
doi:10.6342/NTU202304122

國立臺灣大學電機資訊學院資訊工程學研究所

碩士論文

Department of Computer Science and Information Engineering

College of Electrical Engineering and Computer Science

National Taiwan University

Master Thesis

利用分散式正規表式比對保護 URL檢查之隱私

Distributed Regular Expression Matching for
Privacy-Preserving URL Checking

賴侃軒

Kan-Hsuan Lai

指導教授: 蕭旭君博士

Advisor: Hsu-Chun Hsiao, Ph.D.

中華民國 112年 8月

August, 2023

http://dx.doi.org/10.6342/NTU202304122

doi:10.6342/NTU202304122

誌謝

感謝我的指導教授給予我許多的協助讓我順利完成碩士論文。

ii

http://dx.doi.org/10.6342/NTU202304122

doi:10.6342/NTU202304122

摘要

近年來，URL檢查由於安全瀏覽服務的廣泛使用，因此其隱私問題變得愈發重

要。有鑑於此，我們提出了一個保護隱私的 URL檢查系統，其特色為將使用者的

URL分割成若干份秘密以保護使用者的隱私。我們的系統利用多個計算節點對不

同份秘密進行正則表達式匹配，因此只要至少有一個節點被視為半誠實的，則所

有節點和伺服器都無法獲取所有的秘密以還原使用者的 URL，從而保護了使用者

的隱私。我們用 Python語言打造了系統的概念證明，並優化了我們的系統，以在

URL檢查的情境中更高效地進行計算並減少網絡流量的傳輸。我們在 Easylist廣

告域數據集上評估了我們系統的整體性能。實驗結果顯示，我們的優化技術在一

個簡易的測試中能將計算時間從 113.10秒大幅縮短至 0.04秒，而在一般情況下，

優化後的系統完成一個匹配過程只需要約 3至 4秒，非常高效。

關鍵字：正規表式比對、隱私保護、URL檢查、秘密分享、DFA

iii

http://dx.doi.org/10.6342/NTU202304122

doi:10.6342/NTU202304122

Abstract

Recently, as URL checking becomes more and more popular because of widely used Safe

Browsing service, its privacy issue becomes more and more important. Therefore, we

propose a privacy-preserving URL checking system which splits the user’s URL into se-

cret shares to protect the user’s privacy. Our system utilizes several computing nodes to

compute regular expression matching result on different secret shares, so that as long as

at least one node is considered semi-honest, none of the nodes and the server could obtain

all the secret shares to reveal the user’s URL, and thus the user’s privacy is preserved. We

design a proof-of-concept of our system in Python, and optimize our system to compute

more efficiently and transmit less network traffic in URL checking application. We eval-

uate our system’s overall performance on Easylist ad domain dataset. The result shows

that our optimization techniques greatly accelerates the matching process from 113.10s

to 0.04s in a simple case, and our well-optimized system takes about 3 ~4s to finish a

matching process in average case, which is quite efficient.

Keywords: regex matching, privacy-preserving, URL checking, secret sharing, DFA

iv

http://dx.doi.org/10.6342/NTU202304122

doi:10.6342/NTU202304122

Contents

Page

口試委員會審定書 i

誌謝 ii

摘要 iii

Abstract iv

Contents v

List of Figures viii

List of Tables ix

1 Introduction 1

2 Background 5

2.1 Notations . 5

2.2 Deterministic Finite Automaton . 7

2.3 Regex Transformation . 8

2.4 Secret Sharing . 9

2.4.1 Split a Secret . 9

2.4.2 Reconstruct a Secret . 10

2.5 Computations on Secret Sharing Domain 10

2.5.1 XOR Operation on the Secret Sharing Domain 11

v

http://dx.doi.org/10.6342/NTU202304122

doi:10.6342/NTU202304122

2.5.2 NOT Operation on the Secret Sharing Domain 11

2.5.3 AND Operation on the Secret Sharing Domain 12

2.5.4 OR Operation on the Secret Sharing Domain 14

3 Problem Definition 15

3.1 Entities . 15

3.2 Threat Model . 16

3.3 Design Goal . 17

4 Proposed Method 18

4.1 Overview . 19

4.2 System Architecture . 20

4.2.1 User . 20

4.2.2 Server . 21

4.2.3 Computing Node . 21

4.3 Regex Matching on the Secret Sharing Domain 21

4.3.1 Split DFA Matrix into Secret-Shared Form 22

4.3.2 Comparison between Secret Shares on Secret Sharing Domain 23

4.3.3 Obtain Value from Secret-Shared DFA Matrix 24

4.3.4 Evaluate Result on Secret-Shared DFA Matrix 26

5 Implementation 27

5.1 Basic Implementation . 27

5.1.1 Generate Secret-Shared DFA Matrix 27

5.1.2 Setup . 28

5.1.3 Evaluate Result . 28

vi

http://dx.doi.org/10.6342/NTU202304122

doi:10.6342/NTU202304122

5.2 Optimization 1: Compare Input and State Separately 29

5.3 Optimization 2: Perform Independent-ANDs in One Request 31

5.4 Optimization 3: Use PRNG to Generate Split Beaver Triples 31

5.5 Optimization 4: Reduce Input Character Set 32

6 Evaluation 33

6.1 Dataset . 33

6.2 Complexity Analysis . 34

6.2.1 Complexity of DFA Size . 34

6.2.2 the Number of AND Operations 37

6.2.3 Beaver Triple Length . 38

6.3 Security Analysis . 39

6.4 Computation Time and Network Traffic Size 41

7 Related Work 46

8 Discussion and Future Work 48

8.1 Verifiability . 48

8.2 Availability . 49

8.3 Evaluation on Multiple DFAs . 49

8.4 Limitation . 50

9 Conclusion 51

Bibliography 52

vii

http://dx.doi.org/10.6342/NTU202304122

doi:10.6342/NTU202304122

List of Figures

2.1 Plaintext domain and share secret domain 6

2.2 An example of splitting data . 10

2.3 An example of reconstructing result . 10

3.1 The relationship between user and server. The user query the server to

check the URL while avoiding the server from knowing the URL; the

server evaluate and return the query result to the user without leaking in-

formation of the dataset. 15

4.1 The procedure of privacy-preserving URL checking algorithm 19

4.2 System architecture . 20

4.3 An example of how to obtain value from an array given the index 24

6.1 DFA sizes of easylist filters . 36

6.2 DFA sizes of easylist filters excluding extreme values 36

6.3 DFA sizes of easylist filters excluding extreme values and ∆y
∆x

> 2. The

orange line is the cubic regression result: y = 1.14x + 1.84 × 10−2x2 +

4.83× 10−5x3 . 37

6.4 Distribution of DFA size: 98.98% of URL patterns (43021) with less than

100 states . 43

viii

http://dx.doi.org/10.6342/NTU202304122

doi:10.6342/NTU202304122

List of Tables

6.1 Results of evaluating input = ”agg” and regex = ”.*g” 41

6.2 Average result of evaluating input length = 66 43

6.3 Result of evaluating DFA size = 54 . 44

ix

http://dx.doi.org/10.6342/NTU202304122

doi:10.6342/NTU202304122

Chapter 1

Introduction

With the exponential growth of the Internet and its pervasive influence on modern soci-

ety, web browsing has become an integral part of our daily routine. Whether for work,

entertainment, or information gathering, we rely heavily on web browsers to explore the

vast virtual landscape. However, the convenience and accessibility offered by web brows-

ing come hand in hand with a range of security threats that can compromise our digital

well-being. There are a lot of malicious websites on the Internet that may contain fake

information, download malware for users, phishing, and so on. To prevent users from

accidentally access the malicious websites, there are a lot of URL checking services that

help users to filter the malicious URLs and make web-browsing safer.

While constantly checking for URL safeness protects the users from cyber threats, their

online privacy may be affected because all the browsing histories are recorded by the URL

checking service. The privacy issue becomes more severe with a type of service called

safe browsing, which is adopted by most of the major browsers, including Chrome, Safari

and Firefox. A browser with the safe browsing feature will check all the URLs before

fetching, which works automatically in the background, so that the user may be unaware

1

http://dx.doi.org/10.6342/NTU202304122

doi:10.6342/NTU202304122

of it. There are other kinds of services that may have trackers, though, like search engines,

social media networks, and e-commerce platforms, but users can choose not to use them

if they distrust the companies; safe browsing, on the other hand, is a built-in function of

browsers and essential for users to browse safely, which makes it more privacy intrusive

than other types of trackers. Besides, because it is built in the browser, the user base of

safe browsing is large, making it more motivating of being used as a tracker. For example,

Google Safe Browsing serves about 5 billion devices, and detected about 3 to 5 million

threats per week in 2022 [13].

To ease the privacy issue, Google Safe Browsing provides an alternative API for users

to check their URLs privately. Google Safe Browsing provides two APIs, Lookup and

Update, and the latter is the privacy-preserved version of the former. The Lookup API

matches the plaintext URL, while the Update API matches the URL’s hash prefix, thus

preserving the user’s privacy. However, the Update API also has two drawbacks: first,

because of hash prefix, one can only do exact comparisons during URL checking, which

lacks flexibility; second, it is pointed out [9] that even the Update API sometimes leaks

information of user’s URL and endangers the user’s privacy due to canonicalization. The

leak occurs because hash prefix can only be used to perform exact matching, so the user

has to generate different decompositions and search for all their hash prefixes to eliminate

false negatives, where the decompositions are the combinations of all subdomains and

subpaths of the target URL [9]. The problem is when the user queries two or more hash

prefixes of decompositions, the server has more information to guess what URL the user

is actually browsing. What makes it worse is that if the safe browsing service provider

wants to track a specific website, the provider can inject the hash prefix of that website

into the user’s local database (while the target website is safe) to force the user to query

2

http://dx.doi.org/10.6342/NTU202304122

doi:10.6342/NTU202304122

such a hash prefix when browsing the target website.

In this paper, we aim for a solution of privacy-preserving URL checking that ensures

no information of user’s URL is leaked and supports flexibility when checking URLs.

More specifically, we aim to support regular expression (regex) matching so that the safe

browsing service providers can design malicious URL patterns with less limitation, while

protect user’s URLs from being known by others, including the service provider. In ad-

dition to the above goals, we also aim to outsource the workload from the user as much

as possible since we expect that the user’s device may have little computing resource,

such as portable devices or IoT devices. To achieve the requirements, we introduced

regex matching on shared secret: the user’s URL is split into secret shares, and as long

as no one has enough number of shares, anyone except the user cannot reconstruct any

secrets including the user’s URL and the matching result, and thus the user’s privacy is

preserved.

In our system, we introduce some third-party computing nodes to perform matching on

different secret shares. The most challenging problem is how to efficiently perform regu-

lar expression (regex) matching on secret shared data. We adoptN -out-of-N XOR-based

secret sharing, where AND and NOT have been implemented, and thus it is functionally-

complete. However, when computing AND, it requires a synchronization between nodes

and an additional pre-generated message, called beaver triple, which is both time con-

suming and network bandwidth consuming for data transmission. Therefore, we have to

design the system that uses as few ANDs as possible. We evaluate our well optimized

system on Easylist ad domain dataset [8], and the result shows that our system takes about

3.7 second to evaluate the matching result of average length pattern (54 states) and URL

(66 characters), which is quite efficient.

3

http://dx.doi.org/10.6342/NTU202304122

doi:10.6342/NTU202304122

Our contributions are listed as follows:

• We solve the privacy issue of URL checking by utilizing secret sharing.

• We support regex matching to expand the application scenarios.

• We design several optimization techniques to minimize the synchronization time

and network traffic.

In Chapter 2, we will introduce some background knowledge needed for our solution; in

Chapter 3, we will define our problem and the threat model of our problem; in Chapter

4, we will explain how to perform regex matching on share secret; in Chapter 5, we will

introduce the system of our solution and some optimization techniques to make the system

more efficient; in Chapter 6, we will analyze the complexity of our system and overall

performance with an ad domain dataset; in Chapter 7, we will introduce some related

works; in Chapter 8, we will discuss the limitation of our system and some possible future

work.

4

http://dx.doi.org/10.6342/NTU202304122

doi:10.6342/NTU202304122

Chapter 2

Background

In this chapter, we will introduce the notations we use, why and how we transform regex

to DFA, and how we compute on secret shares.

2.1 Notations

In the following context, all the variables with square brackets are secret shares of the

original message. For example, for arbitrary message x, [x]n is denoted as the nth secret

share of x, and is used by nth computing node. {[x]n} ≜ {[x]i | 1 ≤ i ≤ N} is denoted as

the set of all secret shares of x. Split(x)means to generate secret shares from the original

message, whereas Reconstruct({[x]n}) means to reconstruct the original message from

secret shares. x⊕ y is the logical XOR operation, x′ is the logical NOT operation, x+ y

is the logical OR operation, and x · y or xy are the logical AND operation. || represents

for string concatenation.

We say that x is on the plaintext domain and [x]n is on the secret sharing domain. The

relationship between plaintext domain and secret sharing domain is shown in Figure 2.1.

5

http://dx.doi.org/10.6342/NTU202304122

doi:10.6342/NTU202304122

Suppose that V0 is the parameter set of a URL checking algorithm, and we have to go

through a series of functions (f1, f2, ...) to get the final result r. Vi is set of intermediate

values of the algorithm, which, in the case of regex matching, is {si, ui}, where si is

the intermediate state of DFA and ui is the ith character of the URL. On the other hand,

r ∈ {0, 1} is the matching result, where 0 means not match and 1 means match. fi

are functions to obtain next state by fi(si, ui) = DFA[si, ui]. We say that (f1, f2, ...) are

functions on the plaintext domain because both their parameters and results are in plaintext

form.

For each function fi, we aim to design an equivalent function f ′
i that its parameters and

result are in the secret sharing form; that is, fi(Vi−1) = Reconstruct(f ′
i(Split(Vi−1))).

We say that (f ′
1, f

′
2, ...) are functions on the secret sharing domain.

Figure 2.1: Plaintext domain and share secret domain

If we want to evaluate a function r = f(x, y) on the secret sharing domain, the process is

as follows:

Step 1: {[x]n} ≜ Split(x), {[y]n} ≜ Split(y)

Step 2: Send [x]n, [y]n to the nth node

Step 3: nth node evaluate [r]n ≜ f([x]n, [y]n)

Step 4: r ≜ Reconstruct({[r]n)}

6

http://dx.doi.org/10.6342/NTU202304122

doi:10.6342/NTU202304122

If an operator is written in a function form, such as AND(), the function is on the se-

cret sharing domain. For a function on the secret sharing domain, we need to split its

parameters beforewards. As for the result of the function, if it is the final result, then we

need to reconstruct it to reveal the final result; otherwise, it is an intermediate value of the

algorithm and it is used directly as the parameter of the subsequent function.

2.2 Deterministic Finite Automaton

Deterministic Finite Automaton (DFA) is a finite-state machine that determines whether

an input is accepted or not [21]. A DFA consists of five parameters: M = {Q,Σ, δ, s, F}.

Q: The finite set of all states

Σ: The finite set of characters

δ: The transfer function, which takes current state and an character as input, and output

the next state

s: The initial state

F : The accepted state set

A finite-state machine has a state and takes a sequence of characters as input. The machine

iterates through the input characters, and continuously updates its state according to the

transfer function δ. Equivalently, a DFA can be expressed in the matrix formM(st, ut) =

st+1. That is, given a current state st and an input character ut, the DFA matrix specifies

the next state st+1. Evaluation on a DFAmatrix is simple: simply iterate through the input

7

http://dx.doi.org/10.6342/NTU202304122

doi:10.6342/NTU202304122

string and update the current state until reaching the end, then determine whether the final

state is in the accepted state F or not.

2.3 Regex Transformation

A regex needs to be compiled into NFA or DFA before matching. Typically, evaluating

on NFA consumes less memory and supports more features such as back-referencing, yet

its time complexity is higher than evaluating on DFA and the matching process on NFA

is also more complex than on DFA. In our system, we choose to transform regex to DFA

because we have to implement the matching process by logic circuits, so it is vital to keep

the matching process simple and fast.

The transformation between regex and DFA has been studied over 50 years, and many

algorithms have been developed with varying complexities [15]. Roughly speaking, there

are three steps to transform a regex to a DFA: regex to Non-Deterministic Finite Automa-

ton (NFA) conversion, NFA to DFA conversion and DFA minimization. Below are some

algorithms that can be used in each step:

regex to NFA: Thompson’s construction [25], Glushkov’s construction [10]

NFA to DFA: Powerset construction [22]

DFA minimization: Hopcroft’s algorithm [16], Moore’s algorithm [19]

Beside the three-step transformation, there are also other algorithms that transform regex

directly to DFA, such as partial derivative automaton. Since is has been developed for

many years, the regex engines have become optimized and efficient. We can utilize well-

developed regex engines, extracting the DFA matrix for our use.

8

http://dx.doi.org/10.6342/NTU202304122

doi:10.6342/NTU202304122

2.4 Secret Sharing

Secret sharing is a cryptographic technique that involves dividing a secret into multiple

shares and distributing them among participants. Each share contains partial information

about the secret. By combining a required number of shares, the original secret can be

reconstructed. This approach ensures that no single participant possesses the entire secret,

enhancing security. Secret sharing has applications in various fields, including cryptog-

raphy, secure multi-party computation, and key management systems, providing a robust

method for safeguarding sensitive information.

In the following context, we assume that there are only two computing nodes in the system

and we only generate two shares from each secret. However, our system also works when

there are more than two nodes.

2.4.1 Split a Secret

There are multiple ways to split a secret. However, we need a special way to split them, so

that we can do desired computations on the secret sharing domain. Among all the options,

XOR is simple to calculate and suitable for logical operations, so we choose XOR to split

the secret shares. To split an arbitrary secret U , we generate a random byte string x which

is as long as U , and then split U into [U]1, [U]2 by [U]1 = x and [U]2 = U ⊕ x. Figure 2.2

shows an example of splitting data 0xb7: the first share 0x6f is randomly generated and

the second share 0xd8 is derived from the plaintext data and the first share.

9

http://dx.doi.org/10.6342/NTU202304122

doi:10.6342/NTU202304122

Figure 2.2: An example of splitting data

2.4.2 Reconstruct a Secret

To reconstruct the original message, we simply need to XOR all the secret shares. For the

above example, if we want to reconstruct U , we can calculate U = [U]1 ⊕ [U]2. Figure

2.3 shows an example of reconstructing the result from two shares, 0x01 and 0x00.

Figure 2.3: An example of reconstructing result

2.5 Computations on Secret Sharing Domain

We can compute any function on secret sharing domain by supporting a functionally com-

plete set [20]. First, we will show that we can compute XOR and NOT on share se-

cret domain using the characteristic of XOR. Then, we will show that by introducing

beaver triples (a, b, c), we can also compute AND and OR. Finally, because AND, NOT

is a functionally complete set, we are able to compute any function on secret sharing do-

main.

10

http://dx.doi.org/10.6342/NTU202304122

doi:10.6342/NTU202304122

2.5.1 XOR Operation on the Secret Sharing Domain

Suppose we want to calculate r = XOR(x, y). To do so, first we split x and y to x =

[x]1 ⊕ [x]2 and y = [y]1 ⊕ [y]2. Next, send [x]n, [y]n to the nth computing node. Each

computing node then calculates [r]n = [x]n ⊕ [y]n and sends [r]n back to the user. The

result is correct because

r = [r]1 ⊕ [r]2 = [x]1 ⊕ [y]1 ⊕ [x]2 ⊕ [y]2 = x⊕ y

Note that from the node’s perspective, calculating XOR on the plaintext domain or on the

secret sharing domain makes no difference, so the notation is also the same.

2.5.2 NOT Operation on the Secret Sharing Domain

The implementation of NOT is relatively simple. We can calculate r = x′ by using the

fact that

(a⊕ b)′ = a⊕ b⊕ 1 = (a⊕ 1)⊕ b = a′ ⊕ b

Therefore, we only need to do NOT on one of the secret shares. Let [r]1 = [x]′1 and[r]2 =

[x]2; the result will be r = [x]′1 ⊕ [x]2 = x′. To determine which node should negate its

secret share, each node is assigned with a unique index at the beginning, and only the node

with the smallest index should negate its secret share. The indexes can be assigned in any

order by the user, the server, or even the consensus of all nodes, because the node with the

smallest index doesn’t have any additional information than other nodes.

11

http://dx.doi.org/10.6342/NTU202304122

doi:10.6342/NTU202304122

We will use NOT (x) to denote x′ on the secret sharing domain in the following context.

2.5.3 AND Operation on the Secret Sharing Domain

The implementation of AND is relatively complex and not intuitive. We need additional

information to help calculating it, which is called Beaver triple [2]. The Beaver triple we

use is a variant of the original version — the original one works on arithmetic circuits,

while ours works on logic circuits. A Beaver triple consists of 3 variables a, b and c such

that c = a · b. To calculate r = x · y, first we generate the share secrets of x, y, a, b and c,

and send them to their respective computing nodes. The computing process is:

Step 1: each node computes [x]′n = [x]n ⊕ [a]n, [y]′n = [y]n ⊕ [b]n

Step 2: The nodes share [x]′n, [y]′n with each other. All nodes then reconstruct x′ and y′.

Step 3: The first node computes

[r]1 = x′y′ ⊕ [b]1x
′ ⊕ [a]1y

′ ⊕ [c]1

The rest of nodes compute

[r]n = bnx
′ ⊕ [a]ny

′ ⊕ [c]n

Next, We will show that the result is correct. The proof utilizes the distribution law be-

tween logical AND and logical XOR, which can be proven by Truth Table. The result is

as follows:

12

http://dx.doi.org/10.6342/NTU202304122

doi:10.6342/NTU202304122

r =
⊕

[r]n

= x′y′ ⊕
⊕

([b]nx
′ ⊕ [a]ny

′ ⊕ [c]n)

= x′y′ ⊕
⊕

[b]nx
′ ⊕

⊕
[a]ny

′ ⊕
⊕

[c]n

= x′y′ ⊕ x′
⊕

[b]n ⊕ y′
⊕

[a]n ⊕ c

= x′y′ ⊕ bx′ ⊕ ay′ ⊕ ab

= (x′ ⊕ a)(y′ ⊕ b)

= x · y

(2.1)

We will useAND(x, y) to denote x·y on the share secret domain in the following context.

AND requires reconstructing [x]′n, [y]′n to evaluate the result, which makes it the bot-

tleneck of whole evaluation process because it requires a synchronization between all

nodes. However, we can calculate several ANDs in parallel as long as they can be cal-

culated concurrently without depending on each other’s results. For example, if we want

to calculate x = AND(a, b) and y = AND(c, d), then we can combine them to become

x||y == AND(a||c, b||d). This way, we can calculate multiple ANDs in one synchro-

nization process and thus the synchronization time is reduced. A counterexample is that

if we want to calculate r = x · y · z on the share secret domain, we have to calculate AND

2 times, which is r = AND(AND(a, b), c), because we have no 3-input AND. In this

situation, we cannot compute two ANDs in parallel because the second AND requires the

result of first AND.

13

http://dx.doi.org/10.6342/NTU202304122

doi:10.6342/NTU202304122

2.5.4 OR Operation on the Secret Sharing Domain

To implement OR, we can utilize De morgan’s Law

a+ b = (a′ · b′)′

Therefore, we can combine AND and NOT to implement OR. Notice that although OR

requires 3 more NOT operations, it does not consume more time than AND to compute

because NOT is a constant time function, which is much faster that AND.

We will use OR(x, y) to denote x + y on the secret sharing domain in the following

context.

14

http://dx.doi.org/10.6342/NTU202304122

doi:10.6342/NTU202304122

Chapter 3

Problem Definition

In this chapter, we will introduce entities in our problem setting, what characteristics they

should have, and the threat model.

3.1 Entities

There are two entities in the system: a user and a server. Figure 3.1 shows the relationship

between the user and the server.

Figure 3.1: The relationship between user and server. The user query the server to check
the URL while avoiding the server from knowing the URL; the server evaluate and return
the query result to the user without leaking information of the dataset.

15

http://dx.doi.org/10.6342/NTU202304122

doi:10.6342/NTU202304122

A user is the one that holds a URL and want to check whether it is safe to browse or not.

Due to the privacy concern, he is not willing to share the URL with anyone including the

server.

A server is a service provider that holds a dataset of malicious URL patterns. It accepts

queries from the user and returns whether the user’s URL matches any patterns in the set.

The service provider may invest time and money to analyze and design the patterns, so it

is also not willing to share the dataset with anyone to protect the intellectual property. We

assume that the patterns are written in regex because regex is very powerful and can cover

most of the use cases.

3.2 Threat Model

The threat model of the system is given as follows:

• The server is considered semi-honest. It matches the user’s encrypted URL with its

dataset and returns correct results to the user, not forging a fake one, yet it is curious

about what the user’s URL is.

• The server and user may require some third-party computing nodes to help evalu-

ating the result. The third-party computing nodes will also evaluate correct results,

not forging a fake one, while they have a desire to collect private information from

the user and the server, including the user’s URL and the server’s dataset.

• All the packets should not be eavesdropped or tampered with by any middle-person.

This can be achieved by applying a secure channel, but is out of scope of this work.

• The availability problem, such as Denial of Service attack, is not considered in our

16

http://dx.doi.org/10.6342/NTU202304122

doi:10.6342/NTU202304122

proposed system. The discussion of this issue is in Chapter 8.

3.3 Design Goal

Below, we list the goals and features that our system should achieve:

Privacy-preserving: Our system should protect both the user’s and the server’s privacy,

including the user’s URL, the server’s pattern and matching result.

Regex matching: Our system should support regex matching to give pattern designers

more flexibility and versatility in their applications.

Low workload on user side: We expect the user’s device may have low computing per-

formance due to hardware limitation (portable devices, IoT, etc.), so it is vital to

lower the workload of the user as much as possible.

Efficiency: In addition to achieving above goals, our system should compute fast and

minimize the use of network traffic.

17

http://dx.doi.org/10.6342/NTU202304122

doi:10.6342/NTU202304122

Chapter 4

Proposed Method

In this chapter, we will explain how to determine whether the URL from the user matches

the pattern from the server while preserving the user and the server’s privacy. Our solution

is to utilizeN -out-of-N secret sharing to protect the data privacy. In our proposed system,

N third-party computing nodes are introduced to help evaluating the result. Notice that

if all the nodes collude together, they will obtain all the secret shares and therefore the

secret data is leaked. To prevent such attack, we assume at least one node does not join

the collusion so that the private data remains safe. The larger N we choose, the more

possible that such honest node exists. This idea comes from the Tor Network [5]: the Tor

Network protects user’s privacy by a series of onion routers, and at least one onion router

has to be honest and not collude with each other, otherwise an adversary could reveal the

routing path and find out who the user is communicating with.

The main problem of evaluation on secret-shared DFA matrix is how to obtain value from

the array when the index is on the secret sharing domain. More specifically, since each

node only obtain a share of current-state st and input character ut+1 to protect privacy, the

traditional way to access an array — treating the index as the offset of memory address

18

http://dx.doi.org/10.6342/NTU202304122

doi:10.6342/NTU202304122

— does not work in this situation, so it’s hard for a node to tell which the value should be

given an secret-shared index. The solution is to split array index as well, and usemasks

to select the correct value.

In the following part, we will go through the overview of the proposed algorithm and the

system architecture, define the notations used in the following context, and introduce our

algorithm of performing regular expression matching on secret shares.

4.1 Overview

Figure 4.1: The procedure of privacy-preserving URL checking algorithm

Figure 4.1 shows the overview our proposed algorithm. Below is a brief introduction to

each step:

Step 1: Translate regex: We assume that all URL patterns are in the regex form. In this

step, we will transform the regex pattern into a DFA matrix for the subsequent

matching process.

Step 2: Split data: To protect the privacy of the server and the user, we will split DFA

matrix and URL in to secret shares before evaluation.

19

http://dx.doi.org/10.6342/NTU202304122

doi:10.6342/NTU202304122

Step 3: Evaluate result: Perform regex matching based on secret-shared DFA and URL.

Step 4: Reconstruct result: reveal the final result to determine whether the URL matches

the pattern or not.

4.2 System Architecture

The system includes three types of components: User, Server and Computing Node. Fig-

ure 4.2 depicts the relations between the components.

Figure 4.2: System architecture

The functions of each component are shown in the following part.

4.2.1 User

The user holds a URL that he wants to query the server, which is called a query URL.

To preserve privacy, the user does not want anyone else including the server knows the

URL. Instead of sending the URL in plaintext, the user splits the URL into share secrets,

sends them to the computing nodes, receive the query result in share secret form from the

computing nodes, and finally reconstruct the result.

20

http://dx.doi.org/10.6342/NTU202304122

doi:10.6342/NTU202304122

4.2.2 Server

The server holds a database of URL blacklist. The data in the database is in the form of

regular expression string (regex)—that is, if a URL matches the regex, it is labeled as

a malicious website. To determine whether the user’s query URL matches a regex, the

server first transforms the regex into a Deterministic Finite Automaton (DFA) matrixM ,

splits M into share secrets, and then sends them to the computing nodes for evaluation.

Notice that the server cannot get the secret shares of the query URL, or it can reconstruct

the query URL and therefore violate the privacy requirement.

4.2.3 Computing Node

The computing node receives one of the secret shares of query URL from the user, one of

the secret shares ofM from the server, evaluates the result, and sends the result to the user.

Here, every computation is done on the secret sharing domain; that is, any parameters,

intermediate values and result are in share secret form. Therefore, though the computing

node handles the whole computation, it knows nothing about the query URL and the regex.

There should be at least two computing nodes in the system.

4.3 Regex Matching on the Secret Sharing Domain

To perform regex matching on the secret sharing domain, we need to split the DFAmatrix,

which is generated from the regex, into a secret-shared DFA matrix. Next, we need to

let the nodes be able to evaluate the results using the secret-shared DFA matrix. In the

following part, we will explain how to split a DFAmatrix, obtain value from secret-shared

21

http://dx.doi.org/10.6342/NTU202304122

doi:10.6342/NTU202304122

DFA matrix, and evaluate result on secret-shared DFA matrix.

4.3.1 Split DFA Matrix into Secret-Shared Form

TheDFAmatrixM(q, σ) transformed from regex is 2-dimensional. For simplicity, we first

reduce the dimension ofM into one dimension. We can simply concatenate the state and

input character, and use it as the index (idx) of the 1DDFA arrayM ′. In short,M ′(idxk) ≜

M(qi, σj), where qi ∈ Q is the ith state in Q, σj ∈ Σ is the jth input character in Σ, and

idxk = qi||σj . We transform(i, j) into the new index k forM ′, where 0 <= k < |Q| · |Σ|

and there exist a one-to-one function f such that f(i, j) = k.

To splitM ′, we have to XOR random bytes with both the index and the value ofM ′. The

secret shares ofM ′ will be:

[M ′]1(k) = (rk, Rk)

[M ′]2(k) = (idxk ⊕ rk,M
′(idxk)⊕Rk)

(4.1)

We denote rk as [idxk]1 and (idxk ⊕ rk) as [idxk]2. rk and Rk are random byte strings,

where rk is as long as idxk, and Rk as long as M ′(idxk). Note that when splitting M ′,

idxk is no longer unique in a DFA share because uniqueness is not guaranteed when gen-

erating random string rk. Therefore, we change the notation of [M ′]n into [M ′]n(k) ≜

([idxk]n, [M
′(k)]n).

22

http://dx.doi.org/10.6342/NTU202304122

doi:10.6342/NTU202304122

4.3.2 Comparison between Secret Shares on Secret Sharing Domain

We should first implement comparison function before discussing how to obtain value

from a secret-shared array. More specifically, we want

Compare(x, y) =

1, if x = y

0, if x ̸= y

The idea of implementation is using XOR to compare each bit, and then using NOR to

merge the compare results of each bit. Only when all the bits of XOR result are 0, will x

and y be equal, and thus the comparison result is 1. Suppose x, y are l bits long, then

r = XOR(x, y)

Compare(x, y) = NOR(r0, r1, ..., rl)

(4.2)

where ri means the ith bit of r and l is the length of r.

In practice, we don’t have a multi-input NOR operation, so we have to do 2-input NOR

log(l) times, each time merging the result into half length, like the merge sort.

23

http://dx.doi.org/10.6342/NTU202304122

doi:10.6342/NTU202304122

4.3.3 Obtain Value from Secret-Shared DFA Matrix

Figure 4.3: An example of how to obtain value from an array given the index

To evaluate results on a secret-shared DFA matrix, we need to know how to obtain values

from a secret-shared DFA matrix with a secret-shared index. That is, how to calculate

[M ′(x)]n for the nth node with only [M ′]n and [x]n. The solution is to use masks to filter

the value that the index matches in [M ′]n. Let us first focus on obtaining value from a

plaintext DFA matrix with a plaintext index. Figure 4.3 shows an example of how to

obtain value from an array given the index. We don’t have a O(1) solution because it

is impossible to implement such function on the secret sharing domain, besides it will

leak information of what the indexes is to the nodes. Instead, we have to go through all

the values and compare the indexes of the values with the given index. We can take the

comparison result as a mask, which selects the value that its index matches the given one.

In short, we can obtain k from comparing x and idxk, and set only the kth mask to 1

to select the desired value. Thus, given a plaintext DFA matrix M ′ and an index x, the

function of obtaining value will be:

24

http://dx.doi.org/10.6342/NTU202304122

doi:10.6342/NTU202304122

M ′(x) ≜ (x == idx0?) ·M ′(idx0) + (x == idx1?) ·M ′(idx1) + ...

=

|Q|·|Σ|−1∑
k=0

maskk ·M ′(idxk)

(4.3)

where the length ofmask is the same asM(x) and

maskk =

111...1, if x == idxk

000...0, else

Note that because only one mask will be 1, there will only be a specific k such thatmaskk ·

M(idxk) ̸= 0. In this special case, the result of XOR is the same as OR. Therefore, we

can replace OR with XOR, which generates the same result but brings us an advantage

— the implementation of XOR on secret sharing domain doesn’t require synchronization,

which makes it much faster that OR. Therefore, we modify the formula to become

M ′(x) ≜
|Q|·|Σ|−1⊕

k=0

maskk ·M ′(idxk)

With the above formula, we can now obtain value from the secret-shared DFA matrix by

replacing every operation into its secret-shared version. Therefore,

[M ′(x)]n =

|Q|·|Σ|−1⊕
k=0

[AND(maskk,M
′(idxk))]n

where

[maskk]n =

111...1, if [Compare(x, idxk)]n == 1

000...0, else

25

http://dx.doi.org/10.6342/NTU202304122

doi:10.6342/NTU202304122

Note that all the logical operations are done on the secret sharing domain, so even though

the Compare() function only returns 1-bit result, it does not leak any information to the

computing node— each node only knows one of the secret shares ofCompare(), but they

will need all shares to reconstruct the actual result.

4.3.4 Evaluate Result on Secret-Shared DFA Matrix

Finally, we can evaluate the regex matching result with secret shared DFA and URL. By

iterating all the input characters, we can obtain the final state and determine whether it is

in F or not as the result. Suppose that the length of URL is l, ui is the ith char of URL

U and the initial state is s0. The nodes iteratively update the state by st+1 ≜ M ′(st, ut)

to obtain the final state sl. Note that the whole computing process is on the secret sharing

domain, and here we just show the equivalent process on the plaintext domain. Finally,

they compare sl with all f ∈ F where F is the accepted state set of the DFA. If one of the

comparison result is 1, then the URL matches the pattern; otherwise, the URL does not

match.

26

http://dx.doi.org/10.6342/NTU202304122

doi:10.6342/NTU202304122

Chapter 5

Implementation

In this chapter, we will introduce the implementation details of the proposed method and

three optimization techniques to improve the performance.

5.1 Basic Implementation

We will sequentially introduce each part of the calculation process according to the order

of the flow.

5.1.1 Generate Secret-Shared DFA Matrix

The first step is that the server generates the split DFA matrix according to the malicious

URL pattern. Here we only focus on translating one pattern each time, and assume that

the pattern is in regex form (otherwise translate it to regex first). First, we translate the

regex into DFAmatrix. We utilize Google RE2[14] engine to do so. RE2 is a regex engine

developed by Google, which is widely used in most of Google’s products, such as Google

Sheet, and is implemented using finite automata while most of the regex engines of major

27

http://dx.doi.org/10.6342/NTU202304122

doi:10.6342/NTU202304122

languages are implemented by recursive backtracking[3]. That is to say, RE2will translate

regex to a DFA matrix, and then trace through the matrix and input to get the result during

the matching process. We add a wrapper function to extract that DFA matrix for our use.

The extract DFA matrix is an array with two dimensions, which are input character and

current state, and the value is the next state. Next, we perform dimension reduction to the

2D DFAmatrix by concatenating input character and current state as the index of 1D DFA

matrix. Finally, we split both the index and the value of 1D DFA matrix by Split(DFA)

to generate split DFA matrixes [M ′]n, where n ∈ [1, N] and N is the number of nodes.

5.1.2 Setup

The nodes register themselves to the server to obtain their respectiveMn. The user queries

the server to obtain the IPs of the nodes, and the length of Beaver triples needed for eval-

uation process. It then generates a, b of the length given, calculates c = a · b, and splits all

of them. Finally, it sends the secret-shared Beaver triple ([a]n, [b]n, [c]n), and the secret-

shared URL to the respective nodes. Note that U is denoted as the URL in the plaintext

form, [U]n is the nth share of U , ui is the ith character of U , and [Ui]n is the nth share of

the ith character of U .

5.1.3 Evaluate Result

The nodes can evaluate the result with [M ′]n, [a]n, [b]n, [c]n and [U]n. Herewe take a higher

view on the evaluation process—we focus on how to derive the result on the plaintext do-

main. Asmentioned in Chapter 2, we need to evaluate r = M ′(...M ′(M ′(s0, u0), u1)..., un)

to get the result. The algorithm is shown in Algorithm 1.

28

http://dx.doi.org/10.6342/NTU202304122

doi:10.6342/NTU202304122

Algorithm 1 evaluate DFA result
Require: M ′, U, s0, F
1: s← s0
2: for i← 0 to U.length do
3: ns← 0 // ns = next state
4: for k ← 0 to |Q| · |Σ| do
5: if Compare(s||ui, idxk) == 1 then
6: mask ← 111...1
7: else
8: mask ← 000...0
9: end if
10: ns← XOR(ns,AND(mask,M ′[idxk]))
11: end for
12: s← ns
13: end for
14: DFAresult← 0
15: forms ∈ F do // ms = match state
16: DFAresult← XOR(DFAresult, Compare(s,ms))
17: end for
18: return DFAresult

5.2 Optimization 1: Compare Input and State Separately

In basic implementation, we squash the DFA matrix into 1D and split the index by simply

XOR a random string. To obtain the next state, we need to generate |Q| · |Σ| masks. The

idea of this optimization is to compare input character and current state separately, and

then combine the two masks. Therefore, we only need to generate |Q|+ |Σ|masks. To do

so, the server has to split Σ and Q and sends them to the nodes as additional information.

The algorithm is shown in Algorithm 2. Note that here we turn to use the original 2D DFA

matrixM instead of 1D versionM ′. The improvement and discussion will be in Chapter

6.

29

http://dx.doi.org/10.6342/NTU202304122

doi:10.6342/NTU202304122

Algorithm 2 evaluate DFA result with Optimization 1
Require: M,Σ, Q, U, s0, F
1: s← s0
2: for i← 0 to U.length do
3: ns← 0 // ns = next state
4: maskQ ← List(length = |Q|)
5: maskΣ ← List(length = |Σ|)
6: for σ ∈ Σ do
7: if Compare(ui, σ) == 1 then
8: maskΣ[σ]← 111...1
9: else
10: maskΣ[σ]← 000...0
11: end if
12: end for
13: for q ∈ Q do
14: if Compare(s, q) == 1 then
15: maskQ[q]← 111...1
16: else
17: maskQ[q]← 000...0
18: end if
19: end for
20: for σ ∈ Σ do
21: for q ∈ Q do
22: mask ← AND(maskΣ[σ],maskQ[q])
23: ns← XOR(ns,AND(mask,M(q, σ)))
24: end for
25: end for
26: s← ns
27: end for
28: DFAresult← 0
29: forms ∈ F do // ms = match state
30: DFAresult← XOR(DFAresult, Compare(s,ms))
31: end for
32: return DFAresult

30

http://dx.doi.org/10.6342/NTU202304122

doi:10.6342/NTU202304122

5.3 Optimization 2: Perform Independent-ANDs in One

Request

As mentioned in Chapter 4, the bottleneck of the algorithm will be the number of AND

operations because all the nodes need synchronization. Therefore, the new strategy of this

optimization is to combine multiple independent AND operations and calculate them in

one synchronization. One example is that when generating masks, we do Compare() on

all indexes, and since all the indexes are independent, we can combine them. Consider

the scheme of Optimization 1, we will need to perform AND log(Q)× (Σ +Q) times to

generate all masks, and we can combine them sowe only need log(Q) times, where log(Q)

is used to merge the bits and the parameters are correlated so we cannot combine them

anymore. Another example is when applying masks to the values, we can also combine

them so we only need 1 AND operation to get all results. The improvement and discussion

will be in Chapter 6.

5.4 Optimization 3: Use PRNG to Generate Split Beaver

Triples

The user has to generate the Beaver triple itself due to privacy concern. In the basic

implementation, suppose the required Beaver triple length is l, then the user has to transfer

3 · l · N bits to all the nodes in total, where N is the number of nodes, because there are

three variables a, b, c in the Beaver triple. If we take a closer look into the Split() function,

we will find out that (n− 1) of the Beaver triple shares are just randomly generated bits.

Further more, [a]N and [b]N are also randomly generated bits, and only [c]N needs to be

31

http://dx.doi.org/10.6342/NTU202304122

doi:10.6342/NTU202304122

calculated once [a]1 ∼ aN , b1 ∼ bN , and c1 ∼ c(N−1) are determined. Therefore, instead

of transmitting all the random bits, we turn to transmit the random seeds to the nodes, so

that both the user and the respective node can generate the same random bit sequence.

We use AES OFB as the pseudo random number generator (PRNG). When generating

random bits, they both setup the same key and IV value, then encrypt null bytes to get

the same random bit sequence. With this optimization, the network traffic is then reduced

to l + N · 16 · 2, where 16 is the length of key and IV value and is actually neglectable

because it is much smaller than l. The improvement and discussion will be in Chapter 6.

5.5 Optimization 4: Reduce Input Character Set

The input character set contains 256 characters from \x00 to \xff. If we take a closer look on

the DFAmatrix, we will find out that the characters can be separated into groups that given

a current state, all the characters in the same group lead to the same next state. Therefore,

we can choose the biggest group, keep 1 character and remove the rest to reduce the input

character set. We can utilize other characters’ comparison results to determine whether an

input character is in that group or not. The input character is in the group only if all the

other comparison results are 0, so we can calculate it by XOR all the other comparison

results, and then perform NOT. Since there will be at most one result that is 1 in all the

other comparison results, XOR and NOT is actually equivalent to NOR, which produces

correct answer yet much faster because XOR and NOT doesn’t require synchronization.

The improvement and discussion will be in Chapter 6.

32

http://dx.doi.org/10.6342/NTU202304122

doi:10.6342/NTU202304122

Chapter 6

Evaluation

In this chapter, we will analyze our proposed system theoretically and practically. We

will evaluate how much does the optimization techniques improve the efficiency, and test

the well-optimized system with URLs and patterns of average case to see how the system

performs.

6.1 Dataset

It’s hard to obtain a malicious URL dataset, due to the Intellectual Property problem, so

we use an open-source ad domain filter list instead [8]. Ad domains share similar char-

acteristics with malicious URLs: they are not welcomed to many people that those people

apply filters to avoid access to them, and they tend to leverage some evading techniques

to bypass the filters. Those filters are written with specific rules, capable of filtering and

removing advertising elements from the HTML of webpages or directly blocking traffics

from ad domains. We follow the rules introduced in [7] to translate the filters into regex

patterns for further analysis.

33

http://dx.doi.org/10.6342/NTU202304122

doi:10.6342/NTU202304122

6.2 Complexity Analysis

6.2.1 Complexity of DFA Size

First, we focus on analyzing the relationship between the length of regex pattern and the

corresponding DFA size (the number of states). This is important because for a regex

pattern of length L, the corresponding DFA size may be up to 2L, which will then be

infeasible in the real world [15]. The worst case is, however, considered rare in the real

world, especially in the scheme of URL patterns.

To verify the above argument, we analyze whether regex length and DFA size are linearly

correlated in most of the URL patterns.

Figure 6.1 shows the relationship between regex length and DFA size. Notice that there

are some extreme values, so we first go through all the patterns that produce those extreme

values, and the results are as follows:

• (https?://)104\.154\..{100,}

• (https?://)104\.197\..{100,}

• (https?://)104\.198\..{100,}

• (https?://)130\.211\..{100,}

• (https?://)142\.91\.159\..{100,}

• (https?://)213\.32\.115\..{100,}

• (https?://)216\.21\..{100,}

34

http://dx.doi.org/10.6342/NTU202304122

doi:10.6342/NTU202304122

• (https?://)217\.182\.11\..{100,}

• (https?://)51\.195\.31\..{100,}

The patterns seem to be incomplete IP filters, while the last part, .{100,}, means to match

any characters 100 times or above, which is unreasonable and will never match any IP

addresses. A reasonable explanation will be that either there are typos in the patterns, or

they are correct filters but only apply in extreme cases. Therefore, we decide to remove

them from the dataset. With the rest of the data, we found that the majority of the data

matches three linear regression lines, as shown in Figure 6.2, while line 1 seems to be

very steep, so we focus on data on line 1 and take a closer look. We filter all the data

that ∆y
∆x

> 2, as shown in Figure 6.3. To confirm their approximate linear relationship,

we conducted a cubic regression analysis, and the result shows that the coefficients for

higher-order terms are significantly smaller than the coefficient for the first-order term.

In most cases, the pattern length is not excessively long (< 200), so the quadratic term is

at most of the same magnitude as the linear term. Therefore, it does not affect the linear

result.

35

http://dx.doi.org/10.6342/NTU202304122

doi:10.6342/NTU202304122

Figure 6.1: DFA sizes of easylist filters

Figure 6.2: DFA sizes of easylist filters excluding extreme values

36

http://dx.doi.org/10.6342/NTU202304122

doi:10.6342/NTU202304122

Figure 6.3: DFA sizes of easylist filters excluding extreme values and ∆y
∆x

> 2. The orange
line is the cubic regression result: y = 1.14x+ 1.84× 10−2x2 + 4.83× 10−5x3

6.2.2 the Number of AND Operations

We analyze the the number of AND operations used in the system because it requires

synchronization, which makes it the slowest operation and the bottleneck of the algorithm.

The AND operations are used in Compare() function and when applying masks to the

values.

Algorithm 1 shows the algorithm of our basic implementation. Suppose that the length

of input u is L and there are |Q| states. The index of DFA is the combination of input

characters and states, so the number of index will be |Q| · |Σ|, which will require log(|Q| ·

|Σ|) = log|Q| + log|Σ| bits to represent an index. For Compare(), it will then require

log(log|Q| + log|Σ|) ANDs to NOR all the bits. For applying mask, we need |Q| · |Σ|

ANDs to go through all the values. Hence, the number of AND operations required for

basic implementation is L · |Q| · |Σ| · (log(log|Q|+ log|Σ|)+1). Note that we assume that

the accept state set F is very small (usually < 10), so the comparison with accept states is

not considered here.

Algorithm 2 shows the algorithm applying Optimization 1. In Optimization 1, we separate

37

http://dx.doi.org/10.6342/NTU202304122

doi:10.6342/NTU202304122

the indexes to reduce the number of Compare() needed. The number of AND operations

thus become L · [(|Q| · log(log|Q|) + |Σ| · log(log|Σ|)) + |Q| · |Σ|].

In Optimization 2, we concatenate and merge the ANDs whose parameters are inde-

pendent. Since all the indexes are independent, we are able to compare the indexes,

generate masks, and apply masks to values simultaneously, which eliminates the fac-

tor of |Q| · |Σ| and |Q| + |Σ|. The number of AND operations required thus becomes

L · (log(log|Q|) + log(log|Σ|)) + 1).

Optimization 3 and 4 are irrelevant to the number of AND operations, so it remains un-

changed.

6.2.3 Beaver Triple Length

We analyze the the Beaver triple length required in the system because the beaver triples

are the majority of the network traffic sent by the user. Each bit of AND consumes 1 bit

of Beaver triple, which generates 3 bit of traffic because there are three variables in the

Beaver triple.

Algorithm 1 shows the algorithm of basic implementation. ForCompare(), it will require

log(|Q|+ |Σ|) Beaver triples in total to calculate log(|Q|)-input NOR. For applying mask,

|Q| · |Σ| ANDs are needed, and the lenth of mask and values are log|Q|. Hence, the

number of Beaver triples required for basic implementation is L · |Q| · |Σ| · (log(|Q| +

|Σ|) + log|Q|).The comparison with accept states is, again, not considered here.

Algorithm 2 shows the algorithm applying Optimization 1. In Optimization 1, we separate

the indexes to reduce the number of Compare() needed, so the required Beaver triples

are also reduced. The number of Beaver triples required thus becomes L · ((|Q|log|Q| +

38

http://dx.doi.org/10.6342/NTU202304122

doi:10.6342/NTU202304122

|Σ|log|Σ|) + |Q| · |Σ| · log|Q|).

In Optimization 2, we only concatenate and merge the independent ANDs, which doe not

affect the length, so the number of Beaver triples required remains unchanged.

In Optimization 3, we improve the distributing process of Beaver triples, but the number

of Beaver triples required remains unchanged.

In Optimization 4, we shrink the input character set Σ to Σ′. Thus, the number of Beaver

triples required becomes L · [(|Q|log|Q|+ |Σ′|log|Σ′|) + |Q| · |Σ′| · log|Q|].

6.3 Security Analysis

In this section, we will explain why our system preserves both server’s and user’s privacy.

Because all the data is sent to the nodes for the matching process, we focus on how our

system preserves privacy against an adversary node. An adversary node may be curious

about revealing the server’s and the user’s secrets, including the DFA matrix, URL and

the matching result.

A naiveway for the adversary nodemay be to reconstruct the secrets from the secret shares.

To do so, he will need to obtain all the secret shares for reconstruction. However, because

at least one node is considered honest and will not collude, the adversary node can obtain

at most (N − 1) shares; and since XOR has perfect secrecy if the shares are generated

with enough randomness, so missing any piece will result in failure in reconstruction.

Therefore, it is impossible for the adversary node to directly reveal the secret.

The adversary node may then try to gather additional information from the matching pro-

cess and try to reveal the secrets with the additional information. This includes two at-

39

http://dx.doi.org/10.6342/NTU202304122

doi:10.6342/NTU202304122

tempts: revealing the parameters of the algorithm (DFAmatrix, URL) by reverse-engineering,

and reveal or predict the matching result from the intermediate values.

To reveal the DFA matrix and the URL, the adversary node may utilize the intermediate

values of AND operation r = AND(x, y), where the nodes exchange shares and recon-

struct x′ and y′, which are mentioned in Chapter 2. XOR and NOT, in contrast, do not need

synchronization and thus they don’t bring any extra information to the adversary node. In

our algorithm, a portion of the URL or the DFA may be represented as the x or y in the

AND operation, so if the adversary could obtain x from x′ (or y from y′), he could reveal

the DFA matrix and the URL. However, it is impossible for the adversary node to do so

because x′ = x⊕ a, and the adversary node doesn’t have enough shares to reconstruct a.

The adversary node may also reverse lookup the next state in the DFA matrix to obtain

the list of possible indexes, which contains information of the URL; however, it is also

impossible because all the next state are calculated from the algorithm, so the secret share

of next state calculated would likely be different from the one in the DFA. Therefore, it is

also impossible for the adversary node to reveal the DFA and the URL during the matching

process.

The last attempt of the adversary node would be to reveal or predict the matching result.

However, this is also impossible because all the intermediate values and the result are on

secret sharing domain and, again, the adversary node could not obtain enough shares to

reveal them. Besides, all the shares are only random bytes from the node’s perspective,

so all the intermediate values and the result still has randomness, which makes it hard to

predict the result of the matching process. We thus conclude that our system can preserve

both server’s and user’s privacy.

40

http://dx.doi.org/10.6342/NTU202304122

doi:10.6342/NTU202304122

6.4 Computation Time and Network Traffic Size

In this part, we will analyze how the optimizations improve the system and the overall

performance of the well-optimized system. All the experiments are done on Ubuntu 20.04

WSL system with AMD Ryzen 4750G CPU and 32G memory, and 2 nodes are used for

computing the result. For simplicity, we run all the components on the same computer and

use only loopback interface to transmit data between components. We will instead use the

traffic size to evaluate the network performance.

Table 6.1: Results of evaluating input = ”agg” and regex = ”.*g”

Optimization network(s) total(s) network / total AND op.(#) traffic(KB)

base 110.06 113.10 97.31% 65298 229.65

O1 22.94 23.61 97.16% 15534 91.02

O2 0.01 0.05 20% 33 91.02

O3 0.01 0.06 16.67% 33 15.26

O4 0.01 0.04 25% 33 7.89

Table 6.1 shows the results of evaluating a simple case, where the regex means to match

any string that ends with ”g”. Network time is the time consumed by python socket.recv()

function, which includes data transmission time and synchronization time. Total time

is the time consumed by the whole evaluation process. AND operation means the total

number of AND operations used by the evaluation process. Traffic means the size of data

transmitted by the user to all nodes, which is mainly composed of beaver triples.

We can see that in basic implementation, the network time constitutes the vast majority of

the total time. Since it’s impossible to take 110 seconds to just transmit less than 1MB of

data via localhost network, it implies that synchronization in AND operation is indeed the

41

http://dx.doi.org/10.6342/NTU202304122

doi:10.6342/NTU202304122

bottleneck.

In Optimization 1, we optimize the way to generate masks by separating the indexes.

The result is that less AND operations are used, so less beaver triples execution time are

needed. We can see that the number of ANDs are reduced to one-fourth of the original,

so the traffic is decreased by about 2.5 times, and the execution time is also reduced by

about 5 times. Note that the byte length of each AND is not the same, so the number of

AND is not proportional to the traffic.

In Optimization 2, the AND operations are computed in parallel. This optimization only

reduce the number of synchronization needed, not the byte length of ANDs, so the traffic,

which is the beaver triples required, remain the same. However, we still observe signifi-

cant reduction in execution time, as we successfully reduce the number of ANDs (number

of synchronization) by about four to five hundred times.

In Optimization 3, we optimized the way to transmit beaver triples by utilizing PRNG.

The traffic is further reduced by about 6 times, while the execution time remain the same

because the algorithm is not changed.

In Optimization 4, we reduce the input character set Σ by eliminating characters that have

same next states. Because the execution time becomes very short, the effect of the error

also becomes more significant. The extent of performance improvement depends on the

reduction in the number of characters, which varies with each DFA. In this example, the

execution time is further reduced and the traffic is also reduced by about 2 times. The

average number of reduced chars will be evaluated in next experiment.

42

http://dx.doi.org/10.6342/NTU202304122

doi:10.6342/NTU202304122

Figure 6.4: Distribution of DFA size: 98.98% of URL patterns (43021) with less than 100
states

Table 6.2: Average result of evaluating input length = 66

|Q| reduced char(#) node computing time(s) user computing time(s) traffic(KB)

0~10 248.98 0.52 0.005 7.71

11~20 236.44 0.63 0.01 26.88

21~30 214.52 0.83 0.03 80.70

31~40 188.24 1.38 0.07 202.23

41~50 117.66 2.74 0.18 504.44

51~60 113.14 3.70 0.21 611.11

61~70 113.88 3.90 0.25 701.70

71~80 110.76 4.62 0.28 817.39

81~90 107.14 5.75 0.32 940.09

91~100 108.26 6.50 0.36 1053.39

Table 6.2 shows how the computing time and traffic vary as the number of states increases.

Here we ignore the patterns whose corresponding DFA size > 100, because the majority

of the patterns(98.56%) has it’s DFA size less than or equal to 100. We categorize the

rest of patterns in to 10 groups, randomly sample 50 patterns from each group, and record

43

http://dx.doi.org/10.6342/NTU202304122

doi:10.6342/NTU202304122

the average result. Figure 6.4 illustrates the distribution of the data. According to [1], the

average URL length for a top 10 result in Google is 66 character, so we take it as our input

length. The number of reduced char means the number of characters that are removed

from Σ (originally 256 characters) by Optimization 4.

We can see that as the DFA size becomes bigger, the pattern tends to be more complicated,

so the characters that can be removed from Σ becomes less, but we can still remove about

110 characters in average for large DFAs, which brings us about 1.75X performance im-

provement. We also found that in average case of about 50~60 states, the matching process

takes only about 3.7s, which is very fast; even for the biggest DFA tested (90~100 states)

- which is very big and rare, considering that it is transformed from only one URL pattern

- the matching process takes only about 6.5s to evaluate the result, which is good enough

for extreme cases.

Table 6.3: Result of evaluating DFA size = 54

URL length node computing time(s) user computing time(s) traffic(KB)

30 1.74 0.09 267.20

40 2.39 0.13 356.23

50 3.00 0.16 445.26

60 3.56 0.19 534.29

70 4.13 0.22 623.33

80 4.75 0.25 712.36

90 5.54 0.29 801.39

Table 6.3 shows how the computing time and traffic vary as the length of input URL in-

creases. Because there are extreme values in the dataset, we choose the median of the

DFA size for the test. We found that in average case which the length of URL is about

60~70, the matching process takes about 3.85s, and for long URLs (90 chars), the match-

44

http://dx.doi.org/10.6342/NTU202304122

doi:10.6342/NTU202304122

ing process takes about 5.5s to evaluate the result, which implies that the system is fast

enough and acceptable. In addition, one may argue that whether the user-side workload

is small enough for devices with low computation resources, such as mobile devices and

IoT devices. Therefore, we also test how much time it cost for the user to generate beaver

triples and split data, which are the main workloads for the user. From Table 6.2 and 6.3,

we can see that the user’s computing time are all much smaller than the nodes’ computing

time, which implies that the computing nodes indeed cover most of the workloads and the

user’s workload is very small compared to the nodes’ workload.

45

http://dx.doi.org/10.6342/NTU202304122

doi:10.6342/NTU202304122

Chapter 7

Related Work

Google Safe Browsing [11] is the biggest URL checking service in the world, and it’s

privacy-preserving solution is its Update API [12]. Update API use hash prefix to avoid

tampering user’s privacy: the server keeps a database of malicious URL hashes, and the

user query for a hash prefix and compare it locally with its URL. However, the solution

has its limitations. First, the hash prefix can only be used on exact matching, so even

with URL canonicalization, it still has limited applicability. Second, It is pointed out that

even Update API has its privacy issue [9]. Because of canonicalization, sometimes the

hash prefix may leak information of the URL. What makes it worse, a malicious service

provider may even implant hash prefixes of specific websites into the user’s local database

to track the user’s browsing histories of those websites.

Some works aim to solve the privacy issue of Google Update API. Cui et al. proposed

PPSB [4] which downloads encrypted URL hash list to the user’s device instead and utilize

oblivious pseudorandom function (OPRF) to search and decrypt the result for the user.

Du et al. proposed PEBA [6] that utilize a proxy server and trusted hardware to avoid

downloading encrypted URL hash list to the user’s device, which consumes the user’s

46

http://dx.doi.org/10.6342/NTU202304122

doi:10.6342/NTU202304122

storage. Both works are based on Update API, and therefore they both don’t support

regex matching.

In the domain of privacy-preserving regexmatching, another application is Privacy-Preserving

Intrusion Detection System(PPIDS). Niksefat et al. proposed ZIDS [21] which leverage

ODFA protocol to match snort rules on traffic data, while we focus on outsourcing the

computation to the server-side so our user has less workloads and smaller data transmit-

ted. Sgaglione et al. [23] proposed another approach with Fully Homomorphic Encryp-

tion(FHE), but the efficiency is very low and the functions are limited.

DNA and chemical compound matching also have privacy-preserving version, though

their data may be in special form instead of an ASCII string. Nakagawa et al. [20] pro-

posed a privacy-preserving substring matching system for DFA sequence, which leverage

computing nodes to help evaluating comparison results on share secrets, and is the inspi-

ration of our proposed system. Kim et al. [17] proposed a FHE search on SQL database

which supports single wildcard character(*) and NOT(!). Shimizu et al. [24] proposed a

privacy preserving search for chemical compound databases with fuzzy matching based

on Tversky index. All the above solutions are special-case solutions and are not suitable

in URL checking scheme.

47

http://dx.doi.org/10.6342/NTU202304122

doi:10.6342/NTU202304122

Chapter 8

Discussion and Future Work

In this chapter, we discuss some issues of the system that are not out of scope in this paper,

some of which may be studied in the future work.

8.1 Verifiability

In this paper, we assume that all the nodes will follow our algorithm and return the correct

result shares. However, it’s good to have some mechanisms for the user to verify that

whether the result received from the nodes is correct or not. Some naive solutions may be

to send the request to two sets of nodes, or split the URL in a different way and send the

request again, then see if the results are the same or not. However, either relying on more

nodes or doubling the evaluation time is not a good solution to this problem. An alternative

way is that the nodes somehow prove themselves that the computations are indeed done

on the shared secrets. There are several works about how the server can verify the input,

but currently, to the best of our knowledge, no work that is able to verify the computation

on share secrets have been done. How to convince the user the result is generated from

48

http://dx.doi.org/10.6342/NTU202304122

doi:10.6342/NTU202304122

correct calculation is left for future work.

8.2 Availability

The original Shamir’s secret sharing allows people to reconstruct the secret data with only

t pieces of share secrets, where t <= N andN is the total amount of share secrets, which

leaves a room for fault tolerance. However, to simplify the Computation process, we let

t = N in our system, which result in zero fault tolerance. Besides, the nodes need to

be synchronized during computation to evaluate the result, which means that once a node

is down, the evaluation process is forced to termination. In such situation, the user can

assign a new node to proceed the process by sending the URL secret share as same as the

broken node possess. the node then asks for all the intermediate values from all the other

nodes that have already been calculated and broadcasted to quickly catch up and continue

the evaluation process.

8.3 Evaluation on Multiple DFAs

In previous chapters, we only match one pattern with the URL. In practice, the server

will have a set of patterns to be matched with the user’s URL. How to merge DFAs in an

efficient way is an important issue. Liu et al.[18] proposedRegexGrouper in 2014, which

helps grouping DFAs and merging them group by group with less states. On the other

hand, the user may also assign more nodes to parallel-computing the DFAs to speedup the

evaluation process.

49

http://dx.doi.org/10.6342/NTU202304122

doi:10.6342/NTU202304122

8.4 Limitation

In our proposed system, we utilize google RE2[14] engine to transform regex patterns into

DFA matrix. RE2 supports all basic regex functions, but not all extended regex functions.

For example, in Perl Compatible Regular Expressions(PCRE), there are back-reference

and look-around assertion which are not supported by RE2 due to the difference of im-

plementation - PCRE engines mostly use backtracking technique while RE2 use Finite

Automata to implement. On the other hands, our system only support signature-based

URL checking, while there are other technologies to achieve URL checking, such as ML-

based detection. There may be other techniques to achieve privacy-preserving machine

learning, such as Homomorphic Encryption, but they are out of scope and thus not con-

sidered here.

50

http://dx.doi.org/10.6342/NTU202304122

doi:10.6342/NTU202304122

Chapter 9

Conclusion

In this paper, we build a privacy-preserving URL checking system by introducing com-

puting nodes to evaluate results on secret shares. As long as one of the computing nodes

is considered honest, the secrets cannot be reconstructed and thus the privacy of the user

and the server are protected. We propose an algorithm to perform regex matching on se-

cret shares, and optimizations that can improve the overall efficiency so that the system

can finish the matching process in short period of time. Besides, due to the support for

regex matching, our system also has broader privacy-preserving cloud applications, such

as pattern-based cloud IDS, Firewalls, and other services.

Our system is developed in Python, which is just a proof of concept; it can be even more

efficient if we develop it in C++ with better design and memory management. Compared

to prior work (ZIDS), we reduce the computation loading of the user, which is important

because the user tend to have less computing power than server or computing nodes; we

also reduce the network traffic to further reduce the loading of the user. Our system takes

about 3 ~4 seconds for thematching process and about 600KB of network traffic in average

case, which is quite efficient.

51

http://dx.doi.org/10.6342/NTU202304122

doi:10.6342/NTU202304122

Bibliography

[1] Backlinko. Backlinko: google search results analysis. https://backlinko.com/

search-engine-ranking, May 2023.

[2] D. Beaver. Efficient multiparty protocols using circuit randomization. CRYPTO

(1991), pages 420––432, 1991.

[3] Ross Cox. Regular expression matching can be simple and fast (but is slow in java,

perl, php, python, ruby, ...). https://swtch.com/~rsc/regexp/regexp1.html,

May 2023.

[4] Helei Cui, Yajin Zhou, Cong Wang, Xinyu Wang, Yuefeng Du, and Qian Wang.

Ppsb: An open and flexible platform for privacy-preserving safe browsing. IEEE

Transactions on Dependable and Secure Computing, 18(4):1762–1778, 2021.

[5] Roger Dingledine, Nick Mathewson, and Paul F. Syverson. Tor: The second-

generation onion router. In Matt Blaze, editor, Proceedings of the 13th USENIX

Security Symposium, August 9-13, 2004, San Diego, CA, USA, pages 303–320.

USENIX, 2004.

[6] Yuefeng Du, Huayi Duan, Lei Xu, Helei Cui, Cong Wang, and Qian Wang. Peba:

Enhancing user privacy and coverage of safe browsing services. IEEE Transactions

on Dependable and Secure Computing, pages 1–15, 2022.

52

http://dx.doi.org/10.6342/NTU202304122
https://backlinko.com/search-engine-ranking
https://backlinko.com/search-engine-ranking
https://swtch.com/~rsc/regexp/regexp1.html

doi:10.6342/NTU202304122

[7] EasyList. Easylist filter blocking rules. https://adblockplus.org/

filter-cheatsheet, May 2023.

[8] EasyList. Easylist filter list, version: 202305230654. https://easylist.to/

easylist/easylist.txt, May 2023.

[9] Thomas Gerbet, Amrit Kumar, and Cédric Lauradoux. A privacy analysis of google

and yandex safe browsing. In 2016 46th Annual IEEE/IFIP International Conference

on Dependable Systems and Networks (DSN), pages 347–358, 2016.

[10] V M Glushkov. The abstract theory of automata. Russian Mathematical Surveys,

16(5):1, oct 1961.

[11] Google. Google safe browsing. https://safebrowsing.google.com/, May

2023.

[12] Google. Google safe browsing api. https://developers.google.com/

safe-browsing/v4, May 2023.

[13] Google. Google safe browsing statistics. https://transparencyreport.

google.com/safe-browsing/overview, May 2023.

[14] Google. Google/re2: Re2 is a fast, safe, thread-friendly alternative to backtracking

regular expression engines like those used in pcre, perl, and python. it is a c++ library.

https://github.com/google/re2, May 2023.

[15] Hermann Gruber and Markus Holzer. From finite automata to regular expressions

and back — a summary on descriptional complexity. Electronic Proceedings in

Theoretical Computer Science, 151:25–48, may 2014.

53

http://dx.doi.org/10.6342/NTU202304122
https://adblockplus.org/filter-cheatsheet
https://adblockplus.org/filter-cheatsheet
https://easylist.to/easylist/easylist.txt
https://easylist.to/easylist/easylist.txt
https://safebrowsing.google.com/
https://developers.google.com/safe-browsing/v4
https://developers.google.com/safe-browsing/v4
https://transparencyreport.google.com/safe-browsing/overview
https://transparencyreport.google.com/safe-browsing/overview
https://github.com/google/re2

doi:10.6342/NTU202304122

[16] John Hopcroft. An n log n algorithm for minimizing states in a finite automaton. In

Zvi Kohavi and Azaria Paz, editors, Theory of Machines and Computations, pages

189–196. Academic Press, 1971.

[17] Myungsun Kim, Hyung Tae Lee, San Ling, Benjamin Hong Meng Tan, and Huax-

iong Wang. Private compound wildcard queries using fully homomorphic encryp-

tion. IEEE Transactions on Dependable and Secure Computing, 16(5):743–756,

2019.

[18] Tingwen Liu, Alex X. Liu, Jinqiao Shi, Yong Sun, and Li Guo. Towards fast and

optimal grouping of regular expressions via dfa size estimation. IEEE Journal on

Selected Areas in Communications, 32(10):1797–1809, 2014.

[19] Edward F Moore et al. Gedanken-experiments on sequential machines. Automata

studies, 34:129–153, 1956.

[20] Yoshiki Nakagawa, Satsuya Ohata, and Kana Shimizu. Efficient privacy-preserving

variable-length substring match for genome sequence. Algorithms for Molecular

Biology, 17(1):9, Apr 2022.

[21] SalmanNiksefat, Babak Sadeghiyan, PaymanMohassel, and Saeed Sadeghian. Zids:

A privacy-preserving intrusion detection system using secure two-party computation

protocols. The Computer Journal, 57(4):494–509, 2014.

[22] M. O. Rabin and D. Scott. Finite automata and their decision problems. IBM Journal

of Research and Development, 3(2):114–125, 1959.

[23] Luigi Sgaglione, Luigi Coppolino, Salvatore D’Antonio, Giovanni Mazzeo, Luigi

Romano, Domenico Cotroneo, and Andrea Scognamiglio. Privacy preserving in-

trusion detection via homomorphic encryption. In 2019 IEEE 28th International

54

http://dx.doi.org/10.6342/NTU202304122

doi:10.6342/NTU202304122

Conference on Enabling Technologies: Infrastructure for Collaborative Enterprises

(WETICE), pages 321–326, 2019.

[24] Kana Shimizu, Koji Nuida, Hiromi Arai, Shigeo Mitsunari, Nuttapong Attra-

padung, Michiaki Hamada, Koji Tsuda, Takatsugu Hirokawa, Jun Sakuma, Goichiro

Hanaoka, and Kiyoshi Asai. Privacy-preserving search for chemical compound

databases. BMC Bioinformatics, 16(18):S6, Dec 2015.

[25] Ken Thompson. Programming techniques: Regular expression search algorithm.

Commun. ACM, 11(6):419–422, jun 1968.

55

http://dx.doi.org/10.6342/NTU202304122

	口試委員會審定書
	誌謝
	摘要
	Abstract
	Contents
	List of Figures
	List of Tables
	Introduction
	Background
	Notations
	Deterministic Finite Automaton
	Regex Transformation
	Secret Sharing
	Split a Secret
	Reconstruct a Secret

	Computations on Secret Sharing Domain
	XOR Operation on the Secret Sharing Domain
	NOT Operation on the Secret Sharing Domain
	AND Operation on the Secret Sharing Domain
	OR Operation on the Secret Sharing Domain

	Problem Definition
	Entities
	Threat Model
	Design Goal

	Proposed Method
	Overview
	System Architecture
	User
	Server
	Computing Node

	Regex Matching on the Secret Sharing Domain
	Split DFA Matrix into Secret-Shared Form
	Comparison between Secret Shares on Secret Sharing Domain
	Obtain Value from Secret-Shared DFA Matrix
	Evaluate Result on Secret-Shared DFA Matrix

	Implementation
	Basic Implementation
	Generate Secret-Shared DFA Matrix
	Setup
	Evaluate Result

	Optimization 1: Compare Input and State Separately
	Optimization 2: Perform Independent-ANDs in One Request
	Optimization 3: Use PRNG to Generate Split Beaver Triples
	Optimization 4: Reduce Input Character Set

	Evaluation
	Dataset
	Complexity Analysis
	Complexity of DFA Size
	the Number of AND Operations
	Beaver Triple Length

	Security Analysis
	Computation Time and Network Traffic Size

	Related Work
	Discussion and Future Work
	Verifiability
	Availability
	Evaluation on Multiple DFAs
	Limitation

	Conclusion
	Bibliography

