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摘要

隨著深度學習技術的不斷發展，物件偵測的準確性也日益提高。自動駕駛

Level 5的實現已經近在眼前。在良好的天氣條件下，物件偵測的平均精確度可以

高達百分之八十五以上。然而，天氣並非時時都理想，有時候會下雨、起霧，甚

至下雪，這種惡劣天氣會大幅降低物件偵測的準確性。

傳統的感測器，如攝像頭和 LiDAR，都容易受到惡劣天氣的影響。因此，我

們採用 RADAR和 LiDAR的融合來進行物件偵測。RADAR在惡劣環境下不受影

響，但會產生許多噪點雲。因此，我們需要使用 LiDAR作為輔助，因為 LiDAR

能提供精確的環境點雲信息，有助於減少虛擬偵測。

我們使用注意力機制來融合 LiDAR和 RADAR的特徵。同時，我們提出了特

徵選取模塊（Feature Selection Module），解決了注意力機制中關注權重的問題。

此外，我們還提出了關聯融合模塊（Associative Feature Fusion Module），充分利

用注意力機制選取的特徵。通過實驗證明，我們提出的模型優於目前最先進的

RADAR和 LiDAR模型。

關鍵字：深度學習、多模態物件偵測、基於注意力機制進行特徵融合
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Abstract

With the continuous development of deep learning technology, the accuracy of object

detection has been steadily improving. The realization of Level 5 autonomous driving is

within reach. In favorable weather conditions, the average accuracy of object detection

can reach over 85 percent. However, the weather is not always ideal, and conditions such

as rain, fog, and even snow can significantly reduce the accuracy of object detection.

Traditional sensors like cameras and LiDAR are susceptible to the influence of harsh

weather conditions. Therefore, we adopt a fusion of RADAR and LiDAR for object de-

tection. RADAR is unaffected by adverse environmental conditions but introduces a lot

of noisy point clouds. Hence, we utilize LiDAR as an auxiliary sensor because it provides

accurate environmental point cloud information, which helps mitigate ghost detection.

We employ an attention mechanism to fuse the features from LiDAR and RADAR.

Additionally, we propose a Feature Selection Module to address the issue of attention

weights in the attention mechanism. Furthermore, we introduce an Associative Feature
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FusionModule to fully utilize the selected features from the attentionmechanism. Through

experiments, we demonstrate that our proposed model outperforms the state-of-the-art

RADAR and LiDAR models.

Keywords: Deep learning, multimodal object detection, feature fusion based on attention

mechanism
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Chapter 1 Introduction

With the rapid advancement of technology and the breakthroughs in deep learning

techniques, achieving fully autonomous driving (Level 5)[6] has become highly possi-

ble. However, to achieve fully autonomous driving, we must overcome the challenges of

degraded object detection performance in adverse weather conditions.

Currently, common sensors deployed in vehicles include camera, lidar, and radar.

Camera provide rich semantic information, aiding in the detection of small objects. It

is also cost-effective, helping to reduce the overall cost of vehicles. However, camera

is not sufficiently robust in adverse weather conditions such as low light, fog, rain, or

snow (as shown as Figure 1.1), which results in the loss of accurate visual information.

Additionally, objects may appear differently in size when captured by camera at varying

distances. These limitations severely impact the detection performance.

Lidar addresses some of the limitations of camera. It provides rich geometric infor-

mation and operates effectively even in low light conditions. However, lidar still struggles

to function properly in adverse weather conditions(as shown as Figure 1.2 such as rain,

snow, or fog. The laser beams emitted by lidar can be scattered by fog, snowflakes, or

raindrops, leading to inaccurate object localization.

Radar, due to its reliance on radio waves, remains operational in adverse weather

1
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Figure 1.1: The blue boxes represent the ground truth, and it can be observed that in snowy
weather, the camera fails to capture any objects.

conditions. It is not affected by fog, snow, or raindrops. However, radar-generated point

cloud data may contain noise, resulting in ghost detection[39] and decreased detection

performance.

In unimodal object detection, camera-based detection[23, 30, 32, 34, 35] and lidar-

based detection[3, 11, 17, 29, 37, 40] are widely studied as primary directions. Camera-

based detection[23, 30, 32, 34, 35] allows for cost-effective implementation in self-driving

vehicles and provides rich visual information with a perspective similar to that of humans,

making it easy to interpret. However, camera-based detection[23, 30, 32, 34, 35] faces

challenges in terms of lacking depth and geometric information, and its performance is

heavily influenced by environmental factors such as lighting conditions, limiting its capa-

bility to achieve higher levels of performance.

Lidar-based detection[3, 11, 17, 29, 37, 40] provides rich geometric information and

accurate localization, maintaining excellent performance even in low-light environments.

However, the point cloud imaging provided by Lidar is sparser compared to RGB im-

ages[5]., and direct utilization of point clouds for deep learning requires substantial mem-

2
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Figure 1.2: The blue boxes represent the ground truth, and it can be observed that in snowy
weather, lidar fails to capture any objects.

ory and computational resources.

In recent years, there has been growing interest in multimodal object detection to

leverage the unique characteristics of different sensors. Inmultimodal object detection, the

fusion of camera and lidar[1, 10, 13, 14, 36] has become a mainstream research direction.

This fusion allows for the simultaneous utilization of visual information and dense features

from cameras, as well as geometric information and precise object positioning from lidar.

It helps overcome the performance degradation caused by insufficient lighting conditions.

However, the fusion of camera and lidar[1, 10, 13, 14, 36] still fails to provide robust

performance in adverse weather conditions.

3
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Considering these factors, combining radar and lidar is believed to provide more

robust performance in adverse weather conditions. By leveraging the strengths of both

sensors, overcome the limitations of each and improve the perception performance and

safety of fully autonomous driving systems, even in adverse weather conditions.Therefore,

a novel end-to-end radar and lidar fusion model is proposed, and model that leverages

attention mechanism for feature fusion. The following are the contributions of this paper:

1. A novel end-to-end multimodal object detection model is proposed, which includes

Feature Selection Module and Associative Feature Fusion Module, and the model

outperforms the current state-of-the-art by 4.68% in adverse weather conditions.

2. Feature Selection Module is introduced to address the limitation of attention mech-

anism.

3. Associative Feature Fusion Module captures the surrounding features of the query

and attends to channel features to improve performance.

4
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(a) TRL[12] (b) PointPillars[11] (c) ours (d) ground
truth[28]

Figure 1.3: Samples data from the night case, and The yellow circles indicate the areas that
differ from the ground truth, (a) for radar-only object detection, (b) for lidar-only object
detection, and (c) for object detection with the fusion of radar and lidar. (d) represents the
ground truth
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Chapter 2 Related Work

In the field of autonomous driving, researchers are studying various methods for

object detection using different sensors. These sensors include popular ones like cameras,

radars, and lidars, as well as less common ones like gated cameras and infrared cameras.

This article will focus on methods relevant to our research. Firstly, there is Radar-only

detection, which focuses on object detection using radar sensors. Next, there is Lidar-

only detection, which utilizes lidar sensors for object detection. Additionally, there are

methods for Lidar-camera fusion, where information from lidar and cameras is combined

to enhance object detection performance. Similarly, there are methods for Lidar-radar

fusion, which combine information from lidar and radar for object detection.

2.1 Unimodal Sensor Detection

Unimodal sensor detection refers to the task of object detection using a single type

of sensor or modality. In the context of computer vision, this typically involves using a

single sensor, such as a camera or a lidar, to detect and localize objects in a scene.

6



doi:10.6342/NTU202302360

2.1.1 Radar-Only Dtection

There is relatively less research on using radar alone for object detection. This is

mainly due to the limitations of radar data provided by most autonomous driving datasets,

which typically use mmWave radar. The low resolution of radar data makes it challenging

to use radar alone for object detection. However, the RADIATE dataset provides high-

resolution radar data that can be used for standalone radar-based object detection. RADI-

ATE also offers a baseline model based on the Faster R-CNN[27](Figure 2.1) algorithm

for detection. Another method[12](Figure 2.2)utilizes radar alone for object detection.

[12]observes that vehicles exhibit similar features in radar images, and objects in consec-

utive frames also share similar features. Therefore, [12]leverages attention mechanisms

to establish temporal relationships between objects in current and previous frames, aiming

to enhance detection performance.

Figure 2.1: Model architecture of Faster R-CNN [27].

7
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Figure 2.2: Model architecture of TRL [12].

2.1.2 LiDAR-Only Detection

”Using LiDAR alone for object detection is a classic and popular research field. How-

ever, before utilizing LiDAR for object detection, it is necessary to determine how to pro-

cess LiDAR point cloud data. The common approach is to directly process the point cloud,

such as with the PointNet series [19–21]. However, this method has high GPU require-

ments, so some studies convert the point cloud into voxel data. The advantage of voxel

conversion is to avoid the sparsity of the point cloud and treat it as a three-dimensional

feature map. Methods[17, 40] employ this processing technique. However, even though

converting to voxels reduces the computational resource demand compared to directly

processing the point cloud, it still requires a certain level of GPU capability.

Therefore, PointPillars[11](Figure 2.3)encodes the point cloud into a two-dimensional

feature map. The method involves projecting the point cloud onto a 2D plane and then

voxelizing it. Unlike VoxelNet, VoxelTransformer[17, 40], PointPillars[11] performs vox-

elization after projection, resulting in only two-dimensional features. This enables the

utilization of common models such as CNN and VGG for feature extraction. PointPil-

8
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lars[11] requires fewer computational resources and achieves faster computation speed

than other methods that solely use LiDAR for detection. As a result, some approaches

like TransFusion[1] utilize PointPillars[11] as their backbone network.

Figure 2.3: Model architecture of PointPillars [11].

2.2 Multimodal Sensor Fusion Detection

Multimodal sensor fusion object detection is an approach that combines multiple

sensors to obtain richer and more comprehensive object detection information. In this

approach, instead of relying on a single sensor, multiple different types of sensors, such as

cameras, radar, and lidar, are integrated to achieve a higher level of perception. Through

multimodal sensor fusion, the limitations and shortcomings of individual sensors can be

overcome, while leveraging the strengths of multiple sensors to improve the accuracy of

object detection.

The challenge of multimodal sensor fusion detection lies in how to fuse features from

different modalities. Existing fusion methods can be categorized into early fusion, mid-

dle fusion, and late fusion. Early fusion involves fusing the raw data before inputting

it into the model, with a focus on integrating the raw data. For example, some methods

project LiDAR point clouds onto RGB images and perform subsequent processing. Mid-

dle fusion entails feeding the raw data into the model to extract feature maps, which are

9
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then fused. These methods extract features from the raw data before performing fusion.

Late fusion, also known as decision fusion, involves first allowing the model to select

regions of interest (ROI) and then making the final prediction based on these ROIs.

2.2.1 Lidar and Camera Fusion Detection

Lidar-Camera Fusion Detection is a perceptual technique that combines the capabil-

ities of both lidar and camera sensors for object detection and environmental perception.

This approach leverages the information from both lidar and camera to synergistically en-

hance the perception and object recognition capabilities in the surrounding environment.

Several methods[1, 13, 14] have achieved remarkable results in Lidar-Camera fusion de-

tection in the field of object detection,however, Lidar-Camera Fusion Detection is still

subject to performance degradation in adverse weather due to inherent limitations of the

sensors.

2.2.2 Lidar and Radar Fusion Detection

Lidar-Radar fusion is a relatively less explored research area, primarily due to the

low resolution of radar, which makes it challenging to establish meaningful features for

detection models. However, radar offers certain advantages over camera and lidar in terms

of stability, especially in adverse environmental conditions. Additionally, radar shares the

same coordinate system as lidar, eliminating the need for coordinate transformation and

potential loss of features in camera-lidar fusion approaches.

With the release of datasets like RADIATE dataset andOxford radar robot car dataset,

there has been a growing interest in Lidar-Radar fusion research. One notable example

10
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is the MVDNet[22](Figure 2.4), which leverages radar and lidar fusion. It demonstrates

excellent performance in both clear weather and foggy weather conditions.

Figure 2.4: Model architecture of MVDNet [22].

11
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Chapter 3 Method

A novel end-to-end radar and lidar fusion model called RLANet is proposed, same as

[7, 41], adopts the DETR architecture. Unlike the faster-rcnn series [9, 27] or the YOLO

series [8, 24–26], the DETR architecture does not require additional hand-crafted design.

According to [38], the final performance of a model is influenced by hand-crafted design.

Therefore, choosing the DETR architecture avoids the cumbersome hand-crafted design

and does not compromise the performance of model.

There are three main methods for feature fusion: element-wise operation, concate-

nation, and attention mechanism[33]. Element-wise operation combines features through

simple arithmetic operations. However, if there are many noisy features in the fusion pro-

cess, the fused feature will also be heavily influenced by the noise. Concatenation can

address the limitations of element-wise operation, but it may introduce data alignment

issues as the fused features come from different sensors. High-quality calibration is re-

quired to align the data, but there may still be errors. Therefore, we adopt the attention

mechanism for feature fusion, because it can learn relationship between different data, so

it solve data alignment problem.

However, the attention mechanism[33] has a drawback in that it tends to focus too

much on irrelevant regions at the beginning, leading to longer convergence time and higher

12
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computational cost, and it may result in poor overall model performance. The attention

mechanism calculates the similarity between queries and keys by computing the inner

product of isolated key-query pairs, which neglects the features near the query.

Therefore, the proposed Feature Selection Module and Associative Feature Fusion

Module are introduced to address these issues. Experimental results on RADIATE demon-

strate that RLANet outperforms current state-of-the-art methods.

Figure 3.1: Architecture of RLANet.

3.1 Framework Overview

Figure. 3.1 illustrates the architecture of RLANet. The processing workflow is as

follows: Firstly, the radar image and lidar image are separately fed into the backbone

network to extract feature maps. Then, the feature maps are passed through the Select

Feature Module for the first round of feature map weight calculation. Next, the feature

maps are forwarded to the Associative Feature Fusion Module for feature fusion. In this

stage, spatial attention and channel attention are computed to obtain the fused features.

13
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Finally, the fused features are refined by the Refine Module and passed to the Detection

Head to obtain the final detection results.

3.2 Feature Selection Module

The main purpose of designing this module is to address the issue with the attention

mechanism, where it tends to excessively focus on unimportant areas of the feature map

during the initial stages. This leads to prolonged model convergence time and excessive

computational burden.

3.2.1 Feature Spatial Selection

This module (as shown in Figure 3.2) is primarily designed for selecting spatial fea-

tures. The operation process of this module is as follows: first, it performs max and

mean pooling along the channel dimension, compressing the channel dimension into a 1-

dimensional vector. Then, it concatenates the max and mean pooling results and utilizes

point-wise convolution to further reduce the channel dimension to 1. Next, a series of op-

erations including layer normalization, GELU activation, and depth-wise convolution are

applied. Finally, a sigmoid function is used to obtain the spatial attention weight, which

is multiplied with the input feature to obtain the selected spatial feature.

3.2.2 Feature Channel Selection

This module (as shown in Figure3.3) is primarily designed for selecting channel fea-

tures. The operation process of this module is as follows: it performs average pooling

and max pooling and then adds these two results together to increase the feature richness.

14
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Figure 3.2: Feature Spatial Selection

Next, a series of operations including point-wise convolution, layer normalization, and

ReLU activation are applied. Finally, a sigmoid function is used to obtain the channel

attention weight, which is multiplied with the input feature to obtain the final selected

channel feature.

Figure 3.3: Channel Feature Selection

3.3 Associative Feature Fusion Module

The purpose of this module is to improve the traditional attention mechanism, which

calculates similarity only between isolated key-query pairs. However, there is a high cor-

relation between features near the query. Therefore, considering the surrounding features

together when calculating the similarity between the query and the key can enhance per-

formance.

Figure 3.4 illustrates the architecture of the Associative Feature Fusion Module,

15
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which consists of the Cross Spatial Attention Module and the Cross Channel Attention

Module.

The Cross Spatial Attention Module aims to extract features near the query in a com-

prehensive manner. It can be observed that the key undergoes a 3x3 convolution operation

and is then concatenated with the query to obtain the key-query feature. Subsequently, two

1x1 convolution operations are performed to generate the weight.

Unlike the conventional attention mechanism that calculates similarity using vector

dot products to obtain the weight matrix, here, the two 1x1 convolutions are utilized to

enable the model to learn the weights, thereby reducing computational complexity. Once

the weight matrix is obtained, it is multiplied with the value through matrix multiplication

to obtain the final result.

The Cross Channel Attention Module combines the output of the Cross Spatial At-

tention Module with the query through channel attention fusion. It can be observed that

the Cross Channel Attention Module has two branches. The lower branch performs global

average pooling to obtain global channel features. The results from the upper and lower

branches are then added together and passed through the sigmoid function to obtain the

weights. These weights are multiplied with the results obtained from the query and the

Cross Spatial Attention Module, and then added together to obtain the final fused feature.

Figure 3.4: Associative Feature Fusion Module

16
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Chapter 4 Experiments

4.1 Dataset Description

RADIATE[28] provides high-resolution radar data, which is different from other

datasets. For example, nuScenes[4] collects radar data using millimeter-wave radar, but

its resolution is low, resulting in the model’s inability to fully utilize its features. Although

Waymo[31] provides high-resolution lidar data and camera data, it does not include radar

data. Additionally, although ORR[2] uses the same radar as RADIATE[28] and provides

high-resolution radar data, it does not provide annotations, making it unsuitable for object

detection. Therefore, we conducted experiments on the RADIATE[28] dataset.

RADIATE[28] is a large-scale dataset that consists of five hours of data. The dataset

captures scenes under different weather conditions, including sunny, overcast, urban, night,

rainy, foggy, and snowy conditions. In the field of autonomous driving, it is crucial to

have stable performance of object detection in challenging environments. Currently, apart

from RADIATE, there is no other dataset that provides such diverse weather conditions.

At most, datasets offer variations in different scenes. Therefore, RADIATE dataset can

bridge the gap between ideal and practical applications.
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Table 4.1: The amount of each adverse weather condition in the RADIATE dataset.

Total Sunny Overcast Urban Night Rain Fog Snow
Training 23540 9611 1806 8438 890 2513 282 0
Testing 8335 2384 726 1325 1779 689 766 666

4.2 Implement Detail

Processing raw LiDAR point clouds requires a significant amount of GPU memory.

Therefore, the LiDAR point clouds are projected onto a 2D plane, converting them into

image data. Although this approach reduces the richness of the features, it significantly

decreases the GPUmemory requirement and training time compared to the direct process-

ing of lidar point clouds.

The experimental environment was built using Python 3.8, PyTorch 12.1[18], CUDA

11.1, and mmrotate 0.1.0. The training parameters are set as follows: the input image

resolution is 1152x1152, the batch size was 3, and the learning rate is set to 0.00001. The

AdamW optimizer[16] is used to optimize the model, and the focal loss function[15] is

employed to encourage model convergence. The training process is conducted on a single

NVIDIA RTX A6000.

4.2.1 Evaluation Metrics

The evaluation metric employed to gauge the model’s performance is average pre-

cision (AP). Specifically, AP50 is computed, where a detection is considered successful

if the Intersection over Union (IOU) between the predicted bounding box and the ground

truth bounding box surpasses 0.5.
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4.3 Comparison with Only Radar

In Table 4.2,”Baseline” refers to a model introduced in the RADIATE dataset[28],

utilizing the Faster R-CNN architecture[27]. TRL[12] utilizes both the current frame and

the previous frame data, divided into two branches, resulting in a total of four frames

of feature information. Despite using only a single frame for object detection, RLANet

model’s performance is still slightly better than TRL[12].

Table 4.2: Comparison of state-of-the-art only radar methods on RADIATE test splits.The
best result is highlighted in bold.

Model Overall Sunny Overcast Urban Night Rain Fog Snow
Baseline 45.84 78.88 41.91 30.36 40.49 29.18 48.30 15.16
TRL 54.00 80.53 46.62 50.34 60.32 39.76 61.15 34.85

RLANet(Ours) 54.81 81.20 47.81 53.37 60.75 40.31 60.28 36.14

4.4 Comparison with Only LiDAR

We also conducted a comparison with PointPillars[11]. Although both PointPil-

lars[11] and the approach being considered utilize lidar data, they employ distinct pro-

cessing methods. PointPillars[11] initially voxelizes the lidar data before projecting it

onto a 2D plane, creating a bird eye view feature map with dimensions C×H×W. In con-

trast, the lidar data is directly projected into an image using a projection matrix in the cur-

rent method, resulting in dimensions of 3×H×W, with C being significantly larger than

3. This design grants PointPillars[11] a more enriched point cloud feature representation

compared to the current method. However, the current approach holds the advantage of

faster data loading due to its point cloud processing methodology.”

While PointPillars[11] possesses at least 10 times more features than the method
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under consideration (PointPillars[11] features consist of a minimum of 30 channels), its

performance does not exhibit a significant superiority over the our method. As a result,

the outcome is indeed quite satisfactory.

Table 4.3: Comparison of state-of-the-art only LiDAR methods on RADIATE test
splits.The best result is highlighted in bold.

Model Overall Sunny Overcast Urban Night Rain Fog Snow
PointPillars 51.34 81.03 45.89 40.19 55.27 30.16 47.86 13.84

RLANet(Ours) 47.27 79.17 44.07 36.79 53.34 27.10 44.45 10.66

4.5 Comparison with Radar and LiDAR

In this section, a comparison is made between the approach andMVDNet[22]. MVD-

Net[22] utilizes a similar architecture to Faster-RCNN[27] and employs a similar approach

to PointPillars for handling lidar data, enabling the preservation of a greater amount of

feature information.Furthermore, MVDNet[22] incorporates traditional attention mecha-

nisms[33] for feature fusion to effectively integrate the features from both radar and lidar

modalities. Currently, MVDNet[22] stands as the state-of-the-art method for Radar and

lidar fusion.

Compared to MVDNet[22], RLANet not only eliminates the need for additional

handcrafted designs but also addresses the issues caused by traditional attention mech-

anisms. As shown in Table 4.4, RLANet outperforms MVDNet in terms of performance.

Table 4.4: Comparison of state-of-the-art radar and LiDAR methods on RADIATE test
splits.The best result is highlighted in bold.

Model Overall Sunny Overcast Urban Night Rain Fog Snow
MVDNet 54.92 81.71 48.51 54.45 60.90 40.56 62.25 38.64

RLANet(Ours) 57.49 83.31 50.12 56.04 63.14 43.51 66.92 41.43

20



doi:10.6342/NTU202302360

4.6 Ablation Study

In the ablation study section, the results of utilizing the Associative Feature Fusion

Module for feature fusion will be analyzed in comparison with three other feature fusion

operations: element-wise operation, concatenate operation, and the traditional attention

mechanism[33].

Additionally, experiments will be conducted to demonstrate the effectiveness of the

two key components in the model, namely the Feature Selection Module and the Associa-

tive Feature Fusion Module.

4.6.1 Comparison with Other Feature Fusion Operation

In Table 4.5 present the results of using the Associative Feature Fusion Module for

feature fusion. Compared to the other three feature fusion operation, the Associative Fea-

ture Fusion Module exhibits superior performance. This is because the Associative Fea-

ture FusionModule does notmix noisy features into the new features like element-wise op-

erations, it does not cause data alignment issues like concatenate operations, and it avoids

excessive focus on irrelevant regions as seen in traditional attention mechanisms. There-

fore, using the Associative Feature Fusion Module leads to better overall performance.

Table 4.5: Comparison of other fusion methods on RADIATE test splits.The best result
are highlighted in bold.

Model Overall Sunny Overcast Urban Night Rain Fog Snow
Concatenate 50.91 79.28 45.05 47.69 54.11 32.27 52.41 30.25

Self-attention[33] 52.30 79.75 44.92 48.14 55.32 33.71 54.19 34.67
RLANet(Ours) 57.49 83.31 50.12 56.04 63.14 43.51 66.92 41.43

In Table 4.6, ”Self-attention” denotes the feature fusion method using self-attention.
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It can be observed that the model trained with self-attention for feature fusion requires 100

epochs, while the model utilizing the Associative Feature Fusion Module only requires

36 epochs. Furthermore, the model employing the Associative Feature Fusion Module

for feature fusion exhibits better performance compared to the model using self-attention.

This improvement primarily stems from the fact that the Associative Feature Fusion Mod-

ule addresses the issue of self-attention focusing excessively on irrelevant features. Addi-

tionally, the module effectively leverages features surrounding the query, enhancing the

model’s learning capability.

Table 4.6: Comparison of convergence speed with self-attention.

Model Overall Epoch
Self-attention[33] 52.30 100
RLANet(Ours) 57.49 36

4.6.2 Ablation of Model Components

In this section, the effectiveness of model components will be validated. Table 4.7

shows the performance of different configurations. ”Base” represents using only the back-

bone and the self-attention mechanism[33] to fuse radar and lidar features for object detec-

tion. ”w/o F.S.M.” denotes experiments without utilizing the Feature Selection Module,

and ”w/oA.F.M.” represents experiments conductedwithout using theAssociative Feature

Fusion Module. Instead, traditional attention[33] was employed for feature fusion.

The results presented in Table 4.7 demonstrate the contributions of each component

to the model’s performance. It is evident that each component significantly impacts the

model’s performance, and none of them can be omitted.
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Table 4.7: Ablation study of model components.The best result is highlighted in bold.

Model Overall Sunny Overcast Urban Night Rain Fog Snow
Base 48.73 76.91 42.62 43.44 52.84 30.51 50.35 30.94

w/o F.S.M. 53.71 80.51 47.19 50.69 59.11 39.27 60.14 37.25
w/o A.F.M. 52.30 79.75 44.92 48.14 55.32 33.71 54.19 34.67
Full model 57.49 83.31 50.12 56.04 63.14 43.51 66.92 41.43

4.7 Discussion

Figures 4.1 and 4.2 illustrate two scenarios: snowy weather and foggy weather, re-

spectively. Due to the weather resilience of radar, TRL(Figures 4.1(a) and Figures 4.2(a))

demonstrates accurate vehicle predictions even in adverse conditions, utilizing radar alone.

Nevertheless, radar-generated point clouds contain a significant amount of noise, result-

ing in numerous false detections within TRL’s outcomes. PointPillars(Figures 4.1(b) and

Figures 4.2(b)), which relies solely on lidar, exhibits a plethora of erroneous detections.

This is primarily attributed to the phenomenon where the laser beams emitted by the li-

dar may refract when passing through snow or fog particles, leading to imprecise vehi-

cle localization. Similarly, the fusion of radar and lidar in MVDNet(Figures 4.1(c) and

Figures 4.2(c)) also encounters instances of false detections. Deformable DETR(Figures

4.1(f) and Figures 4.2(f)) showcases exclusive camera-based detection, completely fail-

ing to identify vehicles. This further verifies the inadequate performance of cameras under

harsh weather conditions. However, RLANet(Figures 4.1(d) and Figures 4.2(d)) precisely

detects vehicle.

Both Figure 4.3 and Figure 4.4 depict scenarios under sunny conditions. In Figure

4.3(a), the approach utilizing radar-only detection exhibits numerous instances of ghost

detection. Conversely, Figure 4.3(b), which solely employs lidar for detection, misses

two vehicles. This outcome is primarily attributed to the lidar’s laser beams encountering
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obstacles that prevent accurate reflection back to the lidar, thereby resulting in inaccurate

vehicle detection. Figure 4.3(c), representing the fusion of radar and lidar for detection,

displays a single missed vehicle. Furthermore, Figure 4.4(c) demonstrates the exclusive

camera-based object detection method, which lacks the ability to perceive the 360-degree

scene as effectively as the other methods. This underscores the comparative deficiency of

environmental perception in the camera-only approach.”
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(a) TRL[12] (b) PointPillars[11] (c) MVDNet[22]

(d) RLANet (ours) (e) ground-truth[28]

(f) Deformable DETR[41]

Figure 4.1: Samples data from the snow case, and The yellow circles indicate the areas that
differ from the ground truth, (a) for radar-only object detection, (b) for lidar-only object
detection, and (c) for object detection with the fusion of radar and lidar. (e) represents
the ground truth,(f) shows object detection using only camera data trained in Deformable
DETR.
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(a) TRL[12] (b) PointPillars[11] (c) MVDNet[22]

(d) RLANet (ours) (e) ground-truth[28]

(f) Deformable DETR[41]

Figure 4.2: Samples data from the fog case, and The yellow circles indicate the areas that
differ from the ground truth, (a) for radar-only object detection, (b) for lidar-only object
detection, and (c) for object detection with the fusion of radar and lidar. (e) represents
the ground truth,(f) shows object detection using only camera data trained in Deformable
DETR.
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(a) TRL[12] (b) PointPillars[11] (c) MVDNet[22]

Figure 4.3: Samples data from the sunny case, and The yellow circles indicate the areas
that differ from the ground truth, (a) for radar-only object detection, (b) for lidar-only
object detection, and (c) for object detection with the fusion of radar and lidar.
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(a) RLANet (ours) (b) ground-truth[28]

(c) Deformable DETR[41]

Figure 4.4: Samples data from the sunny case, and The yellow circles indicate the areas
that differ from the ground truth, (b) represents the ground truth, (c) shows object detection
using only camera data trained in Deformable DETR.
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Chapter 5 Conclusion

In this paper, a novel end-to-end lidar and radar fusion model (RLANet) is proposed.

Unlike one-stage and two-stage models that involve extensive handcrafted designs, this

model eliminates the need for such manual interventions. Therefore, the performance

of the model is independent of hyperparameters, eliminating the need for tedious tun-

ing. Additionally, a Feature Selection Module is introduced to address the limitation of

self attention mechanism[33] that initially focus on the entire feature map with equal at-

tention weights. This module enhances the performance of the model. Furthermore, an

Associative Feature Fusion Module is designed that fully leverages the features near the

query. Unlike conventional attention mechanisms that compute similarity based on iso-

lated query-key pairs, this module considers the features surrounding the query to calcu-

late similarity. Moreover, the attention weights are designed as learnable parameters, and

the computationally expensive inner product operation is eliminated, reducing the overall

computational requirements. In summary, the model not only obviates the need for hyper-

parameter tuning but also surpasses the state-of-the-art in radar and lidar fusion, providing

more robust performance in adverse weather conditions.

However, the work still has limitations. The conversion of the lidar point cloud

into an image can result in a loss of features. In the future, it would be beneficial to

explore more suitable preprocessing techniques for lidar point clouds, such as voxeliza-
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tion or leveraging the PointNet series, which directly process point clouds. This would

theoretically further improve the performance of the model.
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