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Abstract 

This study employs a deep neuron network (DNN) model to optimize the 22.5 m long 

pontoon hull form of a small water-plane area twin hull (SWATH) vessel with fin 

stabilizer for reducing its calm water resistance at 𝐹! 	=	0.8 under an even keel condition. 

The resistance of the target vessel is linearized into three components, i.e., pontoon, strut, 

and fin stabilizer, to simplify the resistance calculation. Four design parameters, i.e., the 

length of the fore-body and aft-body, the angle of fore body and aft body, are used to 

define the geometry of pontoon. The computational fluid dynamics (CFD) software 

STAR-CCM+ is used to predict the resistance of the underwater pontoon as well as the 

lift and drag force of the fin stabilizer at different angles of attack. Then, a deep neural 

network model is trained with 1400 CFD resistance predictions using MATLAB, and K-

fold cross-validation is used to ensure the DNN model stability and search for the 

optimized design parameter set. The proposed DNN model has 6, 8, 9, 8, and 7 neurons 

in five hidden layers, respectively. The optimized design parameters are the length of the 

fore-body 7.8 m, the length of the aft-body 6.8 m, fore body angle 10˚, and the aft body 

angle 35˚. This study finds that the resistance reduction of the optimized design compared 

to the baseline design is mainly due to the small angle of attack of fin stabilizers where 

the optimized pontoon results in a small Munk moment to be balanced by the fin stabilizer. 

The optimized pontoon design is able to reduce the resistance by 2.2% compared to the 

baseline design.  

 

Keywords: SWATH, Pontoon, Resistance, Hull Form, Optimization, CFD, Deep Neural 

Network. 
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摘要 

本研究藉由深度神經網路模型尋找優化的 22.5 公尺水下胴體船形設計，藉此降低

具穩定翼小水面雙體船在平浮條件下𝐹! = 0.8的靜水阻力。本研究將小水線面雙體

船的阻力線性化為浮筒、支架和穩定翼阻力，藉此簡化整體阻力的計算。本研究

使用 4 個船形參數定義水下浮筒外形，分別為浮筒前段長度、浮筒後段長度、浮

筒入水角及浮筒出水角。本研究使用計算流體力學軟體 STAR-CCM+預測水下胴

體完全沒水阻力，以及計算穩定翼在不同攻角下的升阻力。接著使用MATLAB數

學軟體與 1400個 CFD阻力預測結果訓練深度神經網路模型，通過 K-fold交叉驗

證確保模型的穩定性，並尋找優化的船形參數組合。本研究所提出的深度神經網

路模型包含五個隱藏層，每個隱藏層的神經元數量分別為 6、8、9、8和 7。本研

究建議的優化設計參數為浮筒前段長度 7.8 m，浮筒後段長度 6.8 m，前段角度 10°，

後段角度 35°。本研究發現相較於原始船形，優化設計船形的減阻效應主要來自

水下胴體產生的孟克力矩較小，使得所需穩定翼的攻角較小。由於小水線面雙體

船依靠穩定翼平衡船體生成的孟克力矩，因此穩定翼攻角減少，導致穩定翼阻力

大幅降低。使用本研究建議的優化水下胴體設計，總阻力相較於原始船形減少

2.2%。 

 

關鍵詞：小水面雙體船，水下胴體，阻力，船形，優化，計算流體力學，深度神

經網路 
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Chapter 1 Introduction 

1.1 Motivation 

Taiwan has been continuously developing onshore wind farms for many years. 

Because Taiwan is surrounded by sea with dense mountains and few plains, offshore wind 

farms are considered to be a more suitable energy option. With the development of 

offshore wind farms, the demand for crew transportation between harbors and wind 

turbines continues to increase [1]. Crew transfer vessels (CTV) play a crucial role in 

transporting personnel and supplies in the operation and maintenance (O&M) of wind 

turbines. Optimizing the resistance of these vessels ensures efficient operations, and 

extends operational hours. Among them, small water-plane area twin hull (SWATH) 

vessels are particularly popular for this purpose due to their excellent seakeeping 

performance. However, SWATH vessels also face a primary challenge: Despite an 

excellent seakeeping performance, the small wave-induced force can lead to a lack of 

longitudinal stability [2]. 

For SWATH vessels, pontoon resistance dominates the total resistance of ship. The 

pressure distribution governed by the shape of the pontoon generates the Munk moment, 

leading to longitudinal instability of SWATH vessels. Therefore, optimizing the pontoon 

design can simultaneously improve the resistance performance and longitudinal stability 

in SWATH vessels. Currently, several studies have analyzed the pontoon resistance using 

numerical predictions, but effective design methods are not available [3-5]. Furthermore, 

to overcome the longitudinal instability of SWATH vessels, they are generally equipped 

with fin stabilizers to provide lift to balance Munk moments, especially at high speeds. 

However, increasing longitudinal stability also contributes to the total resistance [6], 

making the location of fin stabilizers a critical issue in the design process. 
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Currently, computational fluid dynamics (CFD) software [7] has become an effective 

tool for designing and analyzing ship performance, offering significant advantages over 

ship model experiments. However, predicting ship resistance considering the free surface 

effect still takes relatively high computational cost, motivating the development of a more 

simplified approach. In addition to simplifying computational methods, this study utilizes 

artificial intelligence techniques, particularly deep neural networks (DNN), to aid in the 

design optimization. DNN, as a branch of artificial intelligence, can effectively model the 

nonlinear correlation between hull form and resistance, enabling the identification of 

optimal design parameters within a defined range. Although there have been numerous 

studies applying neural networks to SWATH hull optimization [8, 9], no research focuses 

on a parameterized hull form design optimization for total resistance reduction. Hence, 

the main objective of this study is to propose a DNN model to address this research gap. 
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1.2 Literature Review 

1.2.1 SWATH Vessel Design 

The concept of a SWATH vessel has been developed since 1970s. There have been 

several successful applications of SWATH vessels, including oceanographic research 

vessels such as National Oceanic and Atmospheric Administration (NOAA) Ferdinand R. 

Hassler [10], offshore patrol vessels [11], navy vessels, such as the sea shadow [12]. 

Figure 1 and Figure 2 show the applications of SWATH. 

There are two significant components of SWATH vessels. One is the pontoon 

immersing below the free surface and providing the major buoyancy of SWATH; another 

one is the strut piercing the free surface and connecting the deck and pontoon. 

SWATH vessels are known for good seakeeping performance in high sea states 

compared with other categories of ship [13]. There are several advantages of SWATH 

vessels such as low resistance at high speed, small wave-induced forces, and large deck 

area. Despite these advantages, SWATH vessels still have some drawbacks such as 

increased shear resistance due to a sizeable wetted surface of the pontoon, especially for 

low speed, the lack of longitudinal restoring force due to a small water-plane area on the 

strut, the Munk moment of the pontoon, and the complexity arising from the fin stabilizer 

installed on hull surface [14-16]. As the pontoon is the main contributor of the instability 

[17-19] and dominates the resistance of SWATH vessels, this study focuses on optimizing 

the hull form of the underwater pontoon. 
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1.2.2 Deep Neural Networks 

Statistical analysis drawing insights from existing ships has been employed in the 

traditional approach of hull form optimization to establish the correlation between 

hydrodynamic performance and the geometric parameters of hull form. [20, 21]. However, 

statistical analysis approaches like linear regression may face challenges when the 

dependence of the target function on the parameters is not explicitly available. 

Consequently, novel methods such as neural networks, are required to optimize the hull 

form. 

Neural networks have been widely applied to the field of naval architecture with 

significant success. In hull form resistance optimization, [22] and [23] employed free-

form deformation techniques, while [24] utilized principal component analysis (PCA) to 

reduce the dimensionality of ship form parameters. These reduced parameters are then 

used as inputs of DNN to predict the resistance of various hull forms in the ship resistance 

optimization. In another study [25], the flow field pressure distribution, free surface 

elevation, and wake images of different hull forms were utilized as inputs to train a 

convolutional neural network (CNN) model, which predicts the hydrodynamic 

performance and resistance of different ship hulls. Similarly, neural networks have been 

successfully applied to consider sea conditions and ship motions. [26] and [27] trained 

neural networks using descriptors of sea condition parameters and wave characteristics to 

predict short-term future sea conditions and wave states. [28] employed hull form 

parameters to train neural networks for predicting the seakeeping performance of ships. 

Furthermore, [29] and [30] trained neural networks to predict short-term ship motions. 

Neural networks have also found applications in ship structural analysis. [31] and [32] 

utilized neural networks to predict the ultimate strength and fatigue failure of ship 

transverse structures. In the context of engine power prediction, [33] and [34] respectively 
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employed the hull form information and ocean environmental data, along with ship speed, 

to train neural networks for predicting the required engine power. Moreover, [35] 

predicted the fuel consumption using information about the engine, propulsion system, 

flow field, and cargo load. Finally, [36] utilized publicly available data of ship and engine 

performance, as well as meteorological data, to predict the energy efficiency operational 

indicator (EEOI). 

There are many kinds of models of neural networks, such as Recurrent Neural 

Networks (RNN), Long Short-Term Memory (LSTM), CNN, and DNN. DNN is a classic 

feed-forward network. In DNN, data flows directly from the input layer to the output layer 

without any backward flow. Because the hull form design parameters in this study are 

neither sequential nor two-dimension data, that means DNN is suitable for this study. 
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Figure 1 Ferdinand R. Hassler [10] 

 
Figure 2 Sea Shadow [12] 
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1.3 Framework 

In this study, the optimization process of pontoon design is briefly described. The 

first part is the resistance component analysis of the SWATH vessel. This study linearizes 

the total resistance as the resistance sum of the main components of the SWATH. The 

second part is a parametric pontoon design using Grasshopper3D. In this part, the pontoon 

is defined by these parameters. After the shape of the pontoons is defined by design 

parameters, the resistance analysis of the pontoon, strut, and fin stabilizer using the CFD 

software STAR-CCM+ is independently performed. As soon as the resistance of SWATH 

is obtained, the result is used to train the DNN model. Then, the DNN model is used to 

predict the optimized design parameters. Finally, the total resistance of the optimized 

SWATH vessel is validated by the CFD tool STAR-CCM+. Figure 3 shows the framework 

of the design optimization of the pontoon. 

 
Figure 3 The Optimization Process of Pontoon Design 
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Chapter 2 Parametric Design of SWATH Vessel 

2.1 Principle Dimension of Baseline Design 

The baseline design of a SWATH vessel is provided by a shipyard. The displacement 

of the baseline design is 120 tons, with the longitudinal center of buoyancy (𝐿𝐶𝐵) located 

at 12.88 meters. Figure 4 shows the different views and definitions of the hull form, where 

𝐿%& is length overall, 𝐿:* is waterline length, 𝐷 is ship depth, 𝐿"# is pontoon length and 

𝐵%& is beam overall. Table 1 shows the principal dimensions of the SWATH vessel.  

 
(a) 

 
(b) 

Figure 4 Baseline SWATH Vessel: (a) x-z Plane, (b) y-z Plane  

Table 1 Principal Dimensions of Baseline SWATH Vessel 

𝐿%& (m) 𝐵%& (m) 𝐷 (m) 𝐿:* (m) 𝐿"# (m) 𝑑 (m) 𝐿𝐶𝐵 (m) 

26 9.8 5.0 23.4 23.2 2.18 12.88 
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2.2 Geometric Modeling Tool 

Rhinoceros 3D, a widely used computer-aided design software, is a freeform-based 

construction software [37]. Its Grasshopper3D module [38, 39] provides the ability of 

parametric design. Figure 5 shows the Grasshopper3D code and the corresponding 

Rhinoceros 3D workspace. In this figure, three points are used to define a curve segment. 

This study selects B-spline to construct the pontoon surface. After positions of seven 

points have been defined, four curves are automatically generated. The axisymmetric 

pontoons are obtained by rotating these curves along the central axis. This study utilizes 

Grasshopper3D to quickly parametrically create different pontoon geometries. The 

definition of the B-spline curve expresses as follows: 

𝐶(𝑢) =V𝑁;,"(𝑢)𝑃;

#

;IJ

. (2.2.1) 

As shown in Eq. (2.2.1), the B-spline curve is defined by a set of B-spline basis functions 

of degree 𝑝, denoted as 𝑁;,"(𝑢). To construct a B-spline curve, the knot vector with 𝑚 +

1 knots, the degree 𝑝, and the set of 𝑛 + 1 control points are required. It is essential to 

satisfy the condition 𝑚	 = 	𝑛	 + 	𝑝	 + 	1. More precisely, to define a B-spline curve of 

degree 𝑝 with 𝑛 + 1 control points, 𝑛	 + 	𝑝	 + 	2 knots, namely 𝑢J, 𝑢0, . . . , 𝑢#K"K0, must 

be provided. Conversely, if a knot vector consisting of 𝑚 + 1 knots and 𝑛 + 1 control 

points is given, the degree of the B-spline curve can be determined as 𝑝	 = 	𝑚	 − 	𝑛	 − 	1. 

These knot points partition the B-spline curve into segments, where each segment is 

defined by a specific knot span. 
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Figure 5 Schematic Illustration of Grasshopper 3D Code 
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2.3 Design Parameters of Pontoon 

In this study, a parametric approach of pontoon design is proposed. The length of the 

pontoon (𝐿"#) is fixed to 22.5 m. The pontoon has four independent parameters and two 

dependent parameters, respectively. The independent ones are the length of the fore-body 

(𝐿6), the length of the aft-body (𝐿+), the angle of the fore-body (𝜃"#), and the angle of the 

aft-body (𝜙"#). The dependent ones are the length of the parallel middle body (𝐿9) which 

depends on 𝐿6 and 𝐿+ and is shown below: 

𝐿9 = 𝐿"# − 𝐿6 − 𝐿+ , (2.3.1) 

and the radius of pontoon (𝑅 ), which depends on 𝐿6 , 𝐿+ , 𝜃"# , and 𝜙"# , under the 

assumption of constant displacement. Figure 6 illustrates the design parameter of the 

pontoon, and Table 2 shows the ranges of each independent design parameter of the 

pontoon. 𝐿6 and 𝐿+ start from 1.8 m and increase by the interval size 1m to 7.8 m. 𝜃"# 

and 𝜙"# start from 10˚ and increase by the interval size 10˚ for each case to 60˚. 𝑅(LM is 

the radius of the pontoon hub which is 0.15 m. 

Figure 7 shows the control point arrangement to define the outline of the pontoon. 

Despite the third and fourth points, which are connected by a straight line, other points 

define two B-Spline segments. The first and third points define 𝐿6, and the fourth and 

sixth points define 𝐿+. The first and second points determine 𝜃"#, and the fourth and fifth 

points determine 𝜙"#. A total of 1398 pontoon models are generated for the resistance 

prediction. 
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Figure 6 Design Parameters of Pontoon 

Table 2 Design Parameter Range of Pontoon 

Parameters 𝐿6 (m) 𝐿+ (m) 𝜃"# (°) 𝜙"# (°) 

Ranges 1.8-7.8 1.8-7.8 10-60 10-60 

Interval Size 1.0 1.0 10 10 
 

 
Figure 7 Control Point Arrangement to Define the Outline of Pontoon 
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2.4 Fin Stabilizer 

Since SWATH vessels are prone to deliver sufficient longitudinal stability, the 

installation of fin stabilizers becomes necessary [40]. Figure 8 shows the fin stabilizer 

arrangement on the baseline design. The fore fin stabilizer is located 21.04 m from the 

stern, and the aft fin stabilizer is located 10.06 m from the stern. Figure 9 shows the 

working mechanism of fin stabilizers, where 𝑀6;#  is the moment produced by the fin 

stabilizer to balance the Munk moment. The baseline design is equipped with a control 

system that only drives the fore stabilizer. During navigation, only the fore stabilizer is 

an active device, while the aft stabilizer is always parallel to the still water line. Figure 

10 and Figure 11 show the dimensions and the different views of fin stabilizers with the 

dimensions marked in the figure. The aft and fore fin stabilizers are built with symmetrical 

foil sections, NACA0015 and NACA0030, respectively. The aspect ratios of aft and fore 

fin stabilizers are 0.668 and 0.689, respectively. Figure 12 shows the lift and drag 

coefficient (𝐶* and 𝐶@) of the fin stabilizer, where the slope of the ideal lift in 2D is 2π 

[41]. The lift coefficient can be approximated by the following empirical equation 

proposed by Söding:[42] 

𝐶* =
2𝜋Λ(Λ + 1)
(Λ + 2)1 sin 𝛼 + 𝐶. sin 𝛼 |sin 𝛼| cos 𝛼, (2.4.1) 

where Λ is the aspect ratio, 𝐶. = 1.0 is used for hydrofoils with a sharp upper and lower 

edge.  

The fin stabilizer provides lift force that keeps the ship without trim. However, the 

lift force is accompanied by the drag force. Figure 12 shows the drag force grows with 

the increase of the angle of attack. If the ship trim angle is too large, it may cause a large 

angle of attack of the fin stabilizer to balance the moment, where a large total resistance 

is expected.  
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(a) 

 
(b) 

Figure 8 Baseline SWATH Vessel with Fin Stabilizer: (a) Bottom View, (b) Side View 

 
Figure 9 Working Principal of Fin Stabilizer 
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(a)  (b)  

 
 

(c)  (d)  
Figure 10 Aft Fin Stabilizer (cm): (a) Top View, (b) Side View, (c) Front View, (d) 

Perspective View 

 

  
(a)  (b)  

  
(c)  (d)  

Figure 11 Fore Fin Stabilizer (cm): (a) Top View, (b) Side View, (c) Front View, (d) 

Perspective View 
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(a) 

 
(b) 

Figure 12 Lift and Drag Coefficient: (a) NACA0015, (b) NACA0030 
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doi:10.6342/NTU202304123

 19 

Chapter 3 Resistance Linearization of SWATH 

In order to avoid excessive computational efforts when considering the free surface 

effect in the CFD computation, this study decouples the SWATH resistance via a 

simplified approach. Table 3 shows the resistance of SWATH before and after decoupling. 

According to Table 3, the total resistance of SWATH can express as follows: 

𝑅< = 𝑅45(𝐹𝑟) + 𝑅*(𝑅𝑒, 𝑑),	 (3.1) 

where 𝑅< is the total resistance of SWATH, 𝑅45(𝐹𝑟) is the strut resistance, and 𝑅*(𝑅𝑒, 𝑑) 

is the resistance of the lower hull. 𝑅45 is mainly a function of the Froude number, and 𝑅* 

is a function of the Reynolds numbers and draught. Moreover, the resistance of the lower 

hull 𝑅* can be further expressed as follows: 

𝑅* = 𝑅"#(𝑅𝑒, 𝑑) + 𝑅6;#(𝑅𝑒, 𝛼, 𝑑),	 (3.2) 

where 𝑅"# is the resistance of the pontoon, and 𝑅6;# is the resistance of the fin stabilizer, 

which changes with the angle of attack 𝛼 and the draught	𝑑. In Table 3, the decoupled 

resistance of the fin stabilizer is obtained from a fully submerged flow field. Since the 

difference between coupled and decoupled is small for fin stabilizers, it justifies the 

adaptation of a decoupled approach. Because the dimension of the fin stabilizer is 

relatively small compared to the draught, the impact of draught 𝑑 is not significant for fin 

stabilizers. Figure 13 shows the pressure and shear resistance of the pontoon, 𝑅"#
"  and 

𝑅"#4 , change with the draught 	𝑑 . The correction 𝛽  represents the ratio of pontoon 

resistance 𝑅"#, at the draught 𝑑, to the pontoon resistance in the fully submerged case 

𝑅"#$ . 𝑅"# is then obtained by multiplying fully submerged pressure resistance 𝑅"#,"$  with 

𝛽 and then adding to the fully submerged shear resistance 𝑅"#,4$ . 𝑅"#
"  drops rapidly with 

draught, but 𝑅"#4  is nearly constant when the draught goes deeper. Finally, the resistance 

of the pontoon can be expressed as follows: 
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𝑅< = 𝑅45(𝐹𝑟) + 𝑅"#,"$ (𝑅𝑒) ∙ 𝛽d𝑑"#e + 𝑅"#,4$ (𝑅𝑒) + 𝑅6;#(𝑅𝑒, 𝛼),	 (3.3) 

where 𝛽(𝑑"#) is the correction of the draught effect, and 𝑑"# defines in Figure 14. 𝛽 is 

defined in the following equation: 

𝛽 =
𝑅"#
"

𝑅"#,"$ 	 (3.4) 

The fin stabilizers provide lift force (𝐿6;#) and the drag force (𝑅6;#), both are functions of 

the angle of attack (𝛼). The lift force is used to balance the Munk moment of the hull, 𝑀<, 

which can be expressed as follows: 

𝑀< = 𝑀"#
$ +𝑀45

64 = 𝐿8 ∙ 𝐹45+ , (3.5) 

𝐹45+ = 𝐹6 + 𝐹+ , (3.6) 

where 𝑀45
64  is the moment of the strut, 𝐹45+  is the force of fin stabilizer, 𝐹6	and 𝐹+	are 

respectively the lift force produced by the fore fin and the aft fin, 𝑓𝑠 means the free 

surface flow. 𝑀"#
$  can be further expressed as follows: 

𝑀"#
$ = 𝑀"#,4

$ +𝑀"#,"
$ , (3.7) 

𝑀"#,"
$ =V𝑝"#,;$ ∙ 𝐴"#,;$ ∙ 𝐿8,;

;

, (3.8) 

𝑀"#,4
$ =V𝑠"#,;$ ∙ 𝐴"#,;$ ∙ 𝐿8,;

;

 (3.9) 

where 𝑝"#$  is the pressure of the pontoon,	𝑠"#$  is the shear stress of the pontoon, 𝐴"#$  is the 

surface area of the pontoon, and	𝐿8  is the length of the lever arm from the center of gravity. 

𝑀"#,"
$  is the moment caused by the pressure on the pontoon, while	𝑀"#,4

$  is the moment 

caused by the shear stress on the pontoon. The superscript, ∞, means the fully submerged 

flow field. 

Figure 15 shows the pressure distribution on the pontoon. The blue dot represents 

the free surface elevation. As the figure shows, the free surface influence on the pressure 
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distribution is small, so this study uses the pontoon moment in a fully submerged flow 

field as an approximation of the Munk moment. 

Due to the aforementioned resistance decoupling, the resistance of individual 

components of the SWATH vessel is calculated under different flow conditions. The fin 

stabilizer resistance is calculated under a fully submerged flow assumption, the pontoon 

resistance is calculated under a fully submerged flow assumption, and the strut resistance 

is predicted under a free surface flow assumption. 

 

Table 3 The Resistance Components of SWATH 

Part Coupled (kN) Decoupled (kN) Difference (%) 

Strut 24.9 22.9 -8.2 

Pontoon 69.6 66.6 -4.4 

Fore Fin 16.5 17.4 4.9 

Aft Fin 7.5 7.8 3.5 

Total 118.7 114.8 -3.2 
 

 
Figure 13 Pontoon Resistance vs. Draught 
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Figure 14 Draught of Pontoon 

 

Figure 15 Comparison of Surface Pressure on Pontoon between Two Conditions 
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Chapter 4 Flow Model 

In this study, the resistance of the SWATH vessel is simulated using the commercial 

software STAR-CCM+, based on the finite volume method (FVM). STAR-CCM+ 

iteratively solves the governing equations, including the continuity equation and the 

Reynolds-Averaged Navier-Stokes (RANS) equation, and applies the turbulence model 

to predict the ship resistance and the corresponding flow field. The simulations for the 

pontoon under fully submerged conditions are assumed axisymmetric, while the full-scale 

SWATH vessel considering the free surface is simulated in a three-dimensional flow field. 

Figure 16 shows the coordinate system of the axisymmetric and three-dimensional flow 

fields. Additionally, in an axisymmetric flow calculation, the 𝑧-axis is aligned with the 

longitudinal direction of the ship, while in the three-dimensional flow calculation, the 𝑥-

axis represents the longitudinal direction, with the origin located at the stern and the 

positive direction extending towards the bow. 

 
Figure 16 Coordinate System of Axisymmetric and Three-Dimensional Flow Region  
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4.1 Governing Equations 

4.1.1 Axisymmetric Pontoon Flow 

The immersed cases are under an axisymmetric and steady flow assumption. The 

governing equations consist of continuity and momentum equations, and a 𝐾 − 𝜀 

turbulence model is used to consider the turbulent effects. The equations are shown as 

follows: 

(a) Continuity Equation 

(b) Momentum Equations 

𝜕(𝜌𝑢𝑢)
𝜕𝑧 +

1
𝑟
𝜕(𝜌𝑟𝑢𝑣)
𝜕𝑟 = −

𝜕𝑝
𝜕𝑧 +

𝜕𝜏NN
𝜕𝑧 +

1
𝑟
𝜕(𝑟𝜏N!)
𝜕𝑟 , (4.1.2) 

𝜕(𝜌𝑢𝑣)
𝜕𝑧 +

1
𝑟
𝜕(𝜌𝑟𝑣𝑣)
𝜕𝑟 = −

𝜕𝑝
𝜕𝑟 +

𝜕𝜏!N
𝜕𝑧 +

1
𝑟
𝜕(𝑟𝜏!!)
𝜕𝑟 , (4.1.3) 

where (4.1.2) is for the axial direction, and (4.1.3) is for the radial direction. The stress 

tensor components are expressed as follows: 

𝜏NN = 2𝜇 j
𝜕𝑢
𝜕𝑧 −

2
3l
𝜕𝑢
𝜕𝑧 +

1
𝑟
𝜕(𝑟𝑣)
𝜕𝑟 mn, (4.1.4) 

𝜏!! = 2𝜇 j
𝜕𝑣
𝜕𝑟 −

2
3l
𝜕𝑢
𝜕𝑧 +

1
𝑟
𝜕(𝑟𝑣)
𝜕𝑟 mn, (4.1.5) 

𝜏!N = 𝜏N! = 𝜇 o
𝜕𝑢
𝜕𝑟 +

𝜕𝑣
𝜕𝑧p, 

(4.1.6) 

(c) 𝐾 − 𝜀 Turbulence Model 

The adopted turbulence model uses two transport equations to express the turbulence 

kinetic energy 𝐾 and the dissipation rate 𝜀 as follows: 

  

𝜕(𝜌𝑢)
𝜕𝑧 +

1
𝑟
𝜕(𝜌𝑟𝑣)
𝜕𝑟 = 0, (4.1.1) 
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𝜕(𝜌𝑢𝐾)
𝜕𝑧 +

𝜕(𝜌𝑣𝐾)
𝜕𝑟 =	

𝐺 − 𝜌𝜀 +
𝜕
𝜕𝑧 qo𝜇 +

𝜇5
𝜎7
p
𝜕𝐾
𝜕𝑧r +

1
𝑟
𝜕
𝜕𝑟 q𝑟 o𝜇 +

𝜇5
𝜎7
p
𝜕𝐾
𝜕𝑟 r, 

(4.1.7) 

𝜕(𝜌𝑢𝜀)
𝜕𝑧 +

𝜕(𝜌𝑣𝜀)
𝜕𝑟 =	

𝑐/0𝐺
𝜀
𝐾 − 𝑐/1𝐺

𝜀1

𝐾 +
𝜕
𝜕𝑧 qo𝜇 +

𝜇5
𝜎/
p
𝜕𝜀
𝜕𝑧r +

1
𝑟
𝜕
𝜕𝑟 q𝑟 o𝜇 +

𝜇5
𝜎/
p
𝜕𝜀
𝜕𝑟r, 

(4.1.8) 

𝐺 = 𝜇5|𝛾̇|1,	 (4.1.9) 

|𝛾̇|1 =	

2 o
𝜕𝑢
𝜕𝑧p

1

+ 2o
𝜕𝑣
𝜕𝑟p

1

+ 2s
𝑣
𝑟t

1
+ o

𝜕𝑣
𝜕𝑧 +

𝜕𝑢
𝜕𝑟p

1

−
2
3 o
1
𝑟
𝜕
𝜕𝑟
(𝑟𝑣) +

𝜕𝑢
𝜕𝑧p

1

,	
(4.1.10) 

𝜇5 = 𝑐2𝜌
𝐾1

𝜀 ,	
(4.1.11) 

where 𝜌 is the density, 𝑢, 𝑣  are the velocity components in the cylindrical coordinate 

system 𝑧, 𝑟 , respectively, 𝑝  is the pressure, 𝜇  is the viscosity, 𝐺  is the production of 

turbulent kinetic energy, 𝜇5 is the turbulent viscosity, and 𝛾̇ is the shear rate. The equation 

constants of the 𝐾 − 𝜀 turbulence model, 𝑐2 , 𝜎O , 𝑐/0, 𝑐/1, 𝜎/ , are shown in Table 4. 

Table 4 Equation Constants for 𝐾 − 𝜀 Turbulence Model 

𝑐2 𝜎O 𝑐/0 𝑐/1 𝜎/ 

0.09 1.00 1.44 1.92 1.30 
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4.1.2 Three-Dimension Free Surface Ship Flow 

The governing equations for the simulation involving free surface are continuity and 

momentum equations, and the flow is assumed to be unsteady and incompressible. The 

governing equations are shown below: 

(a) Continuity Equation 

𝜕𝑈;
𝜕𝑥;

= 0,	 (4.1.12) 

(b) Momentum Equations 

𝜕𝑈;
𝜕𝑡 +

𝜕d𝑈;𝑈'e
𝜕𝑥'

= −
1
𝜌
𝜕𝑝
𝜕𝑥;

+
𝜕
𝜕𝑥'

v𝜈 l
𝜕𝑈;
𝜕𝑥'

+
𝜕𝑈'
𝜕𝑥;

mw −
𝜕𝑢PE𝑢QExxxxxx
𝜕𝑥'

,	 (4.1.13) 

where 𝑈; and 𝑢;E are the mean and fluctuation velocity components in the direction of 𝑥;, 

respectively,	𝜈 is the kinematic viscosity, and 𝜌𝑢PE𝑢QExxxxxxx is the Reynolds stress. 

(c) 𝐾 − 𝜀 Turbulence Model 

𝜕𝐾
𝜕𝑡 +

𝜕d𝐾𝑈'e
𝜕𝑥'	

=
𝜕
𝜕𝑥'

vo𝜈 +
𝜈5
𝜎7
p
𝜕𝐾
𝜕𝑥'

w +
1
𝜌 𝐺7 − 𝜀,	

(4.1.14) 

𝜕𝜀
𝜕𝑡 +

𝜕d𝐾𝑈'e
𝜕𝑥'	

=
𝜕
𝜕𝑥'

vo𝜈 +
𝜈5
𝜎/
p
𝜕𝜀
𝜕𝑥'

w + 𝐶/0𝐺7
𝜀
𝜌𝐾 − 𝐶/1

𝜀1

𝐾 ,	 (4.1.15) 

where the equation constants of the equation are shown in Table 4. The turbulent 

kinematic viscosity 𝜈5 is given as follows: 

𝜈5 = 𝐶2
𝐾1

𝜀 ,	 (4.1.16) 

where 𝐺7 is the turbulent production term expressed as: 

𝐺7 = −𝜌𝑢PE𝑢QExxxxxx 𝜕𝑈;
𝜕𝑥'

,	 (4.1.17) 

and under the Boussinesq hypothesis, −𝜌4,𝑢PE𝑢QExxxxxx can be expressed as follows: 
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−𝜌𝑢PE𝑢QExxxxxx = 𝜇5 l
𝜕𝑈;
𝜕𝑥;

+
𝜕𝑈'
𝜕𝑥;

m −
2
3𝜌𝐾𝛿;' ,	 (4.1.18) 

where 𝛿;' is the unit tensor. 

(d) Volume of Fluid Method 

The volume of fluid method is employed to model free surface flows. The volume 

fraction of the fluid in a cell can be expressed as: 

𝐶+ =
𝑉+
𝑉 ,		

(4.1.19) 

𝐶, =
𝑉,
𝑉 , 

(4.1.20) 

where 𝑉+ is the air volume in a cell, 𝑉, is the water volume in a cell, and 𝑉 is the total 

volume of a cell. The volume fraction of all fluids in a cell is equal to unity: 

𝐶+ + 𝐶, = 1,	 (4.1.21) 

where 𝐶+ = 0 indicates that the cell does not contain air; 𝐶+ = 1 indicates the cell is fully 

occupied by air; 0 < 𝐶+ < 1 indicates there is an interface in the cell. In this study, 𝐶+ =

0.5 is defined as the free surface location. The fluid density 𝜌 and the fluid dynamic 

viscosity 𝜇 are calculated as follows: 

𝜌 = 𝜌+𝐶+ + 𝜌,𝐶, ,	 (4.1.22) 

𝜇 = 𝜇+𝐶+ + 𝜇,𝐶, ,	 (4.1.23) 

where 𝜌+  and 𝜌, represent the densities of air and water, respectively, and 𝜇+  and 𝜇, 

represent the dynamic viscosities of air and water, respectively. The free surface equation 

is shown as below: 

𝜕𝐶+
𝜕𝑡 + 𝑈O

𝜕𝐶+
𝜕𝑥7

+ ∇ ⋅ d𝐶+𝑈D,+e + ∇ ∙ d𝐶+(1 − 𝐶+)𝑈=,+e = 0, (4.1.24) 

where 𝑈D,+ is the diffusion rate of air, and 𝑈=,+ is the boundary sharpening speed of air.  
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𝑈=,+ = 𝐶-|𝐔|
∇𝐶+
|∇𝐶+|

,	 (4.1.25) 

where 𝐶- is the sharpening factor.  
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4.2 Computational Domain and Boundary Condition 

This study defines different computational domains to solve the flow field around 

the pontoon in the fully submerged case and the free surface case. 

4.2.1 Pontoon Flow 

Figure 17 shows the computational domain in fully submerged conditions. Table 5 

summarizes the dimensions of the domain geometry and the boundary conditions in a 

two-dimensional flow field. To ensure the resistances are independent of the domain size, 

different sizes of the computational domain are tested. Consequently, the inlet boundary 

is 𝐿"# away from the fore-end and the outlet boundary is 2 𝐿"# away from the aft-end. 

The radius of the domain is 𝐿"#. For the inlet boundary, the inlet velocity is the target 

vessel speed (𝑉4) of 24 knots, while pressure is set to 0 at the pressure outlet.  

The simulation is conducted at 𝑉4 = 24 knots, and the corresponding Froude number 

(𝐹𝑟 ) is 0.81, where 𝐹𝑟  is defined by the vessel speed, waterline length (𝐿:* ), and 

gravitational acceleration (𝑔) as below: 

𝐹𝑟 =
𝑉4

}𝑔𝐿:*
.	 (4.2.1) 
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Figure 17 Schematic of the Computational Domain 

Table 5 Dimension of the Computational Domain for Pontoon Flow  

Region Physical Definition Boundary Condition 

ABxxxx (Top) 
Inlet 𝑢 = −𝑉4, 𝑣 = 0 

BCxxxx (Front) 

OAxxxxx (Back) Pressure outlet 𝑝 = 0 

CDxxxx (Bottom) 
Axis 𝜕𝑢

𝜕n = 0,
𝜕𝑣
𝜕n = 0 

EOxxxx (Bottom) 

DExxxx (Pontoon) Wall  𝑢 = 0, 𝑣 = 0 
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4.2.2 Free Surface Ship Flow 

Figure 18 illustrates the computational domain of the free surface case. The 

simulation only considers one-half of the ship to reduce the simulation time because the 

vessel is symmetric to 𝑦 = 0. The front boundary is 1.5 𝐿"# away from the bow and the 

back boundary is 3.5 𝐿"# away from the stern. The port boundary is 1.5 𝐿"#, and the 

bottom boundary is 1.5 𝐿"#  away from the hull. Table 6 summarizes the boundary 

conditions, where the inlet velocity is the target vessel speed of 24 knots, and for the 

pressure outlet boundary, the pressure is assumed hydrostatic pressure of calm water.  
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Figure 18 The Domain of Free Surface 

Table 6 Dimension of Computational Domain of Free Surface 

Region Physical Definition Boundary Condition 

ABCD (Top) 

Inlet 𝐔 = (−𝑉4, 0,0) 
BFGC (Front) 

ABFE (Port) 

EFGH (Bottom) 

AEDH (Back) Pressure Outlet 𝑝 = 𝑝4(𝑍) = 𝜌𝑔𝑍 

DCGH (𝑦 = 0) Symmetry 𝜕𝐔
𝜕n = 0 

SWATH Wall 𝐔 = 0 
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4.3 Mesh Arrangement 

4.3.1 Pontoon Flow 

For fully submerged conditions, a 2D Cartesian mesh is used to discretize the 

computational domain. The base size of the background mesh is 1.4 m, which is 1/16 of 

the pontoon length, and the total cell number is approximately 250,000. Four boundary 

layers are used to capture the flow near the wall and transit to the background mesh.  

Figure 19 shows the mesh arrangement of the whole domain, and Figure 20 shows 

the mesh near the pontoon. According to Figure 19, the mesh arrangement involves a finer 

mesh in the vicinity of the pontoon to accurately capture significant flow variations in 

that area. In contrast, a coarser mesh is utilized in the far-field region. Moreover, a finer 

surface mesh is employed on the surface of the pontoon to accurately capture the 

geometry feature, the pressure stress, and the shear stress, as shown in Figure 20. 
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Figure 19 Mesh Arrangement of the Whole Domain 

  
(a)  (b)  

Figure 20 Mesh near the Pontoon: (a) Aft Part, (b) Fore Part 
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4.3.2 Free Surface Ship Flow 

A three-dimensional Cartesian mesh is used to discretize the computational domain 

for free surface ship flows, where the base size of the mesh is 1 m. There are two boundary 

layers to capture flow near the wall and transit to the background mesh. The total cell 

number of the initial mesh is approximately 3 million. This study uses an adaptive mesh 

refinement (AMR) module of STAR-CCM+ to automatically track the free surface so that 

the refinement is only done in the right place to reduce the computational cost. With the 

AMR module, the total cell number of the final mesh becomes 6.15 million. 

The AMR module utilizes the gradient of the volume fraction to identify the position 

of the free surface. Subsequently, it uses the transport equation to identify the location of 

the free surface for the next time step and accordingly adjusts the mesh through mesh 

refinement or coarsening. The AMR module ensures the mesh is not coarsened beyond 

its original level of refinement. As the AMR module does not alter the surface mesh 

density, the hull surface region needs to initially have a sufficient mesh density. Figure 21 

illustrates the transition width and refinement layers of the free surface refinement used 

in the AMR module setting. Two refinement layers are employed to accurately capture 

the free surface. These layers consist of a specific number of grid layers that are gradually 

refined near the free surface region. The transition width refers to the number of grid 

layers used to smoothly transition from the refined layers to the background mesh, 

ensuring a smooth and accurate representation of the free surface. Figure 22 shows the 

initial mesh arrangement while Figure 23 shows the final mesh arrangement. 
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Figure 21 Transition Width and Refinement Layers 
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(a) 

 
(b) 

Figure 22 Initial Mesh Arrangement of Free Surface: (a) y	=	3.76 m, (b) Midship 
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(a) 

 
(b) 

Figure 23 Mesh Arrangement of Free Surface after Simulation: (a) y	=	3.76 m, (b) 

Midship 
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4.4 Grid Dependency 

The number of grids in the computational domain is sensitive to the result in 

numerical simulation. A finer grid layout favorably leads to a better solution, but the 

growth of cell numbers clearly increases the simulation time. Therefore, a grid 

dependency analysis is used to illustrate the dependence of accuracy on grid number and 

choose a grid layout that can balance the accuracy and simulation cost.  

The grid-independent solution 𝜙$  is calculated by second-order Richardson 

extrapolation as follows: 

𝜙$ = 𝜙# +
𝜙# − 𝜙#?0
𝑁#
𝑁#?0

− 1
 (4.4.1) 

where 𝜙 is the field variable, 𝜙#  is the variable of the 𝑛-th grid level, and 𝑁#  is the 

number of cells of the 𝑛-th grid level. In this study, the resistance of the pontoon in the 

fully submerged flow field (𝑅"#$ ) is used to analyze the grid dependency. Table 7 shows 

the number of grids of five grid levels. Figure 24 shows the grid-independent solution, 

and Figure 25 shows the dependence of the discretization error 𝐸3 on difference cell size 

𝑑𝑥, where 𝐸3 and 𝑑𝑥 are expressed as follows: 

𝐸3 = �
𝜙$ − 𝜙#

𝜙$ �, (4.4.2) 

𝑑𝑥 = �1
𝑁. 

(4.4.3) 

As Figure 25 shows, the discretization error is close to that of an ideal second-order 

scheme. The cell number used in this study is grid level 3, where the discretization error 

is less than 3%. 
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Table 7 Number of Cells and the Corresponding Resistance Prediction 

Grid Level 1 2 3 4 5 

𝑅"#$  20.8 20.3 19.9 19.7 19.5 

 

 
Figure 24 Dependence of Pontoon Resistance on Cell Number 

 
Figure 25 Discretization Error of Pontoon Resistance 
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4.5 Validation 

This section aims to validate the numerical simulation approach by comparing the 

numerical result of the full-scale ship with that estimated from model tests. The model 

test is conducted by WOLFSON UNIT in the UK [43]. Due to insufficient longitudinal 

instability at 𝐹𝑟 = 0.8 in the experiment, a lower speed of 10 knots (𝐹𝑟 = 0.34) is chosen. 

Table 8 compares the total resistance and the ship’s attitude between the model test and 

CFD calculation.  

The position of the center of gravity of a SWATH vessel significantly influences the 

running trim (𝜃), as well as resistance. The center of gravity in experiments was not 

documented in the report, so the difference in the center of gravity could be a significant 

factor accounting for the difference in the attitude and resistance between the model test 

and numerical prediction. Although there is a nontrivial resistance difference between 

CFD calculations and experiment measurements, the predicted free surface pattern is 

found similar to the experiment result, as shown in Figure 26. The sign convention of the 

ship’s attitude is shown in Figure 27. 

 

 

Table 8 Comparison between Experiment and Prediction 

 𝑅< (kN) 𝜃 (˚) 𝛿 (m) 

Experiment 13.8 0.940 -0.048 

CFD 11.9 0.309 -0.044 

Diff. (%) 14% 67% 8% 
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(a) 

 

(b) 

Figure 26 Free Surface Elevation: (a) Experiment [43], (b) CFD 

 

Figure 27 Sign Convention of Ship’s Attitude 
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4.6 Hardware Platform 

Table 9 shows the platform used to predict the ship resistance in fully submerged 

cases. Each CFD case utilized two computational nodes for parallel processing, with an 

average computation time of approximately 15 minutes. With a total dataset of 1398 cases, 

the total time required for CFD simulations is approximately 349.5 hours.  

 

Table 9 Hardware Platform 

Software STARCCM+ 

Operation System Linux Centos 7 

Central 
Processing 

Unit 

Model Intel® Xeon® CPU 
 E5-2673 v2@16 core 

Clock 
Rate 

(GHz) 
3.3 

Random-access 
Memory 128 GB 
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Chapter 5 Resistance Prediction 

5.1 Case Description 

In this study, all cases are classified into different groups based on the fore and aft 

lengths. Each group has a distinct set of fore and aft lengths. Table 10 provides the group 

number and the corresponding fore and aft lengths for all cases, where the group numbers 

are denoted in red. Since some combinations of the fore-body and aft-body angles are 

unable to define reasonable geometry for a given length set, the number of cases in each 

group varies. There are 49 groups in total, where each group consist of 16 to 36 cases, 

and the total number of cases in the dataset is 1398. 

Table 10 Different Length Combinations of Pontoon 

Group 
Numbers 

(G)  

𝐿6 (m) 

1.8 2.8 3.8 4.8 5.8 6.8 7.8 

𝐿+ (m) 

1.8 1 2 3 4 5 6 7 

2.8 8 9 10 11 12 13 14 

3.8 15 16 17 18 19 20 21 

4.8 22 23 24 25 26 27 28 

5.8 29 30 31 32 33 34 35 

6.8 36 37 38 39 40 41 42 

7.8 43 44 45 46 47 48 49 
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5.2 Resistance Characteristic of Pontoon 

In this section, the influence of the geometric features of the pontoon on its resistance 

in fully submerged conditions is investigated. 

5.2.1 Fixed Length 

Figure 28 presents contour plots of resistance for three groups with fixed fore and 

aft lengths, i.e., Group 7, Group 25, Group 37, and Group 43, under the fully submerged 

condition. These figures reveal a general trend of increasing resistance with large fore-

body and aft-body angles, and decreasing resistance with small fore-body and aft-body 

angles. Most groups, similar to Group 7, exhibit only one low-resistance region, while 

some groups have two or three low-resistance regions, suggesting that small fore-body 

and aft-body angles typically result in better resistance performance. However, some 

optimized angles are not relatively small when compared to other optimized ones. 

 

 
(a) 
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(b) 

 
(c) 
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(d) 

Figure 28 The Resistance of Pontoon: (a) 𝐺 = 7, (b) 𝐺 = 25, (c) 𝐺 = 37, (d)	𝐺 = 43 
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5.2.2 Fixed Angle 

Figure 29 illustrates the profile lines of three investigated pontoons, with the 

longitudinal length normalized by 𝐿"#. In order to highlight the impact of different fore 

and aft lengths on resistance, the fore-body and aft-body angles of the compared cases 

are identical for these three cases. When the fore or aft length is small, the model shape 

becomes blunt, but it becomes sharp or close to a cone as the fore or aft length increases. 

Among the three cases, Case 3 has the shortest fore length and the longest aft length, 

making the model of Case 3 blunter in the fore section and sharper in the aft section. 

Similarly, Case 1 has the longest fore length and the shortest aft length, and leads to a 

sharp fore section and a blunt aft section. Table 11 lists the fore and aft lengths, fore-body 

and aft-body angles, and total resistance for three cases in Figure 29, indicating that a 

small fore-body of the pontoon leads to a small total resistance. Figure 30 presents the 

distribution of shear stress and pressure for three cases. Figure 30 (a) shows that a sharp 

shape change results in the growth of shear force, such as the fore-body of Case 2 and 

Case 3, and the aft-body of Case 1 and Case 2. Figure 30 (b) shows that a blunt shape 

generates a negative pressure region near the end, while a sharp one does not. 
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Figure 29 The Profile of Pontoon 

Table 11 The Resistance of Pontoon under Immersed Condition 

Case 𝐿6 (m) 𝐿9 (m) 𝐿+ (m) 𝜃"# (°) 𝜙"# (°) 𝑅"#$  (kN) 

1 7.8 

12.9 

1.8 

60 60 

19.11 

2 4.8 4.8 18.28 

3 1.8 7.8 18.12 

 

 
(a) 

 
(b) 

Figure 30 The Resistance Distribution of Pontoon: (a) Shear, (b) Pressure 
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5.3 Correlation between Moment and Resistance 

Figure 31 shows the correlation between the total resistance and Munk moment 

obtained from the CFD simulations, where each red dot represents a case. The figure 

shows that as the Munk moment approaches zero, the resistance also decreases. This 

phenomenon indicates that a fin stabilizer is required to balance the Munk moment. As 

the Munk moment increases, the fin stabilizer needs to operate at a larger angle of attack, 

leading to high additional resistance. Therefore, the angle of attack of the fin stabilizer is 

crucial in reducing the resistance.  

Figure 32 shows the correlation between 𝐿𝐶𝐵 and the Munk moment. The graph 

demonstrates that when 𝐿𝐶𝐵 is located closer to the stern of the vessel, the Munk moment 

is reduced. This observation is consistent with previous research on the Munk moment, 

which suggests that a slender pontoon shape with 𝐿𝐶𝐵 biased towards the stern is prone 

to lead to a decreased moment and improved longitudinal stability of the SWATH. 
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Figure 31 Correlation between the Munk Moment and Resistance 

 

Figure 32 Correlation between 𝐿𝐶𝐵 and Munk Moment  
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Chapter 6 DNN Model 

6.1 Model Structure 

A multi-layer perceptron (MLP), which is a type of deep neural network, consists of 

three main components: an input layer, hidden layers, and an output layer, as Figure 33. 

depicted. The classic DNN model can be expressed as follows: 

𝑦7
" = 𝑔(𝑛;), (6.1.1) 

where 𝑔  is the mapping function, 𝑛;  and 𝑦7
"  represent the i-th input and the k-th 

prediction output, respectively.  

The DNN model is a forward propagation network. It starts from the input layer and 

then processes by linear transformation and using a nonlinear transfer function in the 

hidden layers. The output of each hidden layer is then passed on to the next hidden layer 

until it reaches the output layer, where the final result or prediction is generated. In linear 

transformations, the input is multiplied by the weight and then added to the bias. The 

entire DNN model operates according to the following equations: 

𝑚'
() = 𝑇(𝑤;'()𝑛; + 𝑏'()), (6.1.2) 

𝑦7
" = 𝑃(𝑤'7H)𝑚'

() + 𝑏7H)), (6.1.3) 

where 𝑤;'() and 𝑤'7H) respectively represent the weight of the hidden layer and output layer, 

and 𝑏'() and 𝑏7H) respectively represent the bias of the hidden layer and output layer, the 

subscript i corresponds to the i-th input, j corresponds to the j-th neuron, and k 

corresponds to the k-th output. The transfer function 𝑇 is the Tansig function, while 𝑃 is 

the Purelin function. The equation is as follows: 

𝑇(𝑛) = 1
0KS!"#

− 1, (6.1.4) 

𝑃(𝑛) = 𝑛. (6.1.5) 
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Next, the predicted value of the neural network, 𝑦7
", is compared to the predicted 

value of CFD 𝑦�7
" in the database, and the loss function 𝑒 is obtained from the following 

equation: 

𝑒 = ∑ d𝑦�7
" − 𝑦7

"e1!
7I0 , (6.1.6) 

where 𝑟 is the number of outputs. The loss function is propagated back to the former layer, 

and the weights and biases are recalculated to obtain new weights and biases. After 

multiple iterations the loss function between 𝑦�7
" and 𝑦7

" approaches zero, indicating that 

the model is successfully trained. This process is called backpropagation, and in this study, 

Bayesian regularized backpropagation is used.  

 

 

 

 
Figure 33 The Structure of the DNN Model 
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6.2 Model Parameter 

In this study, the input and output are four pontoon design parameters and resistance, 

respectively. Figure 34 shows the framework for establishing the DNN model: First, the 

minimum and maximum number of layers and neurons are defined. In this study, the DNN 

model is configured to have a minimum of one hidden layer and a maximum of five 

hidden layers. The first three layers of the model consist of at least 5 neurons and up to 9 

neurons per layer. For other hidden layers, each layer allows to have 3 neurons to 8 

neurons. By setting the number of layers and neurons, a total of 4148 different 

combinations of DNN models are generated, and the best-trained model can be identified 

among these models. If the best-trained model’s neuron number reaches the prescribed 

limit, the search range is expanded, and a new round of training is followed. To determine 

the best-trained model, the mean average percentage error (MAPE) is used as the 

evaluation metric, and the model with the lowest MAPE is identified as the best-trained 

model. Lower MAPE values indicate a higher accuracy of the DNN model in predicting 

the target variable. The MAPE is defined as follows: 

MAPE =
1
𝑟V�

𝑦7+ − 𝑦7
"

𝑦7+
�

!

;I0

, (6.2.1) 

where 𝑟 represents the total number of data in the database. Figure 35 illustrates the total 

number of neurons in the hidden layers along with their corresponding MAPE values. 

Different colors represent distinct total numbers of hidden layers in the models. Generally, 

as the total number of neurons and hidden layers increases, the achievable lowest MAPE 

value decreases. However, simply increasing the number of neurons does not guarantee a 

lower MAPE value.  

The best-trained model found in this study has 6, 8, 9, 8, and 7 neurons in each 

hidden layer as shown in Table 12. After finding the best-trained model, the K-fold cross-



doi:10.6342/NTU202304123

 56 

validation is employed to ensure the stability of the model. Figure 36 shows the working 

principle of K-fold cross-validation. The fundamental principle of K-fold cross-validation 

is to partition the dataset, which consists of 1398 data points, into 𝑘 non-overlapping 

subsets, or “folds”, and then train as well as test the data 𝑘 iterations. In each iteration, 

the 𝑘 − 1 folds are used as the training set, and the remained fold is the testing set. The 

MAPE of 𝑘 iterations, as shown in Table 13, is obtained to evaluate the stability of the 

model.  

After the K-fold cross-validation is performed, the model is used for the subsequent 

prediction and parameter optimization. In addition to the 1398 data points in the original 

database used for training, this study prepares 80 additional test data points to evaluate 

the model. When all 1398 data points from the original database are used as training data, 

the proposed model’s MAPE is 0.19%, as shown in Figure 37. The 80 test data have a 

MAPE of 0.37%, as depicted in Figure 38. Figure 37 and Figure 38 depict the scatter plots 

of the DNN predicted values versus the CFD simulated values for the training and testing 

datasets.  

 
Figure 34 Framework of DNN Model 

Define minimum and 
maximum number of 

layers

Define minimum and 
maximum number of 

neurons

Automatically 
generate all models 

combinations

Train models

Calculate the MAPE 
and find the model 
with lowest MAPE

If any number of neurons in the 
best-trained model encounters the 

prescribed limit

Retrain
Yes No

If the model is stable 
using 

K-fold cross-validation

Retrain
Predict the optimized 

design parameters
YesNo
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Figure 35 MAPE of DNN Models 

Table 12 Proposed DNN Model 

Layer No. 1 2 3 4 5 

No. of Neuron 6 8 9 8 7 
 

 
Figure 36 K-fold Cross-validation 
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Table 13 The MAPE of K-fold Cross-validation 

Iteration 1 2 3 4 5 Average 

Training MAPE 0.09 0.09 0.09 0.09 0.09 0.09 

Test MAPE 0.18 0.21 0.19 0.24 0.26 0.22 

 

 
Figure 37 The MAPE of the Proposed DNN Model Using Training Data 

 
Figure 38 The MAPE of the Proposed DNN Model Using Test Data  
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6.3 Optimized Parameter Prediction 

After the DNN model is proposed, the range of design parameters to be searched for 

resistance optimization is specified. The range of design parameters is listed in Table 14, 

and these ranges are determined based on the resistance and moment trends from Figure 

31. The target for resistance optimization is set to 0 kN, which means allowing the model 

to automatically search for the lowest achievable resistance and the corresponding design 

parameter combination. The DNN model discovers 25 combinations of resistance 

optimization parameters, and these combinations are then validated using CFD to ensure 

their effectiveness in achieving resistance optimization. 

 

Table 14 The Range of DNN Prediction of Pontoon 

 𝐿6 (m) 𝐿+ (m) 𝜃"# (°) 𝜙"# (°) 

Upper Limit 5.8 3.8 20 10 

Lower Limit 7.8 7.8 60 30 

Intervals 0.2 0.2 5 5 
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6.4 Hardware Platform 

Table 15 shows the platform used to train the DNN model. The DNN model is trained 

using the commercial software MATLAB, utilizing a single core for training. Parallel 

processing is not employed due to the limited number of layers and neurons. The total 

number of trained models is 4148, with a training time of approximately 10 hours. The 

time cost to predict the optimized design parameter combinations is around 3 minutes. 

 

Table 15 Hardware Platform 

Software MATLAB 

Operation System Windows10 

Central 
Processing 

Unit 

Model Intel○R  CoreTM  
i9-9980XE@18 core 

Clock 
Rate 

(GHz) 
3.0 

Random-access 
Memory 128 GB 
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Chapter 7 Pontoon Optimization 

7.1 Hull Form and Resistance 

With the implementation of the DNN model, the optimized pontoon design of the 

SWATH vessel is obtained. Table 16 lists the optimized design parameters, as well as the 

parameters of the baseline. Since the pontoon design of the baseline is not axisymmetric, 

some geometric parameters are unavailable. Figure 39 and Figure 40 show the side view 

and the line drawing of the baseline design and optimized design, respectively. In terms 

of shape, the optimized design has a shorter aft-body but a longer fore-body, and 𝐿𝐶𝐵 is 

located at 12.13 meters, which is closer to the stern than the baseline design. Therefore, 

it is expected to obtain a smaller Munk moment. 

Due to the difference between hull forms, the longitudinal moment of the optimized 

design is better than the baseline. So a decrease in the airfoil’s angle of attack, results in 

a reduction in the resistance. Table 17 and Table 18 show the simulation result of the 

optimized and baseline design, where the 𝑀"#
64  is the longitudinal moment of the pontoon, 

𝑅<@AA and 𝑅<BC@ are the total resistance of SWATH predicted by DNN model and by CFD, 

respectively, where 𝛼6H!S  is the fore fin stabilizer’s angle of attack. This study uses 

moment interpolation among different fin stabilizer angles to find the zero moment 

condition, where 𝑅45
64, 𝑅"#

64 , 𝑅6H!S
64 , and 𝑅+65

64  are the resistances of the strut, pontoon, fore 

fin stabilizer, and aft fin stabilizer, respectively, with the superscript 𝑓𝑠 representing the 

free surface flow field. 𝑀"#
64  of the optimized design is much smaller than that of the 

baseline because of the shape of the pontoon. There is a discrepancy between the total 

resistance predicted by DNN and CFD. This discrepancy arises from the linearization of 

resistance components. Nevertheless, it is important to note that the resistance trend 
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observed between the optimized design and baseline design is quite similar. This indicates 

that resistance decoupling is capable of capturing resistance trends despite the errors 

between the two prediction methods. The pontoon resistance (𝑅"#
64  ) of the optimized 

design is 8.6% higher than the baseline design, as the optimized design has a little larger 

volume than the baseline design. Due to a significant reduction in the fin resistance of the 

optimized design, the total resistance of the optimized design is still better than the 

baseline design. The total resistance reduction of the optimized design is 2.2% when 

compared to the baseline design. 

Figure 41 shows the comparison of the free surface elevation, while Figure 42 

displays the comparison of pressure distribution of the flow field and on the hull surface. 

From Figure 41, it can be observed that the optimized design has a higher wave height 

than the baseline design. From Figure 42, it can be seen that the pressure distribution on 

the hull surface of the optimized design is smoother than on the baseline design. There 

are no abrupt low-pressure regions on the hull surface because the pontoon of the 

optimized design has a smooth curvature distribution. 

Figure 43 shows the position of the propeller disk. The centers of the propeller disk 

for optimized and baseline design are (1.39, 3.77 -1.2) and (1.39, 3.77, -1.44), respectively. 

The normalized velocity components are defined by (7.1.1), and the nominal wake (𝜔#) 

is defined by (7.1.2): 

𝑉;∗ =
𝑣;
𝑉4
, (7.1.1) 

𝜔# = 1 − 𝑉&∗ (7.1.2) 

Figure 44 defines the normalized velocity component of the propeller disk, where 𝑉&∗ is 

the axial velocity, 𝑉G∗  is the radial velocity, 𝑉<∗  is the tangential velocity. 𝜃"  is the 

azimuthal angle, and 𝑅" is the radius of the propeller. Figure 45 shows the nominal wake 
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of the propeller disk, and Figure 46 shows the normalized velocity component of the 

propeller disk. The nominal wake of the baseline design is 0.13, and that of the optimized 

design is 0.24. Although the optimized design demonstrates improved performance in 

terms of the resistance and Munk moment, it delivers a worse wake when compared to 

the baseline design. This has an adverse effect on the propulsion performance. 
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Table 16 Geometric Parameters of Baseline and Optimized Design 

Hull Form 𝐿6 (m) 𝐿9 (m) 𝐿+ (m) 𝜃"# (˚) 𝜙"# (˚) 

Baseline 7.54 11.12 4.56 N/A N/A 

Optimized 7.8 7.9 6.8 10 35 
 

  
(a) (b) 

Figure 39 The Side View of Hull Form: (a) Baseline Design, (b) Optimized Design 

  
(a) (b) 

Figure 40 Line Drawing of Hull Form: (a) Baseline Design, (b) Optimized Design 

Table 17 The Longitudinal Moment of Baseline and Optimized Design 

Hull Form 𝐿𝐶𝐵 (m) 𝑀"#
64  (kN∙m) 𝛼6H!S (˚) 

Baseline 12.88 239.45 10.31 

Optimized 12.13 52.72 2.51 

 

Table 18 The Resistance Components of Baseline and Optimized Design (Force in kN) 

Hull Form 𝑅<@AA 𝑅<BC@ 𝑅45
64 𝑅"#

64  𝑅6H!S
64  𝑅+65

64  𝑅44
64 

Baseline 69.12 104.65 25.19 68.57 7.28 2.57 1.01 

Optimized 65.36 102.37 21.18 74.76 3.27 2.36 0.77 

Difference (%) 5.5 2.2 17.3 -8.6 89.4 76.0 27.0 
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Figure 41 Free Surface Elevation of Baseline and Optimized Design 

 

 
(a) 

 
(b) 

Figure 42 Pressure Distribution of Hull Form: (a) Baseline Design, (b) Optimized Design 
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Figure 43 Position of Propeller 

 
Figure 44 Definition of Velocity Component of Propeller Disk 

 

  
(a) (b) 

Figure 45 Nominal Wake of Hull Form: (a) Baseline design, (b) Optimized design 

!!∗:
!! = 0.13 !! = 0.24
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𝑉&∗ 

  

𝑉G∗ 

  

𝑉<∗ 

  
 𝜃" (˚) 𝜃" (˚) 

Figure 46 Velocity Component of Propeller Plane: Baseline Disk (left) and Optimized Design (right)
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7.2 Total Resistance in Full Speed Range 

In the previous section, an optimized hull form is proposed for a specific speed, 

which is 𝐹𝑟 = 0.8. Therefore, this section investigates the performance of still water 

resistance at other speeds. The considered speed range is 𝐹𝑟 = 0.2 to 0.8. 

When the resistance performance across the full speed range is investigated, fixed-

running simulations are used, and the angle of the fin stabilizer is estimated using the 

balance of moment. The estimated angles of the fin stabilizer are listed in Table 19. Figure 

47 (a) illustrates the bare hull resistance, while Figure 47 (b) illustrates the resistance 

including the fin stabilizer. When the fin stabilizer is not considered, the baseline design 

generally performs better in all speed ranges. However, when the fin stabilizer is taken 

into account, the optimized design exhibits better performance at high speeds. It is 

important to note that at high speeds, the absence of a fin stabilizer would lead to 

longitudinal instability and the risk of capsizing. As a result, the optimized design 

maintains an advantage at high speeds due to the fin stabilizer. The advantage resulting 

from the hull moment reduction can be observed in Figure 48, where the moment of the 

optimized design is consistently better across all Froude numbers. 
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Table 19 Angle of Fin Stabilizer 

Froude Number 0.2 0.3 0.4 0.5 0.6 0.7 0.8 

Baseline (°) 2.5 2.5 7.5 2.0 9.0 15.0 20.5 

Optimized(°) 1.0 1.5 2.0 9.0 4.0 3.0 6.0 

 
(a) 

 
(b) 

Figure 47 Total Resistance at Different Speed: (a) Bare hull, (b) with Fin Stabilizers 
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Figure 48 Hull Moment at Different Speed: (a) Bare hull, (b) with Fin Stabilizers 
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Chapter 8 Conclusion 

8.1 Conclusion 

This study proposes a parameterized SWATH underwater pontoon design method, 

which involves resistance analysis and the application of a DNN model to identify an 

optimized design with reduced total resistance and moment. 

To simplify the calculations, this study decomposes the resistance of the SWATH 

into the resistance contributions from the pontoon, strut, superstructure, and fin stabilizers. 

Among these, the pontoon contributes the largest portion of the resistance, making it the 

primary target for optimization. The pontoon design is based on an axisymmetric body, 

and its design parameters include the lengths and angles at the fore and aft bodies. After 

the pontoon resistance optimization, CFD is employed to predict the total resistance of 

SWATH in a three-dimensional flow field as the final validation step. 

During the resistance optimization, a DNN model is utilized. The proposed model 

comprises five hidden layers with 6, 8, 9, 8, and 7 neurons, respectively, and the MAPE 

is measured at 0.19%. The optimized parameters suggested by the DNN model are a 

forebody length of 7.8 meters, an aft-body length of 6.8 meters, a fore angle of 10 degrees, 

and an aft angle of 35 degrees. The 𝐿𝐶𝐵 of the optimized design is closer to the stern 

compared to the baseline design. Additionally, the moment has reduced by 127.8%, and 

the angle of the fin stabilizer has decreased by 121.7%. After the resistance of all 

components of SWATH is taken into consideration, the total resistance of SWATH has 

decreased by 2.2%. 

In the comparison of the resistance performance at different speeds, it is evident that 

the proposed optimized design performs better at high speeds. This is attributed to the 

significant reduction in the Munk moment, resulting in a small angle of attack for the 
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stabilizer and reduced fin drag.  

In summary, to prevent longitudinal instability and potential capsizing, it is crucial 

to minimize the moment when designing the pontoon. This way not only enhances safety 

but also reduces the resistance.  
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8.2 Future Work 

While a linearization method proposed in this study can reduce the computational 

cost to predict optimized parameters, nonlinear models are obviously capable of reducing 

the errors arising from the linearization. Therefore, in the future, resistance prediction in 

a three-dimensional flow field is recommended. Furthermore, the proposed optimized 

design’s performance at low speeds is relatively poor, necessitating further exploration of 

robust methods that can consider the resistance performance across the full speed range. 

Since the wake performance is also worse in the proposed design than the baseline design, 

it is essential to propose a design method that can also consider the wake characteristics. 

Lastly, regarding the application of the DNN model, a multi-objective function model is 

suggested because SWATH optimization requires considering both resistance and the 

Munk moment simultaneously. 
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