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摘要

我們擴展了 GAMER-2的功能，以支持宇宙射線之物理，其中包括單一能

量通道、平流、非等向性擴散以及與熱氣體的動態耦合。我們將寫好的程式用

下面的測試問題：聲波、震波管以及數個非等向性擴散測試來檢驗程式的準確

性。這些測試的結果都有二階精確。除此之外，我們也讓宇宙射線的計算支援

GAMER-2的進階功能，其中包括自適應網格、混合的 OpenMP/MPI平行以及圖

形顯示卡 (GPU)的平行加速。在未來，我們預計再未來增加更多宇宙射線的物理

像是多能量通道、宇宙射線流以及宇宙射線熱效應。

關鍵字： GAMER2、宇宙射線、FLASH、GPU加速
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Abstract

We extend GAMER-2 to support cosmic rays with a single energy channel, advec-

tion, anisotropic diffusion, and dynamical coupling to thermal gas. To verify the accu-

racy, we conduct a series of numerical experiments, including acoustic wave, shock-tube

problem, and several anisotropic diffusion tests. All tests achieve second-order accuracy.

Furthermore, our extension inherits the advanced features of GAMER-2, including adap-

tive mesh refinement, hybrid OpenMP/MPI parallelization, and graphics processing unit

(GPU) acceleration. We are planning to implement multiple energy channels, cosmic rays

streaming, and heating.

Keywords: GAMER2, Cosmic Rays, FLASH, GPU boost
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Chapter 1 Introduction

Cosmic rays (CRs) are high-energy particles that originate from outer space and travel

through the universe at incredibly high speeds. Cosmic rays can be one of the important

physics of the formation of the Fermi bubble [39], and also a heating source of the inter-

stellar medium [32] [15]. Radio Relics are one of the evidence of cosmic rays in galaxy

clusters. In recent studies, we found some arc-like, concave Radio Relics called ”Wrong

Way” Radio Relics near the galaxy clusters [5] [16]. To answer the mechanism of how

it forms, we need to add the cosmic rays physics in the code. Cosmic rays could take an

important role in star formation [27] [38]. With the cosmic rays feedback, the star forma-

tion rate could be slower [2] [28] [7] [22] [11] [18], and launch more powerful winds in

the galaxy [29] [3] [17] [19] [13].

To simulate cosmic rays, we need to solve and evolve the distribution of cosmic

rays which is dependent on the position, momentum, and time. Such a simulation could

be very time-consuming, so we need a more powerful calculation technique to simulate

cosmic rays.

Utilizing GPU acceleration is a widely adopted approach to significantly enhance

the performance of simulations. For instance, ENZO [6], RAMSES [37], Castro [1], and

GAMER (GPU-accelerated Adaptive MEsh Refinement) [33] [34].

1
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In this thesis, we choose GAMER, a simulation tool known for its GPU-boosted

capabilities, to implement cosmic rays modeling.

In section 2, we will talk about the MHD equation with cosmic rays physics and the

numerical method of evolving the cosmic rays. In section 3, we will test our implemen-

tation of cosmic rays and compare with Yang et al., 2012 algorithm with a series of tests.

In section 4, we will make our conclusions here. Furthermore, in the appendix, we also

test how the slope limiter affects the error convergence rate, and provide the analytical

solutions of the Gaussian distribution of the cosmic rays diffusion.

2
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Chapter 2 Governing equations

In this section, we will discuss the governing equations of magnetohydrodynamics

(MHD) with cosmic rays, the implementation of cosmic rays in GAMER, and the numer-

ical method for solving cosmic rays equations.

2.1 MHD with CRs

Cosmic rays are charged particles whose traveling speed is close to light speed, but

the collective speed of cosmic rays is much slower in the galaxy because of scattering by

a short coherent length magnetic field. We assume the scattering is strong which means

the cosmic rays are trapped by the magnetic field, so the collective speed of cosmic rays

is the same as the thermal gas. Also, we assume the cosmic rays to be one species only

and share one single energy channel. Meanwhile, we neglect the cosmic rays streaming

and heating effect in this thesis.

Based on the assumptions above, we treat cosmic rays as a passive scalar which is a

second fluid that has different energy density (or pressure). Hence, we extend the original

MHD equations with cosmic rays physics, including cosmic rays diffusion, advection, and

dynamical coupling between the cosmic rays and the thermal gas can be written as:

3



doi: 10.6342/NTU202303891

∂ρ

∂t
+∇ · (ρv) = 0 (2.1)

∂ρv

∂t
+∇ ·

(
ρvv − BB

4π

)
+∇ptot = ρg (2.2)

∂B

∂t
−∇× (v ×B) = 0 (2.3)

∂e

∂t
+∇ ·

[
(e+ ptot)v − B(B · v)

4π

]
= ρv · g +∇ · (κ · ∇ecr) (2.4)

∂ecr
∂t

+∇ · (ecrv) = −pcr∇ · v +∇ · (κ · ∇ecr) (2.5)

where ρ is the thermal gas density, ptot is the total pressure which can be expressed

as (2.6), v is the velocity, g is the gravitational field, B is the magnetic field, κ is the

diffusion tensor, ecr is the cosmic rays energy density, pcr is pressure of cosmic rays, and

e is the total energy density which can be express as (2.7) where eth is the energy density

of the thermal gas, and the γ = 5/3 is the adiabatic index of the thermal gas [23] [4].

ptot = (γ − 1)eth + (γcr − 1)ecr +B2/8π (2.6)

e = 0.5ρv2 + eth + ecr +B2/8π (2.7)

The equation of state of cosmic rays

pcr = ecr (γcr − 1) (2.8)

where γcr = 4/3 is the effective adiabatic index of cosmic rays [21].

4
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2.2 Numerical method

In GAMER, there are two fluid schemes supporting MHD physics which are the

MUSCL-Hancockmethodwith Riemann prediction (MHM-RP) [12] [41] and corner trans-

port upwind method (CTU) [8] [40]. Since the adiabatic work term and the diffusion

term is trivial to implement in MHM-RP, we choose MHM-RP as the cosmic rays update

scheme in this thesis. MHM-RP is a variant of the MUSCL-Hancock method solver. The

main difference is that MHM-RP calculates the half-step flux by the Riemann solver, so

it is more time-consuming.

2.2.1 MHM-RP with CRs

The algorithm of MHM-RP with cosmic rays can be summarized as the following

pseudo-code. We add two more steps, step 5, and 7 to achieve the evolution of cosmic

rays.

Algorithm 1 Single time step of MHM-RP
1: Calculate_HalfStepFlux()
2: Calculate_HalfStepElectricField()
3: Update_HalfMagneticField()
4: Update_HalfFluid()
5: Update_HalfCR()
6: DataReconstruction()
7: Calculate_FullStepFlux()
8: Update_FullMagneticField()
9: Update_FullFluid()
10: Update_FullCR()

There are two cosmic rays terms that need to be implemented in GAMER, one is

the adiabatic work, and the other one is the diffusion term. In addition, we also have a

Courant–Friedrichs–Lewy (CFL) condition [10] for the cosmic rays. The adiabatic work

5
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term of the cosmic rays −pcr∇ · v can be implemented as (2.9) and (2.10) which are the

half step and the full step respectively.

−pncr,i,j,k·
[
F n
i+1/2,j,k − F n

i−1/2,j,k

∆x

+
F n
i,j+1/2,k − F n

i,j−1/2,k

∆y
+

F n
i,j,k+1/2 − F n

i,j,k−1/2

∆z

]
(2.9)

−p
n+1/2
cr,i,j,k·

[
F

n+1/2
i+1/2,j,k − F

n+1/2
i−1/2,j,k

∆x

+
F

n+1/2
i,j+1/2,k − F

n+1/2
i,j−1/2,k

∆y
+

F
n+1/2
i,j,k+1/2 − F

n+1/2
i,j,k−1/2

∆z

]
(2.10)

The F n
i−1/2,j,k and F n

i+1/2,j,k are the fluxes which can be defined as [24]

F n
i−1/2,j,k =


Fn,ρ
i−1/2,j,k

ρi−1,j,k
, if F n,ρ

i−1/2,j,k > 0

Fn,ρ
i−1/2,j,k

ρi,j,k
, if F n,ρ

i−1/2,j,k ≤ 0

(2.11)

F n
i+1/2,j,k =


Fn,ρ
i+1/2,j,k

ρi,j,k
, if F n,ρ

i+1/2,j,k > 0

Fn,ρ
i+1/2,j,k

ρi+1,j,k
, if F n,ρ

i+1/2,j,k ≤ 0

(2.12)

where the F n,ρ
i+1/2,j,k is the density flux between the cell (i, j, k) and (i + 1, j, k), and n is

the n-th time step of the simulations.

In the algorithm from Yang et al., 2012, this term will only be updated in the full

step, and the pressure of cosmic rays in this term is (pncr,i,j,k + pn+1
cr,i,j,k)/2, so they reach

around 1.5-th order of accuracy. We added the half-step update in GAMER to approach

the second-order accuracy. We will discuss it more in the section 3.1.

The diffusion term of the cosmic rays ∇ · (κ · ∇ecr) can be implemented as (2.13)

6
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where bx is the unit magnetic field (2.14), by and bz are the average magnetic field (2.15-

2.16), κ∥ and κ⊥ are the average diffusion coefficient (2.17), ∂ecr
∂x

, ∂ecr
∂y

, and ∂ecr
∂z

are the

slope of the cosmic rays, and L operator can be any kind of the slope limiter.

F n
i+1/2,j,k = −

(
κ∥ − κ⊥

)
bx

[
bx
∂ecr
∂x

+ by
∂ecr
∂y

+ bz
∂ecr
∂z

]
− κ⊥

∂ecr
∂x

(2.13)

bx = bnx,i+1/2,j,k (2.14)

by = (bny,i,j−1/2,k + bny,i+1,j−1/2,k + bny,i,j+1/2,k + bny,i+1,j+1/2,k)/4 (2.15)

bz = (bnz,i,j,k−1/2 + bnz,i+1,j,k−1/2 + bnz,i,j,k+1/2 + bnz,i+1,j,k+1/2)/4 (2.16)

2

κ∥
=

1

κ∥,i,j,k
+

1

κ∥,i+1,j,k

,
2

κ⊥
=

1

κ⊥,i,j,k

+
1

κ⊥,i+1,j,k

(2.17)

∂ecr
∂x

=
ecr,i+1,j,k − ecr,i,j,k

∆x
(2.18)

∂ecr
∂y

= L

[
L

(
∂ecr
∂y

∣∣∣∣
i,j−1/2,k

,
∂ecr
∂y

∣∣∣∣
i,j−1/2,k

)
,

L

(
∂ecr
∂y

∣∣∣∣
i+1,j+1/2,k

,
∂ecr
∂y

∣∣∣∣
i+1,j+1/2,k

)]
(2.19)

7
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∂ecr
∂z

= L

[
L

(
∂ecr
∂z

∣∣∣∣
i,j,k−1/2

,
∂ecr
∂z

∣∣∣∣
i,j,k+1/2

)
,

L

(
∂ecr
∂z

∣∣∣∣
i+1,j,k−1/2

,
∂ecr
∂z

∣∣∣∣
i+1,j,k+1/2

)]
(2.20)

Here we choose L to be Monotonized Central (MC) limiter which can be expressed

as (2.21).

L(a, b) = minmod
[
2minmod(a, b),

a+ b

2

]
(2.21)

minmod(a, b) =


min(a, b) , if a, b > 0

max(a, b) , if a, b < 0

0 , if ab ≤ 0

(2.22)

Finally, the CFL condition of cosmic rays will be limited by the diffusion coefficient.

∆t ≤ min [∆x2,∆y2,∆z2]

2
(
κ∥ + κ⊥

) (2.23)

The cosmic rays will be updated as

en+1
cr,i,j,k = encr,i,j,k −∆t

[
F n
i+1/2,j,k − F n

i−1/2,j,k

∆x

+
F n
i,j+1/2,k − F n

i,j−1/2,k

∆y
+

F n
i,j,k+1/2 − F n

i,j,k−1/2

∆z

]
(2.24)
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2.2.2 AMR of CRs

Adaptive Mesh Refinement (AMR) is one of the essential tools of astrophysics code

now. We can save a lot of computational resources, increase the simulation resolution on

the fine structures or shocks that we interest in, and also enhance the accuracy at the same

time. There are several ways to identify whether the region needs to be refined or not,

for instance, the gradient of the density, the value of the thermal gas speed, and the error

estimator.

Here we adopted two types of AMR refinement criteria for cosmic rays, one is de-

pendent on the value of cosmic rays energy density, and the other one is dependent on the

Löhner error estimator [25] of cosmic rays energy density.

9
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Chapter 3 Results

In this section, we will test the implementation of cosmic rays separately. For the

adiabatic work term, we tested it by the acoustic wave and the shock-tube tests. For the

diffusion term, we tested with the Gaussian distribution diffusion and the ring diffusion.

Finally, we also tested the combination of adiabatic work, diffusion, and AMR by the blast

wave and shock-tube test.

In the following section, we use HLLD [26] as Riemann solver, and piecewise-

parabolic method (PPM) [9] as the data-reconstruction method. Let us first define some

terms we often used in this section. N stands for the number of cells in the simulation

box. The L1 error of cosmic rays energy density is defined as

L1(ecr) =
1

N

∑
i

∣∣∣∣1− ecr,i
ecr(ri)

∣∣∣∣ (3.1)

where the ecr(ri) is the analytical solution and ecr,i is the numerical solution of ith cell

accordingly.

Since Yang et al., 2012 implement the cosmic rays algorithm in FLASH [14], another

astrophysics code, we use the label FLASH to represent the simulation data run by Yang

et al., 2012 algorithm in the figure of this section.

11
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3.1 Sound Wave

In this test problem, a sound wave propagates along the diagonal direction composed

by the cosmic rays, and the thermal gas is set in the square simulation box with size L = 1

[31].

This test problem considers the coupling between the two fluids, the cosmic rays,

and the thermal gas. Furthermore, we will show how the half-step update of the adiabatic

term effect the error convergence rate. The perturbations of the fluid satisfy the following

relations

δρ

ρ0
=

δp

γp0
=

δpcr
γcrpcr,0

=
δv

cs
(3.2)

where δρ, δv, δp, and δpcr are perturbations of density, velocity, gas pressure, and

pressure of cosmic rays respectively, ρ0, p0, and pcr,0 are background value of density, gas

pressure, and cosmic rays pressure respectively. The sound speed cs is given by

cs =

√
γp0 + γcrpcr,0

ρ0
(3.3)

In the following tests, we set a sinusoidal wave moving in the diagonal direction

with wavelength 1/
√
3 which means there will be three complete waves in the diagonal

direction, and other initial conditions of the fluid variables are ρ0 = 1.0, p0 = 1.0, pcr =

1.0, and δv = 10−6. The background velocity of the simulations is set differently, we will

discuss it in the later subsections. The wave travels periodically in the simulation box for

one period. For the L1 error, we increaseN from 32 to 512 in each direction and estimate

12
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the L1 error of each case.

3.1.1 With and without background velocity

First, we set the background velocity v0 = 0. Figure 3.1 shows the diagonal profile

of sound wave travels after one period with a resolution of 128 in each direction.

Figure 3.1: Sound wave test of thermal gas and cosmic rays after traveling one wave
period with v0 = 0 with resolution N = 128. The left panel displays the disturbance in
cosmic ray pressure, while the right panel exhibits the perturbation in density along the
diagonal direction. Simulation data is plotted with the blue dot symbol; solid red lines
represent the analytical solution.

Figure 3.2 shows the L1 error compared with Yang et al., 2012 algorithm with the

same setup. The L1 error of Yang et al., 2012 algorithm is proportional to N−1.32, and

the L1 error of GAMER is proportional toN−1.73. Our results show GAMER has a better

convergence rate.

Now, we set the background velocity v0 = 1. Figure 3.3 shows the diagonal profile

of sound wave travels after one period with resolution N = 128 in each direction.

Figure 3.4 shows L1 error compared with Yang et al., 2012 algorithm with the same

setup. The L1 error of Yang et al., 2012 algorithm is proportional to N−1.30, and the L1

error of GAMER is proportional toN−1.82. Again, our results show GAMER has a better

convergence rate.

13
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Figure 3.2: Sound wave test without a background velocity of the cosmic rays and the
thermal gas. The figure shows the L1 error convergence. The L1 error of the Yang et al.,
2012 algorithm is plotted as blue dots; the L1 error of GAMER is plotted as green dots;
the solid blue line is the linear fitting of the Yang et al., 2012 algorithm. L1 error; the solid
green line is the linear fitting of GAMER L1 error.
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Figure 3.3: Test the cosmic rays and thermal gas by observing the linear sound wave after
it has traveled one wavelength with an initial velocity of v0 = 1, using a resolution of
N = 128. The figure on the left shows the perturbation of the cosmic rays pressure, and the
figure on the right shows the perturbation of density in the diagonal direction. Simulation
data is plotted with the blue dot symbol; the solid red lines represent the analytical solution.

Figure 3.4: Sound wave test of the cosmic rays and the thermal gas. The figure shows the
L1 error convergence. The L1 error of the Yang et al., 2012 algorithm is plotted as blue
dots; the L1 error of GAMER is plotted as green dots; the solid blue line is the linear fitting
of the Yang et al., 2012 algorithm. L1 error; the green solid line represents the linear fit
of the GAMER L1 error.
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Since the hydro solver is more diffusive in GAMER than FLASH, the L1 error of

GAMER is greater than Yang et al., 2012 algorithm implemented in FLASH forN < 256.

3.1.2 Half Step Update

Continuing the previous sections, we explain why GAMER shows a better error scal-

ing than the Yang et al., 2012 algorithm. Since the Yang et al., 2012 algorithm does not

update the adiabatic work term in the half-step, so we expect the error convergence rate

of GAMER to be better. Now, we remove the adiabatic work update at half-step by hard-

coded, so the GAMER now has the same algorithm as the Yang et al., 2012 algorithm. As

shown in figure 3.5, the L1 error of updated adiabatic work term in half-step is propor-

tional to N−1.82, and the L1 error of not updated the adiabatic work term in half-step is

proportional to N−1.50.

Figure 3.5: Sound wave test of the cosmic rays and thermal gas. The figure shows the L1
error convergence. The L1 error of GAMER without a half-step update is plotted as blue
dots; the L1 error of GAMER with a half-step update is plotted as green dots; the solid
blue line is the linear fitting of GAMER without a half-step update L1 error; the solid
green line is the linear fitting GAMER with half-step update L1 error.
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3.2 Shock Tube (without diffusion)

The shock-tube test is one of the standard tests inMHD code. The boundary condition

is the Dirichlet boundary condition which is determined by the left and the right states.

The resolution of the test is 128 along the shock propagation direction. The left state

(0 < x < 0.5) and the right state (0.5 ≤ x < 1) are initialized as the given table 3.1 [35]

[30].

Parameter Left Right
ρ 1.0 0.2
v 0.0 0.0
pth 6.7× 104 2.4× 102

pcr 1.3× 105 2.4× 102

Table 3.1: The initial condition of the shock tube test. From the top to the bottom, the
parameters are density, velocity, gas pressure, and cosmic rays pressure.

As shown in the figure (3.6), the simulation result agrees with the analytical solution.

Since the hydro solver is more diffusive in GAMER, the shock in GAMER is slightly more

diffusive than that in Yang et al., 2012 algorithm. In general, the result from GAMER is

also similar to the result from Yang et al., 2012 algorithm.

3.3 Diffusion

In this section, all the fluids except cosmic rays are fixed in the following tests, and

we do not update the adiabatic work term. Hence, the only equation we are solving is

∂ecr
∂t

= ∇ · (κ · ∇ecr) (3.4)
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Figure 3.6: Shock tube test of the cosmic rays and the thermal gas. The top-left panel of
the figure illustrates the density, the top-right panel displays the velocity, the bottom-left
panel showcases the internal energy density of the gas, and the bottom-right panel exhibits
the energy density of cosmic rays. The green dots show the GAMER simulation data; the
orange dots show the Yang et al., 2012 algorithm simulation data; the blue solid lines
represent the analytical solution.
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which is a pure diffusion equation. In our implementation, the diffusion coefficient is

separated into two parts, which are parallel diffusion coefficient κ∥ and perpendicular

diffusion coefficient κ⊥. The parallel and perpendicular directions are defined by the

magnetic field locally. For the following test, the diffusion coefficients are both constants

only.

3.3.1 Isotropic diffusion

We place a 3-D Gaussian distribution of cosmic rays energy density

ecr(r) = 0.1e−Rr2 + 0.1 (3.5)

where R2 = 40, and r =
√
x2 + y2 + z2, and set a uniform magnetic field Bx = 1.0 ×

10−10, By = Bz = 0, and the diffusion coefficients are set as κ∥ = κ⊥ = 0.05. The rest

fluid variables are set as uniform at the background which are ρ = 1.0, v = 0, pth = 100.

The analytical solution is given by (B.6).

The time evolution profile is shown in figure (3.7), the cosmic rays diffuse isotropi-

cally. As shown in figure (3.8), the L1 error is proportional to N−1.79.

3.3.2 Anisotropic diffusion - Gaussian

The initial conditions are set to be the same as the previous subsection, but we change

the parallel diffusion coefficient toκ∥ = 0.05 and perpendicular diffusion coefficientκ⊥ =

0.0, and the magnetic field to Bx = By = 1.e− 10, Bz = 0 uniformly, so the cosmic rays

should diffuse along the x-y diagonal direction.
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Figure 3.7: The figure shows the Gaussian distribution of cosmic rays energy density
time evolution. The analytical solutions are marked as cyan dashed lines. The cosmic
rays energy density is marked as blue and orange points at t = 0 and t = 0.5 respectively.

Figure 3.8: The L1 error of the isotropic diffusion test. The number of cells is set from
643 to 5122.
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Figure 3.9: The x-y slice of the anisotropic diffusion test of the Gaussian distribution
cosmic rays. The magnetic field is in the diagonal direction. The left panel is at t=0. The
right panel is at t=0.5.

Figure 3.10: The L1 error of the two-dimensional anisotropic diffused cosmic rays.
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The time evolution is shown in figure (3.9), the cosmic rays diffuse along the mag-

netic field which is the diagonal direction. As shown in figure (3.10), the L1 error is

proportional to N−2.00.

3.3.3 Anisotropic diffusion - Ring

There is one more challenging test problem for the anisotropic diffusion which is the

ring test. The magnetic field is set as

B = (−y

r
,
x

r
, 0) (3.6)

where r =
√

x2 + y2. The initial condition of cosmic rays density is set by

ecr(x, y) =


12 , if 0.5 < r < 0.7, and |ϕ| ≤ π

12

10 , otherwise
(3.7)

where ϕ = arctan( y
x
), and other fixed fluid variables are set as ρ = 1.0, v = 0.0, and

pth = 100.. The analytical solution in the short time which means the cosmic rays are not

yet touch each other at ϕ = π is given by [20]

ecr(x, y, t) = 10 + Erfc
[(

ϕ− π

12

) r

D

]
− Erfc

[(
ϕ+

π

12

) r

D

]
(3.8)

where D =
√

4tκ/3, and Erfc(x) is the complementary error function (3.9).

Erfc(x) =
2√
π

∫ ∞

x

e−t2dt (3.9)

For the long-time solution, the energy is completely diffused along the azimuthal

direction, so the cosmic rays remain constant inside the ring.
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Figure 3.11: The ring test of the anisotropic diffusion. The top row figures are the simu-
lation result, and the bottom row figures are the analytical solutions. The left column is
t = 0. The middle column is t = 0.1. The right column is t = 200.

As you can see from the figure (3.11), the simulation agrees with the analytical so-

lution. The reason for the blur at the boundary of the ring at the long time is that we used

the square cell to run the simulation, so the ring boundary is not as sharp as the analytical

solution. Hence, the L1 error of this test is less than second-order accuracy as shown in

figure (3.12).

3.3.4 Anisotropic diffusion - Blast Wave

We place the high energy density cosmic rays in the center of the simulation box

which has a uniform resolution of 1283. The cosmic rays energy density initial condition

is set as

pcr =


100 , if r < 0.02

0.1 , otherwise
(3.10)

23



doi: 10.6342/NTU202303891

Figure 3.12: The figure shows the L1 error of the anisotropic diffuse cosmic rays ring test.

, the magnetic field is set as (3.11) where B0 = 5, and r0 = 3.5× 109, and other uniform

initial conditions are set as ρ = 1.0, v = 0, pth = 1.67, the parallel diffusion coefficient

κ∥ = 0.05, and the perpendicular one κ⊥ = 0.0 [36]. Our simulation domain is much

smaller than r0, so the magnetic field is mainly along the z direction here.

Bx = 3B0xzr
2r30(1+r3/r30)

2

By =
3B0yzr

2r30(1+r3/r30)
2

Bz =
1

r30(1+r3/r30)
2 − 3B0(x2+y2)r

2r30(1+r3/r30)
2

(3.11)

As shown in figure (3.13), the cosmic rays only diffuse along the z direction since

only the parallel diffusion coefficient is given. The gas is also pushed away by cosmic

rays, so the inner low-density region also extends along the z direction.
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Figure 3.13: A x-z slice of the blast wave test of the anisotropic diffusion. The left panel
presents the gas density, and the right panel illustrates the energy density of cosmic rays.

3.4 AMR

For the following tests, we use the Löhner error estimator as the criteria of refinement.

3.4.1 Blast wave

Here we use the same setup as 3.3.4 but with AMR refinement level up to level 3. As

shown in figure (3.14), the simulation box is refined at the close center region only where

the cosmic rays energy density has the larger gradient.

3.4.2 Shocktube

Here we use the same setup as section 3.2, but we changeN of the uniform grid to be

1024 and the base resolution of 128 with AMR refinement level up to 3, so the maximum

resolution is the same. As shown in figure (3.15), the region close to shock can be resolved

clearly as uniform resolution, and also using fewer points to resolve the smooth region.
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Figure 3.14: A x-z slice of blast wave test with anisotropic diffusion and AMR level up to
3. The left panel presents the gas density, and the right panel illustrates the energy density
of cosmic rays.

3.5 Performance

We would like to know how much the performance drop of solving an extra cosmic

rays evolution, and the scaling of parallel efficiency. We measure the computation time of

one time-step in the simulation with double precision as the performance. We setN to be

5123, and the diffusion of cosmic rays is disabled. The CPUwe used is AMDThreadripper

2950X, and the GPU we used is GeForce RTX 2080 SUPER.

Core # 1 2 4 8 16 16 with GPU
Pure Hydro 372 193 102 57 33 17
Speed up 100% 193% 364% 652% 1127% 2188%
With CR 376 195 103 59 34 18
Speed up 100% 192% 365% 637% 1105% 2088%

Table 3.2: The computation time of one time-step with double precision.

As shown in 3.2, the performance of solving an extra evolution of cosmic rays does

not make a huge difference compared to the original one. Also, the scaling of the parallel

efficiency is similar to the original hydro scaling.
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Figure 3.15: Shock tube test of cosmic rays and the thermal gas with and without AMR.
The top-left panel of the figure illustrates the density, the top-right panel displays the
velocity, the bottom-left panel showcases the internal energy density of the gas, and the
bottom-right panel exhibits the energy density of cosmic rays. The green squares show
the data with AMR; the orange dots represent the data without AMR; the blue solid lines
represent the analytical solution of the shock tube.
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Chapter 4 Conclusions

We assume the collective speed of cosmic rays is the same as the surrounding thermal

gas with single energy channel, and neglect the heating and the streaming effect. Based

on the assumptions of cosmic rays, we have the MHD equations including the physics of

cosmic rays. Using the MHM-RP time evolving algorithm and an extra half-step update

of the cosmic rays adiabatic work, we have a better error convergence rate compared to

Yang et al., 2012. algorithm.

To test the implementation of cosmic rays in GAMER, we use a series of tests to

verify. First, we set a diagonal propagated sound wave and the error convergence rate is

close to second order with and without the background velocity. Second, we set a shock-

tube test to verify the non-linear effect of the cosmic rays, and the result agrees with the

analytical solutions. Third, we set all the fluid to be fixed to test the diffusion implemen-

tation. We set a Gaussian distribution cosmic rays energy density with isotropic diffusion

and also anisotropic diffusion, both of then give the second-order error convergence rate.

Next, in an anisotropic ring test, we only have a first-order error convergence rate here

since we used the Cartesian grid to evolve the cosmic rays. Fourth, We place the high

energy density cosmic rays to evolve a cosmic rays driven blast wave, and we have a sim-

ilar result compared to the Yang et al., 2012 algorithm. Fifth, we use the blast wave and

the shock-tube test to verify the AMR function, both of them gives similar result and save
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computational resources in the region we are not interested. Finally, the performance of

solving an extra cosmic rays evolution does not affect the original performance that much.

We have successfully implemented the single-channel cosmic rays with anisotropic

diffusion, and our code also supports hybrid CPU/GPU parallelization. Furthermore, we

would like to enhance our implementation by incorporating additional cosmic rays fea-

tures, such as streaming, heating, and multi-channel cosmic rays.
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Appendix A — GAMER Limiter

In this appendix, we will discuss how the limiter affects the order of accuracy. Here,

we used three types of limiters, Generalized-MINMOD (limiter 2), Van Leer Generalized-

MINMOD (limiter 4), and CENTRAL (limiter 6) to demonstrate.

We use the sound wave test in section (3.1) to test our limiter performance. For the

one-dimensional traveling wave, the CENTRAL limiter has a better error convergence

rate. And, we also have the same result for the three-dimensional traveling wave. The

Van Leer Generalized-MINMOD has a better performance when there is a background

velocity of the traveling wave.

Concluding the figure A.1-A.4, we can say that the CENTRAL limiter is better than

the other limiters in general.
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Figure A.1: The L1 error of the one-dimensional linear wave sound wave test without
background velocity is shown in the figure. The L1 errors are represented by colored
dots: blue for FLASH, green for GAMER limiter 6, red for GAMER limiter 4, and cyan
for GAMER limiter 2. The solid lines indicate linear fittings for each L1 error.
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Figure A.2: The L1 error of the one-dimensional linear wave sound wave test with back-
ground velocity is shown in the figure. The L1 errors are represented by colored dots:
blue for FLASH, green for GAMER limiter 6, red for GAMER limiter 4, and cyan for
GAMER limiter 2. The solid lines indicate linear fittings for each L1 error.

39



doi: 10.6342/NTU202303891

Figure A.3: The L1 error of the three-dimensional linear wave sound wave test without
background velocity is shown in the figure. The L1 errors are represented by colored
dots: blue for FLASH, green for GAMER limiter 6, red for GAMER limiter 4, and cyan
for GAMER limiter 2. The solid lines indicate linear fittings for each L1 error.
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Figure A.4: The L1 error of the three-dimensional linear wave sound wave test with back-
ground velocity is shown in the figure. The L1 errors are represented by colored dots:
blue for FLASH, green for GAMER limiter 6, red for GAMER limiter 4, and cyan for
GAMER limiter 2. The solid lines indicate linear fittings for each L1 error.
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Appendix B — Analytical Solution of

CR Diffusion Equation

In this appendix, we will get the analytical solution of the cosmic rays diffusion. We

will first get the one-dimensional diffusion solution, then we will extend it to the three-

dimensional solution.

B.1 1-D solution

The one-dimensional diffusion equation of cosmic rays is shown as (B.1), where the

E(x, t) is the cosmic rays energy density as a function of space and time, and k is the

diffusion coefficient along x direction.

∂E(x, t)

∂t
= k

∂2E(x, t)

∂x2
(B.1)

Here, we define a useful function g(t) = 1+4Rkt for the calculation, where R is an

arbitrary constant.

The analytical solution given by (B.2) whereB.G. is the background value of cosmic

rays energy density.
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Eana(x, t) = E0
1√

1 + 4Rkt
exp

[
−Rx2

1 + 4Rkt

]
+B.G.

= E0g
−1/2exp

[
−Rx2g−1

]
+B.G. (B.2)

Next, we verify if the given analytical solution is valid for (B.1). We now calculate

the time derivative (B.3) and the second derivative of the space (B.4) of the analytical

solution (B.2).

∂Eana

∂t
= −1

2
g−1(4Rk)Eana +Rx2g−2(4Rk)Eana

= k
[
−2Rg−1 + 4R2x2g−2

]
Eana (B.3)

∂2Eana

∂x2
= −R2g−1Eana +R2xg−1R2xg−1Eana

=
[
−2Rg−1 + 4R2x2g−2

]
Eana (B.4)

Combining (B.3) and (B.4), we have the analytical solution which satisfied the (B.1).

B.2 3-D solution

For the three-dimensional diffusion, the diffusion equation is shown as (B.5).

∂E(r, t)

∂t
= k∇2E(r, t) (B.5)

And, we define the useful function as now rewrite as gi(t) = 1 + 4Rikit, where i stands

for the x, y, and z, directions.
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The analytical solution of the three-dimensional diffusion equation is given by (B.6).

Eana(r, t) = E0

3∏
i=1

1√
1 + 4Rikit

exp
[

−Rix
2
i

1 + 4Rikit

]
+B.G.

= E0

3∏
i=1

g
−1/2
i exp

[
−Rix

2
i g

−1
i

]
+B.G. (B.6)

Next, we verify the solution same as the 1D diffusion case.

∂Eana

∂t
=

3∑
i=1

[
−1

2
g−1
i (4Riki)Eana +Rix

2
i g

−2
i (4Riki)Eana

]

=
3∑

i=1

ki
[
−2Rig

−1
i + 4R2

ix
2
i g

−2
i

]
Eana (B.7)

∂2Eana(x, t)

∂x2
=

3∑
i=1

[
−Ri2g

−1
i Eana +Ri2xig

−1
i Ri2xig

−1
i Eana

]
=

3∑
i=1

[
−2Rig

−1
i + 4R2

ix
2
i g

−2
i

]
Eana (B.8)

Combining (B.7) and (B.8), we have the analytical solution which satisfied the (B.5).

45


	Verification Letter from the Oral Examination Committee
	Acknowledgements
	摘要
	Abstract
	Contents
	List of Figures
	List of Tables
	Introduction
	Governing equations
	MHD with CRs
	Numerical method
	MHM-RP with CRs
	AMR of CRs


	Results
	Sound Wave
	With and without background velocity
	Half Step Update

	Shock Tube (without diffusion)
	Diffusion
	Isotropic diffusion
	Anisotropic diffusion - Gaussian
	Anisotropic diffusion - Ring
	Anisotropic diffusion - Blast Wave

	AMR
	Blast wave
	Shocktube

	Performance

	Conclusions
	References
	Appendix A — GAMER Limiter
	Appendix B — Analytical Solution of CR Diffusion Equation
	1-D solution
	3-D solution




