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mental results show the scalability of our proposed method, which can effectively

decompose functions with up to 300 input variables.
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dent to each other. In addition the behavior of the original function can be recon-

structed if we compose these parts together. In logic synthesis, a complex function
is decomposed into a set of sub-functions, such that each sub-function is easier to
analyze, to understand, and to further synthesize. Functional decomposition has
long been recognized as a pivotal role in LUT-based FPGA synthesis. It also has

various applications to the minimization of circuit communication complexity.



1.1. Thesis Overview

Functional decomposition can be classified as follows:

e The function to be decomposed can be a completely or an incompletely speci-

fied function.

e The function to be decomposed can be a single- or multiple-output function.

e A decomposition Eﬂ,.dq? ﬁ@wﬁfﬁns do not share common input
.:.
variables; 0{?@186 it -1ﬂ§='ﬂi:n dw]g%
J_.q,,.'._-

SN
A dec@ ositio ‘ sztzon. .f%:zmple decomposition

In this thes‘,'f:lér_-?__;I I{eﬁbdr'&:{l

the proposed method "cﬁ@jgv_l%:r multlple outpu
CREREe
Furthermore, we pay our attention to

functlons In addition

;1 1'&% non-disjoint decompositions.

henhurst decomposition.

The functional decomposition problem was first formulated by Ashenhurst in
1959 [1]. He visualized the decomposition feasibility with a decomposition chart,
which is a two-dimensional Karnaugh map with rows corresponding to variables in
the free set and columns corresponding to variables in the bound set. The decompo-

sition chart is used to determine whether a given function f can be simply disjointly



1.1. Thesis Overview

decomposed with respect to a set of given bound set variables. Ashenhurst reduced
the chart by merging all identical columns, and he showed that there exists a simple
disjoint decomposition if and only if there are at most two distinct columns in the
reduced decomposition chart. The disadvantage of Ashenhurst’s method is that we
have to construct every chart with respect to every variable partition we consider. If
we consider all the variable partitions, a function with n variables would have O(2")

._|£ .E'—-:'-': l."i;_,.

charts since every va,rlabfe tan bg,ln elthgtth‘g.bo{nd set or free set.
X h =
Roth and féiﬁh‘p pt{)fdg
,.'lg.‘,;'

H%Q\ﬁ try(‘f;'gi to reduce the memory
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equivale@ﬁ

classes

the distirﬁ!!"&r" colu

Ashenhurs

iﬁtho le_}ssﬁfhgfprocess time of the
‘ Py

algorithm 1S still z%]i:\ :Cept we restri 1 e_.-.E und set variables to
T, Rt |
oL ol 4
be up- bounde(f}bjy sorg"r j‘ﬂlns a v@q{pf ’If‘llis"'IS which is the common
ST A "
""..a- = :Eﬁ." "F

input size of a LUT

Recent progress on function mampulation using BDDs makes the BDD data
structure becomes a popular tool to handle the functional decomposition problem.
Lai, Pedram, and Vrudhula [15] proposed a fast BDD-based method to implement
the Roth-Karp algorithm. They used BDDs to represent Boolean functions, and
showed that every variable ordering in the BDD implies a variable partition of the

decomposition of the function. They ordered all the bound set variables above



1.1. Thesis Overview

the cut, and ordering all the free set variables in and below the cut. Based on
Lai’s method, Stanion and Sechen proposed a method [25] to enumerate all the
possible cuts in the BDD in order to find a good decomposition. The enumeration
can be achieved by constructing a characteristic function for the set of cuts, then
using a branch-and-bound procedure in order to find a cut which produces the best

decomposition.

1-1[ o] [SH5 -"'l'{ B
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l:
Identifying the f?qrnmon subgunctlo decompﬂsmg a function set is an im-

J h— -
portant 1ssue..-!h mul’ffle—

-u..,

Wosﬂzloﬂ" The first approach to

14].  However

Karp’s m"ﬁ'itlple output ap utput f}_]inctlons In order
=
to overcqrhije the limitation jof Kasp’s metho S propeg_ﬁd several ways to
handle th'-E._:im‘,r}?i.ple de com;:%’pn pr ! rfh 'flcﬂ"" and Antreich pre-
L | | M
sented an a,lg'c:)rlth fc on the concept p eerﬁb‘le dqleomposmlon function,
T ._+ -,

which is a deC@mposmgc’;ﬂ_"func _a &%ou u"t"' and with the potential

.-._ "\. I'I:-r ] -
to be shared by other Butput “functibns to iandklmhltlple output decomposition.
i __-i ._ o
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They showed that the constructlorf o alI preferable decomposition functions can
be achieved by partitioning the minterms of bound set variables into some global
classes, and this information can be used to identify the common preferable decom-

position functions of a multiple-output function.

Sawada, Suyama, and Nagoya proposed a BDD-based algorithm [24] to deal with

the issue of identifying common sub-functions. They proposed a effective Boolean
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resubstitution technique based on support minimization to effectively identify the
common LUTSs from a large amount of candidates. However when the size of the
support variables is large, the examination becomes time-consuming and sometimes

fails due to memory explosion.

Most prior work on functional decomposition used BDD as the underlying data

| ol |

structure. BDD can be usi ]tt h@ﬂj{th;?'i:fq dgtlonal decomposition problem with
proper variable ordeil_r_;lg, whleT‘l t:h.e size (ﬁ}e BDD 1 er an acceptable threshold.
=
ru. '
However in sdﬂhe casi;f thed S SGVG'E_‘,-“:.I.} limitations:
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D'D_Jbased algorithms. BDD
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carﬁe oflarge size i olean function. dn the worst case, BDD
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al.:l(_iecomi:'r'bsmlon the memory
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size needed
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variable ordermg ‘;Filerefgré it is ty[;it‘f.l- that a,..f-unctlon under decomposition

using BDD as the undeﬂfﬁgﬁa-tp-shj‘ ire can have just a few variables.

e Secondly, variable partitioning needs to be specified a priori, and cannot be au-
tomated as an integrated part of the decomposition process. Decomposability
under different variable partitions need to be analyzed case by case. In order
to enumerate different variable partitions effectively and keep the size of BDD
reasonably small, the set of bound set variables cannot be large. Otherwise,

the computation time will easily over the pre-specified threshold.
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e Thirdly, for BDD-based approaches, non-disjoint decomposition cannot be
handled easily. In practical, decomposability needs to be analyzed by cases

exponential to the number of joint (or common) variables.

e Finally, even though multiple-output decomposition [30] can be converted to
single-output decomposition [12], BDD sizes may grow largely in this conver-

sion.

Ll Figulrell.l: Ashenhurst decomposition

| F

The above limitations motivate the need for new data structures and computa-
tion methods for functional decomposition. This thesis shows that, when Ashen-
hurst decomposition [1] is considered, these limitations can be overcome through
satisfiability (SAT) based formulation. Ashenhurst decomposition is a special case
of functional decomposition, where, as illustrated in Figure 1.1, a function f(X)
is decomposed into two sub-functions h(Xg, X¢, z,) and g(X¢, X¢) with f(X) =

h Xy, Xe,9(Xa, X¢)). For general functional decomposition, the function g can be



1.2. Related Work

a functional vector (gi, ..., gx) instead. It is the simplicity that makes Ashenhurst

decomposition particularly attractive in practical applications.

The techniques we used in this thesis, in addition to SAT solving, include Craig
interpolation [6] and functional dependency [16]. Specifically, the decomposability

of function f is formulated as SAT solving, the derivation of function g is by Craig

interpolation, and the den\iauiﬁi_ﬁ_-'mﬂfﬁ_!,ﬁﬁgﬁ& .&_s by functional dependency.
! T F o
e 5 :2_‘

0 = \
o f— L]
= "i“i.#":' ‘ 2 o
Aside fro%: the related prio s underlying dat;.lﬁpructure we com-
= 1 .
pare somﬁrelated d Boolgih matching using
P
SAT- based:_tf:ﬁl_lqu ncﬂl(;'h f,;iis decomposed into
rll'.
l,Xc) Ao o paimm‘;r-x (X X5 X,

where function };:?5

3
n ad&z,:lpmom aﬁd%ls E%é tsiﬁbe special function types,

which can be two- 1nput'f5¥A§D-J?_E_- ﬁatﬂﬁﬁc 1‘The functions ¢g; and gy are the

unknowns to be computed. Compared with bi-decomposition, Ashenhurst decom-
position f(X) = h(Xy, Xe, 9(Xg, X)) focuses on both unknown functions h and
g, where no any fixed type of gates are specified. The Ashenhurst decomposition
problem needs be formulated and solved differently while the basic technique used

in our thesis is similar to that in [17].

FPGA Boolean matching, see, e.g., [3], is a subject closely related to functional
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decomposition. In [19], Boolean matching was achieved with SAT solving, where
quantified Boolean formulas were converted into CNF formulas. In order to eliminate
the universal quantifiers, the CNF formulas will be duplicated exponential times
related to the input variable sizes. The intrinsic exponential explosion in formula
sizes limits the scalability of the approach. Typically, this method cannot handle

functions with input variables greater than 10. To overcome this problem, a two-

; J_-”' & ".J.-!_'l'.-;
di. an implicant-based method

a,teh%lg algor;-_t@;m
£ Ty
[4] were proposegf'.vo }f_’brovelu = of met s‘ﬁ'{e.ntloned in [19]. Different
.,-.
T .

etel%g

hﬁdﬁ%ﬁp handle functions

stage SAT-based Boolﬁaﬁt 111'

J
from the al‘}:bb-e algori &Fﬁed functions, Wang

I‘.J
and Chanwrof)‘af % SAT-
l.'l
with dongﬂcar‘es.
Pl - *-~
the Boolean match ; ! PLB cg:ﬁguratlons similar
‘l “'I H

to the top'?j’.fég i

- el : el .I':hl-

Y o e mg
1.3 Our Cofri;-g{?m{‘hons Iﬁ:_',ll @
b7 o o [5G

Compared with BDD-based methods, the proposed SAT-based algorithm is advan-

tageous in the following aspects.

e Firstly, it does not suffer from the memory explosion problem and is scalable
to large functions. Experimental results show that Boolean functions with

more than 300 input variables can be decomposed effectively.



1.3. Our Contributions

e Secondly, it needs not be specified a priori when variable partitioning, and
can be automated and derived on the fly during decomposition. Hence the
size of the bound set variables X needs not be small. Bound set variables
X¢ can be as large as free set variables X to obtain a more balanced variable

partition.

e Thirdly, it works for no

|'.-"-|

variable part;.ti‘gh proc

Varlable':f;i)';irtlt

P Al L qﬁp_osmon naturally. The automated
eﬁs& our f%od caﬁ%‘:%eed generate a non-disjoint

] —F
%@umﬁ# of the common (non-
f.!:-.

".- 7 A '1.'5..
partition E‘% { L-&‘ : - {?':.‘I'." 2
o b E%_ AL
';:':}'\.«, -:{:-' .,;.. :_IE\._. .
"iE" {5 7%; I"L-'-
However when generahzmg ouI* method to functional decomposition beyond

Ashenhurst’s special case, both SAT-based formula size and computation time of

SAT solving grow. This is the limitation of our proposed method.

As interconnects become a dominating concern in modern nanometer IC designs,
scalable decomposition methods play a pivotal role in circuit communication mini-

mization. While functional decomposition breaks the original function into smaller
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and relatively independent sub-functions, the communication complexity between
these sub-functions are greatly reduced proportional to the number of interconnect-

ing wires between these parts.

With the advantages of the proposed method, hierarchical logic decomposition

could be made feasible in practice. In addition, our results may provide a new way

i,
-t
0

Our main alg : , vated with experimental

10



Chapter 2

enoted in upper-case
5
!

e.g., [X] = {(0,0),(0,1),(1,0),(1,1)} for X = {z1,z2}.

11



2.1. Functional Decomposition

2.1 Functional Decomposition

Definition 2.1 Given a completely specified Boolean function f, variable x is a
support variable of f if f, # f-., where f, and f-, are the positive and negative

cofactors of f on x, respectively.

Definition 2.2 A set f com letely specified Boolean functions
{A(X fﬂﬁ@fﬁf b y sp

|'.-"-|

is (jointly) decompalg‘r_ﬁ'lt‘vvlthﬂc@ect to,some val‘réb?‘partltlon X ={Xy|Xc¢|Xc}

if every funct;qki-ijl{ 3% ; J -8 {:-
g
R

:-%I_e

for some functions
i

otherwi

if X :Eﬂ.':!':“ndno
T

=
Lok,

Form—l‘ﬂ;'ls QW11 Islngleo

.-_.H\r 7
output decompos 'gé “)N’Z%e th@- "léll, .. h,ié-ha

-r.,

are dealing with multiy ompo p1 blem The so-called Ashenhurst
n}tﬁ%i Sl

decomposition [1] is for k = 1, which ¢ function has only one output bit.

Note that, for |Xg| = 1, there is no successful decomposition because of the
violation of the criterion k& < |Xg|. On the other hand, the decomposition trivially
holds if Xo U X¢ or X¢ U Xy equals X. The corresponding variable partition
is called trivial. This paper is concerned about decomposition under non-trivial

variable partition. Moreover, we focus on Ashenhurst decomposition.

12



2.1. Functional Decomposition

The decomposability of a set {fi,..., fi,} of functions under the variable par-
tition X = {Xpg|X¢|Xc} can be analyzed through the so-called decomposition
chart, consisting of a set of matrices, one for each member of [Xs]. The rows
and columns of a matrix are indexed by {1,...,m} x [Xg] and [X¢], respectively.
Fori € {1,...,m}, a € [Xg], b € [X¢], and ¢ € [X¢], the entry with row index

(4,a) and column index b of the matrix of ¢ is of value fi(Xy = a, Xg = b, X¢ = c).

T il ST ST
o)
Proposition 2.1 ,@%4 A.'-E@qf{ fi,. _%} of Boeﬁ%ix functions is decomposable
|"°:"h|.';:. ) - ""--..:'_'h )
§ *

as

for i = 1,:_:_', ,m }if and only if, for every
i »
¢ € [Xc], the cor colurim., patterns (i.e., at
o e
bl ‘ s [
most 2% ﬂere : J-,r_"!i:ah- -g"'!'
LA
8

2.1.1 Deco?@o i:E:ionl;thar 1?%
2 eme opegen”

Given a variable partition X = 1, we want to check if a decomposition
f = h(g(X1), Xs) exists. To do this, we build a table called decomposition chart.
Decomposition chart is a table rearrange from the K-map of a given function f. The
table has 21Xl columns correspond to input vectors of X; and 2%2! rows correspond
to input vectors of X5. Each entry in the decomposition chart represents a function
value whose input value is a combination of the index of corresponding rows and

columns. Moreover, if we allow some variables can be common in both the row and

13



2.1. Functional Decomposition

column, the resulting decomposition chart will be formed by some sub-chart in a

diagonal way.

In our Ashenhurst decomposition, the corresponding decomposition chart of the
given function f uses input variables of g as its column index variable, and input
variables of h as its row index variables. The whole decomposition chart of f is
composed by some sub-charts in diagonal way. Each sub-chart corresponds to one
valuation of Xs. Hence if there are k£ common variables, the number of sub-chart
will be 2*. For example if we have one variable.ii.X, one variable in X, and one

variable in. Xy« The gorresponding decomposition ehart is shown in Figure 2.1.

XCXG
00 01 10 11
00
XCXH 01
10
11

Figure 2.1: The diagonal decomposition chart due to introduce of common variable

14



2.2. Functional Dependency

2.2 Functional Dependency

Definition 2.3 Given a Boolean function f : B™ — B and a vector of Boolean
functions G = (¢1(X), ..., gn(X)) with g; : B™ — B for i = 1,...,n, over the same
set of variable vector X = (z1,...,z,,), we say that f functionally depends on G if

there exists a Boolean function h : B"” — B, called the dependency function, such

'?ngw%%gm f, G, and h the target function,

e FE.

%ndenézfﬂnctzon pecti

that f(X) =

L:;-:}!

base functions, %\g"

Note thatﬁmh‘s};és

d % 11 of the f 7 tion ?-l
not depend on a the func i Ty
e =
_"I-'I L | i
The necessary a 9£_the ﬁbendenoy function
T

o _Jl:' L |-H'.

h is given 'Eﬁ_f lows. L _:h'::

iz ‘e 4

3 *3'; ‘H

nq%}flld b functions G, let h° =

{aeB":a=G ﬁd{‘gb '{ﬂbe'ﬂm}%hl:ﬁﬁ{ '€B":a=G(b) and f(b) =
|‘ '| .\l:l II.L"' =

1,b € B™}. Then h is a feasi 'le-’m% 1Cy function if and only if {h° N A'} is

empty. In this case, h°, h', and B"\{h° U h'} are the off-set, on-set, and don’t-care

set of h, respectively.

By Proposition 2.2, one can not only determine the existence of a dependency func-
tion, but also deduce a feasible one. A SAT-based formulation of functional depen-

dency was given in [16]. It forms an important ingredient in part of our computation.

15



2.3. Satisfiability and Interpolation

2.3 Satisfiability and Interpolation

2.3.1 Conjunctive Normal Form

A formula is said to be in Conjunctive Normal Form (CNF) if it is a conjunction

of clauses. Each clause is a disjunction of one or more literals, where a literal is

ol L
the occurrence of a vak a.b‘e--‘gilor' ';t )gjrﬁ';ﬂé!@pf —~z. Without loss of generality,
k- -{H

we shall assume: tll}gt there ane'-nG any

H —
clause. For _I?-a'mple

equality fﬁctmﬁ" lfo

valent Q{foi'nplementary literals in one
i

.f

is a CN_?_representatlon of the
[

!T:m
a data structure For.-‘]lgqimentmqﬁlblementa%ﬁn of v%ffipus technlques used in most
-11 1I

ariabﬂin. ?fé"‘fqrmula é:;@:;la{'uﬁs and each clause
[ i 5.'.‘!'
has 2 htqi.é"ls ﬁ : =~
L " 5

The GI_Q‘_F ‘1_§!Fs;1_m .1_(:) 2%the circuit theory.

It is one éf‘the ‘s@é ss of the Boolean

Satisfiability fEA ler a\%ﬂ f:'; '.SAT problem provides

.ﬂ_ v

E 15
popular SAT solvers. R i -—-';r'{"__.j,':. HC

2.3.2 Circuit to CNF Conversion

The CNF formula of a combinational circuit can be constructed in linear time by
introducing some intermediate variables. The CNF formula of a combinational cir-

cuit is the conjunction of the CNF formulas for each gate output, where the CNF

16



2.3. Satisfiability and Interpolation

formula for each gate denotes the valid input and output assignments of the gate.

The detail information for converting a circuit to CNF representation can be found

in [27].

Figure 2.2: Circuit to CNF representation

Figure 2.2 shows an example of a simple circuit with the corresponding CNF
formula indicating the truth assignment and the CNF formula with some given
properties. As can be seen, the CNF formula can be divided into two parts, each

part is a set of clauses for one particular gate. Two gates share the same interme-

17



2.3. Satisfiability and Interpolation

diate variable c. So the CNF representation of the circuit is the conjunction of the
sets of clauses for each particular gate. Hence, given a combinational circuit it is
straightforward to construct the CNF formula for the circuit as well as the CNF

formula for proving a given property of a the circuit.

2.3.3 Pr0p051t10nal ffq L?aﬂ%y
- il

i|| aj b =g 'E‘if 3 = -':. 1:-3.

0 deﬁﬂ&._iio

tional satlsﬁbl_nhty pro T solvei,-r Let V ={vy,..., 0}

ermmologles of proposi-

be a finite set 5‘[':!.%.3 ean vajiab ‘ ; "{_05-'1} 17& SAT instance is a
| ‘ -a

set of Bd:_g_llsan formulas in C ' 1ves.Il eathpvarlable v, €V oa
- -

e is said to be satisfiable is

bl

formuIa;"!ﬁ' evaluated as True.

.-":".-"'s :

18 eval'uat,ed_ as True Otherwise, it

-

there exisf;.:ﬂ:;;an Ea';sig

More speciﬁ@x weh ¢
| .— ".-:l'l_l

is unsatisfiable. A’ SAE p#;ble'a’ﬁ: 1|$ a dem&pp_’__‘problem I.as"f?ed the given SAT instance

is satisfiable or not. A SA?SQ .?;- ﬁi_gl;fﬁi‘ bo a!'nswer the SAT problem.

SAT was the first known NP-complete problem, as proved by Stephen Cook in
1971 [5]. The problem remains NP-complete even if the SAT instance is written in
conjunctive normal form with 3 variables per clause, yielding the 3SAT problem.
Most of the popular modern SAT solvers use David-Putnam-Logemann-Loveland
(DPLL) [8,9] procedure as the basic algorithm to solve the SAT problem. DPLL is

tested to solve large propositional satisfiable problem efficiently.

18



2.3. Satisfiability and Interpolation

The basic idea of DPLL procedure in solving a SAT problem is to branch on
variables V' until a conflict arises or a satisfying assignment is derived. Once a
conflict arises, DPLL chooses another branch to keep testing the satisfiability. If
the variable value on a certain branch results in a satisfying assignment over the
SAT problem, the DPLL procedure stops the rest branching step immediately, then
returns the answer satisfiable as well as the satisfying assignment. Otherwise, DPLL

: l[ -H'-Euf'ﬁ"'.rlﬂ‘%;ﬁ_l

procedure needs to t.lesp[ail 1‘he bn_%nches t:&(_gp

|.—'F = ! ! r{'

“and Nl} as %jensson as the underlying

e nsatisfiability. In this thesis,

we use MiniSat: {:ﬂ)ﬂ d},slg_élopedj

|:.~l 4 lI '.n:.':l 1
SAT solver -f_hfche exp AT
lh.l ¥ ':.I"- -'-||—.-i_-
':- h'l:qil:’:' |.|:--'!'I L Il
-
) 2]
2.3.4 "-Eieﬁut +
-
iy o

Some of tﬁg‘;l?(;er

r..=
unsatisﬁabili"bggig}" '8 {;‘E | X ion o_g!f -4 ‘sques of resolution steps
show the unsatlsﬁ'{zab..lre; -S'K'.T {ﬁ'g-fdpce will ﬂ?ﬂtua-l

y ﬂ'ly an empty clause. Each

step in these series of st"epéfcagagl }ﬁiﬁoi\’l_ttl?ﬂ. ’tEﬁndei)' detailed definition of resolution

and other terminology are shown in this subsection.

Definition 2.4 Let (v V ¢;) and (—v V ¢3) are two clauses. Where v is a Boolean
variable, v and —wv are literals, ¢; and ¢y are disjunction of other literals different
from v and —wv. The resolution of these two clauses on variable v is a new clause
(¢1V¢z). The variable v here is called a pivot variable, and (¢, V ¢2) is resolvent. The

resolvent exists when only one pivot variable exists. In other word, the resolvent
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2.3. Satisfiability and Interpolation

can not be a tautological clause.

For example, clauses (a V —b) and (—a V b) on variable a has no resolvent since
clause (—b V b) is tautological. Also, resolution on variable v over two given clauses

is similar to existential quantification on variable v. That is, Jv.(vVer) A(—vVe) =

E‘jﬁﬁ‘__l!ﬁ;. ;
Il?xiétfg-fof :%4 %
— P

(Cl V 02).

Proposition 2.3 -18;'3
%'."f"ﬂ)Ii.

V ¢g) implies its resolvent

(Cl Vv 02).

Theore%Z F i . i . el lutlon refutation

an empty claus%ﬁe he%ﬁ e ﬁﬁﬂ dﬁl‘f‘ectly by Proposition 2.3.
e %
ion steps lea

There must exists SO#%%F—; %s.‘iﬂﬁé?npty clause. O

oy (ST

Often, only a subset of clauses of an unsatisfiable SAT instance participate in the
resolution steps, which lead to an empty clause. This subset of clauses of a unsatisfi-
able SAT instance is called unsatisfiable core, the detailed definition of unsatisfiable

core will be described later.

Definition 2.5 A refutation proof of an unsatisfiable formula ¢ is a directed acyclic

graph (V,,, E,). Where V,, is a set of clauses, and the SAT instance of formula ¢ is

20



2.3. Satisfiability and Interpolation

a clause set C, such that

o for each vertex k € V,,, either

— ke C, and k is a root, or

— k has exactly two predecessors, k; and ks, and k is the resolvent of k;

and ko, and I L,-;._::L&-_,
h%lque leé?

|:'-'.' - .*
o ‘
Theorem ﬁ If ther efutation proo atisfia i y for clause set C', C

e there eX1st§||F$J-ll5€mpty dpﬁ'é be t
'_.|!I|=!--'
_l

ﬁiﬁ still unsatisfiable.

) .l

, @tﬁ-o are satisfiable. The

wh
core of the fo

-1}

The unsatlsﬁ'bble b’
“‘-'.":l-

unsatisfiable ¢ E{;j‘ca

clauses to be still uns&%-%i
“fbmzﬂfﬂﬂ

The intuition behind the unsatisfiable core is that, these subset of the original

£

all.é‘ﬁ; number of the original

15""

clauses are sufficient causing whole CNF formula to be constant False. The as-
signment of variables not in the unsatisfiable core will not effect the unsatisfiability
of the formula. Note that the unsatisfiable core of a unsatisfiable formula is not
unique, there are one or many different unsatisfiable cores of a particular unsatis-

fiable formula. In the point of view of a resolution refutation proof, the simplest
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2.3. Satisfiability and Interpolation

unsatisfiable core is the subset of root clauses that has a path to the unique empty

leaf clause.

Figure 2.3 illustrates the resolution refutation proof, and one of the simplest

unsatisfiable core of the unsatisfiable formula ¢ = (=¢)(=b+a)(c+—a)(b)(d+e)(—=d).

unsatisfiable core

(=c) (=b+a)(c+—=a) (b) (d+e) (—d)

N N

(—b+c) (e)

(c)

False

Figure 2:3:Refutation proof.and thetihsatisfiable core

2.3.5 Craig interpolation

Theorem 2.3 (Craig Interpolation Theorem) [6]
Given two Boolean formulas ¢4 and g, with w4 A pp unsatisfiable, then there

exists a Boolean formula ¢4 satisfy the 3 properties that
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2.3. Satisfiability and Interpolation

e 1, referring only to the common variables of p4 and g

® VA= Yy

e 4 N\ pp is unsatisfiable.

The Boolean formula 14 is referred to as the interpolant of 4 with respect to

Boolean Space

Figure 2.4: Craig interpolation

There are many researches [20,21] show that we can build an interpolant from

the resolution refutation proof of an unsatisfiable SAT instance in linear time to the

23



2.3. Satisfiability and Interpolation

proof size itself. In this thesis, we use the method described in [20] as our underlying

way to get an interpolant.

Suppose we are given a pair of clause sets (A, B) derived from the formula ¢ and
a refutation proof of unsatisfiability (V,,, £,) of AU B. For the clause sets (A, B), a

variable is said to be global if it appears in both A and B, and local to A if it appears

':"1-1;:13; the variable it contains.
i

The linear ti i ‘ ment%d in [20] is in the
)

— if ¢ € B then f(c) is the constant True

e if ¢ is the intermediate vertex, let ¢; and ¢y be the predecessors of ¢, and v be

their pivot variable.

— if v is local to A, then f(c) = f(c1) V f(c1)

— else, f(c) = f(er) A f(er)
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2.3. Satisfiability and Interpolation

Since every unsatisfiable SAT instance implies the constant False, so the last
step of the resolution refutation proof resolve a constant False. Hence, f(False) is
a boolean function constructed from the above rules. Also, it is the interpolant of

the unsatisfiable clause sets AU B and the corresponding refutation proof (V,,, E,).

Figure 2.5 illustrates the resolution refutation proof and detailed construction
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2.3. Satisfiability and Interpolation

A
B
local

global

(=b+ a)(c+ —a)

(b)(c)

b, c

(—b+a) (c+— a)

\/ True

(—c) (c) True

Figure 2.5: Interpolant construction of an unsatisfiable formula ¢ = (—¢)(=b+a)(c+

—a)(b)
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Chapter 3

5 )

We sho 1_r_-:;'!h at Ashenhurst ‘ “tions {fi,--, fm}s
. rl‘ ! | [ I'-'i

or in some cases We ed 1 ‘ m@gm on, can be achieved

iy
al ‘i?‘%lde r;;  Whenever a non-

by SAT solving,

Lo '

trivial decom 3'1 n 7
Lx]h
-

hi(XH,XC,g(XG; nder_—%ﬁ?cormspaﬁgva ‘part1t1onX {Xg|Xc|Xc}

'-I’l.l )
I"-F .Il.a F'.._'HTL gl -1

d g Al mat1cally for fi(X) =

3.1 Single-Output Ashenhurst Decomposition

We first consider single-output Ashenhurst decomposition for a Boolean function

J(X) = MXg, Xe, 9(Xa, Xe)).
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3.1. Single-Output Ashenhurst Decomposition

3.1.1 Decomposition with Known Variable Partition

Proposition 2.1 in the context of Ashenhurst decomposition of a single function can

be formulated as satisfiability solving as follows.

Proposition 3.1 A completely specified Boolean function f(X) can be expressed

as h(Xg, Xc,9(Xa, Xe)) for som j}ﬂctlons g and h if and only if the Boolean

o ‘&1 N
ﬂg.-

I :
7, XG,XC = %,X@%

(f( FH XH’ G %’.)lj —

formula

‘t’r‘

/4

£/

2o

é,Xc) ;

Ei.i"-ﬁ

-

s 3
& (f K5, X5, ko) b (3.1)
:-F':;_.-:i * * o

h

is unsatis%ble, whe f the instantiation

2
L -
—_— e
L | .

,E‘E

ueTcript i Y denote it

r':'-

P

L

.I ¥

ihl
% &

‘-

L tE .i

N> £

Observe that Fou%; 1@,'-Ts'a$18ﬁable i‘%d 1.f-ﬂ!'£rere exists more than two
e

I.T
distinct column patter@ %‘%ﬁﬁﬂﬂ*}ecomposrmon chart. Hence the

of variabl

o |
'l' ,:::.

unsatisfiability means there are at most two different kind of column patterns in
every matrix of the decomposition chart. Since the g function has only one output
bit, so the unsatisfiability of Formula (3.1) is exactly the existence condition of

Ashenhurst decomposition.

The intuition why we only allowed at most two different kind of column patterns

in a matrix can be realized using the decomposition chart. Function g can be
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3.1. Single-Output Ashenhurst Decomposition

treated as a mapping from a input assignment a € [X¢, X¢] to the Boolean value 0
or 1. Since every column index of a matrix in the decomposition chart is exactly a
input assignment a € [X¢g, X¢], if there are more than two different kind of column

patterns, it cannot be mapped using binary value 0 and 1.

Note that, unlike BDD-based counterparts, the above SAT-based formulation of

Ashenhurst decomposmon 1&@@% t non- disjoint decomposition. It is

because the unsaﬁ;si?ﬁ)g’lty ch“b'(ﬁng of l_i‘é?pla 3{1%6nt1ally tries to assert that
under every Vah}atlo ial bﬁ%rng maﬁﬁx of the decomposition

|"-

chart has two 7 1 D-based methods have to

.
unctlon:-":'jf can be checked
-.{‘:-...-

SRR flﬁE:thHS g and h can

Now I'Q'zv"(le have
L "I

through Sﬂ‘?_vm
-f?

Ly
be realized tﬁﬂ'ﬁj‘:’\ > i onalﬂbpe;;hency, respectively, as
= ™, _._-H

shown below.

YA = f(X}JvXé%XC’) ?_é f(XlleghXC')a and (32)
¥YB = (f(Xij{?XévXC) 3_'é f(XéngvXC)) N

Figure 3.1 shows the corresponding circuit representation of Formulas (3.2) and

(3.3). The circuit representation can be converted into a CNF formula in linear
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3.1. Single-Output Ashenhurst Decomposition

time [27], and thus can be checked for satisfiability.

D4 Py

f|f flLENF|f

le le XC le XZG xC sz sz XC sz XSG XC st XBG xC XBH le xC
i i i i i i
1 1 1 1 1 1

% -

o .'ﬁ;‘-.g 7 . 7
Figure 3!1: CircL}it ';egfigsentq'tliom of Formulas (
i ] e

32) and (3.3)

Figure 3.2: (a) Relation characterized by v4(X}, X2, c) for some ¢ € [X¢] (b)

Relation after cofactoring ¥4 (X% = a, X2, ¢) with respect to some a € [X}]

Lemma 3.1 For function f(X) decomposable under Ashenhurst decomposition
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3.1. Single-Output Ashenhurst Decomposition

with variable partition X = {Xy|Xs|Xc}, the interpolant ¢4 with respect to pa
of Formula (3.2) and ¢p of Formula (3.3) corresponds to a characteristic function

such that,

1. for ¢4 satisfiable under some ¢ € [X¢], there exist b; € [X}] and by € [X2]

such that ©4(b1,be,c¢) = 1 if and only if the column patterns indexed by b,

0
and by in the mai;ﬁa_g- gqt%uﬁogﬁﬁ[w chart of f are different;
--"'|'|';=- ' {?:?‘

] |."—'!
2. ; I, t\}};}ﬁ__ls dlﬁ'{lx one column pattern in
. r:l .
o
i "i‘":,
=
3 P«]] or in other word, unsatisfiable @4,

1.".. T

Proof. For f é’ét:omp?{_ﬂh:l ‘@ﬁ]ﬁ by Hﬁposmon 3.1. Moreover

from Theorem 2.3 .;v’le lgnow—ﬁ-le 1nt.erp0i’%‘ (I f:-"ﬁ,hé unsatisﬁability proof is a

L

function that refers only {d{he?ea}%i':v;ﬁa&es XG U XG U X, of pa and ¢p.

We analyze what the characteristic function ¥4 means for ¢4 satisfiable under
some ¢ € [X¢]. Let a; € [XY4], b; € [X&], for i = 1,2,3, in the following discussion.
Let R. C [XL] x [X2] be the relation that ¢4(X}, X2, X¢ = ¢) characterizes. On
the one hand, since 4 = 14, we know that 14 is an over-approximation of the

solution space of ¢4 projected to the common variables X} U X2 U X¢. So R, must
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3.1. Single-Output Ashenhurst Decomposition

contain the set

{(b1,b2) | f(a1,b1,¢) # f(aq,by,c) for some a}.

That is, a pair (by,by) must be in R, if the columns indexed by b; and by of the

matrix of ¢ in the decomposition chart of f are of different patterns.

On the other hand, since ’QZJA A pp s unsatisfiable, the solution space of 14 is
- ] K o IGI (5 D .
disjoint from that ?If -ﬁe{_;; prg)‘l?o!ied to thﬂ;c_onmﬁx} 1:-é@rlables Suppose that val-
|.—'F r{'
tha@&f@_}v 7é f a’27b37 ) and
|:|I

{‘I'lb t_)._(:l bs of the matrix of

uations as, az, b?,hy' _},ﬁsatlsfy

n-p'éltte&{s and the column

-.'|

indexed Bsﬂbg and i i ow;ha‘;—'f is decomposable
: =
under Ash'?}phurst ition, a moﬁhtwo different kind
| | ||1r| —\.'““

columns’}hdexed by b, and by
;j_'; gj\ ‘ :'f:"u'"l _f.,'ll-
of the matrix ofi.c ﬁs};—be e s t L. ﬁ‘c')r.-"ql‘g A ¢p unsatisfiable, it
| i—:l'"; = Mk "t
represents that ‘b?; __g'j) cgflno_gél in R 1@ columr?_i}dexed by b; and by are of
:"'l_l.:l
the same pattern. We can 1 W-jmlﬁ;qgiu_‘thiﬁ-t’lhe 1nterpolant VYa(XE, X2, c) charac-

matri der ¢

terize all different kind of column patterns indexed by (b, by), where b; € [X/}] and

by € [X2] for some matrix of c.

Figure 3.2(a) illustrates the relation that 14 (X}, X2, c) characterizes for some
¢ € [X¢]. The left and right sets of gray dots denote the elements of [X}] and [X2],
respectively. For function f to be decomposable, there are at most two equivalence

classes for the elements of [X(] for ¢ = 1,2. In Figure 3.2(a), the two clusters
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3.1. Single-Output Ashenhurst Decomposition

of elements in [X}] signify two equivalence classes of column patterns indexed by
[XE]. An edge (by,by) between by € [X] and by € [XZ] represents that by is not
in the same equivalence class as by, they have different kind of column patterns. In
this case, 14 (b1,b2,¢) = 1. Since all of the different column pattern pairs (by, by)
in the matrix of ¢ will be characterized by the interpolant 14 (X}, X&,¢). So every

element in one equivalence class OfELX)iﬂ is connected to every element in the other

L. ol DS "..J.-!_'l'.-ﬂ .
equivalence class of Jll)qﬂ'-a Flglge 3.2(a _§0 "'-r;'u

,Jn,. e
Accordmgﬂ!-@ the’fb"' ! i "dé-;‘\%h
=

c € HXCH%]&E-@# G{?’ﬁd X pairs (by, by) whose
Correspora:'ng column patt rs-ar

=

|:'\._.

at -'155 w4 satisfiable under

For ¢ ,;‘.;- unsatis

--'I

different k%ﬂ?.olu

I'..l

pattern in tﬁé:_;m
_—

ents thab there are no any
&5
tha't‘ﬂ'hﬁg' is only one column

L
art OF f rﬁence under X¢o = ¢,
"-';.l ':‘ "ll H

the valuation ofr;a'.;g.s_, l_ln enal@ntgl of the tic%_h ass; éﬁﬁs of X¢. No matter what
different truth a,smgnméﬁ’li'l:.Q*Ei X?.Jsglthe. }zal-}em’f Q;L'nder the same truth assignment
of Xy is of the same. (In this case, ¥4 under X¢ = ¢ can be an arbitrary function
due to the solution space of ¢4 is empty.) If ¢4 is unsatisfiable under every ¢ € [X¢],

then the valuation of function f does not depend on X, that is, Xs are not the

support variables of f.

Since the analysis holds for every ¢ € [X¢], the lemma follows. O
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3.1. Single-Output Ashenhurst Decomposition

Next, we show how to derive function g from the interpolant ¢ 4.

Lemma 3.2 For an arbitrary a € [X}], the cofactored interpolant 14(X} =

a, X2, Xc) is a legal implementation of function g(X%, X¢).

Proof. By Lemma 3.1, the interpolant 1 4(X/}, X%, X¢) characterizes all different

column pattern pairs in every maLE )flo has exactly two different kind of column
il PES ,s.-:'n;-;
patterns. Let v,( X2 -.9!';) _ﬁbﬁ(XG EtXG g:) r some arbitrary a € [X}].
i f.-:l

()(G;?)'\cha"ia(jerlzes the set of indices
L

om tl @l}nn pattern indexed

ju—'l

Then, under e\&@;!"su}f valuati
whose corr%'gzbbn,q;ng @
h

r..- 5 1' —
by a. In G;@er WOr ¢) ch acter!éc'::; ther of . é-tﬁv-lo 'e_g.‘livalence classes of
l_r| [ ] -':I;_!_
column p?lter,ps i ; & '?'
&)
Takin?—,‘FiE'?rE a qg.-{hetﬂpmost element in

1e edges in Fig

[XE]. Afterl.f‘fag.%}%n 3. )‘%'ﬂ} dis;ippear except for the

'-1'“-.' ‘ erI%_ 2 He o.th'é&q"qull:énce class of [X2].
N, 2 N

On the other hand, lgorﬁ? 6%_@%6}16’8}0ndmg matrix contains only one

kind of column pattern. Since we know that X = ¢ is a don’t-care condition for

function g, and thus 7,(X%, ¢) can be arbitrary.

From the above analysis, we can conclude that v,(X2, X¢) characterizes either
the onset or the offset of function g(X2, X¢). So 7,(XE, X¢) can be treated as the
function g(X3Z, X¢) or negation of the function g(X3Z, X¢). After renaming X2 to

X¢, we get the desired g(X¢g, X¢). O
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3.1. Single-Output Ashenhurst Decomposition

So far we have successfully derived function g by interpolation and cofactor
operation. Next we need to compute function h. The problem can be formulated as
computing functional dependency as follows. Let f(X) be our target function; let
function g(X¢, X¢) we just derived and identity functions 2,(x) = x, one for each
variable x € Xy U X¢, be our base functions. So the computed dependency function
is exactly our desired h. Since functlonal dependency can be formulated using SAT

I"..'

solving and mterpoliillbﬁ'{&%f it -¥ell ﬁts_g @@ﬁ- sed computation framework.

,Jlu,. e 1
Remarlfd’?é'r dl%lf de \é" Raﬂ:ﬁ,‘elr than using functional
[
depeﬂdeng%wgﬁn dérive the function A in a simple w{dli'ﬂ

'i-r""lﬁl

1position, 1.

-
e
T

= : g
Givem';ﬂwo functions f(X) and-g{Xe)-with variable partition X = { Xy |Xg}, our
] g " 5
goal is tcl)"'ﬁnd af ion M(Xp,x,)such t A hMXw, @)), where z, is
& oy

the outpu&__'i@ ble of func ic1r1 9( X&) et a

r.._h s
Then by Shamo?@«?;\p

5 "'—-ul

L5 P
?5?"" ——6‘.'-:_-:69 /\J:Lﬁmg ,.E-@"V? h (Xn))
- Jﬁﬂﬂﬂ*

where h—, (Xy) = f(X#, Xq = a) and h, (Xg) = f(Xg, Xg = b). The derivation

of the offset and onset minterms of ¢ is easy because we can pick an arbitrary
minterm ¢ in [X¢] and see if g(c) equals 0 or 1. We then perform SAT solving on
either g(Xg) or —g(X¢) depending on the value g(c) to derive another necessary

minterm.
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3.1. Single-Output Ashenhurst Decomposition

The above derivation of function h, however, does not scale well for decompo-
sition with large |X¢| because we may need to compute h(Xy, X¢ = ¢, z,), one
for every valuation ¢ € [X¢]. There are 21X¢| cases to analyze. So when common

variables exist, functional dependency may be a better way to compute function h.

The correctness of the so-derived Ashenhurst decomposition follows from Lemma 3.2

and Proposition 2.1, as the

i:-'.-'H

.,

Theorem 3.1 Q_&g u%%shenhurst decomposition
&
with Varlabld@artltlo \;} =h %, Xe,9(Xg, Xo)) for

L -\.. il —
functions éﬁnﬂi‘ﬁ"b amedp?htbovefﬁ‘e-fh(ation, {':' i)
=
™y " oL

Algorltﬁl 1 Derive g and i wi \

D

: (04, 08) < @CU

-I-.‘

: P(XL, XE, Xo) = ﬁ@’ﬁ?—o%twn ©OA, ngI_) 1 ra

w

4: g(Xg, X¢) < Cofactor(P,a E HXG]])

5. h <= Functional Dependency(f, g)

(=2}

: return (g, h)

Algorithm 1 summarizes the algorithms we used to derive the function g and
h. Line 1-2 duplicate the original function f into 6 copies, and then partition it

into two part, just as Figure 3.1 shows. Line 3-4 utilize interpolation technique to
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3.1. Single-Output Ashenhurst Decomposition

derived a relation contain the information of pairs of distinct column patterns. Then
using cofactor to get the g function we want. In line 5, we formulate the problem

as computing functional dependency to get the h function.

3.1.2 Decomposition with Unknown Variable Partition

Gl SIOEET

oua‘i:subse

E §

a@(ﬂ@s that a variable partition X =

ﬁ}

will SthV\. hd‘g to automate the variable

The construction in ‘qh@L.m:gm

A
{XH|XG|XC}1 - CIk.
& T
partition prﬁ

thlSjSll =

ss withi

was used in {?‘[llﬂigffg‘r

l.'.l

\‘gfun(}tloﬂ A similar approach

&
addition 'pd H.j}am igi ' 'n_l'ﬁ:j'lxgﬁpies X' X2 X3,

(3.4)

A(@? = 2) A @ =) v B), (3.5)

where 7 € X7 for j = 1,...,6 are the instantiated versions of z; € X. Why ay,
and 3;, are called control variables is because each of the control variable can enable
of disable the corresponding clause. For example, a clause (a + b) associates with

a control variable « results in a new clause (a + b+ «). When a = 1, the clause
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3.1. Single-Output Ashenhurst Decomposition

is immediate evaluated as constant T'rue, then it become a redundant clause in the
CNF formulas. In this case, we may say this clause is disabled. In other hand, if
a = 0 the clause is just as the original one (a +b). In this case, the clause is said to
be enabled by the control variable . Under this point of view, (ay,, 3:,) = (0,0),
(0,1), (1,0), and (1,1) indicate that x; € X¢, x; € Xg, x; € Xy, and z; can be in

either of X and Xy, respectwely

B ey,
.|I‘"
In SAT solvmg ﬁ];pe conjurrct.‘?;gn of E&h&mlas (3 Zla"'_a:lnd (3.5), we make unit as-

sumptions [1@:{1';011 t}fﬁf %ﬂ%’%tlonn;&'.an be made on a list of
A

L
literal vt othie’
iterals so}%@ -@é‘s

on space of SAT solving S 1c'ted"£n. these pre-specified

1 NS 1 7
space G%érally speaking, or a variable app'e,ars in the assump-
bt =
[ e - e h
tion hst,;'_r‘lpt Both reed to be the assumption
value as é;mle(:lﬁ?d-m 11;.93;‘%10%?15 unsatisfiable un-

-t

der the aSSﬂP‘L_ptlQE.":]S
FH.;
only in the assu-rf_;ptlogfr t. 1ct @se d-i'aates that these part of
l'-. ._! "|-l'l-. r‘:-r_{l -1 1
assumption values are srlgﬁi(ne'nt’ to make thg- CNFlﬁarﬁmlas to be unsatisfied.
.}. j‘\:‘l l\_- j'.'j‘- F

Similar to [17] but with a subtle difference, we introduce the following seed

-

variable partition to avoid trivial variable partition, which is X¢ U X¢g or X¢ U Xgy
equals X, and to avoid |X¢| = 1. For the unit assumption, initially we specify three
distinct variables x;, x, and x; with z; in Xy partition and xy, 2; in X partition,
and specify all other variables in X¢ partition. That is, we have (ay,, 3;,) = (1,0),

(axlwﬂxk) = (07 1)7 (O‘mwﬁwz) = (Oa 1)7 and (aociaﬂxi) = (070) for i # j, k, 1.

38



3.1. Single-Output Ashenhurst Decomposition

Lemma 3.3 For an unsatisfiable conjunction of Formulas (3.4) and (3.5) under a
seed variable partition, the final conflict clause consists of only the control variables,

which indicates a valid non-trivial variable partition.

Proof. The values of control variables are specified in the unit assumption as if

they are in the first decision level. In solving an unsatisfiable instance, both 0 and

1 valuations of any otPter Yahéb}eﬂf'nif{t een tried and failed, and only the
% :,_Ei:;- L5
control variables @re not Valqatea in befE_i:a,ses Becéﬁ}se unit assumption causes

a-\..,

I
Juge® -—

- “?&j
the unsatlsqufgﬂlty, the the con_ﬂgct decisions made in

‘ll-!

responds to a ﬁahﬁarlable partition,
-

asq..héca,use the conflict

4 "'||.. LT =

4 __’;F he re{?&rned conflict clause

the confliéf ¢lause 15

control variables

reveals that seﬁm to O he "%}jtf':-m the dq-l;lﬂlct clause is sufficient

. LI i
making the whole CNF‘f;rnm}a ‘unsatlsﬁﬁeﬁiﬁ Hencn.-s ting the control variables
Wi 1]

who do not appear in the'déﬂ;ﬁiﬁﬁ."{;{l_ﬂl_aséjtb'br cannot affect the unsatisfiability.
Hence the final conflict clause indicates a variable partition Xy, X4, X¢ on X. For
example, the conflict clause (o, + By, 4+, + 52, ) indicates that the subset a,,, = 0,
By =0, ap, =0, and 3,, = 0 of the original unit assumption sufficiently results in
the unsatisfiability. Setting other control variables absent from the conflict clause
cannot effect the unsatisfiability, and also, setting these control variables to be 1

potentially move the corresponding input variable from X¢s to X or Xy, or even
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3.1. Single-Output Ashenhurst Decomposition

more, from X5 or Xy to a more freedom state which can be either in X5 or Xp.

Hence, it in turn suggests that ;1 € X¢, 2 € Xg, and 23 € Xy.

In addition, the corresponding variable partition is non-trivial since | Xpy| > 1

and | Xg| > 2 due to the seed variable partition. O

If the conjunction of Formulas (3 4) and (3.5) is unsatisfiable under a seed vari-

=i
able partition, then the| 'Qolmlséon 1ng decbm-lﬂ:lsrpon where the variable partition
e b . .ii; g = -1
is indicated by thg'ﬁ 1 conflict %Iause"i;%;lccess ul. @;l;_herwme, it indicates that

\vq:"-f o
. s ..
arlable. E.?r";jzltlon, we should try

.
-

represents once the three

el

can"be.ql Xy partition.

different 'sleed part

-
different v@i_abﬁeg a

L
el B
—

Rather thaﬂ-just lol_gﬁ]@_g
that is more ba,lanced L., ]Xf;-f and +Xg| 3’e of sunﬂh‘r s1zes) and closer to disjoint

L0 ﬁh,-‘

Q:%’ﬁitio-rf \Qq.';may further target one
(i.e., | X¢/| is small) by enumﬂgradrrré'.dﬁﬁefbn@] seed varlable partitions. As SAT solvers
usually refer to a small unsatisfiable core, the returned variable partition is desirable
because | X | tends to be small. Even if a returned unsatisfiable core is unnecessarily
large, the corresponding variable partition can be further refined by modifying the
unit assumption to reduce the unsatisfiable core and reduce |X¢| as well. The
process can be iterated until the unsatisfiable core is minimal. We introduce an

UNSAT core refinement process to further reduce the number of variables in X,

40



3.1. Single-Output Ashenhurst Decomposition

the detailed description can be found in subsection 3.5.1.

After automatic variable partitioning, functions g and h can be derived through
a construction similar to the decomposition problem with a given variable partition.

The correctness of the overall construction can be asserted.

Theorem 3.2 For a function f decomposable under Ashenhurst decomposition, we

=
have f(X) = h(Xp, Xgi.ﬂk% !X' )EJ f{)%and h, and a non-trivial variable
partition X = {?ﬁﬂ )%Xc} dle’fﬂed frﬁe aboz‘{\-%uctlon

& ‘
Algorithmlﬁ]rﬁ_)erive ¢ without a giv ‘ble parf'ﬁ.n

oupel] 2
utput:l_r and h LTy
‘?"'1 L
1 (XH:.‘&G,XC) -
= i
wtd -1}
2 F <Gl g
Y L
3: (04, 0B) o RS
1.:'_.,.' -:l- !fl

: Ay
{r-. rl"_:":| i | L '5 :
5: Xg,XC = Cf’.} E [[Xl ldg: 1:.61\}
-'{-.‘- f?‘?ﬁ_}?ﬁ?’l

6: h < F unctzonalDependency

7. return (g,h)

Algorithm 2 summarizes the algorithms we used to derive the function g and h
without a given variable partition. Line 1 is the core procedure to derive a valid and

good partition result, the detailed algorithm of this step is described in Algorithm 3.

In Algorithm 3, the input is the f function itself, and output is a valid variable
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3.1. Single-Output Ashenhurst Decomposition

Algorithm 3 Find AGoodPartition(f)

Input: f

Output: V PBest

1: failcount <= 0

2: TimeStart < Time()

10:

11:

12:

13:

14:

15:

16:

17:

18:

if disjointness

-

failcount <= 0
if VPBest doesn’t renew then
failcount + +
if failcount > 1500 then

break

19: VPBest < UNSATCoreRefinement(V P Best)
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3.2. Multiple-Output Ashenhurst Decomposition

partition X = {Xy|Xg|Xc}. Line 1-3 set some initial values, ”VPBest” denotes
the best variable partition we derived. In the beginning, the best variable partition
is assigned to be with all variables in the common variable Xs. There are two
stopping criterions in this algorithm. One is the time limit, we only allow this
partition procedure be executed no more than 60 seconds, as line 4 shows. Another
stopping criterion is in line 17-18. If both disjointness and balancedness' cannot be

ol Sl i!'f*“*.-“'l'.

1
improved in consecutly&'q-éOO seg,d partltgln f{alsf:_the partition procedure will be

; ':;. X i .;—_'ll —.E_" ! "-.l

terminated. 'l.i;-:'r 4 7 - :"‘q;l- r?.__

and balaﬁlc'édh?s, i

be replaced“Note ?t I;e disjointness ii
T PR
"J-

our algorithm.” F@,nall%’rr _}_tere 1 6‘&%&'\

r':."_gl --1 :

n:éf‘e‘r'ab than balancedness in
":—

rglleln’?'procedure in line 19 to

get a more dlSJOlntnes@'rlgnd b‘ajﬁncedﬁess pa-’r:tlmorl.-

-\.I-

. -"1'.? _-?_: i ;f-a'.-"j'.-.j'.
3.2 Multiple-Output Ashenhurst Decomposition

So far we considered single-output Ashenhurst decomposition for a single function

f- We next show that the algorithm is extendable to multiple-output Ashenhurst

IThe detailed definition of disjointness and balancedness can be found in Chapter 4.
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3.2. Multiple-Output Ashenhurst Decomposition

decomposition for a set {fi,..., fi.} of functions.

Proposition 2.1 in the context of Ashenhurst decomposition of a set of functions

can be formulated as satisfiability solving as follows.

Proposition 3.2 A set {f1(X), ..., fim(X)} of completely specified Boolean func-

tions can be expressed as

e\ (1 Sy
is unsatisfia %C}\ '
N
We assume th'g%gyﬂy f; shéwes the sa 3 so in 5{5?3‘;'7#1&1&’01*1)( of the decomposi-

tion chart of a set of fﬁwﬁtwe} at most two different kind of

column patterns. Note that every element in the decomposition chart has m output

assignments (vy,...,v,,) for every output function f;. Formula 3.6 checks whether
there are more than two different kind of column patterns in the decomposition

chart of a set {fi,..., fim} of functions.

Since the derivation of functions g and h;, and automatic variable partitioning

are essentially the same as the single-output case, we omit the detailed explanations.
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3.2. Multiple-Output Ashenhurst Decomposition

3.2.1 Shared Variable Partition

In Formula 3.6, we assume that every f; shares the same variable partition X =
{Xu|Xg|Xc}. Actually, take i = 2, which is two-output Ashenhurst decomposition
problem as an example, there can be 7 kinds of variable partitions. More specifically,
a variable is said to be in X if the variable is used only by g, in X}, if the variable

is used only by A1, in Xrg 1f¢h£ V&L""b‘g‘tsﬁs'eg ol}y by hg, in X1 o if the variable
'E‘if .,_:lﬂ; R L
is shared by h; a{qullfQ, in X lm—lﬁ the V&@Ble is sha e*'.by g and hy, in X, s if the

variable is sJ{a:m by g/a \%’varlable ‘is share by ¢, hy, and
S 7"‘-;71- ¥ _,;r"'_-;?'w ‘. !“E 5
hg. h i L I:-,:;-l 'i'.l";:
et ¥ (i _..-;.
‘ o
In ou‘}fforrq,ula i iti prqbleE the variables are

's‘.g;opqlng does not force
o4 "-||.. LI |

b_(; share-a'l'by all functions f;.
'.:"-":r" I""l

Since in our dﬁ}v ion < oy to cdqstruct the h; functions,
| .—-:l ".-:l'l_l ﬁ%ﬁ‘:‘

for a variable v is as_si‘g;ned to_‘t,he1X I ‘partI-ﬁ'i:m the cg.r:respondlng identity function
of this variable become Hcl)l.ne"f).f t.ﬁle-.qudlﬁa.té.l bagé functlon of functional dependency
problem. However the constructed dependency function may not depend on all base
functions. Once the dependency function h; depends on variable v but hy do not,
the variable v is now in Xj; partition. In other word, we do not have to partition
the variables into 7 groups before deriving the sub-functions, the variable partition
X ={Xy|Xg|Xc} we used in the algorithm is sufficient to cover 7 partition groups.

Xn1, Xp2, and X1 9 can be covered by the partition Xp; X, p1, Xgp2, and X, p1po
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3.3. Beyond Ashenhurst Decomposition

can be covered by partition X¢; and X, can be covered by partition Xg.

3.3 Beyond Ashenhurst Decomposition

In case we wish to extend our algorithm to general functional decomposition, the
following question aris
& @q@mﬂ@%
R
t m exﬂe#é"éble t eral fu.g{f ,
)

o<

decomposition, namely,
":E%:

=

]

Is the above

k=2 for example, we need

ffere: t%;;f %patterns for every
e §i {}sb@lhurst decomposition
E; ;'-!

, gk,iandiﬂ'iaég&r involve several iterations of

i
20 copies%ﬁ'—t?—as

matrix of a ¢ co

shown in Flgu @{.} j@}n
: r'-'n'l".zl
issue, the derivation _%%% g1, ..

finding satisfying assignments and 1ing cofactorlng. The number of iterations

e from this duplication

varies depending on how the interpolation is computed and can be exponential in

k. Therefore we focus mostly on Ashenhurst decomposition.
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3.4. Decomposition under Don’t-Cares

3.4 Decomposition under Don’t-Cares

In Lemma 3.1, we have proved that for ¢, is unsatisfiable under some ¢ € [X¢],
there is only one column pattern in the matrix of ¢ of the decomposition chart of f.
In this case, the X variables will be the don’t-care condition under some ¢ € [X].
We have known that the indices of the column pattern in each matrix can be treated
as the input valuat10](1S-E_4:tlﬂ'-":eI E‘rpnctfol%npupmg of these column indices
according to th%ﬁglb lumn paﬂt‘é?ﬁs can%sed taﬁ%ulsh the onset and offset
minterms ofﬁﬁﬁb g functi

If ther ' : ix wi respetho some valuation

ce[X CEE-:..WG cannot distingui intermsfof t@ g function in this

‘i‘.
matrix. Yﬁﬂe.r_?g

are, the ou Eut va

. s of X variables
r\.l|1-| l.\::l
‘ia.ll_rn_e ﬁé‘fhls can be treated

S |ﬁ:.

N, T '

as a don’t—café%@ndit}e&%}q ; %ﬁ‘flgﬂe@' of the don’t-care of f
. N &F

function can be ué:@}@'%._ﬁurtkﬂfmmphfy tﬁﬁ%‘f fupf&"x;iﬁ so quickly characterize all

i
€ [Xc¢] which the Correspdr‘ta}r}m-d ¢ has only one column pattern will

f function areﬁ ‘

become the future study.
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3.5. Implementation Issues

3.5 Implementation Issues

3.5.1 Minimal UNSAT Core Refinement

Note that, if the final conflict clause returned by the SAT solver does not correspond
to a minimal unsatisfiable core, for variable x; being able to be placed in either of

X¢g and Xy under sor%f-whﬂhgré % )%t"i'&{wﬂ{f@- IIIglua’ciom of the control variables

(avg,, Bz;) needs nﬁ:ﬂ) th jSﬂﬂlarly,'ﬁ%éer non—rrﬁiifﬁahty, variables being able

T
-
|

to be place in Xg or

:\':-' = i o
& | o)
Since a final confli ‘ ' "Fﬁ-;y not reflect a minimal
[ i l.'|
el
UNSAT @}e, wery likely w e fthe corr pomimg"varlable partition

rep.ﬂw refinement. We
i‘yl 4-\-

I'\b‘_l,e of Xa into Xg or Xy, if
.:":- '-.ﬁ"'l

C '-:@E Wel],":_lqlThe iteration continues

Suppose that the vi

e
iteratively-ﬂﬁld gre
-Ii_:'. e
available, maE.m'g he ?‘éh
-.;-"'
until no such moveme‘ilﬁﬁls poss[p'fb Qn théﬁther ha‘r_jﬂ', for a variable  with control

é-*_f

variables (o, £,) = (1,1), 1né‘iﬁaﬂﬁ.’%j§ag-b(j pl.aced in either of Xy and X¢, we

O ImMove a com

put it in the one such that the final partition is more balanced.

3.5.2 Balanced Partition

When balanced variable partition is needed, randomize the IDs of input variable

results in more balanced variable partition. Since SAT solver tend to make decisions
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3.6. A Complete Example

in a descending priority order based on variable IDs. So if the input variable IDs
have some pattern rules between different copies of f, SAT solving for the variable
partition may check conditions of Xg or Xy with a higher priority than other
variable group. So appropriately change the order of input variable IDs between

different copies of f get more balanced partition result.

etk -ﬂ"ﬂ_""'f“'-r'l‘:'d,' '
3.5.3 Ellmm “of uallt '@-on nt Clauses

r .-'\-I jl.—'F

-’
When deahdg_,vvlth the in dlffengﬁ__t copy of f, the cur-
lh.l -|EII '..:-.:.' .Il-.--'-
rent 1mp1';e:~|nen"€ﬁt1 i i '-ebpie.'s! then add equality

. Wy .
COIlStI'aIIﬁSI to clai owever"l?hls procedure may
wﬁl\'\- L | L= L

. =l
increase the clause
—

of all, cur'_éilg:gr_lple

r..=

of .ilfite'rf_j_gl-ant circuit. If the

s’?fﬁ- !

function g ob‘i&ﬂi “from

".-}'I_I

'l
will be difficult. ‘Ebanem“é'{/e the" -t-‘,quahty g_ggstram b{ﬂllslng the same variable 1D

"-'rn'u

can reduce the number o?ﬁgnwlp@t{hn le is large.
o

3.6 A Complete Example

In this section, we provide a complete example for the algorithm, discussing how
the aspects described before are taken into account in the execution of the method.

Figure 3.3 shows the example circuit we use in the following discussion.
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3.6. A Complete Example

partition, W,é-:-aforc, :
1-".—; 0 i

b. One other var ablg"r _E-".lbe
e T b

are in X¢ partltlon;T 5 c‘gﬁﬂltloris cag-%e\ speli_@.‘h by setting control variables

A -. |"L.-.
(amﬁa) = (alnﬁb) ad7g':l‘/?é-\zz and ac:ﬁc) (aeaﬁe) - (070) When

H Q%;‘gt. ;El’ﬁ'a"' rest variables ¢ and e

SAT solving the conjunction of Formulas (3.4) and (3.5), if the unit assumptions
on the control variables results in an unsatisfiable result, that means the partition
exists and the returned conflict clause corresponds to a valid variable partition. For
example, suppose that the returned conflict clause is (o, + o + e + B + Ba + Fe)-

It in turn suggests that ¢ € X¢, a,b € X¢, and d, e € Xyg.
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3.6. A Complete Example

a,b
0001 10 11
0ofO0|0(0
000|100 c=0
1000101010
d’elllllloomlon
00 0|0(0|O0
0 00|00
c=1 1000({0|0|O0
11101100

Figure 3.4: The decompositionschart of the example circuit

|| —

gl

The seeond-step'is to defive the g..i:u_nction using the variable partition we derived
from step one. Sir}ce the pari.:ition we used is a validpartition, so the conjunction
of Formula (3:2) and Formula™(3.3) must be unsatisfiable, hence an interpolant
exists. Figure 3.5 shows the relation the interpolant characterized. The red and blue
groups indicate different column patterns. Note that when ¢ = 0, from Figure 3.4
shows, there is only one kind of column pattern in the corresponding matrix. Both
Formula (3.2) and Formula (3.3) are unsatisfiable since they cannot distinguish two
different column patterns. when ¢ = 0, the interpolant could be anything, depends
on the proofs of the unsatisfiable SAT instance. When ¢ = 1, it characterize all

different column patterns just as the decomposition chart in Figure 3.4. Then we

cofactor the variable (a', b') of the interpolant by value (0, 0), hence we derive a legal
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3.6. A Complete Example

implementation of g function after changing variables from (a?,b% ¢*) to (a,b,c).
Note that different value we use to cofactor the variables (a',b') may result in

different ¢ function, it is not unique.

B LW
Figure 3.5: (a) Relation 011 the detived interj)dllant function, (b) Relation after co-
. I =
"= | !
factor by (a',b%) = (0,0) ' | | | ;

The third step is to use functional dependency to derive the h function. We
use the g function we just derived and identity functions which correspond to each
variable in Xy and X partition to be the base functions, just as Figure 3.6 (a)
shows. In other hand, the original f function in Figure 3.3 be the target function. If
we do so, the returned dependency function by the functional dependency procedure
is the h function we need. The derived h is shown in Figure 3.6 (b). Note that we

have 8 gates in the original example circuit f, but only 5 gates in ¢ and A circuits.
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3.6. A Complete Example

h
Xg c d e
VY
A A A A
abc ¢ d e Xg C d e

Figure 3.6: (a) The base functions, (b) A funetion derived by functional dependency
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Chapter 4

4.1 Single- and Two-Output Ashenhurst Decom-

position

We choose large ISCAS, MCNC and ITC benchmark circuits to evaluate the pro-
posed algorithm. Only large transition and output functions with equal to or more

than 50 inputs in the transitive fanin cone were considered. In this section, we eval-
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4.1. Single- and Two-Output Ashenhurst Decomposition

Table 4.1: Single-output Ashenhurst decomposition
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4.1. Single- and Two-Output Ashenhurst Decomposition

Table 4.2: Two-output Ashenhurst decomposition
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4.1. Single- and Two-Output Ashenhurst Decomposition

uated both single-output and two-output Ashenhurst decompositions. For the latter
case, we simultaneously decomposed a pair of functions with similar input variables.
For a circuit, we heuristically performed pairwise matching among its transition and
output functions to find function pairs having more common input variables for de-
composition. Only function pairs with joint input variables equal to or more than
50 were considered to be decomposed. Note that the experiments target the study

i 'r.-"'

of scalability, ratherithdn comprg_henswenqss as a-ﬁ'y:n._thesw methodology.

Tables 4.1 "and 4: ‘ "td:ﬁi"s’ﬁics of single-output and two-
A &
output deeg!r_npo-?ﬁio ively. Gt_fﬁ:ihr"nri.'i.lists the circuits to
B &k ' s
L el e
be decomposed. Columns 2 s of instances (i.e., functions for single-
=
output q____om'ﬁoa n and t (Tecorgposmlon) with no
less than'ﬂﬁ 1rx-fja’u-ts ‘ p:fI! ﬁzé-é"of these instances
.*-ﬁ-

Column 4 hs-ts the":tm erI instances that c nej“'.ﬂ'nd -%Iny successful variable
&

partition Wlthm.-ﬁ,O se@g&smmblﬂp&tluom Column 5 lists

[ g

the numbers of 1nstanc_§s thaﬂt are dé’comp%able {)utl"spendlng over 30 seconds in
ll!:'._jl"l —\.'.‘_-- :\. b-

SAT solving for the derivation of function g or h. Columns 6 and 7 list the numbers

of successfully decomposed instances and the ranges of the input sizes of these

successful instances, respectively. Columns 8 and 9 list the average numbers of tried

seed partitions in 60 seconds and the average rates hitting valid seed partitions.

Column 10 shows the average CPU times spending on decomposing an instance.

Finally, Column 11 shows the memory consumption. As can be seen, our method

can effectively decompose functions or function pairs with up to 300 input variables.
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4.1. Single- and Two-Output Ashenhurst Decomposition

4
= %X,Z‘
0.8 15 e
o
E %
_ O xx
= %>S<>g<< o BT
: 0.& *%(x ) X’Xém%x XR&XXAX;‘
E e x FEILE
4
Y os xx;‘xxﬁ‘ Mo o XWX
b x e x%c’& T Ry
—_ e

IXI/IXI

Figure 4.2: Best variable partition found in 60 seconds — with minimal UNSAT core

refinement
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4.2. Quality of Variable Partition

4.2 Quality of Variable Partition

We measure the quality of a variable partition in terms of disjointness, indicated
by |X¢|/|X]|, and balancedness, indicated by ||Xg| — |Xg||/|X]|. The smaller these
two values are, the better a variable partition is. Figures 4.1 and 4.2 show the dis-

jointness and balancedness information for the best found variable partition within

P o] S
60 seconds' for each deet ble 1nstancé K&bﬁaﬁha’c when enumerating different

||.1 Lo '-‘ i‘F - L ~c.":'-

seed variable parflg:'lb s.to ﬁnd 'a‘Better ";él.tlon r lts_,ni'We emphasis on improving
|

I H“ - - Lj 1 ‘f
disjointness _,'ﬂ{r&in balaf|1 S. \v‘-’ £
?'w- -ﬁ- iy

l"\.lﬂ

1'!-. i ;
Each 'ezp .t J‘:‘I.:l two fi
ac 0l on ese TW ﬁe

'I
decomposition#ins S d@b e.| Figure

variable p.ggti.t_ion B ithout i@z’th f 1r,‘ I?a'l-.uanlsﬁable (UNSAT)
i | ‘ "'l'"

corré‘;\l s to a variable p;ﬁ:tltlon result for a

-—hju

core reﬁnemgnt pr

_., ol

*
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octively. Compir g g}ﬂ;.gsn 4.1.:_}nd 4.2, we see that

%%fgglally fMprove the variable par-

for balancedness.

Figure 4.3 compares the qualities of variable partitioning under four different
efforts. In the figure, “1st” denotes the first-found valid partition and “tsec” denotes

the best-found valid partition within ¢ seconds. The averaged values of | X¢|/|X| and

!The search for a best variable partition may quit before 60 seconds if both disjointness and

balancedness cannot be improved in consecutive 1500 trials.

59



4.2. Quality of Variable Partition
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, and vice versa. The

nlmlqléhSAT core refinement process
] b

can effectively improving the dlSJOl t is interesting to note that, on average,
1337 seed partitions are tried in 60 seconds, in contrast to 3 seed partitions tried to

identify the first valid one.

We observed that in many cases the run-time of variable partitioning dominates
the total run-time of the algorithm. A further investigation suggests that the first-

found valid variable partition may help reducing the run-time due to its first-found
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natural.

4.3 Fast Variable Partitioning

The next step we try to do is replacing the best found valid partition within 60

seconds by the first-found validipartition to_,.-}redl}ce the run-time of variable partition
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Figure 4.4: First-found valid partition — without minimal UNSAT core refinement

Figures 4.4 and 4.5 show the disjointness and balancedness of the first-found valid
partition without and with the minimal UNSAT core refinement process. Every spot
in the figures corresponds to a test case from the single- and two-output Ashenhurst

decomposition in our experiments. As can be seen, for the partition results without
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It reveals thﬁhou l:_':Ei-ﬁS bore refinement may

1{.1 'I— | ) o
not catch the %}' @‘] i1 @Eﬂ Vggé\%artltlon.
’3—.‘!. R

\
. - (M
By introducing thé% col "]rrﬁe
= Lis ey

ment process, there are more
T Y

points close to the origin. That means the partition results are more balancedness
and disjointness. After apply the minimal UNSAT core refinement process to the
first-found valid partition, there are 37.23% improvement on disjointness but 19.44%
balancedness loss (balancedness from 4.89% to 5.84%). Even though the ratio of
balancedness loss seems high, but the actual value of balancedness is still very low.

Since the minimal UNSAT core refinement process improved the quality of first-
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4.3. Fast Variable Partitioning

found valid partition, we are now interested in comparing the partition results of
first-found valid partition with minimal UNSAT core process with the results of
best found partition within 60 seconds without minimal UNSAT core process. One
fact we observed is, for partition results of first-found valid partition with minimal
UNSAT core process, which shows in Figure 4.5, the quantity of those points close to
the origin is even more than the quantlty of those in Figure 4.1, which corresponds

2 [ {Hal i

to the best found p%lrtlﬂlon in 6(}#seconds gppfh%u—t-lﬁpmmal UNSAT core refinement
T . S,

efforts Im;_{e'cbmparable qualities.
¥ s _ha_-

process. It reveallg-’t}%'these

h}5

-.

dﬁﬁ-h Weg.‘n_ﬁrst valid partition
N

'!-.!

core reﬁqgjnerﬁ.

'-"":h
par%iti@,f;? tried to find the

first vali(f'ﬁart-f:gien tl.;r{-g_'t{' iﬂ?ﬁ() seconds. In the
=y ™
other hand, 'th.e m%ﬁhe im:ﬂml L})QISAT core refinement
-l 1

process is exac ;_r, the.g"n_tgﬂber _es.ﬂ:ﬁhe ‘i'inum cardinality of X¢

"-.._ .'f_,l

is no more than the nu :g]_ber 0?"1nput" Varla’gl-es 1111 oui! experiments, the maximum

HEFEgEls

number of input variables is 308)

The above analysis shows that the disjointness and balancedness of the first-
found valid partition with minimal UNSAT core refinement process are comparable
to the results of best found partition in 60 seconds without minimal UNSAT core
operation. However the number of SAT solving needed is four times less. Hence if

the timing cost of the partition process is asked to be small, the minimal UNSAT
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4.3. Fast Variable Partitioning

core refinement process is a non-sacrificed procedure in the partition step.

Table 4.3: Variable distribution in different partition efforts

effort XG XH XGH XC

first 0.013 | 0.087 | 0.259 | 0.641

first_mini || 0.128 | 0.186 | 0.261 | 0.425

0049,
-1.fgui[,'}"£% LSl

= T
AE: 5 o
-
Table ﬁh’ "}t?'\; ;@tﬁmd valid partition
2 EN

and best Emd partition in 4 xample, the avera@@-XG distribution is

calculat&js average m mm‘;‘here indicates the
l.!.l

results Wi‘&" h%.‘;;é‘l % X, Xy, and X
-2':"

: tlié.-‘v&r;e%fe partition X¢, Xg

iET

dicat the£ :

indicate %rcs%@g

and X¢, respe‘e-ti.?_:;'eay ._F[{Eg!co
':':

N
belong to either XG @%ﬁiﬁmoﬂ Fr thgflé'glhts there are more variables
l'{-.? 7

ah |" ol Fa
strictly in Xz than in X4 no magte??jéﬁat different partition efforts we applied.

1d _cat@ﬁﬁ gﬁ@htage of variables which

There are almost one fourth of variables can be either in Xy or Xg, these free
variables can be used to establish a more balanced partition. One thing we have to
mention here is that, in our experiment, when evaluating disjointness and balanced,
we let each Xgpy variable be either in Xy or X4 such that the variable partition

will be more balanced.
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4.3. Fast Variable Partitioning

From Table 4.3, we know the fact that for average disjointness, the first-found
valid partition with minimal UNSAT core operation and the best found partition
in 60 seconds without minimal UNSAT core operation have almost the same value.
The difference is less than 2.6%. We further use Figure 4.6 to demonstrate that not
only for average disjointness but also for the disjointness for every test case, no any

partition effort dominates anothe_r., _The z-axis indicates the disjointness of first-

e | .-\_"].EL -?'[I::-:.ii ..E'I": -_i ';i'.' -

found valid partition W_{tﬁ-!ﬁinm@l UNSA;:E_C‘O{é-'};ﬁ_eI:ation. The y-axis is the value
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Figure 4.6: Comparison of disjointness between different partition efforts

We have mentioned that if the timing cost is asked to be small, the minimal

UNSAT core refinement process is a non-sacrificed operation in the partition step.
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60_mini

IXel /1XI

Figure 4.8: Disjointness versus total variables of the best found partition in 60

seconds with minimal UNSAT core operation
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4.4. n-Output Ashenhurst Decomposition

Although the first-found valid partition with minimal UNSAT core operation results
in a similar partition quality compares to the best found partition in 60 seconds with-
out minimal UNSAT core operation. On the other hand, if we further apply the
minimal UNSAT core operation to the best found partition in 60 seconds, there are
additional improvements in both disjointness and balancedness. Figure 4.7 shows

the improvement of disjointness for every test cases in our single- and two-output
S(oiL® SIEEET
Ashenhurst decomp(‘i)lsktion X_per-gnents quth rml!ﬁ;e since in our experiments scal-

}!,'-""‘ . "i_- .1..:‘.-:.--

s the d}g]ginﬁness versus the total input

w4

on if_f_q;;t‘.—"ft shows that not only

ability is an 1m.i'}h)0|i‘.tar-_1_‘_r,,r-§'ssue

/!
variables fof"&,very test

nder “60_mini”

"-..' 3 T
small mrqE}tS ll)‘ﬂt al o large %th than 30 m.bﬂ’é vakl-ables have chances
to find a{',&iore‘dlsj int Val"l& r‘ using our proposed, mé'_fhod.
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4.4 n-Outp shenhurst Dec o-tﬁ:‘poﬁltlon
'-_-\.—‘ -
-
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1Y, g/ s o 3 %‘!‘:‘l ,.fall

" .

We have shown thdf tl;e propﬁsled a.'lgorlt'ﬂ:m caﬂi Bﬁndle single- and two-output
Ashenhurst decomposmons Here e c‘frooée a benchmark circuit s38584 to demon-
strate that out proposed algorithm can successfully decompose functions with more
than two outputs. Figure 4.9 shows the average run time of multi-output Ashenhurst
decomposition. Just as the test case generation step in the two-output function de-
composition, we heuristically choose n output functions that have more common
input variables from the benchmark circuit s38584 to be the test cases. Note that

for each n-output test case, every output function shares the same g function. As
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4.5. Quality of Composite Functions

can be seen, the average runtime is proportional to the number of the outputs.

(sec) s38584
140

120 /&-.7
100

80

60 /

40

20

1 2 4 8 16 32 64 128 [Houtputs)

We take benchmark cr&@@%ﬁél as an exa%@ﬁhﬁw the circuit information of

functions g and h derived from Ashenhurst decomposition. The results are shown

in Table 4.4.

The first column indicates the different efforts we applied to the test cases before
we feed it into the algorithm. “Sin” and “Dul” denote the single- and two-output
Ashenhurst decomposition, respectively. “Clp” denotes ABC commands collapse

and strash are further applied to collapse and structure hash a circuit. “Syn” de-
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4.5. Quality of Composite Functions

Table 4.4: Circuit information of s9234

original g g Clp h h_Clp
effort
#n | #1 | #sup | #n | #1 | #sup | #n | #1 | #sup | #n | #1 | #sup | #n | #1 | #sup
Sin 227 | 29 | 62 186 | 23 | 27 83 | 12 | 27 136 | 22 | 34 65 | 13 | 34
SinClp 130 | 16 | 54 147 | 25 | 28 51 | 12 | 27 234 | 30 | 33 97 | 14 | 33
SinClpSyn || 130 | 16 | 54 270 | 35 | 28 63 | 12 | 27 212 | 28 | 34 88 | 14 | 34
SinSyn 128 | 14 | 54 135 | 20 | 22 37 |9 |21 169 | 25 | 36 99 | 14 | 36
Dul 242 | 29 | 65 20 294 | 39 | 49 122 | 16 | 49
DulClp 166 | 18 239 | 36 | 49 116 | 16 | 48
DulClpSyn 112 | 16 | 45
DulSyn 116 | 15 | 48
notes ABC comm d to synthesize ?-cn“cmt The next
three co[;'!lms.sho i 1thl-d1f%__§ent efforts as the

=

pre—procéﬁ;n . Th olumns§ indica; r of nodes, levels,
N #l =D
lerived g functi ?_:?}_1_21 atﬁa’ applying the com-
.-c-

and support :Varia S
.1’-.’.. -\n
mand collapseap the ({%{u

.

h function. Note t unctl.gﬁ{; g and h I‘ﬁ';élffererlbfh‘o\zvs may not have the same

l-l.l
‘u

functionalities. Although—ge‘bﬁéﬁm'ﬁdlfferent rows have the same functional-

§1X cgﬂ_'q'inns are the results for

ities, they can have different circuit structures. The different circuit structures of
the test cases result in different variable partitions as well as the functionality of

derived functions g and h.

As can be seen, by ABC command collapse the size and level of the functions

g and h are reduced. The same fact happens in the preprocessing step. One fact
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4.5. Quality of Composite Functions

we can observe from the table is that, for function g without further optimized
by collapse, the generated g in row “Dul” is smaller than the generated g in row

“DulClp”.

It is interesting that smaller test cases(with collapse) may not generate smaller

composite functions. The reason why this happens is because the derivation of the

So for a given f Wlth“@erent ¢ireuit stru ._ s, the circuit with smaller
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Chapter 5

f5)
ased algonithmsto h.

ndle single- and

multlple-%put As _ ions. 1 seé-,meﬁ&;)d can handle not
| oy, 'CI'
-deco ' ] i8j 2COIPOSi]
We formulate%azh _| § solving: -usmg;{_?‘ralg interpolation and

functional dependen?’jfrt_}ble de@épos&d s@netmﬁ}:an be derived. Variable par-
r-l.l
tition process can be aut(-)gapea-&mr%d into the algorithm by introducing

only d15301 in a natural way.

the control variables for each input variable. To prevent trivial variable partition
from happening, we enforced some seed partitions to achieve this goal. Furthermore,
we enumerated different seed partitions to find a good variable partition which is
more balanced and disjoint. In addition, the variable partition results can be further

greatly improved by the proposed UNSAT core refinement process.
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Chapter 5. Conclusions and Future Work

In our method, the formulation that solves the problem of single-output de-
composition can be easily extended to deal with the multiple-output decomposition
problem. Also, in comparison with the prior BDD-based algorithms, the bound set
variables of our method need not be small. Functions with hundreds of variables,
which cannot be represented by BDD, can be handled by our SAT-based algorithm.

The scalability of our proposed method was JUStlﬁed by experimental results. The

results showed that 1lwe |can succgssfully d_e‘:pmposﬁ functions with up to 300 input

_‘i-li ¥ 1:':.'“ o
showq‘du_:that-—the method we proposed

"“-a:;_"' T

ay Bgfg}p'_ﬁ_!_ied at a top level of

.__1-

variables. Becaugg t -___Q-_"experll
can handle ‘f'a,rg__'_dem nces, our appr

1...- -|.|_||
hleI‘aI‘Cth%l dé-c-bl‘n

.1-:.:- ::.. o -1"|.
For future Wk h@w%omh%gpera%‘ F""nctlonal decomposition

“"-,. -:_'-'.' 3 i :

remains future 1nve§ftg_g.‘t10n The aﬁphca’cl%n of*Pur approach to FPGA Boolean
ll!:'.j"l —\.'.‘_-- :\. b-

matching and multilevel hypergraph partitioning [13] are interesting subjects to

study. In contrast to multilevel hypergraph partitioning, which focuses on structure-

based manipulations, our Ashenhurst decomposition is a function-based algorithm.

This is the major difference between the two subjects, although both of them can

partition a circuit into two parts. Furthermore, for the characterization of don’t-

care conditions, how to quickly identify all sub-matrices that have only one kind of

column pattern, and how to use these don’t-care conditions to minimize the circuit
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will be the future study.
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