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摘要 

今日 3D 電腦繪圖越來越顯得重要，電腦遊戲、虛擬實境等廣泛的使用 3D 電腦

繪圖。對於電腦及行動裝置上，3D 繪圖加速已經是一個必備的功能。 

繪圖處理器的產生代表者 GPU 接管了幾乎所有 3D 繪圖相關的工作，在新一代

的繪圖處理器中, 甚至提供了可程式性以應付更複雜的效果需求。著色語言便是提供

繪圖處理器可程式化的關鍵，它抽象化了硬體同時提供更多彈性 程式設計師因此不

必使用組合語言來對繪圖處理器寫作程式 

著色語言編譯器將著色語言轉成硬體的執行格式。我們開發了一個針對 OpenGL 

ES 著色語言與 Media IC & System and DSP IC 實驗室開發的行動繪圖處理器的著色

語言編譯器。 

此論文中，我們敘述了該著色語言編譯器的實作，並對相關硬體的後端作了探

討，我們針對該繪圖處理器的架構提出了最佳化方法-在指令調度方面,編譯器實作了

資料前饋的偵測與程式碼的產生,另外針對著色語言與硬體特性亦提出了一個暫存器

配置方法,目前實驗結果顯示最高可以省下 28%的使用量 
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ABSTRACT 

3D computer graphic has become more and more important today, applications like 

games, virtual reality and so on prevail the way for 3D computer graphic. Accelerator for 

3D Graphic has become a necessary component in computer and mobile device.  

GPU is the new name of graphic hardware since it has taken nearly all workload of 

3D graphic processing form CPU. As the evolution of GPU, programmability is now 

provided for more complex computation. Shading language is the key to release the power 

of GPU programmability. It provides the high hardware abstraction and more flexibility 

programmability rather than programming GPU in low-level hardware related assembly. 

Shading language compiler translates shader codes to low level instructions. We have 

developed an OpenGL ES shading language compiler for a mobile GPU developed by 

Media IC & System and DSP IC Lab at NTU.  

In this thesis, we describe the compiler we have done and study the backend of 

shading compiler for the mobile GPU hardware. Optimization methods are proposed to 

improve the performance of current hardware. Code scheduling in compiler detects data 

forwarding and generates code to use hardware forwarding path. Register allocation 

supports packing to use remain part of vector type in shading language. In current 

experiment, at most 28% register usage can therefore shrink. 
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Chapter 1  

Introduction 

1.1  Motivation 

3D graphic has played a major role nowadays. More and more game, movie, and 

other applications use 3D graphic technology to attract your attentions.  It thrives in 

recent years because of requirements from users and hardware evolution. Graphic 

Processor Unit (GPU) has born to bring the colorful and realistic world. To utilize the 

power of GPU, shading language is provided to programmer for higher hardware 

abstraction and a more flexible programming model.  

Media IC & System and DSP/IC Lab at NTU have studied GPU hardware for several 

years. A mobile GPU [21][22] has been developed by them. We are here to develop 

shading language compiler and explore the potential of hardware.  



 

 2 

 

 

Figure 1-1 Cape NO 7 

 

Figure 1-2 Crisis 

1.2  Introduction 

3D graphic is a branch of computer graphic used to generate realistic image or visual 

effect. Users build the 3D models by primitives formed by triangles, lines, points and so on 

as the data of graphic processing. Through graphic pipeline, the results are generating to 
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either display or to store. 

1.2.1 Graphic Pipeline 

Processing to get 2D images from 3D models and related configuration is called 

rending. Several algorithms are developed to render a picture such as Ray Tracing [26], 

“Radiosity” [23], and Rasterization. Rasterization is the one widely used among them. The 

algorithm of rasterization shown in figure 1.3 is called as graphic pipeline. Users input 

vertexes, primitives (which was formed by vertex. E.g. triangle is consist by 3 vertexes) 

and settings into graphic pipeline. After processing, the images formed by pixels are 

generated as output.  Functions inside pipeline do special tasks which are explained in the 

following paragraph..  

1. T&L (Transform & Lighting): Transform converts spatial coordinates, which in this 

case involves moving three-dimensional objects in a virtual world and converting the 

coordinates to a two-dimensional view. Clipping was used to draw things that might be 

visible to viewer; it can therefore improve performance by removing the invisible object. 

Lighting takes light objects in a virtual scene and calculates to result color of surrounding 

objects as the light falls upon them. 
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2. Primitive Setup: Primitive Setup collects vertices and converts them into primitives 

(lines, triangles). Information is generated that will allow later stages to accurately generate 

the attributes of every pixel associated with the primitives. 

3. Rasterization: Rasterization is responsible for taking an image described in a vector 

graphics format (shapes) and converting it into a raster image (pixels or dots) . 

4. Pixel processing: Pixel processing processes color of a pixel (aka Texture operation). 

Filtering is also the task of pixel processing 

5. Frame Buffer Blend: This step processes multi-frame effect, such as alpha blending, 

BitBLT so on. 

Other methods can be added into graphic pipeline to get effect you want. “Software 

Rendering” do all things on CPU.  

1.3  Graphic Processing Unit 

From Figure 1-3, we can see the evolution of rasterization graphic pipeline. Render by 

software was used originally. But later graphic pipeline was implemented by specific 

circuit and named as fix-function pipeline. T&L is the technique that makes Graphic 

Processing Unit born. Before popularization of DirectX [9] 7, T&L was computed by CPU. 
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But Nvidia Geforce 256 offloads T&L works to graphic accelerator and graphic accelerator 

was named Graphic Process Unit since GPU takes all jobs of graphic pipeline. Later, the 

arrival of DX 8 has provided programmable graphic pipeline to us. This turns a new leaf of 

the GPU; programmers are able to produce much more the effect they want then.  

 

Figure 1-3 graphic pipeline 

 

1.4  Shading Language 

A shader in the field of computer graphics is a set of software instructions, which is 
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used primarily to calculate rendering effects on graphics hardware with a high degree of 

flexibility. Shading languages was developed from the work of Cook, who described how 

shade trees [16] could provide a flexible, programmable framework for shading 

computations. The RenderMan [28] is the most common shading language for 

production-quality rendering. Except offline render system like RenderMan which render 

production-quality image, real-time rendering systems is focus more on real-time 

requirement. Shading languages for real-time rendering systems is used to provide high 

hardware abstraction and the ability to program the GPU. Because the strong computation 

power and programmability of GPU today, shader is not merely used for graphic. You can 

also use it for science computation or something else, works of this kind are named 

General Purpose GPU- GPGPU. Because of some constraints in older GPU which make it 

hard for GPGPU [16], the new architecture along with CUDA [29] was later proposed for 

GPGPU computing.  

1.5  Contribution 

In this work, we implement shading language compiler and also study the 

register allocation and code scheduling for current hardware. We have found that 

traditional register allocation algorithm may lose some performance benefit in shading 
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language. Therefore we propose other register allocation method –Tetris Allocation, it 

can pack remain part of vector variable to fully use register allocation. Experiments 

tell us that we can potentially reduce register usage for some case. Another thing we 

have done is the modification of scheduling algorithm to support the forwarding 

method provided by hardware. 

1.6  Organization: 

The overall contents in this thesis are organized as follow. Chapter 1 gives very brief 

introductions. Chapter 2 introduces GPU hardware and OpenGL ES [25] system.  And 

then chapter 3 describes the inner of compiler we implement. Tetris Allocation and code 

scheduling methods are also described in this chapter. Experiments are in chapter 4 to 

show efficiency of the optimization methods. Finally, we gave conclusion and future work 

in chapter 5. 
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Chapter 2  

Preliminaries 

GPU hardware and OpenGL/ES standard are the two important elements in 3D 

graphic. The characteristics are described in this chapter. Their relations to our compiler 

work are also explained after the description. By the way, other implementations and 

related works are also the materials of this chapter. 

2.1  OpenGL /OpenGL ES  

OpenGL is a royalty-free, cross-platform API for full-function 2D and 3D graphics. It 

creates a flexible and powerful low-level interface between software and graphics 

acceleration. The “ES” is the version targeted to embedded system, which was modified 

and enhanced from OpenGL desktop/workstation.  For OpenGL ES, there is EGL™ 
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specification for portably binding to native windowing systems. 

 

 

Figure 2-1 relation of OpenGL ES & EGL Source: OpenGL ES 2.0 website 

 

 

Figure 2-2 overall infrastructure of OpenGL API 
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Figure 2-3 Xegl windows system 

As shown in figure 2-2, OpenGL is an API which roughly contains a frontend and a 

backend. Applications use the frontend to compile application program into an 

assembly-like language. This assembly-like language assumes the underlying hardware as 

a virtual machine with a number of states, which are visible to the application.  The 

OpenGL backend then converts this assembly-like language into the instruction set which 

can run on the GPUs.   

From the view of window system, as shown in figure 2-3, several layer are needed to 

run OpenGL. “GLX extension” in figure is the interface implementation of OpenGL. “3D 

driver” and “LibEGLdri ” are the drivers provided by vender. Applications use OpenGL 

will process by “GLX_extension” and may use the hardware ability to accelerate. It is fun 

to see that 2D and X applications are possible to accelerate by hardware. Take example, 

Glitz, Glitz is a software library for 2D graphics which provides hardware acceleration. 
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Notice that vendors often implement OpenGL on their own instead of using the built-in 

OpenGL to get higher performance. 

2.2  GPU Hardware 

GPU are originally designed for graphic, therefore the features of graphic deeply 

affect design of GPU. Graphic is the computation full of parallelism. 

2.2.1 Parallelism 

There are four kinds of parallelism we can find from graphic computation. 

 TLP: The parallelism from different tasks – vertex shader and pixel shader. 

 DLP: Program is executed to process huge data. Vertexes are processed by vertex 

shader, and pixels are processed by pixel shader. 

 SIMD: There are up to four channels in vertex datum or pixel datum, because color 

are presented by r,g,b,a elements and ordinate are presented by x,w,z,w. 

 ILP: Independent instructions can be executed together. 
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2.2.2 Architecture 

GPU architecture is designed to use the parallelism. Designer can use VLIW or 

superscalar architecture to utilize different type of ALU in GPU. SIMD always exists 

inside PEs (Processing Elements). DLP is explored by the number of PEs, which is the 

major computational resource. TLP is the key for unified shader shown in figure 2-4(b). 

When some PEs are idle due to the unbalance workload between vertex and fragment 

shader, the thread controller in unified shader dispatches some workload to the idle PE. 

The result is the improvement of performance, 
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Figure 2-4 Unified Shader 
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2.2.3 Our Hardware  

Comparing to GPUs in desktop or workstation, mobile GPUs consider more in power 

than performance. Media IC & System and DSP IC lab at NTU have studied GPU for 

several years. They have developed a mobile GPU. The features are listed below: 

1. Single core is a 2-way VLIW, 4-stage pipeline, 4-channel SIMD and there are special 

instructions to support for codec processing (ME).   

2. It uses OpenGL ES 2.0 as its implementation standard, but it has its own ISA, rather 

than vs, ps ARB ISA.  

3. There are 2 cores to form an unified shader. One shader for vertex shader and one for 

fragment shader, but each can take another job depended on the workload. 

4. CMA registers and hardware thread are used for low-power yet good performance. 

2.2.3.1 Stream Processing model:  

Stream sperates a program into kernels and streams.  Streams are the data to process, 

and kernels are the codes to exectue streams.  Vertexs shader and Fragement shader are 

two kernels. Cordinates, Colors are streams. In our hardware,the hierarchy of memory is 

splite as two. CMA handles Temporary register(t), Constant Registe(c), StreamOut 

register(u), Input register(v).  The Const Registers are related to OpenGL ES constant and 

uniform variables.  The Input Registers ared related to the inputs of vertex shader.  The 



 

 14 

 

output registers of fragement is Stream Out Register. Texture instructions are the kind of 

instructions that can process data loaded directly form memory. Following figure is the 

processing model of 1 shader.  . 

 

2.2.3.2 CMA (Configuarable Memory array) 

The register file is named as CMA (Configurable Memory Array), because it can 

configure its memory (the registers for a thread) for different applications.  It has 8 banks 

and 16 long-words each bank, totally 128 long words in CMA. Following is a simple 

configuration, 4V4P means it uses 4 banks for vertex shader and 2 banks for pixel shader 

Reference 
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Figure 2-5 Stream model 
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while 6V2P means that 6 banks for vertex shader and 2 for pixel shader. Thread capacity 

means that how many treads are; 8V8P means 8 vertex threads and 8 pixel threads. We can 

count registers that 1 thread use.  

The number is banks by a thread* long 

words per banks (16 here)/thread. 

Therefore 16V8P means that 

4*16/16 = 4 registers per thread 

4*16/8 = 8 registers per thread 

 
 

Figure 2-6 CMA configure 

It is needed to notice that CMA is shared by all cores. 

2.2.3.3 Thread Controller 

The cores in this hardware are not target for vertex or pixel, this means that core can 

execute vertex or pixel program depended on the workload. In this hardware, they propose 

some skills – AMT、ATS, AMS (Adaptive Multi-thread Switch) means that is will change 

thread when it meet a long latency instruction like textureload. ATS (Adaptive Task Switch) 

is a thread mechanic to balance the workload of two cores.  
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Figure 2-7 ATS 

 

Figure 2-8 AMS 

2.3  Shading Language Compiler and Related 

Work 

2.3.1 History 

In real-time rendering systems, support for user programmability has evolved with the 

underlying graphics hardware. The UNC PixelFlow[5][6] and its accompanying PFMan 
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procedural shading language demonstrated the utility of real-time procedural shading 

capabilities from 1992 to 1998. Commercial graphic hardware was configurable that time, 

but not user programmable. Multi-pass rendering techniques [1] are used by the related 

system. To program graphics hardware, higher-level tools are provided to user.  

Graphics architects began to incorporate programmable processors into both the 

vertex-processing and fragment-processing stages of single-chip. The Stanford RTSL [3] 

system was designed for this type of programmable graphics hardware.  Recent 

generation of PC graphics hardware continue the trend of adding additional programmable 

functionality. Of greater significance for languages and compilers, the vertex processor in 

some of these architectures departs from the previous SIMD programming model, by 

adding conditional branching functionality and the vertex processors. .Since branching 

capability cannot be easily supported by RTSL, NVIDIA and Microsoft collaborated on the 

design of a new language. Cg [4] and HLSL was born then. 

2.3.2 Related Work: 

The Stanford RTSL system is a shading compiler designed for Nvidia register 

combiner architecture (Geforce 1~Geforce 3). Shader codes without branch are compiled 

to fit the hardware. The internal implementation is to find the correct operations for VLIW 
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slots form DAG representation. Specialized methods of code scheduling and register 

allocation are used to utilize the ability of hardware. Issue related to performance is also 

revealed in this work. 

The patent of DX9 shader compiler describes the internal and compilation passes. 

Code scheduling and register allocation are still mentioned in this work. DX 9 shader 

compiler considers the register usage when scheduling. Optimizations are separated by 2 

types, scalar and vector. The compiler of Microsoft generates some standard profiles to 

abstract the hardware layer. Vender needs to write a JIT to translate profile output to codes 

used by its hardware. 

 AMD in CGO 2008[27] presents slides for what they have done to optimize 

performance. It first de-optimized what Microsoft compiler has done. Optimized are 

somehow not clearly described. But fast compilation is the thing they focus. Register 

allocation and code scheduling for hardware are important issues. 

 

Shader Code  Microsoft 

ARB profile JIT 

Nvidia AMD Intel….. 

Figure 2-9 shader compiler processing of DX9 
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2.3.3 Features in Shading Language 

Then we briefly compare real-time rendering shading language with general purpose 

programming language. The features are shown below. 

1. It doesn’t support recursive and pointer. 

2. Branch ability has limited support. 

3. Specialized built-in function for graphic and vector type computation. 

4. The program limited the memory accessing. Input and output are constrained. 

Shader compiler implementation is affect by the feature. Since less control, it is much 

simpler than general purpose compiler. 

2.3.4 Compiler for Hardware  

In this work, shader codes are directly into binary related to hardware. The work of us 

is to implement and proposes some optimization to fully utility hardware. In current system, 

compiler directly translates shader code to ISA of our hardware as shown in figure 2-10. 

Since the ISA is not compliant to ARB, this is the efficient way for implementation and 

user usually does care about the low-level of our hardware. 

As RTSL, we do optimizations for the graphic hardware. CMA is the thing we need to 
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consider more. Since CMA is shared by all thread and core, it is possible to lift the number 

of threads by reduce register usage. We need to generate code with the possible best CMA 

configure also. Then thread controller with AMS, ATS can benefit from the extra threads. 

Data forwarding is another thing that compiler has to do since data forwarding path is 

existed but not by handle automatically by hardware. We can therefore have a result that 

major things in this work are register allocation and code scheduling. 

 

Figure 2-10 Whole system 
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Chapter 3  

Compiler Architecture and 

Algorithm 

Shading language compiler is different comparing with general CPU language 

compilers since it is designed only for shading language. More clearly to say, optimizations 

need to consider the features of shading language and hardware. In this chapter, we 

describe the compiler internal first and later describe the special optimization methods for 

the hardware architecture.  

3.1  Overview: 

  Figure 3-1 lists the internal design of our shading language compiler. We use the 
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frontend from Vincent 3D [14] 2.x as our parser and code generator. Codes generated from 

the Vincent 3D front-end are modified from ARB instruction to the self define ISA. Passes 

for optimization and analysis are added after the code generator. 

 

Figure 3-1 Compiler Internal 

The original Vincent 3D front-end (the compiler and parser.) generate codes while 

parsing. After initial codes was generated, Instruction List is the Intermediate 

Representation for processing. Instruction List contains 1. Instructions representation 

contains op-code, register information. 2. Block is a list of instructions that represent a 

basic block. 3. BlockList is a list of Block which represents a program. Our major work 

starts by use original IL form. The major works are listed below. 
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3.1.1 Passes  

 Inlining Functions:  

No stack frame and no call instruction in our GPU, the function is limited 

supported. User can’t t write recursive function. Compiler here embedded the function 

body to the place function was called. 

 

 

 Refine Basic Block:  

In this pass, basic blocks without instructions are removed. Blocks without branch or 

jump and are aggregated to a bigger block. The reason to aggregate bigger block is because 

there are more instructions to avoid stall caused by dependence.  

BLOCK 

BLOCK 

BLOCK BLOCK 

BLOCK 

BLOCK 

New
 Block 

New
 Block 

Original  

Add Flow 

(a) refine block (b) build CF 

Figure 3-2 Refine Basic Block and Build Control Flow 
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 Lower:  

There are some pseudo or high level instructions for some purposes (such as simplify 

the complexity of code generation and so on), they can’t run by target hardware directly. In 

this pass, instructions that can’t run by hardware are translate to instructions can directly 

run by hardware (called as low level instruction).  

 Build Control Flow: 

Control flow graph is then built after refining basic blocks. As shown in figure 3-3, 

the information of control is known after this pass. The control flow information is used 

later by data flow analysis. 

 Data Flow Analysis: 

Data Flow Analysis analyzes the information of data (like which variable is used, 

which is dead) through blocks on flow graph. Currently we use live-variable analysis to 

collect information use for Block Dag. 

Live-variable analysis is used to calculate variables that are live at the exit from each 

program point. This is used for some optimizations. 

 Block DAG(Block Optimizer): 

The instructions are transforming to Direct Acyclic Graph representation. We then use 

read/write relation of instructions to build DAG. Optimizations like common 
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sub-expression elimination, local deal code elimination and so on are done in DAG form. 

For example, in the processing of building DAG, we can also remove some common 

sub-expression because common sub-expressions have same node in DAG. Something like 

register renaming is done in this pass since we build a new node when destination registers 

in instruction is difference.  

 

Passes mentioned above are works for machine independent optimization. 

Optimizations for our hardware architecture are called backend. In our work, the major 

pass in our work are listed in following.  

 Code scheduling: 

Code scheduling changes instruction order to reduce some overhead like Nops and 

hardware stall. It can also discovery ILP to fit something like VLIW and help aggressive 

Instruction 

Instruction 

Instruction 

Instruction 

Instruction 

…..
Instruction

Instruction

Instruction Instruction 

Instruction Instruction 

(a )IL (b)DAG representation

Figure 3-3 DAG Representation 
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hardware design (super-scale than have more than 1 execution unit). 

In this work, we have use 2 pass code scheduling. The first pass detects 

data-forwarding. And the later does the general code scheduling. Nops are inserted in 

second pass code scheduling. 

 Register allocation: 

After middle-end and before register allocation pass, the register is called virtual 

register that represents a variable and some renaming information. Register allocation 

maps the unlimited virtual registers to the limited physical register. 

We discuss code scheduling and register allocation deeply in following sections. 
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3.2    Code Scheduling  

Code scheduling also known as instruction scheduling is a compiler optimization used 

to improve instruction-level parallelism, which improves performance on machines with 

instruction pipelines, very long instruction word and so on. By means of rearranging the 

order of instructions, pipeline stall can be avoided maximally. 

There are several types of scheduling method. Scheduling in a block like list 

scheduling. Scheduling for loop like software pipeline. Scheduling across blocks and 

scheduling for VLIW like tracing scheduling. Consider different situation we may use 

different scheduling method. 

3.2.1 Implementation 

We modify list scheduling algorithm for target hardware. The algorithm also takes 

care of instruction clocks. In following content, we don’t talk about the clocks of 

instruction and how to model timing of instruction because it depends on target hardware. 

But it is still important for implementation. By the way, list scheduling is a simple and 

flexible algorithm to modify for different proposes. AMD uses a modified listed scheduling 

for their VLIW hardware.  



 

 28 

 

3.2.2 Dependence Relation 

The rearrangements will fail if the dependence relation is violated. Several dependence 

relations are described below.  

RAR: Previous instructions read data. Later instructions read same data. Reorder 

instructions having RAR dependence will not cause error. 

RAW: Previous instructions write data. Later instructions read same data. This also called 

true dependence. 

WAR: Previous instructions read data. Later instructions write same data.  

WAW: Previous instructions write data. Later instructions write same data. 

If we reorder instruction, dependence relations such as WAR, RAW, WAW are kept to 

avoid wrong result. Other relations are introduced when necessary, for example, controls 

dependence is defined to keep the correct control flow. Compiler can also define the 

relation when it is required.  

Scheduling algorithm starts form build the dependence information of instruction. The 

function can be done by following algorithm. 
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DAG = record { 

Nodes, Roots: set of integer; 

Edges: set of (interger x integer), 

Label: (integer x integer) -> integer 

} 

Procedure Build_DAG(m . Inst) returns DAG 

    m:integer 

    Inst: in array[1..m] of LIRInst 

begin 

    D := <Nodes:Φ, Edges: Φ ;Roots: Φ>: DAG 

Conf: set of integer 

j,k: integer 

||determine nodes, edges, labels and roots of a basic-block scheduling DAG 

 

for j:= 1 to m do 

  D.Nodes  {j} 

  Conf : =Φ; 

  for k := 1 to n do 

    if Conflict(Inst[k], Inst[j])then 

       Conf  {k} 

    fi 

  od 

if  Conf =Φ then  

    D.Roots  {j} 

  else 

    for each k  Conf do  

      D.Edges  = {k->j} 

      D.Labels(k,j) := Latency(Inst[k] ,1 ,Inst[j] ,IssueLatency+1); 

    od 

  fi  

od  

return D 

end || Build_DAG 

 

Figure 3-4 Build_DAG  Source : Advanced compiler design and implementation ch 9 
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The function “Latency” returns the clock interval between start of inst[K] and 

issueLatency+1 clocks after executing inst[j] 

3.2.3 List Scheduling 

In our work, list scheduling is the method we currently used for the reason of 

conservative design in flow control. List scheduling is the simplest algorithm for code 

scheduling. The spirit of it is “Topological Sort”. Conceptually, it repeatedly selects 

(schedules) a node of the dependency graph, appends it to the current scheduled instruction. 

Finally it terminates if the graph is empty. The better order of instructions is therefore 

generated. The flow chart of algorithm is shown in figure 3-7 

3.2.4 List Scheduling for VLIW: 

When we don't consider aggressive design like trace scheduling and region scheduling, 

list scheduling is a very simple algorithm to support VLIW. The change of instruction 

scheduling is selecting independent nodes in dependence DAG.  In figure 3-5, B,C can be 

choose for VLIW slots if they fit the requirement of slots attribute. In following figure 3-5, 

independent nodes are schedule to some instruction, different slots. If there are dependent 
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instructions, it will schedule to different VLIW instructions. 

 

 

3.2.5 Data Forwarding Detection by Compiler 

In the situation we face, compiler takes the responsibility to detect hazards and insert 

non operation to keep hardware work properly. Data hazards cause by data dependence can 

be prevent by nop or forwarding data. Data forwarding gives ALU the needed data 

immediately to prevent stall. Hardware provides a mechanism to forward data. 

3.2.5.1 Data Forwarding Mechanism of Hardware 

Following table shows how to use data forwarding mechanism. 

without hardware forwarding 

add  t2      t1,t0 

NOP 

NOP 

add  t3      t2,t0 

……. 

software data forwarding 

add  GroupA      t1,t0 

add  t3      GroupA,t0 

 

 

 

Table 3-1 example of forwarding mechanism 

GroupA is the Flip-Flop of the execution unit of Add. Different instructions have their own 

Inst &  

Slots 

Figure 3-5 List Scheduling for VLIW 
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execution unit, SOP instruction has execution unit named GroupC.  Compiler here needs 

to do data forwarding detection and change instructions to use FF of ALU unit.  

The characteristic and limitation of data-forwarding supported by this hardware is listed. 

1. GroupX (X is the name of execution unit) FF can only hold 1 clock cycle. 

2. By 1, it cans only forwards data that is used only once later. Because it does not write 

to register  

3. The maximal speedup is 2x in current model. Instruction with Nops is 3 cycles long, 

and without Nops is 1 cycle. 

 

 

To do data forwarding detection, we can find the instruction  to forward DAG used in 

list scheduling. The character of data forwarding node are 

1. The successors are all scheduled. This can be solved by scheduling. 

2. The last scheduled node has only one predecessor. 

D

EC

A

B 

Figure 3-6 Dependence DAG 
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As the attributes are known by us, we can schedule for data forwarding. In the Figure 3-6, 

the nodes circled are the node possible to do data-forwarding.  

There are two ways we can do this: 

1. Passive forwarding: If the node is suitable to do data forwarding, just forward it.   

2. Positive forwarding: Finding the node have data forwarding node as possible as we can 

The pseudo codes are listed in following. 

 

While ( candidate_is_still_available() ){
 
 //general scheduling code ….. 
 

/*passive data forwarding*/ 
If(   data_fordwarding_check 
(  last_schedule_instruction,current_schedule_instruction)  ) 
{ 
    Modify_SrcReg_of_current_schedule_instruction(); 

Modify_DstReg_of_ last _schedule_instruction(); 
}  
Else{ 
 // general scheduling code ….. 
} 
// general scheduling code ….. 

} 

Figure 3-7 Passive Data Forwarding 

This method forward data when the previous instruction can forward data to current 

instruction. But this is still not enough. Forwarding data is always good for performance in 

current. We therefore need to find all possibility of forwarding. Positive data-forwarding 

forwards data of all possibility by some extra overhead. The pseudo code is listed in 

following. 
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While ( candidate_is_still_available() ){
 /*positive data forwarding*/ 
if(#_of _RAW_successor_of_last_scheduled_instruction == 1 ){ 

Can_data_forwarding = TRUE; 
Forward_node = the_only_RAW_succussor; 

 

} 

 
If(! can _data_forwarding){  

//general scheduling code ….. 
}{ 
      Modify_SrcReg_of_current_schedule_instruction(); 

Modify_DstReg_of_ last _schedule_instruction(); 
 
} 

Figure 3-8 Positive Data Forwarding 

Figure 3-9 shows t flow chart of algorithm. Notice that we need only “Positive 

Data-forwarding Inst Selection”, “Passive data-forwarding relation Detection” is useless 

because “Positive Data-forwarding Inst Selection” is abetter choice. The “General 

instruction selection” is the function that selects an instruction to schedule. The policies we 

used are 1.instruction without independence first. 2. Destination register will be used first. 

3. The head nodes in the candidate queue first.  

3.3  Register Allocation 

Register allocation is the process of multiplexing a large number of target program 

variables (or virtual registers) onto a small number of CPU registers. The goal is to keep as 

many operands as possible in registers to maximize the execution speed of programs. 
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Register allocation can happen over a basic block (local register allocation), over a whole 

function/procedure (global register allocation), or in-between functions as a calling 

convention (interprocedural register allocation).  

 

 

 

When a compiler is generating machine code and there are more live variables than 

Have candidate? 

Modify related Reg 

Passive data-forwarding 

relation Detection 

General  

Instruction Selection

Positive Data-forwarding

Inst Selection

Selection Instruction To 

candidates 

NO Yes 

Yes 

NO 

EXIT 

Figure 3-9 Process of instruction scheduling 
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the machine registers, it has to "spill" some variables from registers to memory. This incurs 

a certain cost, as access from memory is typically slower than access from a register. 

3.3.1 Implementation 

The algorithm we implemented is a modified linear scan allocation.  We also call it 

as “Tetris Allocation”. The modification can pack variables without full width of vector 

type. Following content describes the algorithm and why we use this algorithm. Related 

materials are also described in following content. 

3.3.2 Graph Coloring 

Graph coloring is one of the most used register allocation methods because it 

generates the possible best register allocation. After IBM develops it, most compilers use 

this method for register allocation. Graph coloring maps register allocation problem to 

graph problem. It generates interference graph first, which graph have nodes represent 

virtual registers and edges represent that virtual registers live in some time interval. Then it 

colors on interference graph, which lists in figure 3-10. The key insight to graph coloring 

algorithm is called the degree < R rule. Given a graph G which contains a node N with 
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degree less than R, G is R-colorable iff the graph G’, where G’ is G with node N removed, 

is R-colorable.  

 

Figure 3-10 Interference graph and live interval 

Graph Coloring 

While G cannot be R-colored 

  While graph G has a node N with degree less than R 

    Remove N and its associated edges from G and push N on a stack S 

  End While  

  If the entire graph has been removed then the graph is R-colorable  

    While stack S contains a node N 

      Add N to graph G and assign it a color from the R colors 

    End While 

  Else graph G cannot be colored with R colors 

    Simplify the graph G by choosing an object to spill and remove its node N 

from G 

    (spill nodes are chosen based on object’s number of definitions and references) 

End While 

Figure 3-11Graph Coloring Algorithm 

A 

B 

C 

Y 
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3.3.3 Linear Scan Allocation 

Linear scan allocation [2] is another algorithm that has been recently developed. 

Comparing to graph coloring, it have some attributes. 

The algorithm 

LinearScanRegisterAllocation 

active ← {} 

foreach live interval i, in order of increasing start point 

ExpireOldIntervals(i) 

if length(active) = R then 

SpillAtInterval(i) 

else 

register[i] ← a register removed from pool of free registers 

add i to active, sorted by increasing end point 

 

ExpireOldIntervals(i) 

foreach interval j in active, in order of increasing end point 

if endpoint[j] ≥ startpoint[i] then 

return 

remove j from active 

add register[j] to pool of free registers 

 

SpillAtInterval(i) 

spill ← last interval in active 

if endpoint[spill] > endpoint[i] then 

register[i] ← register[spill] 

location[spill] ← new stack location 

remove spill from active 

add i to active, sorted by increasing end point 

else 

location[i] ← new stack location 

Figure 3-12 Linear Scan Register Allocation 
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1. Faster, simple: The complexity of graph coloring is O(N^2), but Linear scan is less 

than 0(N^2). This is because that it have only 1 major pass. 

2. The allocation efficiency is not good as graph coloring. 

The algorithm is shown in figure 3-9. 

3.3.4 Packing 

Shading language has vector type. There are vec4, vec3, vec2, int4, int3, int2, bool4, 

bool3, bool2 , the longer width of a variable is 4. When we consider the hardware issue, 

register width is depended on hardware implementation. In this work, the register width is 

4 just as same as the longer width of shading language’s variable. For the vector type, it 

needs to do packing: An example of packing is list in follow. 

vec3 a3, b3,c3; 

float a,b,c; 

 

c3= a3+b3; 

c= a*c; 

 

It may costs 6 registers. 

 

After packing…. 

 

C4.xyz = a4.xyz+b4.xyz; 

c4.w = a4.w*b4.w 

 

It may cost just 3 register after 

packing. 

Table 3-2 Comparison of register usage with and without packing. 

3.3.4.1 Packing efficiency factor: 

Through the example shows the improvement of 2x. The packing in real case can get 
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that as much benefit as example do. Because following factors. 

1. Number of vector type : 

If all registers are all vec4, there are not any improvements of register usage reduce.  

Consider all variable live during all program life, the efficiency can be mode as  

Probility(1)+ probility(2,2)/2 if probility of 3 > 1 

Probility(3)+ probility(2,2)/2 + (Probility(1)- Probility(3))/4 

2. Live interval : 

Live interval is another effect of packing. If we don’t consider the live interval, the 

register allocation algorithm will produce performance since it is live interval sensitive. 

3. Implementation: 

You can define how to pack variables. 2 variables together, 3 variables togethers, even 

pack 4 variables together.  

3.3.4.2 Bitwidth Aware  

The first related work that has some differences is “Bitwidth Compilation [20]”, it 

finds and analyses the possible shortest width of variables and use it to pack a word length 

long variables. The importance of the paper is the method to analysis. Another way is 

“Bitwidth Aware Global Register Allocation [20]”. It analyzes and uses coalescing to pack. 

In our situation, we don’t need such complex methods. Programs of shading language have 
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already point out “Bitwidth” attribute, what we have to do is packing the possible virtual 

vector register together. If we use related methods, it may not run enough fast because 

methods are complex and may not benefit much from this algorithm. 

3.3.4.3 Discussion about Packing with Graph Coloring 

Packing in graph coloring is not an easy work. Since it uses interference graph, 

relation of live intervals are transformed to interference relation. Packing may be opposite 

to interference relation. Packing relation in interference graphic is the circle in figure 3-13, 

but two circles in figure 3-13 have a same node. If we build packing relation first and later 

do graph coloring, it cannot work if there are nodes circle by more than 1 circle because 

interference graph has no time information and width information. Circles in graph 

coloring are coalescing, but circles with same node cannot view as coalescing. So packing 

with graph coloring is not easy. If you need use graph coloring with packing, redesign and 

modify algorithm is needed. 

 If we use pre-packing pass, the register allocation will produce poor performance 

since the live interval become longer which is shown in figure 3-14. If packing posts graph 

coloring, it needs to another allocation. And there are possible miss for fine grain packing. 

The shortages to support packing in graph color are shown in figure 3-14, figure 3-15. 
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Figure 3-13 Packing in interference graph 

 

Figure 3-14 Weakness of pre-packing 

 

On time 2 

On time 1 

Still have 

possibility to 

packing 

Packing together 

Width A 

Width B 

Width A 

Width B 

Need allocation again 

Figure 3-15 Weakness of post-packing 
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Support packing with graph coloring is not easy, it always need extra overhead. However 

packing is a NP-Complete program. A heuristic algorithm is enough to solve this problem.  

3.3.4.4 Modified Linear Scan Allocation - Tetris Allocation 

So we modify Linear Scan Allocation to support packing and called it as “Tetris 

Allocation”. It is easier and faster to support packing in graph coloring.  

There are 4 kind of type in register pools after modification- Scalar_Pool, 

Width_2Pool, Width_3Pool, Width_4Pool. If the type of variables can’t mix with other 

type, Pools represent Float, Integer, Boolean are needed. The spirit of algorithm is that 

original linear scan allocation will allocate and free for proper width of register. 

Major algorithm: 

 Like linear scan algorithm, but Allocation and “ExpireOldIntervals” are modified for 

packing. 

 

TetrisAllocation 

active ← {} 

foreach live interval i, in order of increasing start point 

ExpireOldIntervals(i) 

if length(active) = R then 

SpillAtInterval(i) 

else 

Allocation(i) 

add i to active, sorted by increasing end point 

Figure 3-16 Tetris Allocation 
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Allocation Process: 

The function of allocation is changed as following. Besides allocation, adding the 

reminding partial to proper free pools is need in this modification. TypeWidth(i) returns 

type(float /integer…) and width(1~4) of variable that has liveness i. FulltypeWidth(i) 

returns full width.. 

If numofElementInFreePool( typeWidth(i) )!= 0 

Register[i]< - removeOneFromFreePool( typeWidth(i) ) 

  ModifyRegisterChannel( i ) 

Else numElementInFreePool( FulltypeWidth(i) ) 

Register[i]< - removeOneFromFreePool( FulltypeWidth(i)  ) 

Insert the remind width of register to the proper free pool 

Figure 3-17 Allocation of Tetris Allocation 

ExpireOldIntervals Process: 

We also need to modify the ExpireOldIntervals Process. Some to notice here, we need 

check if there are free pools have the partial width register. If there are, we need to collect 

the partial and add to proper free pool with the aggregated width. 

 

foreach interval j in active, in order of increasing end point 

if endpoint[j] ≥ startpoint[i] then 

return 

remove j from active 

If there are partial width  of register[j] in free pool 

  Aggregate the partial width of register [j] 

   Add register[j] with proper width to proper memory pool. 

Figure 3-18 ExpireOldIntervals of Tetris Allocation 
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We can see the method is very simple. Comparing with supporting packing in graph 

coloring, the shortages meet with doing packing in post-pass or pre-pass can be easily 

prevented. And yet it is efficient.  

3.3.4.5 Packing Analysis 

The algorithm can also analysis what variables to pack from, the information can be 

used by other allocation algorithm such as graph coloring and so on. The objective of this 

analysis is collecting what variables can pack together. The spirit of it is that variables in 

their own live interval can only pack with variables in active. The information needs more 

process to make it useful. 

Analysis 

packingRelation:Hash{a,Set} 

active ← {} 

foreach live interval i, in order of increasing start point 

    ExpireOldIntervals(i) 

packingRelation(j)  = packingRelation(j)   active 

add i to active, sorted by increasing end point 

ExpireOldIntervals(i) 

foreach interval j in active, in order of increasing end point 

if endpoint[j] ≥ startpoint[i] then 

return 

remove j from active 

Figure 3-19 Packing Analysis 
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Chapter 4  

Experiments 

We use code samples from PowerVR SDK[25] to test. The codes contain small and 

fundamental shaders, including phong lighting, antisotropic lighting, envmap, fasttnl, , 

reflection, simple , toon, wood. We test the improvement about register allocation and code 

scheduling. 

4.1.1 Efficiency of Data Forwarding by Compiler 

In this experiment, we compare the instructions with and without data forwarding. 

The number in table is instruction count. Since current compiler takes care of nop 

generation and forwarding detection. The instruction number can show information about 

the relative performance, programs with less instruction is better for performance. 
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with/without phong lighting antisotropic 

lighting 

envmap fasttnl 

vertex 97/112 66/71 79/112 40/50 

fragment 2/2 5/10 18/26 8/20 

 

with/without reflection simple toon wood 

vertex 63/82 12/24 33/46 33/47 

fragment 5/10 2/4 32/36 40/43 

Table 4-1 Instruction number used with and without applying data forwarding 

The result shows that vertex is much more complex while fragment is simpler. The 

vertex shader have much more ILP, therefore the gain is less the best condition. 

Fragment code is simple in common, thus it is closed to the best theoretical speedup.  

4.1.2 Efficiency of Packing with Register Allocation 

In this experiment, we compare the register usage with and without packing. 

The register usage is reported after compiling the shader code. And it is used to configure 

CMA.  The table in following shows the tests that have improvements.  

 phong lighting envmap reflection 

packing 5 5 4 

Without 

packing 
7 6 5 

Table 4-2 register usage with and without packing 
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We discover that the fragment shader code in SDK is so simple that it doesn’t have 

any gain by packing. When we check the result of vertex, we found only 3 of them have 

improvement. There are phone lighting and so on.  By checking the code, we found that 

variables have all program life are primarily sources for packing in SDK. To make a simple 

conclusion, the major performance gain by packing comes from the variables of all 

program life scope. If the programs are complex in variables width, it will gain much more. 

By the way, the forwarding technique hardware provided can also save 1~2 registers. 

Because it doesn’t need to write to a general register but write to a pipeline register.  

4.1.3 Discussion: 

Here we discuss the relation of register allocation and code scheduling. In currently 

scheduling algorithm, it will found ILP as possible. But the effect brings the mass usage of 

register.  An example is showed in table 4-3. 

For register allocation, case 1 only uses 2 temporal registers to get the result. BUT 

case 2 uses 4. In this architecture, very limit registers are shared by all thread and there is 

no memory to spill. The result is that we need to take care of register usage sometimes to 

prevent the shortage of threads. 
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Case 1:Genernel Scheduling

//mat3* vec3 

Mul t0,c0,v0 

Mul t1,c1,v0 

NOP 

NOP 

Add t1,t1,t0 

Mul t0,c2,v0 

NOP 

NOP 

Add t1,t0 

..... 

//another mat3 * vec3 

Mul t2,c3,v1 

Mul t3,c4,v1 

NOP 

NOP 

Add t3,t2,t3 

Mul t2,c5,v1 

NOP 

NOP 

Add t3,t2,t3 

Case 2:Schedule for ILP 

//mat3* vec3 

Mul t0,c0,v0 

Mul t1,c1,v0 

Mul t2,c3,v1 

Mul t3,c4,v1 

Add t1,t1,t0 

Mul t0,c2,v0 

Add t3,t2,t3 

Mul t2,c5,v1 

Add t1,t0 

NOP 

Add t3,t2,t3 

 

Table 4-3 RA vs CS 



 

 50 

 

Chapter 5 Conclusion 

In our work, a shading language compile for a mobile GPU with self-defined ISA has 

been developed. Considering register allocation, packing is a solution to reduce usage of 

registers and increasing performance. Due to some shortages to do allocation under graph 

coloring allocation, we propose a simple and efficient method to support packing under 

linear scan allocation. Experiments show that some vertex programs can therefore reduce 

the register usage. When it comes to discuss about code scheduling, we detect the data 

forwarding in compiler and generate code that hardware can directly forward data. It is 

necessary for the current hardware to improve performance. These optimizations are 

applied without performance regress 
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Chapter 6 Future Work 

There are still some works that don’t finish yet. Numbers of optimizations like memory 

optimization, loop optimization haven’t done in current implementation. Considering only 

register allocation and code scheduling, there are several possible ways for enhancement. 

1. Register control by compiler 

Because the usage of register is known by compiler, there are chances to adjust CMA 

register usage dynamically for better performance. 

a. Compiler can suppress ILP to get register usage for the near best register settings. 

b. If there are instructions to dynamic adjust register setting during runtime, it can 

get more threads when register usage is low on some program phase. 

2. Software forwarding and hardware data forwarding. 

Current hardware needs compiler to do data forwarding detection. We can also 

combine with hardware data forwarding detection to take both of their goodness 

afterward. 
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