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摘要摘要摘要摘要 

杏仁體中央被核(CeAC)可接收經由杏仁體-旁臂核(PBA)路徑傳遞，來自腦

幹及脊髓的痛覺訊息，同時也接收直接由脊髓投射上來的痛覺訊息，此核區被稱

為「痛覺杏仁核」已將近十年，先前研究指出佛波醇12,13-乙酸酯(PDA)可顯著

促進旁臂核到CeAC的神經傳導作用，且與細胞內部的胞外訊息傳遞激脢(ERK)

有關，本研究使用全細胞紀錄電生理紀錄以及藥理方式探討ERK在調節CeAC神

經細胞興奮性上所扮演的角色，給予短期PDA(蛋白激脢C之活化劑)可提高動作

電位發生的頻率，然而給予長期PDA卻會降低其頻率；另外短期PDA也會增加

Ih-current，但長期PDA則減緩其強度，此外，給予長期PDA也會延遲動作電位發

生的時間，在給予蛋白激脢C(PKC)抑制劑－Chelerythrine與GF109203X之後，短

期與長期的PDA反應都不復出現，給予U0126不會影響短期PDA帶來的反應，卻

逆轉了長期PDA先前的反應情形，實驗結果顯示：(1)給予PDA會經由PKC—ERK

路徑作用，在不同的時間條件下，調節CeAC的神經興奮性；(2)活化ERK加劇動

作電位延遲發生的情形(A型鉀離子通道)。 

 

Keyword: 中樞神經敏感化、神經興奮性、杏仁體、杏仁體中央被核、胞外訊息

調節激脢、鉀離子通道、佛波酯、蛋白激脢C。 
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Abstract 

 The capsular central amygdaloid (CeAC) nucleus acquires nociceptive specific 

information from the brainstem and spinal cord via the parabrachio-amygdaloid (PBA) 

pain pathway as well as via direct projections from the spinal cord. It has been termed 

as “nociceptive amygdala” for almost a decade. Previous study indicated that 

application of phorbol 12,13-diacetate (PDA) caused marked enhancement of synaptic 

transmission of parabrachial input onto CeAC nucleus and the elevation of 

intracellular ERK was involved. In the present study, using patch-clamp technique 

and pharmacological methods, the role of ERK in regulating neuronal excitability of 

CeAC was examined. Short-term application of the PKC activator, PDA increased the 

number of action potentials whereas the long-term application decreased the spike 

number. Beside, short-term PDA enhanced the size of Ih current but long-term PDA 

downsized it. In the meanwhile, long-term application of PDA also increased the first 

spike latency. Protein Kinase C (PKC) inhibitors, Chelerythrine and GF109203X 

abolished the effect of PDA in both time-scales. Application of U0126 had no effect 

on short-term PDA however it reversed the effect caused by long term PDA 

application. The result suggested that (1) PKC—ERK pathway induced by PDA 

regulated input-output function of neuronal excitability of CeAC in different 

time-scales; (2) ERK activation enhanced the delay onset of action potential (stongly 
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related to A-type potassium channel). 

 

Keyword: central sensitization, neuronal excitability, amygdale, ERK, potassium 

channel, PDA, PKC. 
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Introduction  

Capsular central amygdaloid nucleus and Nociception 

 The amygdala is consisted with several anatomically and functionally distinct 

nuclei. Capsular central amygdaloid nucleus (CeAC) located in central nucleus of 

amygdala. Central nucleus not only receives nociceptive information from the 

brainstem and spinal cord via the parabrachio-amygdaloid (PBA) pain pathway as 

well as via direct projections from the spinal cord. It also receives projection from 

basal lateral nucleus (BLA) and lateral nucleus (LA), which processes affective, 

cognitive and polymodal information from thalamus and cortical areas (Shi and Davis 

1999; LeDoux 2000; Stefanacci and Amaral 2000; Price 2003). Recent studies 

suggested that amygdala serve as a role in modulating pain perception. There was 

reduction in opioid- and cannabinoid-induced anti-nociception in rhesus monkeys 

after bilateral lesions of the amygdaloid complex (Manning et al., 2001). Another in 

vivo experiment using electrophysiological technique combined with mechanical and 

thermal noxious stimulation to record the response of amygdaloid neurons then 

discovered that the lateral –capsular part of amygdaloid central nucleus (CeAC) had 

the most responses to noxious stimulation. Since CeAC play an crucial role in 

regulating pain perception, it was termed as nociceptive amygdala (Gauriau and 

Bernard, 2002; Neugubauer et al., 2004). Moreover, Neugebauer et al. (2003, 2006) 
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described the plastic changes in the amygdala in the model of arthritic pain 

(Neugebauer et al., 2003; Neugebauer et al. 2006). In the meanwhile Ikeda et al. 

(2007) also provided intriguing novel information about pain mechanisms in the 

amygdala in the mouse model of chronic neuropathic pain (spinal nerve ligation 

model). The study described a pain-related synaptic plasticity in the lateral capsular 

division (Ikeda et al., 2007). Interestingly, Ikeda et al. (2007) used an identical 

method to demonstrate synaptic plasticity changes and increased neuronal excitability 

in the amygdala in neuropathic pain that described in the arthritis pain model 

(Neugebauer et al. 2003, Bird et. al. 2005). These results indicated that mechanisms of 

chronic neuropathic pain involved an N-methyl-D-aspartate (NMDA) receptor 

independent form of plasticity in the CeAC (Ikeda et al., 2007), whereas increased 

NMDA receptor function was critical for plasticity associated with acute arthritic pain 

(Bird et al., 2005; Li and Neugebauer 2004). Moreover, Carrasquillo and Gereau 

(2007) used the formalin test as a mouse model of persistent inflammatory pain; it 

was found that activation of ERK in the amygdala was necessarily sufficient to induce 

long-lasting peripheral hypersensitivity to tactile stimulation. Pharmacological 

activation of ERK by PDA in the amygdala induced peripheral hypersensitivity in the 

absence of inflammation. Blockade of inflammation-induced ERK activation by 

U0126 significantly reduced long-lasting peripheral hypersensitivity associated with 
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persistent inflammation. In the meanwhile, Chang et al. (2011) used acid-induced 

muscle pain model (AIMP) of mouse to further prove that phosphorylated ERK in the 

CeAC prominently was increased and PBA–CeAC synaptic transmission was 

postsynaptically enhanced. Addition to thermal and mechanical pain, neuropathic pain, 

arthritis pain and inflammation induced pain and acid induced muscle pain were 

considered to be strongly related to CeAC. Therefore, CeAC indeed played a crucial 

role in regulation of pain-modulatory circuitry.  

 

Central sensitization 

 The term “Central sensitization” was first brought up by Clifford Woolf in 1983 

(Clifford, 1983).  He demonstrated that a thermal injury in the periphery tissue was 

able to cause an amplification of noxious and innoxious stimuli evoked activities. 

More importantly, the amplification was coupled to an augmented flexion reflex 

response (recorded by EMG). Since reflexes are mediated by a dorsal horn – ventral 

horn reflex arc, it proves that somehow the central nervous system (CNS) must be 

involved in these amplified signals of stimulation. Moreover, he also noted that the 

injury on one side of paw was able to boost the reaction of reflex arc on the 

contra-lateral side of the body. Because the injury was occurred on the opposite of the 

body, peripheral mechanisms were not likely the candidate to mediate the outcome. It 
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indicated that the circuitry must have involved amplification of signaling in the CNS. 

Such mechanisms could result in pain amplification similar to what is seen in humans 

following an injury or in chronic pain conditions. 

 In addition to central sensitization occurred in dorsal horn of the spinal cord, 

it is also important to note that central sensitization can occur in other CNS 

regions as well. For instance, recent studies have shown that the amygdala plays a 

crucial role in the sensitization of nociceptive responses following pain induction 

(Neugebauer et al., 2003; Kobert et. al 2010). Neugebauer et al. (2003) described that 

in the arthritis pain model, the activities of couple groups of neurons in CeAC were 

enhanced (by extracellular single-unit recordings) and there were hypersensitivity to 

thermal and mechanical stimulations in peripherals. In addition, it was found that 

application of (R,S)-3,5-dihydroxyphenylglycine (DHPG), the mGluR agonist in the 

central nucleus of mice was sufficient to induce peripheral hypersensitivity in the 

absence of injury and it is related to ERK activation (Kobert et al., 2010). Other than 

amygdala, another recent study has shown that rostral ventromedial medulla (RVM) 

in brainstem, shows plasticity in its responses to painful stimuli after peripheral injury. 

This region not only sends descending fibers into the spinal cord that are able to 

amplify nociceptive signals, it is also considered to be involved in descending pain 

modulation (Carlson and Heinricher, 2007). Pharmacologically, the RVM is a major 
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target for cannabinoid and opioid analgesics (Walker, 2002) and it is possible that 

these compounds suppress pain by attenuating central sensitization-like responses in 

these neurons. 

 Central sensitization is influenced by comprehensive causes. For instance, the 

increased activity in glutamate receptors, including increased NMDA and AMPA 

receptor activity and group I mGluRs (mGluR1/5) are crucial to the formation of 

central sensitization (Willis, 2001; Latremoliere and Woolf, 2009). In addition, many 

of other molecular substrates which could be activated during central sensitization, 

such as PKA, PKC, CaMKII alpha and ERK play a key role in the scheme. Activation 

of NMDA receptor and other Ca2+ channels increases the intracellular Ca2+, so PKC 

and CaMKII are phosphorylated, furthering the activation of ERK and MAPKs (Ji 

and Strichartz, 2004). Intracellular Ca2+ plays a crucial role in generation of central 

sensitization. It is now considered that the cascade reactions take large part in 

promoting the formation of central sensitization, the ground reasons for chronic pain 

and neuropathic pain (Yashpal et al., 1995; Malmberg et al., 1997; Yashpal et al., 

2001). 

  In addition to these molecular targets, neurons that signal central sensitization 

have also been identified. These neurons are found in lamina I of the spinal cord and 

they express the substance P receptor NK-1 (Mantyh and Hunt, 2004). Mantyh et al. 
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demonstrated that spinal administration of substance P conjugateded with saporin 

(toxin) was able to ablate experimental hyperalgesia in pre-clinical models showing 

that these neurons are crucial for the full expression of central sensitization. 

 

Objectives 

 ERK was demonstrated in participation of synaptic plasticity in the model of 

neuropathic, arthritis and acid induced muscle pain (AIMP) in CeAC by 

pharmacological and electrophysiological techniques. The synaptic transmission of 

PBA input onto neurons of the CeAC nucleus was significantly increased in the 

previous studies (Ikeda et al., 2003; Neugebauer et al., 2003; Neugebauer et al., 2004; 

Ikeda et al., 2007; Chang et al., 2011). By using immunostaining technique , it was 

found that the phosphorylated ERK (pERK) in CeAC was significantly increased in 

the model of chronic pain induced by paw injection of formalin as well as by direct 

injection of PDA to CeAC (Carrasquillo et al.,2007). Moreover, PDA was proved to 

facilitate the synaptic transmission of PBA input onto neurons of the CeAC nucleus in 

both AIMP models and normal mice, and pERK in CeAC was also significantly 

increased in the AIMP models (Chang et al., 2011). These studies indicate that (1) the 

elevation of ERK plays a universal role in modulating different types of pain 

perception (2) ERK is perhaps activated by PKC pathway since direct injection of 
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PDA induced the elevation of pERK.  

 In the present study, several issues related to the role ERK in modulating 

neuronal excitability were discussed:  

 Issue 1: The aspects about how activation of PKC pathway by PDA affects 

   the input-output function of neuronal excitability of CeAC. 

  Issue 2: The existence of PKC—ERK pathway in regulating the input-out  

    function of neuronal excitability. 

  Issue3: The role of ERK in regulating the delay onset of action potential  

    (A-type potassium channel). 
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Materials and Methods 

Preparation of amygdala slices 

 The use of animals in this study was approved by the Ethical Committee for 

Animal Research of the National Taiwan University. Male C57BL/6 mice at the age 

of 4–9 weeks were used. Coronal brain slices (300µm thick) containing central 

amygdala (CeAL), and capsular division (CeAC) amygdaloid neurons of the right 

hemisphere were obtained from Male C57BL/6 mice since the hemispheric 

lateralization described by Fu et al. (2008) as well as Ji et al. (2010) previously.(Fu 

and Neugebauer, 2008; Ji et al., 2010). The mice were decapitated and their brains 

rapidly removed and placed in ice-cold artificial-CSF (ACSF), containing the 

following (in mM): 119 NaCl, 2.5 KCl,1.3 MgSO4, 26.2 NaHCO3, 1 NaH2PO4, 2.5 

CaCl2, and 11 glucose, with the pH adjusted to 7.4 by gassing with 95% O2/5% CO2. 

All slices were cut using a vibroslicer (ZERO 1, DSK) and were kept in oxygenated 

ACSF (95% O2/5% CO2) at room temperature (24 –25°C) to allow recovery for at 

least 90 min before recording commenced. Slices were transferred to an 

immersion-type recording chamber mounted on an upright microscope (BX50WI, 

Olympus Optical) equipped with an infrared-differential interference-contrast 

microscopic video. The lateral nucleus of the central amygdala (CeAL), and capsular 

division (CeAC) were clearly identified under low magnification. The capsular 
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division appeared to be slightly brighter than other regions. The boundaries among 

different amygdaloid nuclei were easily discerned under light microscopy. 

Whole-cell Patch clamp recording 

 Neurons in the CeAL and CeAC were recorded under visual guidance with patch 

pipettes pulled from borosilicate glass (1.5 mm outer diameter, 0.32 mm wall 

thickness; G150F-4, Warner Instruments). The patch pipettes had a resistance of 

3–8MΩ when filled with a solution consisting of the following (in mM): 131 

K-gluconate, 20 KCl, 10 HEPES, 0.2 EGTA,8 NaCl, 2 ATP, 0.3 GTP, and 6.7 

biocytin, with the pH adjusted to 7.2 by KOH and the osmolarity to 300–305 mOsm. 

Recordings were made at room temperature with an Axopatch 1D amplifier 

(Molecular Devices). Neurons were recorded at -60 mV. While performing 

current-clamp recordings, the input resistance (Rn) was continuously monitored by 

applying a current pulse of 30 pA and the bridge was balanced by adjusting the Rs 

compensation of the amplifier. Data were discarded when the Rn varied by > 20% 

from its original value during the recording. The membrane potential (Vm) of the 

recorded neurons was clamped (or held) at -60 mV. All signals were low-pass filtered 

at a corner frequency of 2 kHz and digitized at 10 kHz using a Micro 1401 interface 

(Cambridge Electronic Design). Data were collected using Signal software 

(Cambridge Electronic Design). Neuronal excitability was measured by recording 
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action potentials generated by intracellular current injections (100 ms) of increasing 

magnitude (20 pA steps , -160pA to 200 pA) while the cell was held at a starting 

membrane potential of -60 mV. 

Drug application.  

 Drugs were applied by gravity-driven superfusion of the brain slice in the ACSF 

( >2 ml/min). Solution flow into the recording chamber was controlled with a 

three-way stopcock. The chemicals used for the ACSF and internal solution were 

purchased from Merck. Picrotoxin, kynurenic acid, glycine, PDA, U0126, 

chelerythrine, and GF109203X were purchased from Sigma. PDA, U0126, 

Chelerythrine and GF109203X were dissolved in DMSO to stock solution. For U0126 

administration, the slices were kept in U0126-containing oxygenated ACSF (95% O2/ 

5% CO2) at room temperature (24 –25°C) allowing the treatment for at least 120 

minutes before recording commenced. Except for U0126, drugs were all added to the 

ACSF and bath applied. 

Data and statistical analyses.  

 Baseline of spike number was recorded at least 10-min bath in the base solution. 

For PKC inhibitors, superfusion was administrated for 10-min before recording. Data 

were compiled and analyzed using OriginPro 8.0 software (OriginLab, Northampton, 

MA, USA). Number of action potential are expressed as original traces or as 
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means ±SEM. A pair two sample t test was used to compare responses before 

(baseline) and after PDA application as well as to PKC inhibitors and U0126. The 

length of current injection in each frame were 100ms. First spike latency and input 

resistance were presented as the mean±SEM. The criterion for significance was p 

<0.05. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

12 

 

Results  

Identification of Capsular Central amygdaloid neuron 

 Before whole-cell patch clamp was commenced, the brain slices were placed 

under light microscope without attachment filter lens. Capsular central amygdaloid 

nucleus (CeAC) appeared to be brighter than other region with naked eyes (Fig1-A2). 

According to the previous study, CeAC can be categorized as Type 1 and Type 2 

neurons (Chang et al., 2011). CeAC neurons studied in the present study were mostly 

Type1 neurons (Type1:Type2 = 26:2).Theses neurons showed prominent delay onset 

in firing the first action potential with injection of depolarizing current pulses and a 

voltage sag with injection of hyperpolarizing current pulses (Fig1 B). In the present 

study, a prominent delay onset was defined as the first peak of action potential 

appeared over 0.1 second after injecting 20pA depolarizing current. Since the 

prominent delay in onset of action potential could be ascribed to the expression of a 

wild variety in amount of ion channels mediating the fast activated and inactivated 

A-type potassium current (IA), IA could be the best candidate for delaying onset of 

action potentials in neurons (Schoppa and Westbrook,1999; Shibata et al.,2000; 

Burdakov et al.,2004).  
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PDA modulates input-output function of neuronal excitability in different time scales. 

 Whole-cell patch recordings were made in coronal brain slices from the right 

hemisphere, because accumulating evidence suggested that pain-related amygdala 

functions were lateralized to the right hemisphere (Carrasquillo and Gereau, 2007, 

2008; Ji and Neugebauer, 2009). After successfully switched into whole-cell 

configuration, action potential was generated by direct intracellular current injection. 

Each frame of injection lasted for 100ms. The intracellular injection of 

hyperpolarizing and depolarizing current pulses were from 20pA to 200pA in 20pA 

steps (n=8 neurons).  

 Baseline of action potential was recorded after application of 10-min base 

solution containing picrotoxin, strychnine, and kynurenic acid (PSK) to block primary 

synaptic transmission. PDA is a type of phorbol ester, a well-known and effective 

PKC activator. It was applied to examine the role of PKC and the possible effect of 

downstream pathway, such as the cascade reaction induced by ERK (Robertson et al., 

1999; Yuan et al., 2002; Carrasquillo and Gereau, 2007). The hypothesis in the present 

study was that 5-min PDA would induce rapid effect of PKC and 20-min PDA would 

be able to activate its downstream cascade reaction such as ERK. Since the 

consideration of number of action potential was the most direct method to inspect 

input-output function of neuronal excitability, the spike number was conducted in 
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three perspectives in the present study: first, spike number with depolarizing current 

injection pulse from 20pA to 200pA in 20pA steps; second, spike number induced by 

80pA current injection; third, spike number induced by 120pA current injection. 

These parameters were chosen simply because there were individual varieties among 

neurons. Some neuron tend to fire action potential with smaller intensity of current 

injection such as 20pA, others tend to fire action potential with larger intensity of 

current injection such as 80pA. Not to mention the administration of certain drugs was 

able to influence the firing condition. Generally speaking, at the level of 80pA current 

injection, CeAC neurons were able to fire action potential and in most cases, and 

adaptation of action potential appeared at the level of 120pA current injection. All the 

scale bars were adjusted to the same module to facilitate the comparison of different 

data. 

 From the perspective of spike number on 20pA-200pA current injection, 5-min 

PDA (1.5µM) prominently increased input-output function (Fig. 2-A, 2-B1, red 

diamond). Spike number significantly increased with 5-min PDA (Fig. 2-A, 2-B2, 

p=0.00196, Pair two sample t-test); Besides, on 80pA and 120pA current injection 

with5-min PDA application, clear tendencies in elevation of spike number (Fig.2-C1, 

C2) were also existed. On the other hand, input-output function was significantly 

decreased (Fig.2-B2, p=0.01068) with 20-min application of PDA. Likewise, on 
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80pA and 120pA current injection with 20-min PDA application, spike number was 

decreased, especially on 80pA current injection (Fig.2-C1, Pair two sample t-test, 

p=0.00139).  These data suggested that the effect of PDA could be divided at least in 

2 categories, short-term and long term. The short-term effect (5-min PDA) generally 

increased input-out function of neuronal excitability whereas the long term effect 

(20-min PDA) decreased it. Since the aim of present study was to understand the role 

of ERK, long term effect the effect of 5-min PDA on first spike latency and input 

resistance were not discussed. With 20-min PDA application, the first spike latency 

was significant increased (Pair two sample t-test, p<0.0001). It was possible that 

20-min PDA activated the ERK/MAPK pathway which enhanced the function of 

A-type potassium channel (Schrader, 2005), causing the rise of first spike latency and 

the decline of spike number. There was no significant difference in input resistance 

between baseline and 20-min PDA.  

 Moreover, hyperpolarized activated cation current (Ih) were also measured as sag 

size to conduct the role of Ih in CeAC. The Ih is caused by the activation of 

hyperpolarization-activated and cyclic nucleotide-gated (HCN) channels which 

belong to the superfamily of voltage-gated potassium channels (Kv). HCN channels 

are sometimes referred to as “pacemaker channels” because they help to generate 

rhythmic activity within groups of heart and brain cells (Luthi et al., 1998). Ih 



 

16 

 

mediates repetitive firing in neurons and cardiac myocytes (Accili et al., 2002; 

Robinson, 2003). In addition, roles of Ih in the regulation of resting membrane 

potential (Lupica et al., 2001), membrane input resistance (Magee et al.,1998), 

synaptic plasticity (Beaumont et al., 2000), and dendritic integration (Berger et al., 

2001) have been reported (Poolos et al., 2002). Increasing evidence implicates Ih in 

activity-dependent changes of neuronal excitability (Beaumont et al., 2002; Welie et 

al., 2004), and in certain pathological conditions such as epilepsy or neuropathic pain 

(Shah et al., 1998; Chaplan t al., 2003). It has been reported that Ih was also found in 

the BLA in rats (Womble and Moises, 1993). In the present study, 5-min PDA had no 

significant effect on sag size but 20-min PDA significantly reduced the sag (Fig. 2-E, 

Pair two sample t-test, p=0.0448), suggesting the role of PKC downstream pathway 

in Ih. 

 

Effect of Chelerythrine –PDA on capsular central amygdaloid neuron  

 Chelerythrine is a potent, selective and cell permeable protein kinase C inhibitor 

that binds to the catalytic domain of PKC. It is at least 100-fold more selective for 

PKCs than for other kinases (Herbert et al., 1990; Chao et al., 1998) and is broadly 

applied on pharmacological experiments. Here, Chelerythrine (3µM, applied by 

superfusion) was administrated 10-min before PDA application to examine the role of 

PKC and its possible effect to ERK. It was worth notice that PKC inhibition did not 
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necessarily indicate to complete ERK suppression. The issue about ERK involvement 

was awaited to be discussed.  

 In the view of spike number on 20pA-200pA current injection, effect of 5-min 

and 20-min PDA were both abolished by Chelerythrine (Fig. 3-A,3-B).The spike 

number was neither prominently increased nor decreased. At the level of 80pA and 

120pA current injection, there were not any crucial effects on spike number after PDA 

application, indicating that the input-output function was inhibited by Chelerythrine in 

both time scales. It suggested that the elevation of spike number was caused by rapid 

PKC effect and the long-term decline was caused by PKC mediated reaction, pointing 

out the possible existence of PKC-ERK pathway in the matter of modulating input-out 

function. However, first spike latency was significantly increased with 20-min PDA 

(Fig.3-D1, Pair two sample t-test, p=0.00161), indicating the enhancement of 

A-current. It was possible that Chelerythrine inhibited about 75% of PKC activity in 

the concentration level of micro-molar (Herbert et al., 1990). In addition, effect of 

20-min PDA alone on first spike latency was potent (Fig. 2-D1, Pair two sample t-test, 

p<0.0001). After long term application of PDA, small amount of PKC activated the 

downstream pathway. Once the downstream pathway was activated, PKC inhibition 

no longer applied, causing the further delay onset of action potential. There was no 

significant difference on input resistance with Chlerythrine and addition of 20-min 



 

18 

 

PDA. Moreover, there is no significant change after PDA administration in sag sizes 

caused by Ih current (Fig. 3-E) 

 

Effect of GF109203X –PDA on capsular central amygdaloid neuron 

 GF109203X is a potent and selective PKC inhibitor in the concentration level of 

nano-molar and also a PKA inhibitor in the concentration level of micro-molar 

(Chernova et al., 2007). Here, GF109203X (3µM, applied by superfusion) was 

administrated to confirm the short-term and long-term effects of PKC as well as PKA 

to a greater degree. GF109203X inhibited the effect of long-term PDA (Fig. 4-A1,A2). 

It also inhibited short-term effect of PDA (Fig.4-B1, n=6) except for the level of 

80pA and 100pA current injection. On the average number of total action potential, 

GF109203X was able to abolish the effect of both 5-min and 20-min PDA (Fig 4-B2). 

The average number of action potential was neither increased nor decreased with 

5-min and 20-min PDA administration. Moreover, in the level of 120pA current 

injection, the effect of PDA was also abolished. However, 20-min PDA significantly 

reduced the spike number in the level of 80pA current injection (Pair two sample 

t-test, p=0.1211). It was possible that except for inhibiting PKC, there was selective 

effect of GF109203X which changed the tonic environment of neurons and affected 

the baseline of spike number, causing an error in data analysis. There was no 
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significant effect on the first spike latency and input resistance with 20-min PDA. 

Moreover, there is no significant change after PDA administration in sag sizes caused 

by Ih current (Fig. 4-E). 

 

Effect of U0126–PDA on capsular central amygdaloid neuron 

 U0126 is a very selective and highly potent inhibitor of Mitogen-Activated 

Protein Kinase (MAPK) cascade by inhibiting its immediate upstream activators, 

MEK1and MEK2. It inhibits both active and inactive for of MEK1and 2, preventing 

the activation of ERK. U0126 (10µM) was added in oxygenated ACSF allowing the 

treatment going on brain slices for at least 120 minutes before recording commenced. 

Theoretically, U0126 should not change the result of 5-min PDA because it did not 

affect the function of PKC. The spike number should still somehow increase. Besides, 

without PKC inhibition, 20-min PDA should be able to decrease the spike number and 

to increase the first spike latency (Fig. 2). The hypothesis here in the U0126—PDA 

protocol was to examine the existence of PKC—ERK pathway activated by PDA.  

  From the view of spike number on 20pA-200pA current injection, both 

5-min and 20-min PDA significantly increased the input-output function of neuronal 

excitability (Fig. 5-A,B, Pair two sample t-test, p<0.0001, n=7). Moreover, in the 

level of 80pA and 120pA current injection, there were also tendencies in elevation of 
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the spike number with both 5-min and 20-min PDA application. Especially in the 

level of 120pA injection, 5-min PDA significantly increased the number of action 

potential (Pair two sample t-test, p=0.4368). Furthermore, 20-min PDA significantly 

decreased the first spike latency (Pair two sample t-test, p<0.0001). For 20-min PDA 

application, U0126 not only reversed the effect on input-output function of neuronal 

excitability but also the first spike latency, suggesting the existence of PKC—ERK 

pathway activated by PDA in modulating neuronal excitability. Moreover, the reverse 

condition of first spike latency also indicated the role of ERK to enhance A-current.  

Furthermore, 20-min PDA also significantly increased the input resistance (Pair two 

sample t-test, p=0.0233). In addition, 5-min PDA had no significant effect on sag 

sizes but 20-min PDA significantly increases the sags (Fig. 5-E, Pair two sample 

t-test, p=0.04747). The result is in contrast to the control set (Fig.2, PSK and PDA) 

where the sag sizes significant decreases. It is interesting that application of U0126 

not only reverses the outcome in both spike number and spike latency (IA), but also 

reverses the outcome in Ih, suggesting that there is a strong relation between these 

channels, possibly modulated by the same mechanism.  

 

 

 



 

21 

 

Discussion 

 In the present study, we show that PKC activation increases neuronal excitability 

in short-term scale whereas decreases neuronal excitability in long-term scale. In 

addition, the decline of input-output function of neuronal excitability are caused by 

the activation of PKC—ERK pathway.  

 

PKC activation by PDA regulates the neuronal excitability in different time scale 

 PDA has been shown to enhance glutamate release in many synapses (Malenka 

et al., 1986; Shapira et al., 1987; Parfitt and Madison, 1993; Capogna et al., 1997; 

Hori et al., 1999; Francis et al., 2002; Lou et al., 2008). Central nucleus of amygdala 

which including CeAC are predominantly composed of GABAergic neuron (Ciocchi, 

2010). Therefore, application of kyneurenic acid , picrotoxin and glycine in the 

present study allows us to study the effect of PKC activation on voltage-gated ion 

channel of CeAC. The result indicates that activation of PKC at initial stages 

enhances the function of voltage-gated ion channels of CeAC. The enhancement is 

abolished by 2 different PKC inhibitors, Chelerythrine and GF109203X. However 

Chelerythrine and GF109203X suppress the effect of PDA application in different 

patterns. Chelerythrine reduces the spike number more effectively and postpones the 

adaptation of action potential. Furthermore, it suppresses the delay onset of action 

potential less effectively with long-term PDA. On the other hand, GF109203X 
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reduces the spike number less effectively and it has no effect to adaption of action 

potential. In the mean while, it suppresses the delay onset of action potential more 

effectively. The differences between two PKC inhibitors are probably due to (1) the 

selective effects of different inhibitors since there are different targets of PKC 

inhibitors. (2) The concentration level of PKC inhibitor: Chelerythrine inhibits about 

75% of PKC activities in the concentration level of micro-molar (Herbert et al., 1990). 

It is possible that after long-term application of PDA, it activates certain downstream 

pathway and partially enhances the delay onset of action potential. On the other hand, 

in the concentration level of micro-molar, GF109203X acts as PKA inhibitor as well 

(Chernova et al., 2007). It is sensible that the spike number can be slightly increased 

by the co-inhibition of PKC and PKA. Hence, PKC activation plays a comprehensive 

role in regulating neuronal excitability. Previous study reported that superfusion of 

another type of phorbel ester (PMA, by whole-cell patch clamp) alone increases 

action potential firing in 7 neurons whereas inhibited action potential firing in 5 

neurons in CeAC (Li et al, 2011). Although according to Li et al. (2011), the time 

scale was not the one of the parameters being considered, it is possible that the 

differential results were due the time occasion while recording commenced. 

Furthermore, another previous study (Hu et al. 2003) indicates that PKC activation by 

immediate PMA suppresses the transient outward current of A-type potassium 
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channels and enhances the neuronal excitability in dorsal horn neurons. It gives rise to 

the picture for the involvement of A-type potassium channel in regulating neuronal 

excitability of CeAC. 

 

ERK activation by PDA decreases neuronal excitability 

 In the present study, we show that U0126 effectively reverses the effect of ERK 

activation by PDA. The spike number was significantly increased and the first spike 

latency was significantly decreased with U0126 and long-term PDA activation. Our 

result suggests that ERK activation decreases the input-output function of neuronal 

excitability in the absence of primary synaptic transmission. ERKs play important 

roles both in nociception and modulation of A-type potassium current (Hu et al., 

2003a,b). It is able to modulate A-type potassium current in dorsal horn neuron and in 

strong connection with Kv.4.2 (Schrafer et al., 2005; Hu et al., 2006). Inhibition of 

ERK signaling by PD98059 decreases neuronal excitability and cannot be reversed by 

PMA in dorsal horn neurons (Hu et al., 2003a,b). In addition, inhibition of ERK 

signaling by PD98059 also reduces sustained potassium outward currents in dorsal 

horn neurons (Hu et al., 2003a,b). It gives rise to the picture that in addition to A-type 

current, sustained potassium current may be another candidate for ERK to modulate 

neuronal excitability. Theoretically, the neuronal excitability will be increased if the 
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sustained potassium current is decreased. The differential outcome between CeAC 

and dorsal horn neurons is possiblely caused by (1) the selective effect of drugs. The 

target of PD98059 is MEK1 whereas the targets for U0126 are both MEK1/2. Besides, 

PDA is chosen over PMA in the present study. (2) Lack of primary synaptic 

transmission: kyneurenic acid blocks most of the glutamatergic current. Both 

ionotropic and metabotropic glutamate receptors are blocked, left out the remaining 

voltage-gated Ca2+ channels. Intracellular Ca2+ was not sufficient to evoke the 

additional effect with or without ERK.  

 Futhermore, Ih is conducted in sag sizes, 20-min PDA application alone 

suppresses the Ih whereas U0126 with 20-min PDA facilitates the Ih. It is surprising 

that the tendency in Ih is in consistent with those in spike number and first spike 

latency. It is possible that in addition to Kv.4.2 (IA), the functional target of PKC-ERK 

pathway includes HCN channel. On the other hand, it is known that there are two 

substrates act in regulating the function of HCN channel: proton and PIP2 (Biel et al., 

2009). Proton is excluded in the discussion since there is no particular manipulation of 

protons in the present study. PIP2 (cleavage to IP3 and DAG) acts as an allosteric 

activator from the intracellular site that facilitates channel activation by shifting rest 

membrane potential toward more positive potentials. As a result, PIP2 adjusts HCN 

channel opening to a voltage range relevant for the physiological role of Ih channels. 
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PIP2-mediated regulation of HCN channels may be of physiological significance for 

the function in neuronal circuits, as enzymatic degradation of phospholipids reduces 

channel activation and slows down firing frequency of neurons (Cerbai et al., 1999; 

Qu et al., 2001; Robinson et al., 1997). The picture also leads to another possible 

candidate responsible for the reduction of spike number in the present study. 

Especially that a similar mechanism for PIP2 modulation of gating was identified in 

voltage-gated and inwardly rectifying K+ channels (Baukrowitz et al., 1998; Huang et 

al., 1998; Oliver et al., 2004; Shyng and Nichols, 1998).  

 In conclusion, there are three types of voltage-dependent K+ currents which 

might be the possible in regulating the neuronal excitability in CeAC in the present 

study: (1) transient A-type current(IA), responsible for the delay onset of action 

potential, (2) sustained delayed rectifier current(IK), responsible for the change in rest 

membrane potential (Akins et al., 1993; Gold et al., 1996; McFarlane et al., 1991; 

Everill et al., 1998, Xu, 2006) and (3) hyperpolarized activated current (Ih), mainly 

responsible for pace-making activity and comprehensively affect the neuronal 

properties. Long-term application of PDA decreased the neuronal excitability (spike 

number↓,latency↑,sag size↓). PKC inhibition abolishes both short and long term 

effect. Furthermore, application of U0126 reverses the long-term outcome (spike 

number↑,latency↓,sag size↑) and has no effect on short-term PDA, indicating the 
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PKC-ERK pathway is existed (Cheng et al, 2011). For the change in neuronal 

excitability, it is possible that PKC—ERK activation by PDA modifies the property of 

voltage-dependent K+ channels, A-type and sustained delay rectifier type (Fig 6), 

enhancing the function of voltage-gated potassium channels, so that neuronal 

excitability is generally decreased.  
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Fig1. Identification of capsular central amygdaloid neuron (CeAC). A1: Presumed 

CeAC area is right next to basal-lateral nucleus (BLA) of amygdale. A2: Coronal 

acute brain slices containing central nucleus and BLA of amygdale. CeAC appeared 

to be lighter than other region under light microscope (without filter lens). B. 

Representative examples of action potentials, recorded after at least 10-minute bath 

application of base solution (picrotoxin, strychinine and kynurenic acid). Prominent 

delay onset of action potential was generated by injecting proper intensity of 

depolarizing current pulse and the voltage sags were generated by injecting 

hyperpolarizing current pulses. Current injection beyond 120pA would generally 

cause adaptation of action potential. 
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Fig. 2  
A1                             

   20 pA
   80 pA
 120 pA

   -20 pA
   -80 pA
 -120 pA

0.2 sec.

20 mV

PSK
  

A2 

   20 pA
   80 pA
 120 pA

   -20 pA
   -80 pA
 -120 pA

0.2 sec.

20 mV

+PDA 5min
 

 

 



 

38 

 

A3 

   20 pA
   80 pA
 120 pA

   -20 pA
   -80 pA
 -120 pA

0.2 sec.

20 mV

+PDA 20min
 

 
B1                              

0 20 40 60 80 100 120 140 160 180 200 220
0

2

4

6

8

10

12

14

16

18

S
pi

ke
s/

 1
00

m
s

Depolarizing current (pA)

 PSK
 +PDA 5min
 +PDA 20min

 

 

 

 

 



 

39 

 

 

 

B2 

0

2

4

6

8

10

12

14

16

18

*

S
pi

ke
s/

 1
00

m
s p=0.00196

p=0.01068**

PSK    PDA5min  PDA20min
 

 

 

C1                                

0

2

4

6

8

10

12

14

16

18

S
pi

ke
s/

 1
00

m
s

PSK    PDA5min  PDA20min

Depolarizing current:  80pA

p=0.00139

**

  

 

 

 

 



 

40 

 

 

 

 C2 

0

2

4

6

8

10

12

14

16

18
S

pi
ke

s/
 1

00
m

s Depolarizing current:  120pA

PSK    PDA5min  PDA20min
 

 

D1                               

PSK PDA 20min
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

F
irs

t s
pi

ke
 la

te
nc

y 
(s

ec
.)

***
p<0.0001

 

 

 

 

 

 



 

41 

 

D2 

PSK PDA 20min
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

In
pu

t r
es

is
te

nc
e 

(G
Ω

)

 

 

 

 

 

E1 

 PSK
 PDA 5min
 PDA 20min

0.2 sec.

10 mV

Hyperpolaring current: -120pA

 

 

 



 

42 

 

E2 

PSK PDA 5min PDA 20min
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

Ih
 (

m
V

) 

 Hyperpolaring current: -120 pA

*p=0.0448

 

Fig2. Effect of PDA on capsular central amygdaloid neuron. A1-A3 Representatives 

of action potentials recorded with base solution (picrotoxin, strychnine, and kynurenic 

acid, PSK, 5-min and 20-min PDA application, generated by depolarizing and 

hyperpolarizing current pulse injection (±20, ±80, ±120pA).B1: 5-min PDA 

increased the spike number whereas 20-min PDA decreased the input-output function 

of neuronal excitability (generated by different intensity of current injection from 

20pA- 200pA with 20pA interval, n=8). Symbols showed (mean ±SE) number of 

spikes per 100 ms calculated from recording traces. Action potential adaptation 

appeared around 80-120pA current injection with PDA application (red diamond and 

blue triangle). B2: Summary of changes in action potential firing with 5-min and 

20-min PDA. 5-min PDA significantly increased (Pair two sample t-test, p=0.00196) 

the spike number in contrast to 20-min PDA application (Pair two sample t-test, 
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p=0.01068). C1, C2: Summary of spike number on 80pA and 120pA current injection 

with PSK and 20-min PDA respectively. 20-min PDA significant decreased the spike 

number on 80pA current injection. D1: 20-min PDA significantly increased the first 

spike latency (Pair two sample t-test, p<0.0001). D2: Input resistance with 

application of base solution and 20-min PDA application. There was the tendency on 

decline of input resistance. E1: Representatives of sag traces produced by 

hyperpolarizing current with PSK, 5-min PDA and 20-min PDA application 

respectively (generated by hyperpolarizing current injection, -120pA).The size of sag 

were smaller after application of PDA. E2: Summary of sag size changes. 20-min 

PDA significantly reduced the size of sag (Pair two sample t-test, p=0.0448). 
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Fig. 3 
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Fig3. Effect of Chelerythrine –PDA on capsular central amygdaloid neuron. A1-A3 

Representatives of action potentials recorded with 10-min Chelerythrine, 5-min PDA 

and 20-min PDA application, generated by depolarizing and hyperpolarizing current 

pulse injection (±20, ±80, ±120pA).B1: Chelerythrine inhibited the effect of PDA. 

Spike number was neither increased nor decreased (generated by different intensity of 

current injection from 20pA- 200pA with 20pA interval, n=5). It also postponed the 

occurrence action potential adaptation. Symbols showed (mean ±SE) number of 

spikes per 100 ms calculated from recording traces. B2: Summary of changes in 

action potential firing with 10-min Chelerythrine, 5-min and 20min PDA application. 

Chelerythrine efficaciously inhibited the effect of PDA in both time scales. C1, C2: 

Summary of spike number on 80pA and 120pA current injection with Chelerythrine 

and 20-min PDA respectively. Chelerythrine inhibited the effect of 20-min PDA in 
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both circumstances. D1: 20-min PDA significantly increased the first spike latency 

(Pair two sample t-test, p=0.00161). D2: Input resistance with Chelerythrine and 

20-min PDA application. There was no crucial change. E1: Representatives of sag 

traces produced by hyperpolarizing current with 10-min Chelerythrine, 5-min PDA 

and 20-min PDA application in turn respectively (generated by hyperpolarizing 

current injection, -120pA). E2: Summary of sag size changes. There is no significant 

changes in sag size. However, the current with 5-min PDA is more hyperpolarized.  

 

 

 

 

 

 

 

 

 

 

 

 



 

51 

 

Fig. 4 
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Fig4. Effect of GF109203X –PDA on capsular central amygdaloid neuron . A1, A2 

Representatives of action potentials recorded with 10-min GF109203X and additional 

20-min PDA application, generated by depolarizing and hyperpolarizing current pulse 
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injection (±20, ±80, ±120pA). 20-min PDA did not significantly changes the action 

potential firing pattern. B1: GF109203X generally inhibited the effect of PDA 

(generated by different intensity of current injection from 20pA- 200pA with 20pA 

interval, n=6). Symbols showed (mean ±SE) number of spikes per 100 ms calculated 

from recording traces. B2: Summary of changes in action potential firing with 10-min 

GF109203X, 5-min and 20min PDA application. GF109203X efficaciously inhibited 

the effect of PDA in both time scales. C1, C2: Summary of spike number on 80pA and 

120pA current injection with GF109203X and 20-min PDA respectively. GF109203X 

inhibited the effect of 20-min PDA in both circumstances except for 20-min PDA 

application on 80pA current injection (Pair two sample t-test, p=0.01211). D1: 

GF109203X successfully inhibited the effect of 20-min PDA. The first spike latency 

was not decreased. D2: Input resistance with GF109203X and 20-min PDA 

application. There was no crucial change. E1: Representatives of sag traces produced 

by hyperpolarizing current with 10-min GF109203X, 5-min PDA and 20-min PDA 

application in turn respectively (generated by hyperpolarizing current injection, 

-120pA). E2: Summary of sag size changes. There is no significant change in sag size. 

However, the current traces with 5-min and 20-min PDA application are more 

hyperpolarized.  
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Fig 5 
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Fig. 5 Effect of U0126–PDA on capsular central amygdaloid neuron. A1, A2 

Representatives of action potentials recorded with U0126 and additional 20-min PDA 

application, generated by depolarizing and hyperpolarizing current pulse injection (±

20, ±80, ±120pA).B1: U0126 reversed the effect of 20-min PDA (generated by 

different intensity of current injection from 20pA- 200pA with 20pA interval, n=7). 

The spike number was increased with 20-min PDA application (Pair two sample t-test, 

p<0.0001). The effect of 5-min PDA was not changed by U0126. Spike number 

significantly increased with 5-min PDA (Pair two sample t-test, p<0.0001). Symbols 

showed (mean ±SE) number of spikes per 100 ms calculated from recording traces. 

B2: Summary of changes in action potential firing with U0126 and 20min PDA 

application. 20-min PDA increased the spike number. C1, C2: Summary of spike 

number on 80pA and 120pA current injection with U0126 and 20-min PDA 

respectively. 5-min PDA significantly increased the spike number on 120pA current 

injection. (Pair two sample t-test, p=0.04368). D1: U0126 reversed the effect of 

20-min PDA in first spike latency. The latency was significantly decreased 

 GF109203X successfully inhibited the effect of 20-min PDA. The first spike latency 

was not decreased (Pair two sample t-test, p<0.0001). D2: Input resistance was 

significant increased with and 20-min PDA application (Pair two sample t-test, 

p=0.0233). It was in contrast to the tendency downward with application of 20-min 
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PDA alone. E1: Representatives of sag traces produced by hyperpolarizing current 

with U0126, additional 5-min PDA and 20-min PDA application respectively 

(generated by hyperpolarizing current injection, -120pA).The size of sag were smaller 

after application of PDA. E2: Summary of sag size changes. 20-min PDA 

significantly increased the size of sag (Pair two sample t-test, p=0.04747). 
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Fig.6 

 
 

Fig.6 Diagram of rationale indicating PKC—ERK pathway activated by PDA. ERK 

activation was able to enhance the function of A-type type potassium channel or 

sustained delayed rectifier current. ERK activation by long-term PDA significantly 

induced the decline of spike number as well as the rise of first spike latency. PKC 

blockade eliminated the effect of PDA in both short-term and long-term scale. On the 

other hand, ERK inhibition by U0126 significantly induced the rise of spike number 

as well as the decline of first spike latency.   

 

 

 

 

 

 


