed state Γ̂s(t0) can be written as a functional of the

equilibrium density n0(r) = n(r, t0) by the generalization of the HK theorems to grand

canonical ensembles.[20] Thus, the initial mixed state dependence can be absorbed in

n(r, t) and obtain

Γ̂s(t) = Γ̂s[n](t) (2.87)

Next, we define the action integral A[n] for the ensemble Γ̂[n](t) (without specifica-

tion of interaction) as provided by Li[45]:

A[n] =

∫ t1

t0

dt tr
(
Γ̂[n](t)

(
i
∂

∂t
− Ĥ(t)

))
(2.88)

where Ĥ(t) is the time-dependent Hamiltonian. The action integral gives a stationary

point if the input density is the exact time-dependent density n(r, t) associated with the

Hamiltonian Ĥ(t). That is, the exact time-dependent density n(r, t) satisfies the Euler

equation:

δA[n]

δn(r, t)
= 0 (2.89)

It is understood that ensembles with all kinds of interaction, including the TAO ensemble

Γ̂s[n](t) and Γ̂W [n](t) (see below), lead to similar arguments.
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For the true interacting system, the Hamiltonian is given by

ĤNel(t) = T̂Nel + V̂ Nel(t) + ŴNel (2.90)

where T̂Nel is the kinetic energy operator

T̂Nel =

Nel∑
j=1

(
−1

2
∇2

rj

)
(2.24)

V̂ Nel(t) is the external potential

V̂ Nel(t) =

Nel∑
j=1

v(rj, t) (2.91)

and ŴNel is the electron–electron interaction term

ŴNel =
1

2

Nel∑
j=1

Nel∑
j′=1,j′ ̸=j

1

‖rj − rj′‖
(2.92)

The ensemble Γ̂W [n](t) is defined as

Γ̂W [n](t) = |Ψ[n](t)〉〈Ψ[n](t)| (2.93)

by eq. (2.21). The action integral eq. (2.88) for Γ̂W [n](t) can be rewritten as

AW [n] =

∫ t1

t0

dt tr
(
Γ̂W [n](t)

(
i
∂

∂t
− ĤNel(t)

))
(2.94)
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or1

AW [n] =

∫ t1

t0

dt 〈Ψ[n](t)|
(
i
∂

∂t
− T̂Nel

)
|Ψ[n](t)〉 −

∫ t1

t0

dt
∫

dr v(r, t)n(r, t)

−
∫ t1

t0

dt 〈Ψ[n](t)|ŴNel |Ψ[n](t)〉 (2.95)

The Euler equation eq. (2.89) for Γ̂W [n](t) becomes

δ

δn(r, t)

(∫ t1

t0

dt 〈Ψ[n](t)|
(
i
∂

∂t
− T̂Nel

)
|Ψ[n](t)〉

)
− v(r, t)

− δ

δn(r, t)

(∫ t1

t0

dt 〈Ψ[n](t)|ŴNel |Ψ[n](t)〉
)

= 0 (2.96)

On the other hand, the Hamiltonian of the fictitious non-interacting ensemble is pro-

vided by eq. (2.22), and the ensemble is given in eq. (2.87). The action integral eq. (2.88)

for Γ̂s[n](t) can be rewritten as

As[n] =

∫ t1

t0

dt tr
(
Γ̂s[n](t)

(
i
∂

∂t
− Ĥs(t)

))
(2.97)

or1

As[n] =

∫ t1

t0

dt tr
(
Γ̂s[n](t)

(
i
∂

∂t
− T̂s

))
−
∫ t1

t0

dt
∫

dr vs(r, t)n(r, t) (2.98)

where T̂s is the kinetic energy operator defined as[48]

T̂s =
∞⊕

N=1

T̂N (2.99)

1See section 2.8.
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The Euler equation eq. (2.89) for Γ̂s[n](t) becomes

δ

δn(r, t)

(∫ t1

t0

dt tr
(
Γ̂s[n](t)

(
i
∂

∂t
− T̂s

)))
− vs(r, t) = 0 (2.100)

Observe that

δ

δn(r, t)

(
1

2

∫ t1

t0

dt
∫

dr
∫

dr′ n(r, t)n(r
′, t)

‖r− r′‖

)
=

∫
dr′ n(r′, t)

‖r− r′‖
(2.101)

(2.96)− (2.100) + (2.101), we get

vs(r, t) = v(r, t) +
∫

dr′ n(r′, t)
‖r− r′‖

+
δ

δn(r, t)

(∫ t1

t0

dt 〈Ψ[n](t)|ŴNel |Ψ[n](t)〉 − 1

2

∫ t1

t0

dt
∫

dr
∫

dr′ n(r, t)n(r
′, t)

‖r− r′‖

+

∫ t1

t0

dt tr
(
Γ̂s[n](t)

(
i
∂

∂t
− T̂s

))
−
∫ t1

t0

dt 〈Ψ[n](t)|
(
i
∂

∂t
− T̂Nel

)
|Ψ[n](t)〉

)
(2.102)

Now follow the definition of vHXCθ[n](r, t) in eq. (2.18), we get

vHXCθ[n](r, t) =
∫

dr′ n(r′, t)
‖r− r′‖

+
δAXCθ[n]

δn(r, t)
(2.103)

where

AXCθ[n] =

∫ t1

t0

dt 〈Ψ[n](t)|ŴNel |Ψ[n](t)〉 − 1

2

∫ t1

t0

dt
∫

dr
∫

dr′ n(r, t)n(r
′, t)

‖r− r′‖

+

∫ t1

t0

dt tr
(
Γ̂s[n](t)

(
i
∂

∂t
− T̂s

))
−
∫ t1

t0

dt 〈Ψ[n](t)|
(
i
∂

∂t
− T̂Nel

)
|Ψ[n](t)〉

(2.104)

Note the initial state dependence |Ψ(t0)〉 and Γ̂s(t0) have been absorbed in the time-

dependent density n(r, t) by eqs. (2.21) and (2.87), similar to RT-TD-DFT.[8]
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2.8 Some Details of Derivations

First, we want to write down the expression of the time-dependent density n(r, t).

For the true interacting system, the operator for the time-dependent density n̂(r) is[57]

n̂(r) =
Nel∑
j=1

δ(r− rj) (2.105)

so the time-dependent density n(r, t) is

n(r, t) = 〈Ψ(t)|n̂(r)|Ψ(t)〉 (2.106)

=

∫
dr1 dr2 · · · drNel 〈Ψ(t)|r1, r2, . . . , rNel〉 〈r1, r2, . . . , rNel |n̂(r)|Ψ(t)〉 (2.107)

=

∫
dr1 dr2 · · · drNel Ψ

∗(r1, r2, . . . , rNel , t)

Nel∑
j=1

δ(r− rj)Ψ(r1, r2, . . . , rNel , t)

(2.108)

= Nel

∫
dr2 · · · drNel Ψ

∗(r, r2, . . . , rNel , t)Ψ(r, r2, . . . , rNel , t) (2.109)

which is a form one may be familiar with.

For the fictitious non-interacting ensemble, the operator for the time-dependent den-

sity n̂s(r) can be easily generalized as[48]

n̂s(r) =
∞⊕

N=1

n̂N
s (r) (2.110)

where

n̂N
s (r) =

N∑
j=1

δ(r− rj) (2.111)
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so by eq. (2.65), the time-dependent density n(r, t) is

n(r, t) =
∞∑
i=1

fi

∫
dr′ 〈ϕi(t)|r′〉 〈r′|δ(r− r′)|ϕi(t)〉 (2.112)

=
∞∑
i=1

fi

∫
dr′ ϕ∗

i (r′, t)δ(r− r′)ϕi(r′, t) (2.113)

=
∞∑
i=1

fiϕ
∗
i (r, t)ϕi(r, t) (2.114)

Now the term in eq. (2.94) becomes

∫ t1

t0

dt tr
(
Γ̂W [n](t)V̂ Nel(t)

)
(2.115)

=

∫ t1

t0

dt 〈Ψ[n](t)|V̂ Nel(t)|Ψ[n](t)〉 (2.116)

=

∫ t1

t0

dt
∫

dr1 dr2 · · · drNel 〈Ψ[n](t)|r1, r2, . . . , rNel〉 〈r1, r2, . . . , rNel |V̂ Nel(t)|Ψ[n](t)〉

(2.117)

=

∫ t1

t0

dt
∫

dr1 dr2 · · · drNel Ψ
∗(r1, r2, . . . , rNel , t)

Nel∑
j=1

v(rj, t)Ψ(r1, r2, . . . , rNel , t)

(2.118)

=

∫ t1

t0

dt
∫

dr1 v(r1, t)Nel

∫
dr2 · · · drNel Ψ

∗(r1, r2, . . . , rNel , t)Ψ(r1, r2, . . . , rNel , t)

(2.119)

=

∫ t1

t0

dt
∫

dr1 v(r1, t)n(r1, t) (2.120)

=

∫ t1

t0

dt
∫

dr v(r, t)n(r, t) (2.121)

In eq. (2.117), an identity operator Î =
∫
dr1 dr2 · · · drNel |r1, r2, . . . , rNel〉〈r1, r2, . . . , rNel |

is inserted. In eq. (2.119), n(r1, t) is identified with eq. (2.109).
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The term in eq. (2.97) becomes

∫ t1

t0

dt tr
(
Γ̂s[n](t)V̂s(t)

)
(2.122)

=

∫ t1

t0

dt
〈
V̂s(t)

〉
Γ̂s

(t) (2.123)

=

∫ t1

t0

dt
∞∑
i=1

fi 〈ϕi(t)|v̂s(t)|ϕi(t)〉 (2.124)

=

∫ t1

t0

dt
∞∑
i=1

fi

∫
dr 〈ϕi(t)|r〉 〈r|v̂s(t)|ϕi(t)〉 (2.125)

=

∫ t1

t0

dt
∞∑
i=1

fi

∫
drϕ∗

i (r, t)vs(r, t)ϕi(r, t) (2.126)

=

∫ t1

t0

dt
∫

dr vs(r, t)
∞∑
i=1

fiϕ
∗
i (r, t)ϕi(r, t) (2.127)

=

∫ t1

t0

dt
∫

dr vs(r, t)n(r, t) (2.128)

where[48]

V̂s(t) =
∞⊕

N=1

V̂ N
s (t) (2.129)

We use eq. (2.68) to get eq. (2.123), and use eq. (2.65) to get eq. (2.124). In eq. (2.125),

an identity operator Î =
∫
dr |r〉〈r| is inserted. In eq. (2.127), n(r, t) is identified with

eq. (2.114).

2.9 Approximations for the HXCθ Potential

Let n : (r, t) 7→ n(r, t) be the mapping taking (r, t) to the time-dependent density

n(r, t), nt′ : r 7→ n(r, t′) be the collection of mappings taking r to the density n(r, t′),

and n0 : r 7→ n0(r) be the mapping taking r to the ground-state density n0(r). Recall

in ground-state TAO-DFT, similar to eq. (2.18), the static HXCθ potential v0HXCθ[n0](r) is
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defined by

v0HXCθ[n0](r) ≡ vs(r)− v(r) (2.130)

which may be approximated by LDA,[2] GGA,[3] and hybrid functionals,[4, 24] etc. Here

v0HXCθ : (n0, r) 7→ v0HXCθ[n0](r) denotes the mapping taking (n0, r) to the static HXCθ

potential v0HXCθ[n0](r).

RT-TAO is a formally exact theory, with the inexactness arising from the unknown

and necessarily approximated vHXCθ[n](r, t) orAXCθ[n] in eqs. (2.103) and (2.104). vHXCθ :

(n, r, t) 7→ vHXCθ[n](r, t) denotes the mapping taking (n, r, t) to vHXCθ[n](r, t). A possible

option is the adiabatic approximation,[8] defined by blindly plugging in nt rather than n0

in v0HXCθ

vadiaHXCθ : (n, r, t) 7→ v0HXCθ[nt](r) (2.131)

This means we ignore the whole memory effect and assume the HXCθ potential at time t

can be well approximated by the instantaneous density nt. Combine this with LDA as an

example

vadia,LDAHXCθ : (n, r, t) 7→ v0,LDAHXCθ [nt](r) (2.132)

We will refer to this as ALDA.

2.10 Practical Scheme of RT-TAO

For spin-restricted formulation:

1. Choose a value for θ and conduct ground-state TAO-DFT in section 2.1. We would

end up with occupation numbers fi, TAO orbitals ϕi(r) = ϕi(r, t0), and ground-

state density n0(r) = n(r, t0).

38



doi:10.6342/NTU202303862

2. Construct the RT-TAO potential vs(r, t0) by

vs(r, t0) = v(r, t0) + vHXCθ[n](r, t0) (2.19)

where v(r, t0) is the time-dependent external potential at t = t0, and vHXCθ[n](r, t0)

is the HXCθ potential at t = t0. vHXCθ[n](r, t0) may need approximations as dis-

cussed in section 2.9.

3. With initial TAO orbitals ϕi(r, t0), solve

i
∂

∂t
ϕi(r, t) = ĥs(t)ϕi(r, t) (2.35)

for time-dependent TAO orbitals ϕi(r, t), where ĥs(t) is the one-electron Hamilto-

nian

ĥs(t) = −1

2
∇2

r + vs(r, t) (2.33)

Because ĥs(t) depends on time-dependent TAO orbitals ϕi(r, t), in practice, we

need to discretize time and adopt specific propagator algorithms, such as the modi-

fied mid-point unitary transformation (MMUT) method as in TDKS.[58] Let∆t be

the time step, we would end up with ϕi(r, t0 +∆t).

4. Obtain n(r, t0 +∆t) by

n(r, t+∆t) =
∞∑
i=1

fiϕ
∗
i (r, t+∆t)ϕi(r, t+∆t) (2.114)

5. Repeat step 2 to 4 with incremental t until the desired final time t1.

6. The whole history n(r, t) is the predicted time-dependent density in the interacting
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system.

For spin-unrestricted formulation, the procedure is similar to the spin-restricted case

with a few modifications:

1. Choose a value for θ and conduct ground-state TAO-DFT in section 2.1. We would

end up with occupation numbers fσ
i , spin TAO orbitals ϕσ

i (r) = ϕσ
i (r, t0), spin

densitiesnσ
0 (r) = nσ(r, t0), and ground-state densityn0(r) = n(r, t0), where σ = α

or β.

2. Construct the RT-TAO potential vσs (r, t0) by

vσs (r, t0) = v(r, t0) + vσHXCθ[n
α, nβ](r, t0) (2.133)

where v(r, t0) is the time-dependent external potential at t = t0, and vσHXCθ is the

HXCθ potential at t = t0. vσHXCθ may need approximations as discussed in sec-

tion 2.9. The adiabatic approximation[8]

vσ,adiaHXCθ : (n
α, nβ, r, t) 7→ vσ,0HXCθ[n

α
t , n

β
t ](r) (2.134)

or the adiabatic approximation combined with LDA as an example

vσ,adia,LDAHXCθ : (nα, nβ, r, t) 7→ vσ,0,LDAHXCθ [nα
t , n

β
t ](r) (2.135)

We will refer to this as ALDA.

3. With initial spin TAO orbitals ϕσ
i (r, t0), solve

i
∂

∂t
ϕσ
i (r, t) = ĥσ

s (t)ϕ
σ
i (r, t) (2.136)
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for time-dependent spin TAO orbitals ϕσ
i (r, t), in which ĥσ

s (t) is the one-electron

Hamiltonian

ĥσ
s (t) = −1

2
∇2

r + vσs (r, t) (2.137)

Because ĥσ
s (t) depends on time-dependent spin TAOorbitalsϕα

i (r, t) andϕ
β
i (r, t), in

practice, we need to discretize time and adopt specific propagator algorithms, such

as the modifiedmid-point unitary transformation (MMUT)method as in TDKS.[58]

Let ∆t be the time step, we would end up with ϕσ
i (r, t0 +∆t).

4. Obtain nσ(r, t0 +∆t) by

nσ(r, t+∆t) =
∞∑
i=1

fσ
i ϕ

σ∗
i (r, t+∆t)ϕσ

i (r, t+∆t) (2.138)

and n(r, t+∆t) by

n(r, t+∆t) = nα(r, t+∆t) + nβ(r, t+∆t) (2.139)

5. Repeat step 2 to 4 with incremental t until the desired final time t1.

6. The whole history n(r, t) is the predicted time-dependent density in the interacting

system.
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Chapter 3 Results

3.1 High Harmonic Generation

High harmonic generation (HHG) is a non-linear phenomenon falling outside the

scope of LR theory. When an intense laser hits a suitable target, photons at frequencies

that are integer multiples (high harmonic) of the incoming laser are produced.

This process is typically understood with the semi-classical three-step model.[59,

60] First is the tunneling ionization of an electron. Second are the acceleration and re-

acceleration of the electron away and back to the nucleus by the laser field. Third is the

recombination of the electron with the nucleus, with an emission of a photon at a frequency

that is equal to the kinetic energy of the electron minus the ionization potential.

The spectrum of HHG typically starts with a few harmonics decreasing in intensity,

as expected. What surprises is that they are followed by a plateau of harmonics which

are nearly constant in intensity. The plateau extends up to a cut-off frequency, which is

determined by the ponderomotive energy (the energy gained by an electron as it oscillates

in the laser field) and the ionization potential of the electrons in the laser field, and abruptly

decreases in intensity.

To assess RT-TAO, HHG is chosen for three reasons. Firstly, LR-TD-DFT and TD-
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TAO are unable to describe HHG, which highlights the importance of real-time theory as

TDKS or RT-TAO. Secondly, the application of TDKS to HHG[5] serves as a reference

and justifies the application of RT-TAO to HHG due to their similarities. Thirdly, the

HHG spectrum is directly obtainable from the time-dependent density.

The HHG spectrum H(ω) in the dipole acceleration form is calculated by[8, 61]

H(ω) =
∑

k=x,y,z

1

2π

∣∣∣∣∫ t1

t0

d2µk(t)

dt2
w(t)e−iωt dt

∣∣∣∣2 (3.1)

where w(t) is the window function and µk(t) is the induced dipole moment along the

electric field polarization k̂ (the minus sign accounts for the negative charge)[8]

µk(t) = −
∫

kn(r, t) dr (3.2)

For our case, the electric field polarization k̂ is along ẑ, so µx(t) = µy(t) = 0 and

eq. (3.1) becomes

H(ω) =
1

2π

∣∣∣∣∫ t1

t0

d2µz(t)

dt2
w(t)e−iωt dt

∣∣∣∣2 (3.3)

The window function w(t) is taken to be the Hamming window

w(t) = 0.54− 0.46 cos
(

2πt

t1 − t0

)
(3.4)

The results without applications of the window function are provided in appendix B for

reference. Finally, the harmonic order is given by

Harmonic order = ω/ω0 (3.5)

where ω0 = 1.5498 eV is the fundamental frequency provided in section 3.3.

44



doi:10.6342/NTU202303862

3.2 Time-Dependent Observables

Apart from the apparent time-dependent density n(r, t) and the induced dipole mo-

ments µk(t) (eq. (3.2)), there is another time-dependent observable directly obtainable

from the time-dependent density n(r, t). That is the number of bound electronsNbound(t),

given by[8]

Nbound(t) =

∫
drn(r, t) (3.6)

or equivalently the trace of the density matrix.[58] Here, the subscript “bound” is empha-

sized for the possible introduction of the complex absorbing potential (CAP), with which

Nbound(t) may decrease with time to simulate ionization.[8]

3.3 Computational Details

We implement RT-TAO on the fundation of the new TDKS module[5] (for RT-TD-

DFT calculations) in the development version of Q-CHEM v. 5.4.[62]

The d-aug-cc-pVTZ[63–65] basis set is chosen. While ghost atom functions may

be necessary to finely describe the high harmonics,[66] in this work, we focus on the

improvement of broken symmetry between spin-restricted and spin-unrestricted formula-

tions and adopt the pure standard d-aug-cc-pVTZ basis set. High-quality (99, 590)[67]

integration grids are adopted in all calculations. As the first application of RT-TAO, local

density approximation (LDA) XC-functionals (Slater[68] and PW92[69]) and LDA ver-

sion of theEθ functional[2] are employed. Applications of RT-TAOwith other functionals

are reserved for future works.
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Under the conditions of the wavelength λ ≈ 800 nm and the intensity I ≈ 1 ×

1014W/cm2, the dipole approximation is valid.[70] By the dipole approximation, the vec-

tor potentialA(r, t) ≈ A(t) and themagnetic fieldB(r, t) = ∇×A(r, t) ≈ ∇×A(t) = 0.

Thus we may conduct a cos2-shaped impulse with the electric field E(r, t) = E(t) along

the z-axis (fig. 3.1) to mimic the common Ti:sapphire laser[66]

E(t) = A0 cos2
[

π

2σp

(σp − t)

]
cos[ω0(t− σp)]ẑ (3.7)

The amplitude A0 = 0.0534 a.u. (the intensity I = 1
2
ϵ0cA

2
0 ≈ 1 × 1014W/cm2), σp =

500 a.u. ≈ 12.1 fs (the total pulse width 2σp = 1000 a.u. ≈ 24.1 fs and the peak at

500 a.u. ≈ 12.1 fs), and the fundamental frequency ω0 = 1.5498 eV (the wavelength

λ ≈ 800 nm). The resulting external potential of the laser vlaser(r, t) is (the origin is taken

as the reference point)

vlaser(r, t) = −r · E(t) (3.8)

or

vlaser(r, t) = z · A0 cos2
[

π

2σp

(σp − t)

]
cos[ω0(t− σp)] (3.9)

In particular, eq. (3.9) is the equation used in our practical calculations.

To simulate electron ionization and to remove artificial reflections associated with

the finite extent of the Gaussian basis, the complex absorbing potential (CAP) is intro-

duced.[71] The CAP around the atom k positioned at Rk is atom-centered-spherical, with
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Figure 3.1: Electric field of the impulse.

value fCAP
k (r) at point r, in a.u.

fCAP
k (r) =



0, for ‖r− Rk‖ < r0

η(‖r− Rk‖ − r0)
2, for r0 ≤ ‖r− Rk‖ < r0 +

√
Emax/η

Emax, for r0 +
√

Emax/η ≤ ‖r− Rk‖

(3.10)

The total CAP for the NA atoms takes the form

vCAP(r) = min
{
fCAP
1 (r), . . . , fCAP

NA
(r)

}
(3.11)

The cut-off radius r0 should be small enough to affect the electron density (because

of the finite extent of the basis). In the mean while, large enough to not overly perturb

the orginial system. The optimal parameters may be system-, theory-, basis-dependent,

etc. In this work, we use a compromise value r0 = 9.524 a.u. ≈ 5.040Å for all calcula-

tions and focus on the improvement of broken symmetry between spin-restricted and spin-

unrestricted formulations. The curvature is chosen to be the typical value η = 4.0 a.u..[71]

The CAP is cut off at the maximum Emax = 10 hartree to avoid numerical overflow.[71]

47



doi:10.6342/NTU202303862

The total external potential v(r, t) is then

v(r, t) = vne(r) + vlaser(r, t)− ivCAP(r) (3.12)

where vne(r) is the external potential of the nucleus.

For the time propagation, the small enough time step ∆t = 0.02 a.u.(≈ 0.484 as)

is chosen.[58] The total propagation length is chosen to be the same as the length of the

laser pulse, t1 − t0 = 1000 a.u. ≈ 24.1 fs.[66] The modified-midpoint unitary transform

(MMUT) is adopted to construct the propagator.[58, 72]

The equilibrium geometry of H2 is chosen to be 1.45 a.u.≈ 0.767Å, which is around

that optimized with the spin-restricted KS-LDA. The stretched geometry of H2 is chosen to

be 3.78 a.u. (≈ 2.00Å), where themulti-reference character is unneglectable.[2] Following

are the results of H2 positioned along the z-axis (parallel to the laser polarization) with the

center of mass being the origin. The results of the systems perpendicular to the laser

polarization duplicate and are complemented in appendix A.

3.4 H2 at the Equilibrium Geometry

The complete discussions and the optimization of the HHG spectra are not the aim

of this work. Instead, numerous successful applications of TDKS to HHG[8] serve as

a reference to assess RT-TAO. While in the mean time, the limitations of KS-DFT and

TDKS in multi-reference systems provide a suitable stage for RT-TAO to improve upon.

H2 at the equilibrium geometry is a single-reference system, thus we expect TDKS-

ALDA to grasp the characteristics of the HHG spectra. Figure 3.2 shows the HHG spectra
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Figure 3.2: HHG spectra of H2 at 1.45 a.u.. θ = 0 corresponds to TDKS-ALDA.

for different θ. For θ = 0 (TDKS-ALDA), we see TDKS-ALDA indeed does so. The

HHG spectrum starts with the highest intensity of the first harmonic, followed by a rapid

decrease in intensity of the third harmonic, the plateau with constant intensities up to the

15th harmonic, and an abrupt cut-off over the 17th harmonic. Only odd harmonics are

present because of the inversion symmetry of the system.[8] As for the non-monotonic

intensities over the 31th harmonic, they may not be a problem due to the logarithmically

low relative intensities. They may be attributed to the finite extent of Gaussian basis,[5]

the unutilized ghost atom functions,[66] or the over-largeness of the cut-off radius r0, or

others. As formerly stated, they are not the aim of this work, and we would stop here.

Spin-restricted and spin-unrestricted TDKS-ALDA produce similar results, as they
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Figure 3.3: Induced dipolemoment of H2 at 1.45 a.u.. θ = 0 corresponds to TDKS-ALDA.

should do at the limit of exact TDKS. For θ = 7mhartree, the HHG spectra are similar

to TDKS-ALDA, and we would not repeat here. For θ = 20mhartree, the HHG spectra

show a slight deviation of the 13th harmonic. For θ = 40mhartree, even the range of

plateau differs.

For completeness, some other time-dependent observables are shown. Figure 3.3

shows the induced dipole moment and fig. 3.4 shows the number of bound electrons. For

θ = 40mhartree, the number of bound electrons is even qualitatively different from the

others, hinting at the inappropriateness of over-large θ in a single-reference system. Ide-

ally, θ should be chosen such that the occupation numbers (TOONs) resemble the natural

orbital occupation numbers (NOONs).[2]
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Figure 3.4: Number of bound electrons of H2 at 1.45 a.u.. θ = 0 corresponds to TDKS-
ALDA.
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Figure 3.5: HHG spectra of H2 at 3.78 a.u.. θ = 0 corresponds to TDKS-ALDA.

3.5 H2 at the Stretched Geometry

Next, we examine H2 at the stretched geometry, which is the simplest two-electron

system with unneglectable multi-reference characters. Figure 3.5 shows the HHG spectra

for different θ. For θ = 0 (TDKS-ALDA), the spin-restricted HHG spectrum starts with

the highest intensities of the first and the third harmonics, followed by a rapid decrease in

intensity of the 5th harmonic, the plateau with constant intensities up to the 13th harmonic,

and an abrupt cut-off over the 15th harmonic. Other similar characteristics are as at the

equilibrium geometry, and we would not repeat here.
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However, unrestricted TDKS-ALDA produces significantly different results from

restricted TDKS-ALDA and seems overwhelmed by the noise. We refer to this as the

broken symmetry of spin-restricted and spin-unrestricted formulations. As θ increases,

the spin-restricted spectra slightly deviate, with the spin-unrestricted spectra becoming

more similar to the spin-restricted ones. For θ = 40mhartree, restricted and unrestricted

RT-TAO-ALDA produce similar results, as they should do at the limit of exact RT-TAO.

For completeness, some other time-dependent observables are shown. Figure 3.6

shows the induced dipole moment, and fig. 3.7 shows the number of bound electrons.

For these time-dependent observables, improvements of the broken symmetry enhance as

θ increases. For θ = 40mhartree, restricted and unrestricted RT-TAO-ALDA produce

similar results.

3.6 Discussions of Symmetry-Breaking Effects

When it comes to spin-symmetric systems, both the exact spin-restricted and spin-

unrestricted formulations should produce the same results. However, the unknown and

necessarily approximated functionals (density functional approximation, i.e., DFA), in-

cluding the XC functional and the θ functional, etc, may cause unphysical symmetry-

breaking effects.[73]

For single-reference systems (e.g., H2 at the equilibrium geometry), the restricted

and unrestricted formulations do produce similar ground-state energies for KS-LDA and

TAO-LDA, respectively,[2] and do produce similar HHG spectra for TDKS-ALDA and

RT-TAO-ALDA, respectively. But this is not the case for multi-reference systems (e.g.,

H2 at the stretched geometry). While TAO-LDA and RT-TAO-ALDA remain producing
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Figure 3.6: Induced dipolemoment of H2 at 3.78 a.u.. θ = 0 corresponds to TDKS-ALDA.
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similar results with sufficiently large θ, KS-LDA and TDKS-ALDA produce different

ones.[2]

Specifically, spin-restricted KS-LDA preserves the correct spin-symmetry with over-

estimations of the ground-state energies,[2] while unrestricted KS-LDA predicts lower

ground-state energies than restricted KS-LDA at the cost of unphysically breaking the

spin-symmetry.[2] On the other hand, as shown in section 3.5, unrestricted TDKS-ALDA

produces rather noisy HHG spectra and restricted TDKS-ALDA may be the only viable

option of TDKS-ALDA.

Furthermore, by observing the spin-unrestricted formulation of RT-TAO, we know

if fα
i = fβ

i , ϕα
i (r, t0) = ϕβ

i (r, t0), and nα(r, t0) = nβ(r, t0), then unrestricted RT-TAO-

ALDA is spin-symmetric and produces same results as restricted RT-TAO-ALDA. Since

TAO schemes with θ = 0 reduce to KS schemes, the only possible reason for the fail-

ure of unrestricted TDKS-ALDA (in the sense of the broken symmetry of restricted and

unrestricted formulations) is the broken symmetry of spin-up and spin-down electrons of

unrestricted KS-LDA (fσ
i , ϕσ

i (r, t0), or nσ(r, t0)). This highlights the importance of TAO-

LDA. To confirm or to double-check the above arguments, we have run restricted TAO-

LDA followed by unrestricted RT-TAO-ALDA.Unrestricted RT-TAO-ALDA in such case

does produce similar results as restricted RT-TAO-ALDA.
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Chapter 4 Conclusions

In this work, we propose RT-TAO, a real-time time-dependent extension of TAO-

DFT, or the TAO version of RT-TD-DFT.We revise the ill-defined HXCθ action functional

in TDTAO and apply RT-TAO-ALDA to HHG. The results show that RT-TAO-ALDA

preserves the abilities of TAO-LDA to handle multi-reference systems and outperforms

RT-TD-ALDA in multi-reference systems in the view of spin-symmetry of restricted and

unrestricted formulations.

In chapter 1, we begin with the difficulties in solving the Schrödinger equation even

with the BO approximation. Numerical methods are a must, with wave function-based

methods limited by their demanding computational cost, and DFT the balanced option.

Fundamental theorems such as the HK theorems and Mermin’s theorems, along with the

KS scheme and the TAO scheme, are introduced. The NI-PS vs-representability of the

ground state density is emphasized because it is the key difference between KS-DFT and

TAO-DFT, which makes TAO-LDA outperform KS-LDA in multi-reference systems.

Following the ground-state theories are the time-dependent theories, aiming to solve

the time-dependent Schrödinger equation. The RG theorems, the van Leeuwen theorem,

and their ensemble extensions are introduced. Wemention the applications and limitations

of LR-TD-DFT, RT-TD-DFT, and TDTAO. These form the background of the proposal of
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RT-TAO.

For completeness, in section 2.1, we first give a summary of the iterative procedure of

ground-state TAO-DFT, including both spin-restricted and spin-unrestricted formulations.

The ill-defined HXCθ action functional in TDTAO is highlighted in section 2.2. In sec-

tion 2.3, we start with the ensemble extensions of the RG theorems and the van Leeuwen

theorem and propose the RT-TAO scheme. The expression of the TAO ensemble matching

the definition in section 2.3 is given in section 2.4. Because the electron number can vary

in the TAO ensemble, which one may not be familiar with, we give a demonstration of

combining one-electron states to form a basis of Fock space in section 2.5. The relation of

the ensemble average and one-electron states is derived in section 2.6. In section 2.7, we

give the expression of the RT-TAOpotential, which is intimatewithAXCθ[n]. The adiabatic

approximations for the HXCθ potential are explicitly given in section 2.9. Finally, a sum-

mary of the practical scheme of RT-TAO, including spin-restricted and spin-unrestricted

formulations, is given in section 2.10.

To assess RT-TAO, we apply it to H2 to simulate HHG. A brief introduction of HHG

is given in section 3.1. Time-dependent observables are defined in sections 3.1 and 3.2.

Computational details are provided in section 3.3. In section 3.4, for H2 at the equilibrium

geometry, which is a single-reference system, TDKS-ALDA and RT-TAO-ALDAperform

well and preserve spin-symmetry. In section 3.5, for H2 at the stretched geometry, which is

a multi-reference system, spin-unrestricted TDKS-ALDA fails to produce similar results

as spin-restricted TDKS-ALDA. On the other hand, spin-unrestricted RT-TAO-ALDA,

improves upon this issue with increasing θ, and produces similar results as spin-restricted

RT-TAO-ALDAwith sufficiently large θ. Symmetry-breaking effects are discussed in sec-

tion 3.6, with the broken symmetry of restricted and unrestricted TDKS-ALDA attributed
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to the broken symmetry of spin-up and spin-down electrons of unrestricted KS-LDA.

As the final note, while the determination of θ remains an open question (θ should

be chosen such that the TOONs resemble the NOONs[2]), for single-reference systems,

θ should be relatively small, and RT-TAO-ALDA performs similar to TDKS-ALDA. For

multi-reference systems, θ should be relatively large, and unrestricted RT-TAO-ALDA

outperforms unrestricted TDKS-ALDA in the view of preserving the spin-symmetry of

restricted and unrestricted formulations.
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Figure A.1: HHG spectra of H2 at 1.45 a.u. aligned perpendicular to the laser polarization.
θ = 0 corresponds to TDKS-ALDA.
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Figure A.2: Induced dipole moment of H2 at 1.45 a.u. aligned perpendicular to the laser
polarization. θ = 0 corresponds to TDKS-ALDA.
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Figure A.3: Number of bound electrons of H2 at 1.45 a.u. aligned perpendicular to the
laser polarization. θ = 0 corresponds to TDKS-ALDA.
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Figure A.4: HHG spectra of H2 at 3.78 a.u. aligned perpendicular to the laser polarization.
θ = 0 corresponds to TDKS-ALDA.
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Figure A.5: Induced dipole moment of H2 at 3.78 a.u. aligned perpendicular to the laser
polarization. θ = 0 corresponds to TDKS-ALDA.
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Figure A.6: Number of bound electrons of H2 at 3.78 a.u. aligned perpendicular to the
laser polarization. θ = 0 corresponds to TDKS-ALDA.
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Appendix B — HHG Spectra without

Window Functions
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Figure B.7: HHG spectra of H2 at 1.45 a.u. without window function. θ = 0 corresponds
to TDKS-ALDA.
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Figure B.8: HHG spectra of H2 at 3.78 a.u. without window function. θ = 0 corresponds
to TDKS-ALDA.
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Figure B.9: HHG spectra of H2 at 1.45 a.u. aligned perpendicular to the laser polarization
without window function. θ = 0 corresponds to TDKS-ALDA.
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Figure B.10: HHG spectra of H2 at 3.78 a.u. aligned perpendicular to the laser polarization
without window function. θ = 0 corresponds to TDKS-ALDA.

79


	摘要
	Abstract
	Contents
	List of Figures
	Introduction
	Theory
	Ground-State TAO-DFT
	LR-TD-TAO-DFT
	From Generalizations of Theorems to RT-TAO
	Expression of the TAO Ensemble
	From One-Electron States to a Basis of Fock Space
	Ensemble Average Evaluated by One-Electron States
	Expression of the RT-TAO Potential
	Some Details of Derivations
	Approximations for the HXC  Potential
	Practical Scheme of RT-TAO

	Results
	High Harmonic Generation
	Time-Dependent Observables
	Computational Details
	H2 at the Equilibrium Geometry
	H2 at the Stretched Geometry
	Discussions of Symmetry-Breaking Effects

	Conclusions
	References
	Appendix A — Systems Perpendicular to the Laser Polarization
	Appendix B — HHG Spectra without Window Functions

