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摘要

這篇論文從多重偏好的角度出發，探討集合中蘊含的多樣性，並提出一種基

於滿足這些偏好程度的集合排序。我使用參考點作為具體化「滿足」概念的工具。

首先我將比較我所提出的模型與文獻中其他基於一組給定偏好進行集合排序

的模型之間的差異。然後，在潛在偏好不可觀察的情況下，我發現這種集合排序

可以用與Kreps (1979)相同的公理來描述。然而，在我的模型中，我推導出了一種

不同的表示方法，其中集合的評估是基於偏好滿足，而非最大化。

關鍵字：集合偏好，集合排序，可選擇集，多樣性，自由，多重偏好
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Abstract

This paper explores the diversity present in opportunity sets from the perspective

of multiple preferences and proposes a ranking of sets based on the degree to which

they satisfy these preferences. I utilize a reference point (or, a default option) as a tool

to concretize the concept of satisfaction.

First I compare the differences between my model and other model in the litera-

ture that also rank sets based on a given collection of preferences. Then, I show that my

model can be characterized by the two axioms when the underlying preferences are un-

observable. These axioms are the same as those in Kreps (1979), however, I derived a

distinct representation under which a set is evaluated based on preference satisfaction,

rather than maximization.

Keywords: Set preference, Set ranking, Preference over sets, Ranking over sets, Op-

portunity sets, Diversity, Freedom, Multi-preference
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Chapter 1 Introduction

Consider a decision problem involving the selection of a restaurant for dining.

Given that members in the group have their own preferences over foods, it is imprac-

tical to select an option that maximizes each one＇s preference. In such a scenario, it

is more reasonable for the members to agree on an option that offers food that satisfies

them sufficiently, rather than insisting on finding a restaurant that offers their most fa-

vorite food.

Consider another scenario involving a city organizer who is tasked with planning

the construction of a sports center. Faced with a set of proposals, each one may contain

several facilities such as a basketball court, tennis court, volleyball court, swimming

pool, gym, etc., the organizer must take into account the preferences of the city’s resi-

dents. Because of the limited budget, there does not exist a proposal includes all of the

most sumptuous or most luxurious facilities. Additionally, citizens are willing to buy the

ticket if the facilities in the sports center is good enough for them.

Therefore, a pragmatic solution to such decision problems is to ranking sets (restau-

rants, or design proposals) according to the number of preferences (members in the

group, or citizens) who are satisfied with their elements (dishes, or facilities). In other

words, for a group consists of three spicy-lovers who regard spicy hot pot as their fa-

1
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vorite dish and two people cannot handle any spicy food, although the majority of this

group prefer spicy hot pot, an American restaurant which offers everyone an acceptable

dish would be a more appropriate restaurant choice, even though no one considers any

dish there as their favorite. Similarly, it is a better decision for the organizer to choose

the proposal includes a swimming pool and a gym, facilities which a majority of citizens

find satisfactory, rather than the one consisting of a basketball court and a volleyball

court, which might be strongly preferred only by teenagers.

Generally, I consider the scenario where ranking sets involves several preferences

over elements, but not in the sense of maximization, rather in terms of satisfaction. Ad-

ditionally, there are two restrictions for this scenario. First, whether these preferences

are satisfied by a set only depends on the elements within the set, independently of the

satisfaction of others. Taking sports center problem as an example, this assumption im-

plies that whether a citizen’s willingness to purchase a ticket is not influenced by the

choices made by others but is solely determined by the facilities within the sports center.

The second assumption posits that the elements will not be ”depleted” or ”exhausted”

when satisfying preferences, meaning there is no concept of quantity for element. As

still in the sports center example, the facilities is assumed to be non-rivalrous goods.

In my model, I utilize a reference point (or, default option) as a tool to concretize

the concept of satisfaction. Specifically, I postulate that there is an alternative, which

serves as the reference point, located outside the space of elements. I then extend pref-

erences over elements to preferences over both elements and reference point, and define

that a set satisfies a preference if and only if this set contains an element that is ranked

above the reference point according to the preference.

2
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I propose to rank sets based on preference satisfaction. Specifically, a set is better

if and only if it satisfies more preferences in the collection. The number of preferences

satisfied with a set is what I define as the attached value of the set derived from multiple

preferences.

When the collection of preferences is observable, I show that my ranking differs

from those rankings over opportunity sets in the literature. When the collection of pref-

erences is unobservable, I provide a behavioral characterization for my ranking. The-

orem 1 indicates that a complete and transitive ranking over sets satisfies two axioms

if and only if there exists a collection of preferences where this ranking prefers the sets

which satisfy more preferences in the collection.

These two axioms are the same as those in Kreps (1979). However, his representa-

tion is motivated by uncertainty about the future preference of an individual. In particu-

lar, his representation postulates a collection of utility functions, only one of which may

be realized when this individual must make a choice from a set. No matter which util-

ity function is realized, she always chooses an element to maximize it. Then the ex-ante

value of a set is given by the sum of these maximized utilities.

Given a collection of utility functions, Kreps’ ranking over sets differs from mine.

However, my result shows that if the underlying preferences are unobservable, two

models are behaviorally equivalent. A ranking over sets can be generated from two dis-

tinct collections of preferences or utility functions, using different mechanisms, respec-

tively.

3
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Chapter 2 Literature Review

This kind of rankings over sets involving a collection of preferences is first pro-

posed to analyze individual welfare in terms of freedom.

Pattanaik and Xu (1990) was the first to argue that the assessment of individual

welfare should have considered freedom of choice in addition to agents’ utilities. They

mentioned two reasons why freedom of choice should have been taken into considera-

tion: the first was that freedom was considered instrumental in achieving a higher level

of an individual’s utility, and the second was that freedom might have had its intrinsic

value in many circumstances.

For the instrumental value of freedom, Kreps (1979) offered a rationale for this

concept. He considered a two-stage choice problem, where the agent was unsure about

his future preference, therefore the agent had a ”desire for flexibility”. In this context,

the freedom of choice allowed the agent to maximize his utility when the uncertain fu-

ture was realized.

For the intrinsic value of freedom, Pattanaik and Xu (1998) advocated that the con-

sideration of preferences which a reasonable person in the agent’s situation could possi-

bly have was important in assessing the ”intrinsic” value of freedom, which was referred

to as the multi-preference approach. Moreover, Puppe (2002) further advocated the

4
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multi-preference model of freedom and established its link to traditional social choice

theory. He proposed an alternative interpretation of the collection of preferences. By in-

terpreting these preferences as a decision-maker’s different multiple selves, the problem

of comparing opportunity sets in terms of freedom could be reframed as a social choice

problem that involved the preferences of the entire society.

Puppe and Xu (2010) introduced the concept of essential elements in an opportu-

nity set. An element was considered essential if, by deleting it, the reduced opportunity

set offered less freedom than the original set. They also showed that the notion of essen-

tiality could be given a natural interpretation in terms of the multi-preference approach.

On the other hand, Pattanaik and Xu (2000) and Bossert, Pattanaik, Xu, et al. (2001)

explored the role of diversity in measuring the freedom contained in opportunity sets,

using the concept of similarity and the distance between the elements within the oppor-

tunity sets, respectively.

Nehring and Puppe (2002) also proposed a multi-attribute approach and showed

that this approach could serve as a useful and, in some contexts, perhaps even a canon-

ical conceptual framework for thinking about diversity. The idea of the multi-attribute

approach was that, taking biodiversity as an example, the value of diversity consisted in

the realization of certain attributes or potentialities of life by some species.

In most of the literature, the focus was on the ranking of ”individual” over sets,

emphasizing the concept of freedom provided by these sets. It is worth noting that the

collection of preferences that a reasonable person in the agent’s situation could possibly

have and the measurement of diversity are two distinct and independent tools used to

quantify the degree of freedom.

5
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When utilizing the former approach to analyze the freedom contained within op-

portunity sets, it implies that only one preference from the collection will be realized.

The individual ultimately needs to choose an element from the opportunity set based on

their preferences.

Similarly, in the latter approach, the individual also needs to make a choice from

the opportunity set. However, this approach directly examines the property of elements

within the opportunity sets, like dissimilarity or kinds of distance between elements.

More dissimilar or more ”far” the elements within the opportunity sets are implies that

the individual has more choices in the opportunity sets, leading to increased freedom.

On the contrary, when considering the ranking of a ”society” over opportunity sets,

a different concept of ”diversity” becomes more relevant in this context. In this sce-

nario, all preferences within the society will realize and should be somehow satisfied.

Therefore, diversity becomes an index of the extent to which preferences within the so-

ciety are being satisfied. Moreover, It is important to measure diversity based on the

members, that is, the respective preferences within the society.

6
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Chapter 3 Model

Let X be a finite set of elements and 2X be the collection of subsets of X including

the empty set, often referred to as a collection of menus. 2X is on which I would like to

analyze the ranking in the perspective of satisfaction.

To embody the concept of satisfaction, I induce a reference point or a default op-

tion outside X , denoted as r. LetR denote a finite collection of complete and transitive

preferences on X ∪
{
r
}
, which is referred to as the reference set, or can be though as a

society of individuals.

In my model, a preference is satisfied by a set if and only if there exists an element

in the set that is preferred to the reference point r for it.

Giving the elements space X and the collection of preferencesR, I define the func-

tion NR : 2X → 2R as follows: for all A ∈ 2X ,

NR(A) =
{
R ∈ R : ∃ x ∈ A s.t. xR r

}
,

which is the preferences in the collection that are satisfied by the set A.

Notice that the reference point r is not included in the menus which the society

ranks, in order words, the reference point is not an element which can directly satisfy

7
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preferences. Instead, it serves as a benchmark for preferences. In the restaurant example

mentioned before, each member in the group can consider ”home dinner” as the refer-

ence point. This means that if a restaurant does not offer a dish better than home dinner

for some members, they will choose not to attend the dining and instead have dinner at

home. The reference point ”home dinner” is an alternative outside any menu of restau-

rant, yet all individuals utilize it as a benchmark to determine whether a restaurant offers

a dish satisfying them.

Furthermore, one can view the reference point solely as a threshold. If the refer-

ence point is not adopted, one can still use a more complicated depiction to convey the

concept of satisfaction: given a collection of preferencesR. In the collection, for each

preference R, there exists an aR in X such that aR is the worse element for R that can

satisfy R. It’s worth noting that it might be possible for aR = aR′ for some R,R′ ∈ R,

R ̸= R′. Consequently, a set satisfies a preference R if and only if there exists an ele-

ment within the set which is preferred to aR for R. This kind of definition is equivalent

to my earlier definition, where for each preference R ∈ R, a reference point r is em-

bedded between aR and the subsequent element. My definition can simply the follow-up

discussion and the reference point serves as a tool within my definition.

The transitive and complete ranking ≿ on 2X which this paper aims to analyze then

is defined as: for all A,B ∈ 2X ,

A ≿ B ⇐⇒ |NR(A)| ≥ |NR(B)|. (3.1)

8
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Chapter 4 Observable Reference Set

In this chapter, I demonstrate that when the reference set is observable, that is, the

collection of preferences in the society is given, this ranking ≿ is distinct from the other

rankings studied in the literature.

Consider the collection of preference relations,R =
{
R1, R2, R3

}
on X ∪

{
r
}
,

where X =
{
a, b, c

}
, and

aR1 r R1 bR1 c,

aR2 r R2 bR2 c,

bR3 r R3 aR3 c.

In this collection of preferences, the elements satisfy preference Ri if and only if it is

ranked at the top of whole space X for preference Ri.

One can verify that the ranking ≿ is

{a, b, c} ∼ {a, b} ≻ {a, c} ∼ {a} ≻ {b, c} ∼ {b} ≻ {c} ∼ ∅.

In the literature, Pattanaik and Xu (1998) first define for A ∈ 2X ,

max(A) =
{
x ∈ A : ∃R ∈ R s.t. xR y ∀y ∈ A

}
,

9
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which collects the elements in set A for which there exists preference ranking them at

the top within set A. Then propose the ranking of opportunity sets ≿M , which assesses

freedom reflected in the opportunity set, is defined as

A ≿M B ⇐⇒ |max(A)| ≥ |max(B)|.

In this case, it is

{a, b, c} ∼M {a, b} ≻M {a, c} ∼M {a} ∼M {b, c} ∼M {b} ∼M {c} ≻M ∅.

On the other hand, Puppe and Xu (2010), analyses freedom based on the notion of es-

sential elements introduced by Puppe (1996), which is defined as, for A ∈ 2X ,

E(A) =
{
x ∈ A : A ≻∗ A \ {x}

}
.

This essential subset has a natural interpretation in terms of multiple preferences: con-

siderR = {R1, ...Rn} and define

E(A) =
∪

i∈{1,...,n}

max
Ri

A,

where maxRi
A = {x ∈ A : xRiy ∀y ∈ A}. This definition captures an intuitive and

reasonable concept: if an element is the best within the set for some preferences, then

removing this element would diminish the attractiveness of the set.

And notice that this definition is equivalent to max(A). Furthermore, they propose

the ranking ≿E such that

A ≿E B ⇐⇒ |E(A ∪B) ∩ A| ≥ |E(A ∪ B) ∩ B|.

10
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Note that ≿E is not transitive in general, but coincidentally, it is in this case, as follow:

{a, b, c} ∼E {a, b} ≻E {a, c} ∼E {a} ∼E {b, c} ∼E {b} ≻E {c} ≻E ∅.

One can focus on the comparison between {a} and {b, c}. ≿M and ≿E focus on the

quantity of elements being ranked at top in the set; in contrast, ≿ emphasizes the num-

ber of preferences which rank elements in the set at the top of the whole space. That is,

both ≿M and ≿E , moreover, the majority of set ranking involving multiple preferences

which is characterized in the literature, evaluate sets based on the quantity of elements

possessing a particular property (being ranked at top in the set). However, ≿ assesses

sets not solely based on the property, but also considers the extent of the property (be-

ing ranked at top in the whole space for ”how many” preference in the collection). This

distinction significantly sets ≿ apart from the rankings in the literature, making it chal-

lenging to characterize when the collection of preferences is given.

11
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Chapter 5 Unobservable Reference

Set

In this chapter, let us consider the scenario where the reference set is unobservable,

given a ranking ≿ on 2X , is there any condition that ensures the existence of a reference

setR =
{
R1, R2, ..., Rn

}
which satisfies (3.1)?

Before answering this question, there are two important observations about the ref-

erence setR.

First, in general, one can writeR =
{
R1, R2, ..., Rn

}
∪
{
R∗

1, R
∗
2, ..., R

∗
k

}
, where for

all Ri, there exists at least one x ∈ X such that xRir; for all R∗
j , there exists no x ∈ X

such that xR∗
jr. ThenR satisfies (3.1) if and only if

{
R1, R2, ..., Rn

}
satisfies (3.1).

Therefore, in the following discussion, I only focus on the case where for all R ∈ R,

there exists x ∈ X such that xR r.

Secondly, notice that if there is a reference setR =
{
R1, R2, ..., Rn

}
satisfies (3.1),

then another reference setR′ =
{
R′

1, R
′
2, ..., R

′
n

}
can also satisfy (3.1), where R′

i is

generated by rearranging the order of elements above and below the reference point r,

respectively, for each Ri ∈ R. Therefore, the crucial information for the question is not

the specific reference set itself, but rather the sets that are ranked above the reference

12
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point r by the preferences in the reference set.

Define G =
{
(Gi, gi)

}k

i=1
⊆ 2X \

{
∅
}
× N, and function nG : 2X → N ∪

{
0
}
such

that for all A ∈ 2X ,

nG(A) =
∑

{i:A∩Gi ̸=∅}

gi.

Lemma 1. Given the ranking ≿ on 2X . There exists a reference set R which satisfies

(3.1) if and only if there exists G =
{
(Gi, gi)

}k

i=1
⊆ 2X \

{
∅
}
× N such that

A ≿ B ⇐⇒ nG(A) ≥ nG(B). (5.1)

And denote G =
{
(Gi, gi)

}k

i=1
as the collection of upper contour sets of r (for short,

upper contour collection) with respect to R, and R as the reference set with respect to

G.

Proof. For sufficiency, given the reference setR =
{
R1, R2, ..., Rn

}
such that

A ≿ B ⇐⇒ |NR(A)| ≥ |NR(B)|.

Without loss of generality, assumeR be arranged in the order

R =
{
R11, ..., R1l1 , R21, ...R2l2 , ..., Rk∗1, ..., Rk∗lk∗

}

such that

•
∑k∗

j=1 lj = n, and

•
{
x ∈ X : xRij1 r

}
=

{
x ∈ X : xRij2 r

}
for all i = 1, 2, ...k∗ and j1, j2 =

1, 2, ..., li, denote as
{
x ∈ X : xR∗

i r
}
, and

13
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•
{
x ∈ X : xR∗

i1
r
}
̸=

{
x ∈ X : xR∗

i2
r
}
for all i1 ̸= i2.

Define G as
{
(Gi, gi)

}k

i=1
such that k = k∗,and Gi =

{
x ∈ X : xR∗

i r
}
, gi = li for

i = 1, 2, ..., k∗. Then for all A ∈ 2X ,

|NR(A)| = |
{
R ∈ R : ∃ x ∈ A s.t. xR r

}
| =

∑{
j:A∩Gj ̸=∅

} gi = nG(A).

We have

A ≿ B ⇐⇒ |NR(A)| ≥ |NR(B)| ⇐⇒ nG(A) ≥ nG(B).

For necessity, give G =
{
(Gi, gi)

}k

i=1
⊆ 2X \ {∅} × N such that

A ≿ B ⇐⇒ nG(A) ≥ nG(B).

Define

R =
{
R11, R12, ..., R1g1 , ..., Rk1, Rk2, ..., Rkgk

}
such that

{
x ∈ X : xRij r

}
= Gi for all i = 1, 2, ..., k and j = 1, 2, ..., gi. Then for all

A ∈ 2X , if A ∩ Gi ≠ ∅, then Rij ∈
{
R ∈ R : ∃ x ∈ A s.t. xR r

}
= N(A) for all

j = 1, 2, ...gi. Therefore,

nG(A) =
∑

{j:A∩Gj ̸=∅}

gi = |
{
R ∈ R : ∃ x ∈ A s.t. xR r

}
| = |NR(A)|.

We have

A ≿ B ⇐⇒ nG(A) ≥ nG(B) ⇐⇒ |NR(A)| ≥ |NR(B)|.

Notice that the form of the function nG is referred as diversity function in Nehring

14

http://dx.doi.org/10.6342/NTU202303269


doi:10.6342/NTU202303269

and Puppe (2002), which is utilized to evaluate the diversity contained by sets. In their

model, Gi and gi are interpreted as representing an ”attitude” and the weight assigned

to that attitude, respectively. The diversity function measure the sum of weights of at-

titudes realizing by sets. It is important to note that, under this interpretation, gi is not

restricted to being a natural number.

By this lemma, one can restate the question as follows: given a ranking ≿ on 2X , is

there any condition that ensures the existence of a a set G =
{
(Gi, gi)

}k

i=1
⊆ 2X \

{
∅
}
×

N which satisfies (5.1)?

5.1 Characterization Results

The following fact is from Nehring and Puppe (2002).

Fact 1. If a function f : 2X → R satisfies f(∅) = 0, then there exists a unique function

g : 2X → R, the conjugate Moebius inverse, such that g(∅) = 0, and for all S ∈ 2X ,

f(S) =
∑

A:A∩S ̸=∅

g(A).

Moreover, the function g is given by, for all ∅ ̸= A ∈ 2X ,

g(A) =
∑
S⊆A

(−1)|A\S|+1f(Sc).

The following lemma can be inferred from the lemma 3. in Kreps (1979).

Lemma 2. Let F ⊆ 2X with |X| < ∞. If a transitive and complete ranking ≿ satisfies

that B ⊊ A implies A ≻ B. Than there exist non-positive integers ϕ(C) for all C ∈ F

15
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such that for all A,B ∈ F ,

A ≿ B ⇐⇒
∑

{C∈F :A⊆C}

ϕ(C) ≥
∑

{C∈F :B⊆C}

ϕ(C).

Proof. Following Kreps’ notations, let w(A) =
∑

{C∈F :A⊆C} ϕ(C), and w∗(A) =∑
{C∈F :A⊊C} ϕ(C). Then w(A) = ϕ(A) + w∗(A). one can progressively define each

ϕ(A) as going down with the ∼-equivalence class. With this process, w∗(A) is given

if ϕ(A′) is defined for all A′ with A′ ≻ A (thus, for all A′ with A ⊊ A′). For the ≿-

most preferred ∼-equivalence class, define the same non-positive integer ϕ(A) for all

A in the class, then w(A) is the same within the class because for A in this class, there

does not exist A′ such that A ⊊ A′, thus w∗(A) = 0. Then for the ≿-second preferred

∼-equivalence class, define non-positive integer ϕ(A) for each A in the class, such that

ϕ(A)+w∗(A) is equal among the class and less than for A′ in the first class. Keep doing

this for the following class, because F is finite, there are only classes, and the process

can give a desired representation.

Notice that specifically, ϕ(A) in the second class can only be negative, however, it

can be zero in other classes.

For example, let X =
{
x, y, z

}
, F =

{
{xz}, {yz}, {x}, {y}, {z}

}
, and ≿ such that

{xz} ≻ {yz} ≻ {x} ∼ {y} ∼ {z}.

ϕ(.) such that

ϕ({xz}) = −1, ϕ({yz}) = −2, ϕ({x}) = −2, ϕ({y}) = −1, ϕ({z}) = 0

can give the representation.
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Theorem 1. If X is a finite set. A transitive and complete ranking ≿ on 2X satisfies (i)

B ⊆ A implies that A ≿ B, and (ii) A ∪B ∼ A implies that A ∪B ∪C ∼ A ∪C for all

C ∈ 2X if and only if there exists an reference set R such that

A ≿ B ⇐⇒ |NR(A)| ≥ |NR(B)|.

Proof. For necessity, observe that if R ∈ NR(A1) ∪ NR(A2), then it is either R ∈

NR(A1) or R ∈ NR(A2), which implies there exists x ∈ A1 or x ∈ A2 such that xR r.

Equivalently, there exists x ∈ A1 ∪ A2 such that xR r, by definition, R ∈ NR(A1 ∪ A2),

Thus, NR(A1) ∪NR(A2) ⊆ NR(A1 ∪ A2).

If R ∈ NR(A1 ∪ A2), then there exists x ∈ A1 ∪ A2 such that xR r, that is, the

element x must belong to either A1 or A2, therefore, R ∈ NR(A1) or R ∈ NR(A2),

which means R ∈ NR(A1) ∪ NR(A2), thus, NR(A1 ∪ A2) ⊆ NR(A1) ∪ NR(A2).

Therefore, for all A1, A2 ∈ 2X , NR(A1) ∪ NR(A2) = NR(A1 ∪ A2). And this implies

that for all B ⊆ A, NR(B) ⊆ NR(A), then |NR(A)| ≥ |NR(B)|, A ≿ B.

If A ∪ B ∼ A, then it must be NR(A ∪ B) = NR(A) ∪NR(B) = NR(A). Thus,

NR(A ∪ B ∪ C) = NR(A) ∪NR(B) ∪NR(C) = NR(A) ∪NR(C) = NR(A ∪ C),

then |NR(A ∪ B ∪ C)| = |NR(A ∪ C)|, A ∪ B ∪ C ∼ A ∪ C.

For sufficiency, let ≿ be a transitive and complete binary relation satisfying (i) and

(ii), for all A ∈ 2X , define

Â =
∪

{A′∈2X :A∪A′∼A}

A′.

And define F ⊆ 2X as

F =
{
A ∈ 2X : A = Â

}
.
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Note that if B ⊊ A and A,B ∈ F , it must be A ≻ B, otherwise, we have A ∼ B, thus

A ∪ B = A ∼ B, and B ⊊ A ⊆ B̂, that is, B /∈ F , which is contradictory.

By Lemma 2, there exists non-positive integers ϕ(C) for all C ∈ F such that

A ≿ B ⇐⇒
∑

{C∈F :A⊆C}

ϕ(C) ≥
∑

{C∈F :B⊆C}

ϕ(C).

Observe that for all A ∈ 2X there exists A′ ∈ F such that A ∼ A′ because X is

finite and then so is
{
B ∈ 2X : A ∪ B ∼ A

}
. And A ∼ Â. Therefore, for all A ∈ 2X ,

define function h : 2X → N ∪
{
0
}
such that for all A ∈ 2X ,

h(A) =
∑

{C∈F :Â⊆C}

ϕ(C).

Then the function h gives the representation. And it can be rewritten as

h(A) =
∑

{C∈2X :A⊆C}

ψ(C)

where ψ(C) = ϕ(C) if C ∈ F , ψ(C) = 0 if C ∈ 2X \ F . It is trivial for A ∈ F . For

A /∈ F ,

∑
{C∈2X :A⊆C}

ψ(C) =
∑

{C∈2X\F :A⊆C}

ψ(C) +
∑

{C∈F :A⊆C,Â⊆C}

ψ(C) +
∑

{C∈F :A⊆C,Â ̸⊆C}

ψ(C)

Because the first part equals to 0 by definition of ψ(C), and for the third part, the collec-

tion
{
C ∈ F : A ⊆ C, Â ̸⊆ C

}
is empty, to show that, assume A ⊆ C for C ∈ F , note

that A ⊆ Â and A ∼ Â, thus

A ∪ Â ∼ A,
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by (ii), it must be

A ∪ Â ∪ C ∼ A ∪ C.

Because A ⊆ C, this is equivalent to

C ∪ Â ∼ C.

By definition, Â ⊆ Ĉ = C. Therefore,

∑
{C∈2X :A⊆C}

ψ(C) =
∑

{C∈F :A⊆C,Â⊆C}

ϕ(C) =
∑

{C∈F :Â⊆C}

ϕ(C)

Moreover, the function n : 2X → N ∪
{
0
}
such that

n(A) = h(A)− h(∅)

can also give the representation, and n(A) ≥ 0 for all A ∈ 2X , and n(∅) = 0.

Observe that for all A ∈ 2X ,

n(A) = h(A)− h(∅)

=
∑

{C∈2X :A⊆C}

ψ(C)−
∑

{C∈2X :∅⊆C}

ψ(C)

=
∑

{C∈2X :A∩Cc ̸=∅}

−ψ(C)

=
∑

{C∈2X :A∩C ̸=∅}

g(C),

where g(C) = −ψ(Cc) for all C ∈ 2X \
{
∅
}
. Define g(∅) = 0, then by Fact 1, the

function g : 2X → N ∪
{
0
}
is the unique conjugate Moebius inverse of n. Then define

G =
{
(Gi, gi)

}k

i=1
⊆ 2X \

{
∅
}
× N,

{
Gi

}k

i=1
be the collection of all A ∈ 2X with
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g(A) > 0, and gi = g(Gi) for all i = 1, 2, ..., k. The function nG : 2X → N ∪
{
0
}
can

give the representation of ≿, the proof is complete with lemma 1.

5.2 Minimum Cardinality of Reference Set

The previous section demonstrates that the ranking ≿ on 2X satisfying the condi-

tions in Theorem 1 can be represented by a reference setR in formula (3.1).

Therefore, this section aims to further ask a natural question: Given the ranking ≿

on 2X satisfying the conditions in Theorem 1, is there a minimum value for the cardinal-

ity of reference setR which represents ≿? The following proposition gives the answer:

yes.

Propositin 1. If a transitive and complete ranking ≿ on 2X satisfies (i) B ⊆ A implies

that A ≿ B, and (ii) A ∪ B ∼ A implies that A ∪ B ∪ C ∼ A ∪ C for all C ∈ 2X , there

exists a minimal cardinality for the reference set R which represents ≿ in formula (3.1).

Proof. I prove this proposition by directly finding the minimal cardinality for the disrable

reference setR.

Revisit the Lemma 1 and investigate the relationship between the upper contour

collection G =
{
(Gi, gi)

}k

i=1
and the reference setR with respect to G. For each i =

1, 2, ..., k, one can interpret (Gi, gi) from the perspective of the reference setR as fol-

lows: there are gi preferences inR ranking all elements of Gi above reference point r

and all elements of Gc
i (complement of Gi) below reference point r. Therefore, the car-

dinality of reference setR is equal to
∑k

i=1 gi.

In the proof of Theorem 1, one can observe that the upper contour collection G =
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{
(Gi, gi)

}k

i=1
is determined at the step which assigns non-positive integers ϕ(C) to all

C ∈ F . This is because G collects the all A ∈ 2X with g(A) > 0 and 0 < g(A) =

−ϕ(Ac) only if Ac ∈ F . ThusR and its cardinality are simultaneously determined .

To obtain the minimum cardinality of reference setR, we look back at the first step

of sufficiency proof (or equivalently, Lemma 2) and take F =
{
A ∈ 2X : A = Â

}
,

and choose non-negative integers ϕ(C) as large as possible for all C ∈ F (because

0 < g(A) = −ϕ(Ac)) to represent the ranking ≿ (that is, A ≿ B if and only if∑
{C∈F :A⊆C} ϕ(C) ≥

∑
{C∈F :B⊆C} ϕ(C)) in F . Without loss of generality, I assume

that there are n ∼-equivalence class in F and name them as the first class, second class,

on so on, in the order of ranking from the most preferred to the least preferred.

Still let w(A) =
∑

{C∈F :A⊆C} ϕ(C), and w∗(A) =
∑

{C∈F :A⊊C} ϕ(C) and w(A) =

ϕ(A) + w∗(A). Start with the first class, notice that the set of elements X must be the

only subset in the first class because of the definition of F , and ϕ(X) will not appear in

the definition of the conjugate Moebius inverse g, moreover, X contains its all subsets.

These observations indicate that the choice of ϕ(X) has no impact on the cardinality of

the reference setR. Consequently, one can assign ϕ(X) arbitrarily.

For all subsets C in the second class, ϕ(C) must be a negative integer as large as

possible and makes subset C worse than the subset in the first class and makes itself

equivalent to other subsets in the class, that is, w(C) = w∗(C)+ϕ(C) = ϕ(X)+ϕ(C) <

ϕ(X) = w(X) for all C in this class, then one should choose ϕ(C) = −1 for all C in the

second class.

For the k-th class, where k = 3, 4, ...n. For all A in k-th class, the values of ϕ(C)

for C ∈ F : A ⊊ C have been determined in the previous (k − 1) steps. As a result,
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the corresponding w∗(A) have also been determined. Then one can focus on the subset

A in the k-th class such that w∗(A) is the minimum among all subsets in this class. If

w∗(A) < w(C) for C in the (k − 1)-th class, then one can assign ϕ(A) = 0; if w∗(A) ≥

w(C) for C in the (k − 1)-th class, then one can assign ϕ(A) be a negative integer, as

large as possible, and w∗(A) + ϕ(A) < w(C) for C in the (k − 1)-th class, that is,

ϕ(A) = w(C) − w∗(A) − 1. In both scenarios, assign ϕ(A) = w(A) − w∗(A) for other

A in the class.

Finally, the non-negative integers ϕ(C) satisfy that for all A,B ∈ F , A ≿ B if and

only if ∑
{C∈F :A⊆C}

ϕ(C) ≥
∑

{C∈F :B⊆C}

ϕ(C).

Moreover, since ϕ(C) is defined to be as large as possible for each subset C within each

∼-equivalence class, the corresponding values of g and their sum, which is the car-

dinalty of reference set, are minimized.

Furthermore, one can also obtain the second proposition from the previous proof.

Propositin 2. Let ≿ be a transitive and complete ranking on 2X satisfying (i) B ⊆ A

implies that A ≿ B, and (ii) A∪B ∼ A implies that A∪B∪C ∼ A∪C for all C ∈ 2X .

And letm be the minimal cardinality of reference set R representing ≿ in formula (3.1).

Suppose that

1. both R and R′ can represent ≿ in formula (3.1), and

2. |R| = |R′| = m.
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Then for all A ∈ 2X ,

|
{
R ∈ R : ARrRAc

}
| = |

{
R′ ∈ R′ : AR′ r R′Ac

}
|,

where ARrRAc means that all elements in set A is preferred to reference point r, and

r is preferred to all elements in set Ac for the preference R.

Proof. From the preceding proof process, one can conclude that the minimal cardi-

natilym and the corresponding G =
{
(Gi, gi)

}k

i=1
is uniquely determined, where

m =
∑k

i=1 gi. Therefore, the reference setsR andR′ have the same upper contour

collection G.

For A ∈ 2X , if A ̸= Gi for i = 1, ..., k, then

|
{
R ∈ R : ARrRAc

}
| = |

{
R′ ∈ R′ : AR′ r R′Ac

}
| = 0;

if A = Gi for i = 1, ..., k, then

|
{
R ∈ R : ARrRAc

}
| = |

{
R′ ∈ R′ : AR′ r R′Ac

}
| = gi.

Proposition 2 indicates that, if two reference setsR andR′ can give the representa-

tion of a ranking ≿ in the formula (3.1) and they both have the minimal cardinality, then

R′ can be generated by rearranging the order of elements above and below the reference

point r, respectively, for each preference inR, and conversely.
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Chapter 6 Comparison with Kreps

6.1 Different Interpretation of Representations

Recall the theorem in Kreps (1979). Kreps considers a scenario where the individ-

ual encounters a two-stage problem where he first select a set and subsequently choose

an element within that set. However, the individual is uncertain about his second-stage

preference when he select the sets. Kreps provides a characterization under the circum-

stance where where only the ranking over sets can be observed.

Kreps shows that a transitive and complete ranking ≿∗ on 2X \
{
∅
}
satisfies (i)

B ⊆ A implies that A ≿∗ B, and (ii) A ∪ B ∼∗ A implies that A ∪ B ∪ C ∼∗ A ∪ C

for all C ∈ 2X \
{
∅
}
if and only if there exists a finite collection of utility functions{

U1, U2, ..., Un

}
, where Ui : X → R for i = 1, 2, ..., n such that

v(A) =
n∑

i=1

[
max
a∈A

Ui(a)

]
,

where A ∈ 2X \
{
∅
}
, represents ≿∗. Notice that the empty set is not in Kreps’ original

discussion.

Because this representation adds up the maximum values that a set of utility func-

tions can achieve within a sets, it implies that this ranking over sets is easily influenced
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by the preference which strongly favors some elements, while downplaying or disre-

garding the others.

The concept of satisfaction is crucial in some context as it allows the realization of

fairness among the society (equivalently, the collection of preferences).

My result provides an alternative explanation for the rankings over sets with prop-

erties (i) and (ii). In some context, for example, choosing restaurant for group dinning,

the fairness within the group is crucial factor for decision. Thus, it is more reasonable

that the restaurant ranking for a group is generated from the mechanism taking the fair-

ness or satisfaction into consideration, rather than from adding up the maximal utility

value realized by restaurants.

6.2 Demonstration of the Equivalence between Represen-

tations

To illustrate how this type of set ranking can yield both my representation and

Kreps’ representation, I utilize an example and derive his representation following his

proof, the n convert his representation into mine.

Consider X =
{
x, y, z

}
, the desirable ranking ≿ on 2X

{
∅
}
such that

{x, y, z} ∼ {x, y} ≻ {x, z} ≻ {x} ∼ {y, z} ∼ {y} ≻ {z} ≻ .

Following Kreps’ proof, one can obtain four utility functions U1, U2, U3, U4 such
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that

U1(a) =


0 if a = y

−1 otherwise,

U2(a) =


0 if a = x

−3 otherwise,

U3(a) =


0 if a = y or z

−2 otherwise,

U4(a) =


0 if a = x or y

−1 otherwise

which provide Kreps’ representation.

One can shift each utility function such that the utility value is non-negative. The

shifted utility functions

U ′
1(a) =


1 if a = y

0 otherwise,

U ′
2(a) =


3 if a = x

0 otherwise,

U ′
3(a) =


2 if a = y or z

0 otherwise,
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U ′
4(a) =


1 if a = x or y

0 otherwise

can still give the representation. Furthermore, for all A ∈ 2X \
{
∅
}
,

v(A) =
n∑

i=1

[
max
a∈A

U ′
i(a)

]
, =

∑
{i:A∩Gi ̸=∅}

gi = nG(A),

where {(G1, g1), (G2, g2), (G3, g3)} = {({x}, 3), ({y}, 1), ({x, y}, 1), ({y, z}, 2)} = G.

With Lemma 1, we can generate the reference setR = {Ri}7i=1 such that

xR1 r R1 y R1 z, xR2 r R2 y R2 z, xR3 r R3 z R3 y,

y R4 r R4 xR4 z, y R5 xR5 r R5 z, y R6 z R6 r R6 x,

z R7 y R7 r R7 x.

represent ≿ in formula (3.1).

Intuitively, this disparity between these representations lies in the differing interpre-

tations of the scores obtained to the sets:: Kreps regards them as the sum of maximum

of utility value of utility function, while I interpret them as the numbers of preferences

which is satisfied.
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Chapter 7 Conclusion

In this paper, I explore a new model which ranks sets based on a collection of pref-

erences. This model stands apart from others for various reasons. Firstly, it does not

rigorously assume that these preferences must be maximized by the elements within the

sets; rather, they simply need to be satisfied. I employ a reference point as a benchmark

or threshold to elaborate the concept of satisfaction.

Secondly, in contrast to the rankings characterized in the literature, which assess

sets based on the quantity of elements possessing a specific property stemming from

multiple preferences, my model further considers not only the existence of this property

but also its magnitude. I refer to this the magnitude of property, resulting from multiple

preferences, as the attached value derived from multiple preferences.

Finally, I utilize the same axioms as Kreps to characterize this model in a scenario

where one can merely observe the ranking of sets rather than the collection of prefer-

ences. This result shows that a set ranking, which satisfies both (i) B ⊆ A implies

A ≿ B, and (ii) A ∪ B ∼ A implies A ∪ B ∪ C ∼ A ∪ C for all C ∈ 2X , can be

explained not only by the existence of a collection of preferences (or, utility functions)

from the maximization viewpoint, but also the perspective of satisfaction.
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