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摘摘摘要要要

條件隨機場是一個適合用來標記序列性資料的模組。由於考慮序列中所有可能的
標籤組合，條件隨機場在學習及預測階段都非常耗時。牛頓法在最佳化的最後階段
具有較快的收斂性質，因此我們採用牛頓法來解條件隨機場。海森矩陣向量乘積是
整個計算過程中最耗時的部份。本篇論文提出一個新的動態規劃技巧，可以在多項
式時間複雜度內完成海森矩陣向量乘積。

關鍵辭: 共軛梯度法、信賴區間牛頓法、最大熵值法、條件隨機場。
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ABSTRACT

Conditional Random Fields (CRFs) is a useful technique to label sequential data.
Due to considering all label combinations of a sequence, CRFs’ training and testing
are time consuming. In this work, we consider a Newton method for training CRFs
because of its possible fast final convergence. The computational bottleneck is on
the Hessian-vector product. We propose a novel dynamic programming technique to
calculate it in polynomial time.

KEYWORDS: conjugate gradient methods, trust region Newton methods, maximum
entropy, conditional random fields.
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CHAPTER I

Introduction

Conditional Random Fields (CRFs), a type of discriminative probability model,

were first proposed in Lafferty et al. (2001). The linear-chain type CRFs model is

especially widely used on segmenting and labeling sequential data. Some applications

such as noun phrase chunking task (Sha and Pereira, 2003), part-of-speech (POS)

tagging (Lafferty et al., 2001), named entity recognitions (NER) (Mccallum and Li,

2003) and Chinese segmentation (Peng et al., 2004) get good results with CRFs.

For solving a CRFs model, Lafferty et al. (2001) use two algorithms based on

improved iterative scaling (IIS) to estimate the parameter, but get slow convergence.

Sha and Pereira (2003) proposed two quasi-Newton methods, limited memory BFGS

(L-BFGS) (Liu and Nocedal, 1989) and pre-conditioned conjugate gradient, and has

better results than IIS methods. Where L-BFGS only needs gradient computation, and

pre-conditioned conjugate gradient only uses diagonal elements of the Hessian matrix.

Newton methods optimize object function with Hessian information but the analytical

form of second derivative CRFs is too complex to compute. Without any additional

derivation, it takes exponential time of complexity.

Automatic differentiation (AD) (Griewank, 2000) is a technique which can be used

to calculate the gradient without having any analytical form of gradient. This idea

can be also apply to Hessian-vector products. Vishwanathan et al. (2006) apply AD

1



2

to do the Hessian-vector product in a stochastic meta-descent (SMD).

Trust region Newton method (TRON) is a kind of truncated Newton methods. It

uses conjugate gradient to guarantee the function value convergence. Lin et al. (2008)

adopt TRON to solve large-scaled logistic regression problems, and obtain better results

than L-BFGS on some data sets. A logistic regression model can be seen as a special

case of CRFs model, so we expect TRON will have better performance than L-BFGS.

Wang (2008) tried to use TRON on CRFs models, and used AD to do Hessian-vector

products, which are needed in conjugate gradient procedure. The experiments show

that the training time of TRON is slower than L-BFGS.

In this thesis, instead of using AD, we derive an analytical form of the Hessian-

vector product of CRFs and give a dynamic programming technique to compute it in

polynomial time complexity. We also discuss details of time/space complexity.

The chapters are organized as follows: Chapter II introduces the formula of CRF

model, and explains how to apply the CRF model on solving named-entity recognition

problems. Chapter III shows the TRON algorithm and gives the details of calculat-

ing gradient. Chapter IV describes how to calculate the Hessian-vector product with

dynamic programming, and analyzes the time/space complexity.



CHAPTER II

Conditional Random Fields

Conditional Random Fields (CRFs), a probability graphical model for segmenting

and labeling sequence data, was first introduced in Lafferty et al. (2001). Linear-

chain is the most important special case of CRFs model, and it has many successful

applications on natural language processing (NLP). In this chapter, we describe an NLP

application called named-entity recognition (NER) problem, introduce the formula of

linear-chain CRFs model and explain how to apply CRFs on NER problem.

2.1 Named-Entity Recognition Problem

Named-entities are phrases that contain the names of persons, organizations, loca-

tions, times and quantities. For example, “Knuth” is a person, “Taiwan” is a location,

and “National Taiwan University” is an organization. The named-entity recognition

task is to select a predefined named-entity tag for each word in given sentences.

A named-entity word will be marked PER as a person, LOC as a location and

ORG as an organization. If a word does not belong to any named-entity, it is marked

as O .

We take a real sentence as an example in Table 2.1. This sentence is instantiated

by Conference on Computational Natural Language Learning (CoNLL) 2002 shared

task website, http://www.cnts.ua.ac.be/conll2002/ner/.
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Table 2.1: An example of tagging name-entity tags.
token Wolff , currently a journalist in Argentina ,
tag PER O O O O O LOC O

played with Del Bosque in the final years
O O PER O O O O
of the seventies in Real Madrid .
O O O O ORG O

In this sample sentence, “Wolff” is a person name, and we give it a tag PER .

“Argentina” is a country name and should be tagged with LOC . Two PER tags

are tagged on “Del Bosque” since these two words compose a person name. “Real

Madrid” is an organization name, so two ORG tags are given. Other words including

punctuation marks are tagged with O .

To give a more precise formulation, we define some symbols. D = {xi,yi}Ni=1 is an

i.i.d. data set. xi represents the ith sentence, and is composed of some sequential words

xi = {xi1, xi2, . . . , xiTi
}. Ti is the number of words in the ith sentence and N is the num-

ber of sentences in data set D. The task is to learn how to predict tags from the given

tag sequences yi = {yi1, yi2, . . . , yiTi
}, where each tag yit ∈ YD corresponds to a word xit.

YD is the set of predefined tags. In the above example, YD = {PER ,LOC ,ORG ,O }.

In an NER problem, the difficult part is that not every named-entity term has been

shown in training corpus, and sometimes, even the same word has different tags. For

example, “Taiwan” is LOC , but “National Taiwan University” should be tagged with

ORG . To solve this problem, linear-chain CRFs learns the information not only from

context, but also from the previous tag it predicts. In the following discussions, we

call linear-chain CRFs model as CRFs.
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2.2 Conditional Random Fields

CRFs model follows the same assumptions as Hidden Markov model (HMM) that

the tth tag is only related to two independent factors when modeling the probability

distribution, p(y,x). First, yt is related to the (t− 1)th predicted tag, yt−1. We use a

probability function p(yt|yt−1) to model it. Second, the tth observation, xt, is related to

the tth tag, yt. We use another probability function p(xt|yt) to model it. Under these

assumptions, the joint probability distribution of a sequence, (y,x), can be written as

p(y,x) =
T∏
t=1

p(yt|yt−1)p(xt|yt). (2.1)

For these two probability functions, p(yt|yt−1) and p(xt|yt), CRFs uses an exponential

function and a parameter, λ, to model them, where Z ′ and Z ′′ are normalization terms.

p(yt|yt−1) =
1

Z ′
exp(λyt,yt−1), (2.2)

p(xt|yt) =
1

Z ′′
exp(λyt,xt). (2.3)

Applying (2.2) and (2.3) to (2.1), we have

p(y,x) =
1

Z ′′′
exp

(
T∑
t=1

(λyt,yt−1 + λyt,xt)

)
. (2.4)

To easily represent equation (2.4), we introduce a concept of feature functions. For

those two probability assumptions, we consider two kinds of 0/1 feature functions:

frs(yt, yt−1, xt) = 1yt=s1yt−1=r. (2.5)

fos(yt, yt−1, xt) = 1yt=s1xt=o, (2.6)

The number of feature functions in (2.5) equals the number of probability values in

the probability function (2.2). And (2.6) is corresponding to (2.3).

To simplify the notation, we use integer k = 1, 2, . . . , d to index all possible rs and

os. d is the total number of features which is equal to the number of all possible rs
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and os indices. We further define f(y,x) as a column vector function, where

fk(y,x) =
T∑
t=1

fk(yt, yt−1, xt), ∀k = 1, 2, . . . , d. (2.7)

With the same indexing method as the feature function (2.7), we also use a column

vector λ ∈ Rd to represent all parameters λyt,yt−1 and λyt,xt . Thus, (2.4) can be

rewritten as

p(y,x) =
1

Z ′′′
exp

(
f(y,x)Tλ

)
. (2.8)

To avoid a label bias problem (Lafferty et al., 2001), CRFs models the conditional

probability, p(y|x), instead of the joint probability, p(y,x). We derive (2.9) with

simple probability law,

p(y|x) =
p(y,x)

p(x)
=

p(y,x)∑
y′∈YD

T p(y′,x)

=
exp

(
f(y,x)Tλ

)∑
y′ exp(f(y′,x)Tλ)

. (2.9)

Intuitively, when observing a sequence x,y, the optimal parameter is λ∗ which makes

the probability function (2.9) has the maximum value.

2.3 Applying CRFs on NER Problems

For a given iid data set, D = {xi,yi}Ni=1, the conditional probability of y given x

is

p(y1,y2, . . . ,yN |x1,x2, . . . ,xN) =
N∏
i=1

p(yi|xi). (2.10)

To find the most possible model on the given data set, we want to maximize the

probability function or equally minimize the negative log-likelihood formulation. To

avoid overfitting, an regularization term, ||λ||
2

2σ2 is usually added to the object function.
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The constant 2σ2 is specified by users. The object function we want to minimize is

min
λ
L(λ) =

||λ||2

2σ2
− log

N∏
i=1

p(yi|xi)

=
||λ||2

2σ2
−

N∑
i=1

log p(yi|xi)

=
||λ||2

2σ2
−

N∑
i=1

(
f(yi,xi)Tλ− logZ(xi)

)
. (2.11)

The normalization term is defined as

Z(xi) =
∑

y′∈YD
Ti

exp(f(y′,x)Tλ). (2.12)

Note that y′ here considers all exponential possibly tag sequences on the given xi.

This will cause some difficulties when computing the function value and the gradient.



CHAPTER III

Trust Region Newton Methods

According to the discussion in Chapter II, we have an unconstrained convex opti-

mization problem.

min
λ
L(λ) =

||λ||2

2σ2
−

N∑
i=1

(
f(yi,xi)Tλ− logZ(xi)

)
. (3.1)

Trust region Newton method (TRON) (Lin and Moré, 1999) is a kind of Newton

methods, which needs exact Hessian-vector products during the algorithm. Lin et al.

(2008) use TRON to solve large-scale logistic regression and get better performance

than LBFGS. Since logistic regression can be viewed as an special case of CRFs models,

we attempt to apply TRON on solving CRFs.

3.1 A Trust Region Newton Method

A trust region Newton method minimizes the object function, L(λ), iteratively.

The parameter λ is updated sequentially with a sequence {λ0,λ1, . . . ,λm, . . .}. At the

mth iteration, it uses a quadratic function

qm(v) = ∇L(λm)Tv +
1

2
vT∇2L(λm)v (3.2)

8
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to approximate the function decrease L(λm + vm)−L(λm) in a trust region ∆m. The

task of each iteration becomes solving a sub-problem

vm = arg min
v

qm(v), such that ‖v‖ ≤ ∆m. (3.3)

A ratio

ρm =
L(λm + vm)− L(λm)

qm(vm)
(3.4)

of the actual function value reduction to the approximate reduction is used to estimate

the performance of the approximation. The mth step is accepted if ρm is larger than

a given constant η0 > 0, and the parameter is updated by

λm+1 =


λm + vm if ρm > η0,

λm if ρm ≤ η0.

(3.5)

As the parameter changes, the trust region should also be adjusted to fit the object

function. In Lin and Moré (1999), updating rules of the trust region size, ∆m, depend

on positive constant thresholds η1 and η2, where 0 < η1 < η2 < 1, and positive updating

rates σ1, σ2, σ3, where 0 < σ1 < σ2 < 1 < σ3. After solving the mth sub-problem (3.3),

∆m is updated by the rules

∆m+1 ∈ [σ1 min{‖vm‖,∆m}, σ2∆m] if ρm ≤ η1,

∆m+1 ∈ [σ1∆m, σ3∆m] if ρm ∈ (η1, η2),

∆m+1 ∈ [∆m, σ3∆m] if ρm ≥ η2.

(3.6)

A description of the trust region algorithm is given in Algorithm 1.

At the minimum of the quadratic function (3.2), we have a necessary condition

∇L(λm)T +∇2L(λm)v∗ = 0. (3.11)

A standard conjugate gradient method can solve such a linear system iteratively. But in

(3.11), the trust region constraint should be considered. A modified conjugate gradient
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Algorithm 1 A trust region algorithm for CRF

1. Given λ0.

2. For m = 0, 1, . . . (outer iterations)

• If ∇L(λm) = 0, stop.

• Find an approximate solution vm of the trust region sub-problem

min
v

qm(v), subject to ‖v‖ ≤ ∆m. (3.7)

• Compute ρm via (3.8):

ρm =
L(λm + vm)− L(λm)

qm(vm)
(3.8)

• Update λm to λm+1 according to (3.9):

λm+1 =

{
λm + vm if ρm > η0,

λm if ρm ≤ η0.
(3.9)

• Obtain ∆m+1 according to (3.10).

∆m+1 ∈ [σ1 min{‖vm‖,∆m}, σ2∆m] if ρm ≤ η1,
∆m+1 ∈ [σ1∆m, σ3∆m] if ρm ∈ (η1, η2),
∆m+1 ∈ [∆m, σ3∆m] if ρm ≥ η2.

(3.10)

method is given in Algorithm 2. It approximately solves the trust region sub-problem

(3.7). At the early iterations, the updating step di will follow the steepest decent

direction r0 = −∇L(λm) to have more function value decrease. To cost less time, a

given constant ξm < 1 is used in an early stopping condition (3.12). (3.14) projects

the solution in the trust region such that vm is a feasible solution of (3.2).

3.2 Hessian-vector Product in Conjugate Gradient

When adapting TRON to solve the minimization problem L(λ), in addition to the

gradient, the Hessian-vector product is needed at each iteration; see (3.13) and (3.15).
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Algorithm 2 Conjugate gradient procedure for approximately solving the trust region
sub-problem (3.7)

1. Given ξm < 1,∆m > 0. Let v̄0 = 0, r0 = −∇L(λm), and d0 = r0.

2. For i = 0, 1, . . . (inner iterations)

• If
‖ri‖ ≤ ξm‖∇L(λm)‖, (3.12)

then output vm = v̄i and stop.

•
αi = ‖ri‖2/((di)T∇2L(λm)di). (3.13)

• v̄i+1 = v̄i + αid
i.

• If ‖v̄i+1‖ ≥ ∆m, compute τ such that

‖v̄i + τdi‖ = ∆m, (3.14)

then output vm = v̄i + τdi and stop.

•
ri+1 = ri − αi∇2L(λm)di. (3.15)

• βi = ‖ri+1‖2/‖ri‖2.

• di+1 = ri+1 + βid
i.

We denote H as ∇2L(λ), so

Hv = ∇2L(λ)v.

The Hessian matrix is a d by d matrix, where d is the number of parameters in λ.

In CRFs problems, d is usually large, so it is almost impossible to calculate and store

the whole matrix in the memory.

In this thesis, we describe a polynomial time complexity algorithm to calculate

Hessian-vector product of CRFs, so that it can be applied on the TRON algorithm

directly without using automatic differentiation. We give the well-known procedure

to calculate gradient in the next section, and details of the Hessian-vector product

procedure in Chapter IV.
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3.3 Gradient Calculation

The partial derivative of (3.1) respects to λk is

∂

∂λk
L(λ)

=
λk
σ2
−

N∑
i=1

fk(y
i,xi) +

N∑
i=1

∑
y∈{YD}Ti

fk(y,x
i)

exp(f(y,xi)Tλ)

Z(xi)
(3.16)

The above formula involves exponentially many possible y. Fortunately, a dynamic

programming technique has been introduced to efficiently calculate (3.16) (Rabiner,

1989). We have

(3.16)

=
λk
σ2
−

N∑
i=1

fk(y
i,xi) +

N∑
i=1

∑
y∈{YD}Ti

Ti∑
t=1

fk(yt, yt−1, x
i
t)

exp(f(y,xi)Tλ)

Z(xi)

=
λk
σ2
−

N∑
i=1

fk(y
i,xi) +

N∑
i=1

1

Z(xi)

Ti∑
t=1

∑
y∈{YD}Ti

fk(yt, yt−1, x
i
t)

Ti∏
t′=1

exp(f(yt′ , yt′−1, x
i
t′)
Tλ)

=
λk
σ2
−

N∑
i=1

fk(y
i,xi)+

N∑
i=1

1

Z(xi)

Ti∑
t=1

∑
yt−1,yt

fk(yt, yt−1, x
i
t)

∑
y1,y2,...,yt−2,yt+1,...,yTi

Ti∏
t′=1

exp(f(yt′ , yt′−1, x
i
t′)
Tλ).

(3.17)

Define a new function Ψ to simplify the exponential term:

Ψ(yt, yt−1, x
i
t) = exp(f(yt, yt−1, x

i
t)
Tλ). (3.18)
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The last summation of (3.17) can be split to three terms. Given t, yt−1, yt:

∑
y1,y2,...,yt−2,yt+1,...,yTi

Ti∏
t′=1

exp(f(yt′ , yt′−1, x
i
t′)
Tλ) (3.19)

=Ψ(yt, yt−1, x
i
t)

∑
y1,y2,...,yt−2,yt+1,...,yTi

(
t−1∏
t′=1

Ψ(yt′ , yt′−1, x
i
t′)

)(
Ti∏

t′=t+1

Ψ(yt′ , yt′−1, x
i
t′)

)

=Ψ(yt, yt−1, x
i
t)

( ∑
y1,y2,...,yt−2

t−1∏
t′=1

Ψ(yt′ , yt′−1, x
i
t′)

) ∑
yt+1,yt+2,...,yTi

Ti∏
t′=t+1

Ψ(yt′ , yt′−1, x
i
t′)

 .

(3.20)

The second term considers all possible combinations of tag sequences with length

t − 1 which end at a fixed tag yt−1. In these sequences, there are |YD| possible tags

at position t− 2, i.e., yt−2. We can split all sequences to |YD| cases according to yt−2,

and combine them to the desired solution. The detailed procedure can be shown by a

recursive formula.

Define a function, αit(yt) on a given data xi:

αit(y) ≡
∑

y1,y2,...,yt−1∈YD,yt=y

t∏
t′=1

Ψ(yt′ , yt′−1, x
i
t′)

=
∑

yt−1∈YD

Ψ(y, yt−1, x
i
t)

∑
y1,y2,...,yt−2∈YD

t−1∏
t′=1

Ψ(yt′ , yt′−1, x
i
t′)

=
∑

yt−1∈YD

Ψ(y, yt−1, x
i
t)α

i
t−1(yt−1). (3.21)

By the definition, αit−1(yt−1) is the second term of (3.20). The third term of (3.20) has

a similar recursive formula. Define

βit(y) ≡
∑

yt=y,yt+1,yt+2,...,yTi
∈YD

Ti∏
t′=t+1

Ψ(yt′ , yt′−1, x
i
t′)

=
∑

yt+1∈YD

Ψ(yt+1, y, x
i
t+1)

∑
yt+2,yt+3,...,yTi

∈YD

Ti∏
t′=t+2

Ψ(yt′ , yt′−1, x
i
t′)

=
∑

yt+1∈YD

Ψ(yt+1, y, x
i
t+1)βit+1(yt+1). (3.22)
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And βit(yt) is the third term of (3.20).

We set the initial conditions as

αi0(y) = 1, ∀y ∈ YD

βiTi+1(y) = 1, ∀y ∈ YD.

If all αit(yt) and βit(yt) are available and i, t, yt, yt−1 are given, we can directly have

(3.20)

=αit−1(yt−1)Ψ(yt, yt−1, x
i
t)β

i
t(yt). (3.23)

We also have

Z(xi) =
∑
y∈YD

αiTi
(y) =

∑
y∈YD

βi1(y). (3.24)

Thus we can use (3.20), (3.23) and (3.24) to calculate the gradient. The detailed

procedure is given in Algorithm 3.

We analyze the total time complexity of this procedure. To calculate each αit(yt) or

βit(yt), it takes O(|YD|) by the recursive formula. There are Ti|YD| elements in αit(yt)

and βit(yt), so building the dynamic table needs O(Ti|YD|2). Z(xi) takes O(|YD|), and

(3.19) takes O(1) by (3.23), if we already have every value of αit(yt) and βit(yt). There

are N training sentences in the data. Totally, the gradient of λi needs O(Ti|YD|2dN)

time complexity.

For the space complexity, αit(yt) and βit(yt) both haveO(Ti|YD|2) fields. Ψ(yt, yt−1, x
i
t)

needs O(Ti|YD|2N) spaces. The total space complexity to calculate the gradient is

O(Ti|YD|2N).
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Algorithm 3 Calculating gradient of (3.1) according to (3.17)

1. Given

{xi,yi}Ni=1,λ, g =
λ

σ2
.

2. For i = 1, 2, . . . , N

• Calculate and store all

Ψ(yt, yt−1, x
i
t) = exp(f(yt, yt−1, x

i
t)
Tλ), ∀yt, yt−1 ∈ YD, 1 ≤ t ≤ Ti.

• Use (3.21), (3.22) and (3.24) to calculate

αit(yt), β
i
t(yt), and Z(xi) ∀1 ≤ i ≤ N, 1 ≤ t ≤ Ti.

• For t = 1, 2, . . . , Ti

– For k = 1, 2, . . . , d, where fk(yt, yt−1, x
i
t) = 1

gk ← gk − 1.

• For t = 1, 2, . . . , Ti

– For yt−1, yt ∈ YD
∗ For k = 1, 2, . . . , d, where fk(yt, yt−1, x

i
t) = 1

gk ← gk + αit−1(yt−1)
Ψ(yt, yt−1, x

i
t)

Z(xi)
βit(yt).

3. Return gradient vector g.



CHAPTER IV

Dynamic Programming Formula for Hessian-vector

Product

The second derivative of CRF is

∂2

∂λk∂λk′
L(λ)

=
I(k = k′)

σ2
+

N∑
i=1

∑
y∈Y Ti

D

fk(y,x
i)fk′(y,x

i)
exp(f(y,xi)Tλ)

Z(xi)

−
N∑
i=1

(
∑
y∈Y Ti

D

fk(y,x
i)

exp(f(y,xi)Tλ)

Z(xi)
)(
∑
y∈Y Ti

D

fk′(y,x
i)

exp(f(y,xi)Tλ)

Z(xi)
) (4.1)

There are d2 elements in the Hessian matrix. But in TRON, only d elements of the

Hessian-vector product are needed. The kth element is

(Hv)k =
d∑

k′=1

∂2

∂λk∂λk′
L(λ)vk′ .

In previous research works, AD is applied to calculate the Hessian-vector product.

This thesis provides another dynamic programming approach.

The same as in calculating gradient of CRFs, a dynamic programming technique

can be used to calculate all the k elements in polynomial time.

16
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Define two new functions

f̄(y,xi) ≡
d∑

k′=1

fk′(y,x
i)vk′ , and

f̄(yt, yt−1, x
i
t) ≡

d∑
k′=1

fk′(yt, yt−1, x
i
t)vk′ .

By the properties of f(y,xi),

f̄(y,xi) =
d∑

k′=1

fk′(y,x
i)vk′ =

d∑
k′=1

Ti∑
t=1

fk′(yt, yt−1, x
i
t)vk′

=

Ti∑
t=1

f̄(yt, yt−1, x
i
t). (4.2)

With (4.1) and (4.2),

(Hv)k

=
vk
σ2

+
N∑
i=1

∑
y∈Y Ti

D

fk(y,x
i)f̄(y,xi)

exp(f(y,xi)Tλ)

Z(xi)
(4.3)

−
N∑
i=1

 ∑
y∈Y Ti

D

fk(y,x
i)

exp(f(y,xi)Tλ)

Z(xi)


 ∑
y∈Y Ti

D

f̄(y,xi)
exp(f(y,xi)Tλ)

Z(xi)

 . (4.4)

The first term can be easily calculated. Subsequently, we describe details of calculating

the second and the third terms.
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4.1 Calculation of (4.3)

We define two new symbols.

ᾱit(y) (4.5)

≡
∑

y=(y1,y2,...,yt−1∈YD, and yt=y)

f̄(y,xi) exp(f(y,xi)Tλ)

=
∑

y1,y2,...,yt−1∈YD, and yt=y

(
t∑

j=1

f̄(yj, yj−1, x
i
j)

)(
t∏

t′=1

exp(f(yt′ , yt′−1, x
i
t′)
Tλ)

)
. (4.6)

β̄it(y) (4.7)

≡
∑

y=(yt=y and yt+1,yt+2,...,yTi
∈YD)

f̄(y,xi) exp(f(y,xi)Tλ)

=
∑

yt=y, and yt+1,yt+2,...,yTi
∈YD

(
Ti∑
j=t

f̄(yj+1, yj, x
i
j+1)

)(
Ti∏
t′=t

exp(f(yt′+1, yt′ , x
i
t′+1)Tλ)

)
.

(4.8)
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Using these new notations and properties, for any given i, (4.3) can be derived to a

new form,

∑
y∈Y Ti

D

fk(y,x
i)f̄(y,xi)

exp(f(y,xi)Tλ)

Z(xi)

=
1

Z(xi)

∑
y∈Y Ti

D

(
Ti∑
t=1

fk(yt, yt−1, x
i
t)

)
f̄(y,xi) exp(f(y,xi)Tλ)

=
1

Z(xi)

Ti∑
t=1

∑
yt−1,yt∈YD

fk(yt, yt−1, x
i
t)

∑
y∈{y|y∈YD

Ti ,
yt−1=ȳt−1,yt=ȳt}

f̄(y,xi) exp(f(y,xi)Tλ)

=
1

Z(xi)

Ti∑
t=1

∑
yt−1,yt

fk(yt, yt−1, x
i
t)

∑
y1,y2,...,yt−2,yt+1,...,yTi

(
t−1∑
j=1

f̄(yj, yj−1, x
i
j) + f̄(yt, yt−1, x

i
t) +

Ti∑
j=t+1

f̄(yj, yj−1, x
i
j))(

t−1∏
j=1

exp(f(yj, yj−1, x
i
j)
Tλ)

)
exp(f(yt, yt−1, x

i
t)
Tλ)

(
Ti∏

j=t+1

exp(f(yj, yj−1, x
i
j)
Tλ)

)

=
1

Z(xi)

Ti∑
t=1

∑
yt−1,yt

fk(yt, yt−1, x
i
t) exp(f(yt, yt−1, x

i
t)
Tλ)

∑
y1,y2,...,yt−2,yt+1,...,yTi

(
t−1∑
j=1

f̄(yj, yj−1, x
i
j) + f̄(yt, yt−1, x

i
t) +

Ti∑
j=t+1

f̄(yj, yj−1, x
i
j))(

j=t−1∏
j=1

exp(f(yj, yj−1, x
i
j)
Tλ)

)(
Ti∏

j=t+1

exp(f(yj, yj−1, x
i
j)
Tλ)

)

=
1

Z(xi)

Ti∑
t=1

∑
yt−1,yt

fk(yt, yt−1,x
i) exp(f(yt, yt−1, x

i
t)
Tλ)

(ᾱit−1(yt−1)βit(yt) + f̄(yt, yt−1, x
i
t)α

i
t−1(yt−1)βit(yt) + αit−1(yt−1)β̄it(yt)). (4.9)

To calculate (4.9), we need to obtain ᾱi and β̄i in advance.
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As αi, ᾱi has a recursive formula.

ᾱit(y)

=
∑

y1,y2,...,yt−1,yt=y

(
t∑

j=1

f̄(yj, yj−1, x
i
j)

)(
t∏

t′=1

exp(f(yt′ , yt′−1, x
i
t′)
Tλ)

)

=
∑

yt−1,yt=y

∑
y1,y2,...,yt−2

(
t∑

j=1

f̄(yj, yj−1, x
i
j)

)(
t∏

t′=1

exp(f(yt′ , yt′−1, x
i
t′)
Tλ)

)

=
∑

yt−1,yt=y

exp(f(yt, yt−1, x
i
t)
Tλ)

∑
y1,y2,...,yt−2

(f̄(yt, yt−1, x
i
t) +

t−1∑
j=1

f̄(yj, yj−1, x
i
j−1))

(
t−1∏
t′=1

exp(f(yt′ , yt′−1, x
i
t′)
Tλ)

)

=
∑

yt−1,yt=y

exp(f(yt, yt−1, x
i
t)
Tλ)(f̄(yt, yt−1, x

i
t)α

i
t−1(yt−1) + ᾱit−1(yt−1)). (4.10)

Similarly,

β̄it(y)

=
∑

yt=y,yt+1,yt+2,...,yTi
∈YD

(
Ti∑
j=t

f̄(yj+1, yj, x
i
j)

)(
Ti∏
t′=t

exp(f(yt′+1, yt′ , x
i
t′+1)Tλ)

)

=
∑

yt=y,yt+1

∑
yt+2,yt+3,...,yTi

(
Ti∑
j=t

f̄(yj+1, yj, x
i
j+1)

)(
Ti∏
t′=t

exp(f(yt′+1, yt′ , x
i
t′+1)Tλ)

)

=
∑

yt=y,yt+1

exp(f(yt+1, yt, x
i
t+1)Tλ)

∑
yt+2,yt+3,...,yTi

(f̄(yt+1, yt, x
i
t+1) +

Ti∑
j=t+1

f̄(yj+1, yj, x
i
j+1))

(
Ti∏

t′=t+1

exp(f(yt′+1, yt′ , x
i
t′+1)Tλ)

)

=
∑

yt=y,yt+1

exp(f(yt+1, yt, x
i
t+1)Tλ)(f̄(yt+1, yt, x

i
t+1)βit+1(yt+1) + β̄it+1(yt+1)). (4.11)

To conduct a recursive calculation, we set the initial values of ᾱi0 and β̄iTi+1 as

ᾱi0(y) = 0, ∀y ∈ YD,

β̄iTi+1(y) = 0. ∀y ∈ YD.
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Algorithm 4 Using v to calculate f̄(yt, yt−1, x
i
t), ∀1 ≤ t ≤ Ti, yt−1, yt ∈ YD

1. For t = 1, 2, . . . , Ti

• Initialize f̄(yt, yt−1, x
i
t)← 0 in memory.

• For yt−1, yt ∈ YD
– For k ∈ {1, 2, . . . , d} with fk(yt, yt−1, x

i
t) = 1

f̄(yt, yt−1, x
i
t)← f̄(yt, yt−1, x

i
t) + fk(yt, yt−1, x

i
t)vk

In (4.9), (4.10) and (4.11), we need

f̄(yt, yt−1, x
i
t), ∀yt, yt−1 ∈ YD, t = 1, 2, . . . , d.

They must be calculated and stored. Algorithm 4 describes the procedure to cal-

culate f̄(yt, yt−1, x
i
t) using (4.2). Since we assume binary feature values, only those

fk(yt, yt−1, x
i
t) = 1 are considered in calculating f̄(yt, yt−1, x

i
t).

We give the forward and backward procedure in Algorithm 5 to show how to cal-

culate ᾱi, β̄i.
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Algorithm 5 Forward and backward procedure to calculate ᾱit(y) and β̄it(y) by (4.10)
and (4.11)

1. For y ∈ YD

ᾱi0(y) = 0 and β̄iTi+1(y) = 0

2. For t = 1, 2, . . . , Ti

• For yt−1, yt ∈ YD
– Use (4.10) to calculate ᾱit(y), where

Ψ(yt, yt−1, x
i
t) = exp(f(yt, yt−1, x

i
t)
Tλ)

is calculated in Algorithm 3 and stored in memory.

ᾱit(yt)← ᾱit(yt) + Ψ(yt, yt−1, x
i
t)(f̄(yt, yt−1, x

i
t)α

i
t−1(yt−1) + ᾱit−1(yt−1))

3. For t = Ti, Ti − 1, . . . , 2, 1

• For yt−1, yt ∈ YD
– Use (4.11) to calculate β̄it(y), where

Ψ(yt+1, yt, x
i
t+1) = exp(f(yt+1, yt, x

i
t)
Tλ)

is calculated in Algorithm 3 and stored in memory.

β̄it(yt)← β̄it(yt) + Ψt+1(yt+1, yt, x
i
t+1)(f̄(yt+1, yt, x

i
t+1)βit+1(yt+1) + β̄it+1(yt+1))
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4.2 Calculation of (4.4)

Eq. (4.4) can be seen as the multiplication of two terms, where one is

∑
y∈YD

Ti

fk(y,x
i)

exp(f(y,xi)Tλ)

Z(xi)

=
1

Z(xi)

∑
y∈Y Ti

D

Ti∑
t=1

fk(yt, yt−1, x
i
t)

Ti∏
j=1

exp(f(yj, yj−1, x
i
j)
Tλ) (4.12)

=
1

Z(xi)

Ti∑
t=1

∑
yt−1,yt

fk(yt, yt−1, x
i
t)

∑
y1,y2,...,yt−2,yt+1,...,yTi

Ti∏
j=1

exp(f(yj, yj−1, x
i
j)
Tλ)

=
1

Z(xi)

Ti∑
t=1

∑
yt−1,yt

fk(yt, yt−1, x
i
t) exp(f(yt, yt−1, x

i
t)
Tλ)

( ∑
y1,y2,...,yt−2

t−1∏
j=1

exp(f(yj, yj−1, x
i
j)
Tλ)

) ∑
yt+1,yt+2,...,yTi

Ti∏
j=t+1

exp(f(yj, yj−1, x
i
j)
Tλ)


=

1

Z(xi)

Ti∑
t=1

∑
yt−1,yt

fk(yt, yt−1, x
i
t) exp(f(yt, yt−1, x

i
t)
Tλ)αit−1(yt−1)βit(yt). (4.13)

The other is

∑
y∈YD

Ti

f̄(y,xi)
exp(f(y,xi)Tλ)

Z(xi)

=
1

Z(xi)

Ti∑
t=1

∑
yt−1,yt

f̄(yt, yt−1, x
i
t)

∑
y1,y2,...,yt−2,yt+1,...,yTi

Ti∏
j=1

exp(f(yj, yj−1, x
i
j)
Tλ)

=
1

Z(xi)

Ti∑
t=1

∑
yt−1,yt

f̄(yt, yt−1, x
i
t) exp(f(yt, yt−1, x

i
t)
Tλ)

( ∑
y1,y2,...,yt−2

t−1∏
j=1

exp(f(yj, yj−1, x
i
j))

) ∑
yt+1,yt+2,...,yTi

Ti∏
l=t+1

exp(f(yl, yl−1, x
i
l)
Tλ)


=

1

Z(xi)

Ti∑
t=1

∑
yt−1,yt

f̄(yt, yt−1, x
i
t) exp(f(yt, yt−1, x

i
t)
Tλ)αit−1(yt−1)βit(yt). (4.14)

We give the procedure to calculate (4.13) and (4.14) in Algorithm 6.
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Algorithm 6 Calculating (4.4) by (4.13) and (4.14)

1. Fix i.

2. Initialize

p← 0, w ← 0

3. Calculate (4.13)

• For t = 1, 2, . . . , Ti

– For yt−1, yt ∈ YD
∗ For k ∈ {1, 2, . . . , d} with fk(yt, yt−1, x

i
t) = 1

pk ← pk + fk(yt, yt−1, x
i
t) exp(f(yt, yt−1, x

i
t)
Tλ)αit−1(yt−1)βit(yt).

4. p← p/Z(xi).

5. Calculate (4.14)

• For t = 1, 2, . . . , Ti

– For yt−1, yt ∈ YD

w ← w + f̄(yt, yt−1, x
i
t) exp(f(yt, yt−1, x

i
t)
Tλ)αit−1(yt−1)βit(yt).

6. w ← w/Z(xi)

4.3 Overall Procedure and Time/Memory Analysis

Using Algorithm 4, Algorithm 5 and Algorithm 6, the procedure to calculate the

Hessian-vector product is in Algorithm 7.

We discuss the time complexity of Algorithm 7. To calculate f̄(yt, yt−1, x
i
t) in

Algorithm 4, t is from 1 to Ti, yt−1 and yt both have |YD| choices, and k is from

1 to d. The time complexity is O(Ti|YD|2d). With a similar analysis, the forward

and backward procedure in Algorithm 5 needs O(Ti|YD|2). Calculating (4.9) needs

O(Ti|YD|2) under fixed k and i, so the cost over all k is O(Ti|YD|2d). In Algorithm 6,

step 3 needs O(Ti|YD|2d), and step 5 needs O(Ti|YD|2). By summing the cost over all

i = 1, 2, . . . , N , the total cost of Algorithm 7 is O(Ti|YD|2dN).
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To discuss the space complexity, f̄(yt, yt−1, x
i
t) has O(Ti|YD|2) different values. Sim-

ilarly, Ψ(yt, yt−1, x
i
t) needs O(Ti|YD|2) spaces. For αit(y), βit(y), ᾱit(y) and β̄it(y) they

all have O(Ti|YD|) fields. Totally, the space complexity to calculate the Hessian-vector

product is O(Ti|YD|2).
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Algorithm 7 Use (4.9) to calculate Hessian vector products (3.13), (3.15) in conjugate
gradient subroutine

1. Given

{xi,yi}Ni=1,λ,v,Hv =
v

σ2

2. For i = 1, 2, . . . , N

• Use v to calculate f̄(yt, yt−1, x
i
t), 1 ≤ t ≤ Ti, yt−1, yt ∈ YD by Algorithm 4

• Calculate ᾱit(yt), t = 0, 1, . . . , Ti and β̄it(yt), t = 0, 1, . . . , Ti by Algorithm 5.

• Initialize di ← 0.

• For t = 1, 2, . . . , Ti

– For yt−1, yt ∈ YD
∗ For k = 1, 2, . . . , d, where fk(yt, yt−1, x

i
t) = 1

dik ← dik + fk(yt, yt−1, x
i
t)Ψ(yt, yt−1, x

i
t)

(ᾱit−1(yt−1)βit(yt) + f̄(yt, yt−1, x
i
t)α

i
t−1(yt−1)βit(yt)) + αit−1(yt−1)β̄it(yt))

• di ← di/Z(xi)

• Initialize

p← 0, w ← 0

• Calculate (4.13)

– For t = 1, 2, . . . , Ti

∗ For yt−1, yt ∈ YD
· For k ∈ {1, 2, . . . , d} with fk(yt, yt−1, x

i
t) = 1

pk ← pk + fk(yt, yt−1, x
i
t) exp(f(yt, yt−1, x

i
t)
Tλ)αit−1(yt−1)βit(yt).

• p← p/Z(xi).

• Calculate (4.14)

– For t = 1, 2, . . . , Ti

∗ For yt−1, yt ∈ YD

w ← w + f̄(yt, yt−1, x
i
t) exp(f(yt, yt−1, x

i
t)
Tλ)αit−1(yt−1)βit(yt).

• w ← w/Z(xi)

• Hv ←Hv + di − wp

3. Return Hv.



CHAPTER V

Conclusions

Conditional random fields are popular in the natural language process area, and

have good performances on applications such as labeling sequential data and segment-

ing sentences. Many optimization methods have been applied to solve CRFs. They

focus on gradient based methods and quasi-newton methods. In this thesis we con-

sider a Newton method for training CRFs because of its possible fast final convergence.

However, Newton methods need Hessian information which is hard to calculate. We

focus on a trust region Newton method using conjugate gradient methods, because it

only needs Hessian-vector products.

Previous works show that automatic differentiation can be applied to Hessian-vector

product in some optimization methods such as stochastic meta decent methods and

trust region Newton methods. This thesis provides another approach to do Hessian-

vector product. We derive an analytical Hessian-vector formula of CRFs, and propose

a novel dynamic programming technique which has the same time complexity as the

gradient calculation.
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