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摘要 

本研究旨在了解在海洋大陸地區不同程度的森林砍伐對氣候的反應，包含平

均氣候條件對森林砍伐效應的非線性效應、砍伐後的陸地大氣交互作用變化，以及

極端溫度、降水特徵等。本研究主要使用地球系统模式進行了五組不同程度的森林

砍伐情境模擬，並額外增加一組砍伐實驗來進行砍伐轉折點的敏感性測試，結果顯

示，隨著森林砍伐程度的增加，地表溫度和可感熱通量增加，而潛熱通量則減少。

降水也表現出非線性特徵，一開始稍微增加，然後隨著森林砍伐的進行而更明顯地

增加。然而，非線性效應可能會因島嶼的分佈和地形而有所不同。舉例來說，婆羅

洲地區顯示出一個轉折點，而新幾內亞地區則沒有。在陸地大氣交互作用的部分，

本研究使用關鍵土壤濕度和分段回歸的概念探討了森林砍伐後陸地大氣交互作用

的變化。結果發現陸地大氣交互作用在砍伐後發生了變化，而土壤濕度回饋可能是

導致極端氣溫事件頻率增加重要的角色。 

 

關鍵詞：森林砍伐、海洋大陸地區、非線性效應、陸地大氣交互作用、土壤濕度

回饋 
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Abstract 

This study aims to understand the climate response to varying levels of deforestation 

in the Maritime Continent (MC), including the nonlinear effects of different degrees of 

deforestation on average climate conditions, changes in land-atmosphere interactions 

after deforestation, and the characteristics of extreme temperature and precipitation. 

Using the Community Earth System Model (CESM), five scenarios of deforestation at 

different magnitudes were simulated, with an additional sensitivity test to identify the 

deforestation tipping point. The results show that as deforestation increases, surface 

temperature and sensible heat flux increase linearly, while latent heat flux decreases 

linearly. In contrast, precipitation exhibits nonlinear characteristics, initially showing a 

slight increase and then a more pronounced increase as deforestation progresses. However, 

the nonlinear effects may vary based on the distribution and terrain of the islands. For 

instance, a tipping point is observed in the Borneo region, whereas the New Guinea region 

does not exhibit one. The study explores changes in land-atmosphere interactions after 

deforestation using the concepts of critical soil moisture and segmented regression. The 

results indicate that land-atmosphere interactions undergo changes after deforestation, 

and soil moisture feedback may play a significant role in the increased frequency of 

extreme temperature events. 

Keywords: Deforestation, Maritime Continent, Nonlinear effect, Land atmosphere 
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interaction, Soil moisture feedback 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



doi:10.6342/NTU202303778

vi 
 

Contents 

謝辭 ....................................................................................................................................i 

摘要 .................................................................................................................................. iii 

Abstract ............................................................................................................................. iv 

Contents ............................................................................................................................ vi 

Figure Captions .............................................................................................................. viii 

Table Caption ................................................................................................................... xi 

1. Introduction .................................................................................................................. 1 

2. Methodology ................................................................................................................. 5 

2.1 Model Description and Simulation Setup ..................................................... 5 

2.2 Moist Static Energy ...................................................................................... 6 

2.3 Moisture Budget Analysis ............................................................................ 6 

2.4 Critical Soil Moisture and Changes in Land-Atmosphere Interaction ......... 7 

2.5 Statistical Analysis ........................................................................................ 8 

3. Results ........................................................................................................................ 10 

3.1 Atmospheric Response ..................................................................................... 10 

3.1.1 Spatial Characteristics ........................................................................... 10 

3.1.2 Nonlinearities ........................................................................................ 11 

3.1.3 Qualitative Analysis .............................................................................. 11 



doi:10.6342/NTU202303778

vii 
 

3.1.4 Quantitative Analysis ............................................................................ 12 

3.2 Land Response .................................................................................................. 13 

3.2.1 Spatial Characteristics ........................................................................... 13 

3.2.2 Nonlinearities ........................................................................................ 14 

3.3 Hydrological Cycle ........................................................................................... 15 

3.4 Land Atmosphere Interaction ........................................................................... 16 

3.5 Extreme Cases .................................................................................................. 18 

3.5.1 Temperature ........................................................................................... 18 

3.5.2 Precipitation ........................................................................................... 19 

4. Conclusion and Discussion ......................................................................................... 20 

References ...................................................................................................................... 24 

Table ............................................................................................................................... 33 

Figures ............................................................................................................................ 34 

 

 

 

 

 

 

 

 



doi:10.6342/NTU202303778

viii 
 

Figure Captions 

Figure 1. The forest distribution in MC region in (a) DEF_25、(b) DEF_35、(c) DEF_50 

and (d) DEF_75 simulation. 

Figure 2. The spatial anomaly of (a) latent heat flux (DEF_25), (b) latent heat flux 

(DEF_50), (c) latent heat flux (DEF_75), (d) latent heat flux (DEF_100), (e) sensible heat 

flux (DEF_25), (f) sensible heat flux (DEF_50), (g) sensible heat flux (DEF_75), and (h) 

sensible heat flux (DEF_100). All are compared to CTR_100 and dots indicate p 

value<0.05. 

Figure 3. The spatial anomaly of (a) precipitation (DEF_25), (b) precipitation (DEF_50), 

(c) precipitation (DEF_75), (d) precipitation (DEF_100), (e) temperature (DEF_25), (f) 

temperature (DEF_50), (g) temperature (DEF_75), and (h) temperature (DEF_100). All 

plots are compared to CTR_100 and dotted areas indicate p value<0.05. 

Figure 4. Annual mean (a) latent heat flux (b) sensible heat flux (c) surface temperature 

(d) precipitation of deforested cases compared to the control case.  

Figure 5. The anomalous MSE profile of (a) DEF_25, (b) DEF_50, (c) DEF_75 and (d) 

DEF_100. 

Figure 6. Annual mean of low-level moisture convergence anomaly integrated from 950 

to 850 hPa with 950-hPa wind anomaly (a) DEF_25, (b) DEF_50, (c) DEF_75 and (d) 

DEF_100. 
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Figure 7. The spatial anomaly of (a) thermodynamic term (DEF_25), (b) thermodynamic 

term (DEF_50), (c) thermodynamic term (DEF_75), (d) thermodynamic term (DEF_100), 

(e) dynamic term (DEF_25), (f) dynamic term (DEF_50), (g) dynamic term (DEF_75), 

and (h) dynamic term (DEF_100). All plots are compared to CTR_100 and dotted areas 

indicate p value<0.05. 

Figure 8. The spatial anomaly of (a) canopy evaporation (DEF_25), (b) canopy 

evaporation (DEF_50), (c) canopy evaporation (DEF_75), (d) canopy evaporation 

(DEF_100), (e) canopy transpiration (DEF_25), (f) canopy transpiration (DEF_50), (g) 

canopy transpiration (DEF_75), (h) canopy transpiration (DEF_100), (i) soil evaporation 

(DEF_25), (j) soil evaporation (DEF_50), (k) soil evaporation (DEF_75), and (l) soil 

evaporation (DEF_100). All are compared to CTR_100 and dots indicate p value<0.05. 

Figure 9. The spatial anomaly of (a) total runoff (DEF_25), (b) total runoff (DEF_50), 

(c) total runoff (DEF_75), (d) total runoff (DEF_100), (e) surface runoff (DEF_25), (f) 

surface runoff (DEF_50), (g) surface runoff (DEF_75), (h) surface runoff (DEF_100), (i) 

subsurface runoff (DEF_25), (j) subsurface runoff (DEF_50), (k) subsurface runoff 

(DEF_75), (l) subsurface runoff (DEF_100), (m) infiltration (DEF_25), (n) infiltration 

(DEF_50), (o) infiltration (DEF_75), and (p) infiltration (DEF_100). All are compared to 

CTR_100 and dots indicate p value<0.05. 

Figure 10. Annual mean (a) canopy evaporation, (b) canopy transpiration, (c) soil 
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evaporation, (d) total runoff, (e) surface runoff, (f) subsurface runoff and (g) infiltration 

of deforested cases compared to the control case. 

Figure 11. The probability density function of total water storage 

Figure 12. The scatter plot of (a) soil moisture and latent heat flux (CTR_100), (b) soil 

moisture and latent heat flux (DEF_100), (c) soil moisture and maximum temperature 

(CTR_100), (d) soil moisture and maximum temperature (DEF_100), (e) latent heat flux 

and maximum temperature (CTR_100) and (f) latent heat flux and maximum temperature 

(DEF_100). 

Figure 13. The probability density function of (a) land surface temperature, (b) daily 

minimum land surface temperature, (c) daily maximum land surface temperature and (d) 

land precipitation. The unit of probability is percentage (%). 

Figure 14. Annual mean precipitation for (a) Borneo (b) New Guinea and (c) MC region 

including DEF_35 compared to the control case.  
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Table Caption 

Table1. Model experiments in this study. 
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1. Introduction 

In the past few decades, global forests have undergone rapid changes, especially 

tropical forests (Hansen et al., 2013; Li et al., 2016). Deforestation can affect local 

responses in several ways. Firstly, it increases albedo because the albedo of grass or bare 

ground is higher than that of green trees. Secondly, it reduces evapotranspiration due to 

land cover changes, which affects latent heat energy and leads to surface warming. Lastly, 

it reduces surface roughness, which can cause aerodynamic exchanges (Mahmood et al., 

2014; Pielke et al., 2016). Such changes in land surface properties can also affect 

temperature, cloud formation, and precipitation. Additionally, through land-atmospheric 

processes, modulation of the moisture and energy balance may be further strengthened or 

weakened depending on the mean state of the region (Koster et al. 2004, Bonan 2008; 

Seneviratne et al., 2010). For example, if the region falls into an energy-limited regime 

where soil moisture is sufficient, the atmosphere affects the land through temperature and 

radiation. Conversely, if the region falls into a water-limited regime where soil moisture 

is insufficient, the land impacts the atmosphere through evapotranspiration (Seneviratne 

et al., 2010; Sippel et al., 2017; Tölle et al., 2020). In summary, the climate following 

deforestation is influenced by changes in energy partition caused by alterations in surface 

vegetation, as well as the associated land-atmosphere interactions. Overall, deforestation 

tends to cause an increase in temperature in the tropics and a decrease in high latitudes 
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(Malyshev et al., 2015; Chen et al., 2020). However, the rising temperatures can cause 

atmospheric instability, triggering upward motion. Under these circumstances, 

convergence can bring moisture from the surrounding oceans to the land, competing with 

the decrease in evapotranspiration (Chen et al., 2019). Therefore, the change in 

precipitation after deforestation is more complicated than the temperature.  

The Maritime Continent (MC), which encompasses some of the world's considerable 

tropical rainforests, has experienced the highest deforestation rate among the three major 

tropical rainforest regions, despite receiving less attention (Margono et al., 2012; Gaveau 

et al., 2014; Stibig et al., 2014; Austin et al., 2017). Located in the tropical region near 

the equator, the MC region is influenced by monsoon in different seasons. It receives 

abundant rainfall throughout the year, resulting in consistently high soil moisture levels. 

These land surface characteristics position it as an energy-limited regime, where 

evapotranspiration is primarily determined by net radiation (Sippel et al., 2017; Tölle et 

al., 2020). In recent years, human activities driven by the demand for economic 

development, which is one of the land use and land cover change (LULCC), have further 

exacerbated the situation. Extensive deforestation of rainforests in the MC region has 

become prevalent, often accompanied by the replacement of trees with economically 

valuable crops such as palm trees (Carlson et al., 2012). These activities, along with large-

scale fires caused by lightning strikes or climates, pose significant threats to the region's 
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ecosystems and biodiversity. The dramatic deforestation alters surface characteristics, 

affecting energy allocation and the interaction between the atmosphere and the land 

(Sippel et al., 2017; Vogel et al., 2018). Consequently, LULCC not only disrupts the 

hydrological cycle (Wohl et al., 2012) but also adjusts the interaction process between the 

surface and the atmosphere. To address the impacts of deforestation and its consequences 

on the region, this study will specifically investigate the rainforests of the MC.  

Deforestation is an ongoing process that leads to varying climate impacts depending 

on the extent of deforestation. Different stages of deforestation expose people to different 

levels of climate risk (Nobre et al., 2016). Gaining a deeper understanding of the potential 

consequences at different levels of deforestation can greatly assist in implementing 

proactive measures for mitigation and adaptation to reduce associated risks. Lawrence et 

al. (2015) discovered that when deforestation is not extensive, continued logging may 

cause a slight increase in local precipitation until it reaches a tipping point at around 30% 

in the Amazon region. During this stage, people may not perceive the subtle changes in 

precipitation resulting from forest alterations. However, if deforestation continues and 

reaches 70%, a significant decrease in precipitation can be observed compared to areas 

with no deforestation. At this point, people may experience more frequent droughts, 

damage to cultivated crops, and disruptions to their livelihoods. This nonlinear impact of 

deforestation on precipitation exists as a process. Other studies examining varying 
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degrees of deforestation in the Amazon Basin (Sampaio et al., 2007; Lejeune et al., 2015; 

Badger et al., 2016) have also identified nonlinear responses of precipitation as 

deforestation increases. In contrast, previous studies in the MC region have 

predominantly focused on differences after complete deforestation (Werth and Avissar, 

2005; Chen et al., 2019; Tölle et al., 2017). Despite the availability of ensemble data on 

different levels of global deforestation from the Land Use Model Intercomparison Project 

(Lawrence et al., 2016), the analysis of this dataset revealed no significant changes in 

temperature and precipitation in the MC region (Li et al., 2022). This could be attributed 

to the insufficient extent of deforested area, interannual variability, and the regulating 

influence of the surrounding ocean, making it challenging to quantify the impact of 

deforestation on the climate in the MC region. Therefore, we aim to investigate the 

rainforest region surrounded by the ocean through an ideal deforestation experiment. Our 

main objective is to determine whether a nonlinear relationship exists between different 

levels of deforestation and climate impacts, such as patterns in the hydrological cycle. 

Additionally, we seek to examine how land-atmosphere interactions before and after 

deforestation influence both the mean climate state and extreme events. By 

comprehending the consequences of severe deforestation in this region, we can make 

informed decisions to mitigate its effects. 
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2. Methodology 

2.1 Model Description and Simulation Setup 

To explore the nonlinearities in climate responses under different magnitudes of 

deforestation in the MC region, an idealized experiment was conducted using Community 

Earth System Model (Hurrell et al., 2013). Five simulations were mainly performed: 

CTR_100 (all trees), DEF_25 (25% deforested), DEF_50 (50% deforested), DEF_75 

(75% deforested), and DEF_100 (all deforested), with an additional sensitivity test, 

DEF_35 (35% deforested), to explore the deforestation tipping point. The simulations 

encompassed monthly and daily data over a 60-year period, with the initial 5 years 

dedicated to spin-up. The forest distribution is illustrated in Figure 1, and more detailed 

information about the model experiments is provided in Table 1. 

The simulations were conducted using the "F_2000_CAM5" configuration, with a 

horizontal resolution of 0.9° x 1.25° and 30 vertical levels. This configuration couples the 

Community Atmosphere Model (CAM) with CAM5 physics (Neale et al., 2012) to the 

Community Land Model version 4 (CLM4.0; Lawrence et al., 2011). Climatological sea 

surface temperatures averaged from 1982 to 2001 were prescribed in the model. In the 

CTR_100 case, all plant functional types in the MC region (between 11°S–11°N and 90°–

150°E) were replaced with broadleaf evergreen tropical trees, representing an idealized 

non-deforested condition that hypothesizes the absence of urbanization and 



doi:10.6342/NTU202303778

6 
 

industrialization in the original environment a long time ago. In the other simulations, the 

deforestation areas were determined by using altitude as a threshold, whereby 

deforestation began from low-level regions such as coastal areas and extended to higher 

regions such as mountains, where broadleaf evergreen tropical trees were replaced with 

C4 grass. The spatial distributions of these simulations resemble real-world deforestation 

patterns (Stibig et al., 2014; Crompton et al., 2021). The calculation of the deforested 

ratio can be determined by using the proportion of grassland area to the forest area of 

CTR_100. 

2.2 Moist Static Energy  

If there is higher energy in the lower atmosphere, it tends to create an unstable 

environment that potentially leads to upward motion, favoring the development of 

convection. To understand how atmospheric stability changes with increasing 

deforestation magnitude, we analyze the moist static energy (MSE), which is composed 

of sensible, latent, and potential energy: 

MSE = CpT + Lq+gz (1) 

In equation (1), Cp represents the specific heat at constant pressure for air, T denotes 

temperature, L is the latent heat of vaporization, q represents specific humidity, g 

represents the acceleration of gravity, and z represents height. 

2.3 Moisture Budget Analysis  
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To understand the mechanisms underlying changes in precipitation following 

deforestation, we further employed the integrated moisture budget equation for analysis: 

P′ ≈ ET′ − ⟨v ⋅ ∇q⟩′ − ⟨ω
∂q

∂p
⟩′ (2) 

In equation (2), the prime symbol (') indicates the anomaly between the control case 

and deforestation cases. P represents precipitation, ET denotes evapotranspiration, ⟨v⋅∇

q⟩ represents vertically integrated horizontal moisture advection, and ⟨ω
∂q

∂p
⟩ represents 

integrated vertical moisture advection. The latter can be divided into two components: the 

thermodynamic and dynamic terms, which are calculated as follows: 

−⟨ω
∂q

∂p
⟩ ' ≈ − ⟨ω̅

∂q′

∂p
⟩ − ⟨ω′ ∂q̅

∂p
⟩ (3) 

In equation (3), the bar sign denotes the value of the control simulation, that is, 

CTR_100, and the unit used in the water budget equations is W/m2. 

2.4 Critical Soil Moisture and Changes in Land-Atmosphere Interaction  

To examine the land-atmosphere interaction before and after deforestation, we utilized 

the segmented regression method (Muggeo et al., 2008; Schwingshackl et al., 2017; Hsu 

et al., 2022) to determine the critical soil moisture (CSM) values. By plotting the 

relationship between soil moisture and latent heat flux, we observed two critical soil 

moisture thresholds. The first threshold separates soil moisture into transitional and wet 

regimes, as observed in regions like Central America. The second threshold distinguishes 

between wet and very wet regimes. In our study, we focused on analyzing the land-
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atmosphere interactions in the MC region, which is located in an energy-limited area. 

This region falls under the latter case mentioned earlier. Within the MC region, when the 

soil moisture is not sufficiently wet, we observed no significant correlation between soil 

moisture and latent heat flux. Conversely, when the soil moisture reaches extremely high 

levels, a negative relationship between the two variables emerges, primarily due to 

reduced net radiation (Hsu et al., 2022). Therefore, we believe that the effects of land-

atmosphere interactions differ in these two scenarios and require separate investigations. 

By employing CSM, we aim to enhance our understanding of surface energy partitioning 

(Feldman et al., 2019; Denissen et al., 2020) within the MC region. This distinctive 

characteristic of the MC region motivated us to conduct further research on land-

atmosphere interactions in this specific area. Consistent with previous studies (Denissen 

et al., 2020; Tölle et al., 2020), we employed correlation coefficients to analyze changes 

in land-atmosphere interaction. We conducted correlation and regression analyses for 

pairs of soil moisture (SM), maximum temperature (TSMX), radiative flux absorbed at 

the surface (SR), and latent heat flux (LH). This analysis utilized monthly data spanning 

a period of 660 months, with a specific focus on the differences between CTR_100 and 

DEF_100, allowing us to explore the impact of deforestation on land-atmosphere 

interactions in the MC region. 

2.5 Statistical Analysis 
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To assess whether significant differences exist in climate responses after different 

degrees of deforestation in the MC region, we utilized a two-tailed Student's t-test for 

statistical hypothesis testing at a significance level of 95% (based on 660 months of data). 

To analyze extreme events, we employed daily data and plotted probability density 

functions to examine changes in climate variables, such as maximum temperature 

(TSMX), minimum temperature (TSMN), average temperature (TS), and precipitation 

(PRECT). 
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3. Results 

3.1 Atmospheric Response 

3.1.1 Spatial Characteristics 

Figures 2a to 2d depict the area anomalies of latent heat flux, while Figures 2e to 2h 

depict that of sensible heat flux. Due to the change in plant types from broadleaf evergreen 

tropical trees to C4 grass, there is a reduction in evapotranspiration and surface roughness 

in the deforested region, leading to a decrease in latent heat flux. However, the sensible 

heat flux increases due to the repartition effect. Additionally, slight responses are also 

observed in some non-forested regions after deforestation (e.g., the latent heat flux in 

coastal regions and the sensible heat flux in some inland areas), which may be due to 

changes in the wind field. Figures 3a to 3d show that temperature increases in the 

deforested areas, dominated by the local effect. In contrast, precipitation shows different 

behavior compared to the other three variables, with changes relatively concentrated in 

the deforested areas. At low levels of deforestation (DEF_25), precipitation slightly 

increases, but in some regions such as Sumatra and Borneo, there is even a slight decrease, 

although it is not statistically significant. As the deforested area increases, precipitation 

starts to increase more, and we can see that until the total area is deforested, almost every 

region on land shows a significant increase in precipitation, as shown in Figures 3e to 3h. 

This phenomenon indicates that in addition to local changes, other factors may also affect 
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precipitation. 

3.1.2 Nonlinearities 

Spatial averaging reveals that latent heat flux decreases (as shown in Figure 4a), 

while both sensible heat flux and surface temperature increase with the intensity of 

deforestation (as depicted in Figure 4b and Figure 4c). The response of these three climate 

variables to deforestation is rather linear, primarily influenced by local effects. In contrast, 

precipitation exhibits nonlinear behavior. It is evident that precipitation in non-deforested 

areas also undergoes changes, and the increase in precipitation is not uniformly 

distributed. In summary, precipitation shows a slight increase at low levels of 

deforestation (DEF_25), followed by a more substantial increase as deforestation 

progresses (as illustrated in Figure 4d). 

3.1.3 Qualitative Analysis 

To explain the nonlinearity of the increase in precipitation, we initially focus on the 

stability of the vertical structure of the atmosphere. We analyze this by examining the  

MSE and investigating the changes in stability under varying degrees of deforestation. 

Figures 5a to 5d depict the MSE anomalies over the land relative to the control run. In the 

case of DEF_25, there are minimal changes in sensible heat, latent heat, and potential 

energy. Conversely, as the extent of deforestation increases, there is a rise in sensible heat 

and a decline in latent heat flux near the surface. Furthermore, we observe an 
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augmentation in the latent heat term at the low levels, primarily associated with the 

occurrence of deforestation-induced low-level water vapor convergence when the 

deforested area reaches a significant size. With further progression of deforestation, the 

expansive deforested area heats the surface, causing air parcels to ascend even higher. As 

air is a continuous fluid, it needs to be replenished from surrounding areas. In this scenario, 

the air is sourced from the ocean, carrying more water vapor onto the land. Consequently, 

we find that water vapor begins to accumulate over the land, and almost every region in 

the MC region experiences a substantial increase in water vapor until complete 

deforestation occurs (as depicted in Figure 6). Under these circumstances, there is an 

increase in energy compared to CTR_100, and the heightened water vapor content may 

lead to increased rainfall when the atmospheric conditions are unstable. 

3.1.4 Quantitative Analysis 

While qualitative analysis can help us understand the possible causes of increased 

precipitation, it does not allow us to determine the dominant factor. To analyze the main 

factors contributing to increased precipitation, we apply the moisture budget equation. 

Among these factors, integrated vertical moisture advection have been found to play a 

more significant role compared to evapotranspiration and integrated horizontal moisture 

advection after deforestation. Therefore, we present the results specifically for vertical 

term across different degrees of deforestation. Figures 7a to 7d depict the thermodynamic 
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term while Figures 7e to 7h depict dynamic term for various deforestation scenarios. As 

the degree of deforestation increases, the contribution of the thermodynamic term 

becomes increasingly negative, although not significantly so. Conversely, the dynamic 

term exhibits a positive contribution, albeit not initially obvious, with some areas even 

showing a slight negative contribution at the beginning (DEF_25). However, as the 

degree of deforestation intensifies, the positive contribution of the dynamic term becomes 

much more pronounced, several times larger than that of the thermodynamic term. 

Consequently, the dynamic term dominates the changes in precipitation in the MC region. 

3.2 Land Response 

3.2.1 Spatial Characteristics 

 In the previous section, we discussed the impacts of deforestation on temperature, 

precipitation, and latent and sensible heat flux. In this section, our main focus will be on 

investigating evapotranspiration and runoff. Changes in plant types, in addition to 

temperature and precipitation, can also affect the overall evapotranspiration process. After 

deforestation, both canopy evaporation and transpiration decrease due to the presence of 

fewer leaves in C4 grass compared to tropical broadleaf trees. The reduced leaf area 

intercepts less water, and the fewer stomata result in weaker evapotranspiration (Figures 

8a to 8h). Conversely, as the degree of deforestation intensifies, more precipitation 

reaches the ground, leading to increased soil evaporation (Figures 8i to 8l). However, this 
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increase is insufficient to compensate for the reduced canopy evapotranspiration. 

As is known, deforestation intensifies, affecting both precipitation and 

evapotranspiration, consequently impacting the amount of runoff. Figure 9 illustrate the 

area anomalies related to total runoff, surface runoff, subsurface runoff, and infiltration. 

Typically, runoff is strongly influenced by precipitation. When precipitation reaches the 

ground surface, it fills depression storage, and a portion of the water infiltrates to 

replenish groundwater, while the rest becomes surface runoff. Figures 9a to 9d 

demonstrate a highly positive correlation between the spatial distribution of total runoff 

and land precipitation. Figures 9e to 9l reveal that changes induced by deforestation 

primarily stem from an increase in subsurface runoff. As for infiltration, when the extent 

of deforestation increases, some regions experience an increase, such as the inland of 

Borneo when the degree of deforestation is large enough (DEF_75 and DEF_100), as well 

as the New Guinea region, and the increase reaches its maximum in DEF_100. Meanwhile, 

coastal regions tend to decrease in all cases, as shown in Figures 9m to 9p. 

3.2.2 Nonlinearities 

We further perform spatial averaging on canopy evaporation, transpiration, soil 

evaporation, runoff, and infiltration to discuss their characteristics. The analysis reveals 

that both canopy evaporation and canopy transpiration decrease as the extent of 

deforestation expands (Figure 10a and Figure 10b). In contrast, soil evaporation increases 
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with the magnitude of deforestation (Figure 10c). Regarding runoff, as the extent of forest 

logging continues to increase, there is a consistent trend of an increased volume of runoff, 

whether for subsurface or surface runoff (Figures 10d to 10f). Furthermore, compared to 

precipitation, the increase in runoff is even greater, nearly twice as much. This indicates 

that changes in runoff appear to be more sensitive than changes in precipitation. 

Consequently, the increase in precipitation caused by deforestation could potentially 

result in severe flooding in the area. As for infiltration, it shows another condition, which 

only increases in the case of DEF_100 and is dominated by the contribution of the New 

Guinea region (Figure 10g). 

3.3 Hydrological Cycle 

The hydrological cycle encompasses evaporation, transpiration, condensation, 

precipitation, and runoff. Based on the previous analysis, it is evident that deforestation 

has an impact on temperature and precipitation patterns. Changes in the land surface also 

influence evapotranspiration and runoff, thereby modifying the entire hydrological cycle 

during the deforestation process. In section 3.3, our main focus is to provide an 

explanation for the observed increase in runoff. 

In experiments conducted at different levels of deforestation, we plotted the 

probability distribution of total water storage (TWS) for all months after subtracting the 

average of CTR_100 (Figure 11). It was found that as the degree of deforestation 



doi:10.6342/NTU202303778

16 
 

increased, the annual variability of changes in soil moisture content appeared to decrease. 

One possible explanation is that when the TWS is high, the soil moisture content may 

approach saturation. If the soil is already saturated, most of the rainfall on the land will 

become runoff. The MC region is originally a moist and rainy area, and we have observed 

that deforestation in the MC region leads to increased precipitation, making it easier for 

the soil moisture to reach saturation. Additionally, the reduction in evapotranspiration 

makes the region more dependent on runoff to remove excess rainfall. 

3.4 Land Atmosphere Interaction 

 The introduction section mentions that alterations in surface vegetation can lead to 

changes in energy partitioning, potentially affecting the strength of land-atmosphere 

interactions. To simplify the land-atmospheric interaction after deforestation, we only 

examine the cases of CTR_100 and DEF_100. Before determining the CSM in the MC 

region, it is crucial to consider whether deforestation causes a shift in the CSM, as this 

could impact the selection of thresholds. As a result, we found that the CSM is around 

0.32 in both CTR_100 and DEF_100 by using segmented regression. Due to the existence 

of some uncertainties (or errors) in the estimation, we use two thresholds, soil moisture 

less than 0.3 and greater than 0.35, as the criteria for different mean states. After applying 

segmented regression to identify the CSM and categorizing the mean state of soil moisture, 

we can further examine the coupling strength between land and atmosphere under 
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different categories after deforestation. 

After conducting correlation and regression analyses for pairs of soil moisture, 

maximum temperature, radiative flux absorbed at the surface, and latent heat flux, we 

found that some of them exhibit distinct characteristics. Consequently, we selected those 

variables for further discussion. Figures 12a and 12b depict a scatter plot showing the 

relationship between soil moisture and latent heat flux. A notable characteristic observed 

from this plot is that the relationship between soil moisture and latent heat flux differs 

between wet conditions (represented by red dots) and extremely wet conditions 

(represented by blue dots), both before and after deforestation. Figures 12c and 12d 

illustrate the relationship between soil moisture and maximum temperature. It is evident 

that after deforestation, the overall coupling strength (negative correlation) becomes 

stronger for wet soil moisture conditions. Furthermore, change of the slope also suggests 

that soil moisture has become more responsive to changes in maximum temperature with 

an increase in the variability of maximum temperature after complete deforestation. These 

changes can be attributed to the enhancement of the soil moisture-temperature feedback 

mechanism (Seneviratne et al., 2010; Vogel et al., 2018). As soil moisture decreases, 

evapotranspiration reduces, leading to a warmer atmosphere, which, in turn, further 

depletes soil moisture, creating a positive feedback loop. Additionally, as mentioned 

earlier, changes in land-atmosphere interactions and energy allocation result in an 
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increase in surface temperature after deforestation. These alterations contribute to the 

overall temperature rise and an increase in the annual temperature range. Figures 12e and 

12f depict the coupling strength between maximum temperature and latent heat flux. In 

contrast to the relationship between soil moisture and maximum temperature, the 

coupling between latent heat flux and maximum temperature weakens after deforestation. 

3.5 Extreme Cases 

So far, we have focused on examining changes in climate conditions concerning the 

mean state. However, it is crucial to consider the impact of deforestation on extreme 

values as they can have a greater influence on natural disasters. For instance, extremely 

high temperatures increase the frequency of heatwaves, and in severe cases, even 

wildfires. Similarly, intense precipitation can result in flooding, especially in low-lying 

areas. Therefore, in addition to studying the effects of deforestation on average climate 

conditions, it is equally important to investigate how extreme events will be altered. 

3.5.1 Temperature 

Figures 13a to 13c depict the probability distribution of daily mean surface 

temperature (TS), daily maximum temperature (TSMX), and daily minimum temperature 

(TSMN) on land. Our findings indicate that as deforestation increases, there is a slight 

increase in both TS and TSMN, while TSMX exhibits the most significant increase. In 

general, the distribution of TS and TSMN shows greater similarity compared to the 
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distribution of TS and TSMX. To summarize, we observed a nonlinear increase in the 

frequency of high temperatures for TSMX, accompanied by an increase in temperature 

variability. The fact that the increase in the frequency of TSMX is larger than TSMN after 

deforestation can be attributed to two main factors. Firstly, the stronger daytime radiation 

intensity results in higher values for variables such as sensible heat and radiation 

compared to nighttime, leading to a more pronounced impact on daytime temperatures. 

Secondly, changes in land-atmosphere interactions, particularly the soil moisture-

temperature feedback mechanism discussed in the previous section, contribute to a 

significant increase in the frequency of extremely high temperatures. In previous studies, 

the phenomenon of increased temperature variability following deforestation has been 

observed as well (Alkama and Cescatti, 2016; Schultz et al., 2017; McAlpine et al., 2018; 

Chapman et al., 2020).  

3.5.2 Precipitation 

For mean precipitation on land, as depicted in Figure 13d, the frequency of light rain 

and heavy rain increases, while the frequency of moderate rain decreases as the 

deforestation area expands. After deforestation, there appears to be a phenomenon of "rich 

get richer, poor get poorer." The most significant increase in average precipitation occurs 

in the complete deforestation case. However, the underlying mechanism for these changes 

is still unknown that deserves a further study.  
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4. Conclusion and Discussion   

This study utilizes the CESM model to investigate the impact of varying levels of 

deforestation on the climate of the MC region. Our analysis focuses on understanding the 

nonlinear changes occurring in both the atmosphere and land as a result of deforestation. 

We also explore variations in the hydrological cycle and examine how soil moisture 

influences land-atmosphere interactions. Additionally, we analyze the effects of 

deforestation on extreme temperature and precipitation patterns. 

Our results reveal that linear changes in temperature, latent heat flux, and sensible 

heat flux are primarily influenced by local conditions, while precipitation does not exhibit 

a linear trend. In contrast to the findings of Lawrence et al. (2015), precipitation shows a 

slight initial increase followed by further increases as the deforested area expands. This 

behavior may be associated with atmospheric stability and water transport. Further 

analysis using MSE and wind convergence suggests that the increase in precipitation may 

be linked to changes in atmospheric stability and low-level atmospheric water vapor 

transport. The moisture budget equation allows us to quantify the dominant factor causing 

the changes in precipitation and indicates that the dynamic term plays a significant role 

in the observed increase in rainfall. However, nonlinearities in precipitation trends may 

also be influenced by terrain and the distribution of deforestation. In the case of Borneo, 

when the percentage of deforestation is small, precipitation slightly decreases, but as the 
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deforested area increases, precipitation starts to increase, indicating a tipping point 

(Figure 14a). In contrast, for New Guinea, precipitation slightly increases at low levels of 

deforestation, and it continues to increase as the deforested area expands. The absence of 

a tipping point in New Guinea is observed (Figure 14b). Regarding total 

evapotranspiration, our findings indicate that canopy evaporation and transpiration 

decrease, while soil evaporation increases due to more rain falling directly onto the 

ground and less transpiration. In terms of runoff, we observe that as the degree of 

deforestation increases, the increase in runoff is approximately twice the amount of 

precipitation. This observed increase in runoff can be attributed to a combination of 

increased precipitation following deforestation and changes in vegetation, which make 

the soil layer more susceptible to saturation. These alterations significantly impact the 

hydrological cycle. Deforestation changes the land surface properties as well as 

atmospheric condition, which modify land-atmosphere interactions through energy 

redistribution, resulting in distinct responses observed in different mean states of soil 

moisture. This is particularly evident in the soil moisture- temperature feedback 

mechanism, which influences extreme temperature events and likely contributes to the 

significant increase in high temperatures following deforestation. However, the 

mechanisms underlying the increase in light and heavy rainfall after deforestation remain 

unknown. 
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Based on our research, we speculate that the decrease in evapotranspiration resulting 

from deforestation and the subsequent low-level atmospheric moisture convergence is 

associated with changes in precipitation patterns. However, due to the limited number of 

experimental groups in our study, which included only five different deforestation levels, 

it is challenging to conclusively determine whether a tipping point exists for the MC 

region. To address this uncertainty, we conducted an additional experiment, DEF_35, to 

explore the nonlinear behavior of precipitation. The results revealed that precipitation is 

even higher in this case compared to the DEF_25 experiment (Figure 14c). This trend is 

observed even in regions like Sumatra and Borneo, where precipitation initially shows a 

slight decrease. These findings suggest that in our study, convergence may start to 

dominate the changes in precipitation when the deforestation percentage exceeds 25%. If 

a tipping point exists in our study, it is likely to occur when the deforested proportion is 

below 25%, where the low-level water vapor convergence still not obvious. Compared to 

the real world, Wei et al. (2022) revealed that the Indonesian forest disappeared with the 

forest extent dropping from 124.5 Mha in 1980 to 91.0 Mha in 2015 (approximately 20%), 

while the precipitation shows an increasing trend using the data from the Global 

Precipitation Climatology Centre (GPCC). However, it is worth mentioning that both 

satellite observation data and different models have their uncertainties. For instance, 

precipitation results differ among the Global Precipitation Climatology Project (GPCP), 
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GPCC, and ERA5 datasets. Furthermore, some studies utilizing different models have 

found that rainfall tends to decrease after deforestation (Tölle et al., 2017; Chapman et 

al., 2020), which differs from our results. Although the change in precipitation might also 

be affected by model uncertainties, interannual variability such as ENSO or by the effect 

of global warming, it is also crucial to note from our study that if deforestation of 

rainforests is not mitigated, it could potentially accelerate the increase in precipitation and 

have a greater impact on runoff, increasing the risk of severe flooding in the future.  

Another interesting observation is that both our study and the study by Chen et al. 

(2019) indicate that the dynamic term is the main factor driving changes in precipitation. 

However, in the scenario of global warming, it seems that the thermodynamic term 

dominates the intensity and increase of precipitation (Chou et al.,2012). In the real world, 

global warming and deforestation often occur concurrently. Therefore, it can be expected 

that the extent of temperature rise would be even greater, while the influence of 

precipitation could become more complex. Nevertheless, it remains essential for us to 

actively engage in mitigation and adaptation measures to minimize risks and address the 

potential impacts of these changes. 
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Table 

Table1. Model information in this study 

Experiments Description 

CTR_100 All are broadleaf evergreen tropical trees   

DEF_25 25% of the total area is deforested and replaced by C4 

grasses   

DEF_35 35% of the total area is deforested and replaced by C4 

grasses   

DEF_50 50% of the total area is deforested and replaced by C4 

grasses   

DEF_75 75% of the total area is deforested and replaced by C4 

grasses   

DEF_100 All are C4 grasses   

Time All cases run 60 years with monthly and daily data, and 

first five years used for spin up time.   
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Figures 

 

Figure 1. The forest distribution in MC region in (a) DEF_25、(b) DEF_35、(c) DEF_50 

and (d) DEF_75 simulation. 
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Figure 2. The spatial anomaly of (a) latent heat flux (DEF_25), (b) latent heat flux 

(DEF_50), (c) latent heat flux (DEF_75), (d) latent heat flux (DEF_100), (e) sensible heat 

flux (DEF_25), (f) sensible heat flux (DEF_50), (g) sensible heat flux (DEF_75), and (h) 

sensible heat flux (DEF_100). All are compared to CTR_100 and dots indicate p 

value<0.05. 
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Figure 3. The spatial anomaly of (a) temperature (DEF_25), (b) temperature (DEF_50), 

(c) temperature (DEF_75), (d) temperature (DEF_100), (e) precipitation (DEF_25), (f) 

precipitation (DEF_50), (g) precipitation (DEF_75), and (h) precipitation (DEF_100). All 

plots are compared to CTR_100 and dotted areas indicate p value<0.05. 
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Figure 4. Annual mean (a) latent heat flux (b) sensible heat flux (c) surface temperature 

(d) precipitation of deforested cases compared to the control case.  
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Figure 5. The anomalous MSE profile of (a) DEF_25, (b) DEF_50, (c) DEF_75 and (d) 

DEF_100. 
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Figure 6. Annual mean of low-level moisture convergence anomaly integrated from 950 

to 850 hPa with 950-hPa wind anomaly (a) DEF_25, (b) DEF_50, (c) DEF_75 and (d) 

DEF_100. 
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Figure 7. The spatial anomaly of (a) thermodynamic term (DEF_25), (b) thermodynamic 

term (DEF_50), (c) thermodynamic term (DEF_75), (d) thermodynamic term (DEF_100), 

(e) dynamic term (DEF_25), (f) dynamic term (DEF_50), (g) dynamic term (DEF_75), 

and (h) dynamic term (DEF_100). All plots are compared to CTR_100 and dotted areas 

indicate p value<0.05. 
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Figure 8. The spatial anomaly of (a) canopy evaporation (DEF_25), (b) canopy 

evaporation (DEF_50), (c) canopy evaporation (DEF_75), (d) canopy evaporation 

(DEF_100), (e) canopy transpiration (DEF_25), (f) canopy transpiration (DEF_50), (g) 

canopy transpiration (DEF_75), (h) canopy transpiration (DEF_100), (i) soil evaporation 

(DEF_25), (j) soil evaporation (DEF_50), (k) soil evaporation (DEF_75), and (l) soil 

evaporation (DEF_100). All are compared to CTR_100 and dots indicate p value<0.05. 
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Figure 9. The spatial anomaly of (a) total runoff (DEF_25), (b) total runoff (DEF_50), 

(c) total runoff (DEF_75), (d) total runoff (DEF_100), (e) surface runoff (DEF_25), (f) 

surface runoff (DEF_50), (g) surface runoff (DEF_75), (h) surface runoff (DEF_100), (i) 

subsurface runoff (DEF_25), (j) subsurface runoff (DEF_50), (k) subsurface runoff 

(DEF_75), (l) subsurface runoff (DEF_100), (m) infiltration (DEF_25), (n) infiltration 



doi:10.6342/NTU202303778

45 
 

(DEF_50), (o) infiltration (DEF_75), and (p) infiltration (DEF_100). All are compared to 

CTR_100 and dots indicate p value<0.05. 
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Figure 10. Annual mean (a) canopy evaporation, (b) canopy transpiration, (c) soil 

evaporation, (d) total runoff, (e) surface runoff, (f) subsurface runoff and (g) infiltration 

of deforested cases compared to the control case. 
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Figure 11. The probability density function of total water storage 
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Figure 12. The scatter plot of (a) soil moisture and latent heat flux (CTR_100), (b) soil 

moisture and latent heat flux (DEF_100), (c) soil moisture and maximum temperature 

(CTR_100), (d) soil moisture and maximum temperature (DEF_100), (e) latent heat flux 

and maximum temperature (CTR_100) and (f) latent heat flux and maximum temperature 

(DEF_100). 
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Figure 13. The probability density function of (a) land surface temperature, (b) daily 

minimum land surface temperature, (c) daily maximum land surface temperature and (d) 

land precipitation. The unit of probability is percentage (%). 
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Figure 14. Annual mean precipitation for (a) Borneo (b) New Guinea and (c) MC region 

including DEF_35 compared to the control case.  

 

 


