Bl s 28 K8 THMANE IR A ATALEH LA
Mt

Department of Computer Science and Information Engineering
College of Electrical Engineering and Computer Science

National Taiwan University

master thesis

J& R A B 2 48 ok A T A3
Newton Methods for Conditional Random Fields

BRME A=
Peng-Jen Chen

/R KT L
Advisor: Chih-Jen Lin, Ph.D.

T ERE S F 6 A
June, 2009

Newton Methods for Conditional Random
Fields

by
Peng-Jen Chen

A dissertation submitted in partial fulfillment
of the requirements for the degree of
Master of Science
(Computer Science and Information Engineering)
in National Taiwan University
2009

B2 KRERA LS
DREBCEILET
JE B A BT 4 58 iR AR FE A
Newton Method for CRF

KX Rmhi=F (297 R96922049) AR L 2B REETAITE

’%yr’aﬁizméécwﬁ x AEE 98 £ 6 B 11 BAT#HERE
E BB ORRAE 0 4FLE

A x4z 'Z;%fzig

il

W%

IR X — 188 & R QAR TP S AAT 0942 40 o B R 7 7] F PP A T 4689
RRAE AR 2 5 0 A TRR S BAR 3F WAL o UK AL A RSB
AR E o Rk MR FIRAZRAREHERT - BRERSZ AR
AR A AT RACH QGRG c ARAIRE—EHOGERAINETT > TUESE
B AR A LA ERIER &) F AR o

WAER: et Bk ~ BB E R FRE ~ RKMEE ~ IR R -

il

ABSTRACT

Conditional Random Fields (CRFs) is a useful technique to label sequential data.
Due to considering all label combinations of a sequence, CRFs’ training and testing
are time consuming. In this work, we consider a Newton method for training CRF's
because of its possible fast final convergence. The computational bottleneck is on
the Hessian-vector product. We propose a novel dynamic programming technique to
calculate it in polynomial time.

KEYWORDS: conjugate gradient methods, trust region Newton methods, maximum
entropy, conditional random fields.

v

TABLE OF CONTENTS

ABSTRACT iv
CHAPTER

[I. Introductionl 1

[__Il. Conditional Random Fields 3

[2.1 Named-Entity Recognition Problem{. 3

2.2 Conditional Random Fields 5

2.3 Applying CRFs on NER Problems| 6

[III. Trust Region Newton Methods|. 8

BT A Trust Region Newton Method] © o oo oo 8

[3.2 Hessian-vector Product in Conjugate Gradient| 10

(3.3 Gradient Calculation|. 12

[IV. Dynamic Programming Formula for Hessian-vector Product| . 16

4.1 Calculation of (4.3)[. 18

4.2 Calculation of (4.4)[. 23

4.3 Overall Procedure and Time/Memory Analysis| 24

27

BIBLIOGRAPHY 28

CHAPTER 1

Introduction

Conditional Random Fields (CRFs), a type of discriminative probability model,
were first proposed in Lafferty et al.| (2001). The linear-chain type CRFs model is
especially widely used on segmenting and labeling sequential data. Some applications
such as noun phrase chunking task (Sha and Pereira, 2003), part-of-speech (POS)
tagging (Lafferty et all 2001), named entity recognitions (NER) (Mccallum and Li,
2003)) and Chinese segmentation (Peng et al., |2004) get good results with CRFs.

For solving a CRFs model; Lafferty et al. (2001) use two algorithms based on
improved iterative scaling (IIS) to estimate the parameter, but get slow convergence.
Sha and Pereira (2003)) proposed two quasi-Newton methods, limited memory BFGS
(L-BFGS) (Liu and Nocedal, [1989) and pre-conditioned conjugate gradient, and has
better results than IIS methods. Where L-BFGS only needs gradient computation, and
pre-conditioned conjugate gradient only uses diagonal elements of the Hessian matrix.
Newton methods optimize object function with Hessian information but the analytical
form of second derivative CRFs is too complex to compute. Without any additional
derivation, it takes exponential time of complexity.

Automatic differentiation (AD) (Griewank| [2000) is a technique which can be used
to calculate the gradient without having any analytical form of gradient. This idea

can be also apply to Hessian-vector products. [Vishwanathan et al.| (2006 apply AD

to do the Hessian-vector product in a stochastic meta-descent (SMD).

Trust region Newton method (TRON) is a kind of truncated Newton methods. It
uses conjugate gradient to guarantee the function value convergence. Lin et al.| (2008])
adopt TRON to solve large-scaled logistic regression problems, and obtain better results
than L-BFGS on some data sets. A logistic regression model can be seen as a special
case of CRF's model, so we expect TRON will have better performance than L-BFGS.
Wang (2008) tried to use TRON on CRFs models, and used AD to do Hessian-vector
products, which are needed in conjugate gradient procedure. The experiments show
that the training time of TRON is slower than L-BFGS.

In this thesis, instead of using AD, we derive an analytical form of the Hessian-
vector product of CRFs and give a dynamic programming technique to compute it in
polynomial time complexity. We also discuss details of time/space complexity.

The chapters are organized as follows: Chapter [T introduces the formula of CRF
model, and explains how to apply the CRF maodel on solving named-entity recognition
problems. Chapter [[T]] shows the TRON algorithm and gives the details of calculat-
ing gradient. Chapter describes how to calculate the Hessian-vector product with

dynamic programming, and analyzes the time/space complexity.

CHAPTER 11

Conditional Random Fields

Conditional Random Fields (CRFs), a probability graphical model for segmenting
and labeling sequence data, was first introduced in Lafferty et al.| (2001)). Linear-
chain is the most important special case of CRFs model, and it has many successful
applications on natural language processing (NLP). In this chapter, we describe an NLP
application called named-entity recognition (NER) problem, introduce the formula of

linear-chain CRF's model and explain how to apply CRFEs on NER problem.

2.1 Named-Entity Recognition Problem

Named-entities are phrases that contain the names of persons, organizations, loca-
tions, times and quantities. For example, “Knuth” is a person, “Taiwan” is a location,
and “National Taiwan University” is an organization. The named-entity recognition
task is to select a predefined named-entity tag for each word in given sentences.

A named-entity word will be marked PER as a person, LOC as a location and
ORG as an organization. If a word does not belong to any named-entity, it is marked
as O .

We take a real sentence as an example in Table This sentence is instantiated
by Conference on Computational Natural Language Learning (CoNLL) 2002 shared

task website, http://www.cnts.ua.ac.be/conl12002/ner/.

http://www.cnts.ua.ac.be/conll2002/ner/

Table 2.1: An example of tagging name-entity tags.

token | Wolff , currently a journalist in Argentina)
tag PER O O O O O LOC O
played with Del Bosque in the final years
O O PER O O O O
of the seventies in Real Madrid :
O O O O ORG O

In this sample sentence, “Wolft” is a person name, and we give it a tag PER .
“Argentina” is a country name and should be tagged with LOC . Two PER tags
are tagged on “Del Bosque” since these two words compose a person name. “Real
Madrid” is an organization name, so two ORG tags are given. Other words including
punctuation marks are tagged with O .

To give a more precise formulation, we define some symbols. D = {z’,y'}Y | is an
i.i.d. data set. &’ represents the ith sentence, and is composed of some sequential words
x' = {z},2,..., 24 }. T; is the number of words in the ith sentence and N is the num-
ber of sentences in data set D. The task is to learn how to predict tags from the given
tag sequences y' = {y},y4,....y7 }, where each tag y; € Yp corresponds to a word z}.
YD is the set of predefined tags. In the above example, Yp = { PER , LOC' , ORG , O }.

In an NER problem, the difficult part is that not every named-entity term has been
shown in training corpus, and sometimes, even the same word has different tags. For
example, “Taiwan” is LOC , but “National Taiwan University” should be tagged with
ORG . To solve this problem, linear-chain CRF's learns the information not only from
context, but also from the previous tag it predicts. In the following discussions, we

call linear-chain CRFs model as CRFs.

2.2 Conditional Random Fields

CRFs model follows the same assumptions as Hidden Markov model (HMM) that
the tth tag is only related to two independent factors when modeling the probability
distribution, p(y, x). First, y; is related to the (¢ — 1)th predicted tag, y,—1. We use a
probability function p(y;|y;—1) to model it. Second, the tth observation, x, is related to
the tth tag, y;. We use another probability function p(z|y;) to model it. Under these

assumptions, the joint probability distribution of a sequence, (y,x), can be written as

p(y, @) = [[p(welve)p(elye)- (2.1)

t=1

For these two probability functions, p(y|y;—1) and p(x;|y;), CRFs uses an exponential

function and a parameter, X, to model them, where Z’ and Z” are normalization terms.

a

p(yt|yt—1) i Eexp(Aytvyt—l)7 (2'2)
1

p('xt’yt) o ﬁ eXp()‘yt,ﬂUt)' (23)

Applying (2.2)) and (2.3)) to (2.1)), we have

o
(|
p(ywm) = ﬁeXp (Z()\yhytl + Ayt@t)) : (24)

t=1

To easily represent equation ([2.4), we introduce a concept of feature functions. For

those two probability assumptions, we consider two kinds of 0/1 feature functions:

fTs(ytu Yi—1, 'Tt) = 1yl:s]-yt,1:r- (25)

fos(yt7 Yi—1, xt) =]-ytzs]-;ct:o, (26)

The number of feature functions in (2.5)) equals the number of probability values in

the probability function (2.2)). And (2.6]) is corresponding to (2.3).

To simplify the notation, we use integer £k = 1,2, ..., d to index all possible rs and

0s. d is the total number of features which is equal to the number of all possible rs

and os indices. We further define f(y,x) as a column vector function, where

T

fy.®) = fulyyor,ze), Vh=1,2,...d. (2.7)

t=1
With the same indexing method as the feature function ([2.7)), we also use a column

vector A € R? to represent all parameters Ay, ,, , and A, .. Thus, (2.4) can be

rewritten as

1

(Y, @) = 5 oxp £y, 2)"A) (2.8)

To avoid a label bias problem (Lafferty et al.| |2001), CRF's models the conditional
probability, p(y|z), instead of the joint probability, p(y,x). We derive (2.9) with

simple probability law,

ply,) _ ply,)
@) | dye,T oy,)
U exp (f(y,m)TA)

Xy exp(fyl,x)TN)

p(ylx) =

(2.9)

Intuitively, when observing a sequence «, y, the optimal parameter is A* which makes

the probability function (2.9)) has the maximum value.

2.3 Applying CRFs on NER Problems

For a given iid data set, D = {z’,y'}¥ |, the conditional probability of y given x
is

N

p(y' vyt 2t aY) = [eyl (2.10)
i=1

To find the most possible model on the given data set, we want to maximize the

probability function or equally minimize the negative log-likelihood formulation. To

avoid overfitting, an regularization term, % is usually added to the object function.

The constant 202 is specified by users. The object function we want to minimize is

. H H
m;nL()\) = —log Hp y'lx")

The normalization term is defined as

Z@) = Y exp(fy, @)).

yeYpli

(2.11)

(2.12)

Note that y’ here considers all exponential possibly tag sequences on the given x‘.

This will cause some difficulties when computing the function value and the gradient.

CHAPTER I11

Trust Region Newton Methods

According to the discussion in Chapter [[I| we have an unconstrained convex opti-

mization problem.

N
m}in LX) = 202 Z (y',x")" X —log Z(x")) . (3.1)

Trust region Newton method (TRON) (Lin and Moré, [1999)) is a kind of Newton
methods, which needs exact Hessian-vector products during the algorithm. Lin et al.
(2008) use TRON to solve large-scale logistic regression and get better performance

than LBFGS. Since logistic regression can be viewed as an special case of CRFs models,

we attempt to apply TRON on solving CRFs.

3.1 A Trust Region Newton Method

A trust region Newton method minimizes the object function, L(A), iteratively.
The parameter X is updated sequentially with a sequence {A° X!, ... A™ ... }. At the

mth iteration, it uses a quadratic function

Gm(v) = VLA™ v + %UTVQL(X")U (3.2)

to approximate the function decrease L(A™ + v™) — L(A™) in a trust region A,,. The

task of each iteration becomes solving a sub-problem

m

v" =argmin ¢, (v), such that ||v|| < A,,.. (3.3)

A ratio

L™ 4 ™) — L(A™)
Qm<vm)

Pm = (3.4)

of the actual function value reduction to the approximate reduction is used to estimate
the performance of the approximation. The mth step is accepted if p,, is larger than

a given constant 1y > 0, and the parameter is updated by

A" o™ if Pm > Mo,
A = (3.5)

A if pr < mo-
As the parameter changes, the trust region should also be adjusted to fit the object
function. In|Lin and Moré (1999)), updating rules of the trust region size, A,,, depend
on positive constant thresholds n; and n,, where 0 < ny < 1, < 1, and positive updating
rates o1, 09, 03, where 0 < 01 < 05 < 1 < 03. After'solving the mth sub-problem ,
A,, is updated by the rules
Apiq € [ogmin{||[v™ |, A}, 02An] i pm < m,
Apir € [0180, 030,,] it pm € (,72), (3.6)
Ami1 € [Ap, 030) it pm > M.

A description of the trust region algorithm is given in Algorithm

At the minimum of the quadratic function (3.2]), we have a necessary condition
VLA™ + V2 L(A™)v* = 0. (3.11)

A standard conjugate gradient method can solve such a linear system iteratively. But in

(3.11)), the trust region constraint should be considered. A modified conjugate gradient

10

Algorithm 1 A trust region algorithm for CRF
1. Given O,

2. For m =0,1,... (outer iterations)

If VL(A™) = 0, stop.

Find an approximate solution v™ of the trust region sub-problem

min ¢, (v), subject to ||v] < A,,. (3.7)

Compute p,, via (3.8)):
LA™ ™) — L(A™)

= 3.8
(™) (3.8)
e Update A™ to A™ ™! according to (3.9):
A" i o, ’
Al = QAT TR o > (3.9)
A" it pr < Mo
e Obtain A,,,; according to (3.10)).
Aerl S [01 mln{vaHa Am}a UQAm] if Pm < M,
Am+1 S [JlAm;USAm] | lf Pm € (77177]2>7 (310)

Am-l—l € [Am703Am] if Pm Z 2.

method is given in Algorithm [2l It approximately solves the trust region sub-problem
(3.7). At the early iterations, the updating step d’ will follow the steepest decent

direction 7® = —VL(A™) to have more function value decrease. To cost less time, a

given constant &, < 1 is used in an early stopping condition (3.12)). (3.14) projects

the solution in the trust region such that v™ is a feasible solution of (3.2]).

3.2 Hessian-vector Product in Conjugate Gradient

When adapting TRON to solve the minimization problem L(A), in addition to the

gradient, the Hessian-vector product is needed at each iteration; see (3.13|) and ({3.15)).

11

Algorithm 2 Conjugate gradient procedure for approximately solving the trust region
sub-problem ((3.7))

1. Given &, < 1,A,, > 0. Let ?° = 0,7 = —VL(A™), and d° = r°.

2. For i =0,1,... (inner iterations)

o [f
7] < Enll VLM, (3.12)

then output v™ = ' and stop.
a; = |||/ ((d)T VEL(A™)d). (3.13)

o v\t =9 4+ o;d’.

o If ||| > A,,, compute T such that
[0 + 7d'|| = A, (3.14)

then output v™ = v* + 7d’ and stop.

[]
re pl Do, V2L(IA™) (3.15)
o Bi=Ir P/l
o ditl = pitl + ﬁldz
We denote H as V2ZL(), so
Hv =V?L(A)v.

The Hessian matrix is a d by d matrix, where d is the number of parameters in A.
In CRFs problems, d is usually large, so it is almost impossible to calculate and store
the whole matrix in the memory.

In this thesis, we describe a polynomial time complexity algorithm to calculate
Hessian-vector product of CRFs, so that it can be applied on the TRON algorithm
directly without using automatic differentiation. We give the well-known procedure
to calculate gradient in the next section, and details of the Hessian-vector product

procedure in Chapter

12
3.3 Gradient Calculation

The partial derivative of (3.1) respects to A is

e STIRIRS DD SR ATRTE T I T

=1 ye{yp}Ti
The above formula involves exponentially many possible y. Fortunately, a dynamic
programming technique has been introduced to efficiently calculate (3.16) (Rabiner,

1989). We have

(3.16)
N N T; ;
/\k i i Xp(f(y7 mZ>TA)
=D Ly a)+ Z Z (e, Y1 0) ;
o : Z(x")
=1 =1 ye{Yp =1
V. al b
2 ka(y ,x') + Z Z Fe (Y,) HeXP F e, yo—1,23) " A)
=1 =1 t=1 yE{YD}Tl
M v i
=1
N T;
> Z Z > felyn v, @) D T exp(F e, o1, 2" N).
i=1 t=1 yr—1,Y¢ Y1,Y25 Yt —2,Yt+1,--YT; t'=1

7

(3.17)

Define a new function ¥ to simplify the exponential term:

U (Yo, ye-1,21) = exp(f (Yo, Ye1,7,)" N). (3.18)

13

The last summation of (3.17) can be split to three terms. Given ¢, y;_1, ys:

> H exp(f (yer, yo—1,24)" A) (3.19)

Y1,Y25e - Yt—2,Yt 4 1,-yT; =1

t—1 T;
=0 (41, Y1, 7;) > (H \If(ytf,ytf_l,xif)> < 11 \If(ytf,ytf-l,:vi/)>

Y1Y2,5- Yt —2,Yt+1,-YT; \t'=1 t'=t+1

t—1 T;
:‘I’(yt;yt—hxi)< Z H\I’(yﬂ,yt/_1,ﬂci/)> Z H U (Yo, Yo -1, T4)

Y1,Y2s Y2 /=1 Y41, 2, YTy U =t+1
(3.20)

The second term considers all possible combinations of tag sequences with length
t — 1 which end at a fixed tag y;—1. In these sequences, there are |Yp| possible tags
at position t — 2, i.e., y;_o. We can split all sequences to |Yp| cases according to y; o,
and combine them to the desired solution. The detailed procedure can be shown by a
recursive formula.

Define a function, a!(y;) on a given data z':

t
ay(y) = Z H W (yur,ly -1,)

Y1,92,--Yt—1EYD =y t/=1

t—1
= Z U(y, ypi1, L) Z H\Ij(yt’ayt’—laxi’>

Yyt—1€Yp Y1,Y2,--Yt—2€Yp t'=1
= Z U (y, ye1, 7))y (Yr1). (3.21)
Yyt—1€Yp

By the definition, o} ;(y;_1) is the second term of ([3.20]). The third term of ([3.20]) has

a similar recursive formula. Define

T;
Bily) = Z H Uy, ypr—1,)

Yt=Y,Yt+1,Yt+2,-,Y1; €YD t/=t+1

T;
= Z U (Yir1, Y, Thyy) Z H Uy, ypr—1,)

Yt+1€YD Yt4+2,Yt+3,-,yT;, EYD t/=t+2

= Z U (Yev1, Y, $i+1)5§+1(yt+1)- (3.22)

Yt+1€YD

14

And S(y;) is the third term of (3.20]).

We set the initial conditions as

@6<y) = 17 Vy S YD

Braly) =1, VyeYp.

If all oi(y;) and B(y;) are available and 4, ¢, y;, y;_1 are given, we can directly have

(3.20)

=y (Y)Y (Y, ye1, 71) B () (3.23)

We also have

Z(x') = Y apy) =) Biy). (3.24)

ye€Yp yeYp

Thus we can use (3.20), (3.23) and (3.24) to calculate the gradient. The detailed

procedure is given in Algorithm

We analyze the total time complexity of this procedure. To calculate each ai(y;) or
Bi(y:), it takes O(|Yp|) by the recursive formula. There are T;|Yp| elements in ol (y;)
and 3{(y;), so building the dynamic table needs O(T}|Yp|?). Z(x?) takes O(|Yp]), and
takes O(1) by (3.23), if we already have every value of o(y;) and 5;(y;). There
are N training sentences in the data. Totally, the gradient of \; needs O(T;|Yp|*dN)
time complexity.

For the space complexity, ot (y;) and 3 (y;) both have O(T}|Yp|?) fields. W(y;, ys_1, %)
needs O(T;|Yp|*N) spaces. The total space complexity to calculate the gradient is

O(T;[Yp[*N).

15

Algorithm 3 Calculating gradient of (3.1]) according to (3.17)

1. Given
@y} Ag = 5
2. Fori=1,2,....N
e (Calculate and store all
Uy, ye1, 1) = exp(F (Y, ye-1,2)"A), Yy, 41 € Yp, 1 <t < T,
e Use (3.21), and to calculate
ai(ye) Biye), and Z(a') V1I<i<N1<t<T,.

e Fort=12....T;
— For k=1,2,....d, where fi(y,yi1,7%) =1
gk —ge — 1.

e Fort=1,2,...,T;
— Fory; 1,y: € Yp
x For k =1,2,...,d, where fi.(ys,y:1,2)) =1

\Ij(yta Yt—1, z;)ﬁz(yt)
— .

gk <~ Gk + Oéi_l(yt—l) Z(wl)

3. Return gradient vector g.

CHAPTER IV

Dynamic Programming Formula for Hessian-vector
Product

The second derivative of CRF is

32
L
OO/ (3

k—k’ Zkay $holy >exp(f(@) A)

er Z(ZEZ)
3 exp(Ay,) XL, exp(f (y, &)™)
_ izl(yezyTi fu(y, =) 2@)(yGZYTi fr(y, '))) (4.1)

There are d? elements in the Hessian matrix. But in TRON, only d elements of the

Hessian-vector product are needed. The kth element is

d 82
— L(A
)i kzl Oy UK

In previous research works, AD is applied to calculate the Hessian-vector product.

This thesis provides another dynamic programming approach.
The same as in calculating gradient of CRFs, a dynamic programming technique

can be used to calculate all the £ elements in polynomial time.

16

17

Define two new functions

kaf y,x' vy, and

Fe, Y1, 71) = Z So s Yo, 23O

k=1
By the properties of f(y,z?),
d d T
fly,=') = Z w(y, @ oy = Zka' Yo> Yi1, T) Uk
1 k=1 t=1
T.
= Fe v, 27). (4.2)
t=1
With and ([£.2),
(H’U)k
Uk,
T2
- N Flag) SRS (@2 A)
=1 ergi

-2 | X Alwah = fZ((ml))A) ¥ it exp(fz(w))k) 44

yEYD
The first term can be easily calculated. Subsequently, we describe details of calculating

the second and the third terms.

18

4.1 Calculation of (4.3)

We define two new symbols.
@ (y)

= > f(y, @) exp(f(y, =) A)
Y=(y1,¥2,---,Yt—1€YDp, and yr=y)
t t
- 2 (Z Fus i1, x;->> (H exp(f (g yo1. xz,m) . (46)
Y1,Y2,--Yt—1€YD, and yr=y \j=1 t'=1

Bi(y)

- ¥

y=(yt=y and yt+1,yt+2

(4.5)

(4.7)
fly, ") exp(f(y, =)' A)

----- y1,€YD)

= t =t

Ti Ti
- Z (f (i1, y5, ‘75;‘+1)> (H eXP(f(?Jt’Ha?/t’7$fs’+1)T)‘)> '
Yt=Yy, and Yr+1,Yt+2,-Y7, €YD \J=t

(4.8)

19

Using these new notations and properties, for any given i, (4.3) can be derived to a

new form,

i F exp(f(y, =)' \)
Z fk(y> Z)f(yv) Z(zcl)

yey

(Z Felye yra,) fly, ") exp(f(y,)" A)

yGY

(ytvyt 17xt) Z f(yawz) eXp(.f(yvmz)TA)
t=1 y—1,yt€Yp ye{ylycYpTi,
Yt—1=Tt—1,Yt=5t }

Yi— 1,.’13',5) Z

t=1 y1—1,Yt Y1592y Yt—2,Yt+ 155 YT;
t—1 B B T; B
O fys v) + Fn vz + Y Fysyi-1,25)
j=1 j=t+1
t—1 T;
(€x yjayj—laxz')TA)> eXp(-f(ytayt—bl'?f)TA) (H exp(f(yj7yj—lax;)TA)>
j=1 j=t+1
Ye-1,28) exp(F (Yo Y 1,71) T N) >
t=1 yt—1,y¢ Y1342, Yt —2,Yt4 15 YT;
-1 B oy |
(f(yjﬁyjfl?x;) + f(yta ytAl,.’L';) = Z f(ijyjéla .CIZ';))
Jj=1 J=t41
]thl Ti
(exp(f (Y, yj-1,)TA)> (H exp(f(yj,yj-1,®)TA)>
j=1 j=t+1
1 i
Z Je(We, Y1,)eXp(f(ytvytflvxt)T)O
t=1 yt—1,yt
(@1 (Y1) Bt W) + W ver, wp) o (Y1) 8t (e) + oy (ye-1) 51 () (4.9)

To calculate (4.9)), we need to obtain @ and 3 in advance.

20

As o, @' has a recursive formula.

= Z (Z f(yjayj—hx;)) <H eXp(f(yt’ayt'—hxi,)T}\))

Y1,Y2; Yt —1,Yt= t'=1

> > (Zf(yj,yj1,$§)> (H eXp(f(Z/t',yt/hxi/)T)\)>

Yt—1,Yt=Y Y1,Y2,.-,Yt—2 t'=1

= Z exp(f(ybyt,l,xi)T)\) Z

Yt—1,Yt=Y Y1,Y2,--,Yt—2
B =1 t—1
(Fyevr,2) + > Fwsu5-1,751)) (H exp(f (Yo, -1, x@)TA))
j=1 t'=1
= Z eXp(f(ytaytflaxDT)‘)(.f(ytaytflvxé)&i—l(ytfl) + O_éi—l<yt*1))' (4-10)
Yt—1,Yt=yY
Similarly,
Bi(y)

T;
= Z (Z y3+1, jy L) (H eXp yt’+17 Y, xi/—i-l)TA))

Yt=Y,Yt+1,Yt+2,--,Y1; €YD \ j=t

= Z Z <Z Z/Hlayg:]+1)> <ﬂeXp(f(yt/+1,yt/,xi,H)T)\))

Yt=YYt+1 Yt+2,Yt+3,--Y1; \J=t

.

- Z eXp(f(yt+lvytaxi+l>TA> Z

Yt=Y,Yt+1 Yt+2,Yt+35- YT,
Ti Ti
(f (Yer1s Yty Tpyr) + Z f(yj+1ayj:x}+1)) (H exp(f(yt’—l-layt’yxi’+1>T}‘)>
j=t+1 t'=t+1

= Z eXP(f(fUt+1>ytaxi+1)T>‘)(JE(?/t+1,yt@iﬂ)@ﬂ(?/tﬂ) +B§+1(?Jt+1))- (4.11)

Yt=Y,Yt+1

To conduct a recursive calculation, we set the initial values of af and 7, ,, as

5‘6(9) = 07 Vy € YD»

Bé“ﬂrl(y) =0. VyeYp.

21

Algorithm 4 Using v to calculate f(y;,vy;—1,7%), V1 <t < T, ye—1,9: € Yp

1. Fort=1,2,...,T;

e Initialize f(ys, yr_1,2!) « 0 in memory.
e Fory, 1,y € Yp
— For k € {1,2,...,d} with fi(ys,yi1,7) =1

Fye i1, 20) — Fye, veor, 7)) + fe(ys, ye1, 21 vp

In ([1.9), (@.10) and (£.11)), we need
Feyeer, 2, Yy yes € Yp,t =1,2,....d.

They must be calculated and stored. Algorithm [4| describes the procedure to cal-
culate f (v, y,—1, %) using . Since we assume binary feature values, only those
fe(ye, ye_1,) = 1 are considered in calculating f(y;, 31, 7).

We give the forward and backward procedure in Algorithm [5] to show how to cal-

culate &', /3.

22

Algorithm 5 Forward and backward procedure to calculate ai(y) and 3i(y) by (4.10)
and (L11)

1. Fory e Yp
aj(y) =0and B, (y) =0

2. Fort=1,2,...,T;

o Fory, 1,y € Yp
— Use (4.10)) to calculate al(y), where

U (Ye, Yi-1, 951) = exp(f (Yt Y1-1. %)TA)
is calculated in Algorithm [3 and stored in memory.
ay(ye) — () + 9y, o1,) (F (e Yo, 201 (1) + @y (1))
3. Fort=1T;,T, —1,...,2,1

e Fory, 1,41 € Yp
— Use ({.11) to calculate Bi(y), where

U (yer1, Ue, $i+1) = exp(f (Yer1, Y1, Ii)TA)

is calculated in Algorithm [3land stored in memory.

Bi(y) — Bi(ye) + Yok (Wert, ve, 39;+1)(J?(yt+17 Yt $i+1)52+1(yt+1) + B§+1(yt+1))

23
4.2 Calculation of (4.4)

Eq. (4.4) can be seen as the multiplication of two terms, where one is

S iy exp(f(z)")

Z)
e (')
Yo 1, T Hexp (y5, yj—1,25) " A) (4.12)
T;
Vi1, 74) > [T exo(# (s vj-1,)" N)
t=1 yt—1,yt Y1,Y2,0 Yt —2,Yt41,-yT; J=1
Ye—1, th) exp(f (Ye, i1, l’i)T)\)
t=1 yt—1,yt

< > HeXp(f(yj,yjl,fIi-)TA)) > l_l[exp(f(yj,yj—bf’f’?)T)‘)

Y1,Y2,-Yt—2 J=1 Yt 1,Yt+2,--y1; J=t+1
1 &
—— > e v,) eso(F (e v, 28 N)ai (1) B () (4.13)

Z(CII’) t=1 yi—1,yt

The other is

eXp(f(z')')
Z f(y Z(z')

yeYpTi

=

F e, ye-1, 1) > HeXp F (Wi yi—1, 25" A)

YL,Y2, Yt —2,Yt4 1, yT; J=1

e

ytayt 17% exp(f(yt,yt_l,xi)T)\)

M

_ T;
(HeXp(f(yj,yj—l,:r§))> ST el o)
Y1,Y2,--Yt—2 j=1

Y+ 1,Yt+2,YT; 1=t+1

Y1, 1) exp(F (e, ye1, 1) " N)ag 1 (ge-1) 5 (). (4.14)

t=1 yt—1,yt

We give the procedure to calculate and in Algorithm [6]

24

Algorithm 6 Calculating (4.4) by (4.13]) and (4.14])
1. Fix q.

2. Initialize

p+—0,w—0

3. Calculate (4.13))

e Fort=1,2,...,T,

— For y,_1,y: € Yp
x For k€ {1,2,...,d} with fi(y, ye_1,2%) =1

P — P+ fe(W, vee1, 23) exp(f (e, ye-1, 1) Ny (ye-1) 51 ().
4. p —p/Z(z").
5. Calculate (4.14))
e Fort=1,2,....T,
— For v, 1,y € Yp
w = w + (Yo, Yo—1,) expOF (s Yo, 71) T N1 (ye-1) 57 ()

6. w— w/Z(x")

4.3 Overall Procedure and Time/Memory Analysis

Using Algorithm [4], Algorithm [5] and Algorithm [6] the procedure to calculate the
Hessian-vector product is in Algorithm

We discuss the time complexity of Algorithm . To calculate f(y:,y;—1,2!) in
Algorithm , t is from 1 to Tj, y,—1 and y; both have |Yp| choices, and k is from
1 to d. The time complexity is O(T;|Yp|*d). With a similar analysis, the forward
and backward procedure in Algorithm |5 needs O(T;|Yp|?). Calculating needs
O(T;|Yp|?) under fixed k and 4, so the cost over all k is O(T;|Yp|*d). In Algorithm [6]
step 3 needs O(T;|Yp|?d), and step 5 needs O(T;|Yp|*). By summing the cost over all

i=1,2,..., N, the total cost of Algorithm [7|is O(T;|Yp|*dN).

25

To discuss the space complexity, f(y:, y:—1,x:) has O(T;|Yp|?) different values. Sim-
ilarly, W(y;, y;_1,2%) needs O(T;|Yp|?) spaces. For ai(y), 3 (y), ai(y) and Bi(y) they
all have O(T;|Yp|) fields. Totally, the space complexity to calculate the Hessian-vector

product is O(T;|Ypl?).

26

Algorithm 7 Use (4.9) to calculate Hessian vector products (3.13)), (3.15)) in conjugate
gradient subroutine

1. Given

S v
i U N _
{z',y'};i, A\ v, Hv = p

2. Fori=1,2,...,N
e Use v to calculate f(ys, ys1,2%),1 <t < T}, y;1,y: € Yp by Algorithm
e Calculate a’(y;),t =0,1,...,T; and Bi(y;),t =0,1,...,T; by Algorithm .
e Initialize d’ « 0.
e Fort=12....T;
— Fory, 1,4 € Yp
x For k=1,2,...,d, where fi(y:,y:_1,7%) =1

dy, = di + fu (e Y1,) O (Ys, o1, 77)

(@1 (e—1) By (We) + J Wes Y1, T) g1 (Ye—1) B () + vy (Y1) 55 ()
o d — di/Z(wi)
e Initialize

p—~0,w«0

e Calculate (4.13))
—Fort=1,2,....T;
* For y,_1,y, € Yp
- For k € {1,2,...,d} with fu(ys, ye1,7%) =1

e — Dk + Je(Yt, Vi1, fi) exp(f (Ve Yi-1, xi)TA)ai—l(yt—l)ﬁZ(yt)'

o p—p/Z(x').
e Calculate (4.14))
—Fort=1,2,...,T;
* For y, 1,y € Yp
w = w A+ (Yo, Y1, 71) exp(F (Y1, o1, 1) N1 (Y1) B ()
o w— w/Z(x)
e Hv«+— Hv+d' — wp

3. Return Hw.

CHAPTER V

Conclusions

Conditional random fields are popular in the natural language process area, and
have good performances on applications such as labeling sequential data and segment-
ing sentences. Many optimization methods have been applied to solve CRFs. They
focus on gradient based methods and quasi-newton methods. In this thesis we con-
sider a Newton method for training CRFEs because of its possible fast final convergence.
However, Newton methods need Hessian information which is hard to calculate. We
focus on a trust region Newton method using conjugate gradient methods, because it
only needs Hessian-vector products.

Previous works show that automatic differentiation can be applied to Hessian-vector
product in some optimization methods such as stochastic meta decent methods and
trust region Newton methods. This thesis provides another approach to do Hessian-
vector product. We derive an analytical Hessian-vector formula of CRF's, and propose
a novel dynamic programming technique which has the same time complexity as the

gradient calculation.

27

BIBLIOGRAPHY

A. Griewank. Evaluating derivatives: principles and techniques of algorithmic

differentiation. STAM, 2000.

J. Lafferty, A. McCallum, and F. Pereira. Conditional random fields: Probabilistic
models for segmenting and labeling sequence data. In Proceedings of the 18th

International Conference on Machine Learning (ICML), pages 282-289, 2001.

C.-J. Lin and J. J. Moré. Newton’s method for large-scale bound constrained
problems. STAM Journal on Optimization, 9:1100-1127, 1999.

C.-J. Lin, R. C. Weng, and S. S. Keerthi. Trust region Newton method for large-
scale logistic regression. Journal of Machine Learning Research, 9:627-650, 2008.
URL http://www.csie.ntu.edu.tw/~cjlin/papers/logistic.pdf.

D. C. Liu and J. Nocedal. On the limited memory BFGS method for large scale
optimization. Mathematical Programming, 45(1):503-528, 1989.

A. Mccallum and W. Li. Early results for named entity recognition with condi-
tional random fields, feature:induction and web-enhanced lexicons. In Seventh

Conference on Natural Language Learning (CoNLL), 2003.

F. Peng, F. Feng, and A. McCalum. Chinese segmentation and new word detec-
tion using conditional random fields. In Proceedings of The 20th International

Conference on Computational Linguistics (COLING), pages 562-568, 2004.

L. Rabiner. A tutorial on hidden Markov models and selected applications in
speech recognition. Proceedings of the IEEE, 77(2):257-285, 1989.

F. Sha and F. C. N. Pereira. Shallow parsing with conditional random fields. In
HLT-NAACL, 2003.

S. Vishwanathan, N. N. Schraudolph, M. W. Schmidt, and K. Murphy. Acceler-
ated training of conditional random fields with stochastic gradient methods. In
Proceedings of the 23rd International Conference on Machine Learning (ICML),
pages 969-976, 2006.

H.-J. Wang. Applying automatic di entiation and truncated newton methods to
conditional random fields. Master’s thesis, Department of Computer Science and
Information Engineering, National Taiwan University, 2008.

28

http://www.csie.ntu.edu.tw/~cjlin/papers/logistic.pdf

	口試委員會審定書
	摘要
	ABSTRACT
	 I. Introduction
	 II. Conditional Random Fields
	2.1 Named-Entity Recognition Problem
	2.2 Conditional Random Fields
	2.3 Applying CRFs on NER Problems

	 III. Trust Region Newton Methods
	3.1 A Trust Region Newton Method
	3.2 Hessian-vector Product in Conjugate Gradient
	3.3 Gradient Calculation

	 IV. Dynamic Programming Formula for Hessian-vector Product
	4.1 Calculation of (4.3)
	4.2 Calculation of (4.4)
	4.3 Overall Procedure and Time/Memory Analysis

	 V. Conclusions
	BIBLIOGRAPHY

