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Abstract

This study aims to understand the climate response to varying levels of deforestation

in the Maritime Continent (MC), including the nonlinear effects of different degrees of

deforestation on average climate conditions, changes in land-atmosphere interactions

after deforestation, and the characteristics of extreme temperature and precipitation.

Using the Community Earth System Model (CESM), five scenarios of deforestation at

different magnitudes were simulated, with an additional sensitivity test to identify the

deforestation tipping point. The results show that as deforestation increases, surface

temperature and sensible heat flux increase linearly, while latent heat flux decreases

linearly. In contrast, precipitation exhibits nonlinear characteristics, initially showing a

slight increase and then a more pronounced increase as deforestation progresses. However,

the nonlinear effects may vary based on the distribution and terrain of the islands. For

instance, a tipping point is observed in the Borneo region, whereas the New Guinea region

does not exhibit one. The study explores changes in land-atmosphere interactions after

deforestation using the concepts of critical soil moisture and segmented regression. The

results indicate that land-atmosphere interactions undergo changes after deforestation,

and soil moisture feedback may play a significant role in the increased frequency of

extreme temperature events.

Keywords: Deforestation, Maritime Continent, Nonlinear effect, Land atmosphere
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interaction, Soil moisture feedback
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Figure Captions

Figure 1. The forest distribution in MC region in (a) DEF_25 ~ (b) DEF_35 ~ (c) DEF_50
and (d) DEF_75 simulation.

Figure 2. The spatial anomaly of (a) latent heat flux (DEF_25), (b) latent heat flux
(DEF_50), (c) latent heat flux (DEF_75), (d) latent heat flux (DEF_100), (e) sensible heat
flux (DEF_25), (f) sensible heat flux (DEF_50), (g) sensible heat flux (DEF_75), and (h)
sensible heat flux (DEF_100). All are compared to CTR_100 and dots indicate p
value<0.05.

Figure 3. The spatial anomaly of (a) precipitation (DEF_25), (b) precipitation (DEF_50),
(c) precipitation (DEF_75), (d) precipitation (DEF_100), (e) temperature (DEF_25), (f)
temperature (DEF_50), (g) temperature (DEF_75), and (h) temperature (DEF_100). All
plots are compared to CTR_100 and dotted areas indicate p value<0.05.

Figure 4. Annual mean (a) latent heat flux (b) sensible heat flux (c) surface temperature
(d) precipitation of deforested cases compared to the control case.

Figure 5. The anomalous MSE profile of (a) DEF_25, (b) DEF_50, (c) DEF_75 and (d)
DEF_100.

Figure 6. Annual mean of low-level moisture convergence anomaly integrated from 950
to 850 hPa with 950-hPa wind anomaly (a) DEF_25, (b) DEF_50, (c¢) DEF_75 and (d)
DEF_100.

viii
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Figure 7. The spatial anomaly of (a) thermodynamic term (DEF_25), (b) thermodynamic

term (DEF_50), (c) thermodynamic term (DEF_75), (d) thermodynamic term (DEF_100),

(e) dynamic term (DEF_25), (f) dynamic term (DEF_50), (g) dynamic term (DEF_75),

and (h) dynamic term (DEF_100). All plots are compared to CTR_100 and dotted areas

indicate p value<0.05.

Figure 8. The spatial anomaly of (a) canopy evaporation (DEF_25), (b) canopy

evaporation (DEF_50), (c) canopy evaporation (DEF_75), (d) canopy evaporation

(DEF_100), (e) canopy transpiration (DEF_25), (f) canopy transpiration (DEF_50), (g)

canopy transpiration (DEF_75), (h) canopy transpiration (DEF_100), (i) soil evaporation

(DEF_25), (j) soil evaporation (DEF_50), (k) soil evaporation (DEF_75), and (I) soil

evaporation (DEF_100). All are compared to CTR_100 and dots indicate p value<0.05.

Figure 9. The spatial anomaly of (a) total runoff (DEF_25), (b) total runoff (DEF_50),

(c) total runoff (DEF_75), (d) total runoff (DEF_100), (e) surface runoff (DEF_25), (f)

surface runoff (DEF_50), (g) surface runoff (DEF_75), (h) surface runoff (DEF_100), (i)

subsurface runoff (DEF_25), (j) subsurface runoff (DEF_50), (k) subsurface runoff

(DEF_75), () subsurface runoff (DEF_100), (m) infiltration (DEF_25), (n) infiltration

(DEF_50), (o) infiltration (DEF_75), and (p) infiltration (DEF_100). All are compared to

CTR_100 and dots indicate p value<0.05.

Figure 10. Annual mean (@) canopy evaporation, (b) canopy transpiration, (c) soil
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evaporation, (d) total runoff, (e) surface runoff, (f) subsurface runoff and (g) infiltration

of deforested cases compared to the control case.

Figure 11. The probability density function of total water storage

Figure 12. The scatter plot of (a) soil moisture and latent heat flux (CTR_100), (b) soil

moisture and latent heat flux (DEF_100), (c) soil moisture and maximum temperature

(CTR_100), (d) soil moisture and maximum temperature (DEF_100), (e) latent heat flux

and maximum temperature (CTR_100) and (f) latent heat flux and maximum temperature

(DEF_100).

Figure 13. The probability density function of (a) land surface temperature, (b) daily

minimum land surface temperature, (c) daily maximum land surface temperature and (d)

land precipitation. The unit of probability is percentage (%).

Figure 14. Annual mean precipitation for (a) Borneo (b) New Guinea and (c) MC region

including DEF_35 compared to the control case.

doi:10.6342/NTU202303778



Table Caption

Tablel. Model experiments in this study.

Xi
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1. Introduction

In the past few decades, global forests have undergone rapid changes, especially

tropical forests (Hansen et al., 2013; Li et al., 2016). Deforestation can affect local

responses in several ways. Firstly, it increases albedo because the albedo of grass or bare

ground is higher than that of green trees. Secondly, it reduces evapotranspiration due to

land cover changes, which affects latent heat energy and leads to surface warming. Lastly,

it reduces surface roughness, which can cause aerodynamic exchanges (Mahmood et al.,

2014; Pielke et al., 2016). Such changes in land surface properties can also affect

temperature, cloud formation, and precipitation. Additionally, through land-atmospheric

processes, modulation of the moisture and energy balance may be further strengthened or

weakened depending on the mean state of the region (Koster et al. 2004, Bonan 2008;

Seneviratne et al., 2010). For example, if the region falls into an energy-limited regime

where soil moisture is sufficient, the atmosphere affects the land through temperature and

radiation. Conversely, if the region falls into a water-limited regime where soil moisture

is insufficient, the land impacts the atmosphere through evapotranspiration (Seneviratne

et al., 2010; Sippel et al., 2017; Tolle et al., 2020). In summary, the climate following

deforestation is influenced by changes in energy partition caused by alterations in surface

vegetation, as well as the associated land-atmosphere interactions. Overall, deforestation

tends to cause an increase in temperature in the tropics and a decrease in high latitudes
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(Malyshev et al., 2015; Chen et al., 2020). However, the rising temperatures can cause

atmospheric instability, triggering upward motion. Under these circumstances,

convergence can bring moisture from the surrounding oceans to the land, competing with

the decrease in evapotranspiration (Chen et al., 2019). Therefore, the change in

precipitation after deforestation is more complicated than the temperature.

The Maritime Continent (MC), which encompasses some of the world's considerable

tropical rainforests, has experienced the highest deforestation rate among the three major

tropical rainforest regions, despite receiving less attention (Margono et al., 2012; Gaveau

et al., 2014; Stibig et al., 2014; Austin et al., 2017). Located in the tropical region near

the equator, the MC region is influenced by monsoon in different seasons. It receives

abundant rainfall throughout the year, resulting in consistently high soil moisture levels.

These land surface characteristics position it as an energy-limited regime, where

evapotranspiration is primarily determined by net radiation (Sippel et al., 2017; Tolle et

al., 2020). In recent years, human activities driven by the demand for economic

development, which is one of the land use and land cover change (LULCC), have further

exacerbated the situation. Extensive deforestation of rainforests in the MC region has

become prevalent, often accompanied by the replacement of trees with economically

valuable crops such as palm trees (Carlson et al., 2012). These activities, along with large-

scale fires caused by lightning strikes or climates, pose significant threats to the region's

doi:10.6342/NTU202303778



ecosystems and biodiversity. The dramatic deforestation alters surface characteristics,

affecting energy allocation and the interaction between the atmosphere and the land

(Sippel et al., 2017; Vogel et al., 2018). Consequently, LULCC not only disrupts the

hydrological cycle (Wohl et al., 2012) but also adjusts the interaction process between the

surface and the atmosphere. To address the impacts of deforestation and its consequences

on the region, this study will specifically investigate the rainforests of the MC.

Deforestation is an ongoing process that leads to varying climate impacts depending

on the extent of deforestation. Different stages of deforestation expose people to different

levels of climate risk (Nobre et al., 2016). Gaining a deeper understanding of the potential

consequences at different levels of deforestation can greatly assist in implementing

proactive measures for mitigation and adaptation to reduce associated risks. Lawrence et

al. (2015) discovered that when deforestation is not extensive, continued logging may

cause a slight increase in local precipitation until it reaches a tipping point at around 30%

in the Amazon region. During this stage, people may not perceive the subtle changes in

precipitation resulting from forest alterations. However, if deforestation continues and

reaches 70%, a significant decrease in precipitation can be observed compared to areas

with no deforestation. At this point, people may experience more frequent droughts,

damage to cultivated crops, and disruptions to their livelihoods. This nonlinear impact of

deforestation on precipitation exists as a process. Other studies examining varying
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degrees of deforestation in the Amazon Basin (Sampaio et al., 2007; Lejeune et al., 2015;

Badger et al., 2016) have also identified nonlinear responses of precipitation as

deforestation increases. In contrast, previous studies in the MC region have

predominantly focused on differences after complete deforestation (Werth and Avissar,

2005; Chen et al., 2019; Tolle et al., 2017). Despite the availability of ensemble data on

different levels of global deforestation from the Land Use Model Intercomparison Project

(Lawrence et al., 2016), the analysis of this dataset revealed no significant changes in

temperature and precipitation in the MC region (Li et al., 2022). This could be attributed

to the insufficient extent of deforested area, interannual variability, and the regulating

influence of the surrounding ocean, making it challenging to quantify the impact of

deforestation on the climate in the MC region. Therefore, we aim to investigate the

rainforest region surrounded by the ocean through an ideal deforestation experiment. Our

main objective is to determine whether a nonlinear relationship exists between different

levels of deforestation and climate impacts, such as patterns in the hydrological cycle.

Additionally, we seek to examine how land-atmosphere interactions before and after

deforestation influence both the mean climate state and extreme events. By

comprehending the consequences of severe deforestation in this region, we can make

informed decisions to mitigate its effects.
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2. Methodology
2.1 Model Description and Simulation Setup

To explore the nonlinearities in climate responses under different magnitudes of
deforestation in the MC region, an idealized experiment was conducted using Community
Earth System Model (Hurrell et al., 2013). Five simulations were mainly performed:
CTR _100 (all trees), DEF 25 (25% deforested), DEF 50 (50% deforested), DEF 75
(75% deforested), and DEF 100 (all deforested), with an additional sensitivity test,
DEF 35 (35% deforested), to explore the deforestation tipping point. The simulations
encompassed monthly and daily data over a 60-year period, with the initial 5 years
dedicated to spin-up. The forest distribution is illustrated in Figure 1, and more detailed
information about the model experiments is provided in Table 1.

The simulations were conducted using the "F 2000 CAMS" configuration, with a
horizontal resolution of 0.9° x 1.25° and 30 vertical levels. This configuration couples the
Community Atmosphere Model (CAM) with CAMS physics (Neale et al., 2012) to the
Community Land Model version 4 (CLM4.0; Lawrence et al., 2011). Climatological sea
surface temperatures averaged from 1982 to 2001 were prescribed in the model. In the
CTR 100 case, all plant functional types in the MC region (between 11°S—11°N and 90°—
150°E) were replaced with broadleaf evergreen tropical trees, representing an idealized

non-deforested condition that hypothesizes the absence of urbanization and
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industrialization in the original environment a long time ago. In the other simulations, the
deforestation areas were determined by using altitude as a threshold, whereby
deforestation began from low-level regions such as coastal areas and extended to higher
regions such as mountains, where broadleaf evergreen tropical trees were replaced with
C4 grass. The spatial distributions of these simulations resemble real-world deforestation
patterns (Stibig et al., 2014; Crompton et al., 2021). The calculation of the deforested
ratio can be determined by using the proportion of grassland area to the forest area of
CTR 100.
2.2 Moist Static Energy

If there is higher energy in the lower atmosphere, it tends to create an unstable
environment that potentially leads to upward motion, favoring the development of
convection. To understand how atmospheric stability changes with increasing
deforestation magnitude, we analyze the moist static energy (MSE), which is composed
of sensible, latent, and potential energy:

MSE = C,T + Lq+gz (1)

In equation (1), Cp represents the specific heat at constant pressure for air, T denotes
temperature, L is the latent heat of vaporization, q represents specific humidity, g
represents the acceleration of gravity, and z represents height.

2.3 Moisture Budget Analysis
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To understand the mechanisms underlying changes in precipitation following

deforestation, we further employed the integrated moisture budget equation for analysis:
P’ ~ ET' — (v Vq)' — <oo Z—E} )

In equation (2), the prime symbol (') indicates the anomaly between the control case
and deforestation cases. P represents precipitation, ET denotes evapotranspiration, (v- V
q) represents vertically integrated horizontal moisture advection, and <oo Z—g> represents
integrated vertical moisture advection. The latter can be divided into two components: the
thermodynamic and dynamic terms, which are calculated as follows:

“fof) = -5 -li @

In equation (3), the bar sign denotes the value of the control simulation, that is,
CTR_100, and the unit used in the water budget equations is W/m?.

2.4 Critical Soil Moisture and Changes in Land-Atmosphere Interaction

To examine the land-atmosphere interaction before and after deforestation, we utilized
the segmented regression method (Muggeo et al., 2008; Schwingshackl et al., 2017; Hsu
et al., 2022) to determine the critical soil moisture (CSM) values. By plotting the
relationship between soil moisture and latent heat flux, we observed two critical soil
moisture thresholds. The first threshold separates soil moisture into transitional and wet

regimes, as observed in regions like Central America. The second threshold distinguishes

between wet and very wet regimes. In our study, we focused on analyzing the land-
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atmosphere interactions in the MC region, which is located in an energy-limited area.

This region falls under the latter case mentioned earlier. Within the MC region, when the

soil moisture is not sufficiently wet, we observed no significant correlation between soil

moisture and latent heat flux. Conversely, when the soil moisture reaches extremely high

levels, a negative relationship between the two variables emerges, primarily due to

reduced net radiation (Hsu et al., 2022). Therefore, we believe that the effects of land-

atmosphere interactions differ in these two scenarios and require separate investigations.

By employing CSM, we aim to enhance our understanding of surface energy partitioning

(Feldman et al., 2019; Denissen et al., 2020) within the MC region. This distinctive

characteristic of the MC region motivated us to conduct further research on land-

atmosphere interactions in this specific area. Consistent with previous studies (Denissen

et al., 2020; Tolle et al., 2020), we employed correlation coefficients to analyze changes

in land-atmosphere interaction. We conducted correlation and regression analyses for

pairs of soil moisture (SM), maximum temperature (TSMX), radiative flux absorbed at

the surface (SR), and latent heat flux (LH). This analysis utilized monthly data spanning

a period of 660 months, with a specific focus on the differences between CTR 100 and

DEF 100, allowing us to explore the impact of deforestation on land-atmosphere

interactions in the MC region.

2.5 Statistical Analysis
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To assess whether significant differences exist in climate responses after different

degrees of deforestation in the MC region, we utilized a two-tailed Student's t-test for

statistical hypothesis testing at a significance level of 95% (based on 660 months of data).

To analyze extreme events, we employed daily data and plotted probability density

functions to examine changes in climate variables, such as maximum temperature

(TSMX), minimum temperature (TSMN), average temperature (TS), and precipitation

(PRECT).
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3. Results

3.1 Atmospheric Response

3.1.1 Spatial Characteristics

Figures 2a to 2d depict the area anomalies of latent heat flux, while Figures 2e to 2h

depict that of sensible heat flux. Due to the change in plant types from broadleaf evergreen

tropical trees to C4 grass, there is a reduction in evapotranspiration and surface roughness

in the deforested region, leading to a decrease in latent heat flux. However, the sensible

heat flux increases due to the repartition effect. Additionally, slight responses are also

observed in some non-forested regions after deforestation (e.g., the latent heat flux in

coastal regions and the sensible heat flux in some inland areas), which may be due to

changes in the wind field. Figures 3a to 3d show that temperature increases in the

deforested areas, dominated by the local effect. In contrast, precipitation shows different

behavior compared to the other three variables, with changes relatively concentrated in

the deforested areas. At low levels of deforestation (DEF 25), precipitation slightly

increases, but in some regions such as Sumatra and Borneo, there is even a slight decrease,

although it is not statistically significant. As the deforested area increases, precipitation

starts to increase more, and we can see that until the total area is deforested, almost every

region on land shows a significant increase in precipitation, as shown in Figures 3e to 3h.

This phenomenon indicates that in addition to local changes, other factors may also affect

10
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precipitation.

3.1.2 Nonlinearities

Spatial averaging reveals that latent heat flux decreases (as shown in Figure 4a),

while both sensible heat flux and surface temperature increase with the intensity of

deforestation (as depicted in Figure 4b and Figure 4¢). The response of these three climate

variables to deforestation is rather linear, primarily influenced by local effects. In contrast,

precipitation exhibits nonlinear behavior. It is evident that precipitation in non-deforested

areas also undergoes changes, and the increase in precipitation is not uniformly

distributed. In summary, precipitation shows a slight increase at low levels of

deforestation (DEF 25), followed by a more substantial increase as deforestation

progresses (as illustrated in Figure 4d).

3.1.3 Qualitative Analysis

To explain the nonlinearity of the increase in precipitation, we initially focus on the

stability of the vertical structure of the atmosphere. We analyze this by examining the

MSE and investigating the changes in stability under varying degrees of deforestation.

Figures 5a to 5d depict the MSE anomalies over the land relative to the control run. In the

case of DEF_25, there are minimal changes in sensible heat, latent heat, and potential

energy. Conversely, as the extent of deforestation increases, there is a rise in sensible heat

and a decline in latent heat flux near the surface. Furthermore, we observe an

11
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augmentation in the latent heat term at the low levels, primarily associated with the

occurrence of deforestation-induced low-level water vapor convergence when the

deforested area reaches a significant size. With further progression of deforestation, the

expansive deforested area heats the surface, causing air parcels to ascend even higher. As

air is a continuous fluid, it needs to be replenished from surrounding areas. In this scenario,

the air is sourced from the ocean, carrying more water vapor onto the land. Consequently,

we find that water vapor begins to accumulate over the land, and almost every region in

the MC region experiences a substantial increase in water vapor until complete

deforestation occurs (as depicted in Figure 6). Under these circumstances, there is an

increase in energy compared to CTR_100, and the heightened water vapor content may

lead to increased rainfall when the atmospheric conditions are unstable.

3.1.4 Quantitative Analysis

While qualitative analysis can help us understand the possible causes of increased

precipitation, it does not allow us to determine the dominant factor. To analyze the main

factors contributing to increased precipitation, we apply the moisture budget equation.

Among these factors, integrated vertical moisture advection have been found to play a

more significant role compared to evapotranspiration and integrated horizontal moisture

advection after deforestation. Therefore, we present the results specifically for vertical

term across different degrees of deforestation. Figures 7a to 7d depict the thermodynamic

12
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term while Figures 7e to 7h depict dynamic term for various deforestation scenarios. As

the degree of deforestation increases, the contribution of the thermodynamic term

becomes increasingly negative, although not significantly so. Conversely, the dynamic

term exhibits a positive contribution, albeit not initially obvious, with some areas even

showing a slight negative contribution at the beginning (DEF_25). However, as the

degree of deforestation intensifies, the positive contribution of the dynamic term becomes

much more pronounced, several times larger than that of the thermodynamic term.

Consequently, the dynamic term dominates the changes in precipitation in the MC region.

3.2 Land Response

3.2.1 Spatial Characteristics

In the previous section, we discussed the impacts of deforestation on temperature,

precipitation, and latent and sensible heat flux. In this section, our main focus will be on

investigating evapotranspiration and runoff. Changes in plant types, in addition to

temperature and precipitation, can also affect the overall evapotranspiration process. After

deforestation, both canopy evaporation and transpiration decrease due to the presence of

fewer leaves in C4 grass compared to tropical broadleaf trees. The reduced leaf area

intercepts less water, and the fewer stomata result in weaker evapotranspiration (Figures

8a to 8h). Conversely, as the degree of deforestation intensifies, more precipitation

reaches the ground, leading to increased soil evaporation (Figures 8i to 81). However, this
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increase is insufficient to compensate for the reduced canopy evapotranspiration.

As is known, deforestation intensifies, affecting both precipitation and

evapotranspiration, consequently impacting the amount of runoff. Figure 9 illustrate the

area anomalies related to total runoff, surface runoff, subsurface runoff, and infiltration.

Typically, runoff is strongly influenced by precipitation. When precipitation reaches the

ground surface, it fills depression storage, and a portion of the water infiltrates to

replenish groundwater, while the rest becomes surface runoff. Figures 9a to 9d

demonstrate a highly positive correlation between the spatial distribution of total runoff

and land precipitation. Figures 9e to 9l reveal that changes induced by deforestation

primarily stem from an increase in subsurface runoff. As for infiltration, when the extent

of deforestation increases, some regions experience an increase, such as the inland of

Borneo when the degree of deforestation is large enough (DEF_75 and DEF_100), as well

as the New Guinea region, and the increase reaches its maximum in DEF_100. Meanwhile,

coastal regions tend to decrease in all cases, as shown in Figures 9m to 9p.

3.2.2 Nonlinearities

We further perform spatial averaging on canopy evaporation, transpiration, soil

evaporation, runoff, and infiltration to discuss their characteristics. The analysis reveals

that both canopy evaporation and canopy transpiration decrease as the extent of

deforestation expands (Figure 10a and Figure 10b). In contrast, soil evaporation increases
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with the magnitude of deforestation (Figure 10c). Regarding runoff, as the extent of forest

logging continues to increase, there is a consistent trend of an increased volume of runoff,

whether for subsurface or surface runoff (Figures 10d to 10f). Furthermore, compared to

precipitation, the increase in runoff is even greater, nearly twice as much. This indicates

that changes in runoff appear to be more sensitive than changes in precipitation.

Consequently, the increase in precipitation caused by deforestation could potentially

result in severe flooding in the area. As for infiltration, it shows another condition, which

only increases in the case of DEF 100 and is dominated by the contribution of the New

Guinea region (Figure 10g).

3.3 Hydrological Cycle

The hydrological cycle encompasses evaporation, transpiration, condensation,

precipitation, and runoff. Based on the previous analysis, it is evident that deforestation

has an impact on temperature and precipitation patterns. Changes in the land surface also

influence evapotranspiration and runoff, thereby modifying the entire hydrological cycle

during the deforestation process. In section 3.3, our main focus is to provide an

explanation for the observed increase in runoff.

In experiments conducted at different levels of deforestation, we plotted the

probability distribution of total water storage (TWS) for all months after subtracting the

average of CTR 100 (Figure 11). It was found that as the degree of deforestation
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increased, the annual variability of changes in soil moisture content appeared to decrease.

One possible explanation is that when the TWS is high, the soil moisture content may

approach saturation. If the soil is already saturated, most of the rainfall on the land will

become runoff. The MC region is originally a moist and rainy area, and we have observed

that deforestation in the MC region leads to increased precipitation, making it easier for

the soil moisture to reach saturation. Additionally, the reduction in evapotranspiration

makes the region more dependent on runoff to remove excess rainfall.

3.4 Land Atmosphere Interaction

The introduction section mentions that alterations in surface vegetation can lead to

changes in energy partitioning, potentially affecting the strength of land-atmosphere

interactions. To simplify the land-atmospheric interaction after deforestation, we only

examine the cases of CTR 100 and DEF 100. Before determining the CSM in the MC

region, it is crucial to consider whether deforestation causes a shift in the CSM, as this

could impact the selection of thresholds. As a result, we found that the CSM is around

0.32 in both CTR_100 and DEF 100 by using segmented regression. Due to the existence

of some uncertainties (or errors) in the estimation, we use two thresholds, soil moisture

less than 0.3 and greater than 0.35, as the criteria for different mean states. After applying

segmented regression to identify the CSM and categorizing the mean state of soil moisture,

we can further examine the coupling strength between land and atmosphere under
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different categories after deforestation.

After conducting correlation and regression analyses for pairs of soil moisture,

maximum temperature, radiative flux absorbed at the surface, and latent heat flux, we

found that some of them exhibit distinct characteristics. Consequently, we selected those

variables for further discussion. Figures 12a and 12b depict a scatter plot showing the

relationship between soil moisture and latent heat flux. A notable characteristic observed

from this plot is that the relationship between soil moisture and latent heat flux differs

between wet conditions (represented by red dots) and extremely wet conditions

(represented by blue dots), both before and after deforestation. Figures 12c and 12d

illustrate the relationship between soil moisture and maximum temperature. It is evident

that after deforestation, the overall coupling strength (negative correlation) becomes

stronger for wet soil moisture conditions. Furthermore, change of the slope also suggests

that soil moisture has become more responsive to changes in maximum temperature with

an increase in the variability of maximum temperature after complete deforestation. These

changes can be attributed to the enhancement of the soil moisture-temperature feedback

mechanism (Seneviratne et al., 2010; Vogel et al., 2018). As soil moisture decreases,

evapotranspiration reduces, leading to a warmer atmosphere, which, in turn, further

depletes soil moisture, creating a positive feedback loop. Additionally, as mentioned

earlier, changes in land-atmosphere interactions and energy allocation result in an
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increase in surface temperature after deforestation. These alterations contribute to the

overall temperature rise and an increase in the annual temperature range. Figures 12e and

12f depict the coupling strength between maximum temperature and latent heat flux. In

contrast to the relationship between soil moisture and maximum temperature, the

coupling between latent heat flux and maximum temperature weakens after deforestation.

3.5 Extreme Cases

So far, we have focused on examining changes in climate conditions concerning the

mean state. However, it is crucial to consider the impact of deforestation on extreme

values as they can have a greater influence on natural disasters. For instance, extremely

high temperatures increase the frequency of heatwaves, and in severe cases, even

wildfires. Similarly, intense precipitation can result in flooding, especially in low-lying

areas. Therefore, in addition to studying the effects of deforestation on average climate

conditions, it is equally important to investigate how extreme events will be altered.

3.5.1 Temperature

Figures 13a to 13c depict the probability distribution of daily mean surface

temperature (TS), daily maximum temperature (TSMX), and daily minimum temperature

(TSMN) on land. Our findings indicate that as deforestation increases, there is a slight

increase in both TS and TSMN, while TSMX exhibits the most significant increase. In

general, the distribution of TS and TSMN shows greater similarity compared to the
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distribution of TS and TSMX. To summarize, we observed a nonlinear increase in the

frequency of high temperatures for TSMX, accompanied by an increase in temperature

variability. The fact that the increase in the frequency of TSMX is larger than TSMN after

deforestation can be attributed to two main factors. Firstly, the stronger daytime radiation

intensity results in higher values for variables such as sensible heat and radiation

compared to nighttime, leading to a more pronounced impact on daytime temperatures.

Secondly, changes in land-atmosphere interactions, particularly the soil moisture-

temperature feedback mechanism discussed in the previous section, contribute to a

significant increase in the frequency of extremely high temperatures. In previous studies,

the phenomenon of increased temperature variability following deforestation has been

observed as well (Alkama and Cescatti, 2016; Schultz et al., 2017; McAlpine et al., 2018;

Chapman et al., 2020).

3.5.2 Precipitation

For mean precipitation on land, as depicted in Figure 13d, the frequency of light rain

and heavy rain increases, while the frequency of moderate rain decreases as the

deforestation area expands. After deforestation, there appears to be a phenomenon of "rich

get richer, poor get poorer." The most significant increase in average precipitation occurs

in the complete deforestation case. However, the underlying mechanism for these changes

is still unknown that deserves a further study.
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4. Conclusion and Discussion

This study utilizes the CESM model to investigate the impact of varying levels of

deforestation on the climate of the MC region. Our analysis focuses on understanding the

nonlinear changes occurring in both the atmosphere and land as a result of deforestation.

We also explore variations in the hydrological cycle and examine how soil moisture

influences land-atmosphere interactions. Additionally, we analyze the effects of

deforestation on extreme temperature and precipitation patterns.

Our results reveal that linear changes in temperature, latent heat flux, and sensible

heat flux are primarily influenced by local conditions, while precipitation does not exhibit

a linear trend. In contrast to the findings of Lawrence et al. (2015), precipitation shows a

slight initial increase followed by further increases as the deforested area expands. This

behavior may be associated with atmospheric stability and water transport. Further

analysis using MSE and wind convergence suggests that the increase in precipitation may

be linked to changes in atmospheric stability and low-level atmospheric water vapor

transport. The moisture budget equation allows us to quantify the dominant factor causing

the changes in precipitation and indicates that the dynamic term plays a significant role

in the observed increase in rainfall. However, nonlinearities in precipitation trends may

also be influenced by terrain and the distribution of deforestation. In the case of Borneo,

when the percentage of deforestation is small, precipitation slightly decreases, but as the
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deforested area increases, precipitation starts to increase, indicating a tipping point

(Figure 14a). In contrast, for New Guinea, precipitation slightly increases at low levels of

deforestation, and it continues to increase as the deforested area expands. The absence of

a tipping point in New Guinea is observed (Figure 14b). Regarding total

evapotranspiration, our findings indicate that canopy evaporation and transpiration

decrease, while soil evaporation increases due to more rain falling directly onto the

ground and less transpiration. In terms of runoff, we observe that as the degree of

deforestation increases, the increase in runoff is approximately twice the amount of

precipitation. This observed increase in runoff can be attributed to a combination of

increased precipitation following deforestation and changes in vegetation, which make

the soil layer more susceptible to saturation. These alterations significantly impact the

hydrological cycle. Deforestation changes the land surface properties as well as

atmospheric condition, which modify land-atmosphere interactions through energy

redistribution, resulting in distinct responses observed in different mean states of soil

moisture. This is particularly evident in the soil moisture- temperature feedback

mechanism, which influences extreme temperature events and likely contributes to the

significant increase in high temperatures following deforestation. However, the

mechanisms underlying the increase in light and heavy rainfall after deforestation remain

unknown.
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Based on our research, we speculate that the decrease in evapotranspiration resulting

from deforestation and the subsequent low-level atmospheric moisture convergence is

associated with changes in precipitation patterns. However, due to the limited number of

experimental groups in our study, which included only five different deforestation levels,

it is challenging to conclusively determine whether a tipping point exists for the MC

region. To address this uncertainty, we conducted an additional experiment, DEF 35, to

explore the nonlinear behavior of precipitation. The results revealed that precipitation is

even higher in this case compared to the DEF 25 experiment (Figure 14c¢). This trend is

observed even in regions like Sumatra and Borneo, where precipitation initially shows a

slight decrease. These findings suggest that in our study, convergence may start to

dominate the changes in precipitation when the deforestation percentage exceeds 25%. If

a tipping point exists in our study, it is likely to occur when the deforested proportion is

below 25%, where the low-level water vapor convergence still not obvious. Compared to

the real world, Wei et al. (2022) revealed that the Indonesian forest disappeared with the

forest extent dropping from 124.5 Mha in 1980 to 91.0 Mha in 2015 (approximately 20%),

while the precipitation shows an increasing trend using the data from the Global

Precipitation Climatology Centre (GPCC). However, it is worth mentioning that both

satellite observation data and different models have their uncertainties. For instance,

precipitation results differ among the Global Precipitation Climatology Project (GPCP),
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GPCC, and ERAS datasets. Furthermore, some studies utilizing different models have

found that rainfall tends to decrease after deforestation (To6lle et al., 2017; Chapman et

al., 2020), which differs from our results. Although the change in precipitation might also

be affected by model uncertainties, interannual variability such as ENSO or by the effect

of global warming, it is also crucial to note from our study that if deforestation of

rainforests is not mitigated, it could potentially accelerate the increase in precipitation and

have a greater impact on runoff, increasing the risk of severe flooding in the future.

Another interesting observation is that both our study and the study by Chen et al.

(2019) indicate that the dynamic term is the main factor driving changes in precipitation.

However, in the scenario of global warming, it seems that the thermodynamic term

dominates the intensity and increase of precipitation (Chou et al.,2012). In the real world,

global warming and deforestation often occur concurrently. Therefore, it can be expected

that the extent of temperature rise would be even greater, while the influence of

precipitation could become more complex. Nevertheless, it remains essential for us to

actively engage in mitigation and adaptation measures to minimize risks and address the

potential impacts of these changes.
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Table

Tablel. Model information in this study

Experiments Description

CTR 100 All are broadleaf evergreen tropical trees

DEF 25 25% of the total area is deforested and replaced by C4
grasses

DEF 35 35% of the total area is deforested and replaced by C4
grasses

DEF 50 50% of the total area is deforested and replaced by C4
grasses

DEF 75 75% of the total area is deforested and replaced by C4
grasses

DEF 100 All are C4 grasses

Time All cases run 60 years with monthly and daily data, and
first five years used for spin up time.
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Figure 1. The forest distribution in MC region in (a) DEF_25 ~ (b) DEF_35 -~ (c) DEF_50

and (d) DEF_75 simulation.
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Figure 2. The spatial anomaly of (a) latent heat flux (DEF_25), (b) latent heat flux

(DEF_50), (c) latent heat flux (DEF_75), (d) latent heat flux (DEF_100), (e) sensible heat

flux (DEF_25), (f) sensible heat flux (DEF_50), (g) sensible heat flux (DEF_75), and (h)

sensible heat flux (DEF_100). All are compared to CTR_100 and dots indicate p

value<0.05.
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Figure 6. Annual mean of low-level moisture convergence anomaly integrated from 950

to 850 hPa with 950-hPa wind anomaly (a) DEF_25, (b) DEF 50, (c) DEF_75 and (d)

DEF_100.

39
doi:10.6342/NTU202303778



(a) Thermodynamic Term Anomaly (DEF_25)

Wim?

(e

)

DYNAMIC

Dynamic Term Anomaly (DEF_25)
W/m®

10N

THERMODYNAMIC
' 7 1:59

o S
108 i
T S T =T
100E 120E
BT [ [ T
0 8 6 4 2 0 2 5 8 10

(b) Thermodynamic Term Anomaly (DEF_50)
THERMODYNAMIG

Wim®

10N

)

DYNAMIC

-50

40 30 -20 -0 O 10 20 30 40 50

Dynamic Term Anomaly (DEF_50)
W/m®

10N

10N

108 1

| = oo
108 ~ =
T T
100E 120E 140E
N | [T —
40 -8 6 0 4 6 8 10

(c)

Thermodynamic Term Anomaly (DEF_75)

(g

-60

40 30 -20 10 0 10 20 30 40 50

Dynamic Term Anomaly (DEF_75)

THERMODYNAMIC Wim? DYNAMIC Wi’
: , .
] y / % N 7 % '
0 - 2 ? - 0
Y - e = A
o o = e,
Py - - _
= [ = o
S e 2 =
108 - < o 108 - el
: ; : ‘ ; :
100E 1208 1408 100E 1208 140E
T ] I [T T | EEEEE [ I
40 8 6 4 2 0 2z 4 6 8 10 50 40 30 20 10 0 10 20 30 40 50

(d)

Thermodynamic Term Anomaly (DEF_100)

(h)

Dynamic Term Anomaly (DEF_100)

THERMODYNAMIC ‘ wim? DYNAMIC Wim
10N %‘V 7 “{Fb“; boton .
[y _ e = _
o o -
9 =
%Wﬁ’ 4
108 7l - 108 -
T T T
100E 1208 140E
I [T e e—— L1 [ [
-10 -8 -6 4 2 0 2 6 8 10 -50 -40 -30 -20 -10 0 10 20 30 40 50

Figure 7. The spatial anomaly of (a) thermodynamic term (DEF_25), (b) thermodynamic

term (DEF_50), (c) thermodynamic term (DEF_75), (d) thermodynamic term (DEF_100),

(e) dynamic term (DEF_25), (f) dynamic term (DEF_50), (g) dynamic term (DEF_75),

and (h) dynamic term (DEF_100). All plots are compared to CTR_100 and dotted areas

indicate p value<0.05.
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Figure 8. The spatial anomaly of (a) canopy evaporation (DEF_25), (b) canopy
evaporation (DEF_50), (c) canopy evaporation (DEF_75), (d) canopy evaporation
(DEF_100), (e) canopy transpiration (DEF_25), (f) canopy transpiration (DEF_50), (g)
canopy transpiration (DEF_75), (h) canopy transpiration (DEF_100), (i) soil evaporation
(DEF_25), (j) soil evaporation (DEF_50), (k) soil evaporation (DEF_75), and () soil

evaporation (DEF_100). All are compared to CTR_100 and dots indicate p value<0.05.
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Figure 9. The spatial anomaly of (a) total runoff (DEF_25), (b) total runoff (DEF_50),
(c) total runoff (DEF_75), (d) total runoff (DEF_100), (e) surface runoff (DEF_25), (f)
surface runoff (DEF_50), (g) surface runoff (DEF_75), (h) surface runoff (DEF_100), (i)
subsurface runoff (DEF_25), (j) subsurface runoff (DEF_50), (k) subsurface runoff
(DEF_75), () subsurface runoff (DEF_100), (m) infiltration (DEF_25), (n) infiltration
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(DEF_50), (o) infiltration (DEF_75), and (p) infiltration (DEF_100). All are compared to

CTR_100 and dots indicate p value<0.05.
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Figure 10. Annual mean (@) canopy evaporation, (b) canopy transpiration, (c) soil

evaporation, (d) total runoff, (e) surface runoff, (f) subsurface runoff and (g) infiltration

of deforested cases compared to the control case.

46

doi:10.6342/NTU202303778



Total Water Storage after Removing Mean CTR_100

14

12

—y
o

o

Probability (%)

Figure 11. The probability density function of total water storage

DEF 100

-300

-200

-100 0
Total water storage (mm)

47

100

200

doi:10.6342/NTU202303778



—_
=
N’

_ CTR_100
£
+ SM>035
z 5 + SM<030
= N+ .®
x —
=3
T \‘
] : >
(4]
I Q-
©
5]
T T T T T T
- 0.20 0.25 0.30 0.35 0.40
Soil Moisture (mm*/mm®)
(c)
N CTR_100
<
o 8-
=M ® SM=>035
% - * SM<030
E
-
g ™
=] |
E o *
é (9) B T T T T T
= 0.20 0.25 0.30 0.35 0.40
Soil Moisture (mm?/mm?)
(e)
_ CTR_100
<
~ @
& 87 sme035
% ¢ SM<030 *
£ J
-
g ™
35 -
E o
é g B T T T T
= 80 100 120 140

Latent Heat Flux (W/m?)

(b)
DEF_100

t%_ 7 SM>0.35
% . + SM<030
x =]

E i . *

e T 4
(5] o .

T o "

a O

G

© T T T T T
- 0.20 0.25 0.30 0.35 0.40

Soil Moisture (mm>/mm?)

(d)

_ DEF_100

S

S o c 28R
T o

g &

E

- X

E ™

=] |

E o

é g B T T T T T
= 0.20 0.25 0.30 0.35 0.40

Soil Moisture (mm>/mm?)

_ DEF_100

<

~

RSERT

g 2

S »

E

e

£ ™

3

£E o *

& S T T T
= 80 100 120 140

Latent Heat Flux (W/m?)

Figure 12. The scatter plot of (a) soil moisture and latent heat flux (CTR_100), (b) soil

moisture and latent heat flux (DEF_100), (c) soil moisture and maximum temperature

(CTR_100), (d) soil moisture and maximum temperature (DEF_100), (e) latent heat flux

and maximum temperature (CTR_100) and (f) latent heat flux and maximum temperature

(DEF_100).
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Figure 13. The probability density function of (a) land surface temperature, (b) daily

minimum land surface temperature, (c) daily maximum land surface temperature and (d)

land precipitation. The unit of probability is percentage (%).
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Figure 14. Annual mean precipitation for (a) Borneo (b) New Guinea and (c) MC region

including DEF_35 compared to the control case.
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