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摘要

大型語言模型 (LLMs)不僅革新了自然語言處理 (NLP)領域，也為實際應用

帶來了重大變革。儘管有這些進步，像程序生成這樣的領域仍然具有挑戰性。本

論文專注於生成兩種類型的程序：數學程序和知識圖譜問答 (KGQA)程序。

對於數學程序，我們的工作提出了一種新穎的回收數值數據擴增 (RNDA)方

法，該方法自動生成高質量的訓練實例與程序。實驗結果顯示，用擴增數據訓練

的模型可以達到最先進的性能。

與此同時，在 KGQA程序的領域，我們提出了一種反向生成的驗證方法以提

高可靠性。實驗表明，這種方法也可以提高 ChatGPT在此任務的性能。

總的來說，該研究通過引入新方法，描繪了程序生成的範式轉變，專注於改

善數學和 KGQA程序。這些發現為未來的研究提供了一個有前景的基礎，目標是

充分利用大型語言模型。

關鍵字：知識庫問答、數學問題、大型語言模型
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Abstract

Large Language Models (LLMs) have revolutionized not only the field of Natural

Language Processing (NLP) but also brought significant changes to real-world applica-

tions. Despite these advancements, certain realms like program generation have been

challenging to leverage. This thesis concentrates on the generation of two types of pro-

grams: Math programs and Knowledge Graph Question Answering (KGQA) programs.

For the math program, our work proposes a novel recycling numeracy data augmen-

tation (RNDA) approach that automatically generates high quality training instances with

programs. Experimental results show that the model trained on the augmented data could

achieve the state-of-the-art performance.

Meanwhile, in the realm of KGQA programs, we propose a reverse generation-based

validation to enhance reliability. Experiments show this approach can also improve the

performance of the task on the ChatGPT.

In essence, the research delineates a paradigm shift in program generation through the
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introduction of new methods, focusing on the betterment of Math and KGQA programs.

The findings offer a promising foundation for future research aimed at leveraging Large

Language Models to their fullest potential.

Keywords: Knowledge Graph Question Answering, MathWord Problem Solving, Large

Language Model
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Chapter 1 Introduction

Recently, large language models have catalyzed a revolution in the field of Question

Answering. Programs, the lifeblood of these models, serve as critical conduits, bridg-

ing the gap between the language model and human users. Their importance cannot be

overstated, as the automatic execution of these programs can, in some instances, not only

match but even outperform human capabilities, amplifying the utility and effectiveness of

AI tools.

Programs are the languages that underpin functions, each containing a myriad of spe-

cific actions. They are predominantly task-oriented, meticulously designed to accomplish

specific goals. The creation and implementation of these programs are vital, as they have

the power to vastly expand the capacity of a language model. They not only allow these

models to perform complex tasks but also adapt to new challenges and learn from their

past actions. The importance of these programs becomes more apparent when we consider

the limitations of AI assistants without them, which would be reduced to merely soliciting

information from users.

However, even with the indispensable nature of programs, it’s worth acknowledging

that even the most advanced models, like ChatGPT, occasionally encounter errors, partic-

ularly with complex algebraic problems. On the other hand, the logical reasoning implied

1
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in the programs can also help the models solve the question. This reveals the continued

need for development and refinement in the field of program design and execution.

In this thesis, we will delve deeper into two types of programs: theMath Program and

the Knowledge Graph Searching Program. These two examples will shed light on both

the potentials and limitations inherent in current AI technology, and further underline the

fundamental importance of programs in the evolving landscape of AI.

1.1 Math Word Problem

The study of math word problem solving is aimed at transforming a textual question

into a numerical answer, requiring not only mathematical inference but also a high-level

natural language understanding with various real-world background knowledge and sev-

eral steps of operations to compute the answer. Dua et al. (2019) list several models and

none of them can deal with symbolic reasoning. For facilitating the model to learn to

solve the math word problems, Amini et al. (2019) introduces a symbolic language to

represent the math equation in MathQA, a dataset for interpretable word problem solv-

ing. In MathQA, the intermediate answer of each question is a human-annotated program

consisting of a series of operations. The final answer of a question, which is usually a

number, can be computed from the program deterministically. Compared with the end-

to-end question-answer annotation, the programs provided in the MathQA dataset offer

more information for the model to learn the process of arithmetic reasoning.

For expressing the numeracy, the symbolic language of MathQA includes two kinds

of symbols, operators and numbers. The operators are words for fundamental calcula-

tion such as addition, log and exponential, and words with the meaning of background

2
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Input
in a school of 650 boys , 44 % of muslims ,
28 % hindus , 10 % sikhs and the remaining of
other communities . how many belonged to the
other communities ?
Intermediate Program
add(n1, n2)
add(n3, #0)
subtract(100, #1)
multiply(n0, #2)
divide(#3, 100)
Final Answer
117

Figure 1.1: The question stem and the output program of a MathQA question. The answer
can be derived by evaluating the program by each operation step by step.

knowledge such as “triangle_area” and “gcd”. The numbers can be categorized into three

types, i.e., numbers given in the question, numbers generated by the former operations,

and constants like π and ϵ. Figure 1.1 shows an example.

Generating the QA pairs in the MathQA style is not an easy task. Even human an-

notators cannot always compose a correct program for a question. In the past, the data

was composed by crowd workers, and the quality of each program was further verified

by the accuracy of the corresponding answer. In this way, only 29,837 training instances

were created in the MathQA dataset. In contrast, AQuA (Ling et al., 2017), a much larger

dataset annotated in the end-to-end style for math word problem solving, consists of about

100,000 training instances.

In this work, we aim to provide a framework for automatically generating the training

instances in the MathQA style. We propose a novel recycling numeracy data augmenta-

tion (RNDA) approach and obtain additional questions with their intermediate answers

(programs) and final answers. We further employ symbolic verification on the automat-

ically augmented instances for ensuring their quality. The augmented data, along with

3
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the original MathQA training data, can be used to train models for math word problem

solving. Experimental results show a sequence-to-sequence model trained with the addi-

tional augmented data outperforms the model trained with the original MathQA dataset,

confirming the effectiveness of our approach.

Sum up all the above, our contributions are threefold.

• We propose a novel recycling approach to numeracy data augmentation that au-

tomatically suggests the reasoning process for the existing datasets in math word

problem solving.

• With the augmented data as supplementary training instances, our model for math

word problem solving achieves the state-of-the-art performance.

• We release AQuA*, a large dataset annotated with symbolically verified programs

for math word problem, as a resource for the research community.

1.2 Knowledge Graph Question Answering

1.2.1 Background

KnowledgeGraphQuestionAnswering is a special type of question answering. Same

as normal question answering, an instance of knowledge graph question answering in-

cludes a question and the answer to the question. The thing different from the normal

question answering is that there is a Knowledge Graph for all of the questions in or out of

the Dataset.

A Knowledge Graph is a representation of information in the form of interconnected

4
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Information

Information

Knowledge
Graph

Query

Entity
Extraction

Query

Relation
Extraction

Question

Answer

Figure 1.2: Base KBQA system.

entities and their relationships, often structured as triples. Given a Knowledge GraphKG,

it will consist of many relations, R = r1, r2, ..., rm, entities, E = {e1, e2, ..., en} and

triples, T = {t1, t2, ..., tl}. A triple ( t ∈ (ei, rk, ej/l)) consists of three elements: a

subject, a predicate, and an object, where the subject and object represent two entities,

and the predicate defines the relationship between them. In the advanced new type of

knowledge graph, the object may sometimes be literal instead of an entity. A literal may

be a number, a string, a date, and so on. It cannot be an entity, since it does not have a

unique ID and may represent several different things in different triples.

Most of the information in the Knowledge Graph is irrelevant to the question of a

single instance. Moreover, unlike text question answering Knowledge graph may include

5
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millions of entities and billions of triples, especially in open-domain knowledge graph

answering, which makes the task more complex.

Traditionally there are three parts in the whole knowledge graph question answering,

entity extraction, relation extraction and knowledge graph execution. So a full pipeline of

a KBQA process should be like Fig 1.2.

Entity extraction is a process to find several entities related to the question. A re-

lation extraction takes the information of those entities, then finds related relations and

finally gets the answer. There are two main methods to solve relation extraction task,

information retrieval and semantic parsing. Information retrieval includes encoding ques-

tions and encoding the information of the related knowledge graph and then assigning a

score between the information and the question to choose a set of entities or literals in

the knowledge graph. Semantic parsing approach needs a middle type (e.g., program) to

express the path to find the answer on the knowledge graph. The knowledge graph execu-

tion may differ from dataset to dataset. Previously the Knowledge graph execution only

contains traveling through nodes by hop. However with more and more good approaches

was created, simply traversing through the nodes is not enough challenging. Some of the

datasets also include functions like count and argmax, in the knowledge graph execution

step, which need further efforts to solve them.

1.2.2 Motivation

Recent advancements in Large Language Models (LLMs) have sparked significant

developments not only in the field of Natural Language Processing (NLP) but also across a

range of research disciplines within Artificial Intelligence. Despite these strides, however,

6
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there are certain NLP tasks that remain resistant to the benefits offered by LLMs, with

Knowledge Graph Question Answering (KBQA) standing as a prime example.

KBQA comprises two fundamental components: the knowledge graph (KB) and

question answering. Regardless of the ever-growing volume of pretraining data for LLMs,

these models cannot fully encompass the entirety of a KB. This is primarily because the

creation of a triple in a KB is significantly less resource-intensive than the integration of

new content into the LLM’s pretraining phase.

LLMs have proven their worth in question-answering tasks, but challenges remain

when it comes to merging QA and Knowledge Graphs. Historically, this task was divided

into two sub-tasks: entity candidates extraction and relations extraction, as outlined in

previous studies. This thesis primarily focuses on the challenges that arise in the context

of relation extraction. Within this field, two primary methods have been used to address

these issues: Information Retrieval and Semantic Parsing.

The Information Retrieval approach assigns a score to each candidate path, selecting

the highest scoring one as the answer. This method ensures the validity of the answer

and avoids situations where no answer is provided. With the emergence of sophisticated

language models in recent years, however, such as T5 and BART, the Semantic Parsing

approach - generally viewed as a generative task - can also harness these models.

New designs of sequence to sequence language models, which reference the Infor-

mation Retrieval result, within the Semantic Parsing approach consistently outperforms

Information Retrieval, even when an answer is not always provided.

This encourages us to do the experiment of such approach on another task, noisy

knowledge graphs. It was characterized by duplicated information, pose unique challenges

7
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to the field of KBQA. Not every method works under such circumstances.

Apart from that, interestingly with the advent of the T5 classification model, even the

Information Retrieval approach can now take advantage of these cutting-edge language

models. Research has revealed that the ranking approach outperforms the Semantic Pars-

ing approach, with no loss of execution steps.

However, a new challenge emerges: regardless of the confidence level, a ranker al-

ways delivers an answer, which could potentially undermine the model’s reliability. In

certain scenarios, predicting “unknown” is more desirable than predicting an incorrect an-

swer, as these “unknown” gaps can be addressed through human intervention. For some

tasks, a simple threshold can help resolve this issue. Yet, in KBQA, the score is primarily

driven by the question and cannot be easily determined by a straightforward threshold.

In this work, we propose a validation method rooted in the recursive generation be-

tween question and candidate path. While language models may not be proficient at gen-

erating flawless programs, their inherent strength in natural language understanding and

generative capabilities can still be leveraged. Experimental evidence suggests that our

approach can benefit from a language model’s capacity to verify meaning.

Additionally, our method can seamlessly integrate with state-of-the-art large lan-

guage models, such as ChatGPT, thereby enhancing the performance and efficiency of

our approach. This integration is possible due to ChatGPT’s superior natural language

generation capability and its capacity for inline fine-tuning.

8
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1.3 Thesis Organization

The rest of this thesis is organized as follows. Chapter 2 summarizes the related

work of this study. Chapter 3 introduces the programs that were used in our experiments.

In Chapter 4, we elaborate on the methodology of our extraction and generation models.

Experimental results of each model are shown in Chapter 5. Further discussion and anal-

ysis of our work are presented in Chapter 6. We conclude the thesis and future work in

Chapter 7.

9
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Chapter 2 Related Work

In this chapter, we’ll introduce related works about the dataset, the approach and the

model we use.

2.1 MathWord Solving

The earlymath word problems are relatively easier. Theywere done bymapping (Bo-

brow, 1964) or simple operations like addition and subtraction (Bakman, 2007; Briars and

Larkin, 1984; Hosseini et al., 2014). To deal with the recent math word problems (Roy

et al., 2015), more types of operations and steps would be favorable.

AQuA (Ling et al., 2017) is a dataset with questions selected from the GRE and

GMAT, which consists of multiple-choice numerical answers and rational textual answers.

MathQA (Amini et al., 2019), a subset of AQuA, was labeled with the math symbolic

language by crowd workers. In the procedure of Amini et al. (2019), to assure the quality

of the annotations, constraints were added in the annotation system. However, no matter

what constraints were added, the basic requirement to operate the annotation system is

the human resource from annotators. Geva et al. (2020) did automatically data generation

works for Drop (Dua et al., 2019) dataset. However, they did it by generating textual data

for the numerical data that was generated prior to it. Apart from that, MathQA contains

10
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more operations than it.

Chen et al. (2020) propose a different architecture based on the MathQA dataset.

They observed that there are about 30% noisy data in MathQA. To deal with this problem,

they propose two metrics, execution accuracy and operation sequence accuracy, to eval-

uate the accuracy of the model tested on MathQA dataset. Execution accuracy measures

the correctness of the final multi-choice answer after running the execution, and operation

sequence accuracy measures the ratio of the generated symbolic sequences that match the

ground truth symbolic sequence exactly. They showed that the models optimized toward

sequence accuracy tend to achieve a higher accuracy because the noisy test data and such

bias does not exist in the execution accuracy. They also found that some of the symbolic

answers in MathQA are wrong.

In this thesis, to reduce the influence of the noisy data, we use execution accuracy for

the evaluation. Since Chen et al. (2019) uses more lenient version of operation accuracy,

their results are not suitable to compare with ours directly. That is, only the final value of

the generated sequence must match the ground truth symbolic sequence.

With the creation of the datasets such asMathQA andAQuA,more andmore research

works on deep learning and sequence to sequence model (Huang et al., 2018a,b; Ling

et al., 2017). That encourages us to enlarge the dataset. In this thesis, we will expand the

MathQA-type data to AQuA Dataset with recycle method. In particular, the intermediate

symbolic forms offered in MathQA show the effectiveness of models to learn the ability

to math word problem solving. How to obtain more question and program pairs without

the cost of human annotation raises a new challenging issue. For this reason, this work

proposes a novel approach to numeracy data augmentation.

11
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2.2 Knowledge Graph Question Answering

2.2.1 Knowledge Graph

Knowledge graph question answering (KGQA) primarily leverages three principal

knowledge graphs, namely Freebase(Bollacker et al., 2008),WikiData(Vrandečić andKrötzsch,

2014), and DBpedia(Auer et al., 2007). Most question answering (QA) datasets are con-

structed on one of these platforms. However, Freebase became temporarily inaccessible

due to its closure in 2016. While this presented a setback, it also created an opportunity.

As WikiData and DBpedia are still available online, they are advantageous for large lan-

guage models such as ChatGPT. This accessibility can influence experimental outcomes

on QA datasets derived from these platforms. Therefore, we have chosen to utilize a

dataset constructed on the Freebase platform.

2.2.2 KGQA Dataset

Traditionally, question answering was limited to simple queries(Bordes et al., 2015)

that consisted of a single triple from the knowledge graph or was conducted on a small

scale(Berant et al., 2013). Another constraint was the absence of annotated programs

that could guide towards the answer within the knowledge graph. With increasing com-

plexity, datasets encompassing multi-hop queries with program annotations were intro-

duced(Dubey et al., 2019; Trivedi et al., 2017; Yih et al., 2016). However, they remained

limited to two-hop questions. The first three-hop dataset, MetaQA, was introduced by

(Zhang et al., 2018). However, its limited relations were nearly solved by 2021(Atzeni

et al., 2021a; Ravishankar et al., 2021; Thai et al., 2022). Subsequently, a diverse range of

12
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datasets has emerged since 2019(Cao et al., 2022; Gu et al., 2021; Keysers et al., 2019).

For our study, we have selected the GrailQA dataset (Gu et al., 2021), which is based on

Freebase and comprises more comprehensive questions.

2.2.3 Relation Extraction Approach

As outlined in the introduction (Section 1.2), relation extraction primarily follows

two methodologies. In Information Retrieval, all candidate answers are sorted by the can-

didate’s type, path, and words. This was initially executed by embedding learning models

such as CNN or LSTM(Bordes et al., 2014; Dong et al., 2015). Numerous works have

replicated this step or composition for multi-hop questions(Jain, 2016). Some recent stud-

ies have also combined modern models like Bert or GNN(Saxena et al., 2020; Wang et al.,

2020). In previous years, the semantic parsing approach relied mostly on dependency

and schema parsing(Cai and Yates, 2013). Now, it is executed by sequence generating

models (Lan and Jiang, 2020; Sun et al., 2020), also known as generators. Increasingly,

researchers are integrating both approaches to enhance performance, either by ranking af-

ter generating(Atzeni et al., 2021b) or generating after ranking(Shu et al., 2022; Ye et al.,

2022). In this study, we utilize a strategy that generates after ranking.

2.2.4 Chinese Knowledge Graph Question Answering Dataset

The most prominent Chinese knowledge graph is Pkumod, developed by the Data

Management Lab at the Wangxuan Institute of Computer Technology, Peking University.

Since 2018, the China Conference on Knowledge Graph and Semantic Computing has

based on a small dataset for its competition, referred to as CCKS. However, Pkumod does

13
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not assign an ID for each entity, causing different entities in other KGs (e.g., Freebase,

WikiData) to be viewed as the same. Consequently, some entities in PKUmod may be

associated with an excess of ten thousand relations. This issue not only presents efficiency

concerns but also renders somemodels, which require relations as input, incompatible with

the dataset.

2.3 Models

In this section, we introduce various models employed in our research, each with its

distinct properties and strengths in processing and understanding sequence data.

2.3.1 LSTM

Long Short-TermMemory (LSTM) networks, introduced by Hochreiter and Schmid-

huber (Hochreiter and Schmidhuber, 1997), is a type of Recurrent Neural Network (RNN)

specifically designed to learn and remember long sequences of data (Sutskever et al.,

2014). Due to their ability to handle time series or sequential data, LSTM networks have

been widely utilized in sequence-to-sequence models. Figure 2.1 illustrates the structure

of a sequence-to-sequence LSTM model.

LSTM LSTM

X1 X2 Xn

LSTM

<EOS>

Y1

LSTM

Xn

Ym

LSTM… …

Figure 2.1: Senquence to senquence LSTM.

The core functions in an LSTM unit are as follows::

14
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Forget Gate:

ft = σ(Wf ꞏ[ht−1, xt] + bf )

Input Gate:

it = σ(Wiꞏ[ht−1, xt] + bi)

Core status:

Ĉt = tanh(Wcꞏ[ht−1, xt] + bc)

Ct = ft ⊙ Ct−1 + it ⊙ Ĉtt

Output Gate:

ot = σ(Woꞏ[ht−1, xt] + bo)

2.3.2 transformer

The Transformer model, first introduced in the paper “Attention is All You Need”

(Vaswani et al., 2017), simplifies architecture by solely relying on attention mechanisms

rather than more complex structures such as RNNs or CNNs. A Transformer typically

consists of several layers of encoders and decoders. The structure of a Transformer with

a single encoder and decoder is depicted in Figure 2.2.

In contrast to RNNs, Transformers offer superior performance in parallel training

as they do not rely on previous outputs during training. Moreover, due to their direct

attentionmechanism, Transformers exhibit better performance with longer texts compared

to RNNs.
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Figure 2.2: Transformer single encoder and decoder.

2.3.3 Bert

The Bidirectional Encoder Representations from Transformers (BERT) was intro-

duced by Devlin et al. (Devlin et al., 2018). BERT’s architecture is based on Transformer

encoders. The model was trained on large datasets using the Masked Language Model

(MLM) and Next Sentence Prediction (NSP) strategies. By introducing a novel approach

to language understanding, BERT marked a milestone in the field of Natural Language

Processing (NLP).
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2.3.4 t5

The Text-to-Text Transfer Transformer (T5) was proposed by Raffel et al. (Raffel

et al., 2020). It is a Transformer-based model that adopts a unified text-to-text approach,

where every NLP task is treated as a text generation problem. This innovative perspective

allowed the model to deliver high performance across diverse tasks, as it could transfer

knowledge learned from one task to another more seamlessly.

2.3.5 GPT3.5

The Generative Pretrained Transformer 3.5, also known as ChatGPT, was designed

to handle tasks given by specific instructions (OpenAI, 2021). Like other models, Chat-

GPT also underwent pretraining on large datasets. Additionally, it used reinforcement

learning, accompanied by an evaluation model, to enhance its ability to execute instruc-

tions more accurately. Despite the breakthroughs it brought about in NLP tasks, ChatGPT

still faces challenges in logical reasoning and answering questions that require complex

understanding.
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Chapter 3 Programs

3.1 Programs of MathWord Problem

This thesis introduces mathematical programs, as delineated by (Amini et al., 2019).

Each program comprises several operations, consisting of three types of words:

Operator: Every operation includes an operator. There are a total of 79 different opera-

tors, subdivided into:

• Simple operators: These include basic arithmetic operations such as addition, sub-

traction, and multiplication.

• Complex math operators: These involve more intricate operations like choice and

square root.

• Background knowledge operators: These incorporate domain-specific operations

like triangle_area_three_edges, volume_cone, and union_prob.

Constant: Constants are words specifying a numerical value, for instance, min_to_hour.

Variable: Variables represent numeric words in the question and are typically represented

as n1, n2, ..., nk.

18
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3.2 Programs of KBQA

Previous datasets utilized SPARQL (Harris and Seaborne, 2013), a distinct SQL di-

alect for executing queries on knowledge graphs, as the program for KBQA questions.

However, a program for KBQA does not necessarily need redundancy words for SQL. To

this end, Gu et al. (2021) introduced a new program for KBQA, referred to as s-expression.

This program enhances readability and compositionality. The s-expression for KBQA

consists of relations, entities, literals, and operators. The operators in the s-expression for

KBQA are as follows:

AND: Used to unionize two sets of nodes (i.e., entity/literal).

JOIN: Utilized to add a relation onto a set of nodes.

ARGMAX/ARGMIN: Extracts the maximum/minimum node from a set of nodes.

LT(LE/GT/GE): Returns a Boolean value determining whether the node is < (≤ / > / ≥).

COUNT: Provides an integer indicating the number of elements in the set.

19
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Chapter 4 Methodology

In this chapter, we present our methodology for augmenting math programs using

a validation approach. We detail various configurations of our reverse validation method

for knowledge graph question answering, including both training and non-training (in-line

fine-tuning) approaches. The methodology for the math programs is described in Section

4.1, while the validation method for knowledge graph question answering and the non-

training approach are outlined in Sections 4.2 and 4.2.5 respectively.

4.1 Method of Automatic Augmentation with Validation

of Math Programs

In order to obtainmore training pairs in theMathQA style, we propose a novel RNDA

approach. Our idea is to automatically compose the program for each training instance

that is already annotated in the end-to-end style. With the program, a large amount of the

end-to-end instances can be created from math problem datasets such as AQuA.

For the task with a lot of datasets unlabeled with the program like math word prob-

lems, this augmented method can improve the problem of small dataset. The details of

our methodology are described as follows.
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4.1.1 Recycling Data Augmentation

To ensure the correctness of the machine-generated programs, we adopt the large-

scale end-to-end dataset, AQuA, as the material. The recycle generation has been shown

its effectiveness in natural language generation (Hinson et al., 2020). We first trainM1,

a model for math word problem solving, on MathQA and employM1 to compose a num-

ber of candidate programs for each question in AQuA, where every question is labeled

with the final answer. Then we select all correct programs by verifying the value derived

from every candidate symbolic program, resulting, AQuA2, a new set of instances with

annotation in the MathQA style. Figure 4.1 illustrates the procedure.

Train
(h=0)

Generation
and

 Verification
AQUA

MathQA AQUAh+1

Modelh

Next round

RNDAh

Train
(h>0)

Combine

Figure 4.1: Recycling Numeracy data augmentation with symbolic verification.

With the genuine data fromMathQA and the semi-pseudo labeled data from AQuA2,

we can train a new model M2, and further apply the same procedure to obtain AQuA3

and M3, AQuA4 and M4, ..., AQuAh and Mh, iteratively. We iteratively build models

and generate new data based on the current best dataset, and get a new one. Our recycling

data augmentation approach differs from traditional self-training in an important aspect. In

self-training, the correctness of the pseudo-labels predicted by the model is unknown. The
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in a school of n0 boys , n1 % of muslims , n2 %
hindus , n3 % sikhs and the remaining of other
communities . how many belonged to the other
communities ?

Figure 4.2: The question in Figure 1.1 with preprocessing.

information applied to control the quality of the new data, e.g., prediction confidence, is

also made by the model and inherent in circular reasoning. In contrast, the quality of the

augmented data in our approach is symbolically verified with independent and genuine

information. Formally, given a candidate program, we evaluate it and obtain the final

answer (a numerical number) ŷ, and compare ŷ with the golden answer given in AQuA.

The program is regarded as correct if the final answer it derives equals to the golden one.

4.1.2 Preprocessing

In the sequence to sequence models, words split by whitespaces are first encoded

into their binary indices in the dictionary before being inputted to any other layers. Even

a character of difference leads to a different index in the dictionary. The model views

each index of a word as a completely different thing. In order to deal with this problem,

while preprocessing, we replace the numerical words (e.g. 1, 41, 321124) with indexes

such as n1, n3, and n10. Unlike Luong et al. (2015), which aligns rare words to words in

the source text, our addressing reduces the complexity of different numerical words and

encodes the positional information of the numerical words. Figure 4.2 shows an example.

https://www.overleaf.com/project/64514262a61a4382fb0e703c
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4.1.3 Numeracy Data Augmentation

Formally, we define a program that is used to represent the arithmetic reasoning to

answer a question in the MathQA dataset asΘ, which can derive to calculate an answer y.

This answer can be checked with a ground truth ŷ simply and automatically by comput-

ing. For each question, we can generate multiple math representations Θ along with their

probabilities, and calculate all possible y values.

In this work, we aim to automatically generate more questions with their golden cal-

culation answers ŷ and programs that derive to the golden answers. We use AQuA as

the source for data augmentation since MathQA is rewritten from the subset of AQuA. In

addition, AQuA is a pure math problem dataset with numerical options and answers, so it

is one of the most suitable datasets for the first step of expanding.

4.1.4 RNDA Process

We iteratively use the generative data, AQuAh to build a newmodelMh and generate

AQuAh+1. Some annotations lead to the right answers but we can obviously observe that

they include redundant operations, such as dividing 0 by a number or adding 0 to a number.

In addition, some of the operations will not be used in the later operations or the answer.

These two types of redundant operations should not be in our data. As a result, in the

generation step, we remove them and keep the other useful operations.

In this way, we generate AQuA2 by the above process and train a new model M2

with the combination of the original MathQA and AQuA2. This procedure can be applied

iteratively to generate AQuA3 and M3, ..., AQuAh and Mh. The best value of h is a
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hyper-parameter to explore.

4.1.5 Program Generation

The model for program generation is a sequence to sequence one based on Trans-

former with an attention layer for decoding. Let Θ = ϕ1(θ1)ϕ2(θ2)...ϕN(θN) be a whole

annotation of a math problem. An annotation containsN operations. Each operation con-

sists of one operator (e.g., add and sqrt) and several numerical words (e.g., n1 and con-

stant_1). ϕi is the operator of the operation i, θi is the numerical words of the operation i,

and ΘT = ϕ1(θ1)ϕ2(θ2)...ϕT (θT ) means the operations from 1 to T .

The ranking score ψ of the operator ϕt and numerical words θt for the encoder output

σ and previous order words Θt−1 is:

ψσ,ΘT−1
(ϕT θT ) =

D(σ,ΘT−1, ϕT )
n∏

t=1

D(σ,ΘT−1ϕT θT,1...θT,t−1, θT,t)

where D means the decoder of the model, θT,j is the numerical word with index j in θT

and t is the amount of the numerical words in θT . The ranking score Ψ of the annotation

Θ is defined as follows, when encoder output is σ:

Ψσ(Θ) =
N∏

T=1

ψσ,ΘT−1
(ϕT θT )

The calculation value ŷT of ΘT is :

ŷT = Γ(ΘT ) = ϕT (θT , γT )
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where γT−1 = (Γ(Θ1),Γ(Θ2), ...,Γ(ΘT−1)), and ŷ = Γ(Θ) = Γ(ΘN). For each σ, our

target is to maximizeΨσ(Θ) so that ŷ = y, where y is the exactly numerical answer of the

question of σ.

We also implement a parameter k, which constrains the max amount of Θ∗ that can

be verified. If multiple Θ∗ are verified by the system, we choose the one with the highest

Γ(Θ∗) of all of the Θ.

First, we use the MathQA model to generate (k = 167) outputs (Θ) for each question

in the training dataset of AQuA. Then, we get the correct numerical answer (y) from the

options and compare it with ŷ of eachΘ. If one of the answers is correct, then we can give

the question a math representation language sequence.

The computational complexity of our generation progress is controlled by the param-

eter k and the length of the program N .

O(generation program) = k ∗N

There’s no additional computational time complexity when h increases.

4.2 Validation ofKnowledgeGraphAnswering viaReverse-

Based Method

4.2.1 Overall Architecture

Figure 4.3 demonstrates the overarching architecture of our approach.
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Figure 4.3: Overview of Our Model Architecture.

Our architecture is composed of three main components: a ranker R, a generator G,

and a reverse generator RevG. The input to the secondary finetuning phase of generator

G consists of the original question, the output from ranker R, and the output from reverse

generator RevG.

The process for Generator G involves two stages of finetuning.

In the first stage, the finetuning is performed using the training data, while the second

stage employs auto-generated data RevG for each instance.

This auto-generated data is produced by the ranker and the reverse generator.

This approach can combine the use of the meaning words in the program and the

ability of natural language generation of the language model. It helps the language model

to realize the schema of the program with natural language meaning better.
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4.2.2 Reverse Generate Validation Process

The Ranker R is first trained to assign scores to the paths in the graph. Given a

question Q and a set of possible paths in the knowledge graph KB, the ranker computes

the top-ranked candidates C:

C = R(Q,KB)

Then, the Generator G is trained to produce programs S from a question q:

S = G(q)

Moreover, the Reverse Generator Rev_G is trained to generate questions Q from a

program s:

Q = Rev_G(s)

where Q consists of multiple questions:

Q = {q1, q2, ..., qn}

Given a new question q1, the Ranker R is first employed to generate candidates C:

C = R(q,KB) (1)

C = {c1, c2, ..., cm} (2)

where ci is an individual candidate path.
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Data Type Example
Question semaphore railway line is on the rail

network named what?
Candidate Program (AND rail.rail_network (JOIN

rail.rail_network.railways m.03qcvdj))
Augmented Question what is the rail network that has a railway

line called semaphore railway line?
Final Program (AND rail.rail_network (JOIN

rail.rail_network.railways m.03qcvdj))
Final Answer [”m.04rydm”]

Table 4.1: An example from MathQA question stem and the output program. The answer
can be derived by evaluating the program step by step.

Next, Rev_G is used to generate the questions for each candidate:

Qi = Rev_G(ci) (3)

Qi = {qi1, ..., qin} (4)

The pairs (qij, ci) are then used to further fine-tune G.

Finally, the ultimate program is generated by:

S∗ = G(q)

The reliability of the output is verified with the final program. If the output program

is non-executable, it is considered as the model’s decision that no suitable answer exists

within the given programs. An executable program indicates the program can yield some

answer on the knowledge graph. In practice, we generate k programs for validation and

choose the first executable program as the final validated answer. If none of the programs

are executable, it is defined as none of the programs being valid.
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4.2.2.1 Ranker

A ranker could be a Graph neural network, a transformer, or anymodel that can assign

a score between a knowledge graph program and a question. In this study, we follow (Ye

et al., 2022) and use a Bert classifier as the ranker in the experiment. The Bert classifier

consists of a Bert and a cross encoder of the question q and the program p to be scored:

score(q, p) = Linear(Bert(Cat(q, p)))

4.2.3 Reverse Generator

The role of the ReverseGenerator is to convert a candidate program back to questions,

as shown in the overall architecture (3). Depending on the generation setting, the Reverse

Generator will generate several questions for each candidate. In the training approach, our

Reverse Generator uses the T5 model as a base. We finetune the T5 model using the gold

programs and questions in the training dataset to perform the task.

4.2.4 Generator

The Generator’s role is to convert a question into candidate programs. The architec-

ture of our Generator is also a T5 model. A Generator requires two steps of finetuning

before the final generation. In the first step, the Generator is trained using the training

dataset, where it is tasked with directly generating the golden program from the question.

In the second step, with the candidate programs generated by the Ranker and augmented

questions generated by the Reverse Generator, the Generator is further fine-tuned. See Ta-

ble 4.1, for the example of a candidate program and an augmented question.) According
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Figure 4.4: Overview of our training-free model architecture.

to the generation strategy, it generates different amounts of programs for a question.

4.2.5 ChatGPT No training approach

Departing from the T5 model, we further combine our validation process with the

LLM, significantly improving the efficiency of our process. The central idea is to use

inline fine-tuning to replace traditional fine-tuning on the model, leading to a training-

free approach for the validation process in any Information Retrieval based approach.

In this approach, we denote ChatGPT as L. Similar to previous steps, we first use the

Ranker to get candidate programs C, then use ChatGPT reverse generator LR to generate
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questions for each candidate program:

q′i = LR(ci)

With the augmented question and program pairs, we use ChatGPT generator LG to

generate the final answer:

S∗ = LG({(q, c) | q ∈ Q, c ∈ C})

This allows us to achieve a no-training version of our validation process. In addi-

tion to the components in the T5 approach, we introduce a new model in this approach,

Corrector Lc. The Corrector is designed to make the input question more conversational,

reflecting natural human speech:

Lc(q) = q′

Here, q′ is a question with the same meaning as q. By comparing dataset questions and

questions generated by the ChatGPT question generator, we found that the questions gen-

erated by ChatGPT are more conversational. Therefore, we use ChatGPT to implement

the Corrector. More discussion on this topic can be found in section 6.2.
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Chapter 5 Experiments

In this chapter, we introduce our experiment on automatic program generation for

math word problems, specifically focusing on the reverse base method. Additionally, we

will describe the subsequent experiment involving a ranking strategy applied to a noisy

Chinese dataset for KGQA tasks.

5.1 Experiment on Math Word Problem Solving

5.1.1 Experiment Setting

We implement the model with the fairseq framework.1 For the LSTM model, there

are two layers for both the encoder and the decoder. The embedding dimensions of both

the encoder and the decoder are 100 with dropout rates of 0.2. The dropout rates of the

rest layers are set to 0.3.

For the transformer model, there are 6 attention heads and 6 layers for both encoder

and decoder. The embedding dimension for encoder is 600 and for decoder is 300. The

learning rate is 10−4. The optimizer is Adam. The criterion is cross entropy. For the

generation, the beam size is 167, the size of the full vocabulary of the math program
1https://fairseq.readthedocs.io/en/latest/
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language.

5.1.2 Overall Result of Math Word Problem

We compare our models with the state-of-the-art model (Amini et al., 2019; Chen

et al., 2020), as shown in the first row.

In MathQA, Chapther 2, we’ve mentioned that some of the representations’ calcu-

lation are incorrect. Thus, we can prune the instances that are not validated the correct-

ness (includes the question with “None of above” as the correct answer) and obtain a

pruned MathQA dataset, consisting of 22,181 valid training instances and we’ll then call

it MathQA*. The dataset made by our NDA algorithm MathQA augumentation includes

43,854 AQuA data with MathQA type annotation. We’ll then call it as RNDAh which h

is the round of the Augmentation process.

For testing the effectiveness of our RNDA approach, we train our model for math

word problem solving with several versions of training data,the original MathQA dataset,

the MathQA*, and theMh s, and evaluate the models on the testset of MathQA. Since the

performance of the models built from MathQA are better, we have the new experiment.

Experimental results show the seq2seq solver trained on the original MathQA is

slightly inferior to the state-of-the-art model, and the model trained on the cleaner but

smaller MathQA* is even worse. However, the model with the aid of our NDA approach

achieves an Accuracy of 61.7%, making a significant improvement.
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Approach Architecture Accuracy

Amini et al. (2019) 54.20 %
Chen et al. (2020) 55.95 %
MathQA LSTM 53.10 %
MathQA Transformer 56.00 %
MathQA* LSTM 50.1 %
MathQA* Transformer 54.3 %
RNDA LSTM 61.7 %
RNDA transformer 63.6 %
Ours Best transformer 67.28 %

Table 5.1: Overall performances of Math solving Experiments.

5.1.3 Result of RNDA

To dive into the details of the results of our RNDA process, we explore different

values of the hyperparameter h, which is the number of recycle generations. As shown in

Table 5.2, the performance increases as the increase of h for h < 4. In particular, the use of

only one generation of RNDA drastically improves the Accuracy from 56.00% to 63.60%,

showing the benefit of additional training instances with the symbolic intermediate forms.

The number of augmented instances is decreased at h = 4 because more pseudo-label

instances do not pass the verification, and the performance also downgrades.

h Augmented Instances Accuracy

0 29,837 56.00%
1 43,854 63.91%
2 56,367 66.45%
3 62,531 67.28%
4 61,842 66.89%

Table 5.2: Performances of different recycle generation settings (h).
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5.2 Experiment of Reverse Generation Base Validation of

KBQA

5.2.1 Experiment Setting

In order to do the ChatGPT version experiment, we selected the FreeBase dataset as

our Knowledge Graph. This is because both Wikidata(Vrandečić and Krötzsch, 2014) and

DBpedia(Auer et al., 2007) continue to be accessible over the internet, allowing ChatGPT

to directly retrieve data from Wikidata without our intermediate processing.

In this setup, for the ranker, we adhered to the configuration described by (Ye et al.,

2022) to generate to top 10 candidates. The top 10 candidates were used to generate ques-

tions, and 10 unique questions were produced for each candidate in order to do fine-tune

by instance. As per (Ye et al., 2022), we ensured that the programs used were linearized.

We leveraged several versions of the T5 model for the generator, specifically t5-

large(Raffel et al., 2020), t5-small, and t5-ssm-large, within an open book setting. Our ex-

periments involving these T5 models followed three different methodologies: fine-tuning

on training data alone, fine-tuning solely on instance-specific augmentation data, and a

combination of both training data and instance-specific augmentation data for fine-tuning.

We conducted an additional experiment focusing on instance-specific augmentation

data using t5-large, allowing us to draw comparisons with our non-training approach in

the ChatGPT experiment.

In the context of T5 fine-tuning settings, we used a batch size of 32 and a beam size of

10. Further, we established an upper limit of 10 for the maximum sequence length subject
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to validation.

5.2.2 Result of Reverse Generation Base Validation

Approach Pretrain Model F1(All) F1 (Exec) Exec Ratio
Finetuned on Train only T5-small-ssm 0.2512 0.8400 0.2990
Finetuned on Train + Augumentation T5-small-ssm 0.6215 0.8002 0.7766
Finetuned on Augumentation only T5-large 0.5744 0.6962 0.8251
Finetuned on Train only T5-large 0.3061 0.8697 0.3519
Finetuned on Train + Augumentation T5-large 0.6586 0.7873 0.8366
Finetuned on Augumentation only T5-large-ssm 0.5825 0.6787 0.8583
Finetuned on Train only T5-large-ssm 0.3062 0.8684 0.3526
Finetuned on Train + Augumentation T5-large-ssm 0.6674 0.8032 0.8309
Ranker 0.6842 0.6842 1

Table 5.3: Statistics of Our Dataset in terms of Rating Score and Its Variance

We used three metrics to evaluate the performance of each approach. F1(All) is the

mean F1 score of the approach on the complete dataset. In cases where all the programs

cannot be executed, the F1 of that data is evaluated as 0 in F1(All), signifying that none

of the data is validated by the model. F1(Exec) is the mean F1 score of the approach,

disregarding the data that cannot be validated. This score indicates the performance of

the instances that the model considers valid, thereby demonstrating the reliability of the

approach. The Exec Ratio represents the percentage of instances that can be executed,

meaning the language model identifies some of the programs as valid. This metric can be

directly calculated using F1(All) and F1(Exec).

When compared to the ranker’s results, our approach significantly enhances the reli-

ability of the model while only slightly compromising overall performance. The T5-small

experiment demonstrates that our approach is also beneficial in settingswith smallermodel

sizes. The primary issue is its inability to maintain the executability of the generated pro-

grams, meaning it tends to deem programs unreliable. The experiment finetuned on the
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training set only reveals that language models can determine if a program corresponds

correctly to a question. However, without the reference of augmented instances, they fail

to generate suitable programs.

5.2.3 Experiment Setting for ChatGPT

In our experiment, we employed OpenAI’s ”gpt-3.5-turbo” as the Large Language

Model (LLM). We randomly selected 100 instances for this analysis.

Given the maximum token limit of 4,000, we generated only one candidate question

for each candidate, and subsequently, one final program per instance. In the context of

in-line fine-tuning, we used 20 instances for the reverse generator and 3 instances for the

generator due to the token limit.

5.2.3.1 Prompt of ChatGPT Reverse Generator

In the ChatGPT version of the reverse generator, we utilized a system prompt to

define the task and provide samples. This approach remains consistent across different

programs.

Here’s the task explanation prompt:

You are a translator which translates an expression of specific logical form

to a natural language question. To smooth out the question, you may ignore

some of the words to avoid duplicate word. Here’s the description of the

functions in the logical form:

Refer to Section 3.2 for the functions’ description. The system prompt will be con-
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tinued with the samples. The following is a sample instance:

Sample Input : (AND measurement_unit.measurement_system (JOIN mea-

surement_unit.measurement_system.current_density_units ampere_per_square_metre))

Sample Output : what is the measurement system that uses ampere per square

metre as a unit for current density?

The sample input and output are the linearized gold program and the question of an

instance in the training dataset. The user prompt is in the same format as Sample Input.

5.2.3.2 Prompt of ChatGPT Generator

In the ChatGPT version of the generator, we also use a system prompt to explain the

task and give a sample.

Here’s the task explanation prompt:

You are a translator who translates a natural language question into an ex-

pression of a specific logical form. Here’s the description of the functions in

the logical form:

...

For each question, you will get several pairs of related questions and their

logical form answer. Knowing that all of the logical forms in the reference

are valid.

The description of the functions is also in Section 3.2. Then is the sample instances

part. The following is a sample of the system prompt:
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Sample Input:

Question 1: what is the name of the lighthouse that has a focal height of light

of 62.0?

Logical form 1: ( AND architecture , lighthouse ( JOIN architecture , light-

house , focal height of light 62.0 ) )

Question 2: what is the name of the lighthouse that has an intensity of 62.0?

Logical form 2: ( AND architecture , lighthouse ( JOIN architecture , light-

house , intensity 62.0 ) )

...

Question 10: Which TV series season has a season number of 62.0?

Logical form 10: ( AND tv , tv series season ( JOIN tv , tv series season ,

season number 62.0 ) )

Reference the question and logical form pairs above, answer the question

with logical form: Which lighthouses have lights that are 62.0 meters high?

For each k, Logical form k is a candidate program chosen by the ranker and Question k is

the result of the reverse generator of Logical form k. The user prompt follows the same

format as the Sample Input.

5.2.3.3 Corrector Prompt

There is no need for a program description in the corrector prompt. Consequently,

the task explanation is:

39



doi:10.6342/NTU202302191

You are a question corrector. The user will give you a question in an abnormal

speaking order. You should return the question in normal order.

The system prompt contains several sample inputs and outputs. For each sample, we

use the question and the reverse generator’s output of the gold program from an instance

in the training dataset. A sample is as follows:

Sample Input 1:

1.0 lux is the unit of illuminance for what unit?

Sample Output 1:

What unit is illuminated by 1.0 lux?

5.3 Experiment of Generation after Ranking Approach

of KGQA on Noisy CKBQA

Since there are too many edges on a single node in the Knowledge Graph PKUmod,

it is inefficient to implement a complex model as a ranker for the CKBQA dataset. Fortu-

nately, the generator will not be limited by this. As a result, we want to know if the strategy

generated after ranking is useful for the Noisy dataset and with a simple structure ranker.

In this study, we designed a relation extraction experiment to compare the performance of

different methods on the Noisy Knowledge Graph Question Answering task.
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5.3.1 Experiment setting

For the entity extraction we use ngram entity searching and bert entity disambigua-

tion. In the relation extraction, we use the strategy generating after ranking. For the

ranker, we reference a leading competitor’s text comparison method and build the ranker.

For the generator, we use the pretrain version of t5-pegasus(Su, 2021), which is specified

for Chinese.

5.3.2 Experiment Result

The experiment mainly included the following three settings: ranker-only, ranker +

t5-pegasus-small, and ranker + t5-pegasus-base.

5.3.2.1 Ranker Result

In this setting, we only used the text-based Ranker to rank candidate relations. We

observed the performance of the Ranker alone on the relation extraction task. From Table

5.4, we can see that it is difficult for the ranker to solve the question with many hops.

1-hop 2-hop 3-hop 4-hop 5-hop All

Precision 0.5909 0.4182 0.2421 0.0000 0.0000 0.5140
Recall 0.5850 0.4234 0.2395 0.0000 0.0000 0.5119
F1 0.5842 0.4127 0.2402 0.0000 0.0000 0.5080
ACC 0.5597 0.3884 0.2381 0.0000 0.0000 0.4850

Table 5.4: Performance Evaluation of Our Modified Ranker
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5.3.2.2 Ranker + Generator (Pegasus T5-base)

In this setting, we combined the Ranker with the Pegasus T5-base generative model.

First, the Ranker ranked the candidate relations and then selected the 20 most probable

relations. The Pegasus T5-base generative model was used to refine these candidate re-

lations. This setting aimed to show the performance of the Ranker combined with the

Pegasus T5-base generative model.

1-hop 2-hop 3-hop 4-hop 5-hop All

Precision 0.7252 0.6439 0.3835 0.7500 0.0000 0.6789
Recall 0.7146 0.6631 0.4527 1.0000 0.0000 0.6828
F1 0.7147 0.6430 0.3723 0.8333 0.0000 0.6717
ACC 0.6855 0.5868 0.3333 0.5000 0.0000 0.6327
Table 5.5: Performance Evaluation of Ranker + Pegasus T5-base

5.3.2.3 Ranker + Generator (Pegasus T5-small)

In this setting, we combined the Ranker with the Pegasus T5-small generative model.

Similarly, the Ranker ranked the candidate relations first, and the Pegasus T5-small gen-

erative model refined the top 20 candidate relations. This setting showed the performance

of the Ranker combined with the Pegasus T5-small generative model, which was not as

good as Pegasus T5-base but still showed improvement over the Ranker alone.

1-hop 2-hop 3-hop 4-hop 5-hop All

Precision 0.6338 0.4293 0.2619 0.1667 0.0000 0.5458
Recall 0.6232 0.4455 0.2857 0.5000 0.0000 0.5465
F1 0.6241 0.4264 0.2698 0.2500 0.0000 0.5395
ACC 0.5996 0.3967 0.2381 0.0000 0.0000 0.5124
Table 5.6: Performance Evaluation of Ranker + Pegasus T5-small

When the Ranker is combined with Pegasus T5-base, the precision, recall, and F1

scores at each hop have significantly improved. This indicates that the generative model
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can effectively refine the candidate relations selected by the Ranker, thereby improving the

accuracy and coverage of relation extraction. In this setting, the comprehensive indicator

(ACC) reached 0.6327, demonstrating the strong performance of the Ranker and Pegasus

T5-base combination.

Compared with Pegasus T5-base, the use of a smaller Pegasus T5-small as the gen-

erator shows a slight decrease in performance at each hop. However, it still outperforms

the method of only using the Ranker in terms of precision, recall, and F1 scores. This

demonstrates that the Pegasus T5-small generator still has a certain relation refinement

ability, but may not reach the performance level of Pegasus T5-base in all cases.

Combining the above discussions, we can draw the following conclusions: In the

task of relation extraction, combining the Ranker and generative models (such as Pega-

sus T5-base or Pegasus T5-small) can effectively improve performance. Among these two

generative models, Pegasus T5-base performs better, but Pegasus T5-small is still compet-

itive in some cases. These experimental results provide useful guidance for future KBQA

research and demonstrate the effectiveness of the relation extraction strategy combining

Ranker and generative models.
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Chapter 6 Discussion and Analysis

In this Chapter we are going to discuss the performance of auto-generation of Math

dataset and the feasibility of combine ChatGPT and our KGQA approach.

6.1 Analysis of Math Word Problem

Dataset Type of Question Formula

MathQA 12,101 10,721
MathQA + Aqua1 22,149 18,339
MathQA + Aqua3 28,193 27,558

Table 6.1: Comparison of the diversity of each dataset (Number of different types of ques-
tion and different formulas.

6.1.1 Analysis of Augmentation

In Table 6.1, we listed the number of different types of question and formula in each

dataset. If two questions with different types, means those questions not only different in

the numbers but also different in the structure.

By the table, we could reasonably speculate that the solver train on the NDA datasets

performed better because of the wider diversity of their data.
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6.1.2 Analysis of Paremeter h

(a) Verification on the training data (97,467 for all)

(b) Verification on the testing data (254 for all)

Figure 6.1: Verification on the training and test data. The horizon axis denotes the number
of generated answers, while the vertical axis denotes the number of data being verified.

Figure 6.1 (a) shows an increasing trend with a high start point at both of the models

trained on the original MathQA and that trained on the augmented MathQA because the

training data of AQuA also contains parts of MathQA. The number of data that can be

validated has a positive relation to the log of the number of generations. The data that

can be validated by the model with NDA is more than the data that can be validated by
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the model with only the original MathQA, which shows that the method can iteratively

augment the dataset. To avoid the suspicion of the training data is the same as the test data

(NDA model was trained on AQuA* + MathQA*), we also use the test split of AQuA to

do the experiment.

As shown in Figure 6.1 (b), the model with NDA still performs better. We further

compare the compositions of the question types and the distinct symbolic operations that

are used to compose a program. In Table 6.1, we list the number of different types of

questions and formulas in each dataset. With the augmented instances, the types of ques-

tions are increased from 12,101 to 28,193, and the types of operations are increased from

10,721 to 27,558, providing muchmore diverse and rich expressions for the model to learn

to generate programs.

6.2 Case of Augmentation base Validation Combine with

ChatGPT

In our ChatGPT version approach, we first utilize ChatGPT reverse generator to first

generate questions based on the given program. Subsequently, we use the ChatGPT ver-

sion generator to produce the final program(s). This section discusses the impact and

feasibility of these two adaptations.

6.2.1 Question Generation by ChatGPT

We examine the impact of substituting the reverse generator with ChatGPT. Our anal-

ysis of several instances surprisingly revealed that questions generated by ChatGPT are
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Example
Readable Program ( AND cvg , computer videogame ( JOIN cvg ,

computer videogame , versions Fighting Street ) )
Raw Data fighting street is the version of which video game?
Augmented Question what is the video game that has a version called

fighting street?
Corrector Output which video game has a version called fighting

street?

Table 6.2: The sample of different versions of questions.

often superior to the original data, as the original data frequently contain words in an ab-

normal order. Table 6.2 shows a processed program where all unreadable words (e.g.,

entity id) are replaced with their human-friendly equivalents.

The questions derived from the dataset, the reverse generator, or the corrector all

accurately convey the same meaning as the processed program. However, in natural lan-

guage, questions typically start with wh-words, unlike the questions in the original dataset

where the wh-word is positioned in the middle. In contrast, ChatGPT generates questions

beginningwith a wh-wordwhen given the correct program, indicating that ChatGPTmight

produce better questions than the original dataset.

Hence, we implemented a corrector, whose role is described in Chapter 4.2.5. As

shown in the examples, the corrector’s output closely resembles the reverse generator’s

output when ChatGPT is used.

Reverse Generator Model Compare Question Bleu

ChatGPT Corrector 0.6479
ChatGPT Original 0.5864
T5 Original 0.5668

Table 6.3: Comparison of the reverse generator result.

To further investigate this phenomenon, we compared the similarity between ques-

tions generated by ChatGPT/T5 and those corrected by ChatGPT or sourced from the
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original data. Table 6.3 shows that when using the original dataset as a standard, the Chat-

GPT version of the reverse generator outperforms the T5 version. The similarity between

the output from the ChatGPT version of the reverse generator and the corrector output

is also notably higher. These findings suggest that our architecture may be even more

effective with the ChatGPT version of the reverse generator and corrector.

6.2.2 ChatGPT Generator (G)

In this section, we examine the feasibility of using ChatGPT as the generator. This

adaptation significantly enhances the efficiency of the entire process, as it performs inline

fine-tuning instead of the two steps of traditional fine-tuning.

Approach Execution Ratio F1(exec)

Ranker only 1.0000 0.7925
ChatGPT(G) (without Rev question) 0.0800 0.4225
ChatGPT(RevG + G) 0.6600 0.8878
ChatGPT(RevG + G) + Corrector 0.6300 0.9278

Table 6.4: Comparison of the ChatGPT and Ranker result under 100 instances.

Table 6.4 presents the Executable Ratio and F1(exec), defined similarly as in section

5.3. With the generator and reverse generator both powered by ChatGPT, the architecture

achieves a F1(exec) score of 0.8878, significantly higher than the 0.7925 score achieved

by using a ranker only. Despite some loss in the Execution Ratio due to the maximum

token limit in GPT-3.5 (the generator can only view one program as valid), the version

incorporating a corrector yields an impressive score of 0.9278. This suggests that our

method may outperform any ranker in the GrailQA leaderboard in terms of reliability

(F1(exec)). In certain instances where the ranker fails, the ChatGPT generator directly

outputs: “I don’t know, it seems no answer in the reference.”, which means ChatGPT is
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able to determine the meaning of the program under this approach.

These results are promising for the combination of large language models with our

proposed approach.
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Chapter 7 Conclusion

In this thesis, we have introduced several methods that exploit the characteristics of

two distinct programs, thereby facilitating the creation of a superior model for addressing

Math word problems and Knowledge Graph (KG) issues. Those methods can further

help the tasks with the same features, which may even combine two methods if there’s

a program owns two features at the same time. Experimental evidence attests to their

effectiveness.

To manage the scale issue of the training set involved in math word problem-solving

tasks, we have proposed a novel numeracy data augmentation approach. This technique

recycles to generate intermediate forms for extensive datasets annotated in an end-to-end

style. We have also implemented symbolic verification to ensure the quality of the aug-

mented data.

The experimental results not only validate the efficacy of these intermediate forms for

learning but also indicate that our model significantly outperforms state-of-the-art models.

We have put forward a unique numeracy data augmentation approach, effective in in-

creasing the quality of training instances. Our model’s performance is state-of-the-art, as

proven by the experimental results. Moreover, the results underscore the importance of in-

corporating reasoning process information when training models for math word problem-
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solving. By utilizing data with minimal bias and data devoid of math representation lan-

guage, we have reduced the cost of developing a math-solving system based on math rep-

resentation language. Future work will extend our approach to a broader range of complex

math problems.

In the KGQA task, we conducted several experiments. To devise a solution for the

noisy dataset, we integrated a ”generate after ranking” approach on the noisy Chinese

data. The feasibility of this approach on the simple structure ranker has been demon-

strated through experiments, leading to improved efficiency. To enhance the reliability

of the models in providing Knowledge Graph answers, we have introduced an automatic

question augmentation approach. This approach capitalizes on language models’ ability

to generate natural language questions, assisting the models in interpreting the programs

and determining their correctness.

We have also investigated the potential of combining a Large Language model with

this approach. Our results show that GPT3.5 (ChatGPT) harmonizes well with the intro-

duced approach.

With the imminent release of the long context version of GPT3.5/4, it is anticipated

that our work could be further expanded in various settings, leading to improved results.
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