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中文摘要 

 

在現今的系統設計上，虛擬化技術為解決可攜性、可維持性、發展性以及系統使

用率的問題上提供了一個極佳的解決方案。本論文中，我們將專注於開發平台虛

擬化技術上的省電設計。我們探討了虛擬化核心與真實核心上計算資源的對應技

術，以及在考慮系統上執行工作的時間限制下，虛擬化核心與真實核心上能源消

耗的關係。透過模組化每個虛擬化核心上所需的執行資源，本論文同時考慮了即

時性工作以及非即時性工作上的工作量。以此設計為基礎，本論文提出了一個以

微核心為基礎，支援動態電壓調整的原型架構。並評估了此架構的功能以及造成

的負擔，實驗結果展示出本設計在省電支援以及系統負擔上，有著良好的結果。 

 

關鍵字：虛擬化核心模組，開放式環境，省電設計，投射技術，虛擬化環境，微

核心 
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Abstract

Virtualization provides an excellent solution to resolve the portability, maintainabil-

ity, development, and utilization problems in many system designs. In this paper,

we are interested in energy-efficient designs for platform virtualization. In particu-

lar, we explore the computing resource mapping between virtual cores and physical

cores and their energy consumption relationship when timing constraints in task

executions are considered. Real-time and non-real-time task workloads are both

considered in the study, where the computing needs of each virtual core is modeled

with a computing server. A prototype with DVS support is implemented based on

a µ-kernel architecture. The capability and overheads of the proposed design was

evaluated, for which we have encouraging results.

Keywords: Virtual core model, Open environment, Power-aware design, Mapping

technique, Virtualization environment, µ-kernel
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Chapter 1

Introduction

The growing variety and rapid evolving of hardware architectures and platforms

has resulted in tremendous challenges in the development of system and application

software. Virtualization, that provides an abstraction layer between hardware plat-

forms and their executing software, provides an excellent alternative to simplify the

development and deployment of applications and to improve the system resource

utilization. Such observations motivate this work in the exploring of energy-efficient

virtualization designs.

Virtualization techniques can be classified into resource virtualization, ap-

plication virtualization and platform virtualization techniques according to the per-

spective of their abstractions: Resource virtualization provides a layer of abstraction

between (physical) resources, such as disk space, CPU cycles, and RAM, and the

semantic activities in the consuming of the resources [8, 38]. Application virtual-

ization (also known as application service virtualization) improves the portability,

manageability and compatibility of applications by encapsulating them from the

underlying operating system on which they are executed [4, 15]. Platform virtu-

alization, that hides the physical characteristics of hardware platforms from users

1



2 CHAPTER 1. INTRODUCTION

by emulating multiple virtual machines (VMs), have many implementations in the

market already. Well-known products are such as Xen [2], VMWare [40], Virtual PC

[21] and VirtualBox [23] for personal computers and/or enterprise systems. Another

implementation is the hypervisor of OpenSPARC, that provides a high-performance

firmware-level abstraction, referred to as the logical domain, to enhance the system

portability [36]. Moreover, VirtualLogix [24] and µ-kernel such as L4:Fiasco [17]

and OKL4 [22] are designed for embedded systems with the considerations of se-

curity, robustness, isolation and real-time performance guarantee [10–12, 34]. This

work would focus itself on platform virtualization because of its wide applicability

in various domains.

In the past decades, a number of excellent research results on virtualization

were also proposed in the academics. For example, research on the performance

enhancement of the system by means of the executions of multiple operating systems

was presented by Murata et al. [32]. When system security is considered, Criswell

et al. [5] designed a virtual instruction set to provide safe execution environments.

Seshadri et al. [37] guaranteed the code integrity with a hypervisor-based solution.

Moreover, with secure operating systems [13, 20] upon a minimized software level

based on the L4 µ-kernel architecture, the system security can be guaranteed at the

operating system and application levels. Härtig [9] presented a high-performance

design of µ-kernel for embedded systems. The dependability can also be improved

by using unmodified device drivers in virtual machines [27].

In this paper, we are interested in energy-efficient designs for virtualization

because of its importance and the lack of sufficient study in that direction. The

closest related work is the power control architecture with on-line adjustments by

Nathuji et al. [33]. A similar framework was proposed by Stoess et al. [39] to
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account and allocate the energy consumption of virtual machines. An architecture

was also proposed by Wang et al. [42] to minimize the energy consumption under

response time constraints. However, many past results do not consider real-time

tasks or are only dedicated to enterprise systems. In this paper, we should con-

sider both real-time and non-real-time tasks and dynamic voltage scaling (DVS) in

energy-efficient designs. In particular, we explore the computing resource mapping

between virtual cores and physical cores and their energy consumption relationship

when timing constraints in task executions are considered. We propose to model

the computing needs of a virtual core with a server model and propose a DVS pol-

icy to minimize the energy consumption without any potential violation of timing

constraints. The proposed methodology is realized based on a µ-kernel architecture.

A series of experiments was conducted. It was shown that the energy consumption

of a multimedia application was reduced by XX% with less than 5% overhead in

terms of the system performance.

The rest of the paper is organized as follows. Section 2 provides the sys-

tem architecture and the research motivation. The design and analysis of the pro-

posed virtualization methodology is presented in Section 3. Section 4 addresses

implementation issues and provides the evaluations of the proposed virtualization

methodology. Section 5 concludes this paper.
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Chapter 2

System Architecture and Research

Motivation
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Figure 2.1: A Virtualization Example.

As the number of cores per system grows significantly in the next few years,

how to provide an effective system design that can be adaptive to the development

or the deployment of multi-core platforms has become a very critical issue. Among

possible design alternatives, virtualization is a popular concept to resolve the prob-

lem, e.g., [2, 32, 41]. As shown in Figure 2.1, virtualization is usually realized by

5



6 CHAPTER 2. SYSTEM ARCHITECTURE AND RESEARCH MOTIVATION

having a hypervisor over physical cores to emulate selected virtual cores so that se-

lected guest operating systems could run with their target multi-core configurations.

With the help of virtualization, the number of virtual cores and their characteristics

could be realized before the deployment of a target system. It is the obligation of the

vendors to ensure that the final and underlying hardware can support the required

configuration. Note that there is, in general, no constraint on the ratio between the

number of virtual cores and that of physical cores.

0 6 10 16 20

Virtual Core 1 Virtual Core 2

t ( s)

Figure 2.2: Two virtual cores over one physical core.

Different from the past work, we are interested in the dynamic-voltage-

scaling (DVS) implementation issues of virtual cores. The adjustment of the oper-

ating frequency of a virtual core might result in proper dynamic voltage scaling (or

even the turning-off) of some physical core and/or trigger the service adjustment

mechanism of a hypervisor to emulate selected virtual cores at their proper speeds.

Such an adjustment procedure might generate some potential problem in timing

constraint violations. For example, consider an embedded system with 2 physical

cores that both operate at an operating frequency f , where each physical core serves

one virtual core in an initial configuration. Suppose that the operating frequency of

the first virtual core is now set as 0.6f , and that of the second virtual core is also

adjusted as 0.4f . After the frequency adjustment, the hypervisor might decide to

turn off one physical core and to let two virtual cores share one physical core for

energy saving, as shown in Figure 2.2. Suppose that two virtual cores use the first

6µs and the last 4µs, respectively, for every 10µs time period over the physical core.
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Such a virtual core emulation might come to a deadline violation problem when the

second virtual core must run a real-time task with a period 5µs and an execution

time of 2µs (at the operating frequency f). Such an observation reveals a con-

straint on how to emulate virtual cores over physical cores when timing constraints

of processes must be satisfied.

In this paper, we shall address three major design issues regarding the DVS

support of virtual cores: (1) How to model the DVS needs of a virtual core, (2)

how to map the DVS needs of virtual cores into the DVS settings of physical cores,

and (3) how to design a scheduling algorithm to satisfy the needs of virtual cores,

including the satisfaction of the timing constraints of their processes. The modeling

of the DVS needs of a virtual core should result in a modeled workload for the virtual

core such that a resource scheduling mechanism could be proposed for a hypervisor

to schedule the workload execution. We shall also propose proper scheduling policies

to drive the scheduling mechanism to meet the needs of virtual cores and derive a

corresponding admission control policy. Such a policy would help to estimate the

demands to the underlying hardware.
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Chapter 3

Power-Aware Virtualization

System

This section presents our approach for the DVS support of virtual cores. With the

considerations of both the real-time and non-real-time task workloads over virtual

cores, a resource-reservation-based model is considered for the modeling of the com-

puting demands of each virtual core in Section 3.1. In Section 3.2, a DVS-based

scheduling policy is proposed for the DVS adjustment of physical cores and the em-

ulation of virtual cores while timing constraints of real-time tasks are guaranteed.

Implementation remarks are later presented with the considerations of overheads

and the support of multiple physical cores.

9
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3.1 A Virtual-Core Server Model

The purpose of this section is to explore the modeling of the computing needs

of virtual cores and their emulation over physical cores. A Constant-Bandwidth-

Server-based model is presented to model the computing needs of each virtual core

with resource reservation [1, 35]. In this paper, we are interested in the system

design issues for the sharing of a physical core for multiple DVS virtual cores, where

no global resource synchronization is considered among tasks over multiple virtual

cores.

A virtual core provides a platform to run real-time and non-real-time tasks

in a way similar to a physical core. Depending on their task workloads, virtual

cores might be configured to run at an operating frequency, similar to their coun-

terpart physical cores. It is the responsibility of a hypervisor software to allocate

proper execution cycles to tasks running over virtual cores based on their workload

characteristics. Thus, we propose to service the tasks over each virtual core by a

Constant Bandwidth Server with Hard-Reservation (CBS-HR) server, where each

CBS-HR server is associated with its maximum budget Ci in terms of the execution

cycles and a replenish period Ti [30, 31]. Constant Bandwidth Server (CBS) [1] is

a resource reservation algorithm in which servers are scheduled under the Earliest-

Deadline-First (EDF) scheduling algorithm, that always schedules the task with the

nearest (absolute) deadline. In order to prevent CBS from suffering the deadline

aging problem [31], CBS-HR is extended from CBS such that it can guarantee a

fixed execution budget Ci during every period Ti.

We propose to model the workload characteristics over a virtual core αi by

three parameters (Ci, Ti, Fi): Ci, Ti, and Fi denote the number of the total execution
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cycles of its tasks, the replenish period of its corresponding CBS-HR server, and its

user-set operating frequency, respectively. A legal setting of the maximum budget

(also denoted as Ci) and the replenish period (also denoted as Ti) of the correspond-

ing CBS-HR server of a virtual core should satisfy the inequality Ci

Ti
≥ Fi

1. The

replenish period Ti of a virtual core (or its CBS-HR server) should also comply with

the timing constraints of its real-time tasks. For example, consider the execution of

a real-time task τi with ci execution cycles and a relative deadline pi (as shown in the

example of Section 2). pi should be able to be divided by the replenish period Ti of

a virtual core. Consider a set of real-time independent periodic tasks {τ1, τ2, . . . , τn}

to execute over a virtual core, where independent tasks could preempt the execu-

tions of each another at any time. Let ci and pi denote the maximum number of

execution cycles and the period of a task τi of the set, respectively. Suppose that the

EDF scheduling algorithm is adopted to schedule the task set. The following lemma

could be proved for the setting of the budget and replenish period of a CBS-HR

server:

Lemma 3.1 Given a set of real-time independent periodic tasks {τ1, τ2, . . . , τn}, a

CBS-HR server with the replenish period T = gcd(p1, p2, . . . , pn) and the budget

C ≥
∑n

i=1

ci

pi
· T could guarantee the schedulability of the task set.

Proof. In order to meet all timing constraints of this task set, the operating fre-

quency of the virtual core Fv can not be less than
∑n

i=1

ci

pi
, because a set of real-time

tasks can be schedulable on a processor under the EDF scheduling algorithm if and

only if its total utilization
∑n

i=1

ci/Fv

pi
is no more than 1 [29]. Therefore, while these

1The budget and the replenish period of a CBS-HR server could be theoretically different from
the number of the total execution cycles of the tasks and the replenish period of its corresponding
virtual core, respectively. In this paper, we would let them be the same to simplify the discussion
and implementation.
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n real-time tasks have the highest priority or there is no other task on the virtual

core, they will be schedulable if Fv is
∑n

i=1

ci

pi
.

Let Ck be the execution cycles that a virtual core can guarantee within

any pk, while we set the replenish period and maximum budget of the virtual core

according to our configuration. Then, we have

Ck = ⌊
pk

T
⌋C =

pk

T
C ≥ pk

n
∑

i=1

ci

pi

for k = 1, 2, . . . , n.

That is, from the perspective of any task τk, the virtual core can provide sufficient

execution cycles within its relative deadline pk such that the virtual core will behave

like a processor whose operating frequency is Ck

pk
which is no less than Fv. Since it is

similar to that these tasks are executed over a processor whose operating frequency

is no less than Fv, the total utilization will be no more than 1. Therefore, the timing

constraints of these tasks can be satisfied.

frequency

time
Fv

∆Rd

frequency

time

Fp

0 T 2T kT (k + 1)T

· · ·

Figure 3.1: The delay of the response time incurred while the virtual core is emulated
on a physical core.

Unlike real-time tasks where the timing constraints are crucial, the concern

of non-real-time tasks is different. Such as multimedia applications and batch ap-

plications, users might be only interested in the throughput provided by the virtual

core which can be directly reflected by the operating frequency specified by users.

When these tasks are executed over a virtual core, users might also need to take

care of the response time which is affected by the replenish period. Thus, they need
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to determine the replenish period [3] such that the reasonable delay of the response

time is achievable. However, as the granularity on the executions of non-real-time

tasks is not as crucial as that of real-time tasks, users do not have to treat non-real-

time tasks as one kind of real-time tasks by setting the maximum budget and the

replenish period according to Lemma 3.1.

As shown in Figure 3.1, when we use a virtual core emulated on a physical

core to execute a certain workload, the lower part of the figure demonstrates its

behavior, where the gray area stands for the execution cycles of the workload. Com-

pared to the behavior when the same workload is executed on a physical core with

the same emulated operating frequency as shown in the upper part of Figure 3.1, the

delay of the response time Rd might be incurred. Therefore, the user of the virtual

core might specify a tolerable response time delay σ that the delay of the response

time on the virtual core should not exceed. In order to meet the requirement, the

following lemma directs how to set the maximum budget and the replenish period

of the virtual core.

Lemma 3.2 Given a tolerable response time delay σ, the delay of the response time

on the virtual core with operating frequency Fv can be no more than σ if the replenish

period and the maximum budget are set according to T ≤ σ
1−Fv/Fp

and C ≥ Fv · T ,

respectively, provided that the operating frequency of the physical core is Fp.

Proof. The worst case of the response time occurs when C is equal to Fv ·T . Thus,

we assume C is FvT in our proof.

For each replenish period T , the virtual core can perform C execution cycles

which is the same as that can be provided on a physical core with operating frequency

Fv. This leads to that there is no difference between the finished execution cycles
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on the physical core and that on the virtual core. Therefore, as shown in Figure 3.1,

the delay of the response time is incurred only if ∆ = Rp

T
− ⌊Rp

T
⌋ > 0, where Wp is

the response time on the physical core. Then the delay of the response time on the

virtual core Rd can be computed as follows.

Rd =
(

T −
C

Fp

)

+
∆ · Fv

Fp
− ∆

By substituting x · T for ∆, Rd becomes T
(

(x − 1)(Fv

Fp
− 1)

)

which is a function of

x. Since the operating frequency of the virtual core Fv is no more than that on the

physical core Fp, Rd has the maximal value when x approaches to 0. That is, Rd

is no more than T (1 − Fv

Fp
). Combined with T ≤ σ

1−Fv/Fp
, the delay of the response

time Rd could be no more than the tolerable response time delay σ.

3.2 Hypervisor Functionalities

The hypervisor is one of the most important component in virtualization systems.

This section describes the functionalities that the hypervisor has to support in or-

der to provide a power-aware virtualization system. With the virtual-core server

model presented in Section 3.1, our virtualization system serves user applications in

a two level hierarchical scheduling scheme [6, 7, 25]. Under the two level hierarchical

scheduling scheme, the hypervisor manages the computing resource of physical cores

to guarantee the needs of virtual-core servers in the lower level. In the upper level,

each guest Operating System (OS) runs over virtual cores and schedules user appli-

cations to meet their timing constraints with a customized scheduler. When there

are more than one virtual cores simulated on a single physical core, the schedulabil-

ity of the system should be considered. Thanks to the following lemma of CBS-HR
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server, the schedulability can be guaranteed under the virtual-core server model if

we consider a virtual-core server with parameters (Ci, Ti, Fi) as a CBS-HR server

with utilization Ui = Ci/Fp

Ti
where Fp is the operating frequency of the physical core.

Lemma 3.3 Given a set of periodic tasks with total utilization factor Up and a set of

virtual cores with total utilization factor Us =
∑

i Ui, the whole system is schedulable

under the EDF scheduling algorithm if and only if Up + Us ≤ 1 [31].

In order to utilize virtual cores in the virtualization system, the hyper-

visor has to support three functions: virtual core creation, virtual core deletion,

and virtual core adjustment. The virtual core creation function let users acquire

a new virtual core according to their requirements. Given the required operating

frequency of virtual core Fi and its timing constraint, the hypervisor derives Ti

based on Lemma 3.1 or Lemma 3.2 and then creates a virtual-core server with pa-

rameters (Ci, Ti, Fi), where Ci is Fi · Ti. On the other hand, once a virtual core is

no longer required, it can be removed from the virtualization system and release

its allocated computing resource with the virtual core deletion function. Finally,

with virtual core adjustment function, the virtual core in the virtualization system

can be treated as a physical core with the capability of dynamic voltage scaling

(DVS). More specifically, when the user specifies a new operating frequency F ′

i for

a virtual core with the virtual core adjustment function, the hypervisor will adjust

the virtual core accordingly such that the configuration of the virtual core becomes

(F ′

iTi, Ti, F
′

i ).

In addition to the functions to utilize virtual cores, the hypervisor also needs

to support admission control mechanisms because of limited computing resource of

physical cores. That is, at each time of the virtual core creation or the virtual
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core adjustment, the admission control mechanism will be triggered to examine

whether the request could be granted or not. Thus, we define Uc = 1−
∑

i Ui as the

remaining utilization for a physical core in the virtualization system, where
∑

i Ui

is the total utilization of virtual-core servers on the physical core. Then, when the

remaining utilization of a physical core is changed due to the virtual core creation or

the virtual core adjustment, the proposed admission control mechanism will grant

the corresponding request if the new remaining utilization of the physical core is no

less than 0; otherwise, the request should be rejected to prevent from harming the

schedulability of the system.

While the physical cores have the capability of DVS, the hypervisor of a

power-aware virtualization system should be able to adjust the operating frequencies

of physical cores for energy saving. In our virtualization system, we exploit the

DVS capability of physical cores by integrating a DVS scheduling policy with the

admission control mechanism. As a result, once our admission control mechanism is

triggered, it will also invoke the DVS scheduling policy if the physical cores support

DVS. Given a remaining utilization of a physical core, our DVS scheduling policy

will scale down the operating frequency of the physical core to the lowest available

frequency of the physical core such that the remaining utilization of the physical core

is no less than 0, and will only ask the admission control mechanism to reject the

request if the remaining utilization is less than 0 even if the physical core operates

at the highest available frequency.
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3.3 Implementation Remarks

As we only demonstrate our design of the power-aware virtualization system with a

single physical platform so far in this paper, some extensions through slight modi-

fication of our design will be introduced to cope with some implementation issues

in the following of this section. The extensions include (1) the support of multiple

physical cores and (2) the consideration of implementation overhead.

When there is only one physical core in the system, we will map multiple

virtual cores into it. We can extend the same mapping technique when there are

multiple physical cores in the system. Initially, we maintain the system remaining

utilization for each physical core. Then according to the required utilization of the

virtual core, the hypervisor will assign each virtual core to run on a physical core

based on the best-fit policy. More specifically, suppose there are n physical cores

in the system. At each time we want to assign a virtual core to a physical, the

hypervisor will compute the system remaining utilization of each physical core if

the virtual core is assigned to it and assign the virtual core to the physical core

with the minimum system remaining utilization after the assignment. In addition,

the hypervisor also needs to combine the migration operation and admission control

mechanism when the virtual core adjustment function is called. If the function in-

creases the operating frequency of the virtual core and causes the system remaining

utilization less than 0 when the physical core operates at the highest available op-

erating frequency, the hypervisor will find a physical core with the enough system

remaining utilization in the system and migrate the virtual core to it. Otherwise,

the admission control mechanism will reject the request of the adjustment. When

there exists a physical core with constant operating frequency in the system, we can

replace the best-fit policy with assigning the maximum amount of workload on it.
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Hence, our virtualization system is flexible for multiple physical cores platforms. We

can further develop policies for virtual cores assignment and migration to achieve

better system throughput or reduce the total energy consumption.

From the perspective of the implementation, the system will introduce some

implementation overhead: management overhead and context switch overhead. The

management overhead Om includes the overhead resulting from the duties of the

hypervisor, such as virtual core maintenance, computing power dispatching, and

memory protection. The unit of Om is a fixed utilization added into the utilization of

each virtual core. The context switch overhead Os stands for the overhead resulting

from the context switch among executions of different virtual cores. The unit of

Os is a fixed number of execution cycles added into the maximum budget of each

virtual core. When we consider the implementation overhead in the virtual-core

server model, we need to modify the setting of CBS-HR server.

For a virtual core with parameters (Ci, Ti, Fi), the maximum budget Ci

needs to be added by extra execution cycles from implementation overhead and it

will become C
′

i = Ci + Os + Om · Ti · Fi. The replenish period Ti will keep the same

value without any modification. Hence, the total utilization needed for this virtual

core will increase and be affected by the granularity of the CBS-HR server which is

the length of the replenish period. The user has to determine the timing constraint

of virtual cores such as the tolerable response time delay with the implementation

overhead consideration. It is important for providing accurate execution time in our

virtualization system.



Chapter 4

Performance Evaluation

This section presents the implementation of our proposed power-aware virtualization

system described in Section 3. Then we present some experimental results on it to

demonstrate its ability to support virtual cores with the capability of DVS.

4.1 System Implementation

In order to provide accurate timing information in our power-aware virtualization

system, we choose the L4 µ-kernel [28] as the hypervisor to implement our virtual-

core server model. The L4 µ-kernel is a kind of pre-virtualization system [26] and

expands its domain towards embedded systems. The guest operating systems upon

the µ-kernel run as user-level applications and have a comparable performance to

the native operating systems [9]. Currently, there are numerous implementations of

L4 µ-kernels. In this paper, we choose the DROPS (Dresden Real-Time Operating

Systems Project) [16] project as the fundamental virtualization system to implement

19



20 CHAPTER 4. PERFORMANCE EVALUATION

our system.

In the DROPS project, the hypervisor is composed of the L4:Fiasco µ-

kernel [17] and L4Env [18]. Our implementation consists of the virtual-core server

model supported in L4:Fiasco and an extension of application programming interface

(API) for the virtual core functions in L4env. The following figure shows the system

architecture of our virtual-core server model in DROPS.����� ������ 	
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Figure 4.1: The Architecture of Our Virtual Core Model.

In Figure 4.1, there are three virtual cores maintained in the system and each

of them has a single guest operating system running on it. Because the minimum

execution element of L4:Fiasco is a thread with a priority and the scheduler is a

priority-driven scheduler with O(1) complexity, we will group several threads into a

virtual core and modify the scheduling scheme of L4:Fiasco to schedule each virtual

core according to their deadlines. We implement a Virtual Core Maintainer inside

L4:Fiasco which maintains the behavior of each virtual core and a Virtual Core

Functions Server inside L4Env which receives the requests of virtual core functions

from the guest operating systems. When the virtual core functions server receives a

request and accepts it according to the admission control mechanism, it will send the
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virtual core control message to L4:Fiasco, i.e., the message labeled 1 in Figure 4.1. In

L4:Fiasco, the virtual core maintainer then receives the virtual core control message.

It is an abstraction which support the functionality of an EDF scheduler which

gives a higher priority to a virtual core according with earlier absolute deadline.

The virtual core maintainer maintains the ready queue for each virtual core which

contains all ready threads of that virtual core and sends the index of the virtual

core with highest priority to the scheduler of L4:Fiasco with the message labeled 2

in Figure 4.1. The scheduler will schedule the thread with the highest priority in the

ready queue of that virtual core through the control message labeled 3 in Figure 4.1.

With the implementation of the virtual-core server model, we then build

the Energy-Efficient Policy and the DVS Control Server inside L4Env. The DVS

control server is a device driver used to adjusts the DVS setting of the physical

core in the system. The energy-efficient policy will determine whether to change the

DVS setting according to the requests in virtual core functions server. The messages

labeled 4 and 5 in Figure 4.1 show the interactions among the energy-efficient policy,

the DVS control server and the virtual core functions server.

4.2 Experimental Setup

We conducted all experiments on a Davinci evaluation board from Texas Instruments

[14] including an ARM926ejs core with 256 MBytes of memory. We counted the

number of processor cycles using a 64-bit hardware timer on the board. For power

measurement, there exists 2 test pins on the board which can be applied to measure

the power consists of ARM side, DSP side and so on. We used the device Agilent

34970A to get the power trace in a millisecond granularity. The capability of DVS
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Frequency(MHz) Power(mW)
297 32.40

283.5 30.93
270 29.45

256.5 27.98
243 26.51

229.5 25.04
216 23.56

202.5 22.09

Table 4.1: DVS Level Support in Davinci on ARM side.

Guest OS Utilization The Behavior
L4Linux 50% Booting sequences
µC/OSII 25% Mathematics program
µC/OSII 25% Sorting program

Table 4.2: The Behavior of Virtual Cores.

supported on the ARM side in the Davinci evaluation board is shown in Table 4.1.

The hypervisor we adopted is L4:Fiasco 1.2 and L4Env V 0.2. We revised

L4:Fiasco to support the virtual-core server model as shown in Figure 4.1. The

guest operating systems we adopted for demonstration are L4Linux 2.6.29-14 [19]

and µC/OS-II where L4Linux is a port of the Linux kernel to the L4 µ-kernel and

µC/OS-II is revised to the pre-virtualization version for running on the L4 µ-kernel.

4.2.1 Experimental Results

Our experiments measured the power consumption of the physical core when we

apply an energy-efficient policy in the system. There are three virtual cores which

running a L4Linux and two µC/OS-II in the system. Their behavior is shown in

Table 4.2. In L4Linux, the booting sequence includes the load of Linux kernel

until the shell prompt gets ready. In µC/OS-II, the mathematics program is a set of
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programs which calculate several numbers with addition and subtraction operations.

The sorting program sorts 1000000 numbers with bubble sort.
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Figure 4.2: The Trend of Virtual Cores in The System.

During the execution of the programs, we used virtual core adjustment

function to change the utilization of each virtual cores. The trend of our workload

adjustment is shown in Figure 4.2. The system remaining utilization (the total

workload in Figure 4.2) will decrease in the beginning then increase. Our energy-

efficient policy checked the system remaining utilization and scaled the physical

operating frequency to the one which satisfied the user requirement as presented

in Section 3.2. It will be triggered at each time where the virtual core adjustment

function is invoked.

As shown in the power trace in Figure 4.3, with our virtual core model,

our proposed system can scale the physical operating frequency according to the

system remaining utilization to reduce the power consumption. The physical power

consumption will decrease from 0.65 to 0.48 mW in the beginning and increase at 12

second. It had no changes during 8 to 12 second because the physical core already
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Figure 4.3: The Power Trace.

operated at the lowest operating frequency. Compared to the system without using

energy-efficient policy, we can find that the energy consumption is reduced by 13.47%

(,i.e, from 10.58mJ to 9.16mJ).

L4:Fiasco Type Original Virtual Core Model
Execution Time(ms) 8536.08 8948.85

Table 4.3: Overhead of Virtual-Core Server Implementation.

Function Type Creation Deletion Adjustment
Execution Time(ms) 6.61 6.60 7.13

Table 4.4: Overhead of Virtual Core Functions.

The implementation of our virtual-core server model will introduce some

extra computing cycles in the virtualization system. We measured the performance

overhead for the execution time in the millisecond scale. We used the same setting

in Table 4.2 and measured the execution time until the L4Linux finished its booting

sequence. Table 4.3 shows the overhead which is only 412.77 milliseconds. So the

implementation overhead is less than 5% in terms of the system performance. In
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addition, we also measured the overhead of each virtual core function. As shown in

Table 4.4, the required execution times for virtual core creation/deletion function

and virtual core adjustment function are about 6ms and 7ms, respectively.
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Chapter 5

Conclusions

In this paper, we present a power-aware virtualization system based on a virtual-

core server model. The virtual-core server model is used to map the DVS needs and

guarantee the requirements of virtual cores. We also propose a scheduling mecha-

nism and an admission control to emulate the needs of virtual cores. Experimental

results show that our system can scale the physical frequency according to the

requirements of virtual cores with less than 5% overhead in terms of the system per-

formance. For future research, we will explore the energy management mechanism of

other hardware components for virtualization, such as main memory. Moreover, in

the multi-core extension, we will also study the management and resource allocation

designs that map a single virtual core to multiple physical cores.
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