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Chapter 1

Introduction
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Historically, Thﬁb

new quantur;_i flheve'ry i | c_pffé‘ctfy explain certain spec-
tra of anonqlalou ite ajpuzzling miss pg&&': tor of 1/2 in a standard
calculation. To set the stage, ight, the -mtroductlon of elec-
tron spin!i;g Uﬁlen ds i 6 ¢ orr;ctlj;explain the results

of Stern—G;i:ulach?‘gy : ! eﬁem provided that one
uses a g- faoter of 2 for pin. .}93 calcﬁ"l’atlons applied to the
anomalous Zeema‘r{effect, vhi i.i ntera(::tlon bf the magnetic dipole
moment of the eiﬁetroi;é}ﬂh |_1tsr - otion':'%entyaiﬂ;f|| the magnetic field the

electron experiences -Whil'e orl:n{mg the posﬁ'vely chaﬂged nucleus) yielded a result
that was twice the value méslp'bdu}n -e}peg‘lmebnts "The missing factor of 1/2 then
became a puzzle.

The difficulty was timely resolved when, in 1926, L.H.Thomas [3][4] showed that
people had overlooked a then-little-known relativistic kinematic effect in their cal-
culations. Briefly, an electron moving along a circular orbit actually experiences a
precessional motion with respect to the inertial frame in the lab. This “extra” pre-
cessional motion happens to partially offset the precessional motion caused by the

aforementioned “spin-orbit interaction.” (For an electron, this counter-effect turns



out to be one half that obtained by a straightforward spin-orbit coupling calculation,
thus successfully explains the missing factor of 1/2. But in the more general situation
when the orbiting particle does not have a g-factor of exactly 2, the correction is not
one half, because the effect is additive, not multiplicative.)

Because of the significance of this work, this extra precessional motion has been
termed “Thomas precession,” though earlier authors clearly already noticed this phe-
nomenon through the composition of two successive pure boost Lorentz transformations[5].

Though Thomas has settled in a scoop the difficulty facing the original spectral
problem, Thomas precession by itself never leaves the spotlight, possibly due to its
non-intuitive character. Indeed, several authors have addressed related issues, such as
the frame-independent approach, the lab frame viewpoint of the spin-orbit coupling|[7],
and the geometrigal approach[8].% For a .s:tandard textbeok derivation, see [9]. A
critical review- of someé [of thesinterpretationssand: ,d]efivations of Thomas precession
can also be found in[6][10].
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1.2 Motivation of -i:\liEpfheée‘nt work
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Because Thomas precession {:a and qllould be checked against experiments in the lab,
it seems reasonable and wort whlle-'té-mvest}gate how a'mfagnetic dipole interacts
with a given statl@_.ef_ectrlciﬁgld directly fl"OIlll ’:the point of view of a lab observer.
Indeed, such an approz?ch Jhas been attempted;, and"it was the main impetus to the
work of [7]. In approachés of this type, omne’s star.ting point typically involves the
realization that a moving magﬁetic dipole.actually is accompanied by an induced
electric dipole, which then can interact with the external electric field. To a lab
observer, the interaction involves an electric dipole, and one is thus naturally led
to setup the equation of motion for the dipole by considering the torque acting on
it. All this sounds so straightfoward that one probably will not doubt if any tricky
points may be hidden under the idea. However, the author of [7] points out that this
may not be the case, because an issue of the so-called “hidden momentum” must be

included in one’s formulation, not to mention that Thomas precession must still be



invoked again to get the final result right.

It was these unexpected and intriguing claims that caused my attention: Why
is it that one must be forced to use Thomas precession again when (s)he is already
dealing with things entirely from the very point of view of a lab observer right from the
beginning? And, as I progressed and began to get a better grasp of the whole problem,
I gradually realized that this problem is less trivial than one’s intuition might have
first suggested. The work presented below summarizes what I have learned from this
investigation. Briefly, the following includes three parts: As a prerequisite, Chapter

2 gives a quick review of how the correct energy (and hence the torque equation)

for an orbiting electron is derivg% _ﬁ% Thomas precession is taken into account,
Chapter 3 then discusses th % em%)?n%% frame point of view, with special
p . ,EP‘_;;&'-'@L-_“% T P p
emphasis on the @ﬁrgumeﬁl
B

of Mun z 7). Having pointed out what is failing in
Referencel7], ea];r 2
how one m ]

'ﬂ%ﬂ? po .:' f Ref.[7], then discuss
y =i
remn ici . ), Cha we propose a slightly
j .. . x : 1_:-'1 ]. S
more rigorx@ d'ei!lﬁ%a ] i%rilour result can still
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Chapter 2

The spin-orbit energy for an

electron: the traditional approach

2.1 Conventions adopted

For a smoether trangition to the problemiwe had in mind} Wé present in this chapter
the elements of Thomas’ argumeﬁﬁi&xding to the resolution of the original spectral
problem. ‘But before going on, wé 's_e?;t}raight our convention on the symbols used
and the approximation we Would likg_to adhere to.. In what; follows, both v and 3
refer to the factors one encounters in ’-cl-rle standard Lorentz transformation. That is,
B is the velocity of-an elect.ron with.fespect fo thie lab frame, and v = 1/ m
We also neglect terms ‘oflorder. higher than ¢ 2 (ir.e. order higher than 3% ) in the
final result. This implies that<in-many of the intermediate steps of our calculations,
we will set v to be unity without explicitly stating this approximation. We also use a
g-factor of 2 for the electron. All primed quantities refer to the electron’s rest frame,

and unprimed ones to the lab frame.

2.2 The original problem Thomas solved

Consider an electron orbiting about an isolated nucleus. Because the electron is in

motion, in the rest frame of the electron it experiences a magnetic field B’ = vE x (3



, with v = ¢3 being the instantaneous velocity of the electron. Here, E is the static
electric field of the positively charged nucleus. Since the electron has a charge and
spin, it also has a magnetic moment p’ = (e/mc)S’. The interaction between the

/

magnetic dipole and the magnetic field is via a torque 7/ = u’ x B’. The spin

dynamics is determined by

=u' x B’ (2.1)

dt’

The above equation tells us that there is an interaction energy given by
U/ _ [l,l . B/
_ g

mc

= 2.2
oty 2:2)
To convert the abovql,ghl-terms- oﬁwhat th'e"{ab ﬁ'afn%observes we first notice that
the interaction en%rg}.;‘}l_i the lhh_1 i efS frorrr-di__h_-e 55ove just by an additional

\ﬁgt’ ferms _gﬁorder higher than 32

~ factor. A1§Ql-"8” = S . Hence, if
: . = N
again (S’ 21.-.15' Hﬂ,p._]'!l'_ie ﬁiwe obtain "",:--I::j-__l ":.'-37
= e -
|
[ e -, :'l:-_.\-i i S
But this result tu b ice”that of the erimentally observed “fine

d-{T‘horﬁis to start his now

structure”i'.'{m .
I A A6

famous Wor'.i-'(-.:‘- A ""'n'
_I"i & ." .-"'; *a,il
oy o, A
2.3 Sumrﬂarjﬂ:ﬁf t:hp WOT, -;_(_)fg'?f'?hdknas

e -
Thomas was the first one 1’3 S_Ijmy J;ﬁha:j' t.l}é.,discr(!a'pancy between the above naive

theoretical derivation and the experimental observation is originated from a then-
little-known relativistic effect. Specifically, Thomas pointed out that all that was
required was a correct treatment of the Lorentz transformation connecting the elec-

tron rest frame and the lab frame. The most important idea coming out of his study

is: When an electron moves around the nucleus while keeping its own coordinate
system non-rotating (with respect to itself), its coordinate system still appears to

“rotate” with respect to a lab observer.



Assuming the existence of a certain rotation (with respect to an inertial frame)
for the electron’s rest frame, then, according to classical mechanics, we know that
the time rate of change of any vector G appears to differ, depending on whether
a reference frame is rotating or not. Indeed, the transformation between the two

reference frames is given by the relation|14]

(%) - (%) fwxG, (2.4
dt nonrotating frame dt rotating frame

where w is the angular velocity of the rotating frame with respect to the nonrotating

frame.

Next, we introduce a new in Fﬂfﬂﬁl‘ lled the boosted lab frame (blf), which

i |
he instantaneous velocity of

is produced by &mpl@-)iﬁ@!tlr_ig the lab _gn z
the electron. Ndi?:_'d‘le )fat thLIS“'l's- an_inertial fram an taneously comoving with
i :

ﬁ’c‘h{nextﬁément the electron will
deviate fro%j’c ‘?aus | i @g;é ces.) And it differs
# P
from the eﬁtro re i f. Ap_&ymg Eqn.2.4 to the
| iz

spin S’ oﬁ';.&!le electron, we g

the electron at t
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The detailed
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w = il
’y + 1 ﬁ"'ﬁ ' |_‘T‘ ;
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where B = ¢ 'dv/dt. The nonrelativistic approximation, i.e., Newton’s equation of
motion
B ~E
mc
then yields
w R~ ° Ex 3.
2mce



Using Eqns.2.1 and 2.6, we see that Eqn.2.5 becomes :

L

as’ e ., e
~ 8 x(E " (E '
(5), = S < (Exa+ (B X xS

- ﬁs' x (E x 3). (2.7)

As a consequence, the correct interaction energy is

U ~ U
~ - % g
~ 2mcS (E x B)
(&
~ 55 (Exp), (2.8)




Chapter 3

Thomas Precession: In the lab

frame SISO ey
Ak ‘*# = '--q-;?;‘

':il-

n

Because it is ég?éightfqrv-: i i -‘f'i'-{lfl the "eieptron s rest frame and

then transfg{_in everythi tt:erfﬁoanas directed to doing
things dqu‘c;jly I.ﬁ'om he viefrpoi ‘ n%’élxcepilon is the work of
Munoz, W,hq considered the prc e lab frame and atﬁqmpted to compare

* 2 *
the dlffermfes usin i succeedﬁd in deriving the

same resuli.ﬁ.'for_b t i i at’ besﬂ'-{[“o make our point,
¥ :l-J r = -' i‘ 1 —-
we next giv;_e-h brief a \ t of Vlehms taken to attack

e
d =
" | '_.

o
Thus, startlﬂg':w,lth-.’f helab secig ixeg "ucleus which generates a

static electric field 1n-1!'b,e. surrc;lic;ndlng space. '!;'he eJeC-’t’fbn moves around the nucleus,
carrying a spin and also .a ﬁﬂﬁm}\t%ﬂeﬁﬂmomen‘c of a fixed value. To a lab
observer, a direct interaction between the magnetic dipole with the static electric field
is impossible by classical electrodynamics. Thus, something indirect is responsible
for the interaction. The next most obvious candidate is via relativistic effect, which

predicts that the moving magnetic dipole actually carries with it an induced electric

dipole. This is briefly reviewed in the following section.



3.1 The electric dipole accompanying a moving mag-
netic dipole

Several authors have considered how an electric dipole is generated when a magnetic
dipole is in motion. In particular, it is known that the induced electric dipole moment
pis given by p = B x u’ [9, 11]. There are several methods to obtain this result. For

instance, we can take a vector potential for a magnetic dipole
A = pop X v /47r?

and transform the four-vector OL_G.EE a.-l.-fr(l)’m the moving electron frame to the lab

frame. A stralghtforv‘l&lram ea‘culatgron glves_ e =l .
A= 1= 'E-' * fﬂ*"
p:ﬁxj{r:'r _
.:_1‘ |I

This relat1o_&sh1p‘13. im

l-_l"n
""-.l i
3.2 'Phe hidden
e

When a m.,'a"gn@_tic ‘

(3.1)

P, hidden

This extra momenturﬂ lS not enﬂy experlmenﬂ:a‘lly meaéirable but is also required on
the theoretical ground if thé?-corﬂ.gm?ﬁtrﬁp .}ajzv- of-the linear momentum is to hold[12,
13]. Previous authors have demonstrated quite clearly how the hidden momentum
may arise for different models of the magnetic moment, but here we will verify this
fact using a straightfoward approach: We simply look at the equation of motion
from the electron’s rest frame and convert everything to the lab frame to check its
self-consistency.

Assume a magnetic moment g is moving in a static electric field, and there is no

free current and charge besides p itself. In the lab frame where one only observes



a stationary FE, we have a moving p accompanied by an induced electric dipole

= B x p. The moving @ has a center-of-mass momentum P,,,. With hindsight, we
blindly introduce the hidden momentum P;44e, = o X E /¢ in our system. Then the
total momentum of this system is assumed to be P = P,,, + Phiqden- The dynamical

equation of w in this frame now reads

dP.,, dP  dPridden

dt dt o dt
- p-v)E-(*E)
- [(ﬂxu)-vw—ﬂ [%—fﬂv-vw]

(3.2)

where OE /0t =0 be%gﬁ;ié” e ec.g‘ldi.-_ﬁeld 1s_§;c b%"' mption.

On the oth%-_.‘li )Jﬁ\___ ¢ W1§£1:::_75;v7§:;nﬂ1 see B’ = E x 3. And
then the dy ﬁlcal eq

dP 11!55 *‘-"1;-1.
C?’T’Iﬂ i .ﬁl
=
L

i (3.3)
i
Now, dry 'F_Ela-"'
= .‘ ¥y N

V x (Bx ) : @@'-V)ﬁ (3.4)

3.5
".-“',} ‘ - @”‘ -'f (3:5)
|._;| -I:I 1‘% 155
because 3 is space- lﬁgendeﬁﬁ{and there is'ho freﬁ@‘i’arge so that V- E = 0. And

the second term of Eqn.3. ﬂﬁﬂ@?@%ﬁl ‘read

Vip-(Exp) = V[E-(Bxp)
= Ex[Vx(@Bxp))+(E- V)(Bxp)
+(Bx ) x (VX E)+[(Bxp) VIE (3.6)
= [(Bxmu)-VI]E, (3.7)

where three terms of Eqn.3.6 are equal to zero because 3 and p are space-independent,,

and the field is static so that V x E = 0.

10



In virtue of Eqns.3.5 and 3.7, Eqn.3.3 becomes

APy,
dt

= [(B-V)E] x p+[(Bx u)-V]|E
= [(Bxp)-VIE—-pux|[(B-V)E], (3.8)

which is seen to be identical to the expression of Eqn.3.2. This verifies and justifies
the inclusion of the hidden momentum in the formalism. Of course, this also implies
that one needs to take extra care in dealing with the momentum, since the hidden

momentum is rarely suspected of its existence.

3.3 The inclusion of the hidden momentum by Munoz

Now let us turn to the work of Munoz|[7]. -To begin with, we note that this work has
the merit of trying to set-things'straight entirely in-thelab frame. Indeed, this may be
desirable in view_ of the fact that one then does not have to.go through the formalism
of convoluting Loventz transfdffnations te first obtain, the correction from Thomas
precession in order just to get/the ;h?ht; énéwer. Having this said, we would like to
point out in advance that, qgiﬁe u@élx, éomething unSatisfactory is present in
his argument for the derivaﬂio of tla'!ﬁorque: eéjluation. The line of argument in his
work may be summarized aé fl?llows.“t -  } j

In the lab frameg, the qtliantity related to the torque s is the total angular mo-
mentum J = L+ .S, which includes not just tile-gpin considered by most previous
researchers but also the ekplicitr inclusion ¢f the orbital angular momentum as well.

The orbital angular momentum is. L = r..,-x P, with r.,, being the position vector

of the center of mass and P the total momentum of the system. Thus,

dL d
E — E[Tcm X (Pcm + Phidden)]
dP
Tem X —— + Ve X Phidden- (39)

dt

On the other hand, the total torque 7 may be computed as the integral of r» x pE over

all space. Since p is nonvanishing only in a very small region, we can approximate

11



E(r) ~ E(r.y), and, with » = r.,, +  we have
T = /r X pE(1r ey )dr
= Ten X eE(ry,) + /xpd?’x X E(Tem). (3.10)

The first term of Eqn.3.10 is equal to the 7., x dP/dt in Eqn.3.9. The integration of
the second term of Eqn.3.10 is just the electric dipole p by definition. Substituting
Eqns.3.10 and 3.9 into dJ/dt = T, we obtain

a dt
~ pXE — v X Phidden- (3.11)

e
This is the equation c&aﬁ&}[\f

4noz's . ever, the argument following this
equation gets a t:m‘aif make]sﬁ entl ' factory This is discussed
in the next s

Assumin C claimed that “the

Thomas ¢ one-half ,” which

forcifully t
(3.12)
With this assume
) Phidgden = %3
poo= =S
L Uem = CIB
one easily obtains
ds
= 2m £ [(BxS)x E—Bx (S xE)
— _“ Sx(Exp) (3.13)

2me

12



which can be viewed as being equivalent to Eqn.2.7, because we only retained terms
to first order in 8 and to this accuracy dt =~ dt’, S ~ S’.

To summarize, the author got what he wanted, a derivation of the torque equation
entirely from the point of view of a lab observer. Or did he?

In our view, his derivation suffers from the fatal error of assuming that a quantity
determined purely by a lab observer must still be subjected to the correction of
Thomas precession. Though Munoz spent the latter part of his paper trying to
justify his approach, we feel that his efforts are futile because of the wrong turn he

has adopted. In the next chapter, we suggest a remedy to his approach and illustrate

13



Chapter 4

Two wrongs corrected

In this chapter we suggteﬁ.- o 1$porta‘it’&i_

i . 4
and illustrate Wlthl};-'ﬂ ex mplejbe-.show t ctuall t
othm)gﬁir -"'ngé can%ﬁ_c}ctly adhere to the lab

frame point of view, i
PO ;#.;.- L ?-"-
The first point' we would/li umﬁ-sfion':hnade in Section 3.3

letely missed out by Munoz

5 can be rectified. In other

words, there i

but nix@t also retain F to
,-'l

Ll

the same d."rdpr Thu : imati e.-gE-Q.?).ﬁ'ﬁ,lE(rcm) +(x-V)E
Hence, E#? 3. 10 1d .

T = f%_zj pgl_gﬁjﬁ,r
X Tem X-EE(:%) '—?mpd% X cm) 1&3!, /d3xp x-V)E (4.1)

|‘ '| _." II.L"'
where we have neglected terms of" KE% order or higher in the small distance .

Comparing Eqn.4.1 with Eqn.3.10, we can easily revise Eqn.3.11 to

é§ _ __dL
dt dt
~ pxXE —v.m X Phidden + Tem X /d%p(m -V)E, (4.2)

which now has the extra term [r., x [ p(x - V)E] compared to Eqn.3.10.

14



This extra term can be identified with
Tom X /d%p(m “V)E =7, x (p-V)E,

which, however, does not bear any resemblance to the terms preceding it. But if we

restrict ourselves to the special case when FE is just the ordinary central field

r
E - kﬁ,
then
rx(p-V)E
= 'r><(p-V)k£3 T
IMPITSY fo] (ST Y P
= kr x P80

which cancels t

s,
dt _r_'.. :m

(4.3)

where use has been
=

As a concreté exan

P
nucleus. -,_ %’E

95« BRAE 5
dt - "‘-‘l-t‘“. ;
= (B - E-
AT e e oy | (] Eog
= (/8 . u) E, _nIl-',,.lf".q.‘.:l'_L.::_., (44)

because the velocity vector is orthogonal to the central electric field.

With the previously mentioned fact that the spin only precesses very slowly com-
pared to the orbital motion of the electron, we may treat the g in Eqn.4.4 as a
fixed vector and perform a time average over one period of the orbital motion of the

electron, just to get the averaged precessional rate of the spin. The result is

as 1

15



which is seen to agree with Eqn.2.7, at least under the approximation we are consid-
ering.

Since nowhere did we make use of Thomas precession in our derivation, it is
clear that Munoz has erred when he made the ad hoc assumption that the lab frame

observer still had to adopt the dubious Thomas precession in his formulation.

16



Chapter 5

Deriving it via the Lorentz

transformati

—+

7 ransform physical
variables directly he unambigui S i to the lab frame. In so

re of the physical

as’
blf
Combining them, we obtain
’
(Ci:, > =p' xB +wxS. (5.3)
blf

17



And then we introduce the Lorentz transformation of any 4-vector (Ag, Aj, As, A3)

9, 14] :

Ay =7(Ay—B- A),

A=A+ 803 A)B —BA,.

\

where Ay is the time-component, and A = (A5, Ay, A3) is the spatial-components.

The transformation of S’ will be

N

Va A
=

_\1—'

!I
w1 A closer examination

Gy
(B?) holds, a fact

o

et

(=540

1 explicitly list the

Before._’a'j'l)plymg
assumptloniﬂfhmll

1. We still nﬁec&#«%\

2. The term u% is xﬁ%}r}a
o, [

(since S’ =S + O(%% 5150 that e’ ~y . 1%?-‘ i

3. Because of w =~ §ﬁ x%__ﬁ;@m@ﬁﬁr; ~w x 8§, if we neglect terms of

order higher than (32 .

4. Using chain rule, dS’/dt' = vdS’/dt ~ dS’/dt , if we neglect the terms order

higher than (3°.

@ﬁal&ﬁ" ,8 and p’ = p+0(B?)

5. One very important rule we must keep in mind is that when we evaluate the term
dS’/dt, we can not just blindly set S’ ~ S! This may appear surprising at first
sight if one recalls our earlier remark that S’ ~ S is correct to the second order in

3%. However, this is indeed the case, because, after each differentiation we will get a

18



term proportional to 3, which, being proportional to the very strong acceleration the
electron experiences, may render the result one order larger!

Having stated the precaution, we now move on to completing our program. Having
applied the transformation of S on Eqn.5.3 while keeping the five rules above in check,

we obtain

as

- = mxB+B(B-S). (5.4)

Further substitutions of the variables involved, we can recast the above into

as e
— = —FE(S5: 8). .
dt mc (5-8) (5:5)
pk ;ﬁ -: Y n W =
This dynamical equatiq$§1ﬂﬁi1&b£€5ﬂ@£ﬂmgther massaged to a more man-
e E .* - -

)k : e T
ageable form if We-ahﬁy agai-%f" ji?.‘? idea’ : 'f. the Spﬁ.ﬁqtrually can be treated as a

1l .1'&
QQiI;}ﬂ. %, the above reduces to

fixed vector duting one Sircuit ]
Xeda vector %rgo Q11 1rcul (]

160 Ay
ds e )
== S e o, N (5.6)
dt -:'r'!_-:r g&ii‘i i =
.'_:_. ¥ 'i_F_,-ﬂ"'l -El
after we a'%age it i i bty This, of course, assumes the same form
o, | s
=]
of Eqn.Z.ﬁd-.as any i , uce. Needless to say, the energy we
b 3 N .
calculatedi_-',gtsing th ism i 1dard s&{:‘a—orblt interaction
value. ':F_‘L_ s -:,.'_.":
Lo, ::I

&

. A ﬂ"‘?l-. ':-I:-":. A DAl

N o

We have pointed out'éfé&@;%%l{grtcor;ings'i-n __g.r?ﬂlfgvi.ous work attempting to deal
with the spin-orbit interactiolli: gﬁm" gﬁ—;;gil ‘-che lab point of view. We also pro-
posed certain remedies which are capable of rectifying the weakness we have spotted
in the previous work. It seems that generalizations of our approach to cover a broader

scope are possible, and we are currently pursuing them.
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