7R 3w 3L

Department of Engineering Science and Ocean Engineering

College of Engineering
National Taiwan University

Master Thesis

FEP A Al TRk B 2N K 67 0 B A AS K T AR AR SR st R L
The Pontoon Design Optimization of a SWATH Vessel for

Resistance Reduction

Chi-Min Wu

16 EHIR MER B
Advisor: Dr.-Ing. Shiu-Wu Chau

FRER 112456 A
June, 2023

doi:10.6342/NTU202304123



doi:10.6342/NTU202304123



Abstract

This study employs a deep neuron network (DNN) model to optimize the 22.5 m long
pontoon hull form of a small water-plane area twin hull (SWATH) vessel with fin
stabilizer for reducing its calm water resistance at F. = 0.8 under an even keel condition.
The resistance of the target vessel is linearized into three components, i.e., pontoon, strut,
and fin stabilizer, to simplify the resistance calculation. Four design parameters, i.e., the
length of the fore-body and aft-body, the angle of fore body and aft body, are used to
define the geometry of pontoon. The computational fluid dynamics (CFD) software
STAR-CCM+ is used to predict the resistance of the underwater pontoon as well as the
lift and drag force of the fin stabilizer at different angles of attack. Then, a deep neural
network model is trained with 1400 CFD resistance predictions using MATLAB, and K-
fold cross-validation is used to ensure the DNN model stability and search for the
optimized design parameter set. The proposed DNN model has 6, 8, 9, 8, and 7 neurons
in five hidden layers, respectively. The optimized design parameters are the length of the
fore-body 7.8 m, the length of the aft-body 6.8 m, fore body angle 10°, and the aft body
angle 35°. This study finds that the resistance reduction of the optimized design compared
to the baseline design is mainly due to the small angle of attack of fin stabilizers where
the optimized pontoon results in a small Munk moment to be balanced by the fin stabilizer.
The optimized pontoon design is able to reduce the resistance by 2.2% compared to the

baseline design.

Keywords: SWATH, Pontoon, Resistance, Hull Form, Optimization, CFD, Deep Neural

Network.
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Nomenclature

Latin symbols

(o]
Apn

The surface area of the pontoon

Beam over all

Bias of the hidden layer

Lift coefficient

Volume fraction of air

Volume fraction of water

Sharpening factor

Transfer-flow resistance coefficient of rudder
Equation Constant

Equation Constant

Equation Constant

Ship Depth

Diameter of propeller

Draught

Cell size of grid

Discretization error

Froude number

The lift force of fin stabilizer

The lift force of fore fin stabilizer

The lift force of aft fin stabilizer

Production rate due to Reynolds-stress tensor
Production rate due to Reynolds-stress tensor
Gravitational acceleration

Turbulence kinetic energy

Length of fore body

Moment arm length of center of gravity

viii

[kN]
[kN]
[kN]
[W/m’]
[W/m’]
[m/s?]
[J/kg]
[m]

[m]
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Length of parallel middle body

Length of after body

Length over all

Length of water line

Length of pontoon

Lift force of fin stabilizer

Total moment

The pitch moment of SWATH vessel

Moment of pontoon in infinite water depth
Pressure moment of pontoon in infinite water depth
Shear moment of pontoon in infinite water depth
Moment of pontoon in free surface condition

Moment of strut in free surface condition

Input for net hidden layers

Number of grid

Number of nth grid

Number of n — 1th grid

i-th input

Normal vector of boundary

Purelin function

Total Pressure

Hydrostatic Pressure

The pressure on the surface of the pontoon
Radius of pontoon

Reynolds number

Total resistance of small water area twin hull vessel
Resistance of SWATH vessel of lower hull
Resistance of SWATH vessel of strut

Resistance of SWATH vessel of super structure

X

[m]
[m]
[m]
[m]
[m]
[kN]
[kKN-m]
[kN-m]
[kN-m]
[kN-m]
[kKN-m]
[kKN-m]

[KN-m]
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pn
Rfin
R{;on
R?NN

CFD
RT

Resistance of SWATH vessel of pontoon [kN]
Resistance of SWATH vessel of fin stabilizer [kN]
Resistance of SWATH vessel of pontoon in infinite water depth [kN]
The total resistance of SWATH predicted by DNN model [kN]
The total resistance of SWATH predicted by CFD solver [kN]
Radial direction [m]
Tansig function [-]
Velocity direction in the i direction [m/s]
Diffusion rate of the air phase [m?/s]
Boundary sharpening speed of the air phase [m/s]
Velocity component in the z direction [m/s]
Variation of average velocity in the i direction [m/s]
Flow velocity [m/s]
Total volume in a cell [m3]
Volume of air in a cell [m3]
Volume of water in a cell [m3]
Vessel speed [m/s]
Normalize velocity of axial [m/s]
Normalize velocity of radial [m/s]
Normalize velocity of tangential [m/s]
Velocity component in the r direction [m/s]
Velocity of different component at propeller plane [m/s]

Weight of hidden layer

Weight of output layer
Cartesian coordinate in the i direction

Axial direction
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Greek symbols

=

SO

~
.

¢pn
¢00
¢n
¢n—1

The angle of attack

Coefficient of effect of free surface

Shear rate

Heave

Unit tensor

Dissipation rate of turbulent kinetic energy

Free surface elevation

Pitch angle
Degree of propeller plane

The angle of fore body

Aspect ratio

Viscosity

Turbulent viscosity

Kinematic viscosity

Density of phase

Density of air phase in a cell
Density of water phase in a cell
Equation Constant

Equation Constant

Shear stress tensor
The angle of aft body

Grid independent solution of ¢™
Solution of ¢ in nth grid
Solution of ¢ in n — 1th grid

Nominal wake

X1

]
[

[1/s]

[m]

[
[kg'm?/s*]
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Chapter 1 Introduction

1.1 Motivation

Taiwan has been continuously developing onshore wind farms for many years.
Because Taiwan is surrounded by sea with dense mountains and few plains, offshore wind
farms are considered to be a more suitable energy option. With the development of
offshore wind farms, the demand for crew transportation between harbors and wind
turbines continues to increase [1]. Crew transfer vessels (CTV) play a crucial role in
transporting personnel and supplies in the operation and maintenance (O&M) of wind
turbines. Optimizing the resistance of these vessels ensures efficient operations, and
extends operational hours. Among them, small water-plane area twin hull (SWATH)
vessels are particularly popular for this purpose due to their excellent seakeeping
performance. However, SWATH vessels also face a primary challenge: Despite an
excellent seakeeping performance, the small wave-induced force can lead to a lack of
longitudinal stability [2].

For SWATH vessels, pontoon resistance dominates the total resistance of ship. The
pressure distribution governed by the shape of the pontoon generates the Munk moment,
leading to longitudinal instability of SWATH vessels. Therefore, optimizing the pontoon
design can simultaneously improve the resistance performance and longitudinal stability
in SWATH vessels. Currently, several studies have analyzed the pontoon resistance using
numerical predictions, but effective design methods are not available [3-5]. Furthermore,
to overcome the longitudinal instability of SWATH vessels, they are generally equipped
with fin stabilizers to provide lift to balance Munk moments, especially at high speeds.
However, increasing longitudinal stability also contributes to the total resistance [6],
making the location of fin stabilizers a critical issue in the design process.

1
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Currently, computational fluid dynamics (CFD) software [7] has become an effective
tool for designing and analyzing ship performance, offering significant advantages over
ship model experiments. However, predicting ship resistance considering the free surface
effect still takes relatively high computational cost, motivating the development of a more
simplified approach. In addition to simplifying computational methods, this study utilizes
artificial intelligence techniques, particularly deep neural networks (DNN), to aid in the
design optimization. DNN, as a branch of artificial intelligence, can effectively model the
nonlinear correlation between hull form and resistance, enabling the identification of
optimal design parameters within a defined range. Although there have been numerous
studies applying neural networks to SWATH hull optimization [8, 9], no research focuses
on a parameterized hull form design optimization for total resistance reduction. Hence,

the main objective of this study is to propose a DNN model to address this research gap.
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1.2 Literature Review

1.2.1 SWATH Vessel Design

The concept of a SWATH vessel has been developed since 1970s. There have been
several successful applications of SWATH vessels, including oceanographic research
vessels such as National Oceanic and Atmospheric Administration (NOAA) Ferdinand R.
Hassler [10], offshore patrol vessels [11], navy vessels, such as the sea shadow [12].
Figure 1 and Figure 2 show the applications of SWATH.

There are two significant components of SWATH vessels. One is the pontoon
immersing below the free surface and providing the major buoyancy of SWATH; another
one is the strut piercing the free surface and connecting the deck and pontoon.

SWATH vessels are known for good seakeeping performance in high sea states
compared with other categories of ship [13]. There are several advantages of SWATH
vessels such as low resistance at high speed, small wave-induced forces, and large deck
area. Despite these advantages, SWATH vessels still have some drawbacks such as
increased shear resistance due to a sizeable wetted surface of the pontoon, especially for
low speed, the lack of longitudinal restoring force due to a small water-plane area on the
strut, the Munk moment of the pontoon, and the complexity arising from the fin stabilizer
installed on hull surface [14-16]. As the pontoon is the main contributor of the instability
[17-19] and dominates the resistance of SWATH vessels, this study focuses on optimizing

the hull form of the underwater pontoon.
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1.2.2  Deep Neural Networks

Statistical analysis drawing insights from existing ships has been employed in the
traditional approach of hull form optimization to establish the correlation between
hydrodynamic performance and the geometric parameters of hull form. [20, 21]. However,
statistical analysis approaches like linear regression may face challenges when the
dependence of the target function on the parameters is not explicitly available.
Consequently, novel methods such as neural networks, are required to optimize the hull
form.

Neural networks have been widely applied to the field of naval architecture with
significant success. In hull form resistance optimization, [22] and [23] employed free-
form deformation techniques, while [24] utilized principal component analysis (PCA) to
reduce the dimensionality of ship form parameters. These reduced parameters are then
used as inputs of DNN to predict the resistance of various hull forms in the ship resistance
optimization. In another study [25], the flow field pressure distribution, free surface
elevation, and wake images of different hull forms were utilized as inputs to train a
convolutional neural network (CNN) model, which predicts the hydrodynamic
performance and resistance of different ship hulls. Similarly, neural networks have been
successfully applied to consider sea conditions and ship motions. [26] and [27] trained
neural networks using descriptors of sea condition parameters and wave characteristics to
predict short-term future sea conditions and wave states. [28] employed hull form
parameters to train neural networks for predicting the seakeeping performance of ships.
Furthermore, [29] and [30] trained neural networks to predict short-term ship motions.
Neural networks have also found applications in ship structural analysis. [31] and [32]
utilized neural networks to predict the ultimate strength and fatigue failure of ship

transverse structures. In the context of engine power prediction, [33] and [34] respectively
4
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employed the hull form information and ocean environmental data, along with ship speed,
to train neural networks for predicting the required engine power. Moreover, [35]
predicted the fuel consumption using information about the engine, propulsion system,
flow field, and cargo load. Finally, [36] utilized publicly available data of ship and engine
performance, as well as meteorological data, to predict the energy efficiency operational
indicator (EEOI).

There are many kinds of models of neural networks, such as Recurrent Neural
Networks (RNN), Long Short-Term Memory (LSTM), CNN, and DNN. DNN is a classic
feed-forward network. In DNN, data flows directly from the input layer to the output layer
without any backward flow. Because the hull form design parameters in this study are

neither sequential nor two-dimension data, that means DNN is suitable for this study.
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Figure 2 Sea Shadow [12]
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1.3 Framework

In this study, the optimization process of pontoon design is briefly described. The
first part is the resistance component analysis of the SWATH vessel. This study linearizes
the total resistance as the resistance sum of the main components of the SWATH. The
second part is a parametric pontoon design using Grasshopper3D. In this part, the pontoon
is defined by these parameters. After the shape of the pontoons is defined by design
parameters, the resistance analysis of the pontoon, strut, and fin stabilizer using the CFD
software STAR-CCM+ is independently performed. As soon as the resistance of SWATH
is obtained, the result is used to train the DNN model. Then, the DNN model is used to
predict the optimized design parameters. Finally, the total resistance of the optimized
SWATH vessel is validated by the CFD tool STAR-CCM+. Figure 3 shows the framework

of the design optimization of the pontoon.

Resistance Linearization

\ 4

Parametric Pontoon Design

A4

CFD Resistance Prediction

\4

DNN Model Training

A\ 4

Pontoon Design Optimization using
DNN Model

A 4

Resistance Validation

Figure 3 The Optimization Process of Pontoon Design
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Chapter 2 Parametric Design of SWATH Vessel

2.1 Principle Dimension of Baseline Design

The baseline design of a SWATH vessel is provided by a shipyard. The displacement
of the baseline design is 120 tons, with the longitudinal center of buoyancy (LCB) located
at 12.88 meters. Figure 4 shows the different views and definitions of the hull form, where

Lo 4 is length overall, Ly, is waterline length, D is ship depth, L, is pontoon length and

By 4 1s beam overall. Table 1 shows the principal dimensions of the SWATH vessel.

D
dg %ﬁ
{
== d L
T ———] v | | x
(a)

(b)

Figure 4 Baseline SWATH Vessel: (a) x-z Plane, (b) y-z Plane

Table 1 Principal Dimensions of Baseline SWATH Vessel

Loa (m) | Bos (m) | D (m) | Ly (m) | Lpp (m) | d(m) | LCB (m)
26 9.8 5.0 23.4 23.2 2.18 12.88
9
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2.2 Geometric Modeling Tool

Rhinoceros 3D, a widely used computer-aided design software, is a freeform-based
construction software [37]. Its Grasshopper3D module [38, 39] provides the ability of
parametric design. Figure 5 shows the Grasshopper3D code and the corresponding
Rhinoceros 3D workspace. In this figure, three points are used to define a curve segment.
This study selects B-spline to construct the pontoon surface. After positions of seven
points have been defined, four curves are automatically generated. The axisymmetric
pontoons are obtained by rotating these curves along the central axis. This study utilizes
Grasshopper3D to quickly parametrically create different pontoon geometries. The

definition of the B-spline curve expresses as follows:

Cw) = ) Nip@P: 2.2.1)
i=0

As shown in Eq. (2.2.1), the B-spline curve is defined by a set of B-spline basis functions
of degree p, denoted as N;,,(u). To construct a B-spline curve, the knot vector with m +
1 knots, the degree p, and the set of n + 1 control points are required. It is essential to
satisfy the conditionm = n + p + 1. More precisely, to define a B-spline curve of
degree p with n + 1 control points, n + p + 2 knots, namely ug, Uy, ..., Up4p4+1, Must
be provided. Conversely, if a knot vector consisting of m + 1 knots and n + 1 control
points is given, the degree of the B-spline curve can be determinedasp = m — n — 1.
These knot points partition the B-spline curve into segments, where each segment is

defined by a specific knot span.

10
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Figure 5 Schematic Illustration of Grasshopper 3D Code
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2.3  Design Parameters of Pontoon

In this study, a parametric approach of pontoon design is proposed. The length of the
pontoon (L) is fixed to 22.5 m. The pontoon has four independent parameters and two
dependent parameters, respectively. The independent ones are the length of the fore-body
(Ls), the length of the aft-body (L, ), the angle of the fore-body (6,,), and the angle of the
aft-body (¢, ). The dependent ones are the length of the parallel middle body (L,,) which
depends on Ly and L, and is shown below:

L = Lpn — Ly — Lg, (2.3.1)

and the radius of pontoon (R), which depends on L, L, 6py,, and ¢y, under the

pn»
assumption of constant displacement. Figure 6 illustrates the design parameter of the
pontoon, and Table 2 shows the ranges of each independent design parameter of the

pontoon. Ly and L, start from 1.8 m and increase by the interval size 1m to 7.8 m. 6,
and ¢, start from 10” and increase by the interval size 10° for each case to 60°. Ry, is

the radius of the pontoon hub which is 0.15 m.
Figure 7 shows the control point arrangement to define the outline of the pontoon.
Despite the third and fourth points, which are connected by a straight line, other points

define two B-Spline segments. The first and third points define L¢, and the fourth and
sixth points define L,. The first and second points determine 8,,,, and the fourth and fifth
points determine ¢,,,. A total of 1398 pontoon models are generated for the resistance

prediction.
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Parallel middle body
Aft-body  p Fore-body

Rnup 1 !
Stern Bow

Figure 6 Design Parameters of Pontoon

Table 2 Design Parameter Range of Pontoon

Parameters Ly (m) L, (m) Opn () ®pn ()

Ranges 1.8-7.8 1.8-7.8 10-60 10-60

Interval Size 1.0 1.0 10 10
4 3
2
5 ® <)<) ®
6 2 1

Figure 7 Control Point Arrangement to Define the Outline of Pontoon
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2.4 Fin Stabilizer

Since SWATH vessels are prone to deliver sufficient longitudinal stability, the
installation of fin stabilizers becomes necessary [40]. Figure 8 shows the fin stabilizer
arrangement on the baseline design. The fore fin stabilizer is located 21.04 m from the
stern, and the aft fin stabilizer is located 10.06 m from the stern. Figure 9 shows the
working mechanism of fin stabilizers, where My, is the moment produced by the fin
stabilizer to balance the Munk moment. The baseline design is equipped with a control
system that only drives the fore stabilizer. During navigation, only the fore stabilizer is
an active device, while the aft stabilizer is always parallel to the still water line. Figure
10 and Figure 11 show the dimensions and the different views of fin stabilizers with the
dimensions marked in the figure. The aft and fore fin stabilizers are built with symmetrical
foil sections, NACAO0015 and NACAO0030, respectively. The aspect ratios of aft and fore
fin stabilizers are 0.668 and 0.689, respectively. Figure 12 shows the lift and drag
coefficient (C;, and Cp) of the fin stabilizer, where the slope of the ideal lift in 2D is 2n
[41]. The lift coefficient can be approximated by the following empirical equation
proposed by Soding:[42]

_2mA(A+ 1)

. —Wsina+6q sin a |sin a| cos a, (2.4.1)

where A is the aspect ratio, C; = 1.0 is used for hydrofoils with a sharp upper and lower
edge.

The fin stabilizer provides lift force that keeps the ship without trim. However, the
lift force is accompanied by the drag force. Figure 12 shows the drag force grows with
the increase of the angle of attack. If the ship trim angle is too large, it may cause a large
angle of attack of the fin stabilizer to balance the moment, where a large total resistance

is expected.
14
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(b)

Figure 8 Baseline SWATH Vessel with Fin Stabilizer: (a) Bottom View, (b) Side View
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Figure 9 Working Principal of Fin Stabilizer
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Figure 10 Aft Fin Stabilizer (cm): (a) Top View, (b) Side View, (c) Front View, (d)

Perspective View
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Figure 11 Fore Fin Stabilizer (cm): (a) Top View, (b) Side View, (c) Front View, (d)

Perspective View
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Figure 12 Lift and Drag Coefficient: (a) NACA0015, (b) NACA0030
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Chapter 3 Resistance Linearization of SWATH

In order to avoid excessive computational efforts when considering the free surface
effect in the CFD computation, this study decouples the SWATH resistance via a
simplified approach. Table 3 shows the resistance of SWATH before and after decoupling.
According to Table 3, the total resistance of SWATH can express as follows:

Ry = Ry (Fr) + R (Re, d), (3.1)
where Ry is the total resistance of SWATH, R,;(Fr) is the strut resistance, and R, (Re, d)
is the resistance of the lower hull. Rg; is mainly a function of the Froude number, and R,
is a function of the Reynolds numbers and draught. Moreover, the resistance of the lower
hull R;, can be further expressed as follows:

R, = Ry, (Re,d) + Rfin(Re, a, d), (3.2)
where R, is the resistance of the pontoon, and Ry, is the resistance of the fin stabilizer,
which changes with the angle of attack a and the draught d. In Table 3, the decoupled
resistance of the fin stabilizer is obtained from a fully submerged flow field. Since the
difference between coupled and decoupled is small for fin stabilizers, it justifies the
adaptation of a decoupled approach. Because the dimension of the fin stabilizer is
relatively small compared to the draught, the impact of draught d is not significant for fin

stabilizers. Figure 13 shows the pressure and shear resistance of the pontoon, Rgn and

RS

on» change with the draught d. The correction B represents the ratio of pontoon

resistance Ry, at the draught d, to the pontoon resistance in the fully submerged case
Rpy. Ryp is then obtained by multiplying fully submerged pressure resistance Ry, ,, with
p and then adding to the fully submerged shear resistance Ry, . Rgn drops rapidly with
draught, but R, is nearly constant when the draught goes deeper. Finally, the resistance

of the pontoon can be expressed as follows:
19
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Ry = Ry (Fr) + Ry (Re) - B(dpn) + Ryns(Re) + Ryin(Re, @), (3.3)
where f(d,y) is the correction of the draught effect, and d,,,, defines in Figure 14. 8 is
defined in the following equation:

Rp

(o]
RP” p

B = (3.4)

The fin stabilizers provide lift force (Lf;,) and the drag force (Ry;y,), both are functions of

the angle of attack («). The lift force is used to balance the Munk moment of the hull, M,

which can be expressed as follows:
My = MZ, + ML = Lg * Fyq, (3.5)
Fsta = Fr + Fo, (3.6)
where M. t is the moment of the strut, Fs, is the force of fin stabilizer, F; and F, are

respectively the lift force produced by the fore fin and the aft fin, fs means the free

surface flow. My, can be further expressed as follows:

M3 = M3 s + Mg, (3.7)
pnp Z ppnl pnl LG i (3.8)
Mps = Z Spn,i " Apni * Leji (3.9)

i
where pyy, is the pressure of the pontoon, sp3, is the shear stress of the pontoon, Ay}, is the
surface area of the pontoon, and L, is the length of the lever arm from the center of gravity.

Mg, » is the moment caused by the pressure on the pontoon, while My, ¢ is the moment

caused by the shear stress on the pontoon. The superscript, co, means the fully submerged
flow field.
Figure 15 shows the pressure distribution on the pontoon. The blue dot represents

the free surface elevation. As the figure shows, the free surface influence on the pressure
20
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distribution is small, so this study uses the pontoon moment in a fully submerged flow
field as an approximation of the Munk moment.

Due to the aforementioned resistance decoupling, the resistance of individual
components of the SWATH vessel is calculated under different flow conditions. The fin
stabilizer resistance is calculated under a fully submerged flow assumption, the pontoon
resistance is calculated under a fully submerged flow assumption, and the strut resistance

is predicted under a free surface flow assumption.

Table 3 The Resistance Components of SWATH

Part Coupled (kN) Decoupled (kN) Diftference (%)
Strut 24.9 22.9 -8.2
Pontoon 69.6 66.6 -4.4
Fore Fin 16.5 17.4 4.9
Aft Fin 7.5 7.8 3.5
Total 118.7 114.8 -3.2
45
_— Rgn/RSOn,p =p
35 | Ryn/Rpn.s
25 |
15
05 L L L L L ! L L 1 L ] ! L ! L ! ! 1 ! ! L ! | L ! L L
-0.05 0.00 0.05 0.10 0.15 0.20 0.25

dpn/ Lpn
Figure 13 Pontoon Resistance vs. Draught
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Figure 15 Comparison of Surface Pressure on Pontoon between Two Conditions

22

doi:10.6342/NTU202304123



Chapter 4 Flow Model

In this study, the resistance of the SWATH vessel is simulated using the commercial
software STAR-CCM+, based on the finite volume method (FVM). STAR-CCM+
iteratively solves the governing equations, including the continuity equation and the
Reynolds-Averaged Navier-Stokes (RANS) equation, and applies the turbulence model
to predict the ship resistance and the corresponding flow field. The simulations for the
pontoon under fully submerged conditions are assumed axisymmetric, while the full-scale
SWATH vessel considering the free surface is simulated in a three-dimensional flow field.
Figure 16 shows the coordinate system of the axisymmetric and three-dimensional flow
fields. Additionally, in an axisymmetric flow calculation, the z-axis is aligned with the
longitudinal direction of the ship, while in the three-dimensional flow calculation, the x-
axis represents the longitudinal direction, with the origin located at the stern and the

positive direction extending towards the bow.

~~
N
s
[\N]
~

/2 [y

X

Figure 16 Coordinate System of Axisymmetric and Three-Dimensional Flow Region
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4.1 Governing Equations

4.1.1 Axisymmetric Pontoon Flow

The immersed cases are under an axisymmetric and steady flow assumption. The
governing equations consist of continuity and momentum equations, and a K — ¢
turbulence model is used to consider the turbulent effects. The equations are shown as
follows:

(a) Continuity Equation

9 19
(w)  106rv) _ @4.1.1)
0z r or

(b) Momentum Equations

d(puu) 10(pruv) op O0t,, 10(rt,)
1 __op z 4.1.2
oz 1 or 0z 9z Tr or 12
d(puv) 1d(prvv d 0t,, 100t
(pw) |, 19Grvw) __3p 0%, | 1067 w13

0z r or or dz r or

where (4.1.2) is for the axial direction, and (4.1.3) is for the radial direction. The stress

tensor components are expressed as follows:

_ ou 2 6u+16(rv) 414
tar = 2B\ 5,7 3\az "7 ar )/ (414

_, ov 2 6u+16(rv) 415
=M\ "3\0z 7 ar )) (4.1.5)

_ _ (au N 617)
TTZ - TZT - l’l‘ ar aZ )

(4.1.6)

(¢) K — € Turbulence Model
The adopted turbulence model uses two transport equations to express the turbulence

kinetic energy K and the dissipation rate € as follows:
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d(puK) a(va ) _
0z

o-pet g [0 5) 5

d(pue) a(pve)

0z ar
C&-lG ngG +a_[(
G = uth./|21
lyl? =

2 (54) +2(2) 2 () + (2

+16
r or

del 10 Ut
)62 +;6_r[ (M+U_g or
6v+6u>2 (16(
dz Or r or v

U
+_
e 5

OK]

>_

or!l

4.1.7)

(4.1.8)

(4.1.9)

»  (4.1.10)

)+—Z>,

(4.1.11)

where p is the density, u, v are the velocity components in the cylindrical coordinate

system z,r, respectively, p is the pressure, u is the viscosity, G is the production of

turbulent kinetic energy, u, is the turbulent viscosity, and y is the shear rate. The equation

constants of the K — ¢ turbulence model, ¢, ok, ¢¢1, C¢2, 0, are shown in Table 4.

Table 4 Equation Constants for K — ¢ Turbulence Model

Cu Ok Ce1 Ce2 O¢
0.09 | 1.00 | 1.44 | 1.92 | 1.30
25

doi:10.6342/NTU202304123



4.1.2 Three-Dimension Free Surface Ship Flow

The governing equations for the simulation involving free surface are continuity and
momentum equations, and the flow is assumed to be unsteady and incompressible. The
governing equations are shown below:

(a) Continuity Equation

au,
axi

=0, (4.1.12)

(b) Momentum Equations

an+a(Uin) _lap a3

Jt 0x; pox; 0x;

aU; oU;\] oduu
v + - , (4.1.13)

where U; and u; are the mean and fluctuation velocity components in the direction of x;,
respectively, v is the kinematic viscosity, and pu;u; is the Reynolds stress.

(¢) K — € Turbulence Model

aK+a(KU,-)_ ] ( +vt>6K L. 4.114)
ot dx;  0x; Vo axj| p ~ & o

% OKY) _ 0 ( +vt)ag PG, 4.1.15
ot ox;  ox |\ oox| " B kpk T "R (+-1.15)

where the equation constants of the equation are shown in Table 4. The turbulent

kinematic viscosity v, is given as follows:
K
v, =C,—, (4.1.106)

where Gy, is the turbulent production term expressed as:

i

)

G, = —puuy (4.1.17)

and under the Boussinesq hypothesis, —pg,, u;u; can be expressed as follows:
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7 (aU"+an> 2 KS (4.1.18)
—pujul = pp | =— - = i) 1¥
p | Red] t axi axi 3p 5]

where §;; is the unit tensor.
(d) Volume of Fluid Method
The volume of fluid method is employed to model free surface flows. The volume

fraction of the fluid in a cell can be expressed as:

1%
C, = —

=7 (4.1.19)
Cy = VVW, (4.1.20)
where V, is the air volume in a cell, I}, is the water volume in a cell, and V is the total
volume of a cell. The volume fraction of all fluids in a cell is equal to unity:

C,+C, =1, (4.1.21)
where C, = 0 indicates that the cell does not contain air; C, = 1 indicates the cell is fully
occupied by air; 0 < C, < 1 indicates there is an interface in the cell. In this study, C, =
0.5 is defined as the free surface location. The fluid density p and the fluid dynamic
viscosity u are calculated as follows:

p = paCq + pwCy, (4.1.22)

U= uC,+ uy,Cy, (4.1.23)
where p, and p,, represent the densities of air and water, respectively, and y, and y,,

represent the dynamic viscosities of air and water, respectively. The free surface equation

1s shown as below:

ac,

aC
5t Ug=—+ V" (CUga) + V- (Co(1 = CHU.,) =0, (4.1.24)

0x;

where Uy , is the diffusion rate of air, and U, 4 is the boundary sharpening speed of air.
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Ve,

Uc,a = C(ZlUl |VC |I
a

(4.1.25)

where C, is the sharpening factor.
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4.2 Computational Domain and Boundary Condition

This study defines different computational domains to solve the flow field around

the pontoon in the fully submerged case and the free surface case.

4.2.1 Pontoon Flow

Figure 17 shows the computational domain in fully submerged conditions. Table 5
summarizes the dimensions of the domain geometry and the boundary conditions in a
two-dimensional flow field. To ensure the resistances are independent of the domain size,
different sizes of the computational domain are tested. Consequently, the inlet boundary
is Ly, away from the fore-end and the outlet boundary is 2 Ly, away from the aft-end.
The radius of the domain is L, . For the inlet boundary, the inlet velocity is the target
vessel speed (V) of 24 knots, while pressure is set to 0 at the pressure outlet.

The simulation is conducted at V; = 24 knots, and the corresponding Froude number
(Fr) is 0.81, where Fr is defined by the vessel speed, waterline length (L), and

gravitational acceleration (g) as below:

Vs

Fr = .
gLlw.,

4.2.1)
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Figure 17 Schematic of the Computational Domain

Table 5 Dimension of the Computational Domain for Pontoon Flow

Region Physical Definition Boundary Condition
AB (Top)
— Inlet u=-Vv=0
BC (Front)
OA (Back) Pressure outlet p=0
CD (Bottom) u v
- AXiS —_— = O, =0
EO (Bottom) dn on
DE (Pontoon) Wall u=0v=0
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4.2.2 Free Surface Ship Flow

Figure 18 illustrates the computational domain of the free surface case. The
simulation only considers one-half of the ship to reduce the simulation time because the

vessel is symmetric to y = 0. The front boundary is 1.5 Ly,, away from the bow and the

back boundary is 3.5 L,, away from the stern. The port boundary is 1.5 L,,, and the

pn»
bottom boundary is 1.5 L, away from the hull. Table 6 summarizes the boundary

conditions, where the inlet velocity is the target vessel speed of 24 knots, and for the

pressure outlet boundary, the pressure is assumed hydrostatic pressure of calm water.
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Figure 18 The Domain of Free Surface

Table 6 Dimension of Computational Domain of Free Surface

Region Physical Definition | Boundary Condition
ABCD (Top)
BFGC (Front)
Inlet U= (-1,0,0)
ABFE (Port)
EFGH (Bottom)

AEDH (Back) Pressure Outlet p =ps(Z2) = pgZ

ou

DCGH (y = 0) Symmetry e 0
n

SWATH Wall Uu=0
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4.3 Mesh Arrangement

43.1 Pontoon Flow

For fully submerged conditions, a 2D Cartesian mesh is used to discretize the
computational domain. The base size of the background mesh is 1.4 m, which is 1/16 of
the pontoon length, and the total cell number is approximately 250,000. Four boundary
layers are used to capture the flow near the wall and transit to the background mesh.

Figure 19 shows the mesh arrangement of the whole domain, and Figure 20 shows
the mesh near the pontoon. According to Figure 19, the mesh arrangement involves a finer
mesh in the vicinity of the pontoon to accurately capture significant flow variations in
that area. In contrast, a coarser mesh is utilized in the far-field region. Moreover, a finer
surface mesh is employed on the surface of the pontoon to accurately capture the

geometry feature, the pressure stress, and the shear stress, as shown in Figure 20.
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Figure 19 Mesh Arrangement of the Whole Domain
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(
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Figure 20 Mesh near the Pontoon: (a) Aft Part, (b) Fore Part
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4.3.2 Free Surface Ship Flow

A three-dimensional Cartesian mesh is used to discretize the computational domain
for free surface ship flows, where the base size of the mesh is 1 m. There are two boundary
layers to capture flow near the wall and transit to the background mesh. The total cell
number of the initial mesh is approximately 3 million. This study uses an adaptive mesh
refinement (AMR) module of STAR-CCM+ to automatically track the free surface so that
the refinement is only done in the right place to reduce the computational cost. With the
AMR module, the total cell number of the final mesh becomes 6.15 million.

The AMR module utilizes the gradient of the volume fraction to identify the position
of the free surface. Subsequently, it uses the transport equation to identify the location of
the free surface for the next time step and accordingly adjusts the mesh through mesh
refinement or coarsening. The AMR module ensures the mesh is not coarsened beyond
its original level of refinement. As the AMR module does not alter the surface mesh
density, the hull surface region needs to initially have a sufficient mesh density. Figure 21
illustrates the transition width and refinement layers of the free surface refinement used
in the AMR module setting. Two refinement layers are employed to accurately capture
the free surface. These layers consist of a specific number of grid layers that are gradually
refined near the free surface region. The transition width refers to the number of grid
layers used to smoothly transition from the refined layers to the background mesh,
ensuring a smooth and accurate representation of the free surface. Figure 22 shows the

initial mesh arrangement while Figure 23 shows the final mesh arrangement.

35

doi:10.6342/NTU202304123



Transition Width

Refinement Layer 2 }=l? ® “‘
L‘

Refinement Layer 1 SRS R R R R R

Figure 21 Transition Width and Refinement Layers

36

doi:10.6342/NTU202304123



(b)

Figure 22 Initial Mesh Arrangement of Free Surface: (a) y = 3.76 m, (b) Midship
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Figure 23 Mesh Arrangement of Free Surface after Simulation: (a) y
Midship
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4.4  Grid Dependency

The number of grids in the computational domain is sensitive to the result in
numerical simulation. A finer grid layout favorably leads to a better solution, but the
growth of cell numbers clearly increases the simulation time. Therefore, a grid
dependency analysis is used to illustrate the dependence of accuracy on grid number and
choose a grid layout that can balance the accuracy and simulation cost.

The grid-independent solution ¢* is calculated by second-order Richardson

extrapolation as follows:

n_ p4n-—-1
¢>°°=¢>"+—¢Nn ¢_1

Nn—l

(4.4.1)

where ¢ is the field variable, ¢™ is the variable of the n-th grid level, and N,, is the
number of cells of the n-th grid level. In this study, the resistance of the pontoon in the
fully submerged flow field (Rpy,) is used to analyze the grid dependency. Table 7 shows
the number of grids of five grid levels. Figure 24 shows the grid-independent solution,
and Figure 25 shows the dependence of the discretization error Eg on difference cell size

dx, where Ey4 and dx are expressed as follows:

e

, 44.2
e (4.4.2)

dx = (4.4.3)

1
N
As Figure 25 shows, the discretization error is close to that of an ideal second-order

scheme. The cell number used in this study is grid level 3, where the discretization error

1s less than 3%.
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Table 7 Number of Cells and the Corresponding Resistance Prediction

Grid Level 1 2 3 4 5

Ry, 20.8 120.319.9|19.7 | 19.5

21.0
i 1 —e— Simulation
- — — — Grid-Independent Solution
205
= I
< 20.0 I
s& |
(o' B
I 5
| Grid-Independent
195 | Solution of Ry,
19.0 i —_— a1 I e
0 20 40 60 80 100

Number of Cells (in 10%)

Figure 24 Dependence of Pontoon Resistance on Cell Number

10%

- —eo— Simulation
i — — = Ideal Second-Order Method

10-1 . 1 ) 1 I i | 1

1.0 1.5 2.0 2.5 30 35 40
dx (in 10)

Figure 25 Discretization Error of Pontoon Resistance
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4.5 Validation

This section aims to validate the numerical simulation approach by comparing the
numerical result of the full-scale ship with that estimated from model tests. The model
test is conducted by WOLFSON UNIT in the UK [43]. Due to insufficient longitudinal
instability at Fr = 0.8 in the experiment, a lower speed of 10 knots (Fr = 0.34) is chosen.
Table 8 compares the total resistance and the ship’s attitude between the model test and
CFD calculation.

The position of the center of gravity of a SWATH vessel significantly influences the
running trim (0), as well as resistance. The center of gravity in experiments was not
documented in the report, so the difference in the center of gravity could be a significant
factor accounting for the difference in the attitude and resistance between the model test
and numerical prediction. Although there is a nontrivial resistance difference between
CFD calculations and experiment measurements, the predicted free surface pattern is
found similar to the experiment result, as shown in Figure 26. The sign convention of the

ship’s attitude is shown in Figure 27.

Table 8 Comparison between Experiment and Prediction

Ry (kN) | 6 () 6 (m)
Experiment 13.8 0.940 -0.048

CFD 11.9 0.309 | -0.044
Diff. (%) | 14% 67% 8%
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(b)

Figure 26 Free Surface Elevation: (a) Experiment [43], (b) CFD

Figure 27 Sign Convention of Ship’s Attitude
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4.6 Hardware Platform

Table 9 shows the platform used to predict the ship resistance in fully submerged

cases. Each CFD case utilized two computational nodes for parallel processing, with an

average computation time of approximately 15 minutes. With a total dataset of 1398 cases,

the total time required for CFD simulations is approximately 349.5 hours.

Table 9 Hardware Platform

Software

STARCCM+

Operation System

Linux Centos 7

Memory

Model Intel® Xeon® CPU
Central E5-2673 v2@]16 core
Processing Clock
Unit Rate 13
(GHz)
Random-access 198 GB
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Chapter 5 Resistance Prediction

5.1 Case Description

In this study, all cases are classified into different groups based on the fore and aft

lengths. Each group has a distinct set of fore and aft lengths. Table 10 provides the group

number and the corresponding fore and aft lengths for all cases, where the group numbers

are denoted in red. Since some combinations of the fore-body and aft-body angles are

unable to define reasonable geometry for a given length set, the number of cases in each

group varies. There are 49 groups in total, where each group consist of 16 to 36 cases,

and the total number of cases in the dataset is 1398.

Table 10 Different Length Combinations of Pontoon

Group Ls (m)
Numbers

(G) 1.8 1283848 |58]|68]78
1.8 | 1 2 3 4 5 6 7

28| 8 9 |10 | 11 | 12 | 13 | 14
3815 16 | 17 | 18 | 19 | 20 | 21

Lo (m) 4.8 | 22 | 23 | 24 | 25 | 26 | 27 | 28
58 129 | 30 | 31 | 32 |33 | 34| 35

6.8 | 36 | 37 | 38 | 39 | 40 | 41 | 42

7.8 | 43 | 44 | 45 | 46 | 47 | 48 | 49
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5.2 Resistance Characteristic of Pontoon

In this section, the influence of the geometric features of the pontoon on its resistance

in fully submerged conditions is investigated.
5.2.1 Fixed Length

Figure 28 presents contour plots of resistance for three groups with fixed fore and
aft lengths, i.e., Group 7, Group 25, Group 37, and Group 43, under the fully submerged
condition. These figures reveal a general trend of increasing resistance with large fore-
body and aft-body angles, and decreasing resistance with small fore-body and aft-body
angles. Most groups, similar to Group 7, exhibit only one low-resistance region, while
some groups have two or three low-resistance regions, suggesting that small fore-body
and aft-body angles typically result in better resistance performance. However, some

optimized angles are not relatively small when compared to other optimized ones.
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Figure 28 The Resistance of Pontoon: (a) G = 7, (b) G = 25, (¢) G = 37,(d) G = 43
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5.2.2 Fixed Angle

Figure 29 illustrates the profile lines of three investigated pontoons, with the
longitudinal length normalized by Lpn. In order to highlight the impact of different fore
and aft lengths on resistance, the fore-body and aft-body angles of the compared cases
are identical for these three cases. When the fore or aft length is small, the model shape
becomes blunt, but it becomes sharp or close to a cone as the fore or aft length increases.
Among the three cases, Case 3 has the shortest fore length and the longest aft length,
making the model of Case 3 blunter in the fore section and sharper in the aft section.
Similarly, Case 1 has the longest fore length and the shortest aft length, and leads to a
sharp fore section and a blunt aft section. Table 11 lists the fore and aft lengths, fore-body
and aft-body angles, and total resistance for three cases in Figure 29, indicating that a
small fore-body of the pontoon leads to a small total resistance. Figure 30 presents the
distribution of shear stress and pressure for three cases. Figure 30 (a) shows that a sharp
shape change results in the growth of shear force, such as the fore-body of Case 2 and
Case 3, and the aft-body of Case 1 and Case 2. Figure 30 (b) shows that a blunt shape

generates a negative pressure region near the end, while a sharp one does not.
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Figure 29 The Profile of Pontoon
Table 11 The Resistance of Pontoon under Immersed Condition
Case Ly (m) | Ly, (m) | Ly (m) | Opy O bpn 0 R;On (kN)
1 7.8 1.8 19.11
2 4.8 12.9 4.8 60 60 18.28
3 1.8 7.8 18.12
— Aft */Lpn Fore —
(@)
‘A
L L

-40

60 |

-80

x/L.
— Aft /Lopn Fore —

(b)

Figure 30 The Resistance Distribution of Pontoon: (a) Shear, (b) Pressure
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5.3 Correlation between Moment and Resistance

Figure 31 shows the correlation between the total resistance and Munk moment
obtained from the CFD simulations, where each red dot represents a case. The figure
shows that as the Munk moment approaches zero, the resistance also decreases. This
phenomenon indicates that a fin stabilizer is required to balance the Munk moment. As
the Munk moment increases, the fin stabilizer needs to operate at a larger angle of attack,
leading to high additional resistance. Therefore, the angle of attack of the fin stabilizer is
crucial in reducing the resistance.

Figure 32 shows the correlation between LCB and the Munk moment. The graph
demonstrates that when LCB is located closer to the stern of the vessel, the Munk moment
is reduced. This observation is consistent with previous research on the Munk moment,
which suggests that a slender pontoon shape with LCB biased towards the stern is prone

to lead to a decreased moment and improved longitudinal stability of the SWATH.
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Chapter 6 DNN Model

6.1 Model Structure

A multi-layer perceptron (MLP), which is a type of deep neural network, consists of
three main components: an input layer, hidden layers, and an output layer, as Figure 33.
depicted. The classic DNN model can be expressed as follows:

Vi = g(ny), (6.1.1)
where g is the mapping function, n; and y; represent the i-th input and the k-th
prediction output, respectively.

The DNN model is a forward propagation network. It starts from the input layer and
then processes by linear transformation and using a nonlinear transfer function in the
hidden layers. The output of each hidden layer is then passed on to the next hidden layer
until it reaches the output layer, where the final result or prediction is generated. In linear
transformations, the input is multiplied by the weight and then added to the bias. The
entire DNN model operates according to the following equations:

ml"t = T(w/in; + b, (6.1.2)

Vi = Pwiim* + bh, (6.1.3)
where wi’}l and Wﬂ(l respectively represent the weight of the hidden layer and output layer,
and bjhl and b?' respectively represent the bias of the hidden layer and output layer, the

subscript i corresponds to the i-th input, j corresponds to the j-th neuron, and &
corresponds to the k-th output. The transfer function T is the Tansig function, while P is

the Purelin function. The equation is as follows:

2
1+e—2n

T(n) = —1, (6.1.4)

P(n) = n. (6.1.5)
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Next, the predicted value of the neural network, y;, is compared to the predicted
value of CFD 7 in the database, and the loss function e is obtained from the following
equation:

e = Tha (98 —¥0), (6.1.6)
where r is the number of outputs. The loss function is propagated back to the former layer,
and the weights and biases are recalculated to obtain new weights and biases. After
multiple iterations the loss function between 97 and y; approaches zero, indicating that

the model is successfully trained. This process is called backpropagation, and in this study,

Bayesian regularized backpropagation is used.

Input Hidden
layer layers

/ [ X N ]

/ [ X X ]

/ [ X X ]

Figure 33 The Structure of the DNN Model
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6.2 Model Parameter

In this study, the input and output are four pontoon design parameters and resistance,
respectively. Figure 34 shows the framework for establishing the DNN model: First, the
minimum and maximum number of layers and neurons are defined. In this study, the DNN
model is configured to have a minimum of one hidden layer and a maximum of five
hidden layers. The first three layers of the model consist of at least 5 neurons and up to 9
neurons per layer. For other hidden layers, each layer allows to have 3 neurons to 8
neurons. By setting the number of layers and neurons, a total of 4148 different
combinations of DNN models are generated, and the best-trained model can be identified
among these models. If the best-trained model’s neuron number reaches the prescribed
limit, the search range is expanded, and a new round of training is followed. To determine
the best-trained model, the mean average percentage error (MAPE) is used as the
evaluation metric, and the model with the lowest MAPE is identified as the best-trained
model. Lower MAPE values indicate a higher accuracy of the DNN model in predicting
the target variable. The MAPE is defined as follows:

1 T
MAPE =—Z
r

i=1

R =y

, 6.2.1
Vi )

where r represents the total number of data in the database. Figure 35 illustrates the total
number of neurons in the hidden layers along with their corresponding MAPE values.
Different colors represent distinct total numbers of hidden layers in the models. Generally,
as the total number of neurons and hidden layers increases, the achievable lowest MAPE
value decreases. However, simply increasing the number of neurons does not guarantee a
lower MAPE value.

The best-trained model found in this study has 6, 8, 9, 8, and 7 neurons in each

hidden layer as shown in Table 12. After finding the best-trained model, the K-fold cross-
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validation is employed to ensure the stability of the model. Figure 36 shows the working
principle of K-fold cross-validation. The fundamental principle of K-fold cross-validation
is to partition the dataset, which consists of 1398 data points, into k non-overlapping
subsets, or “folds”, and then train as well as test the data k iterations. In each iteration,
the k — 1 folds are used as the training set, and the remained fold is the testing set. The
MAPE of k iterations, as shown in Table 13, is obtained to evaluate the stability of the
model.

After the K-fold cross-validation is performed, the model is used for the subsequent
prediction and parameter optimization. In addition to the 1398 data points in the original
database used for training, this study prepares 80 additional test data points to evaluate
the model. When all 1398 data points from the original database are used as training data,
the proposed model’s MAPE is 0.19%, as shown in Figure 37. The 80 test data have a
MAPE of 0.37%, as depicted in Figure 38. Figure 37 and Figure 38 depict the scatter plots

of the DNN predicted values versus the CFD simulated values for the training and testing

datasets.
Define minimum and Predict the optimized
maximum number of | Retrain design parameters
layers No I T Yes
v
Define minimum and |
maximum number of If the model is stable
neurons using
¥ IR_etraTl K-fold cross-validation
Automatically YesT ‘[ No
generate all models
combinations |
1 If any number of neurons in the
Train models best-trained model encounters the
¥ prescribed limit
Calculate the MAPE I
and find the model
with lowest MAPE

Figure 34 Framework of DNN Model
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Figure 35 MAPE of DNN Models
Table 12 Proposed DNN Model
Layer No. 1 {23 4]5
No. of Neuron | 6 8 9 8 7
Data
Training Data Test Data
Fold 1|Fold 2|Fold 3|Fold 4|Fold 5
Fold 1|Fold 2|Fold 3|Fold 4|Fold 5
Fold 1|Fold 2|Fold 3|Fold 4|Fold 5
Fold 1|Fold 2|Fold 3|Fold 4|Fold 5
Fold 1|Fold 2|Fold 3|Fold 4|Fold 5
Test Data } Final Evaluation

Figure 36 K-fold Cross-validation

57

doi:10.6342/NTU202304123



Table 13 The MAPE of K-fold Cross-validation

Iteration 1 2 3 4 5 Average
Training MAPE | 0.09 | 0.09 | 0.09 | 0.09 | 0.09 0.09
Test MAPE 0.18 | 0.21 | 0.19 | 0.24 | 0.26 0.22
42
MAPE: 0.19 %
a0 b
ezd_/ 38 _-
=
b4 5
Q&
x 36
34 |
32 § L | L I | 1 I 1 | il I il L | I | |
32 34 36 38 40 42
RF™ (kN)

Figure 37 The MAPE of the Proposed DNN Model Using Training Data
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Figure 38 The MAPE of the Proposed DNN Model Using Test Data
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6.3

Optimized Parameter Prediction

After the DNN model is proposed, the range of design parameters to be searched for

resistance optimization is specified. The range of design parameters is listed in Table 14,

and these ranges are determined based on the resistance and moment trends from Figure

31. The target for resistance optimization is set to 0 kN, which means allowing the model

to automatically search for the lowest achievable resistance and the corresponding design

parameter combination. The DNN model discovers 25 combinations of resistance

optimization parameters, and these combinations are then validated using CFD to ensure

their effectiveness in achieving resistance optimization.

Table 14 The Range of DNN Prediction of Pontoon

Lf (m) La (m) Hpn (O) ¢pn (o)
Upper Limit 5.8 3.8 20 10
Lower Limit 7.8 7.8 60 30
Intervals 0.2 0.2 5 5
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6.4 Hardware Platform

Table 15 shows the platform used to train the DNN model. The DNN model is trained

using the commercial software MATLAB, utilizing a single core for training. Parallel

processing is not employed due to the limited number of layers and neurons. The total

number of trained models is 4148, with a training time of approximately 10 hours. The

time cost to predict the optimized design parameter combinations is around 3 minutes.

Table 15 Hardware Platform

Software

MATLAB

Operation System

Windows10

Intel® Core™

Memory

Model .
Central 19-9980XE@]18 core
p )
OGS [ Gl
Rate 3.0
(GHz)
Random-access 128 GB
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Chapter 7 Pontoon Optimization

7.1 Hull Form and Resistance

With the implementation of the DNN model, the optimized pontoon design of the
SWATH vessel is obtained. Table 16 lists the optimized design parameters, as well as the
parameters of the baseline. Since the pontoon design of the baseline is not axisymmetric,
some geometric parameters are unavailable. Figure 39 and Figure 40 show the side view
and the line drawing of the baseline design and optimized design, respectively. In terms
of shape, the optimized design has a shorter aft-body but a longer fore-body, and LCB is
located at 12.13 meters, which is closer to the stern than the baseline design. Therefore,
it is expected to obtain a smaller Munk moment.

Due to the difference between hull forms, the longitudinal moment of the optimized
design is better than the baseline. So a decrease in the airfoil’s angle of attack, results in

a reduction in the resistance. Table 17 and Table 18 show the simulation result of the
optimized and baseline design, where the M;]:Z is the longitudinal moment of the pontoon,
R2NN and REFP are the total resistance of SWATH predicted by DNN model and by CFD,
respectively, where a4, is the fore fin stabilizer’s angle of attack. This study uses
moment interpolation among different fin stabilizer angles to find the zero moment

fs RIS RIS andes

condition, where R, pn> Reores aft

are the resistances of the strut, pontoon, fore
fin stabilizer, and aft fin stabilizer, respectively, with the superscript fs representing the

free surface flow field. M;i of the optimized design is much smaller than that of the
baseline because of the shape of the pontoon. There is a discrepancy between the total
resistance predicted by DNN and CFD. This discrepancy arises from the linearization of
resistance components. Nevertheless, it is important to note that the resistance trend

61

doi:10.6342/NTU202304123



observed between the optimized design and baseline design is quite similar. This indicates

that resistance decoupling is capable of capturing resistance trends despite the errors
between the two prediction methods. The pontoon resistance (szfl ) of the optimized

design is 8.6% higher than the baseline design, as the optimized design has a little larger
volume than the baseline design. Due to a significant reduction in the fin resistance of the
optimized design, the total resistance of the optimized design is still better than the
baseline design. The total resistance reduction of the optimized design is 2.2% when
compared to the baseline design.

Figure 41 shows the comparison of the free surface elevation, while Figure 42
displays the comparison of pressure distribution of the flow field and on the hull surface.
From Figure 41, it can be observed that the optimized design has a higher wave height
than the baseline design. From Figure 42, it can be seen that the pressure distribution on
the hull surface of the optimized design is smoother than on the baseline design. There
are no abrupt low-pressure regions on the hull surface because the pontoon of the
optimized design has a smooth curvature distribution.

Figure 43 shows the position of the propeller disk. The centers of the propeller disk
for optimized and baseline design are (1.39, 3.77 -1.2) and (1.39, 3.77, -1.44), respectively.
The normalized velocity components are defined by (7.1.1), and the nominal wake (w,,)

is defined by (7.1.2):
(7.1.1)

w, =1=-Vy (7.1.2)
Figure 44 defines the normalized velocity component of the propeller disk, where V, is
the axial velocity, Vy is the radial velocity, Vr is the tangential velocity. 6, is the

azimuthal angle, and R, is the radius of the propeller. Figure 45 shows the nominal wake
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of the propeller disk, and Figure 46 shows the normalized velocity component of the
propeller disk. The nominal wake of the baseline design is 0.13, and that of the optimized
design is 0.24. Although the optimized design demonstrates improved performance in
terms of the resistance and Munk moment, it delivers a worse wake when compared to

the baseline design. This has an adverse effect on the propulsion performance.
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Table 16 Geometric Parameters of Baseline and Optimized Design

Hull Form | Lf (m) | L, (m) | Ly (m) | Opn (O) | Ppn ()
Baseline 7.54 11.12 4.56 N/A N/A

Optimized 7.8 7.9 6.8 10 35
S — < Y
1d=2.18m 1d=2.18m
(a) (b)

Figure 39 The Side View of Hull Form: (a) Baseline Design, (b) Optimized Design

|
&

Figure 40 Line Drawing of Hull Form: (a) Baseline Design, (b) Optimized Design

Table 17 The Longitudinal Moment of Baseline and Optimized Design

Hull Form | LCB (m) | M}y (KN'm) | @sore ()

Baseline 12.88 239.45 10.31

Optimized | 12.13 52.72 2.51

Table 18 The Resistance Components of Baseline and Optimized Design (Force in kN)

Hull Form | R2VV | REFP | RIS | RIS | RL,.. | RE, | RE

Baseline 69.12 | 104.65 | 25.19 | 68.57 | 7.28 | 2.57 | 1.01

Optimized 65.36 | 102.37 | 21.18 | 74.76 | 3.27 | 2.36 | 0.77

Difference (%) | 5.5 2.2 173 | -8.6 | 894 | 76.0 | 27.0
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Figure 41 Free Surface Elevation of Baseline and Optimized Design
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Figure 42 Pressure Distribution of Hull Form: (a) Baseline Design, (b) Optimized Design
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Figure 44 Definition of Velocity Component of Propeller Disk
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Figure 45 Nominal Wake of Hull Form: (a) Baseline design, (b) Optimized design
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Figure 46 Velocity Component of Propeller Plane: Baseline Disk (left) and Optimized Design (right)
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7.2  Total Resistance in Full Speed Range

In the previous section, an optimized hull form is proposed for a specific speed,
which is Fr = 0.8. Therefore, this section investigates the performance of still water
resistance at other speeds. The considered speed range is Fr = 0.2 to 0.8.

When the resistance performance across the full speed range is investigated, fixed-
running simulations are used, and the angle of the fin stabilizer is estimated using the
balance of moment. The estimated angles of the fin stabilizer are listed in Table 19. Figure
47 (a) illustrates the bare hull resistance, while Figure 47 (b) illustrates the resistance
including the fin stabilizer. When the fin stabilizer is not considered, the baseline design
generally performs better in all speed ranges. However, when the fin stabilizer is taken
into account, the optimized design exhibits better performance at high speeds. It is
important to note that at high speeds, the absence of a fin stabilizer would lead to
longitudinal instability and the risk of capsizing. As a result, the optimized design
maintains an advantage at high speeds due to the fin stabilizer. The advantage resulting
from the hull moment reduction can be observed in Figure 48, where the moment of the

optimized design is consistently better across all Froude numbers.
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Table 19 Angle of Fin Stabilizer

Froude Number | 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Baseline (") 2.5 2.5 7.5 2.0 9.0 15.0 | 20.5

Optimized(") 1.0 1.5 2.0 9.0 4.0 3.0 6.0

120

———&—— Baseline

——=&—— Optimized

100

80 -

Rr (kN)

a0 |

20

O_JIII\IIII\IIII\IJII\I\IIII\III!\III\\I
01 02 03 04 05 06 07 08 09

(a)

120

———eo—— Baseline
———a—— Optimized

100

80 -

Rt (kN)

40

20 F

0_lllllllIlllllllllllllllllllllllllllllll
01 02 03 04 05 06 07 08 09

T
(b)

Figure 47 Total Resistance at Different Speed: (a) Bare hull, (b) with Fin Stabilizers
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Figure 48 Hull Moment at Different Speed: (a) Bare hull, (b) with Fin Stabilizers
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Chapter 8 Conclusion

8.1 Conclusion

This study proposes a parameterized SWATH underwater pontoon design method,
which involves resistance analysis and the application of a DNN model to identify an
optimized design with reduced total resistance and moment.

To simplify the calculations, this study decomposes the resistance of the SWATH
into the resistance contributions from the pontoon, strut, superstructure, and fin stabilizers.
Among these, the pontoon contributes the largest portion of the resistance, making it the
primary target for optimization. The pontoon design is based on an axisymmetric body,
and its design parameters include the lengths and angles at the fore and aft bodies. After
the pontoon resistance optimization, CFD is employed to predict the total resistance of
SWATH in a three-dimensional flow field as the final validation step.

During the resistance optimization, a DNN model is utilized. The proposed model
comprises five hidden layers with 6, 8, 9, 8, and 7 neurons, respectively, and the MAPE
is measured at 0.19%. The optimized parameters suggested by the DNN model are a
forebody length of 7.8 meters, an aft-body length of 6.8 meters, a fore angle of 10 degrees,
and an aft angle of 35 degrees. The LCB of the optimized design is closer to the stern
compared to the baseline design. Additionally, the moment has reduced by 127.8%, and
the angle of the fin stabilizer has decreased by 121.7%. After the resistance of all
components of SWATH is taken into consideration, the total resistance of SWATH has
decreased by 2.2%.

In the comparison of the resistance performance at different speeds, it is evident that
the proposed optimized design performs better at high speeds. This is attributed to the
significant reduction in the Munk moment, resulting in a small angle of attack for the
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stabilizer and reduced fin drag.
In summary, to prevent longitudinal instability and potential capsizing, it is crucial
to minimize the moment when designing the pontoon. This way not only enhances safety

but also reduces the resistance.
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8.2 Future Work

While a linearization method proposed in this study can reduce the computational
cost to predict optimized parameters, nonlinear models are obviously capable of reducing
the errors arising from the linearization. Therefore, in the future, resistance prediction in
a three-dimensional flow field is recommended. Furthermore, the proposed optimized
design’s performance at low speeds is relatively poor, necessitating further exploration of
robust methods that can consider the resistance performance across the full speed range.
Since the wake performance is also worse in the proposed design than the baseline design,
it is essential to propose a design method that can also consider the wake characteristics.
Lastly, regarding the application of the DNN model, a multi-objective function model is
suggested because SWATH optimization requires considering both resistance and the

Munk moment simultaneously.
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