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Abstract

In this work we propose an improved Reflective Shadow Map algorithm
by approximating visibility to account for indirect shadows. Reflective Shadow
Map (RSM) is a popular approach for real-time global illumination. It approx-
imates the first-bounce indirect lighting by using an extension of standard
shadow maps. RSM, however, does not _take wisibility into consideration.
Ignoring occlusion between secondary light souiee and shading point would
result in light leakage-and produce undesired results: To address this prob-
lem, we present an efficient algorithm for visibility approximation and a novel

~adE

sampling pattern that cooperatesweﬁi-v_i'fh it. \Our. approach works entirely in
screen space and requires N pr-ecf:ompliifation of any sort. Therefore, it is suit-
able for highly dynamic 'séenest and lighting éhqnging environments. We also
describe a detailed implementation on.contemporary GPU with many widely
used real-time rendering techniques to achieve high performance. Results

show the image quality produced by our approach is more realistic compared

to the original RSM.
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Chapter 1

Introduction

Global illumination has been demonstrated to be perceptually important [15] and is
frequently applied to synthesize photorealistic image. Despite an abundance of recent al-
gorithms have been proposed recently, computing global illumination for fully dynamic
scenes at real-time frame rate-still remains a challenging problem. Evaluating global il-
lumination requires incident radiance froiﬁ:{lll¢ entire hemisphere to be gathered at every
shading point. Because the complexity of hght transpott requires a large amount of calcu-
lation, the computation budge‘; can egéily run out. Therefore, indirect illumination often

has to be coarsely approximated in real-time applications.

The Reflective Shadow Maps (RSM) [2]-algorithm has been proposed recently and
applied widely to approximate one-bounce indirect lighting. Pixels on these extended
shadow maps are interpreted as small secondary light sources (also referred to as pixel
lights or virtual point lights, the VPLs) and used to illuminate the scene. The major ad-
vantage of RSM is that neither expensive particle tracing nor acceleration structures are
required. However, the original RSM approach does not include the visibility computation
for indirect lights. The ignoring of visibility leads to light leakage, which may produce

inconvincible results.

Previous work [4, 11] has shown that visibility queries are the major bottleneck of
computing global illumination. The goal of our work is to propose an efficient algorithm
to approximate visibility for pixel lights as various other previous work did [11, 5, 16].

Our main idea is to reuse information from RSMs and determine whether a pixel light can
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illuminate the shading point. We also propose a new sampling pattern for selecting pixel
lights which cooperates well with our novel visibility approximation. Since indirect illu-
mination is usually smooth, the approximation produces visually plausible indirect shad-
ows. Our approach runs entirely in screen space and thus it scales well with the scene
complexity. In addition, we implemented our system on modern GPU hardware with a
number of widely used real-time rendering techniques to achieve high frame rate even

with large and complex scene environments.




Chapter 2

Related Work

In this chapter we will review the previous work of real-time and interactive global
illumination. Offline rendering algorithms ‘such as ray tracing and photon mapping are not
taken into consideration. In additien, we focus on approaches that support fully dynamic

scenes without precomputation.

2.1 Image-Space Global Hiumination

Image-space, or interchangeably_séreen-rsjpace, approaches have advantages of good
scalability with scene complex:ity an& exeellent support for dynamic scenes. Dachsbacher
and Stamminger used reflective shadow maps (RSMS) [2] to compute one-bounce indi-
rect illumination. They further adapted splatting and importance sampling to produce
more complicated lighting effects [3]. Based on RSMs, recently Nichols et al. proposed
image-space radiosity [9] and multi-resolution splatting [10] to reduce the gathering cost
from virtual point lights. However, none of these methods consider visibility of indirect
lighting. Similar to the work just mentioned, our work is also based on RSMs but focuses

on approximating visibility for indirect lights which previous work lacks.

2.2 Screen-Space Ambient Occlusion

Ambient occlusion (AO) is another popular approach to roughly simulate global il-
lumination effect and able to render soft self-shadows. Screen-space ambient occlusion

(SSAO) approximates AO in screen space and is widely adopted by contemporary high-
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end gaming applications. Shanmugam and Arikan gathered ambient occlusion in screen
space using a GPU-friendly approach [14]. Ritschel et al. then extended this idea to
support directional occlusion and gathering one-bounce indirect illumination effects from
near fields [12]. Our work is largely inspired by their concept and image sampling strategy

for occlusion determination.

2.3 Visibility Approximation

Ritchel et al. proposed using low-resolution shadow maps (imperfect shadow maps)
to estimate visibility function for virtual point lights [11]. To accelerate rendering shadow
maps, surfaces in the scene were represented as disks to be splattered into the depth buffer.
Their method produced visually pleasant results‘and can support various types of light
sources. However, as the geometry bécame more'complex, a larger number of point sam-
ples was required, further increasing theé'render'cost. Dong et al. proposed an approach
to cluster VPLs into virtual area lights (V@lﬂand used convolution soft shadow maps to
generate visibility function [5]. Their ‘_sohlttbn only achieved- interactive frame rates for
moderate scenes. Kaplanyan and Dapﬁsbaéﬁer used fuzzy-occlusion for indirect lighting
in their cascaded propagation Volume‘approach [6]; ‘Since low-order spherical harmon-
ics were used to represent the geometry and lights, their method worked well for low-
frequency illumination. Nevertheless, their work still suffered from light leakage when
the low-order spherical harmonic coefficients were insufficient to capture complex geo-
metric details. Thiedemann et al. used texture atlases and created a rough voxelization of
the scene to capture the geometry not presenting in the final image [16]. They proposed
a fast GPU ray-casting algorithm to trace rays in the voxelized grid for visibility determi-
nation. However, their approach required precomputation of the mapping from geometry

to texture atlas and did not suit well with warping-based animation.



Chapter 3

Methodology

Our method is based on reflective shadow maps (RSMs) [2] and is capable to approxi-
mate occlusion for indirect illumination. The basic idea is that during the process of RSM
sampling, some information about.depth’values and world-space coordinates of previously
sampled pixel lights can be maintained and used to determine the visibility of succeeding
pixel lights. \i! |

In the following sections, we describe ‘in(’(rfetail how pixel lights are sampled and visi-
[ |

bility approximated for indirect illumination:-

3.1 Reflective Shadew Maps

An RSM is an extended shadow map. It follows the observation that all pixels on an
RSM can be viewed as the exact surface patches directly lit by a light source. Furthermore,
we can treat these patches as secondary light sources, named pixel lights, and use them
to calculate the first-bounce indirect illumination. In addition to the depth value d,, that
a standard shadow map maintains for each pixel p, an RSM also stores the world-space
position x,,, the normal n,,, and the reflected radiant flux ®,,. By assuming that pixel lights
are infinitely small in area size and perfectly diffuse, the emitted radiant intensity along
direction w is:

I,(w) = &, max{0, (n,|w)}, (3.1)

where ( | ) denotes the dot product.

Because taking all pixel lights into account for indirect illumination is impractical for
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real-time application, only a subset of them is gathered. The original RSM algorithm re-
projects a shading point to RSM and uses an importance-driven sampling pattern to pick
up the contributing pixel lights close to the projection in screen space. A precomputed
Poisson distribution is used to obtain an even sampling distribution. The original work had
mentioned that using the same sampling pattern for all indirect illumination calculation
gave good coherence but might suffer from aliasing when the number of samples were
insufficient. It was suggested to sample about 400 pixel lights for each shading point.
However in our experiment, 400 samples can still result in apparent aliasing in complex
scenes.

In order to simplify the calculation, visibility of pixel lights are completely ignored in
the original RSM approach. Its sampling pattern is also-difficult to estimate visibility with
the only information stored in RSM itself. Coﬁséquently, indirect illumination approxi-
mated by RSM will always be free'of indirect shadow'and may suffer from light leakage.

To address this drawback, we propose amimproved algorithm.

e _
|

l— "

3.2 RSM Sampling

To render the indirect illumination result on a giver;:shading point of the final image, we
follow the original RSM approach to re-project the shading point onto the RSM and sample
neighboring pixel lights in screen space. The reason of selecting neighboring samples is
that if two points are close in world space, they likely are close to each other in screen space
as well. Moreover, neighboring pixel lights usually contribute more and are desirable to
be sampled densely. The original RSM uses importance sampling to realize such idea.
Sampling density decreases with longer distance between the projected shading point and
a pixel light while the weight increases proportionally to the square of distance in order to
compensate the varying density.

The original RSM approach is efficient in gathering irradiance from pixel lights; how-
ever, it is incapable of determining visibility of samples to the shading point. We try to
address this problem by keeping some additional knowledge of closer selected pixel lights

in the sampling process and use them to estimate the visibility of farther ones. Our algo-
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Figure 3.1: Example of our base sampling pattern. Similar to the original RSM, sampling
density decreases and weight (represented as the radius of disk) increases with the distance
to the shading point. However, we restrict the sampling path to be on the same lines
originating from the projection.

rithm exploits the following observation: if there exists. an occluder between the shading
point and a pixel light in wetld/space; the occluder must also lie on the connecting line
of the two in screen space, given that thé%ﬁgcﬁon is either, perspective or orthogonal.
Therefore, after re-projecting a'shading poiﬁft to RSM, we sample along multiple straight
lines originating from the projection. Along ‘c;,ach line, pixel lights are sampled in a near-
to-far fashion. This allows us to che‘ck if any selected pixel light occludes the newly
sampled one to the shading point, based. on the knowledge we gather from those earlier
samples. Description of our algorithm for visibility estimation and the specific knowledge
required to be kept will be presented in the next section. Figure 3.1 shows our radial- and
concentric-looking base sampling pattern. Similar to the original RSM, we use the strat-
egy of varying density and weighting along each sampling path. Algorithm 1 describes
our sampling method more detailedly. For a pixel light of world-space position x,,, normal
n,,, and radiant flux ®,, its contribution to a shading point's irradiance is:

max{0, (n, | x — x,,) } max{0, (n | x, — x)}

[ = x[[*

E,(x,n) =&,

: 3.2)

where x and n are world-space position and normal of the shading point.
The number of samples per shading point is a trade-off between performance and qual-

ity of indirect illumination. To obtain high performance while avoiding severe aliasing,
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Algorithm 1 Sample RSM for a shading point
1: irradiance <= 0
2: for each sampling direction 6 do
3:  for each sampling radius r along a path do

4: Slightly jitter 6.
5: Slightly scale and jitter 7.
6: Transform (6, r) to Cartesian coordinate (u, v).
7: proj, <= p's projection on RSM
8: samplePosition < proj, + (u, v)
9: if samplePosition is inside the RSM then
10: Retreive pixel light p on RSM at position sample Position.
11: Calculate p's visibility v to the shading point.
12 if v = "visible" then
13: Calculate weight w of sample p.
14: Calculate irradiance contribution £, due to p with Eq. 3.2.
15: irradiance < irradiance + w - B,
16: end if
17: end if
18:  end for
19: end for

20: return irradiance

! p—

we use the same base patterh for all shadin??ﬁints but with slightly difference of rotation,
scaling, and jitters. In our experimeﬁts, a rither low number; of samples (about 100-150
samples per shading point). is; enough. to generate aliasing-free results. In spite of the
absence of aliasing, using less samples-with jittered :éampling pattern suffers from high
frequency noises (Figure 3.2). Therefore another render pass is added as post processing

which applies an edge-aware blur to the noised irradiance of indirect illumination, and its

result turns out to be visually plausible.

3.3 Visibility Determination

As the previous section described, pixel lights are sampled along a couple of straight
lines originating from the projection of shading point on RSM. For each pair of a shading
point and a pixel light, we transform them to eye space of the light source and evaluate
the elevation angle, where the xy-plane is considered the horizontal plane. To correctly
calculate the angle, z-coordinate in eye space, which is a linearized depth, must be stored as

the depth value in RSM. A small array of buffers, named micro linear buffer, is introduced
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(a) (b)

Figure 3.2: Noised irradiance of indirect illumination. (a) High-frequency noise appears
due to a low number of samples and varying sampling patterns for each shading point.
(b) We apply an edge-aware blur to approximate the low-frequency irradiance of indirect
illumination.

| r i
to maintain the status of in Which.!fénges of elevation énitérle exist some previously sampled
pixel lights. Each buffer represents apaﬁge of gﬁgles and the whole buffer array equally
divides all possible angles in [+7/2, ™ 2] Ee@fghhg to itsisize (Figure 3.3).

Given a newly sampled pixel hghlt we cﬂiculaﬁe' its elevatlon angle with respect to the
shading point and find the correspon ing Val:e in} 1C10 hn_ear buffer. If the buffer slot is
empty, it is interpreted as that 1;i1:erre}1j:esiders no preyiou§;§amf;les in the same range of angle,
and therefore that pixel light should illur"i-l-inafe the:shading point. In this case, we evaluate
the lighting contribution and fill the buffer to represent its occlusion on any farther samples

in the same range of angle. Otherwise, the pixel light is viewed as occluded and should

not be taken into account for indirect illumination.

Algorithm 2 Approximate visibility of a pixel light to the shading point
Require: Micro linear buffer is initialized as "visible" in all its buffer slots.
1: Calculate elevation angle ¢ € [—7/2,7/2].

2: Map ¢ to the index ¢dx of micro linear buffer bu f fers.
3: if buf fers[idx] = "visible" then

4: buf ferslidx] <= "occluded"

5:  return "visible"

6: else

7:  return "occluded"

8: end if

The size of micro linear buffer should be some fraction of the number of samples on the

9



shading C ®

point

A

depth

Micro linear
buffer

Figure 3.3: Example of micro linear buffer. InI this.case we eight buffer slots (stack of
squares on the left). Numbers appearing on both sides'illustrate the mapping from certain
range of elevation angles (right) fo buffer, 1ndex “Fhe terram-hke curve on the right repre-
sents the depths in RSM. Red dots on t]ne curve are samples considered occluders by our
algorithm, and black dots are samples c ygdr

| E
same sampling path. The main reasonl 1{5 that we lo%l% forward to some occluded pixel light
on each path, or else indirect shadows w1ll be 1napparent and results similar to the original
RSM can be produced. Fewer buffer slots lead to higher probability of buffer collision.
In our experiments, 5 slots of micro linear buffer together with 10 samples along each
path yield good balance between quality and performance. Artifacts may appear when the
size of micro linear buffer is smaller than 5. We also observed that neighboring samples,
especially those on the same smooth geometry, have high probability to be mapped into the
same buffer (Figure 3.4), making earlier samples always considered as occluders to their
subsequent neighbors. An additional check can solve part of this problem: visibility will
be propagated if a sample has the same buffer index as its predecessor. Algorithm 3 shows
an improved version of visibility approxmation that includes the additional check, where
tdr_q and v_; are the index to micro linear buffer and the visibility of the last sampled

pixel light.
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0 1. 0 1. 5
@ @ Vv,
\V/}‘_Vo
(a) (b)

(©). (D)

Figure 3.4: Problem with small size 1cro llnear{ffer “(a) Neighboring samples on the
same smooth surface can be mappcd he same ra ¢ of elevation angle, making the two
samples on the right being incorrectly. determined as occluded. (b) When we encounter
neighboring samples with the same buffer ihdex, visibility will be propagated to avoid
problems in (a). (c) Result of indirect irradiance that suffers serverely from problems in
(a). (d) Result of indirect irradiance after we applied Algorithm 3 instead.

Algorithm 3 Improved visibility approximation of a pixel light to the shading point
Require: Micro linear buffer is initialized as "visible" in all its buffer slots.

1: Calculate elevation angle ¢ € [—7/2,7/2].
2: Map ¢ to the index ¢dz of micro linear buffer bu f fers.
3: if idx = idz_, then
4: |20 V]
5: else
6
7
8
9

v < buf fers[idz]
. buf fers[idx] <= "occluded"
. end if

: return v

11
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Chapter 4

Implementation

4.1 System Overview

Our algorithm is completely platform-independent, and thus it can be implemented
without concerning compatibility issues with certain. hardware or software. We would
also like to preserve this advantage when_ it gomes to code portability. Therefore, the
system was implemented with OpenGL e;fli%penGL Shading Language (GLSL), which
were open standards and widely: supﬁorted. 'fV_[ore specifically; we chose OpenGL 3.1 and
GLSL 1.40 on GPUs since they-were Well designed to provide features that could fulfill
today's high demands on performance and graphics qllality while having relatively mini-
mal hardware requirements. OpenGL 3.1 has removed fixed rendering pipeline features
and enforces programs to store most of the data in graphics memory. Therefore it opens up
the possibility of advanced shading techniques and rapid rendering for massive geometric
primitives.

In addition to the choice of a modern graphics application programming interface
(API), we also adopted a number of GPU performance-tuning techniques in the pro-
grammable rendering pipeline. These techniques helped further save graphics memory
bandwidth and shading computation, greatly reducing the render time. Our system con-

sists of the following four render passes:
1. RSM generation,

2. G-buffer generation,

13



RSM G-Buffer RSM
Generation Generation Sampling

Post
Processing

Figure 4.1: Workflow of our render system.

3. RSM sampling, and
4. post processing.

Each of them was 1mplemqﬁe'd

-y' _1-.'._._ i B = -
}F,a d : nx@m’&sed of a vertex shader and a
, i

fragment shader. Flgure ‘\1 ,

In the first pass, an RSM that contains every pixel's world-space position, world-space

normal, linearized depth value, and radiant flux is written to several render buffer-bound
textures. As the previous chapter mentioned, the linearization of depth value is required
to correctly evaluate the elevation angle. We obtain such depth value by simply applying
view matrix to a world-space position vector and taking the transformed z-component,
preventing projection matrix from breaking its linearity. Except for the depth value, other
calculation for RSM generation remains the same as the original work.

A render buffer-bound texture is a writable texture bound to a render buffer as the
target memory region for fragment shader's outputs. Storing data in textures rather than

elsewhere has the major advantage: a shader program in the subsequent render passes

14



R16F G16F B16F A16F

Render target #1 World-space position Depth
Render target #2 World-space normal (empty)
Render target #3 Radiant flux (empty)

Figure 4.2: Layout of our reflective shadow map. Note that the depth is linearized.

can easily access these data as it fetches ordinary textures. Moreover, modern GPUs are
specially optimized to cache and fetch textures in graphics memory, eliminating the need
to transfer data back and forth between graphw_,s hardware and host memory. To even
further save the memory bandwmith we choose the 1ntemal format for each texel to be 4
components of 16-bit half preelslon floating point number whlch is defined in the OpenGL
specification [13] and natlvely suppo%f)s’bldPUs In our experiment, this compact

format had enough pre01s10n to repres}e t tﬁebces data and saved a significant amount

of space compared to its 325& counttt art~The lay ut of RSM textures is shown in Figure

i =

T

42. i

4.3 G-buffer Generation

The second pass, G-buffer generation, is designed to incorporate deferred shading.
Because we take scalability with large and complex scenes seriously, deferred shading
is adopted in order to decouple scene complexity from heavy shading calculation. Its
implementation may vary from case to case, but the concept remains static. It renders the
whole scene without complicated shading, and the result, namely the G-buffer, is the set of
exact fragments with their attributes that the camera finally sees. Subsequent render passes
that take G-buffer as input can save the redundant shading calculation for fragments that
will eventually be discarded due to hidden surface removal. However, deferred shading is
difficult to incorporate with translucent objects and multi-sample anti-aliasing (MSAA).

Since neither rendering translucency nor MSAA closely relates to our interests, we adopt

15



R16F G16F B16F A16F

Render target #1 World-space position Depth
. Shadow

Render target #2 Material color density

Render target #3 World-space normal (empty)

Figure 4.3: Layout of our G-buffer. Note that the depth is linearized.

deferred shading without these concerns. Our G-buffer consists of per-pixel world-space
position, world-space normal, material color, and shadow density from direct illumination.
A G-buffer is also stored in render buffer-bound textures to be accessed efficiently in
subsequent passes. The layout of-G-bu’flf;,-f texfd;éé is shown in Figure 4.3.

Shadow density in our G buffer 15 obtained by multl samphng the depth values in RSM
to soften the direct shadow edge (Al{qr%m 4 _.k'}r.k a standard shadow map is part of an
RSM, we simply use the 1nformat10n| reﬁ-ldva ble in RSM for shadow mapping and
average the results over a tlny kern | rou-nﬁ-'-ther O]CCt{Ol’l. A single result of shadow
determination is either 0 or i;'r'-i.l:’ld_iqa}tiLg the presL gg_.of shadow or not (present for the
value 0, absent otherwise). Ave;dg'ing-té'evefal "s.i;ch ;ééults yields some real number in
interval [0, 1] and can be considered the alpha value for material color to be blended with
shadow color. In order to avoid artifacts due to truncation errors of floating point number,
here we introduce a constant z-bias, which shifts all depth values on RSM a little bit farther

along z-axis with respect to the origin. The post processing pass will later take meterial

color and shadow density fields in G-buffer to reconstruct the result of direct illumination.

4.4 RSM Sampling

The third pass is RSM sampling. This is virtually the bottleneck of the system be-
cause it samples hundreds of pixel lights from RSM to render a single shading point. We
would like to reduce the time spent here as much as possible or it will greatly affect the

performance of the whole system. In this render pass, performance can dramatically drop
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Algorithm 4 Calculate shadow density for pixel p
1: shadowCount < 0

2: for: = _kernzlSize to kernteSiza —1do
3: fOI’j = _keTnZlS’Lze to keTnezlSZze _1do

4: samplePosition < p.position + (i, j)

5: if samplePosition is inside RS M then

6: if RSM.depth(samplePosition) — zBias > p.depth then
7: shadowCount < shadowCount + 1

8: end if

9: end if

10:  end for

11: end for

12: return shadowCount/kernelSize?

due to either too many pixel lights being sampled or output resolution being too large. On
the other hand, image quality must still be ensuted by enough number of samples. Bal-
ance between performance and quality requires experiments and tuning those parameters
accordingly. The sampling ¢complexity-ean be fusther divided into two factors: number
of paths and number of samples along the:E;I_me path. Our experiment showed that the
number of path had more effects on the irri—é':geﬂqualiw, sugggsting that it would be better
to traverse more paths than to samplel_ rrlore i)i;;el lights along each path. In our implemen-
tation, 150 pixel lights (15 paths and 10 samples albn‘g each) are sampled from RSM for

every shading point.

As the previous chapter illustrated, we applied a novel algorithm of visibility approx-
imation for pixel lights within this pass. During the traversal of a given sampling path,
a micro linear buffer of size 5 is used to record the elevation angles of all sampled pixel
lights. We choose this size so that farther samples (totally 10 along each path, as mentioned
earlier) have higher probability of buffer collision and therfore are prone to be determined
as occluded. In other words, some occlusion is desirable. Nevertheless, introducing micro
linear buffer increases graphics memory footprint. Data transfer between graphics mem-
ory and GPU is one of the most significant bottlenecks for GPU applications because of
its long latency [7]. This consideration also leads to our decision of mapping all angles in

[—7/2, /2] to relatively fewer buffers.
Visibility determination may also have the impact of increased branch divergence if not
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handled carefully. Branch divergence diminishes the order of parallelism due to the design
of modern GPU hardware [7]. GPUs are only able to execute the same instruction for
multiple data streams parallelly. Branches create different execution flows of the shader
program and often leave some processing units in the GPU unoccupied because there are
not enough threads in the same execution flow. We avoid increasing branch divergence
by assigning real numbers instead of Boolean flags (e.g. "visible" and "occluded") that
represents visibility to micro linear buffer. A micro linear buffer is initialized by assigning
1 to all of its buffer slots before any path has been sampled. For every sampled pixel light,
the visibility value in its corresponding buffer slot will be looked up and later multiplied
to its illumination contribution on a shading point. A decrement of visibility value takes
place after the lookup as an update 'to the micro linear buffer. Before the visibility is
actually multiplied to illumination contribution; We use<GLSL's built-in function clamp
to have negative values become Oiwithout a branch."As the result, whether a pixel light is
occluded or not, its contribution on thesshadingpoint is alWays evaluated. The visibility

~adE

value stored in micro linear buffer then deéfa:s_'*éither the eontribution or nothing should be
accumulated to the shading point. Algdrithmﬂs;S and 6 are modified versions of Algorithms

1 and 3 to incorporate with this technique.

Besides attemps to avoid bringing significant slowdown to render time due to the in-
troduction of micro linear buffer, we applied two more approaches to actively push the

performance.

First, as mentioned before, deferred shading is adopted to benefit the render time in
this pass. Using deferred shading ensures that each pixel in the result image is shaded
exactly once and therefore independent of geometric complexity. The second approach is
to render indirect illumination in lower resolution (quartered size of final result) and then
upsample it in the next render pass as previous work does [11]. Since in general, indirect
illumination has a smooth appearance, rendering it in low resolution is usually acceptable
when the goal is to produce visually pleasant images in real time. Our implementation
shows that these two approaches altogether can improve the performance for nearly three

times while preserving the same level of image quality.
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Algorithm 5 Sample RSM with minimal branches

1: wrradiance <= 0
2: for each sampling direction 6 do
3:  for each sampling radius r along a path do

4: Slightly jitter 6.
5: Slightly scale and jitter r.
6: Transform (6, r) to Cartesian coordinate (u, v).
7: proj, < p's projection on RSM
8: samplePosition < proj, + (u,v)
9: if samplePosition is inside the RSM then
10: Retreive pixel light p on RSM at position sample Position.
11: Calculate p's visibility v to the shading point.
12: Clamp v to [0, 1].
13: Calculate weight w-of sample'p. ==
14: Calculate irradiance ¢ontributien-#, due to-p with Eq. 3.2.
15: irradiance < irradianee + v - w -
16: end if
17:  end for
18: end for —

19: return irradiance

Algorithm 6 Approximate visibility with minimal branches

Require: Micro linear buffer is initialized as 1 in all its buffer slots.
1: Calculate elevation angle ¢ € [—7 /2, 7/2].
2: Map ¢ to the index ¢dz of micro linear buffer bu f fers.
3: if idx = idx_,; then
4 V<=1V
5: else
6: v <bufferslidx]
7. buf ferslidz] < buf ferslidx] — 1
8: end if
9: return v
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Rendertarget#1  Indirect illumination irradiance Depth

Figure 4.4: Layout of our indirect illumination buffer. Note that the depth is linearized.

We output the gathered irradiance of all shading points to the indirect illumination
buffer. Linearized depth is also written to the last component of the render buffer-bound
texture (Figure 4.4). This is because that the next render pass will use depth values as
input to an edge-aware blur. Although the depth values are already stored in one of the
textures composing G-buffer, we make a copy,of depth values from the G-buffer and pack

it with irradiance into the 1nd1rect 1llum1nat10n b}l‘ffer wlnch consists of only one texture,

therefore elimating the need to fetvché‘gj,ether texmﬁinﬁ buffer for the same information.

-
=
-

4.5 Post ProceSsing

.
.

Finally in this pass, dataEreaggr[J:t\ed{ttlmsyn hesize a ﬁnal 1mage The indirect illu-

mination buffer from the p_fe\;'i"'dds p"a s] is ﬁrét upslr‘lpled A subsequent edge-aware blur

is then applied in order to rem(we the high ,freql:iency noises. The blur is a variation of
bilateral filtering with a kernel sized 17 that depends on both depth difference and normal
vector continuity in addition to the distance within kernel. In the end, direct illumination

is reconstructed from G-buffer and combined with the indirect illumination to form a final

result.
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Chapter 5

Results and Discussions

5.1 Environments

We tested our system on an NVIDIA ' GTX260-based graphics card with 768MB graph-
ics memory and an Intel Core 17-920 CPU. Our test scene was a trianglized version [8] of
Crytek's Sponza model [1] which consiste.:q&(r)f some 262 thousand triangles. We rendered
both RSM and final image in 512x512 regﬁtion, and indirect illumination in 256 x256.

%

Average render time of each-frame will be used to comparethe performance between dif-

ferent parameter settings.

5.2 Results

As previously illustrated, in comparison with the approach of original RSM, relatively
fewer samples are sufficient to render aliasing-free approximate indirect illumination with
randomly jittered sampling pattern. The unwanted high frequency noises produced by our
sampling process can be effectively eliminated by an edge-aware blur in post processing.

Figure 5.1 presents the comparison of our visibility approximation with a non-occlusion
version. Gathered irradiance is visualized because it represents the contribution from sam-
pled pixel lights. If, for instance, pixel lights with green color should be occluded to some
geometric areas, one can obverse the irradiance lacking some specific channel there. In
the figure, directional shadows' presence in certain areas can be easily noticed and appears

more realistic than the non-occlusion counterpart. We also provide a reference image gen-
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(c) (d)

Figure 5.1: Comparison of indirect irradiance with and without visibility approximation.
(a) Result without visibility approximation. (b) Result with our visibility approximation
algorithm. (c¢) Amplified difference of luminance of (a) and (b). (d) Reference image

generated by gathering all pixel lights on RSM with visibility determination using ray
casting.
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erated on CPU in which all pixel lights on RSM are gathered for every shading point, with
visibility determination by ray casting. The shapes and locations of soft indirect shadows
rendered by our approach generally match those in the reference image.

Three more sets of results are shown in Figures 5.2, 5.3, and 5.4. They are all parts of
the Sponza scene model with different lighting and camera views. Difference images in

Figure 5.5 present areas where soft indirct shadows appear.

5.3 Performance

Table 5.1 lists the performance of our system with different parameter settings. Al-
though introducing the micro linear buffer,consumes more graphics memory and adds an
if-else branch, the overhead of visibility approximation takes merely 13% of the render
time without occlusion in the three test cases.

The performance gain from lowerfesolution‘ofiindirect:illumination is shown in Table
5.2. It is clear that the render time has drog_;;_q' dramatically. In addition, the overhead of
visibility approximationincreases with the ;ei’éolution from 13% ofrender time in 256 X256
to 17% in 512x512. Higher re_solutipﬁ of iﬁ;iirect; illumination are still possible for real-
time application with future generatioﬂs of graphics héifdware to provide even better image
quality.

Table 5.3 further shows the fraction of render time spent on each render pass. The
first two passes, RSM and G-buffer generation, take the whole scene as input. In spite of
our test scene consists of 252 thousand triangles which can be considered large and com-
plex, the results have illustrated the capability of modern GPUs to rapidly render complex
geometry. Due to our deferred shading pipeline, the other passes do not depend on the
scene complexity. We also experimented the case in which deferred shading was not in-
corporated with, and the frame rate would drop from around 30 fps to approximately 20
fps or sometimes even worse. In addition, to better eliminate the high frequency noises, a
relatively large kernel size of 17 is used in post processing, which results in a noticeable,

yet acceptable, render time roughly a quarter of the total amount.
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(a)‘ e (b)

©

Figure 5.2: Test case A. (a) Global illumination without indirect shadows. (b) Global il-
lumination with our visibility approximation for indirect lights. (c) Indirect illumination
only, without visibility test. (d) Indirect illumination only, with our visibility approxima-
tion. (e) and (f) are enlarged regions of (c¢) and (d), where on the bottom are results of our
visibility approximation.
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(e)

Figure 5.3: Test case B. (a) Global illumination without indirect shadows. (b) Global il-
lumination with our visibility approximation for indirect lights. (c) Indirect illumination
only, without visibility test. (d) Indirect illumination only, with our visibility approxima-
tion. (e) Enlarged regions of (c) and (d), where on the bottom is the result of our visibility
approximation. (f) Enlarged regions of (c) and (d), where on the right is the result of our
visibility approximation.
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(a) (b)

5 NaD C )

(e) ®

Figure 5.4: Test case C. (a) Global illumination without indirect shadows. (b) Global il-
lumination with our visibility approximation for indirect lights. (c) Indirect illumination
only, without visibility test. (d) Indirect illumination only, with our visibility approxima-
tion. (e) and (f) are enlarged regions of (c¢) and (d), where on the bottom are results of our
visibility approximation.
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Figure 5.5: Amplified difference between results with and without visibility approxima-
tion. From left to right: difference images of results from test cases A, B, and C.

Table 5.1: Average render timewith and-without visibility approximation.

Render time without Render-time with Time
Testcase | . .. ... — - .
visibility approximation | visibility. approximation | increasement
A 31.6 ms(32.11ps) 35.9 ms(27.9.1ps) 14%
B 32.4 ms (30.9 fps) 36.5/ms (27.4 tps) 13%
C 33.0ms (30.3 fps)| = 37.3/ms (26.8 fps) 13%

Table 5.2: Timing for different indirect 1llumination resolution in test case A.

Visibility Indirectillumination )
) ; . Render time
approximation resolution
No 256x256 31.6 ms (32.1 fps)
Yes 256x256 35.9 ms (27.9 fps)
No 512x512 79.8 ms (12.5 ps)
Yes 512x512 93.4 ms (10.8 fps)

Table 5.3: Timing for different render passes in test case A.

| Renderpass [ Render time | Percentage |
RSM generation 2.03 ms 5.7%
G-buffer generation 2.47 ms 6.9%
RSM sampling 21.8 ms 60.7%
Post processing 9.60 ms 26.7%
Total 35.9 ms 100.0%
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Chapter 6

Conclusions

We improved RSM by integrating visibility approximation for indirect illumination to
the process of sampling. The main contributions of our work include a new sampling pat-
tern and a visibility approximation approach iising micro linear buffer. Our results have
shown that light leakage problem produced by many previous RSM-based works has been
relieved. Besides, our algorithm produces §gftr indirect shades that make the global illu-
mination result more realistic without sacrgﬁhg advantages of the original RSM method.
In other words, we can obtain bettef qualit;.without compremise of high performance.
Moreover, a GPU-based implémentation and. performance-analysis are also presented in
this thesis. We believe our performance:tuning techniﬁues can be widely adopted to other
GPU applications where render budget for each frame is of major concern. Finally, our
approach is fully image-based and dynamic. It requires no precomputation of neither the

scene nor the lights, and thus it is appropriate for real-time application like games or in-

teractive designing tools.
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