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Abstract

Virtualization provides an excellent solution to resolve the portability, maintainabil-
ity, development, and utilization problems in many system designs. In this paper,
we are interested in energy-efficient designs for platform virtualization. In particu-
lar, we explore the computing resource mapping between virtual cores and physical
cores and their energy consumption relationship when timing constraints in task
executions are considered. Real-time and non-real-time task workloads are both
considered in the study, where the computing needs of each virtual core is modeled
with a computing server. A pr(itopyge wlt}l DVS support is implemented based on
a p-kernel architecture. The cap:;xb-lhty aﬂg:;l ovérbeads of the proposed design was
evaluated, for which el ha\;ﬁ;f enc
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Chapter 1

Introduction

The growing variety and rapid evolving ',ic')_f hardware architectures and platforms
has resulted in tremendous éhallenges in the deVe.“lopm'ent of system and application
software. Vlrtuahzatlon that prgwqies any abstractlon Jayer between hardware plat-

i
forms and their executing software pmv@eé an excellent alternative to simplify the
-\
development and deployment o|f appl@atloﬁlé and to 1mprove the system resource
utilization. Such observatlons nt,qtlvate this W‘Prk 111 the exploring of energy-efficient

virtualization designs.

Virtualization techniques can be classified into resource virtualization, ap-
plication virtualization and platform virtualization techniques according to the per-
spective of their abstractions: Resource virtualization provides a layer of abstraction
between (physical) resources, such as disk space, CPU cycles, and RAM, and the
semantic activities in the consuming of the resources [8,38]. Application virtual-
ization (also known as application service virtualization) improves the portability,
manageability and compatibility of applications by encapsulating them from the
underlying operating system on which they are executed [4,15]. Platform virtu-

alization, that hides the physical characteristics of hardware platforms from users
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by emulating multiple virtual machines (VMs), have many implementations in the
market already. Well-known products are such as Xen [2], VMWare [40], Virtual PC
[21] and VirtualBox [23] for personal computers and/or enterprise systems. Another
implementation is the hypervisor of OpenSPARC, that provides a high-performance
firmware-level abstraction, referred to as the logical domain, to enhance the system
portability [36]. Moreover, VirtualLogix [24] and p-kernel such as L4:Fiasco [17]
and OKL4 [22] are designed for embedded systems with the considerations of se-
curity, robustness, isolation and real-time performance guarantee [10-12,34]. This
work would focus itself on platform virtualization because of its wide applicability

in various domains.

In the past decades;'a ‘nu.r'hber gf excelléfituresearch results on virtualization
were also proposed in the acédemics -For exa,mple resééirch on the performance
enhancement of the system by means 6f th@xécutlons of multiple operating systems
was presented by Murata et z.ﬂ. [82]. | hel?gsysteirﬂl securlty is considered, Criswell
et al. [5] designed a virtual insfrpcti(f set to proJV]ide safe execution environments.
Seshadri et al. [37] guaranteed the coo{e 1ntegr1ty |Wlth a hyperv1sor based solution.
Moreover, with secure operating systems (13, 20] upon a minimized software level
based on the L4 u-kernel architecture, the system security can be guaranteed at the
operating system and application levels. Hartig [9] presented a high-performance

design of p-kernel for embedded systems. The dependability can also be improved

by using unmodified device drivers in virtual machines [27].

In this paper, we are interested in energy-efficient designs for virtualization
because of its importance and the lack of sufficient study in that direction. The
closest related work is the power control architecture with on-line adjustments by

Nathuji et al. [33]. A similar framework was proposed by Stoess et al. [39] to



account and allocate the energy consumption of virtual machines. An architecture
was also proposed by Wang et al. [42] to minimize the energy consumption under
response time constraints. However, many past results do not consider real-time
tasks or are only dedicated to enterprise systems. In this paper, we should con-
sider both real-time and non-real-time tasks and dynamic voltage scaling (DVS) in
energy-efficient designs. In particular, we explore the computing resource mapping
between virtual cores and physical cores and their energy consumption relationship
when timing constraints in task executions are considered. We propose to model
the computing needs of a virtual core with a server model and propose a DVS pol-
icy to minimize the energy consumption without any potential violation of timing
constraints. The proposed methodology is.lmrealizefl based on a p-kernel architecture.
A series of experiments was conducted. It Wes‘-él‘lown .that the energy consumption
of a multimedia appliczi:tnllon Waéff—educe(l by,X X % 4vith less than 5% overhead in

‘ f \- i i
terms of the system performande ?;E-’l-"',g.., l |

¥ | ﬂw | !
The rest of the paper s[orgamzed al? follows Section 2 provides the sys-
tem architecture and thelresearcll motlvatlon The de31gn and analysis of the pro-
posed virtualization methodology is presented in Section 3. Section 4 addresses

implementation issues and prov1des the evaluations of the proposed virtualization

methodology. Section 5 concludes this paper.
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Chapter 2

System Architecture and Research

Motivation .
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Figure 2.1: A Virtualization Example.

As the number of cores per system grows significantly in the next few years,
how to provide an effective system design that can be adaptive to the development
or the deployment of multi-core platforms has become a very critical issue. Among
possible design alternatives, virtualization is a popular concept to resolve the prob-

lem, e.g., [2,32,41]. As shown in Figure 2.1, virtualization is usually realized by
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having a hypervisor over physical cores to emulate selected virtual cores so that se-
lected guest operating systems could run with their target multi-core configurations.
With the help of virtualization, the number of virtual cores and their characteristics
could be realized before the deployment of a target system. It is the obligation of the
vendors to ensure that the final and underlying hardware can support the required
configuration. Note that there is, in general, no constraint on the ratio between the

number of virtual cores and that of physical cores.

Virtual Core 1 Virtual Core 2

0 el 10 o % /5 J0 (e

Figure 2.2: Tiwo v1rtua,l cores oyer one physical core.

Fal—ry “H
i -.1 :
Different from the past WOl"k,i A re‘*‘imterested in the dynamic-voltage-

scaling (DVS) implementation issues; o'f v1rtual cofes The adjustment of the oper-
ating frequency of a virtual core mlgﬂm result. in préper dynamlc voltage scaling (or

even the turning-off) of some physmal core_andjor trlgger the service adjustment
mechanism of a hypervisor to emulate selected virtual cores at their proper speeds.
Such an adjustment procedure might generate some potential problem in timing
constraint violations. For example, consider an embedded system with 2 physical
cores that both operate at an operating frequency f, where each physical core serves
one virtual core in an initial configuration. Suppose that the operating frequency of
the first virtual core is now set as 0.6f, and that of the second virtual core is also
adjusted as 0.4f. After the frequency adjustment, the hypervisor might decide to
turn off one physical core and to let two virtual cores share one physical core for
energy saving, as shown in Figure 2.2. Suppose that two virtual cores use the first

6us and the last 4us, respectively, for every 10us time period over the physical core.



Such a virtual core emulation might come to a deadline violation problem when the
second virtual core must run a real-time task with a period 5us and an execution
time of 2us (at the operating frequency f). Such an observation reveals a con-
straint on how to emulate virtual cores over physical cores when timing constraints

of processes must be satisfied.

In this paper, we shall address three major design issues regarding the DVS
support of virtual cores: (1) How to model the DVS needs of a virtual core, (2)
how to map the DVS needs of virtual cores into the DVS settings of physical cores,
and (3) how to design a scheduling algorithm to satisfy the needs of virtual cores,
including the satisfaction of the tlmmg constralnts of their processes. The modeling
of the DVS needs of a v1rtuaT core Should reéult iha modeled workload for the virtual
core such that a resource: scheduhng mecha—msm could be proposed for a hypervisor
to schedule the Workload executl‘o E Slha ‘also propose proper scheduling policies

—

to drive the scheduhng mechan][s tcwpeet t[he needs of virtual cores and derive a

T
1

F

corresponding admission contrc{ [pohcy Sum a pﬂo\hcy would help to estimate the

demands to the underlying hardware.
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Chapter 3

Power-Aware Virtualization

System
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This section presents our approbrh fo.‘tjrth:e bVS supplort of virtual cores. With the
considerations of both t.h?' .realati e z;nd noln%real—timlle task workloads over virtual
cores, a resource—reservat.ilémbase'd model is ééﬂgidered for the modeling of the com-
puting demands of each Virtﬁal core ih Seétion 3.1. In Section 3.2, a DVS-based
scheduling policy is proposed for the DVS adjustment of physical cores and the em-
ulation of virtual cores while timing constraints of real-time tasks are guaranteed.

Implementation remarks are later presented with the considerations of overheads

and the support of multiple physical cores.
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3.1 A Virtual-Core Server Model

The purpose of this section is to explore the modeling of the computing needs
of virtual cores and their emulation over physical cores. A Constant-Bandwidth-
Server-based model is presented to model the computing needs of each virtual core
with resource reservation [1,35]. In this paper, we are interested in the system
design issues for the sharing of a physical core for multiple DVS virtual cores, where
no global resource synchronization is considered among tasks over multiple virtual

cores.

A virtual core provides a platform to rumseal-time and non-real-time tasks
in a way similar to a physical gore. ADepending, on their task workloads, virtual
cores might be configured to run at émrfvoﬁa"c;ﬁng frequency, similar to their coun-

terpart physical cores. It is the respo sibi}-ﬁﬁ& ofjid hypervisor software to allocate
. _ I i

proper execution cycles to tasks runn}i g over Virt"u;ial ¢ores based on their workload

o g
F

characteristics. Thus, we propose_.tf) service the tasks, over each virtual core by a
Constant Bandwidth Server with I-.Iard'—‘Resérvat'ilon (CBS-HR) server, where each
CBS-HR server is associated with its mazimum budget C; in terms of the execution
cycles and a replenish period T; [30,31]. Constant Bandwidth Server (CBS) [1] is
a resource reservation algorithm in which servers are scheduled under the Earliest-
Deadline-First (EDF) scheduling algorithm, that always schedules the task with the
nearest (absolute) deadline. In order to prevent CBS from suffering the deadline
aging problem [31], CBS-HR is extended from CBS such that it can guarantee a

fixed execution budget C; during every period T;.

We propose to model the workload characteristics over a virtual core «; by

three parameters (C;, T;, F;): C;, T;, and F; denote the number of the total execution
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cycles of its tasks, the replenish period of its corresponding CBS-HR server, and its
user-set operating frequency, respectively. A legal setting of the maximum budget
(also denoted as C;) and the replenish period (also denoted as T;) of the correspond-
ing CBS-HR server of a virtual core should satisfy the inequality % > F;l. The
replenish period T; of a virtual core (or its CBS-HR server) should also comply with
the timing constraints of its real-time tasks. For example, consider the execution of
a real-time task 7; with ¢; execution cycles and a relative deadline p; (as shown in the
example of Section 2). p; should be able to be divided by the replenish period T; of
a virtual core. Consider a set of real-time independent periodic tasks {71, 72, ..., 7.}
to execute over a virtual core, where independent tasks could preempt the execu-
tions of each another atiany time: M‘-Let c; ._'and i denote the maximum number of
execution cycles and the ‘period of a task 7; of“tl;é ‘setv,_‘r.espectively. Suppose that the
EDF scheduling algofitﬁrn;l is adgpted to §c};edule tl;é"t'ask set. The following lemma

=5 ,
Vil —Xx"

could be proved for the setting «Ff @bﬁdigét and replenish period of a CBS-HR
| ‘ I

S\l 2 1L

server: : | ‘ m | |
J

Lemma 3.1 Given a set of féal—time ,indépendent periodic tasks {T1,To,...,Tn}, @
CBS-HR server with the replenish period T = ged(py, pa, - .-, Pn) and the budget

cC>3", ;—Z - T could guarantee the schedulability of the task set.

Proof. In order to meet all timing constraints of this task set, the operating fre-
quency of the virtual core F, can not be less than ), ;72_, because a set of real-time
tasks can be schedulable on a processor under the EDF scheduling algorithm if and

¢i/Fy

only if its total utilization > i, =~

is no more than 1 [29]. Therefore, while these

IThe budget and the replenish period of a CBS-HR server could be theoretically different from
the number of the total execution cycles of the tasks and the replenish period of its corresponding
virtual core, respectively. In this paper, we would let them be the same to simplify the discussion
and implementation.
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n real-time tasks have the highest priority or there is no other task on the virtual

core, they will be schedulable if F, is >

lez

Let C} be the execution cycles that a virtual core can guarantee within
any pg, while we set the replenish period and maximum budget of the virtual core

according to our configuration. Then, we have

Ckzﬁ%m p’“0>kz for k=1,2,.
zl

That is, from the perspective of any task 7, the virtual core can provide sufficient
execution cycles within its relatlve deadhne pk such that the virtual core will behave
like a processor whose operatlﬂg fx;equehcy i "c Wthh 4s o less than F,. Since it is
similar to that these tasks are, exeCuted over a processor Whose operating frequency

“__‘-- ‘\ ¥

is no less than F,, the total utilizatio

f,,r""x
be ﬂ@'\TrTre than 1. Therefore, the timing

constraints of these tasks can b_é..sati edﬁ""

frequency 7 T

freguency ' _ "

I IT IZT. l/-cT 5(]!;17)51me

Figure 3.1: The delay of the response time incurred while the virtual core is emulated
on a physical core.

Unlike real-time tasks where the timing constraints are crucial, the concern
of non-real-time tasks is different. Such as multimedia applications and batch ap-
plications, users might be only interested in the throughput provided by the virtual
core which can be directly reflected by the operating frequency specified by users.
When these tasks are executed over a virtual core, users might also need to take

care of the response time which is affected by the replenish period. Thus, they need



3.1. A VIRTUAL-CORE SERVER MODEL 13

to determine the replenish period [3] such that the reasonable delay of the response
time is achievable. However, as the granularity on the executions of non-real-time
tasks is not as crucial as that of real-time tasks, users do not have to treat non-real-
time tasks as one kind of real-time tasks by setting the maximum budget and the

replenish period according to Lemma 3.1.

As shown in Figure 3.1, when we use a virtual core emulated on a physical
core to execute a certain workload, the lower part of the figure demonstrates its
behavior, where the gray area stands for the execution cycles of the workload. Com-
pared to the behavior when the same workload is executed on a physical core with
the same emulated operatmg frequency as shown in the upper part of Figure 3.1, the
delay of the response tlme Rd mlght be 1ncurred Therefore, the user of the virtual
core might specify a tolerable 'response time, delay a Vthat the delay of the response
time on the virtual core should‘not gceedl HIm order to meet the requirement, the
following lemma dlrects how tor| t ;%bma)flhlum budget and the replenish period

of the virtual core. # l | J |
I

\L
Lemma 3.2 Given a tolerable response tinte delay o, the delay of the response time
on the virtual core with operating frequency F, can be no more than o if the replenish
period and the maximum budget are set according to T < ﬁ and C > F, - T,

respectively, provided that the operating frequency of the physical core is F,.

Proof. The worst case of the response time occurs when C'is equal to F,-T. Thus,

we assume C'is F, T in our proof.

For each replenish period T', the virtual core can perform C execution cycles
which is the same as that can be provided on a physical core with operating frequency

F,. This leads to that there is no difference between the finished execution cycles



14 CHAPTER 3. POWER-AWARE VIRTUALIZATION SYSTEM

on the physical core and that on the virtual core. Therefore, as shown in Figure 3.1,

the delay of the response time is incurred only if A = Z# — L%J > 0, where W, is
the response time on the physical core. Then the delay of the response time on the

virtual core R, can be computed as follows.

Rdz(T—%)+A'F”—A

p

By substituting « - 1" for A, Ry becomes T'((z — 1)(% — 1)) which is a function of
x. Since the operating frequency of the virtual core F), is no more than that on the
physical core F),, R; has the maximal value when z approaches to 0. That is, Ry

is no more than 7'(1 — Ilj:—”;) Combined with 7" < the delay of the response

g
5 l—Fv/Fp7
time Ry could be no more than the telérable respoense "‘time'delay 0.

» if
\ sl
| i

== | !i
nali

|
| F
i

| |
3.2 Hypervisor Funcﬁ ities
| |

|
o 1

1
The hypervisor is one of the mos‘-c.f;rlportan_t cofﬂpoz&én‘c in virtualization systems.
This section describes the functionalities that the hypervisor has to support in or-
der to provide a power-aware virtualization system. With the virtual-core server
model presented in Section 3.1, our virtualization system serves user applications in
a two level hierarchical scheduling scheme [6,7,25]. Under the two level hierarchical
scheduling scheme, the hypervisor manages the computing resource of physical cores
to guarantee the needs of virtual-core servers in the lower level. In the upper level,
each guest Operating System (OS) runs over virtual cores and schedules user appli-
cations to meet their timing constraints with a customized scheduler. When there
are more than one virtual cores simulated on a single physical core, the schedulabil-

ity of the system should be considered. Thanks to the following lemma of CBS-HR
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server, the schedulability can be guaranteed under the virtual-core server model if
we consider a virtual-core server with parameters (C;, T}, F;) as a CBS-HR server
Ci/F,

with utilization U; = =5* where F), is the operating frequency of the physical core.

Lemma 3.3 Given a set of periodic tasks with total utilization factor U, and a set of
virtual cores with total utilization factor U; = ). U;, the whole system is schedulable

under the EDF scheduling algorithm if and only if U, + Uy < 1 [31].

In order to utilize virtual cores in the virtualization system, the hyper-
visor has to support three functions: vi,.ri'l_fual core creation, virtual core deletion,
and wirtual core adjustm‘en'f.‘ Thé virtual .core-.ﬂéreation function let users acquire
a new virtual core according tola_,trh%ir regm;‘ements,;;‘n(}iven the required operating
frequency of virtual core F; add-*Tt"gi;_ff;iiﬂg‘i constraint, ;the hypervisor derives T;

] -5

e |
based on Lemma 3.1 or Lemma 3.2 afgd thﬁn! creates a virtual-core server with pa-
’ ! .‘,. { =

rameters (Cy, T;, F;), where '€ [s F; _TZ OI? ;;che chef hand, once a virtual core is

(
no longer required, it calel b_e‘:aremoved froyr{ hthga‘virtualization system and release
its allocated computing resou.rce With"thé .\.firtual core deletion function. Finally,
with virtual core adjustment functnion, the virtual core in the virtualization system
can be treated as a physical core with the capability of dynamic voltage scaling
(DVS). More specifically, when the user specifies a new operating frequency F for

a virtual core with the virtual core adjustment function, the hypervisor will adjust

the virtual core accordingly such that the configuration of the virtual core becomes

(F’i/Tia Tia Fi/)'

In addition to the functions to utilize virtual cores, the hypervisor also needs
to support admission control mechanisms because of limited computing resource of

physical cores. That is, at each time of the virtual core creation or the virtual
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core adjustment, the admission control mechanism will be triggered to examine
whether the request could be granted or not. Thus, we define U. =1 — ), U; as the
remaining utilization for a physical core in the virtualization system, where ) . U;
is the total utilization of virtual-core servers on the physical core. Then, when the
remaining utilization of a physical core is changed due to the virtual core creation or
the virtual core adjustment, the proposed admission control mechanism will grant
the corresponding request if the new remaining utilization of the physical core is no
less than 0; otherwise, the request should be rejected to prevent from harming the

schedulability of the system.

While the physical cores have;the cap.?t_bility of DVS, the hypervisor of a
power-aware virtualization sysfenfshouiéi be ablé to adjust the operating frequencies
of physical cores for energy.saving. In. our y}rtqalizatiqﬁﬁn.system, we exploit the
DVS capability of physical corgs by infgz‘gﬁgcii_igh‘iDVS scheduling policy with the
admission control mechanism. Aswa result, ?ﬁczo]ﬂir admissilqn control mechanism is
triggered, it will also invoke the; ,DVS[S hed'{liﬂlg p;o:}icy 1f Lhé physical cores support
DVS. Given a remaining utiliz.janutip.r%a‘ o’[J a physical (golxj:e‘, oﬁr DVS scheduling policy
will scale down the operating frequ(.ancy" bf the pﬂysical core to the lowest available
frequency of the physical core such that tnhe remaining utilization of the physical core
is no less than 0, and will only ask the admission control mechanism to reject the

request if the remaining utilization is less than 0 even if the physical core operates

at the highest available frequency.



3.3. IMPLEMENTATION REMARKS 17

3.3 Implementation Remarks

As we only demonstrate our design of the power-aware virtualization system with a
single physical platform so far in this paper, some extensions through slight modi-
fication of our design will be introduced to cope with some implementation issues
in the following of this section. The extensions include (1) the support of multiple

physical cores and (2) the consideration of implementation overhead.

When there is only one physical core in the system, we will map multiple
virtual cores into it. We can extend the same mapping technique when there are
multiple physical cores in the sysf‘em. In‘i"t-ially, we maintain the system remaining
utilization for each phys_ipal core. Then accordi;lg to the required utilization of the
virtual core, the hyper\-flisﬂnor willﬁ-é;s:}g_l g‘%;;]ir;-virtual é;)re to run on a physical core
based on the best-fit poliey. Mloke ';Eeﬂiiﬁcal:]{y, suppose there are n physical cores
in the system. At eacli time We‘ Waigg'-to %s:sign a ¥irtual core to a physical, the
hypervisor will compute'rﬁhe S)Jstlem remaix{iﬁagl utﬁization of each physical core if
the virtual core is assigned-t.é“ it"and assign t.l.r‘.l:e‘ virtual core to the physical core
with the minimum system remaining utilization after the assignment. In addition,
the hypervisor also needs to combine the migration operation and admission control
mechanism when the virtual core adjustment function is called. If the function in-
creases the operating frequency of the virtual core and causes the system remaining
utilization less than 0 when the physical core operates at the highest available op-
erating frequency, the hypervisor will find a physical core with the enough system
remaining utilization in the system and migrate the virtual core to it. Otherwise,
the admission control mechanism will reject the request of the adjustment. When
there exists a physical core with constant operating frequency in the system, we can

replace the best-fit policy with assigning the maximum amount of workload on it.
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Hence, our virtualization system is flexible for multiple physical cores platforms. We
can further develop policies for virtual cores assignment and migration to achieve

better system throughput or reduce the total energy consumption.

From the perspective of the implementation, the system will introduce some
implementation overhead: management overhead and context switch overhead. The
management overhead O,, includes the overhead resulting from the duties of the
hypervisor, such as virtual core maintenance, computing power dispatching, and
memory protection. The unit of O,, is a fixed utilization added into the utilization of
each virtual core. The context switch overhead O; stands for the overhead resulting
from the context switch amongexecutions of -.(ii_ifferent virtual cores. The unit of
Oy is a fixed number of execufiofi cyclés added .into-.ﬂthe maximum budget of each

virtual core. When we congider/the 1mglementﬁt10n overhead in the virtual-core

server model, we need to modlfy the éettlgdf CIBS HR server.

For a virtual core with parhr‘aeteg Z,uJT,,F ), the maximum budget C;
needs to be added by extra exécutloL Ecycles fronla mplementatlon overhead and it
will become C; = C; + Oy + Oy - TZ- - F;."The replemsh perlod T; will keep the same
value without any modification. Hence, the total utilization needed for this virtual
core will increase and be affected by the granularity of the CBS-HR server which is
the length of the replenish period. The user has to determine the timing constraint
of virtual cores such as the tolerable response time delay with the implementation
overhead consideration. It is important for providing accurate execution time in our

virtualization system.



Chapter 4

Performance Evaluation

This section presents theimplementation of.our proposed power-aware virtualization
system described in Section 3. Thfe'iyive:‘ufif'@sﬂ“ent some experimental results on it to

L

demonstrate its ability to suppC?rt Vll"’[;ilal C(‘““)PPS with the capability of DVS.

1 ] i
| 1.

4.1 System Implemenfation

In order to provide accurate timing information in our power-aware virtualization
system, we choose the L4 p-kernel [28] as the hypervisor to implement our virtual-
core server model. The 1.4 p-kernel is a kind of pre-virtualization system [26] and
expands its domain towards embedded systems. The guest operating systems upon
the p-kernel run as user-level applications and have a comparable performance to
the native operating systems [9]. Currently, there are numerous implementations of
L4 p-kernels. In this paper, we choose the DROPS (Dresden Real-Time Operating

Systems Project) [16] project as the fundamental virtualization system to implement

19
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our system.

In the DROPS project, the hypervisor is composed of the L4:Fiasco pu-
kernel [17] and L4Env [18]. Our implementation consists of the virtual-core server
model supported in L4:Fiasco and an extension of application programming interface
(APTI) for the virtual core functions in L4env. The following figure shows the system

architecture of our virtual-core server model in DROPS.

Iy
1
1
Guest Operating Guest Operating Guest Operating :
System 1 System 2 System 3 :
|
= T = | User
Tl \ RO i ! mode f
Power-Efficient T Vv 47" Virtual core functions | ! !
Policy BN . | H
~ 4 Virtual Core | 1
: 5 Functions Server 1 :
= I
DVFS Control : ! '
Server iR L4Env | h
0 v 1 Hypervisor
Vi _ - A !
N — #“L4:Fiasce |} i
2 Virtual Core % | H !
<‘,——" Maintainer s, | Fa ! i
- ] W | 1 Kernel
Scheduler | i | | 4
I - 1 1 made |
T I Virtual Core.1 | | Virtual Coréi2- ” Virtual Care 3 | 1 I
1 | - L 1
13 i !
[ > - I‘ I'E, 1 1 - i . :
L v

Figure 4.1: The Architgict‘ure of Qur '\}ig.tual Core Model.

In Figure 4.1, there are three virtual cores maintained in the system and each
of them has a single guest operating system running on it. Because the minimum
execution element of L4:Fiasco is a thread with a priority and the scheduler is a
priority-driven scheduler with O(1) complexity, we will group several threads into a
virtual core and modify the scheduling scheme of L4:Fiasco to schedule each virtual
core according to their deadlines. We implement a Virtual Core Maintainer inside
L4:Fiasco which maintains the behavior of each virtual core and a Virtual Core
Functions Server inside L4Env which receives the requests of virtual core functions
from the guest operating systems. When the virtual core functions server receives a

request and accepts it according to the admission control mechanism, it will send the
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virtual core control message to L4:Fiasco, i.e., the message labeled 1 in Figure 4.1. In
L4:Fiasco, the virtual core maintainer then receives the virtual core control message.
It is an abstraction which support the functionality of an EDF scheduler which
gives a higher priority to a virtual core according with earlier absolute deadline.
The virtual core maintainer maintains the ready queue for each virtual core which
contains all ready threads of that virtual core and sends the index of the virtual
core with highest priority to the scheduler of L4:Fiasco with the message labeled 2
in Figure 4.1. The scheduler will schedule the thread with the highest priority in the

ready queue of that virtual core through the control message labeled 3 in Figure 4.1.

With the implementation of the-.w{irtual—core server model, we then build
the Energy-Efficient Policy."and tim DVS .Conf;rbl Server inside L4Env. The DVS
control server is a device driver. used to adjusts the.DVS setting of the physical
core in the system. The energy—éfﬁ(n@ pohlcy will determine whether to change the
DVS setting according to the re(jl ests.-g-l }x:n"ﬁdal core functlons server. The messages
labeled 4 and 5 in Flgure 4 1 sth the mtera(ftlons among the energy-efficient policy,

the DVS control server and the v1rtual core functlons server.

4.2 Experimental Setup

We conducted all experiments on a Davinci evaluation board from Texas Instruments
[14] including an ARM926ejs core with 256 MBytes of memory. We counted the
number of processor cycles using a 64-bit hardware timer on the board. For power
measurement, there exists 2 test pins on the board which can be applied to measure
the power consists of ARM side, DSP side and so on. We used the device Agilent

34970A to get the power trace in a millisecond granularity. The capability of DVS
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Frequency(MHz) | Power(mW)
297 32.40
283.5 30.93
270 29.45
256.5 27.98
243 26.51
229.5 25.04
216 23.56
202.5 22.09

Table 4.1: DVS Level Support in Davinci on ARM side.

Guest OS | Utilization | The Behavior
L4Linux 50% Booting sequences
uC/OSII 25% Mathematics program
uC/OSIT 25% Sorting program

Table 4.2: Tﬁe Behavior of Virthél Cores.

supported on the ARM side in the Davmol evaluatlon board is shown in Table 4.1.
Pl oL )

I N
| = | |

The hypervisor we adopted ﬂs L4: Fiasco 1 2vand L4Env V0.2. We revised
L4:Fiasco to support the Vlrtual cofle server moglel as shown in Figure 4.1. The
guest operating systems we adopted for demonst‘ratlon are' L4Linux 2.6.29-14 [19]
and pC/OS-II where L4Linux is a port‘of the Liﬁux kernel to the L4 p-kernel and

uC/OS-11 is revised to the pre-virtualization version for running on the L4 p-kernel.

4.2.1 Experimental Results

Our experiments measured the power consumption of the physical core when we
apply an energy-efficient policy in the system. There are three virtual cores which
running a L4Linux and two pC/OS-II in the system. Their behavior is shown in
Table 4.2. In L4Linux, the booting sequence includes the load of Linux kernel

until the shell prompt gets ready. In pC/OS-I1, the mathematics program is a set of
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programs which calculate several numbers with addition and subtraction operations.

The sorting program sorts 1000000 numbers with bubble sort.

1008%- -
n -

8or W Ll .

L VC1 ——
60 L] 1

VC 2 3
50%- * '1'_2 ,

40
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20+

VC 3 %

Total -m-
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Figure 4-2The Tpem:l‘ of Virtual Cores in The System.
- ﬁl!_"li‘iq.‘l l‘
L=
e ‘ ,.-'# -
During the execution j) the‘-Erogvllahls, we used virtual core adjustment

function to change the uti{li'z_ati% of "Bh vi{riual queé. The trend of our workload

.

adjustment is shown in lFlgur 4.2. The systiein rémaining utilization (the total
workload in Figure 4.2) will d.ecré"!a.se in the béginning then increase. Our energy-
efficient policy checked the Systerln 1:emaining utilization and scaled the physical
operating frequency to the one which satisfied the user requirement as presented

in Section 3.2. It will be triggered at each time where the virtual core adjustment

function is invoked.

As shown in the power trace in Figure 4.3, with our virtual core model,
our proposed system can scale the physical operating frequency according to the
system remaining utilization to reduce the power consumption. The physical power
consumption will decrease from 0.65 to 0.48 mW in the beginning and increase at 12

second. It had no changes during 8 to 12 second because the physical core already
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Figure 4.3t The Power Trace.
e s ..I.-

operated at the lowest operating frequency. Compated to the system without using

energy-efficient policy, we can find thatthe energy*-qonsuniétion is reduced by 13.47%
{ A

| |
Fa'

(,i.e, from 10.58mJ to 9.16m.J). [ L— ‘
. | < | |
L4:Fiaseo Type = | rigiﬁ_@l Vi.rtual Core Model

Execution Time(ms) | 8536.08 J L

| 1%

Table 4.3: Overhead of Virti}al—Qore ‘Servér‘ Implementation.

89483 85

e

Function Type Creation | Deletion Adjustment
Execution Time(ms) 6.61 6.60 7.13

Table 4.4: Overhead of Virtual Core Functions.

The implementation of our virtual-core server model will introduce some
extra computing cycles in the virtualization system. We measured the performance
overhead for the execution time in the millisecond scale. We used the same setting
in Table 4.2 and measured the execution time until the L4Linux finished its booting
sequence. Table 4.3 shows the overhead which is only 412.77 milliseconds. So the

implementation overhead is less than 5% in terms of the system performance. In
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addition, we also measured the overhead of each virtual core function. As shown in
Table 4.4, the required execution times for virtual core creation/deletion function

and virtual core adjustment function are about 6ms and 7ms, respectively.
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Chapter 5

Conclusions

In this paper, we preseii’ af/power-aware yirtualization system based on a virtual-

/
core server model. The Virtual—djjoréh ‘&w_vg%l;}jléidel is used to map the DVS needs and
guarantee the requirementssof ‘fi tﬁﬁ{,&)—zsii !‘We alsol propose a scheduling mecha-
nism and an admission“ éoptrol r | emﬁféfte th% ngeds of virtual cores. Experimental
results show that our syvstem ca'm scale theﬁp)._pysic:.al frequency according to the
requirements of virtual cores Wlth “lenss thar'lé% bverhead in terms of the system per-
formance. For future research, we v;/ill explore the energy management mechanism of
other hardware components for virtualization, such as main memory. Moreover, in

the multi-core extension, we will also study the management and resource allocation

designs that map a single virtual core to multiple physical cores.

27
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