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Abstract

The existing method of using large pre-trained models with prompts for zero-shot text
classification has powerful representation ability and scalability. However, its commercial
availability is relatively poor. The method of using class labels and existing datasets to
fine-tune smaller models for zero-shot classification is relatively simple, but it may suffer
from weaker model generalization ability. This paper proposes three methods to improve
the accuracy and generalization ability of pre-trained models in zero-shot text classifi-
cation tasks: 1) using pre-trained language models and formatting inputs into a unified
multiple-choice format; 2) constructing a text classification training set using Wikipedia
text data and fine-tuning the pre-trained model; and 3) proposing a zero-shot category
mapping method based on GloVe text similarity, using Wikipedia categories to replace
textual categories. Without using labeled samples for fine-tuning, the proposed method

achieves results comparable to the best models fine-tuned with labeled samples.

Keywords: Natural Language Processing, Pretrained Language Models, Zero Shot Text

Classification, Classification, GloVe
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@ﬁ%l%%%ﬁé’%ﬁ%ﬂﬁ%&ﬁﬁﬂﬁﬁﬁﬁ°§7Eii$@
fed R Be 0B L 2R f—?ﬁt]ﬁtﬁ T F]pt > f245 B & * masked multi-head

7

attention * % multi-head attention > #3* 8 § # 245 = E I g4 A G pF > B F

B R EE LBt oA Lk b 2R 0 i E - AP EEEY

W
hrl
~
{g
>
#
b
4
=
=
i)
By
—4
u
) -—
<

ALk fRikak 4 AT A o BB 0
BE - g B PE PR Y A H S & BET M KR

7

BBEEEFHNEZ o Vb R %GB B f345 % 5 7 — 1 Encoder-Decoder £h
B> v EGHBED G i e BB EENgGp R ee £ IFS

=

EHmBECE > ERRS - B Lo WG 5 0 P FR I A P
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Transformer & * p /i &+ 4K BHFHRE 7P 2 b 2§ 2 F oL 20 B
o KA T MFEERBREIEFT FRIZ A ARSI FES A FRERA (e
FHREBOFRM % RO A REF7T JILEHRY 2R { Rendi o 5

% Transformer 73] e p RT3 AJEAR B i % > B R E T a7 A B e &

A > Ap 4% 117 GPT[18] ~ BERT [4] ~ XLNet [24] ~ RoBERTa [13] & #-3] o #t 14 »

FPGET AT L o AR R IR P RS IR RTH G o

2.2.4 R F Transformer 878 I|4RZE A

2241 GPT

GPT-1 [I8] B £17 AR H T HEire G st aim o 24
Ko AL R Y < 2 @A Web v Aed Jye ATF S IHGER 0 R R
BEAFTHEY BV 2 ARt T2 2 Benl B BB RE R AR R

PR LT RGN LET AR TS ERSE R -

GPT-1 #-41d 12 BfEm A 2= > 3 f275 & & Transformer 245 & el # + >

l

R B - BAMERL e AR A o

Cﬂ

é“ﬁ:"fr’,ﬁnlﬁ}é} RIS ERL
Baor o B S BEBA EFIRIGFR T - BHEP ORI A T S BES

B %

BAE- BAwEIA . v B e R g AR T - B AR AR

TEAEAERUSG 52 AE5] {u,...,u,} * B GPT-1 Hp % S #ic & & <
it T 5'] Lﬁ’yﬁ'{ .

= log P (u; | ti—g, ... 1) (2.10)
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Text Task S -
i | Cossiomon [san | Tox | v |- ansomer -{ e ]

Entailment \ Start ‘ Premise ‘ Delim | Hypothesis | Extract H——l Transformer H Linear |

‘ Start ‘ Text 1 ‘ Delim | Text 2 | Extract H——l Transformer
Similarity Linear
{ Start ‘ Text 2 } Delim | Text 1 | Extract H——l Transformer

\ Start ‘ Context ‘ Delim | Answer 1 |Exlracl H»I Transformer H Linear

®

Feed Forward

®

Masked Multi
Self Attention

12x —

Multiple ChOice‘ Start ‘ Context ‘ Delim | Answer 2 |Exlrac1 [|-.{ Transformer H Linear

Text & Position Embed { Start ‘ Context ‘ Delim | Answer N |E’<l"5\cI U——{ Transformer |—>| Linear

Figure 2.2: GPT-1 s3] %42 7 b F 2R i anfd 455 50

B R TEERREMAE L ALY AR AP 7 A
A R L GPTIR Y (s)~ () fr<$>mulitizd
REg~~> 25k a2 A2 BRHEZOEe B9 GPT-1 i3 B2 7 b T 502
PP N AcR220 BE- B HRALDOTREEC ZTERENE BHRAY 2 2

kol el E oy B A D S Rk T A Sl

Ly(C) =D logP(y|z',....a™) (2.11)
(z,y)

FH PRI TR B R 0§ BN R L i e R e i

A TR EEE GlcE A BB P P RS liche T

L3(C) = Ly(C) + AL, (C) (2.12)
1P 4= GPT-1 - GPT2 [19] e & iz § #c % @ v 9K T Bl i A B

WAl BEIFHHL D 0 B2 AR R A R R0 - BATDR

DRI R EIET RS BB AR Y P 2V S L RS o GPT2 & GPT-1 shik

-

CARE RUEEN YT SN SRR S R RIS E =

GPT-2 i B’ ™ § ~ et BY 2| L 5 hid) S8 33 0 3 igla 4 o

W
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Few-shot

In addition to the task description, the model sees a few
examples of the task. No gradient updates are performed.

Translate English to French: task description
sea otter => loutre de mer examples
peppermint => menthe poivrée

plush girafe => girafe peluche

cheese => prompt

Figure 2.3: GPT-3 > # # 8 ¥ # |

©GPT-2 dnp~ @ » 7 L P 3l Sl g { wentbivie- o

ETMEA G > GPT2#/ 40 FERg Y ams > TR B R EROT
FE P REBEFIRI T AR DA gL A o A FIRAL B IS
PR BT A AR o gt b B R A (zero-shot) iEdk+ E_GPT-2 ch- B M4EE B -
P RLATFHEAEIHB N CGPTH B AT RIFR 2 F ¥ 4o 2B RF

ToOOHEREERP A ERA R A FRAE i r B RFT

BoRIFE R en™ 3% 0 18 RARFEIF S #&7 (prompt) o

GPT-3[3] # * ff#r it ¢ 41531 GPT2 ¢ R * chp ;L 4 4] = »

VLA AmE Rl § ek Bk AR - GPT3 4 PR Ak SR il o o

-

KOS 5 AR M1 i’k’—‘ﬁ AP kA7 P T2 B (in-context learning )
SEA23 0 AR FIFVREANH T HFEREFIERIF B BB A
FEREG] > T P Ea i RITERR R AR M T FEAR 0 oA R R0
B AEFEY hizsad 5 548~ (few-shot) ik o
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ﬁp Mask LM Ma‘s.k-LM \ @@@AD Start/End SDEN

-«
CIE) - Gl () G )l (]
BERT

BERT

EE- EIEER- 6 (=60 GOENED- &
Masked Sentence A -~ Masked Sentence B Question P Paragraph
\ Unlabeled Sentence A and B Pair Question Answer Pair

Pre-training Fine-Tuning

Figure 2.4: BERT 7] e3f 2 S 3 jics

2.2.4.2 BERT

BERT 4% < 2 v GPT - 5 » 3840 i 8 £ eh~ REA Rk 8 y g v

BT b (T 2.4 0 GPT #54] AT RIAE 5 it H %

[ARES, N L2 24 A
T Ao 0 s Al d

\m

PRt dom g TR L @ ELMo B A4k * 7 e RNN - e & B

i

RNN 2. B & b= 0> 25 PR ARy Fp > BERT % 7 e b T 2 & §i0
3 E > W ATEVIVRIFE @ Y T e Transformer %% B - @ (FF B H P ATE D

FEBAY AR E RS G L A (B FRGFRD T v 3 aiF

e

BERT ehig 2 iz~ 5 & BIEE ¢ e 7 i3l ( Masked Language Model -

MLM ) =™ - & 3B (Next Sentence Prediction > NSP) o

@ ** BERT 7§+ Transformer % 1 » # 1 Transformer m%] g TR
NI L SERADT FOE T EAFEYRY A ATER T - BHEPE
Ot AT S A E R v AR AAERNA e 50 LSRR AMLM B E
BERT i » sfag1 3 @ e 3040 5 300 g A8 fr (6140 * "[MASK]” #hie 5F i)

”

C3) 0 R TR R P LR R B S TR F L

AT E P g 0 v @i E 4% Transformer f5 01 ¢ BB F i E koo A A
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Input [[CLS]W [ my 1 (dog 1 ( is Mcute M [SEP) M he M likes V play W ( ##ing U [SEP] 1

Token

Embeddings ‘E[CLSI ‘ Emy ‘Edog ‘ Eis. ‘Ecute E[SEI’] ‘ Ehe ‘Ehkes ‘Eplav ‘ E-Hing ‘E[SEP]
- - - - - - + - + +- +
mossangs | En| [ Ea || B0 || B0 ][ B0 |[ B0 || B |[ B | [ & || B || & |
- - +* - - - - - - -+ -+
croemnngs | Eo || B || B || B [ & | & |l B[ & |[ & [ & |[E]
Figure 2.5: BERT ﬁg?] » R
TR T kB EEET
NSP = fe1p {58 2] B+ A3 AFA LR THEF S BoF
AFABTH - BoFehT v o BAFPIRIFE > 0% B35k & 0 BERT ¢ 4
WER- o3 TR I L NG ART B RIS RES L D E- B

FAfHE-BFoFBoHEY s 93 AfreF Bz Bl ik [SEP]” e (7
AR o el ~ B F1¢ > BERT B § 7 4o — B $7R a7 [CLS]” fh3e 18 5 fF R A 5 chde
457 » BERT thfiy » RJZ4c 2.8 « 5 7 i {7 NSP 4% » BERT B3l » 7 47 ¢t ¢
iz - B LfFeiE g IsNext (7 - &) fo NotNext (257 — &) o 430 1
A TRFEHI BT EERNXE S IsNext; o #H3f A T2 Fens
B+ o HEMKE 5 NotNext o g Az > BERT B340 & i » A 7195
» 3| Transformer e % ¢ > T B D[ E {5 - BrERA g I o JR{8 > @ % Bfs- B

FOG ol 3R B R (IR 29TA B o+ LR

Wi NSP =7+ » BERT - 3lsc AE Y FloF uaniF &M G ¢35 T2
e+ 2 B F o R EBERT v Jg { ¥y 23+ 2 Benf M £

LSE A RE T AR E AR L] B G A AT o

BERT m/{%\:% F b_F)\?r. GPT | b_F/\ ;’; , %_J._,«/w\ S ﬁ‘_’ﬂl] s o _,/\n[CLS]” § 13

IR e+ Ko chieas > 9700 BERT ¢ #°[CLS]” thieensk i i@ /\ﬁgl;«',% T
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2.2.43 ALBERT

ALBERT [11] (A Lite BERT ) % BERT ek @ F il i $¥cs 3 ~ T3\ &2 2 fe

51~ SOP 4% s2it » F I WA S8 ® ajpt © ~ P E e el B o { e 3
@R MIER > 2T E_ALBERT s cn 2§80 % ¢ 1. i i 158 4 ffe ol 300

%#c © ALBERT i i #-3# % 71 embedding size (E) v transformer 4 7*% & hidden

size (H) &t > % b=t + 7 2 chembedding £ 738 » TR EFER TR >
FRTSEEDEFR c GHFNL RN E TR GFHRLIFFEE 20

LR kY AT o gt ot > ALBERT # * 7 5k 23+ 3 (cross-layer parameter
sharing)) e vi » #9775 K o transformer & % 5 - BHH > @ F5 B A LT
HrEk- BREcTABAE SERET AN AEFEMNLERE > TR B L
P E et AR T 0 2. 51 » o3 8 B3R p] (Sentence-Order Prediction, SOP) :
ALBERT 4%t NSP E 33" U 2 fri 38 i £ B 4838 {7 7 228 o W 351 » SOP =
7+ ALBERT % 7 @A NSP T 5% > & FHA| 2470 B o 3 avig B 8 F AL 3%
o m | AR R oG 2 Bl T e B AT L@ A NSP 550 hd AT

£ T HFHAHE 3 BRI i2fo3E Rl 4 o ALBERT-xxlarge 7+ BERT-large

\\?{y

el ] PR T i L

2.2.4.4 RoBERTa

RoBERTa [13] ( A Robustly Optimized BERT Pretraining Approach ) 7% BERT =

WA A A 5 (70 hoT sk

1. # 5 3& ¥ (dynamic masking ) : BERT ¢ kg2 ® ¥-5 B 2 2 (758 H 30
EE IS 3%?;;1!‘3%;3@??%?] »PEERIE AR e SRR E AR & o B4R 9 mask

FEFEEE > FIA N F B RERY - TR Y Dmask FALRA LS @
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RoBERTa & =t & #7| #% I—*—ﬁ%] ~ pE ¢ £ ATPE 15% fhtoken i€ {7 4 1% mask >
tpvt BERT en## i ¥ > ik L 4 R A2 § 0 s 5 L ¥ 8 117 2 g e

f_? fvlll ‘ﬁ\ﬁ °

.2 ‘,f T — 78] (Next Sentence Prediction ) : RoBERTa 2 "f 7 NSP iz 4% » %

% ;\ﬁ%])xj‘é‘m;,l[% FoMBEIVRKREY 9F 2 Bkl koo gprt 3t

)
U

4
=3
=
LN

BERT ¢ NSP 7% > RoBERTa { 4 2 &7 3 s & ¥

L % F 2 { ~ batchsize i 73" : RoBERTa &+ BERT 7 16GB 3" 3
TRl e A b o B TR 4 B 160GB 0 & * { * £ batch size 14 2

£, ,n ‘ﬁfﬁfa& y 1 i"}. FE ,Fw.m] ]vjt ;; frg,xl‘gﬁgiﬁ: °

Y AMAE S D ABERT Y » 2 A L g4 s 2 HBF > #8153 4§ BPE
WE BT REHLEEAGXPREL 0 B 4o un” foted” B H & B L H
s untied” « BERT 3 4 + -] % & 30,000 » it 463 # % %] ¢ BPE %45 =
FE IR R 2 ahE R R F A NE R AR
FRAEIFFEFANEOE PN ALY L 4 3 FE R 00V
(Out-of-Vocabulary ) F 3% - RoBERTa 4 * & _F & & %7 BPE > | L #-5
B UL ASCI 3 % 27 » L %3 $ %8~ BPE- © chi & % /] %
50,000 » v+ BERT { fmi & » 26> N $30 g2 8 304558 2 e engd o <
o ME jJ® OOV A 2 { 5 %% o RoBERTa ¢ * 7 F & /& %] 1 BPE
17 hYdb 0 WA Al 5 5F > 4pt BERT eh% # %% BPE » igffi= 4

befmife B (fine-grained ) » 34 L 4c ¥ 5 » a fq L ¥ 24 OOV B 4% -
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2.2.45 DeBERTa

DeBERTa [9] (Decoding-enhanced BERT with Disentangled Attention ) ¥+ BERT

BA T o T e

1. »3payi g 4 ¥4 (disentangled attention ) DeBERTa ’1}_@?‘] » R ¥+ BERT #7%
BT g 0 RY A BRI E 4 4]0 BERT & * Hipd » oz 4 » 0
fek & 7w H@we £ > @ DeBERTa #-H P ehi= % % frph % %~ B 4 7 >
%A e EHE PR RE o S NHRE PSR fop F o R Wi

el f 3 E Hana ML 4 @A o Bk eE AR LR A R

YR EPap el (EEFRI T EAGL -

2. ﬁa?] Ik @ * 3 s 045 #8 f2 45 % (enhanced mask decoder) % Softmax :
Deberta * 3 53 45 78 f2 45 % 5 BERT sisoftmax & % ¥f /pl4R i i 5 token o
LM PR 0 - g g Bert el I e LT AR Bl A koo L B3
WpEL G fRAEE > A LB softmax #-5 R Ae F o AT
2 ¥ 0 - B A K o0 Transformer %75 % fv softmax 1% 5 3 3% 145 75 f2 75
%o P L fRsE % chsoftmax K 2w o e HiwehG $Him 8 4t 0 > 1R

IR PP T e o

Wiz % > DeBERTa e x5 { £ > 4p # RoBERTa-large » # ¢ *

- L e DeBERTa {7 5 1Z 53 ¢4 JL# RoBERTa { 4+ o

23 AANERAIRSBHER

AR EBRAIVREZ T FERS- A B PR RS T AF e e

FeE|3F ALk AU SR E Y o EIR Y AR R el T 0 HY Aie

21 d0i:10.6342/NTU202304127



Zero-shot

The model predicts the answer given only a natural language
description of the task. No gradient updates are performed.

Translate English to French: task description

cheese == prompt
Figure 2.6: GPT-3 ¥ 3 31 ch R ff A i iz i34k 1 4 0

AR I EFE LR R EBREEER BRT o FHRAT AL
#8 (zero-shot text classification ) g i 3 @Rk & iR T o BB e
O SRR CRUR IR S A L R IR U 7 SRR & 5 R
T SR T A e o R LR R 2L B &M e
THEA S KA FIREFRASE - B *IFVRFAFRE R A AL FH> 34> 9
PEEA oA AR A G A - A AR S M B s AN A S AT

TEE Y - AR E ARG, SRR T o

231 KXAAERXZTEYN + EARTHFE

KV RTa 23 RFARBTHEHN F 0 L ARP - BREFEHOR

T EHE T P RFEG S i E3 ﬂ\_‘rﬁfﬁ%] r P g U rdn E 0 m%ﬁ
Ao FTENA R A EF T3 GPT3 %> P e * 37 K3l E T % A

RG]0 ROl B o B R > ek TR BANR T  E NRHE A AL

e

& ¥

Y

i

Hg - B Eirdy B m 30 0 e "I AR AR 0 5 A

€1 pde T 2 S AP F o

InstructGPT [16] fr chatGPT 1 & * ¥|:hdy 4 fiesd (instruction tuning) £ A+
For e F - i v PP R A A i 4 0 2 TR &
R o AWRT NS FUFL IR AT BEF R AL
A FIEATE T RS R L AL ER S (B

22 d0i:10.6342/NTU202304127



ETRIRE- 3o RAE SRR VR ST SRR SRR R RS e

E

NP F LRI AR

R4 R ET R Rt R T A A I B T v
attention #+41] » EHAIIIRAP M ek 7 Pk b 4 X7 Z % % > 2 £.d 3 prompt
KA R i > FI Ak Xk T g & R ¥ g ARG 4
SRAEA RFE AL EEFREM PN F o A AL FA o gt b d b

MmO A F I HALFZRAFEA B A NEERY > B R BREHAET

232 BPBIRZFEZEE + AN T X

iR BT P RFTREEEY AL TR AL R
PIRF AL > HEC) PECAE A 0 2 AR R R AT AL M- 5 o e d

SO R A ) S BB D o BT g 4 s o Bar g i o

2321 ERABRBTHESGFTE

TE-Wiki [5] ( Textual Entailment formulation with Wikipedia finetuning ) i& i -7
I B AT 2 AEEPRTH > BT fen A iF L B 4% (premise)
A E L endgw iF G 3k (hypotheses ) » 4% B ”’[Text] Entails | Label ;| ” for i € [n]

PRI R EHE Y AT BT RS 4 e

BERF Y o AT A R AL T AP &Y ER O 674 BEAD BT A
A S8 o WERAEBRLIEE S 2 WRER L 2w THEAS A ERE S
Bl o & B2 Fehm 128 Bihie (token) AL * (TR & > 2 FATh e B4R (F
= I B % (positive label ) » j&H i 575 ¢ SgEH - BIF 5 f H[HE % (negative
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Category Tree Model
(m [M [ i Classification Head ———(@

Physics Subfields of History of cLs
physics physics

awards

Classical

Mechanics BERT Encoder

cLs Text | sep | category | sEP

Figure 2.7: TE-Wiki #-3] % 4§

label) » & &< R g4 A B+ h-#Fu]$ > * 33 BERT $79) 58 (7 e o R

x‘i

A ARRAY AR R 7% ¥ & AGNews TR FanRlzEE L EE

0.796 et Fr 5 o

Zero-Shot Text Classification with Self-Training [7] = = # > » & * 7 &fk &3

A X% 7 4232 > ;2 (Natural Language Inference , NLI) » % = TE-Wiki » ~ %
PR A R ERER R TR T - BRI M AfReRk AR U
Bouw U - A 2 PHRGEREEC B c L CF - Bipn - 2

IR R T
1. @& % }—‘f?"lirv‘fﬂ“: ] M?‘f“}\* %{7}'\3: Ui BIR ;TZ—?F' ,?IJ“‘J,:% f%ﬁ\;)"?ﬁ?;}lk
'é"'f:ﬁ l@‘ a_ﬁ_,}.u—:-h y l ; 1: —T-h] M o
2. # A F U R REA M FRIEEI M -
3. 8D bl o B RGBT £ #H R
EHED GRS Z L ADYEERY MEERIS R BENHEE A

etk h o LA BheT

24 d0i:10.6342/NTU202304127



$d BARE R A u UM 800 B 05 By el R T A Sy

2H TR

FR*P7PhGEIGER S F BRI GHEHLFEESLE

Oue = Sue — Sy © BB A EF PR R B AN R B ORAPEIT R HE B odp it

BiSHTI RADO EFTEAE > EHEF AR 100 B L Eik A5 1 5
A CEHLUERANIZF e
1. Contrast-random : “f#: 5% - B “,ﬁ% B % bk A o
2. Contrast-closest : :ZE# =t T 2% ik A o
3. Contrast-furthest : FEH & 3 & 1 S, Eerfk & o

4. Contrast-all : :L—g:}i’f TR AT ARTER SN kA o

AP ER A A 2FEN ZA IR OSSR ER LY

EEFR o FIA R AL PR A 5.

AR N DR IR 2 WETFRARE > R J AR TR

e TR DT 0 Bt e & ¥ DeBERTa i 7 4ic?d » & AG News g8 &+

AR RF TR 2R HAREHE o IR R o g R
SRR ST AR E AR R - SR AR e T PR
ﬁ,z{iﬁ'ﬁ;{ f‘;tx\‘? Y 2 ¥ erifd % o pL et “{'gv ﬂ&&\?‘@]ﬁ’li“gﬁﬁ ’ ;—L_Er EE?E&?}?;@.&JJ
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O-MLM ©OP MLM

Recover "yes" or “no H
O-MLM —___ 1

- @ODDOHNENEREEEREEE! P ETTI

[0-Mask]' —=| ne 0.8 " /

wmu LLGJBBBE@E@@@@@' ST st |
- EEEEC-CEEENEEEEREEE i=al

{ PMLM (ALBERT, RoBERTa, .) ;‘ ____________ v rop B

Mask nste 100% . [O-Mask]? —| ne 0.05 \ .
Input  [C] no |t s great. yes it's :ernh\e [S] What is sentiment of the review? [S] It's a cookie-cutter movie, ..., job [5] | :
a - b \ i [Tyeso3 |--{ Softmax '
Unified MC uestion: What is assage: It's a cookie-cutter '
I i
Format Options: [1] it great. [2] it's terrible. sentiment of the review? movie, a cut-and-paste job A R S S S TS
{(a) UniMC (b) O-MLM and OP

Figure 2.8: UniMC #-3] % 1

G TS E T HREAL . B FREFE (ot

lg
=
oo
N
ar
=
‘;%‘
AN
#
L

CRETIRRE T & A Rl R Lk D YA

2.3.2.2 UniMC

UniMC [23] ehig 4B #7on > v R p B 54 4 A& (label) p

R T iR NLU Ear g g = st— 0 % 5 €% (Unified Multiple-Choice) ¢

w

o pHEEITL - BiER (option) BiEIE W e - B * > 3p R 78 4% & o token
[O-MASK] - 3% token i #4F * [MASK]token @ % » P chf * k% 7 £ 7 & E 5

H {8k 4e 7 ¥ i & P question prompt 14 ANy it (E 5 o

x\”\

HEIE T

F.

ZHEA R Y 14 B NLU i@ 7% 78 $2.91F 5 2V S F R - 3 A& 98 3 Ui Al
ALBERT } i& {7y > B 8427 - B35~ & @ [O-MASK] 8 2160 ‘yes' <
logit i& {7 softmax » ¥ I|& BF 5 » T U S S~ Perif 7 17 5 SRR E B
ERFERIAGHL > T ARALER Y EFFHRAFR > B % A AGNews Tl

B EE 0813 chilbFg sk o

UniMC 534 g 3|7 2 denp B o2 Aanguie g - 7 EE { 4 Fraoe
AL R AR R AR RN B dp L vt e

B BERDD N T A2 AILEARY 4o T RT3 (prompt) FREL o
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Datasets # of option  # of examples

ARC 4 3.37k
CommonsenseQA 5 9.7k
Cos-E ) 10.9k
CosmosQA 4 25.2k
Dream 4 10k
Mctest 4 2.4k
MultiRC multiple 12k
OpenbookQA 4 9.9k
PIQA 2 16.1k
QASC 8 8.1k
Race 4 87.8k
Socail IQa 3 33.4k
WikiHop multiple 43.7k
WIQA 3 36.7k

Figure 2.9: UniMC #-3]#csh #7% 0 14 B T A &

feip 0 HCAIEE A B EAROR o A SR R RIS S iEaranl s o
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V23

F=F FTHEMN

REREFERAR AL G 0 AT e BAFERNTRE Y EB

EESE SR S AN S E TR L

2
- &

Ny
i

B AEA BT B Ao A

™

EAE > FHFT 40431 T g Bl

7“)&

R FEm g ke o
3.1 Yahoo! Answers

%7 f 8 4 Xiang Zhang[25] # £ 1245 Yahoo! Answers Comprehensive Ques-

AL

tions and Answers (YACQA ) version 1.0 7% L & &> YACQA ¢ Yahoo

IR E 3 * © f Yahoo F ende FP @A = > g PRI T £ 1 1 2007 & 10 ?

25 p R E TR > EALd ¢4 ¢ 5 4483,032 B ATfoin s BATHE % o Xiang

Zhang % A j& P EP7 10 BRAEHEE B X chi 38> {pip e A 402 S O RET o0
REHE - BARAEERE B E RS § 140,000 B3k A2 6,000 B

RliEfE ko & BHEAOTE § R L SR AL~ RATP Fob B E % o

FFRB Y KA R32 0 AT REE G AE33

FEECHE | TPERE [ GEE [ AEFAEE | FRA GRS
Yahoo! Answers DN LA 10 60,000 PN
AG News AT R A J’ﬁ 4 7,600 =N
DBPedia gﬁg A AL AL A 14 70,000 By A
IMDB TR T ;1 2 25,000 =R

Table 3.1: * ** 3% 05 (hF L PEie
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#

P

-

&
o

Fol L

0 Society & Culture

1 Science & Mathematics
2 Health

3 Education & Reference
4 Computers & Internet
5 Sports

6 Business & Finance

7 Entertainment & Music
8 Family & Relationships
9 Politics & Government

Table 3.2: Yahoo! Answers 3 # f % %]

id

topic(class label)

question_title

question_content

best answer

8 (Family & Rela-
tionships)

” What
friendship click?”

” How does the
spark keep go-
ing?”

makes

”good communication is what
does it. Can you move
beyond small talk and say
what’s really on your mind.
If you start doing this, my
expereince is that potentially
good friends will respond or
shun you. Then you know
who the really good friends

2

arc.

Table 3.3: Yahoo! Answers t& » F £tk &)
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e e
0 World
1 Sports
2 Business
3 Sci/Tech

Table 3.4: AG News 74 £ 47 %

text label (class label)
“Fears for T N pension after talks Unions
representing workers at Turner Newall
say they are disappointed’ after talks with
stricken parent firm Federal Mogul.”
Table 3.5: AG News & ~ F B4k 7]

2 (Business)

3.2 AG News

AG &_d ComeToMyHead £ #s37# #% 51 & 78.2000 % B 37H kKRR D ken
AT 100 § / * F 0 £ > Xiang Zhang[25] ¥ 4 1335 AG & 7 * 3% A& 3
Ttk AGNews: B T2 K AGFREY ER T e Be 77 F i F s
He Z@Bgge 5 30,000 BREAZ 1,900 BRFEA & BHRAMNE § TR

& 42 B A AEAT o B AL g it

R R AERAcR3 4 A F R GAcR3S5 .

3.3 DBpedia

DBpedia #_ - B £ 2 & F ¢ ﬁﬁ&.ﬁ;ﬁﬁit FALGIE R o A2 P AR
DBpedia 7 # # ¢ Xiang Zhang[25] ¥ 4 1395 DBpedia 2014 F# F H& @ %k - 3%
TR ¢ 7 7 & DBpedia 2014 ¢ {8 P P 14 BRLEAF AN > & BREW e 2
ST E B 040,000 B2 R A0 5,000 BoplGEER A > F B AP B Ak

AL 7 AR £ o
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R 5ol 27
0 Company
1 Educationallnstitution
2 Artist
3 Athlete
4 OfficeHolder
5 MeanOfTransportation
6 Building
7 NaturalPlace
8 Village
9 Animal
10 Plant
11 Album
12 Film
13 WrittenWork

Table 3.6: Dpedia 7 #% & %7 %]

label(class label) | title (string) content (string)

» CNet Technol- CNet Technology is a Talwanese company that

0 (Company) 0oy’ manufactures network equipment such as net-
&y work cards switches and modems.”

Table 3.7: DBpedia & * F £tk &

GF R Y AR £ 3.6 0 FTR R AR AT BB 3.T

P

3.4 IMDB

TALED & 2 X F RS ST T E IMDB 50000 if B E S R
AT AR R A K o in B E AR TR E{RREE A WG 25,000 iF 0 TR E A
I B e § 50% Ol 5 3% Ao 50% 0 f 6 iR B Y B e ThA e E S 1o

Ful LAEs "pos” s f g iEmARTRE 5 00 H N LALS neg e

N
R

AL AFRAe 38 ZERE AR AT ER A3

)

FuEE | Y LA
0 neg
1 pos
Table 3.8: IMDB 7 L & #g 1]
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label (class

text label)

”Technically I’am a Van Damme Fan, or I was. this movie is so bad that I hated my-
self for wasting those 90 minutes. Do not let the name Isaac Florentine (Undisputed
IT) fool you, I had big hopes for this one, depending on what I saw in (Undisputed
II), man.. was I wrong ??! all action fans wanted a big comeback for the classic ac-
tion hero, but i guess we wont be able to see that soon, as our hero keep coming with | 0 (neg)
those (going -to-a-border - far-away-town-and -kill -the-bad-guys- than-comeback-
home) movies I mean for God’s sake, we are in 2008, and they insist on doing those
disappointing movies on every level. Why ??!!! Do your self a favor, skip it.. seri-
ously.”

Table 3.9: IMDB # 4 & £ % 1
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HWE BRI E

A2 AT T S R AN R e B RS TR B i B A ol Bl g it ih

FRAEBIALSHFERD N c BRI AT FEAIL S BLE

LM T R B A e AT B A S E S

FOTHCA ARV RACD] 0 B HEA A A 4 fotha o

2. 2 AP D REDROER R L BT AAA EAY REDEE 0 AT
WEAEY @ % - fE AT GloVe HoA) s bl p &4 5N 0 -7 B AR enD A *

T PGEARY SRR E AR R KA BB TR RIERES o

4.1 BEAEA

Avd Rk R S 5 E I (UniMC) s 350 f 4355
(TE-Wiki) % £t g 275 (self-training) =1~ j# %458 2 % #7] RoBERTa ~ BERT -
ALBERT ~ DeBERTa it {7 g7} » 52 & 2 fofia] S A 529 § #w 4 5 0 7]

TR

AR EDRE A BYRT RO E LAl o
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4.1.1 BABRINREH ey R

B 223 7R (open domain data) 4p PR 2 F L iz i3 2 M@ B il * T

T F e 7 AR IeET A E N X B AP oA

pul"'

> ik F

oy
)
X

e BAFTHE-Fd 2RIFF L FAEDYALFRLETF 2
FARAER > CRAE v e s B R FHE T S G iER

A AT AL B R T

AT P DRFT R OER LY T TE-Wikih> » #2AF T e Ao
Hoop e » B AR TR o 87 TE-Wiki 7 e ehf_» 2577 8- * 5 B4 w4
PRBEAE AR HE F BN SYRTA A2 ARG i RAS B
Bpw o deB4 0557 0 A Y P ERT AR T AEE T & 1700 B R B AE ] (F 5 49
@8 GdE 0 “Listof” BE26 BATR (2 $HE - BIIEE R FRE
A4% (DFS) i 8/ » RBEWRFR L2 REAPHEFgw] » T g fgnlfos
BpBlHEE SR P RUE Y 0 KB FR 5 2 PP e E AT Tl sE
WEBE 5 M - A7 ¢ BN T 2B REEGY T Ak
B - B R EORESRITLE T R A > X EGFR A A al Y SE s E

B —1'13"*"LF#J BB 0 1 IE G ‘:“?‘."n—llﬁﬁm%iﬂk deBl4.24%75%

Y
)
e
e
il
faid
oA
R4
|
=)
=
f:\;
0‘
>>‘_
e
/"§~
‘W
m
:’3
%aa

TR o kR b

WA 2] o

Wi N AP EE 974923 v & 2 H 1 eh 674 BAEW]
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Figure 4.1: #f % #Hg2 7 & Bl
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label
2 0D
Text
1 Random
elect

= Negative labels

Figure 4.2: & § G| *E & 7 £ B

Algorithm 1: Training Data Collection

input : Top-level category set S,Wikipedia subcategory graph G, Wikipedia
articles X, max search depth r = 2;
output: M

Initialize d(x,c) = oo for any article z € X andc e S - M = {};
for cin S do

T = DFS(c,G,r);

for ¢ in T.nodes do

L for x in t.articles do

a B A W N =

| d(x,¢) = min{d(z,c),1+ depth(t)}

for x in X do

=2

8 if min.cg d(z,c) < oo then

9 P = argmin,_od(z,c);

10 for cin P do

1 if c. len() == 1 then

12 Add (z,¢,1) to M;

13 foriin|[1,n— 1] do

14 Sample ¢’ from
deS—Pd+#PU{dl,d2,....,dn—2};

15 Add (z,d,0) to M;
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412 BAMAEIARIE

BB P f bR AL S AP Ml G A
BT LA bl ~ f s d NIV T ey AR R U AL R R
Jo ¥ F e 266 @ tokens 175§ TR bIhY koo E 3 LR AR RO
RO L AEREABAS LRI E R R B A i) B

BB R UBER > F R RS - BE G AR A

Eda 2 o {NE R VD - B (text, class list = [classy, classy, . . .,

class ], ground_truth) - 2 ¥ text & # P~ & ¥ £ 5§ £ o [class], class2, . .., classn]
o htent DD R AGH DR L S RICDE BT R IR
% o ground_truth 3p G E T R A ORE] 0 T2 AT A%

I F R DT R o ",% 7 Self-training S P i%F 7 H#GH 2 ¢ @ 3| eh

v

# 73 “This exampleis” » # &H 3| & ¥ %i- %X ¥ # 73 5 “Which category does

the following text belong to?” -

0@ % prompt (2 S N HA] 0 A BRI A T iis?l N

“[class ;] ,” for class; € class_list [prompt] [text] 4.1)

 text : "Keep an eye on your credit card issuers — they may be about to raise your

rates.”
* class_list - ["Business”, ”Sci/Tech”, ”Sports”, "World”]

* ground_truth : ”Business”

38 d0i:10.6342/NTU202304127



Pl B AIT Y 74 g~ fh 5 AL

* [”Business”], [’Sci/Tech”], [’Sports™], ["World”], ["Which category does the fol-
lowing text belong to? ][”Keep an eye on your credit card issuers — they may be

about to raise your rates.”]

¥ TE-Wiki 03] » & B 4k | #-4 rmm &

“[CLS][text][SEP][class ;] [SEP] " for class; € class_list 4.2)

\

At b2 B H| S o % TE-Wiki § B e 365 ~ ¢

[CLS] [’Keep an eye on your credit card issuers — they may be about to raise your

rates.”][SEP] [’Business”][SEP]

[CLS] [’Keep an eye on your credit card issuers — they may be about to raise your

rates.”][SEP] [’Sci/Tech”][SEP]

[CLS] ["Keep an eye on your credit card issuers — they may be about to raise your

rates.”][SEP] [’Sports”][SEP]

[CLS] ["Keep an eye on your credit card issuers — they may be about to raise your

rates.”][SEP] ["World’][SEP]

¥+ * Self-training = 2 ehfics)] » & Bk b BALFE S

“[CLS][text][SEP][prompt + class ;] [SEP]” for class; € class_list 4.3)
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v b2 B BF 0 @ % Self-training #& TE-Wiki % 7 %73 0 B F2is &%

4o T L

[CLS] [’Keep an eye on your credit card issuers — they may be about to raise your

rates.”|[SEP][”This example is Business”] [SEP]

[CLS] [’Keep an eye on your credit card issuers — they may be about to raise your

rates.”|[SEP][’This example is Sci/Tech”] [SEP]

[CLS] [’Keep an eye on your credit card issuers — they may be about to raise your

rates.”][SEP][”This example is Sports”] [SEP]

[CLS] [’Keep an eye on your credit card issuers — they may be about to raise your

rates.”|[SEP][’This example is World”] [SEP]

AR - SEARN SR F BRG] IR T

[CLS] “([0 — MASK;][class;] fori €n)” [SEP]| prompt] [SEP] [Text] [SEP]

(4.4)

v b2 2B B3 > UniMC #rdc mﬁig?J A A

* [CLS] [O — M ASK,| ["Business”] [O — M ASK;] ["Sci/Tech” ] [O — M ASK,|
[”Sports”] [O — M ASK3] ["World”][SEP] ["Which category does the following
text belong to? '] [SEP] [’Keep an eye on your credit card issuers — they may be

about to raise your rates.”][SEP]
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4.2 AR ek&

-

i A48 (inference) 2w » Vi L & B P iR ag B E G H Eo4p 7 h
AT AN T R AL ARG R Y AL A
B RS AR 0 Y TSP T LT R B R AL Y
Tl enseh s R oS Y ARTEE L 0§ BRI B S A o 8

AR CBEARS FE LT H IR

1. @ % GloVe 3] » 3+ 5 P el A AR e £ o

2. R AT PuuEe E4rp auee B2 Bk inip R MR AF #447

WPk G B R 0 PR 2

3. BRCYRILEARY & r B AR P AT (7R -

4o Bfd B AIEY (THRATUIPE S BT D D R -

4.2.1 AR kA AT B R IE

# % GloVe #4138 p HRag w2 A 7 fLo w3

m
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|
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Bl i e 7 3 8 T AR 0 R B a3 P
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e
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1. 2 “f FoxEapg o B FRe o

HHFEE & PEREP 0, FEAPe R
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3. fz e I Hpanee EenT ol @R F R oge

1 n
Vs = ﬁ : V; (45)
=1
4.2.2 FEP| wH
BRARAT L EE 5 Ly, = {w,wa, - ,wy, o BRPEGENEE L

L,={z1,20,+ ,zp. > ® % PSS f &7 AT PAES A » B 5 PR S D

i‘g% ;;’Z’.'J%ﬂf}fié—ﬁé—&"]'ullﬁ;:

¥ aE - BAAR i 7}—1&\? [P 1?“*}‘7:}7%\,- e g o v ﬂ}frﬁ - B P g

v R ehbREAR R 0 @I AR e p g efp iR B S e RVXZ 5 S=
s(wy,z1) s(wy,22) -+ s(wi, 2n,)
5<w27zl) S(U)Q,Zg) S(QUQ,an)
s(wi,z1) s(wiyz0) -+ s(wi, 2))

He S 47 % i BAKF AT B R Bkt R o 3
N - BAAT A A PEES 2 B P B ko B AR T A

Ser DB H fAp e p F R P R A M P oo RS ERT AT S

f(i) =k = argmax S, ; (4.6)
J

Lo BE B REAT AR D R G R4 B32T 6L R
Poown,wa, ., wi8 & A SRR AT FEE] HY w, w, wy 0 fr T B AR 1250
PAZEWIDE o0 PIHB-T P 4e X Bl o hF R4 7 o
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Word Vector Space

© Target Label
® Wiki Label

Cosine Similarity
Best Worst
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Figure 4.4: #-a A7 A 4gw|ph &+ 5 P g% izE 5 7 L B
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AoBAA5TT o E = AR LT ARpE B S B R 0 507 % hig
s 0 kv BE B AT R Y i TR E 8 A A 1 B
REPEA BIBE RS R ERT kB RER > TP R e kB A
AT PN PR R ERIIA Y g F oI R B - BERTHE
G ¢ - BET L R AP o N FE T AT AR A
CEE RS RS FANEEE FARE SRS NS A SN -
[0.8611, 0.8610, 0.7952, 0.7451,0.7193,0.6060] > % & BH % 5 BE F TR plH
ARG RAVG GE A b s - BTN @R E AL S [

‘}ii&v— ,%\\' *’iﬁé#‘;’”’ 2 }?é’i ﬁ%#_;” ,7, 2 ,Za,’—”’ 2 z‘;] ’3, 2 gg ”] °

A g ‘H.ép 7}4&\;‘@;}5 FlEaAP W NE R A2 AggH| > T4 2 B fii’*ﬁﬂ;ﬂ,.-;%fﬁ
Fd oo n A A REEFE P HRAY AT A Adgn o EH Y B

B kB B AT AP AERAAT AEYUREG P bR A Y AR

B AP0 R Ap e - A AR N O AR

423 BRFAF|LEM

BRI dH P R A L AP AR FRITIFRIPF > R oL WA P
RPN 1T 5 e~ o SRACH E PRI S E SRR T A o Ao BlA50TT 0 K
KEEIRRNtexnt 5 BB RRNEF EINE R > class list 5 [P s & 577
B #7) > ground truth 27 vf $+ & 47 LiEITiFEARY > AP R F FRFPIA P 0
RS, R B FT R R, A SRR e T TR

3

ES o B DI SRR e A

Bots o ffEAln S I

l

C R FRPF L PHCR] e & S value HiHH
¥R e key » #-key 17 5. p%ﬁe%] o 4rBl4.5 0 i kAL 28 HARE
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FRHEBGSSR

EEEE BB SR S AR EEs P o
AL BB { oo
EREBRENE —
S ER R EER? P ouput __ find key [ outout
AT EE) BIAEED) C 5 D1 £ 5 F.B l Sl | e
ry
Figure 4.5: 3 3@ * 77 & Bl

AR DR LR AP R S value G FRFAAFL ? B key

S R SN Bl ER ST S LT

4.2.4 BT EHERF

PELF R TREL R NG AR p DGR HCR] SRR R T

~

B A2 AP RERY BHFAPA A HFERY IR 2ALAE ]

HERE2 PR E A

FA T BB D AR R MR FATN 0 A2 B2 0 R eh
BERE 5 0.8 4ok F R EEmy ahF Auul e p Ragsl cnteiz s i1 & |
QS’M%¢M%gﬁM%’amufwéﬂ’*hx@vmx”fw\”m”~”%”\”ﬁ

7P AR T g RS0 0.8 0 RIS FE R Y %

B 3 T AL EAATHAGEUY B 2INAANAEF OF AR A2 A x0T

PR AT E AR S 4] RS 41 B 2 60 R e P en ) B AT ¢

Wy
F_L
:‘.n

FRFARAEPE L BE ST TR KA LI F R E P

for S E R R~ R H P e B Rk RR P R AT

EX]

7 0 R&
% “Society & Culture” - ¥ E F & & :E & ¥ F 35| & [7 Science and culture”

’

,” Popular culture” ,” Mythology by culture” ] ¢ 3% “Society & Culture” *# > H
3 “Culture” &) B “culture” % % %" Science and culture” ~” Popular culture”

=7 Mythology by culture” B {& - B ¥ 3@ “culture” ¢3 + 8 & > #7100 & F 4v »
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“culture” - @ “Society” #* F Atz BiREFAFPOEFOFIE Y TR AT

L P 4e ~ “Society” 0 BB enF iP5 & 5 [0 Society” ,” Science and culture”

Popular culture” ,” Mythology by culture” ] -

PR o e BU A ARTHVER Y AA SR PR Y o ¥ APt

PR R R L Ao i1 A
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beics
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BAcH A AT E Y iR g GuLiz o otk 0 'lfjk'» YUY BB R JERTENIE A > T
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FRF FThIGH&ERITR

AR AN HT R IR RRAREBRR L TR EE BRLFHE

51 FEAiESH

%{ﬂ\? 7}\,4,\*;1 FFrenp o E_fB ,,'1”‘ 2% ﬁ —}'m'f—t R s MEFT A IR KA

s

5
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1. &% UniMC ihHA S - & 7 4v prompt M8 7 E FRpy i 0 e PE o0 Rt 8E
BELT - A VUERAEY D SR B R A ek

G KA BEY o bl PR Y EHERET R

2. i S E AR mff”"*&’f#ﬁ‘&zbﬁiizg- i ‘ﬁF, Ao B E Y Pl s L
B ‘vak (Prior Knowledge) # f245 & i df 12 > 00 5 il it it 4 ahe s 0

sV

3 MAAT ARSI R A RN PE S A o RF R

PR R R A AEe o SRR TR 0 R S I PUE i s o LR

A5

A TE AR A AT E TR b il

IR AR

AL R R Z B0 Ak R ERE

52 BEHRALLREZL

7}"];‘;#‘2"/\ 29 ‘5&?"1,,, ii'ﬁ%m"\v{ T_°

521 EFBRHEAL

ALY HAG TR ERY T R LS (Accuracy) 0 H 3 H 3 5

Accuracy = (TP + TN)/(TP + TN + FP + TN) (5.1

He o TP & 4 E % (True Positive) 45 B3] I /s #-3FR] 5 I 5 W] ek & dic
£ 5 TN * 4 B to 1+ (True Negative) 4 #03] I Frds #-7F R 5 f 37 5] chik 2 £
FP i % i {2 (False Positive) 45 #3] - § & & 45383 30 5 T #k & gl 5 TN
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& 4 &+ (False Negative ) dpta |31 AN RE SEOR S f 1 A ikE o

FHAFT Y RNNE - B3 TR FE23Y KPR RE
THIEE AEBER RO N R R E224° 4G5I PIEVRGES A 0F

= iz gt (backbone) > ¥t H F Hoxk » T EE TR BAFORCR T L S A

4 -
P AT P RNNT S B FR MR HALY RIS E o B
APHOEE AP ZFHEESDRTAESE > A UniMC 3] - 2 ¢ 9%

20t A A E AR FT AR T SRS S R 22 TET IR

TR n g HY R LR PPR

FHAIATLPRNDEZ B2 FHRIBRY FH429 F 02 @R
BATFVRTR Y g n P RSB TR I o F A 3 R (S

sk o TR R

7,""\
FE‘

PEHFREFORT R R332 P DLEE

G IR Y 1Sk o

PFETRAT MDA EERPRHEA B 2T RO G A XEF %
BAVIHA FHE ek R F @A @7 P2 B R R hE
Ao A2 AW AT &S] fod & 52 ¢ BE E A S R 4103 UniMC ~ B o in

i# $i-3] Self-training & 7 22 % F et i o

522 FBWEZ

PRt R R T e o o %2 (Taiwan computing cloud » TWCC)
PyTorch B 2 3| % % (A]155 : cm.xsuper) i& 7 F % » K% 0 f R H K LI & 5147

T o
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Table 5.1: F 2% 5

7% P #

CPU | : Intel(R) Xeon(R) Gold 6154 ( ~ 7<)
GPU | Nvidia Tesla V100 * 2

RAM | 128 GB

oS Ubuntu 20.04 LTS

\\\?{r

Method Backbone Fine-tune dataset Inference batch size
Prompt GPT-3.5 — -
TE-Wiki BERT-base Wikipedia, 3,387.028k examples | 16

Self-training | DeBERTa-large | Unlabeled data from target dataset | 16
. 14 datasets for different tasks,
UniMC ALBERT-xxlarge 309.27k examples 16

Table 5.2: & 7] ¥k

53 Em&EXR

531 FE1: ZHRAIXASBEAEIILTR

GRERKET FBRARSHEOEA Y U e R L EEA AT R A A
ARgEF g 0 B¢ R e 24 2 V1503 GPT-3.5 0 text-davincei-003 =
#» MLM ( Masked Language Model ) #-%] BERT-base - ALBERT-xxlarge ~ DeBERTa-
large » * ;% # 35 * prompt~ # * ri— % 3EIE 2 Nk (UniMC) ~ @ * 2L
PR T pARF T I R (TE-Wiki) ~ & % f 2 3Reh= 583 % g 2R3g

= 3IP e Ve 7 e (Self-training ) 0 & $03) S #kcdc £ 5.2 -

Gk > GPT-3.5 A % BV R F AR 7 > TE-Wiki @ % 7 d A
FAST v A 3,387,028 £ F AL ie 7 A Self-training & * § % T4 § op
GBI FALE A > UniMC Rl % i@ & i 14 B T4 § 60309,270 & F i 7 A
B oo TR 0 %7 GPT3S ke LB ER Y APL 4 Rigrima 14
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Model Backbone Yahoo Answers | AG News | DBPedia | IMDB | Avg
Prompt tuning | GPT-3.5 45.12 65.32 N/A | 82.56 | 64.33
TE-Wiki BERT-base 56.54 79.62 93.10 | 62.02 | 72.82
Self-training DeBERTa 62.04 81.40 94.52 | 92.52 | 82.62
UniMC ALBERT-xxlarge 62.98 75.83 12.93 | 92.63 | 61.09

Table 5.3: Bt 2~ 22 FH AP FH L%

B339 & L pFehbatch size 5 16 © § & A4F i e d o 3% GPT-3.5 2 & e ¥
E &r%ﬁﬁﬂi S F A e ZAEE o RIPRE A AP FoP 4% GloVe e 2 2

e Ap R 0 E B B4 0 sE ) i%;ﬁg?]ﬂ: o

FEHRBL G5 A0L 53 Ko hlicE & B *%, d 3t DBpedia R £ #cE &

<~ AT I A GPT-3.5 & DBpdia * & (74232

4ed 53T 0 SR B B R TR A B RO PRS0 Avg £ 7
bATHEL RS DTG R T A BRI T T K

A N Ap A MLM $0A3 e a0 Nk mE kR E 5 @ % Self-training = 3% e
B % Bds o @ 3 MLM $53) fiesd 50 ¢ > UniMC & Yahoo F#L & 1 eh%
Srg v @ik R TAEE P P OEA ) R TS BFALE Y - Self-training
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Figure 5.1: % #k & = & & fF #3110 $ F 2 8 % 152 F)
Yahoo Answers | AG News | DBpedia | IMDB | Avg
UniMC-ori 62.98 75.83 12.93 92.63 | 61.09
UniMC-5 classes 64.05 76.29 68.02 92.29 | 75.16
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Yahoo Answers | AG News | DBpedia | IMDB | Avg
UniMC-ori 62.98 75.83 12.93 92.63 | 61.09
UniMC-5 classes 64.05 76.29 68.02 92.29 | 75.16
UniMC-10 classes 61.02 54.24 86.07 66.13 | 66.87
UniMC-20 classes 63.33 76.93 87.89 87.72 | 78.97
UniMC-30 classes 64.49 66.87 91.48 86.24 | 77.27
UniMC-40 classes 65.12 78.45 93.79 89.20 | 81.64
UniMC-50 classes 64.66 73.72 88.78 85.45 | 78.15
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Yahoo Answer | AG News | DBpedia | IMDB | Avg
UniMC-40 classes 65.12 78.45 93.79 89.20 | 81.64
UniMC-40 classes, top 1 59.11 83.24 71.48 52.23 | 66.52
UniMC-40 classes, top 3 64.00 84.79 75.07 52.94 | 69.20
UniMC-40 classes, top 5 63.22 84.68 75.02 51.85 | 68.69
UniMC-40 classes, top 7 60.73 85.12 72.81 51.50 | 67.54
UniMC-40 classes, top 9 60.50 81.71 74.11 5493 | 67.81
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Yahoo Answer | AG News | DBpedia | IMDB | Avg
UniMC-40 classes, top 5 63.22 84.68 75.02 51.85 | 68.69
UniMC-40 classes, top 5, filtering 65.70 84.34 93.69 89.20 | 83.23
UniMC-40 classes, top 7 60.73 85.12 72.81 51.50 | 67.54
UniMC-40 classes, top 7, filtering 65.43 84.52 93.69 89.20 | 83.21
UniMC-40 classes, top 9 60.50 81.71 74.11 54.93 | 67.81
UniMC-40 classes, top 9, filtering 64.30 84.52 93.69 89.20 | 82.93

Table 5.7: & E #4417 % F %5 %

0.00 10.00 20.00 30.00 40.00 50.00 60.00 70.00 80.00 90.00 100.00

Yahoo
Answers
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IMDB 89.20
S ——S—S—S— 89.20
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Avg 83.21
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Figure 5.6: & & 8 4]7c% 9 % % % 152, 8
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EPHIF 15.02% 0 %7 k=5 k=T & AGNews } » & * FE B AR ¥
VA AR R TR GERITR RN AR BERY o d N Ak=5F
K* EFEBFIFEE S G FSL AP T AP RS 2 AL

UniMC-Wiki o

AG News | Yahoo Answer | DBpedia | IMDB
Top 5, filtering mechanism | 2 2.2 1.071 1
Top 7, filtering mechanism | 2.5 2.6 1.071 1
Top 9, filtering mechanism | 2.5 2.7 1.071 1
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Yahoo Answers | AG News | DBPedia | IMDB | Avg
UniMC-ori 62.98 75.83 12.93 92.63 | 61.09
UniMC-ori, label mapping 57.67 65.87 11.45 90.76 | 56.44
UniMC-40 classes 65.12 78.45 93.79 89.20 | 81.64
UniMC-40 classes, label mapping 65.70 84.34 93.69 89.20 | 83.23
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Yahoo Answer | AG News | DBpedia | IMDB | Avg

UniMC-ori 62.98 75.83 12.93 92.63 | 61.09

UniMC-WiKi 65.70 84.34 93.69 89.20 | 83.23
Table 5.10: % * 2@ * w s A it FH 25
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Self-training 62.04 81.40 94.52 92.52 | 82.62
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