
國立臺灣大學電機資訊學院電子工程學研究所

碩士論文

Graduate Institute of Electronics Engineering

College of Electrical Engineering and Computer Science

National Taiwan University

Master Thesis

利用可滿足性求解法與克雷格內插法

之大尺度亞氏函式拆解

Large Scale Ashenhurst Decomposition

via SAT Solving and Craig Interpolation

林炫伯

Hsuan-Po Lin

指導教授：江介宏 博士

Advisor: Jie-Hong Roland Jiang, Ph.D.

中華民國 98 年 6 月

June, 2009

Acknowledgements

I am grateful to many people who made this thesis possible. I would like to

thank my advisor, Dr. Jie-Hong Roland Jiang, with his enthusiasm, his academic

experiences, and his inspiration. Throughout the past two years, he provides en-

couragements, useful advise, and lots of good ideas. I would have lost without him.

The members of ALCom Lab, I-Hsin Chen, Wei-Lun Hung, Sz-Cheng Huang,

Chia-Chao Kan, Ruei-Rung Lee, Chih-Fan Lai, Meng-Yan Li, Jane-Chi Lin, and

Fu-Rong Wu, have been my great memory in academic journey. We had a lot of

inspiring discussions and joyful cooperations. I would also like to thank all of my

friends who helped me get through difficult time and provided invaluable supports.

I cannot end this acknowledgement without thanking my parents and brother for

their constant supports and encouragements no matter what happened. To them I

dedicate this thesis.

Hsuan-Po Lin

National Taiwan University

June 2009

i

ii

利用可滿足性求解法與克雷格內插法之大尺度亞氏函式拆解

研究生：林炫伯 指導教授：江介宏博士

國立台灣大學電子工程學研究所

摘要

函式拆解著眼於將一個布林函式拆解成一系列較小的子函式。在本篇論文裡面，

我們著重在亞氏函式拆解，這是一種因為他的簡易性而有許多實際應用的常見函

式拆解法。我們將函式拆解問題包裝成可滿足性求解問題，更進一步的採用克雷

格內插法以及函式相依性計算來找出相對應的子函式。在我們採用可滿足性求解

法為核心的研究中，輸入變數分組的過程可以被自動的處理，並且嵌入我們的函

式拆解演算法中。我們也可以自然的將我們的演算法延伸，應用在允許共用輸入

變數與多輸出變數的函式拆解問題上，這些問題在以往採用二元決策圖為核心資

料結構的演算法中都很難被解決。實驗結果顯示，我們提出的演算法可以有效的

處理輸入變數達到三百個之多的函式。

關鍵字：布林函式、函式拆解、可滿足性求解法、克雷格內插法、函式相依性

Large Scale Ashenhurst Decomposition via SAT

Solving and Craig Interpolation1

Student: Hsuan-Po Lin Advisor: Dr. Jie-Hong Roland Jiang

Graduate Institute of Electronics Engineering

National Taiwan University

Abstract

Functional decomposition aims at decomposing a Boolean function into a set of

smaller sub-functions. In this thesis, we focus on Ashenhurst decomposition, which

has practical applications due to its simplicity. We formulate the decomposition

problem as SAT solving, and further apply Craig interpolation and functional depen-

dency computation to derive composite functions. In our pure SAT-based solution,

variable partitioning can be automated and integrated into the decomposition pro-

cedure. Also we can easily extend our method to non-disjoint and multiple-output

decompositions which are hard to handle using BDD-based algorithms. Experi-

mental results show the scalability of our proposed method, which can effectively

decompose functions with up to 300 input variables.

Keywords: Boolean function, functional decomposition, SAT solving, Craig

interpolation, functional dependency.

1The preliminary version of this thesis appears in [18].

iii

Contents

Acknowledgements i

Chinese Abstract ii

Abstract iii

List of Figures viii

List of Tables ix

1 Introduction 1

1.1 Thesis Overview . 1

1.2 Related Work . 7

1.3 Our Contributions . 8

1.4 Thesis Organization . 10

2 Preliminaries 11

2.1 Functional Decomposition . 12

2.1.1 Decomposition Chart . 13

iv

Contents

2.2 Functional Dependency . 15

2.3 Satisfiability and Interpolation . 16

2.3.1 Conjunctive Normal Form . 16

2.3.2 Circuit to CNF Conversion . 16

2.3.3 Propositional Satisfiability . 18

2.3.4 Refutation Proof . 19

2.3.5 Craig interpolation . 22

3 Main Algorithms 27

3.1 Single-Output Ashenhurst Decomposition 27

3.1.1 Decomposition with Known Variable Partition 28

3.1.2 Decomposition with Unknown Variable Partition 37

3.2 Multiple-Output Ashenhurst Decomposition 43

3.2.1 Shared Variable Partition . 45

3.3 Beyond Ashenhurst Decomposition 46

3.4 Decomposition under Don’t-Cares . 47

3.5 Implementation Issues . 48

3.5.1 Minimal UNSAT Core Refinement 48

3.5.2 Balanced Partition . 48

3.5.3 Elimination of Equality Constraint Clauses 49

3.6 A Complete Example . 49

4 Experimental Results 54

v

Contents

4.1 Single- and Two-Output Ashenhurst Decomposition 54

4.2 Quality of Variable Partition . 59

4.3 Fast Variable Partitioning . 61

4.4 n-Output Ashenhurst Decomposition 67

4.5 Quality of Composite Functions . 68

5 Conclusions and Future Work 71

Bibliography 74

vi

List of Figures

1.1 Ashenhurst decomposition . 6

2.1 The diagonal decomposition chart due to introduce of common variable 14

2.2 Circuit to CNF representation . 17

2.3 Refutation proof and the unsatisfiable core 22

2.4 Craig interpolation . 23

2.5 Interpolant construction of an unsatisfiable formula ϕ = (¬c)(¬b +

a)(c+ ¬a)(b) . 26

3.1 Circuit representation of Formulas (3.2) and (3.3) 30

3.2 (a) Relation characterized by ψA(X1
G, X

2
G, c) for some c ∈ [[XC]] (b)

Relation after cofactoring ψA(X1
G = a,X2

G, c) with respect to some

a ∈ [[X1
G]] . 30

3.3 Example circuit used in the complete example 50

3.4 The decomposition chart of the example circuit 51

3.5 (a) Relation of the derived interpolant function, (b) Relation after

cofactor by (a1, b1) = (0, 0) . 52

vii

List of Figures

3.6 (a) The base functions, (b) h function derived by functional dependency 53

4.1 Best variable partition found in 60 seconds – without minimal UNSAT

core refinement . 58

4.2 Best variable partition found in 60 seconds – with minimal UNSAT

core refinement . 58

4.3 Variable partition qualities under four different efforts 60

4.4 First-found valid partition – without minimal UNSAT core refinement 61

4.5 First-found valid partition – with minimal UNSAT core refinement . . 62

4.6 Comparison of disjointness between different partition efforts 65

4.7 Comparison of disjointness between different partition efforts 66

4.8 Disjointness versus total variables of the best found partition in 60

seconds with minimal UNSAT core operation 66

4.9 Runtime of multi-output Ashenhurst decomposition 68

viii

List of Tables

4.1 Single-output Ashenhurst decomposition 55

4.2 Two-output Ashenhurst decomposition 56

4.3 Variable distribution in different partition efforts 64

4.4 Circuit information of s9234 . 69

ix

Chapter 1

Introduction

1.1 Thesis Overview

Functional decomposition [1, 7, 14, 22] plays an important role in the analysis and

design digital systems. It refers to the process of breaking a complex function into

parts, which are less complex than the original function and are relatively indepen-

dent to each other. In addition the behavior of the original function can be recon-

structed if we compose these parts together. In logic synthesis, a complex function

is decomposed into a set of sub-functions, such that each sub-function is easier to

analyze, to understand, and to further synthesize. Functional decomposition has

long been recognized as a pivotal role in LUT-based FPGA synthesis. It also has

various applications to the minimization of circuit communication complexity.

1

1.1. Thesis Overview

Functional decomposition can be classified as follows:

• The function to be decomposed can be a completely or an incompletely speci-

fied function.

• The function to be decomposed can be a single- or multiple-output function.

• A decomposition is disjoint if the sub-functions do not share common input

variables; otherwise, it is non-disjoint.

• A decomposition is called Ashenhurst decomposition or simple decomposition

if the topology of the decomposition is f(X) = h(g(XG), XH), where X =

XG ∪ XH and g is a single-output function; a decomposition is called bi-

decomposition if the topology is f(X) = h(g1(XA), g2(XB)), where X = XA ∪

XB and h is a two-input gate.

In this thesis, our method focuses on completely specified functions. In addition

the proposed method deals with multiple-output and non-disjoint decompositions.

Furthermore, we pay our attention to Ashenhurst decomposition.

The functional decomposition problem was first formulated by Ashenhurst in

1959 [1]. He visualized the decomposition feasibility with a decomposition chart,

which is a two-dimensional Karnaugh map with rows corresponding to variables in

the free set and columns corresponding to variables in the bound set. The decompo-

sition chart is used to determine whether a given function f can be simply disjointly

2

1.1. Thesis Overview

decomposed with respect to a set of given bound set variables. Ashenhurst reduced

the chart by merging all identical columns, and he showed that there exists a simple

disjoint decomposition if and only if there are at most two distinct columns in the

reduced decomposition chart. The disadvantage of Ashenhurst’s method is that we

have to construct every chart with respect to every variable partition we consider. If

we consider all the variable partitions, a function with n variables would have O(2n)

charts since every variable can be in either the bound set or free set.

Roth and Karp proposed a cover-based method [22], trying to reduce the memory

requirement of Ashenhurst’s method. They used covers to represent the functions.

By cover manipulations, the minterms of bound set variables will be mapped into

equivalence classes. These equivalence classes are in one-to-one correspondence with

the distinct columns in Ashenhurst’s method. Nevertheless, the process time of the

algorithm is still a problem except we restrict the size of the bound set variables to

be up-bounded by some constant k. A typical value of k is 5 which is the common

input size of a LUT.

Recent progress on function manipulation using BDDs makes the BDD data

structure becomes a popular tool to handle the functional decomposition problem.

Lai, Pedram, and Vrudhula [15] proposed a fast BDD-based method to implement

the Roth-Karp algorithm. They used BDDs to represent Boolean functions, and

showed that every variable ordering in the BDD implies a variable partition of the

decomposition of the function. They ordered all the bound set variables above

3

1.1. Thesis Overview

the cut, and ordering all the free set variables in and below the cut. Based on

Lai’s method, Stanion and Sechen proposed a method [25] to enumerate all the

possible cuts in the BDD in order to find a good decomposition. The enumeration

can be achieved by constructing a characteristic function for the set of cuts, then

using a branch-and-bound procedure in order to find a cut which produces the best

decomposition.

Identifying the common sub-functions in decomposing a function set is an im-

portant issue in multiple-output functional decomposition. The first approach to

multiple-output functional decomposition was proposed by Karp [14]. However

Karp’s multiple-output approach works only for two-output functions. In order

to overcome the limitation of Karp’s method, researchers proposed several ways to

handle the multiple-output decomposition problem. Wurth, Eckl, and Antreich pre-

sented an algorithm [29] based on the concept of a preferable decomposition function,

which is a decomposition function valid for a single output and with the potential

to be shared by other output functions to handle multiple-output decomposition.

They showed that the construction of all preferable decomposition functions can

be achieved by partitioning the minterms of bound set variables into some global

classes, and this information can be used to identify the common preferable decom-

position functions of a multiple-output function.

Sawada, Suyama, and Nagoya proposed a BDD-based algorithm [24] to deal with

the issue of identifying common sub-functions. They proposed a effective Boolean

4

1.1. Thesis Overview

resubstitution technique based on support minimization to effectively identify the

common LUTs from a large amount of candidates. However when the size of the

support variables is large, the examination becomes time-consuming and sometimes

fails due to memory explosion.

Most prior work on functional decomposition used BDD as the underlying data

structure. BDD can be used to handle the functional decomposition problem with

proper variable ordering, which the size of the BDD is under an acceptable threshold.

However in some cases, the BDD-based algorithm has several limitations:

• Firstly, there are memory explosion problems for BDD-based algorithms. BDD

can be of large size in representing a Boolean function. In the worst case, BDD

size is exponential to the number of variables. When special variable ordering

rules need to be imposed on BDDs for functional decomposition, the memory

size needed in BDD computation may not be improved by changing a suitable

variable ordering. Therefore it is typical that a function under decomposition

using BDD as the underlying data structure can have just a few variables.

• Secondly, variable partitioning needs to be specified a priori, and cannot be au-

tomated as an integrated part of the decomposition process. Decomposability

under different variable partitions need to be analyzed case by case. In order

to enumerate different variable partitions effectively and keep the size of BDD

reasonably small, the set of bound set variables cannot be large. Otherwise,

the computation time will easily over the pre-specified threshold.

5

1.1. Thesis Overview

• Thirdly, for BDD-based approaches, non-disjoint decomposition cannot be

handled easily. In practical, decomposability needs to be analyzed by cases

exponential to the number of joint (or common) variables.

• Finally, even though multiple-output decomposition [30] can be converted to

single-output decomposition [12], BDD sizes may grow largely in this conver-

sion.

Figure 1.1: Ashenhurst decomposition

The above limitations motivate the need for new data structures and computa-

tion methods for functional decomposition. This thesis shows that, when Ashen-

hurst decomposition [1] is considered, these limitations can be overcome through

satisfiability (SAT) based formulation. Ashenhurst decomposition is a special case

of functional decomposition, where, as illustrated in Figure 1.1, a function f(X)

is decomposed into two sub-functions h(XH , XC , xg) and g(XG, XC) with f(X) =

h(XH , XC , g(XG, XC)). For general functional decomposition, the function g can be

6

1.2. Related Work

a functional vector (g1, . . . , gk) instead. It is the simplicity that makes Ashenhurst

decomposition particularly attractive in practical applications.

The techniques we used in this thesis, in addition to SAT solving, include Craig

interpolation [6] and functional dependency [16]. Specifically, the decomposability

of function f is formulated as SAT solving, the derivation of function g is by Craig

interpolation, and the derivation of function h is by functional dependency.

1.2 Related Work

Aside from the related prior work using BDD as underlying data structure, we com-

pare some related work on functional decomposition and Boolean matching using

SAT-based techniques. In bi-decomposition [17], a function f is decomposed into

f(X) = h(g1(XA, XC), g2(XB, XC)) under variable partition X = {XA|XB|XC},

where function h is known as a priori and is fixed to be special function types,

which can be two-input or, and, xor gates, etc.. The functions g1 and g2 are the

unknowns to be computed. Compared with bi-decomposition, Ashenhurst decom-

position f(X) = h(XH , XC , g(XG, XC)) focuses on both unknown functions h and

g, where no any fixed type of gates are specified. The Ashenhurst decomposition

problem needs be formulated and solved differently while the basic technique used

in our thesis is similar to that in [17].

FPGA Boolean matching, see, e.g., [3], is a subject closely related to functional

7

1.3. Our Contributions

decomposition. In [19], Boolean matching was achieved with SAT solving, where

quantified Boolean formulas were converted into CNF formulas. In order to eliminate

the universal quantifiers, the CNF formulas will be duplicated exponential times

related to the input variable sizes. The intrinsic exponential explosion in formula

sizes limits the scalability of the approach. Typically, this method cannot handle

functions with input variables greater than 10. To overcome this problem, a two-

stage SAT-based Boolean matching algorithm [26] and an implicant-based method

[4] were proposed to improve the limitation of methods mentioned in [19]. Different

from the above algorithms mainly focus on completely specified functions, Wang

and Chan proposed a SAT-based Boolean matching method [28] to handle functions

with don’t-cares. On the other hand, our method may provide a partial solution to

the Boolean matching problem, at least for some special PLB configurations similar

to the topology of Ashenhurst decomposition.

1.3 Our Contributions

Compared with BDD-based methods, the proposed SAT-based algorithm is advan-

tageous in the following aspects.

• Firstly, it does not suffer from the memory explosion problem and is scalable

to large functions. Experimental results show that Boolean functions with

more than 300 input variables can be decomposed effectively.

8

1.3. Our Contributions

• Secondly, it needs not be specified a priori when variable partitioning, and

can be automated and derived on the fly during decomposition. Hence the

size of the bound set variables XG needs not be small. Bound set variables

XG can be as large as free set variables XH to obtain a more balanced variable

partition.

• Thirdly, it works for non-disjoint decomposition naturally. The automated

variable partition process in our method can indeed generate a non-disjoint

variable partition. In practical, we wish the number of the common (non-

disjoint) variables XC to be small, thus we further propose an UNSAT core

refinement process to heuristically reduce the number of common variables as

much as possible.

• Finally, it can be easily extended to multiple-output Ashenhurst decomposi-

tion if we assume that all of the output functions fi share the same variable

partition X = {XH |XG|XC}.

However when generalizing our method to functional decomposition beyond

Ashenhurst’s special case, both SAT-based formula size and computation time of

SAT solving grow. This is the limitation of our proposed method.

As interconnects become a dominating concern in modern nanometer IC designs,

scalable decomposition methods play a pivotal role in circuit communication mini-

mization. While functional decomposition breaks the original function into smaller

9

1.4. Thesis Organization

and relatively independent sub-functions, the communication complexity between

these sub-functions are greatly reduced proportional to the number of interconnect-

ing wires between these parts.

With the advantages of the proposed method, hierarchical logic decomposition

could be made feasible in practice. In addition, our results may provide a new way

on scalable Boolean matching for heterogeneous FPGAs as well as topologically

constrained logic synthesis.

1.4 Thesis Organization

This thesis is organized as follows. Chapter 2 introduces essential preliminaries.

Our main algorithms are presented in Chapter 3, and evaluated with experimental

results in Chapter 4. Finally, Chapter 5 concludes the thesis and outlines future

work.

10

Chapter 2

Preliminaries

In this chapter, we provide the necessary and sufficient background needed in this

thesis. As conventional notation, in this thesis, sets are denoted in upper-case

letters, e.g., S; set elements are in lower-case letters, e.g., e ∈ S. The cardinality

of S is denoted as |S|. A partition of a set S into Si ⊆ S for i = 1, . . . , k (with

Si ∩ Sj = ∅, i 6= j, and
⋃

i Si = S) is denoted as {S1|S2| . . . |Sk}. For a set X of

Boolean variables, its set of valuations (or truth assignments) is denoted as [[X]],

e.g., [[X]] = {(0, 0), (0, 1), (1, 0), (1, 1)} for X = {x1, x2}.

11

2.1. Functional Decomposition

2.1 Functional Decomposition

Definition 2.1 Given a completely specified Boolean function f , variable x is a

support variable of f if fx 6= f¬x, where fx and f¬x are the positive and negative

cofactors of f on x, respectively.

Definition 2.2 A set {f1(X), . . . , fm(X)} of completely specified Boolean functions

is (jointly) decomposable with respect to some variable partition X = {XH |XG|XC}

if every function fi, i = 1, . . . ,m, can be written as

fi(X) = hi(XH , XC , g1(XG, XC), . . . , gk(XG, XC))

for some functions hi, g1, . . . , gk with k < |XG|. The decomposition is called disjoint

if XC = ∅, and non-disjoint otherwise.

For m = 1, it is known as single-output decomposition, and for m > 1, multiple-

output decomposition. Note that h1, . . . , hm share the same functions g1, . . . , gk if we

are dealing with multiple-output decomposition problem. The so-called Ashenhurst

decomposition [1] is for k = 1, which g function has only one output bit.

Note that, for |XG| = 1, there is no successful decomposition because of the

violation of the criterion k < |XG|. On the other hand, the decomposition trivially

holds if XC ∪ XG or XC ∪ XH equals X. The corresponding variable partition

is called trivial. This paper is concerned about decomposition under non-trivial

variable partition. Moreover, we focus on Ashenhurst decomposition.

12

2.1. Functional Decomposition

The decomposability of a set {f1, . . . , fm} of functions under the variable par-

tition X = {XH |XG|XC} can be analyzed through the so-called decomposition

chart, consisting of a set of matrices, one for each member of [[XC]]. The rows

and columns of a matrix are indexed by {1, . . . ,m} × [[XH]] and [[XG]], respectively.

For i ∈ {1, . . . ,m}, a ∈ [[XH]], b ∈ [[XG]], and c ∈ [[XC]], the entry with row index

(i, a) and column index b of the matrix of c is of value fi(XH = a,XG = b,XC = c).

Proposition 2.1 [1,7,14] A set {f1, . . . , fm} of Boolean functions is decomposable

as

fi(X) = hi(XH , XC , g1(XG, XC), . . . , gk(XG, XC))

for i = 1, . . . ,m under variable partition X = {XH |XG|XC} if and only if, for every

c ∈ [[XC]], the corresponding matrix of c has at most 2k column patterns (i.e., at

most 2k different kinds of column vectors).

2.1.1 Decomposition Chart

Given a variable partition X = {X1|X2}, we want to check if a decomposition

f = h(g(X1), X2) exists. To do this, we build a table called decomposition chart.

Decomposition chart is a table rearrange from the K-map of a given function f . The

table has 2|X1| columns correspond to input vectors of X1 and 2|X2| rows correspond

to input vectors of X2. Each entry in the decomposition chart represents a function

value whose input value is a combination of the index of corresponding rows and

columns. Moreover, if we allow some variables can be common in both the row and

13

2.1. Functional Decomposition

column, the resulting decomposition chart will be formed by some sub-chart in a

diagonal way.

In our Ashenhurst decomposition, the corresponding decomposition chart of the

given function f uses input variables of g as its column index variable, and input

variables of h as its row index variables. The whole decomposition chart of f is

composed by some sub-charts in diagonal way. Each sub-chart corresponds to one

valuation of XC . Hence if there are k common variables, the number of sub-chart

will be 2k. For example if we have one variable in XC , one variable in XG, and one

variable in XH . The corresponding decomposition chart is shown in Figure 2.1.

Figure 2.1: The diagonal decomposition chart due to introduce of common variable

14

2.2. Functional Dependency

2.2 Functional Dependency

Definition 2.3 Given a Boolean function f : Bm → B and a vector of Boolean

functions G = (g1(X), . . . , gn(X)) with gi : Bm → B for i = 1, . . . , n, over the same

set of variable vector X = (x1, . . . , xm), we say that f functionally depends on G if

there exists a Boolean function h : Bn → B, called the dependency function, such

that f(X) = h(g1(X), . . . , gn(X)). We call functions f , G, and h the target function,

base functions, and dependency function, respectively.

Note that functions f and G are over the same domain in the definition; h needs

not depend on all of the functions in G.

The necessary and sufficient condition of the existence of the dependency function

h is given as follows.

Proposition 2.2 [11] Given a target function f and base functions G, let h0 =

{a ∈ Bn : a = G(b) and f(b) = 0, b ∈ Bm} and h1 = {a ∈ Bn : a = G(b) and f(b) =

1, b ∈ Bm}. Then h is a feasible dependency function if and only if {h0 ∩ h1} is

empty. In this case, h0, h1, and Bn\{h0 ∪ h1} are the off-set, on-set, and don’t-care

set of h, respectively.

By Proposition 2.2, one can not only determine the existence of a dependency func-

tion, but also deduce a feasible one. A SAT-based formulation of functional depen-

dency was given in [16]. It forms an important ingredient in part of our computation.

15

2.3. Satisfiability and Interpolation

2.3 Satisfiability and Interpolation

2.3.1 Conjunctive Normal Form

A formula is said to be in Conjunctive Normal Form (CNF) if it is a conjunction

of clauses. Each clause is a disjunction of one or more literals, where a literal is

the occurrence of a variable x or its complement ¬x. Without loss of generality,

we shall assume that there are no any equivalent or complementary literals in one

clause. For example, the formula (x + ¬y)(¬x + y) is a CNF representation of the

equality function for variable x and y. The formula has 2 clauses, and each clause

has 2 literals.

The CNF is similar to Product of Sum (POS) representation in the circuit theory.

It is one of the major contributing factor for the recent success of the Boolean

Satisfiability (SAT) problem. The CNF representation of a SAT problem provides

a data structure for efficient implementation of various techniques used in most

popular SAT solvers.

2.3.2 Circuit to CNF Conversion

The CNF formula of a combinational circuit can be constructed in linear time by

introducing some intermediate variables. The CNF formula of a combinational cir-

cuit is the conjunction of the CNF formulas for each gate output, where the CNF

16

2.3. Satisfiability and Interpolation

formula for each gate denotes the valid input and output assignments of the gate.

The detail information for converting a circuit to CNF representation can be found

in [27].

ϕ = (a+ ¬c)(b+ ¬c)(¬a+ ¬b+ c)

(c+ ¬e)(d+ ¬e)(¬c+ ¬d+ e)

(a) Consistent assignment

ϕ′ = (a+ ¬c)(b+ ¬c)(¬a+ ¬b+ c)

(c+ ¬e)(d+ ¬e)(¬c+ ¬d+ e)(¬e)

(b) With property e = 0

Figure 2.2: Circuit to CNF representation

Figure 2.2 shows an example of a simple circuit with the corresponding CNF

formula indicating the truth assignment and the CNF formula with some given

properties. As can be seen, the CNF formula can be divided into two parts, each

part is a set of clauses for one particular gate. Two gates share the same interme-

17

2.3. Satisfiability and Interpolation

diate variable c. So the CNF representation of the circuit is the conjunction of the

sets of clauses for each particular gate. Hence, given a combinational circuit it is

straightforward to construct the CNF formula for the circuit as well as the CNF

formula for proving a given property of a the circuit.

2.3.3 Propositional Satisfiability

In the beginning of this subsection, we firstly define some terminologies of proposi-

tional satisfiability problem in the scope of modern SAT solvers. Let V = {v1, . . . , vk}

be a finite set of Boolean variables, where each vi ∈ B = {0, 1}. A SAT instance is a

set of Boolean formulas in CNF. A assignment over V gives each variable vi ∈ V a

Boolean value either True(1) or False(0). A SAT instance is said to be satisfiable is

there exists an assignment over V such that the CNF formula is evaluated as True.

More specifically, each clause of the CNF formula is evaluated as True. Otherwise, it

is unsatisfiable. A SAT problem is a decision problem asked the given SAT instance

is satisfiable or not. A SAT solver is designed to answer the SAT problem.

SAT was the first known NP-complete problem, as proved by Stephen Cook in

1971 [5]. The problem remains NP-complete even if the SAT instance is written in

conjunctive normal form with 3 variables per clause, yielding the 3SAT problem.

Most of the popular modern SAT solvers use David-Putnam-Logemann-Loveland

(DPLL) [8,9] procedure as the basic algorithm to solve the SAT problem. DPLL is

tested to solve large propositional satisfiable problem efficiently.

18

2.3. Satisfiability and Interpolation

The basic idea of DPLL procedure in solving a SAT problem is to branch on

variables V until a conflict arises or a satisfying assignment is derived. Once a

conflict arises, DPLL chooses another branch to keep testing the satisfiability. If

the variable value on a certain branch results in a satisfying assignment over the

SAT problem, the DPLL procedure stops the rest branching step immediately, then

returns the answer satisfiable as well as the satisfying assignment. Otherwise, DPLL

procedure needs to test all the branches to report the unsatisfiability. In this thesis,

we use MiniSat [10] developed by Niklas Eén and Niklas Sörensson as the underlying

SAT solver in the experiments.

2.3.4 Refutation Proof

Some of the modern SAT solvers generate a refutation proof to demonstrate the

unsatisfiability of a SAT instance. Refutation proof is a series of resolution steps

show the unsatisfiable SAT instance will eventually imply an empty clause. Each

step in these series of steps called resolution. The detailed definition of resolution

and other terminology are shown in this subsection.

Definition 2.4 Let (v ∨ c1) and (¬v ∨ c2) are two clauses. Where v is a Boolean

variable, v and ¬v are literals, c1 and c2 are disjunction of other literals different

from v and ¬v. The resolution of these two clauses on variable v is a new clause

(c1∨c2). The variable v here is called a pivot variable, and (c1∨c2) is resolvent. The

resolvent exists when only one pivot variable exists. In other word, the resolvent

19

2.3. Satisfiability and Interpolation

can not be a tautological clause.

For example, clauses (a ∨ ¬b) and (¬a ∨ b) on variable a has no resolvent since

clause (¬b ∨ b) is tautological. Also, resolution on variable v over two given clauses

is similar to existential quantification on variable v. That is, ∃v.(v∨c1)∧(¬v∨c2) =

(c1 ∨ c2).

Proposition 2.3 The conjunction of (v ∨ c1) and (¬v ∨ c2) implies its resolvent

(c1 ∨ c2).

(v ∨ c1) ∧ (¬v ∨ c2)⇒ (c1 ∨ c2)

Theorem 2.1 For an unsatisfiable SAT instance, there exists a resolution refutation

steps leads to an empty clause.

Proof. Since every unsatisfiable SAT instance must imply a contradiction that is

an empty clause. Hence, theorem 2.1 can be proved directly by Proposition 2.3.

There must exists some resolution steps leads to an empty clause. 2

Often, only a subset of clauses of an unsatisfiable SAT instance participate in the

resolution steps, which lead to an empty clause. This subset of clauses of a unsatisfi-

able SAT instance is called unsatisfiable core, the detailed definition of unsatisfiable

core will be described later.

Definition 2.5 A refutation proof of an unsatisfiable formula ϕ is a directed acyclic

graph (Vϕ, Eϕ). Where Vϕ is a set of clauses, and the SAT instance of formula ϕ is

20

2.3. Satisfiability and Interpolation

a clause set C, such that

• for each vertex k ∈ Vϕ, either

– k ∈ C, and k is a root, or

– k has exactly two predecessors, k1 and k2, and k is the resolvent of k1

and k2, and

• there exists an empty clause be the unique leaf of (Vϕ, Eϕ).

Theorem 2.2 If there is a refutation proof of unsatisfiability for clause set C, C

must be unsatisfiable.

Definition 2.6 For an unsatisfiable SAT instance of formula ϕ, the unsatisfiable

core of the formula is the subset of clauses whose conjunction is still unsatisfiable.

The unsatisfiable core is called minimal if all the subsets of it are satisfiable. The

unsatisfiable core is called minimum if it contains the smallest number of the original

clauses to be still unsatisfiable.

The intuition behind the unsatisfiable core is that, these subset of the original

clauses are sufficient causing whole CNF formula to be constant False. The as-

signment of variables not in the unsatisfiable core will not effect the unsatisfiability

of the formula. Note that the unsatisfiable core of a unsatisfiable formula is not

unique, there are one or many different unsatisfiable cores of a particular unsatis-

fiable formula. In the point of view of a resolution refutation proof, the simplest

21

2.3. Satisfiability and Interpolation

unsatisfiable core is the subset of root clauses that has a path to the unique empty

leaf clause.

Figure 2.3 illustrates the resolution refutation proof, and one of the simplest

unsatisfiable core of the unsatisfiable formula ϕ = (¬c)(¬b+a)(c+¬a)(b)(d+e)(¬d).

Figure 2.3: Refutation proof and the unsatisfiable core

2.3.5 Craig interpolation

Theorem 2.3 (Craig Interpolation Theorem) [6]

Given two Boolean formulas ϕA and ϕB, with ϕA ∧ ϕB unsatisfiable, then there

exists a Boolean formula ψA satisfy the 3 properties that

22

2.3. Satisfiability and Interpolation

• ψA referring only to the common variables of ϕA and ϕB

• ϕA ⇒ ψA

• ψA ∧ ϕB is unsatisfiable.

The Boolean formula ψA is referred to as the interpolant of ϕA with respect to

ϕB. Some modern SAT solvers, e.g., MiniSat [10], are capable of constructing an

interpolant from an unsatisfiable SAT instance. Figure 2.4 illustrates the solution

space of ϕA, ϕB and the interpolant ψA. Note that the smallest interpolant is ϕA

itself and the largest interpolant is ¬ϕB.

Figure 2.4: Craig interpolation

There are many researches [20, 21] show that we can build an interpolant from

the resolution refutation proof of an unsatisfiable SAT instance in linear time to the

23

2.3. Satisfiability and Interpolation

proof size itself. In this thesis, we use the method described in [20] as our underlying

way to get an interpolant.

Suppose we are given a pair of clause sets (A,B) derived from the formula ϕ and

a refutation proof of unsatisfiability (Vϕ, Eϕ) of A∪B. For the clause sets (A,B), a

variable is said to be global if it appears in both A and B, and local to A if it appears

only in A. Other variables are considered irrelevant in the interpolant construction

procedure. Similarly, a literal is global or local depending on the variable it contains.

Moreover, given any clause c, we use g(c) to denote the disjunction of the global

literals in c.

The linear time algorithm for interpolant construction mentioned in [20] is in the

following rules.

• Let f(c) be a boolean formula for all vertices c ∈ Vϕ

• if c is a root, then

– if c ∈ A then f(c) = g(c)

– if c ∈ B then f(c) is the constant True

• if c is the intermediate vertex, let c1 and c2 be the predecessors of c, and v be

their pivot variable.

– if v is local to A, then f(c) = f(c1) ∨ f(c1)

– else, f(c) = f(c1) ∧ f(c1)

24

2.3. Satisfiability and Interpolation

Since every unsatisfiable SAT instance implies the constant False, so the last

step of the resolution refutation proof resolve a constant False. Hence, f(False) is

a boolean function constructed from the above rules. Also, it is the interpolant of

the unsatisfiable clause sets A∪B and the corresponding refutation proof (Vϕ, Eϕ).

Figure 2.5 illustrates the resolution refutation proof and detailed construction

step of an unsatisfiable formula ϕ = (¬c)(¬b+ a)(c+ ¬a)(b).

Note that the interpolant construction can be done in O(N + L) through the

topology of the refutation proof, where N is the number of vertices in Vϕ and L is

the total literal number in the resolution refutation proof (Vϕ, Eϕ). We need the

complexity of L since each time a resolvent is going to be generated, we have to

scan all of the literals in the predecessor clauses to find the pivot variable.

25

2.3. Satisfiability and Interpolation

A = (¬b+ a)(c+ ¬a)

B = (b)(¬c)

local = a

global = b, c

Figure 2.5: Interpolant construction of an unsatisfiable formula ϕ = (¬c)(¬b+a)(c+

¬a)(b)

26

Chapter 3

Main Algorithms

We show that Ashenhurst decomposition of a set of Boolean functions {f1, . . . , fm},

or in some cases we called it m-output Ashenhurst decomposition, can be achieved

by SAT solving, Craig interpolation, and functional dependency. Whenever a non-

trivial decomposition exists, we derive functions hi and g automatically for fi(X) =

hi(XH , XC , g(XG, XC)) under the corresponding variable partitionX = {XH |XG|XC}.

3.1 Single-Output Ashenhurst Decomposition

We first consider single-output Ashenhurst decomposition for a Boolean function

f(X) = h(XH , XC , g(XG, XC)).

27

3.1. Single-Output Ashenhurst Decomposition

3.1.1 Decomposition with Known Variable Partition

Proposition 2.1 in the context of Ashenhurst decomposition of a single function can

be formulated as satisfiability solving as follows.

Proposition 3.1 A completely specified Boolean function f(X) can be expressed

as h(XH , XC , g(XG, XC)) for some functions g and h if and only if the Boolean

formula

(f(X1
H , X

1
G, XC) 6≡ f(X1

H , X
2
G, XC)) ∧

(f(X2
H , X

2
G, XC) 6≡ f(X2

H , X
3
G, XC)) ∧

(f(X3
H , X

3
G, XC) 6≡ f(X3

H , X
1
G, XC)) (3.1)

is unsatisfiable, where a superscript i in Y i denotes the ith copy of the instantiation

of variables Y .

Observe that Formula (3.1) is satisfiable if and only if there exists more than two

distinct column patterns in some matrix of the decomposition chart. Hence the

unsatisfiability means there are at most two different kind of column patterns in

every matrix of the decomposition chart. Since the g function has only one output

bit, so the unsatisfiability of Formula (3.1) is exactly the existence condition of

Ashenhurst decomposition.

The intuition why we only allowed at most two different kind of column patterns

in a matrix can be realized using the decomposition chart. Function g can be

28

3.1. Single-Output Ashenhurst Decomposition

treated as a mapping from a input assignment a ∈ [[XG, XC]] to the Boolean value 0

or 1. Since every column index of a matrix in the decomposition chart is exactly a

input assignment a ∈ [[XG, XC]], if there are more than two different kind of column

patterns, it cannot be mapped using binary value 0 and 1.

Note that, unlike BDD-based counterparts, the above SAT-based formulation of

Ashenhurst decomposition naturally extends to non-disjoint decomposition. It is

because the unsatisfiability checking of Formula (3.1) essentially tries to assert that

under every valuation of variables XC the corresponding matrix of the decomposition

chart has at most two column patterns. In contrast, BDD-based methods have to

check the decomposability under every valuation of XC separately.

Now we have known that the decomposability of function f can be checked

through SAT solving of Formula (3.1), the derivations of functions g and h can

be realized through Craig interpolation and functional dependency, respectively, as

shown below.

To derive function g, we partition Formula (3.1) into two sub-formulas

ϕA = f(X1
H , X

1
G, XC) 6≡ f(X1

H , X
2
G, XC), and (3.2)

ϕB = (f(X2
H , X

2
G, XC) 6≡ f(X2

H , X
3
G, XC)) ∧

(f(X3
H , X

3
G, XC) 6≡ f(X3

H , X
1
G, XC)). (3.3)

Figure 3.1 shows the corresponding circuit representation of Formulas (3.2) and

(3.3). The circuit representation can be converted into a CNF formula in linear

29

3.1. Single-Output Ashenhurst Decomposition

time [27], and thus can be checked for satisfiability.

Figure 3.1: Circuit representation of Formulas (3.2) and (3.3)

Figure 3.2: (a) Relation characterized by ψA(X1
G, X

2
G, c) for some c ∈ [[XC]] (b)

Relation after cofactoring ψA(X1
G = a,X2

G, c) with respect to some a ∈ [[X1
G]]

Lemma 3.1 For function f(X) decomposable under Ashenhurst decomposition

30

3.1. Single-Output Ashenhurst Decomposition

with variable partition X = {XH |XG|XC}, the interpolant ψA with respect to ϕA

of Formula (3.2) and ϕB of Formula (3.3) corresponds to a characteristic function

such that,

1. for ϕA satisfiable under some c ∈ [[XC]], there exist b1 ∈ [[X1
G]] and b2 ∈ [[X2

G]]

such that ψA(b1, b2, c) = 1 if and only if the column patterns indexed by b1

and b2 in the matrix of c of the decomposition chart of f are different;

2. for ϕA unsatisfiable under some c ∈ [[XC]], there is only one column pattern in

the matrix of c of the decomposition chart of f ;

3. for ϕA unsatisfiable under all c ∈ [[XC]], or in other word, unsatisfiable ϕA,

variables XG are not the support variables of f and thus {XH |XG|XC} is a

trivial variable partition for f .

Proof. For f decomposable, ϕA ∧ ϕB is unsatisfiable by Proposition 3.1. Moreover

from Theorem 2.3, we know the interpolant ψA of the unsatisfiability proof is a

function that refers only to the common variables, X1
G ∪X2

G ∪XC , of ϕA and ϕB.

We analyze what the characteristic function ψA means for ϕA satisfiable under

some c ∈ [[XC]]. Let ai ∈ [[X i
H]], bi ∈ [[X i

G]], for i = 1, 2, 3, in the following discussion.

Let Rc ⊆ [[X1
G]]× [[X2

G]] be the relation that ψA(X1
G, X

2
G, XC = c) characterizes. On

the one hand, since ϕA ⇒ ψA, we know that ψA is an over-approximation of the

solution space of ϕA projected to the common variables X1
G∪X2

G∪XC . So Rc must

31

3.1. Single-Output Ashenhurst Decomposition

contain the set

{(b1, b2) | f(a1, b1, c) 6= f(a1, b2, c) for some a1}.

That is, a pair (b1, b2) must be in Rc if the columns indexed by b1 and b2 of the

matrix of c in the decomposition chart of f are of different patterns.

On the other hand, since ψA ∧ ϕB is unsatisfiable, the solution space of ψA is

disjoint from that of ϕB projected to the common variables. Suppose that val-

uations a2, a3, b1, b2, b3 satisfy ϕB under c, that is, f(a2, b2, c) 6= f(a2, b3, c) and

f(a3, b3, c) 6= f(a3, b1, c). Then the columns indexed by b2 and b3 of the matrix of

c in the decomposition chart of f are of different column patterns, and the column

indexed by b3 and b1 has the same property. Since we know that f is decomposable

under Ashenhurst decomposition, that means there are at most two different kind

of column patterns for every matrix under c. So the columns indexed by b1 and b2

of the matrix of c must be the same column pattern. For ψA ∧ ϕB unsatisfiable, it

represents that (b1, b2) cannot be in Rc if the columns indexed by b1 and b2 are of

the same pattern. We can now conclude that the interpolant ψA(X1
G, X

2
G, c) charac-

terize all different kind of column patterns indexed by (b1, b2), where b1 ∈ [[X1
G]] and

b2 ∈ [[X2
G]] for some matrix of c.

Figure 3.2(a) illustrates the relation that ψA(X1
G, X

2
G, c) characterizes for some

c ∈ [[XC]]. The left and right sets of gray dots denote the elements of [[X1
G]] and [[X2

G]],

respectively. For function f to be decomposable, there are at most two equivalence

classes for the elements of [[X i
G]] for i = 1, 2. In Figure 3.2(a), the two clusters

32

3.1. Single-Output Ashenhurst Decomposition

of elements in [[X i
G]] signify two equivalence classes of column patterns indexed by

[[X i
G]]. An edge (b1, b2) between b1 ∈ [[X1

G]] and b2 ∈ [[X2
G]] represents that b1 is not

in the same equivalence class as b2, they have different kind of column patterns. In

this case, ψA(b1, b2, c) = 1. Since all of the different column pattern pairs (b1, b2)

in the matrix of c will be characterized by the interpolant ψA(X1
G, X

2
G, c). So every

element in one equivalence class of [[X1
G]] is connected to every element in the other

equivalence class of [[X2
G]] as Figure 3.2(a) shows.

According to the above analysis, we conclude that, for ϕA satisfiable under

c ∈ [[XC]], relation Rc characterizes exactly the set of index pairs (b1, b2) whose

corresponding column patterns are different.

For ϕA unsatisfiable under some c ∈ [[XC]], it represents that there are no any

different kind of column patterns in the matrix of c, so that there is only one column

pattern in the matrix of c of the decomposition chart of f . Hence, under XC = c,

the valuation of f is independent of the truth assignments of XG. No matter what

different truth assignment of XG is, the value of f under the same truth assignment

of XH is of the same. (In this case, ψA under XC = c can be an arbitrary function

due to the solution space of ϕA is empty.) If ϕA is unsatisfiable under every c ∈ [[XC]],

then the valuation of function f does not depend on XG, that is, XG are not the

support variables of f .

Since the analysis holds for every c ∈ [[XC]], the lemma follows. 2

33

3.1. Single-Output Ashenhurst Decomposition

Next, we show how to derive function g from the interpolant ψA.

Lemma 3.2 For an arbitrary a ∈ [[X1
G]], the cofactored interpolant ψA(X1

G =

a,X2
G, XC) is a legal implementation of function g(X2

G, XC).

Proof. By Lemma 3.1, the interpolant ψA(X1
G, X

2
G, XC) characterizes all different

column pattern pairs in every matrix who has exactly two different kind of column

patterns. Let γa(X2
G, XC) = ψA(X1

G = a,X2
G, XC) for some arbitrary a ∈ [[X1

G]].

Then, under every such valuation c ∈ [[XC]], γa(X2
G, c) characterizes the set of indices

whose corresponding column patterns are different from the column pattern indexed

by a. In other word, γa(X2
G, c) characteristic either of the two equivalence classes of

column patterns in the matrix of c.

Taking Figure 3.2(b) as an example, assume that a is the topmost element in

[[X1
G]]. After cofactoring, all the edges in Figure 3.2(a) will disappear except for the

edges connecting a with the elements in the other equivalence class of [[X2
G]].

On the other hand, for c ∈ [[XC]] whose corresponding matrix contains only one

kind of column pattern. Since we know that XC = c is a don’t-care condition for

function g, and thus γa(X2
G, c) can be arbitrary.

From the above analysis, we can conclude that γa(X2
G, XC) characterizes either

the onset or the offset of function g(X2
G, XC). So γa(X2

G, XC) can be treated as the

function g(X2
G, XC) or negation of the function g(X2

G, XC). After renaming X2
G to

XG, we get the desired g(XG, XC). 2

34

3.1. Single-Output Ashenhurst Decomposition

So far we have successfully derived function g by interpolation and cofactor

operation. Next we need to compute function h. The problem can be formulated as

computing functional dependency as follows. Let f(X) be our target function; let

function g(XG, XC) we just derived and identity functions ıx(x) = x, one for each

variable x ∈ XH ∪XC , be our base functions. So the computed dependency function

is exactly our desired h. Since functional dependency can be formulated using SAT

solving and interpolation [16], it well fits in our SAT-based computation framework.

Remark: For disjoint decomposition, i.e., XC = ∅. Rather than using functional

dependency, we can derive the function h in a simple way.

Given two functions f(X) and g(XG) with variable partition X = {XH |XG}, our

goal is to find a function h(XH , xg) such that f(X) = h(XH , g(XG)), where xg is

the output variable of function g(XG). Let a, b ∈ [[XG]] with g(a) = 0 and g(b) = 1.

Then by Shannon expansion

h(XH , xg) = (¬xg ∧ h¬xg(XH)) ∨ (xg ∧ hxg(XH)),

where h¬xg(XH) = f(XH , XG = a) and hxg(XH) = f(XH , XG = b). The derivation

of the offset and onset minterms of g is easy because we can pick an arbitrary

minterm c in [[XG]] and see if g(c) equals 0 or 1. We then perform SAT solving on

either g(XG) or ¬g(XG) depending on the value g(c) to derive another necessary

minterm.

35

3.1. Single-Output Ashenhurst Decomposition

The above derivation of function h, however, does not scale well for decompo-

sition with large |XC | because we may need to compute h(XH , XC = c, xg), one

for every valuation c ∈ [[XC]]. There are 2|XC | cases to analyze. So when common

variables exist, functional dependency may be a better way to compute function h.

The correctness of the so-derived Ashenhurst decomposition follows from Lemma 3.2

and Proposition 2.1, as the following theorem states.

Theorem 3.1 Given a function f decomposable under Ashenhurst decomposition

with variable partition X = {XH |XG|XC}, then f(X) = h(XH , XC , g(XG, XC)) for

functions g and h obtained by the above derivation.

Algorithm 1 Derive g and h with a given variable partition

Input: f and a given variable partition X = {XH |XG|XC}

Output: g and h

1: F ⇐ CircuitInstantiation(f,XH , XG, XC)

2: (ϕA, ϕB)⇐ CircuitPartition(F)

3: P (X1
G, X

2
G, XC)⇐ Interpolation(ϕA, ϕB)

4: g(XG, XC)⇐ Cofactor(P, a ∈ [[X1
G]])

5: h⇐ FunctionalDependency(f, g)

6: return (g, h)

Algorithm 1 summarizes the algorithms we used to derive the function g and

h. Line 1-2 duplicate the original function f into 6 copies, and then partition it

into two part, just as Figure 3.1 shows. Line 3-4 utilize interpolation technique to

36

3.1. Single-Output Ashenhurst Decomposition

derived a relation contain the information of pairs of distinct column patterns. Then

using cofactor to get the g function we want. In line 5, we formulate the problem

as computing functional dependency to get the h function.

3.1.2 Decomposition with Unknown Variable Partition

The construction in the previous subsection assumes that a variable partition X =

{XH |XG|XC} is given. In this subsection, we will show how to automate the variable

partition process within the decomposition process of function f . A similar approach

was used in [17] for bi-decomposition of Boolean functions.

We introduce two control variables αxi
and βxi

for each variable xi ∈ X. In

addition we instantiate the original input variables X into six copies X1, X2, X3,

X4, X5, and X6. Let

ϕA = (f(X1) 6≡ f(X2)) ∧
∧
i

((x1
i ≡ x2

i) ∨ βxi
) and (3.4)

ϕB = (f(X3) 6≡ f(X4)) ∧ (f(X5) 6≡ f(X6)) ∧∧
i

(((x2
i ≡ x3

i) ∧ (x4
i ≡ x5

i) ∧ (x6
i ≡ x1

i)) ∨ αxi
) ∧∧

i

(((x3
i ≡ x4

i) ∧ (x5
i ≡ x6

i)) ∨ βxi
), (3.5)

where xj
i ∈ Xj for j = 1, . . . , 6 are the instantiated versions of xi ∈ X. Why αxi

and βxi
are called control variables is because each of the control variable can enable

of disable the corresponding clause. For example, a clause (a + b) associates with

a control variable α results in a new clause (a + b + α). When α = 1, the clause

37

3.1. Single-Output Ashenhurst Decomposition

is immediate evaluated as constant True, then it become a redundant clause in the

CNF formulas. In this case, we may say this clause is disabled. In other hand, if

α = 0 the clause is just as the original one (a+ b). In this case, the clause is said to

be enabled by the control variable α. Under this point of view, (αxi
, βxi

) = (0, 0),

(0, 1), (1, 0), and (1, 1) indicate that xi ∈ XC , xi ∈ XG, xi ∈ XH , and xi can be in

either of XG and XH , respectively.

In SAT solving the conjunction of Formulas (3.4) and (3.5), we make unit as-

sumptions [10] on the control variables. Unit assumption can be made on a list of

literals so that the solution space of SAT solving is restricted to these pre-specified

space. Generally speaking, when SAT solving, for a variable appears in the assump-

tion list, not both valuation 0 and 1 are tried. It is forced to be the assumption

value as specified in the assumption list. Once the SAT instance is unsatisfiable un-

der the assumption, SAT solver will return a final conflict clause contain variables

only in the assumption list. This final conflict clause indicates that these part of

assumption values are sufficient to make the CNF formulas to be unsatisfied.

Similar to [17] but with a subtle difference, we introduce the following seed

variable partition to avoid trivial variable partition, which is XC ∪XG or XC ∪XH

equals X, and to avoid |XG| = 1. For the unit assumption, initially we specify three

distinct variables xj, xk, and xl with xj in XH partition and xk, xl in XG partition,

and specify all other variables in XC partition. That is, we have (αxj
, βxj

) = (1, 0),

(αxk
, βxk

) = (0, 1), (αxl
, βxl

) = (0, 1), and (αxi
, βxi

) = (0, 0) for i 6= j, k, l.

38

3.1. Single-Output Ashenhurst Decomposition

Lemma 3.3 For an unsatisfiable conjunction of Formulas (3.4) and (3.5) under a

seed variable partition, the final conflict clause consists of only the control variables,

which indicates a valid non-trivial variable partition.

Proof. The values of control variables are specified in the unit assumption as if

they are in the first decision level. In solving an unsatisfiable instance, both 0 and

1 valuations of any other variable must have been tried and failed, and only the

control variables are not valuated in both cases. Because unit assumption causes

the unsatisfiability, the final learned clause indicates the conflict decisions made in

the first decision level.

To see why the final learned clause corresponds to a valid variable partition,

notice that every literal in the conflict clause is of positive phase because the conflict

arises from a subset of the control variables set to 0. The returned conflict clause

reveals that setting to 0 the control variables present in the conflict clause is sufficient

making the whole CNF formula unsatisfiable. Hence setting the control variables

who do not appear in the conflict clause to 1 cannot affect the unsatisfiability.

Hence the final conflict clause indicates a variable partition XH , XG, XC on X. For

example, the conflict clause (αx1 +βx1 +αx2 +βx3) indicates that the subset αx1 = 0,

βx1 = 0, αx2 = 0 , and βx3 = 0 of the original unit assumption sufficiently results in

the unsatisfiability. Setting other control variables absent from the conflict clause

cannot effect the unsatisfiability, and also, setting these control variables to be 1

potentially move the corresponding input variable from XC to XG or XH , or even

39

3.1. Single-Output Ashenhurst Decomposition

more, from XG or XH to a more freedom state which can be either in XG or XH .

Hence, it in turn suggests that x1 ∈ XC , x2 ∈ XG, and x3 ∈ XH .

In addition, the corresponding variable partition is non-trivial since |XH | ≥ 1

and |XG| ≥ 2 due to the seed variable partition. 2

If the conjunction of Formulas (3.4) and (3.5) is unsatisfiable under a seed vari-

able partition, then the corresponding decomposition, where the variable partition

is indicated by the final conflict clause, is successful. Otherwise, it indicates that

the function f is not decomposable under this seed variable partition, we should try

another seed variable partition. For a given function f(X) with |X| = n, the exis-

tence of non-trivial Ashenhurst decomposition can be checked with at most 3 · Cn
3

different seed partitions. Note that the constant 3 here represents once the three

different variables are chosen, any variable of the three can be in XH partition.

Rather than just looking for a valid variable partition, we may further target one

that is more balanced (i.e., |XH | and |XG| are of similar sizes) and closer to disjoint

(i.e., |XC | is small) by enumerating different seed variable partitions. As SAT solvers

usually refer to a small unsatisfiable core, the returned variable partition is desirable

because |XC | tends to be small. Even if a returned unsatisfiable core is unnecessarily

large, the corresponding variable partition can be further refined by modifying the

unit assumption to reduce the unsatisfiable core and reduce |XC | as well. The

process can be iterated until the unsatisfiable core is minimal. We introduce an

UNSAT core refinement process to further reduce the number of variables in XC ,

40

3.1. Single-Output Ashenhurst Decomposition

the detailed description can be found in subsection 3.5.1.

After automatic variable partitioning, functions g and h can be derived through

a construction similar to the decomposition problem with a given variable partition.

The correctness of the overall construction can be asserted.

Theorem 3.2 For a function f decomposable under Ashenhurst decomposition, we

have f(X) = h(XH , XC , g(XG, XC)) for functions g and h, and a non-trivial variable

partition X = {XH |XG|XC} derived from the above construction.

Algorithm 2 Derive g and h without a given variable partition

Input: f

Output: g and h

1: (XH , XG, XC)⇐ FindAGoodPartition(f)

2: F ⇐ CircuitInstantiation(f,XH , XG, XC)

3: (ϕA, ϕB)⇐ CircuitPartition(F)

4: P (X1
G, X

2
G, XC)⇐ Interpolation(ϕA, ϕB)

5: g(XG, XC)⇐ Cofactor(P, a ∈ [[X1
G]])

6: h⇐ FunctionalDependency(f, g)

7: return (g, h)

Algorithm 2 summarizes the algorithms we used to derive the function g and h

without a given variable partition. Line 1 is the core procedure to derive a valid and

good partition result, the detailed algorithm of this step is described in Algorithm 3.

In Algorithm 3, the input is the f function itself, and output is a valid variable

41

3.1. Single-Output Ashenhurst Decomposition

Algorithm 3 FindAGoodPartition(f)

Input: f

Output: V PBest

1: failcount⇐ 0

2: TimeStart⇐ Time()

3: V PBest⇐ AllV arInCommon()

4: while (Time()− TimeStart) < 60 do

5: SP ⇐ GetASeedPar()

6: (V PCur, partitionable)⇐ GetAV alidPar(f, SP)

7: if partitionable = true then

8: if disjointness(V PCur) < disjointness(V PBest) then

9: V PBest⇐ V PCur

10: failcount⇐ 0

11: else if disjointness(V PCur) = disjointness(V PBest) then

12: if balancedness(V PCur) < balancedness(V PBest) then

13: V PBest⇐ V PCur

14: failcount⇐ 0

15: if V PBest doesn’t renew then

16: failcount+ +

17: if failcount ≥ 1500 then

18: break

19: V PBest⇐ UNSATCoreRefinement(V PBest)

42

3.2. Multiple-Output Ashenhurst Decomposition

partition X = {XH |XG|XC}. Line 1-3 set some initial values, ”VPBest” denotes

the best variable partition we derived. In the beginning, the best variable partition

is assigned to be with all variables in the common variable XC . There are two

stopping criterions in this algorithm. One is the time limit, we only allow this

partition procedure be executed no more than 60 seconds, as line 4 shows. Another

stopping criterion is in line 17-18. If both disjointness and balancedness1 cannot be

improved in consecutive 1500 seed partition trials, the partition procedure will be

terminated.

Line 5-6 enumerate different seed partitions, and try to find a valid partition

under this pre-specify seed partition by using the unit assumption technique. If the

seed partition is partitionable, line 7-14 check the the improvement of disjointness

and balancedness, if the current partition is a better result, the best partition will

be replaced. Note that improve disjointness is more preferable than balancedness in

our algorithm. Finally, there is an UNSAT core refinement procedure in line 19 to

get a more disjointness and balancedness partition.

3.2 Multiple-Output Ashenhurst Decomposition

So far we considered single-output Ashenhurst decomposition for a single function

f . We next show that the algorithm is extendable to multiple-output Ashenhurst

1The detailed definition of disjointness and balancedness can be found in Chapter 4.

43

3.2. Multiple-Output Ashenhurst Decomposition

decomposition for a set {f1, . . . , fm} of functions.

Proposition 2.1 in the context of Ashenhurst decomposition of a set of functions

can be formulated as satisfiability solving as follows.

Proposition 3.2 A set {f1(X), . . . , fm(X)} of completely specified Boolean func-

tions can be expressed as

fi(X) = hi(XH , XC , g(XG, XC))

for some functions hi and g with i = 1, . . . ,m if and only if the Boolean formula

(
∨
i

fi(X
1
H , X

1
G, XC) 6≡ fi(X

1
H , X

2
G, XC)) ∧

(
∨
i

fi(X
2
H , X

2
G, XC) 6≡ fi(X

2
H , X

3
G, XC)) ∧

(
∨
i

fi(X
3
H , X

3
G, XC) 6≡ fi(X

3
H , X

1
G, HC)) (3.6)

is unsatisfiable.

We assume that every fi shares the same g, so in every matrix of the decomposi-

tion chart of a set of fi functions, it is allowed to have at most two different kind of

column patterns. Note that every element in the decomposition chart has m output

assignments (v1, . . . , vm) for every output function fi. Formula 3.6 checks whether

there are more than two different kind of column patterns in the decomposition

chart of a set {f1, . . . , fm} of functions.

Since the derivation of functions g and hi, and automatic variable partitioning

are essentially the same as the single-output case, we omit the detailed explanations.

44

3.2. Multiple-Output Ashenhurst Decomposition

3.2.1 Shared Variable Partition

In Formula 3.6, we assume that every fi shares the same variable partition X =

{XH |XG|XC}. Actually, take i = 2, which is two-output Ashenhurst decomposition

problem as an example, there can be 7 kinds of variable partitions. More specifically,

a variable is said to be in Xg if the variable is used only by g, in Xh1 if the variable

is used only by h1, in Xh2 if the variable is used only by h2, in Xh1,h2 if the variable

is shared by h1 and h2, in Xg,h1 if the variable is share by g and h1, in Xg,h2 if the

variable is share by g and h2, and in Xg,h1,h2 if the variable is share by g, h1, and

h2.

In our formulation, for a multi-output decomposition problem, the variables are

partitioned into 3 groups XH , XG, and XC . However this grouping does not force

a variable v which belongs to one of the 3 groups to be shared by all functions fi.

Since in our derivation we use functional dependency to construct the hi functions,

for a variable v is assigned to the XH partition, the corresponding identity function

of this variable become one of the candidate base function of functional dependency

problem. However the constructed dependency function may not depend on all base

functions. Once the dependency function h1 depends on variable v but h2 do not,

the variable v is now in Xh1 partition. In other word, we do not have to partition

the variables into 7 groups before deriving the sub-functions, the variable partition

X = {XH |XG|XC} we used in the algorithm is sufficient to cover 7 partition groups.

Xh1, Xh2, and Xh1,h2 can be covered by the partition XH ; Xg,h1, Xg,h2, and Xg,h1,h2

45

3.3. Beyond Ashenhurst Decomposition

can be covered by partition XC ; and Xg can be covered by partition XG.

3.3 Beyond Ashenhurst Decomposition

In case we wish to extend our algorithm to general functional decomposition, the

following question arises.

Is the above algorithm extendable to general functional decomposition, namely,

for k > 1?

f(X) = h(XH , XC , g1(XG, XC), . . . , gk(XG, XC))

The answer is yes, but with prohibitive cost. Taking k = 2 for example, we need

20 copies of f to assert the non-existence of five different column patterns for every

matrix of a decomposition chart, in contrast to the six for Ashenhurst decomposition

shown in Figure 3.1. This number grows in 2k(2k + 1). Aside from this duplication

issue, the derivation of functions g1, . . . , gk, and h may involve several iterations of

finding satisfying assignments and performing cofactoring. The number of iterations

varies depending on how the interpolation is computed and can be exponential in

k. Therefore we focus mostly on Ashenhurst decomposition.

46

3.4. Decomposition under Don’t-Cares

3.4 Decomposition under Don’t-Cares

In Lemma 3.1, we have proved that for ϕA is unsatisfiable under some c ∈ [[XC]],

there is only one column pattern in the matrix of c of the decomposition chart of f .

In this case, the XG variables will be the don’t-care condition under some c ∈ [[XC]].

We have known that the indices of the column pattern in each matrix can be treated

as the input valuations of the g function, and the grouping of these column indices

according to their column patterns can be used to distinguish the onset and offset

minterms of the g function.

If there is only one column pattern in a matrix with respect to some valuation

c ∈ [[XC]], we cannot distinguish the onset or offset minterms of the g function in this

matrix. Under such c ∈ [[XC]], no matter what different valuations of XG variables

are, the output value of the f function are still the same, so this can be treated

as a don’t-care condition of f function. Since the existence of the don’t-care of f

function can be used to further simplify the f function, so quickly characterize all

c ∈ [[XC]] which the corresponding matrix of c has only one column pattern will

become the future study.

47

3.5. Implementation Issues

3.5 Implementation Issues

3.5.1 Minimal UNSAT Core Refinement

Note that, if the final conflict clause returned by the SAT solver does not correspond

to a minimal unsatisfiable core, for variable xi being able to be placed in either of

XG and XH under some variable partition, the valuation of the control variables

(αxi
, βxi

) needs not be (1, 1). Similarly, under non-minimality, variables being able

to be placed in XG or XH can be misplaced in XC .

Since a final conflict clause returned by a SAT solver may not reflect a minimal

UNSAT core, very likely we can further refine the corresponding variable partition.

Suppose that the variable partition is X = {XH |XG|XC} before the refinement. We

iteratively and greedily try to move a common variable of XC into XG or XH , if

available, making the new partition more balanced as well. The iteration continues

until no such movement is possible. On the other hand, for a variable x with control

variables (αx, βx) = (1, 1), indicating x can be placed in either of XH and XG, we

put it in the one such that the final partition is more balanced.

3.5.2 Balanced Partition

When balanced variable partition is needed, randomize the IDs of input variable

results in more balanced variable partition. Since SAT solver tend to make decisions

48

3.6. A Complete Example

in a descending priority order based on variable IDs. So if the input variable IDs

have some pattern rules between different copies of f , SAT solving for the variable

partition may check conditions of XG or XH with a higher priority than other

variable group. So appropriately change the order of input variable IDs between

different copies of f get more balanced partition result.

3.5.3 Elimination of Equality Constraint Clauses

When dealing with the equality of variables xi ∈ X in different copy of f , the cur-

rent implementation first instantiate variables into needed copies then add equality

constraints to claim they have to be the same value. However this procedure may

increase the clause number as well as the run-time of SAT solving. Most important

of all, current implementation may enlarge the size of interpolant circuit. If the

function g obtained from interpolant is large, the derivation of h related to this g

will be difficult. So remove the equality constraint by using the same variable ID

can reduce the number of clauses when input variable is large.

3.6 A Complete Example

In this section, we provide a complete example for the algorithm, discussing how

the aspects described before are taken into account in the execution of the method.

Figure 3.3 shows the example circuit we use in the following discussion.

49

3.6. A Complete Example

Figure 3.3: Example circuit used in the complete example

The first step is to derive a valid partition. In order to prevent the trivial

partition, we force two arbitrary input variables to be strictly in XG, say, a and

b. One other variable to be strictly in XH , say, d. The rest variables c and e

are in XC partition. These conditions can be specified by setting control variables

(αa, βa) = (αb, βb) = (0, 1), (αd, βd) = (1, 0), and (αc, βc) = (αe, βe) = (0, 0). When

SAT solving the conjunction of Formulas (3.4) and (3.5), if the unit assumptions

on the control variables results in an unsatisfiable result, that means the partition

exists and the returned conflict clause corresponds to a valid variable partition. For

example, suppose that the returned conflict clause is (αa + αb + αc + βc + βd + βe).

It in turn suggests that c ∈ XC , a, b ∈ XG, and d, e ∈ XH .

50

3.6. A Complete Example

Figure 3.4: The decomposition chart of the example circuit

The second step is to derive the g function using the variable partition we derived

from step one. Since the partition we used is a valid partition, so the conjunction

of Formula (3.2) and Formula (3.3) must be unsatisfiable, hence an interpolant

exists. Figure 3.5 shows the relation the interpolant characterized. The red and blue

groups indicate different column patterns. Note that when c = 0, from Figure 3.4

shows, there is only one kind of column pattern in the corresponding matrix. Both

Formula (3.2) and Formula (3.3) are unsatisfiable since they cannot distinguish two

different column patterns. when c = 0, the interpolant could be anything, depends

on the proofs of the unsatisfiable SAT instance. When c = 1, it characterize all

different column patterns just as the decomposition chart in Figure 3.4. Then we

cofactor the variable (a1, b1) of the interpolant by value (0, 0), hence we derive a legal

51

3.6. A Complete Example

implementation of g function after changing variables from (a2, b2, c2) to (a, b, c).

Note that different value we use to cofactor the variables (a1, b1) may result in

different g function, it is not unique.

Figure 3.5: (a) Relation of the derived interpolant function, (b) Relation after co-

factor by (a1, b1) = (0, 0)

The third step is to use functional dependency to derive the h function. We

use the g function we just derived and identity functions which correspond to each

variable in XH and XC partition to be the base functions, just as Figure 3.6 (a)

shows. In other hand, the original f function in Figure 3.3 be the target function. If

we do so, the returned dependency function by the functional dependency procedure

is the h function we need. The derived h is shown in Figure 3.6 (b). Note that we

have 8 gates in the original example circuit f , but only 5 gates in g and h circuits.

52

3.6. A Complete Example

Figure 3.6: (a) The base functions, (b) h function derived by functional dependency

53

Chapter 4

Experimental Results

The proposed approach to Ashenhurst decomposition was implemented in C++

within the ABC package [2] and used MiniSAT [10] as the underlying solver. All

the experiments were conducted on a Linux machine with Xeon 3.4GHz CPU and

6Gb RAM.

4.1 Single- and Two-Output Ashenhurst Decom-

position

We choose large ISCAS, MCNC and ITC benchmark circuits to evaluate the pro-

posed algorithm. Only large transition and output functions with equal to or more

than 50 inputs in the transitive fanin cone were considered. In this section, we eval-

54

4.1. Single- and Two-Output Ashenhurst Decomposition

Table 4.1: Single-output Ashenhurst decomposition

ci
rc

u
it

#
fu

n
c

#
v
a
r

#
fa

il
#

S
A

T
T

O
#

su
cc

#
v
a
r

su
cc

#
V

P
a
v
g

ra
te

v
a
li
d

-V
P

ti
m

e
a
v
g

(s
ec

)
m

em
(M

b
)

b
1
4

1
5
3

5
0
–
2
1
8

0
1
0
8

4
5

5
0
–
1
0
1

1
7
0
1

0
.6

1
5

1
4
4
.2

2
9
0
.0

1

b
1
5

3
7
0

1
4
3
–
3
0
6

0
5
1

3
1
9

1
4
3
–
3
0
6

1
5
1
9

0
.9

1
7

9
6
.6

2
1
0
7
.2

0

b
1
7

1
0
0
9

7
6
–
3
0
8

0
1
4
8

8
6
1

7
6
–
3
0
8

1
6
4
5

0
.9

0
4

8
7
.1

2
1
2
5
.8

4

C
2
6
7
0

6
7
8
–
1
2
2

0
1

5
7
8
–
1
2
2

1
0
6
6

0
.8

3
5

8
3
.8

0
5
8
.9

1

C
5
3
1
5

2
0

5
4
–
6
7

0
4

1
6

5
4
–
6
7

3
0
4
1

0
.9

1
4

5
0
.9

0
5
1
.3

4

C
7
5
5
2

3
6

5
0
–
1
9
4

0
2

3
4

5
0
–
1
9
4

1
3
5
0

0
.4

5
5

6
4
.3

8
3
6
.6

5

s9
3
8

1
6
6
–
6
6

0
0

1
6
6
–
6
6

3
0
5
1

0
.7

2
6

1
9
.0

3
2
4
.9

0

s1
4
2
3

1
7

5
1
–
5
9

0
0

1
7

5
1
–
5
9

3
0
9
2

0
.7

2
3

1
3
.6

6
2
5
.3

4

s3
3
3
0

1
8
7
–
8
7

0
0

1
8
7
–
8
7

3
3
3
6

0
.5

9
9

5
8
.3

0
2
7
.7

5

s9
2
3
4

1
3

5
4
–
8
3

0
0

1
3

5
4
–
8
3

3
4
8
2

0
.8

5
7

3
7
.8

6
3
5
.3

3

s1
3
2
0
7

3
2
1
2
–
2
1
2

0
0

3
2
1
2
–
2
1
2

5
6
9

0
.9

0
8

7
0
.2

6
5
0
.6

2

s3
8
4
1
7

2
5
6

5
3
–
9
9

6
7
2

1
7
8

5
3
–
9
9

1
0
9
0

0
.5

2
3

1
0
3
.3

3
1
3
6
.0

4

s3
8
5
8
4

7
5
0
–
1
4
7

0
0

7
5
0
–
1
4
7

1
1
2
0

0
.9

2
4

4
7
.1

3
5
1
.5

6

55

4.1. Single- and Two-Output Ashenhurst Decomposition

Table 4.2: Two-output Ashenhurst decomposition

ci
rc

u
it

#
p

a
ir

#
v
a
r

#
fa

il
#

S
A

T
T

O
#

su
cc

#
v
a
r

su
cc

#
V

P
a
v
g

ra
te

v
a
li
d

-V
P

ti
m

e
a
v
g

(s
ec

)
m

em
(M

b
)

b
1
4

1
2
3

5
0
–
2
2
3

1
8

6
5

4
0

5
0
–
1
2
5

1
8
3
2

0
.5

6
8

9
6
.8

6
2
2
6
.7

0

b
1
5

2
0
1

1
4
5
–
3
0
6

0
3
1

1
7
0

1
4
5
–
2
6
9

1
1
7
6

0
.8

4
5

1
1
3
.8

6
2
2
4
.0

7

b
1
7

5
8
3

7
9
–
3
1
0

0
8
8

4
9
5

7
9
–
3
0
8

6
7
6

0
.8

2
4

1
0
3
.1

2
4
1
9
.3

5

C
2
6
7
0

5
7
8
–
1
2
3

0
1

4
7
8
–
1
2
3

2
5
4

0
.7

2
4

6
6
.9

5
5
5
.7

1

C
5
3
1
5

1
1

5
6
–
6
9

0
2

9
5
6
–
6
9

3
7
0

0
.5

9
4

5
9
.2

0
6
0
.0

5

C
7
5
5
2

2
1

5
6
–
1
9
5

0
2

1
9

5
6
–
1
4
1

1
8
8

0
.4

6
5

8
9
.5

7
7
8
.6

7

s9
3
8

1
6
6
–
6
6

0
0

1
6
6
–
6
6

3
3
4
5

0
.7

2
0

6
1
.2

4
3
4
.7

7

s1
4
2
3

1
4

5
0
–
6
7

0
0

1
4

5
0
–
6
7

3
5
3
9

0
.5

9
1

5
5
.3

4
4
5
.6

6

s3
3
3
0

1
8
7
–
8
7

0
0

1
8
7
–
8
7

1
2
7
8

0
.4

2
3

6
6
.8

3
4
7
.4

3

s9
2
3
4

1
2

5
4
–
8
3

0
0

1
2

5
4
–
8
3

2
1
9
3

0
.7

0
8

4
8
.1

1
5
5
.1

5

s1
3
2
0
7

3
2
1
2
–
2
2
8

0
0

3
2
1
2
–
2
2
8

5
8
5

0
.7

0
0

9
3
.3

6
1
1
8
.0

3

s3
8
4
1
7

2
1
8

5
3
–
1
1
6

1
3

3
0

1
7
5

5
3
–
1
1
6

6
8
9

0
.4

9
8

1
0
9
.0

6
3
1
9
.4

8

s3
8
5
8
4

9
5
0
–
1
5
1

0
0

9
5
0
–
1
5
1

1
6
5
6

0
.7

1
3

4
6
.1

7
2
0
7
.7

8

56

4.1. Single- and Two-Output Ashenhurst Decomposition

uated both single-output and two-output Ashenhurst decompositions. For the latter

case, we simultaneously decomposed a pair of functions with similar input variables.

For a circuit, we heuristically performed pairwise matching among its transition and

output functions to find function pairs having more common input variables for de-

composition. Only function pairs with joint input variables equal to or more than

50 were considered to be decomposed. Note that the experiments target the study

of scalability, rather than comprehensiveness as a synthesis methodology.

Tables 4.1 and 4.2 show the decomposition statistics of single-output and two-

output decompositions, respectively. In these tables, Column 1 lists the circuits to

be decomposed. Columns 2 lists the numbers of instances (i.e., functions for single-

output decomposition and function pairs for two-output decomposition) with no

less than 50 inputs. Column 3 lists the ranges of the input sizes of these instances.

Column 4 lists the numbers of instances that we cannot find any successful variable

partition within 60 seconds or within 1500 seed variable partitions. Column 5 lists

the numbers of instances that are decomposable but spending over 30 seconds in

SAT solving for the derivation of function g or h. Columns 6 and 7 list the numbers

of successfully decomposed instances and the ranges of the input sizes of these

successful instances, respectively. Columns 8 and 9 list the average numbers of tried

seed partitions in 60 seconds and the average rates hitting valid seed partitions.

Column 10 shows the average CPU times spending on decomposing an instance.

Finally, Column 11 shows the memory consumption. As can be seen, our method

can effectively decompose functions or function pairs with up to 300 input variables.

57

4.1. Single- and Two-Output Ashenhurst Decomposition

Figure 4.1: Best variable partition found in 60 seconds – without minimal UNSAT

core refinement

Figure 4.2: Best variable partition found in 60 seconds – with minimal UNSAT core

refinement

58

4.2. Quality of Variable Partition

4.2 Quality of Variable Partition

We measure the quality of a variable partition in terms of disjointness, indicated

by |XC |/|X|, and balancedness, indicated by ||XG| − |XH ||/|X|. The smaller these

two values are, the better a variable partition is. Figures 4.1 and 4.2 show the dis-

jointness and balancedness information for the best found variable partition within

60 seconds1 for each decomposable instance. Note that when enumerating different

seed variable partitions to find a better partition results, we emphasis on improving

disjointness than balancedness.

Each spot on these two figures corresponds to a variable partition result for a

decomposition instance who is decomposable. Figure 4.1 and Figure 4.2 show the

variable partition results without and with further minimal unsatisfiable (UNSAT)

core refinement process, respectively. Comparing Figures 4.1 and 4.2, we see that

minimal UNSAT core refinement indeed can substantially improve the variable par-

tition quality. Specifically, the improvement is 38.81% for disjointness and 17.70%

for balancedness.

Figure 4.3 compares the qualities of variable partitioning under four different

efforts. In the figure, “1st” denotes the first-found valid partition and “tsec” denotes

the best-found valid partition within t seconds. The averaged values of |XC |/|X| and

1The search for a best variable partition may quit before 60 seconds if both disjointness and

balancedness cannot be improved in consecutive 1500 trials.

59

4.2. Quality of Variable Partition

Figure 4.3: Variable partition qualities under four different efforts

||XG| − |XH ||/|X| with and without minimal UNSAT core refinement are plotted

in this figure. In our experiments, improving disjointness is preferable to improving

balancedness. These two objectives, as can be seen, are usually mutually exclusive.

Disjointness can be improved when sacrificing balancedness, and vice versa. The

figure also demonstrates that our proposed minimal UNSAT core refinement process

can effectively improving the disjointness. It is interesting to note that, on average,

1337 seed partitions are tried in 60 seconds, in contrast to 3 seed partitions tried to

identify the first valid one.

We observed that in many cases the run-time of variable partitioning dominates

the total run-time of the algorithm. A further investigation suggests that the first-

found valid variable partition may help reducing the run-time due to its first-found

60

4.3. Fast Variable Partitioning

natural.

4.3 Fast Variable Partitioning

The next step we try to do is replacing the best found valid partition within 60

seconds by the first-found valid partition to reduce the run-time of variable partition

step.

Figure 4.4: First-found valid partition – without minimal UNSAT core refinement

Figures 4.4 and 4.5 show the disjointness and balancedness of the first-found valid

partition without and with the minimal UNSAT core refinement process. Every spot

in the figures corresponds to a test case from the single- and two-output Ashenhurst

decomposition in our experiments. As can be seen, for the partition results without

61

4.3. Fast Variable Partitioning

Figure 4.5: First-found valid partition – with minimal UNSAT core refinement

minimal UNSAT core refinement, the results of first-found valid partition has fewer

points close to the origin compare to the best found variable partition in 60 seconds.

It reveals that our partition technique without minimal UNSAT core refinement may

not catch the local optimal solution in the first-found valid partition.

By introducing the minimal UNSAT core refinement process, there are more

points close to the origin. That means the partition results are more balancedness

and disjointness. After apply the minimal UNSAT core refinement process to the

first-found valid partition, there are 37.23% improvement on disjointness but 19.44%

balancedness loss (balancedness from 4.89% to 5.84%). Even though the ratio of

balancedness loss seems high, but the actual value of balancedness is still very low.

Since the minimal UNSAT core refinement process improved the quality of first-

62

4.3. Fast Variable Partitioning

found valid partition, we are now interested in comparing the partition results of

first-found valid partition with minimal UNSAT core process with the results of

best found partition within 60 seconds without minimal UNSAT core process. One

fact we observed is, for partition results of first-found valid partition with minimal

UNSAT core process, which shows in Figure 4.5, the quantity of those points close to

the origin is even more than the quantity of those in Figure 4.1, which corresponds

to the best found partition in 60 seconds without minimal UNSAT core refinement

process. It reveals that these two partition efforts have comparable qualities.

We next analyze the number of SAT solving needed between first valid partition

with UNSAT core refinement and best partition within 60 seconds without UNSAT

core refinement. Recall that in average, we need 3 seed partitions tried to find the

first valid partition, in contrast to 1337 seed partitions tried in 60 seconds. In the

other hand, the number of SAT solving we need in minimal UNSAT core refinement

process is exactly the number of XC variables. The maximum cardinality of XC

is no more than the number of input variables (in our experiments, the maximum

number of input variables is 308).

The above analysis shows that the disjointness and balancedness of the first-

found valid partition with minimal UNSAT core refinement process are comparable

to the results of best found partition in 60 seconds without minimal UNSAT core

operation. However the number of SAT solving needed is four times less. Hence if

the timing cost of the partition process is asked to be small, the minimal UNSAT

63

4.3. Fast Variable Partitioning

core refinement process is a non-sacrificed procedure in the partition step.

Table 4.3: Variable distribution in different partition efforts

effort XG XH XGH XC

first 0.013 0.087 0.259 0.641

first mini 0.128 0.186 0.261 0.425

60 0.049 0.291 0.261 0.399

60 mini 0.141 0.342 0.262 0.255

Table 4.3 shows the average variable distribution of first-found valid partition

and best found partition in 60 seconds. For example, the average XG distribution is

calculated as average|XG|/average|X|. Note that the term “mini” here indicates the

results with minimal UNSAT core refinement process. The column XG, XH , and XC

indicate the percentage of variables which belong to the variable partition XG, XH

and XC , respectively. The column XGH indicates the percentage of variables which

belong to either XG or XH partition. From the results, there are more variables

strictly in XH than in XG no matter what different partition efforts we applied.

There are almost one fourth of variables can be either in XH or XG, these free

variables can be used to establish a more balanced partition. One thing we have to

mention here is that, in our experiment, when evaluating disjointness and balanced,

we let each XGH variable be either in XH or XG such that the variable partition

will be more balanced.

64

4.3. Fast Variable Partitioning

From Table 4.3, we know the fact that for average disjointness, the first-found

valid partition with minimal UNSAT core operation and the best found partition

in 60 seconds without minimal UNSAT core operation have almost the same value.

The difference is less than 2.6%. We further use Figure 4.6 to demonstrate that not

only for average disjointness but also for the disjointness for every test case, no any

partition effort dominates another. The x-axis indicates the disjointness of first-

found valid partition with minimal UNSAT core operation. The y-axis is the value

for best found partition in 60 seconds without minimal UNSAT core operation. Also,

every spot in the figure corresponds to a test case from the single- and two-output

Ashenhurst decomposition in our experiments.

Figure 4.6: Comparison of disjointness between different partition efforts

We have mentioned that if the timing cost is asked to be small, the minimal

UNSAT core refinement process is a non-sacrificed operation in the partition step.

65

4.3. Fast Variable Partitioning

Figure 4.7: Comparison of disjointness between different partition efforts

Figure 4.8: Disjointness versus total variables of the best found partition in 60

seconds with minimal UNSAT core operation

66

4.4. n-Output Ashenhurst Decomposition

Although the first-found valid partition with minimal UNSAT core operation results

in a similar partition quality compares to the best found partition in 60 seconds with-

out minimal UNSAT core operation. On the other hand, if we further apply the

minimal UNSAT core operation to the best found partition in 60 seconds, there are

additional improvements in both disjointness and balancedness. Figure 4.7 shows

the improvement of disjointness for every test cases in our single- and two-output

Ashenhurst decomposition experiments. Furthermore, since in our experiments scal-

ability is an important issue, Figure 4.8 shows the disjointness versus the total input

variables for every test cases under “60 mini” partition effort. It shows that not only

small circuits but also large circuits with more than 300 input variables have chances

to find a more disjoint variable partition using our proposed method.

4.4 n-Output Ashenhurst Decomposition

We have shown that the proposed algorithm can handle single- and two-output

Ashenhurst decompositions. Here, we choose a benchmark circuit s38584 to demon-

strate that out proposed algorithm can successfully decompose functions with more

than two outputs. Figure 4.9 shows the average run time of multi-output Ashenhurst

decomposition. Just as the test case generation step in the two-output function de-

composition, we heuristically choose n output functions that have more common

input variables from the benchmark circuit s38584 to be the test cases. Note that

for each n-output test case, every output function shares the same g function. As

67

4.5. Quality of Composite Functions

can be seen, the average runtime is proportional to the number of the outputs.

Figure 4.9: Runtime of multi-output Ashenhurst decomposition

4.5 Quality of Composite Functions

We take benchmark circuit s9234 as an example to show the circuit information of

functions g and h derived from Ashenhurst decomposition. The results are shown

in Table 4.4.

The first column indicates the different efforts we applied to the test cases before

we feed it into the algorithm. “Sin” and “Dul” denote the single- and two-output

Ashenhurst decomposition, respectively. “Clp” denotes ABC commands collapse

and strash are further applied to collapse and structure hash a circuit. “Syn” de-

68

4.5. Quality of Composite Functions

Table 4.4: Circuit information of s9234

effort
original g g Clp h h Clp

#n #l #sup #n #l #sup #n #l #sup #n #l #sup #n #l #sup

Sin 227 29 62 186 23 27 83 12 27 136 22 34 65 13 34

SinClp 130 16 54 147 25 28 51 12 27 234 30 33 97 14 33

SinClpSyn 130 16 54 270 35 28 63 12 27 212 28 34 88 14 34

SinSyn 128 14 54 135 20 22 37 9 21 169 25 36 99 14 36

Dul 242 29 65 155 28 20 56 10 20 294 39 49 122 16 49

DulClp 166 18 59 611 69 23 75 11 21 239 36 49 116 16 48

DulClpSyn 165 18 59 633 64 25 89 12 25 304 41 46 112 16 45

DulSyn 148 15 59 195 23 21 50 11 21 254 29 48 116 15 48

notes ABC command resyn is further applied to synthesize a circuit. The next

three columns show the information of the test cases with different efforts as the

pre-processing. The next six columns indicate the average number of nodes, levels,

and support variables of the derived g function before and after applying the com-

mand collapse to the derived g function. The last six columns are the results for

h function. Note that functions g and h in different rows may not have the same

functionalities. Although the test cases in different rows have the same functional-

ities, they can have different circuit structures. The different circuit structures of

the test cases result in different variable partitions as well as the functionality of

derived functions g and h.

As can be seen, by ABC command collapse the size and level of the functions

g and h are reduced. The same fact happens in the preprocessing step. One fact

69

4.5. Quality of Composite Functions

we can observe from the table is that, for function g without further optimized

by collapse, the generated g in row “Dul” is smaller than the generated g in row

“DulClp”.

It is interesting that smaller test cases(with collapse) may not generate smaller

composite functions. The reason why this happens is because the derivation of the

interpolant function is directly based on the refutation proof of an UNSAT instance.

So for a given function with different circuit structures, the circuit with smaller

size may not generate smaller refutation proof and so do the interpolant functions.

However the sizes of g and h after command collapse are greatly reduced to sizes

comparable to original test cases.

70

Chapter 5

Conclusions and Future Work

In this thesis, we have proposed a SAT-based algorithm to handle single- and

multiple-output Ashenhurst decompositions. Our proposed method can handle not

only disjoint decomposition, but also non-disjoint decomposition in a natural way.

We formulated the problem into SAT solving; by using Craig interpolation and

functional dependency, the decomposed sub-functions can be derived. Variable par-

tition process can be automated and integrated into the algorithm by introducing

the control variables for each input variable. To prevent trivial variable partition

from happening, we enforced some seed partitions to achieve this goal. Furthermore,

we enumerated different seed partitions to find a good variable partition which is

more balanced and disjoint. In addition, the variable partition results can be further

greatly improved by the proposed UNSAT core refinement process.

71

Chapter 5. Conclusions and Future Work

In our method, the formulation that solves the problem of single-output de-

composition can be easily extended to deal with the multiple-output decomposition

problem. Also, in comparison with the prior BDD-based algorithms, the bound set

variables of our method need not be small. Functions with hundreds of variables,

which cannot be represented by BDD, can be handled by our SAT-based algorithm.

The scalability of our proposed method was justified by experimental results. The

results showed that we can successfully decompose functions with up to 300 input

variables. Because the experimental results showed that the method we proposed

can handle large design instances, our approach may be applied at a top level of

hierarchical decomposition in logic synthesis, which may provide a global view on

optimization. For example, our algorithm may be used on chip-level decomposition

to implement a large design instance using many FPGA cores. Also our algorithm

can be a step forward towards topologically constrained logic synthesis.

For future work, how to effectively deal with general functional decomposition

remains future investigation. The application of our approach to FPGA Boolean

matching and multilevel hypergraph partitioning [13] are interesting subjects to

study. In contrast to multilevel hypergraph partitioning, which focuses on structure-

based manipulations, our Ashenhurst decomposition is a function-based algorithm.

This is the major difference between the two subjects, although both of them can

partition a circuit into two parts. Furthermore, for the characterization of don’t-

care conditions, how to quickly identify all sub-matrices that have only one kind of

column pattern, and how to use these don’t-care conditions to minimize the circuit

72

Chapter 5. Conclusions and Future Work

will be the future study.

73

Bibliography

[1] R. L. Ashenhurst. The decomposition of switching functions. Computation Lab,

Harvard University, Vol. 29, pp.74-116, 1959.

[2] Berkeley Logic Synthesis and Verification Group. ABC: A system for sequential

synthesis and verification. http://www.eecs.berkeley.edu/∼alanmi/abc/

[3] J. Cong and Y.-Y. Hwang. Boolean matching for LUT-based logic blocks with

applications to architecture evaluation and technology mapping. IEEE Transac-

tions on Computer-Aided Design of Integrated Circuits, 20(9):1077-1090, 2001.

[4] J. Cong and K. Minkovich. Improved SAT-based Boolean matching using im-

plicants for LUT-based FPGAs. In Proc. ACM International Symposium on

Field Programmable Gate Arrays, pp.139-147, 2007.

[5] S. A. Cook. The complexity of theorem proving procedures. Proc. Third Annual

ACM Symposium on the Theory of Computing, pp.151-158, 1971.

[6] W. Craig. Linear reasoning: A new form of the Herbrand-Gentzen theorem. J.

Symbolic Logic, 22(3):250-268, 1957.

74

Bibliography

[7] H. A. Curtis. New Approach to the Design of Switching Circuits. Van Nostrand,

Princeton, NJ, 1962.

[8] M. Davis and H. Putnam. A Computing Procedure for Quantification Theory.

Journal of the ACM, 7(3):201-215, 1960.

[9] M. Davis, G. Logemann, and D. Loveland. A machine program for theorem-

proving. Communications of the ACM, 5(7):394-397, 1962.

[10] N. Eén and N. Söensson. An extensible SAT-solver. In Proc. International Con-

ference on Theory and Applications of Satisfiability Testing, pp.502-518, 2003.

[11] J.-H. R. Jiang and R. K. Brayton. Functional dependency for verification re-

duction. In Proc. International Conference on Computer Aided Verification,

pp.268-280, 2004.

[12] J.-H. R. Jiang, J.-Y. Jou, and J.-D. Huang. Compatible class encoding in hyper-

function decomposition for FPGA synthesis. In Proc. ACM/IEEE Design Au-

tomation Conference, pp.712-717, 1998.

[13] G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar. Multilevel Hypergraph

Partitioning: Application in VLSI Domain. In Proc. ACM/IEEE Design Au-

tomation Conference, pp.526-529, 1997.

[14] R. M. Karp. Functional decomposition and switching circuit design. J. Soc.

Ind. Appl. Math. 11(2):291-335, 1963.

75

Bibliography

[15] Y.-T. Lai, M. Pedram, and S. B. K. Vrudhula. BDD based decomposition of

logic functions with applications to FPGA synthesis. In Proc. ACM/IEEE De-

sign Automation Conference, pp.642-647, 1993.

[16] C.-C. Lee, J.-H. R. Jiang, C.-Y. Huang, and A. Mishchenko. Scalable explo-

ration of functional dependency by interpolation and incremental SAT solv-

ing. In Proc. IEEE/ACM International Conference on Computer-Aided Design,

pp.227-233, 2007.

[17] R.-R. Lee, J.-H. R. Jiang, and W.-L. Hung. Bi-decomposing large Boolean func-

tions via interpolation and satisfiability solving. In Proc. ACM/IEEE Design

Automation Conference, pp.636-641, 2008.

[18] H.-P. Lin, J.-H. R. Jiang, and R.-R. Lee. To SAT or Not to SAT: Ashenhurst

Decomposition in a Large Scale. In Proc. IEEE/ACM International Conference

on Computer-Aided Design, pp.32-37, 2008.

[19] A. C. Ling, D. P. Singh, and S. D. Brown. FPGA technology mapping: A study

of optimality. In Proc. ACM/IEEE Design Automation Conference, pp.427-432,

2005.

[20] K. L. McMillan. Interpolation and SAT-based model checking. In Proc. Inter-

national Conference on Computer Aided Verification, pp.1-13, 2003.

[21] P. Pudlák. Lower bounds for resolution and cutting plane proofs and monotone

computations. J. Symbolic Logic, 62(3):981-998, September 1997.

76

Bibliography

[22] J. P. Roth and R. M. Karp. Minimization over Boolean graphs. IBM Journal,

pp.227-238, 1962.

[23] C. Scholl. Functional Decomposition with Applications to FPGA Synthesis.

Kluwer Academic Publishers, 2001.

[24] H. Sawada, T. Suyama, and A. Nagoya. Logic synthesis for look-up table based

FPGAs using functional decomposition and support minimization. In Proc.

IEEE/ACM International Conference on Computer-Aided Design, pp.353-358,

1995.

[25] T. Stanion and C. Sechen. A Method for Finding Good Ashenhurst Decompo-

sitions and Its Application to FPGA Synthesis. In Proc. ACM/IEEE Design

Automation Conference, pp.60-64, 1995.

[26] S. Safarpour, A. G. Veneris, G. Baeckler, and R. Yuan. Efficient SAT-based

Boolean matching for FPGA technology mapping. In Proc. ACM/IEEE Design

Automation Conference, pp.466-471, 2006.

[27] G. S. Tseitin. On the complexity of derivation in propositional calculus. Studies

in Constructive Mathematics and Mathematical Logic, pp.466-483, 1970.

[28] K.-H. Wang and C.-M. Chan. Incremental learning approach and SAT model

for Boolean matching with don’t cares. In Proc. IEEE/ACM International Con-

ference on Computer-Aided Design, pp.234-239, 2007.

77

Bibliography

[29] B. Wurth, K. Eckl, and K. Antreich. Functional Multiple-Output Decomposi-

tion: Theory and an Implicit Algorithm. In Proc. ACM/IEEE Design Automa-

tion Conference, pp.54-59, 1995.

[30] B. Wurth, U. Schlichtmann, K. Eckl, and K. Antreich. Functional multiple-

output decomposition with application to technology mapping for lookup table-

based FPGAs. ACM Trans. on Design Automation of Electronic Systems,

4(3):313-350, 1999.

78

