T

W iy
PERT R R |

e

w7

\.

#
SECITE F PR S ok IR R A g TS

o 535

%

©
N3

CEE Y R E I P Y
R
Department or Graduate Institute of Networking and Multimedia

College of Electrical Engineering and Computer Science

National Taiwan University
Master Thesis
BB ERAILENF I T ST R s E
fel Bdp 4 AR I
Shading Language Compiler Backend for a Mobile GPU:

Case Study on Register Alocationand Code Scheduling

Jian-Hao Su

hE g B F gL
Advisor: Shin-Wei Liao, Ph.D.

P EAR 9 E T
July, 2009

PR EaTHF PR A 4 R iET - BIFER-FEL

BEREFOR L Ak p F 4 AE0 RS

SRS mﬁ“”k"‘l’%gl’ 'E‘} HHY %‘3? =~ £
Gt A R PR BHEHF P o

LA TR B Sk R G AR A e Fe 8 R

$3 0o BRI FE P d o AR SR]

,3F % =Bt ~ project & = 5 7 iE

’

TP v fE IE N o R

FREER R BT % H o RN 2 B ABEEPF L S Y

A e N R) G 1 BTN 2 2 2 AR — s .
(% A 80 (% Rk !;-:?&ﬂﬁ:}i‘)i :fj;\m—" AN itk % & hPete frem e ¥
:r‘-"-*'}il;

E

™

Ji

» pEihmint 0 & F AR R ’zé &|(b ,?T ,
I

B4 & ~ 12 Peegoo - injan ~ i

¥ A EER BRI S A ﬁgtl[% Prldject %] 33!'»:% £ P

B iSRS A) A (Bt o glare BE TR E L fFL B AGELEAD

QA Pk | R)

&

PR TR AEE B ER LY 3D T

oy
pant
w
)
=3
531
iy
=
&
>—L
f»—
*EH

Gl o TR R ER L 03D F Ml Aei ¢ R - B2 & e i -

FRACLE AL N4 F GPURF 7 S50 3D B M eh1 7 fFf- &
FEFASLEY , S I RET VAN G (AFRaek G R ¥ ET QAR
FRAIT BT 250 b4 U0 g 0 T AT AR PRI L SRR AT R T
LR EET AHEBAILER S

%5%€%#$%%5%€ﬁ$ﬁﬁﬁﬁﬁﬁﬁ°ﬁW%%?—%fﬂommm

ES % ¢ 3% ¥ Media IC & System andDSPIC_L 56%’? BB aivd g Rl E iy d

. .'_\.

':'- ::; :.'._"_ | 1
FTEE W % p
A ’ﬂmuf“"éi¥3;p-¢m¥$ﬁﬁﬂf’v%HE%ﬂ%%ﬂwdw%ﬁﬁ

Ho AP EHE AL BRI ML R AR AR 6, S EY (00
FRG NGRS AL, T EHT T A MBI - B R

Rl Sk, DR AR AR AT LT 28 R

i

ABSTRACT

3D computer graphic has become more and more important today, applications like
games, virtual reality and so on prevail the way for 3D computer graphic. Accelerator for
3D Graphic has become a necessary component in computer and mobile device.

GPU is the new name of graphic hardware since it has taken nearly all workload of
3D graphic processing form CPU. As the evolution of GPU, programmability is now
provided for more complex computation. Shading language is the key to release the power
of GPU programmability. It provides the high hardware abstraction and more flexibility

programmability rather than progtamming GPU in Iow-l€vel hardware related assembly.

N
i

Shading language compiler translates sI;Eader godes to low level instructions. We have
developed an OpenGL ES shadiné-la.riguage compiler for a mobile GPU developed by
Media IC & System and DSP IC Lab at NTU..

In this thesis, we describe the compiler we have done and study the backend of
shading compiler for the mobile GPU hardware. Optimization methods are proposed to
improve the performance of current hardware. Code scheduling in compiler detects data
forwarding and generates code to use hardware forwarding path. Register allocation
supports packing to use remain part of vector type in shading language. In current

experiment, at most 28% register usage can therefore shrink.

111

CONTENTS

ABSTRAC T ...ttt sttt ettt st b e bt ese sttt et e tenes il
CONTENTS . ..ttt bttt e h ettt e et et e be bt ebe e st eneen et e sebesseenene v
LIST OF FIGURESciiiioiiiieieeeee ettt sttt ettt vii
LIST OF TABLES ...ttt sttt ettt ettt b et ix
Chapter 1 INtrodUCEION........oiitieiiieiieiie ettt ettt ettt et et e et esebeeseessaeenseennnas 1
1.1 IMIOBIVATION ...ttt sttt et b et st e b it e saeeneeas 1

1.2 Introduction.......................................;. ... 2
1.2.1 Graphic Pipeline.:........ st T s 3

1.3 Graphic Processing Unit I%ﬁ Y R 4

. " 3

1.4 Shading Language......f..-...?.i... I'..'...;: .. 5

1.5 CONIIIDULION ..ttt sttt st 6

1.6 OrZanIZAtiON:.....cccvieiieeiieiieeieeite ettt te et e et eete et e ssbeebeeeabeesbeesnseeseesnseenseennnes 7
Chapter 2 PreliMINari€scueevieeiieriieeiieiieeieeeiee ettt ettt site et e e seae e b e saaeenseessseenees 8
2.1 OpenGL /OPenGL ESoiiiiiieeeeee et 8

2.2 GPU HAardWare.......ooeeiiiiieieeiecieeieeteeee ettt st 11
2.2.1 ParalleliSm.......cccuoviiniiiiiieie e 11

222 ATCRIEECTULE. ...ttt s 12

v

223 OUr HardWare........ooooiiiiii 13

23 Shading Language Compiler and Related Work..........cccoocveviiiiniiniinincncn. 16
2.3.1 5 1] 10 2P PRSP 16
232 Related WOTK:cc.oiiiiiie e 17
233 Features in Shading Language...........cccoecveevieiiienieciieiecieeeeeeeeen 19
234 Compiler for Hardwareccceecvienieiiiieniieiieeieceeee e 19

Chapter 3 Compiler Architecture and Algorithmcccooceviiniiiiniiniieceee 21

3.1 OVEIVIEW: ...convereenneere ol oo vee el e eevveeneenvenauesseensesnuesseensesseesseessens 21
3.1.1 Passes..... & 5. .. g B ... eeeeieee e eeetrtenniee e eeeereanaans 23

32 Code Scheduhnglf,:q Y R 27
3.2.1 Implementation ' 27
322 Dependence Relationcc.eeveeeiieriieeiiienieeiieeeeeeee e 28
323 List SChedulingcooouieiiiiiieiieieeee e 30
324 List Scheduling for VLIW:ccciiiiiiiiiceeeeeeeee e 30
3.2.5 Data Forwarding Detection by Compiler...........ccccevieeiiienienieennennen. 31

33 Register ALIOCAtION.cevuiieiieiieeieeeee ettt e 34
3.3.1 IMPIEMENtAtIONoocuvieiieiiieiie e 36
332 GTaph COLOTINGooovieeiiieiieeie ettt 36

333 Linear Scan AlLOCAtION.coovvveeeeeeieeeeeee et 38

334 PaACKING....ooiiiiiiieeiiee e 39
Chapter 4 EXPEIIMENLS ...c..eeeiiiiiiiiieiie ettt et eeiee ettt e ete et e ebeessaessbeesseessbeensaeenseensneens 46
4.1.1 Efficiency of Data Forwarding by Compilercccoecvvevveniienennen. 46
4.1.2 Efficiency of Packing with Register Allocation............cceceeveevuennenncns 47
4.1.3 DISCUSSION: ...uiiteiiiettete ettt sttt sttt ettt beetesaeenaeens 48
Chapter 5 CONCIUSIONeoouiieiieiiieiiecie ettt ettt et et e et e ssbeesaeenseenaee e 50

=1 .;_ -:..['-":'f-'—_.{'l_- N
Chapter 6 Future Work t_.-;l...i'.f.-;:_s, ﬁr.‘"/’ B e eeeteteeeienteeereenereeseenareeereesrneeaans 51
& 2R

& - \l':(’{\ e

vi

LIST OF FIGURES

Figure 1-1 Cape NO 7...ooiiiiiieieeetee ettt 2
FIGUIE 1-2 CIISIS touvieuiiriiiiieieeiteieete ettt sttt sttt et et 2
Figure 1-3 graphic pipeline.......c.ccoveriiriiiiiiiieniiiieceieeee e 5
Figure 2-1 relation of OpenGL ES & EGL.......cccccoiiiiiiiiiiiiiieeee 9
Figure 2-2 overall infrastructure of OpenGL APL..........ccccooovviiiniiiiniiniineiicnene 9
Figure 2-3 Xegl Windows SYSTEMcvoveruiiiiiriiniieieneenieeieeee e 10
Figure 2-4 Unified Shadergl™ b gt Wi oo 12
Figure 2-5 Stream mod¢l e L N VTR 14
Figure 2-6 CMA conﬁggre.......i...?,;.:f .. 15
Figure 2-7ATS...............lf..'...?.;.... VA S 16
FIgure 2-8 AMS ... 16
Figure 2-9 shader compiler processing of DX9.........ccccoooiiviiviiniiniininiineeen 18
Figure 2-10 WhOIE SYSTEIMcc.viiuiiiiiiiiiieniceieeieeieeie et 20
Figure 3-1 Compiler Internalccooviiniiiiiiiniiiieeceeeeee e 22
Figure 3-2 Refine Basic Block and Build Control Flow........cc.ccceviiviniiinienenne 23
Figure 3-3 DAG Representationcoeeveeierienernienienieeienienieeieseesieeee e 25
Figure 3-4 Build DAG ..o 29

vil

Figure 3-5 List Scheduling for VLIWc.ccoociiiiniiiiniiiieeeeeceeee 31

Figure 3-6 Dependence DAGccccooeviiiiiiiiiiniiiieneeceee s 32
Figure 3-7 Passive Data FOrwarding...........cccceeeevierieneinenienieienienceeeeeeee 33
Figure 3-8 Positive Data Forwarding..........ccccooeeverieniininnienieneeeneeceieeee 34
Figure 3-9 Process of instruction scheduling............ccocceverieniinenieneencnienenee, 35
Figure 3-10 Interference graph and live intervalccccooeeviriiniininninicnene 37
Figure 3-11Graph Coloring Algorithmcocooviiiiniiniiiiiieeceeeee 37
Figure 3-12 Linear Scan Registen Allogation.............c.cooovviiiniiiiiini, 38
Figure 3-13 Packing in interfer_enge ggaph..- X RS OURRURIRRON 42
Figure 3-14 Weakness of pre-pe!lcl.;%g Y R R 42
Figure 3-15 Weakness of'fpos.ti;;acking..Ii....;_..... ... 42
Figure 3-16 Tetris Allocation .. 43
Figure 3-17 Allocation of Tetris AllOCationccecueveevierienienienienieiceeeeee, 44
Figure 3-18 ExpireOldIntervals of Tetris Allocationcccceevvevvenenieneennenne 44
Figure 3-19 Packing ANalySisccccevvieiiiiriieiienieeiieeie et 45

viil

LIST OF TABLES

Table 3-1 example of forwarding mechanismccccceceeverienienienenienienenee, 31
Table 3-6 Comparison of register usage with and without packing
Table 4-1 Instruction number used with and without applying data forwarding.47
Table 4-2 register usage with and without packing

Table 4-3 RA VS C S 49

+ 5 Y

X

Chapter 1

Introduction

1.1 Motivation

e
——

3D graphic has played a major. role fi,é}Wédays. More and more game, movie, and
other applications use 3D graphié -te.c'hnology to attract your attentions. It thrives in
recent years because of requirements from users and hardware evolution. Graphic
Processor Unit (GPU) has born to bring the colorful and realistic world. To utilize the
power of GPU, shading language is provided to programmer for higher hardware
abstraction and a more flexible programming model.

Media IC & System and DSP/IC Lab at NTU have studied GPU hardware for several
years. A mobile GPU [21][22] has been developed by them. We are here to develop

shading language compiler and explore the potential of hardware.

Figure 1-2 Crisis

1.2 Introduction

3D graphic is a branch of computer graphic used to generate realistic image or visual
effect. Users build the 3D models by primitives formed by triangles, lines, points and so on

as the data of graphic processing. Through graphic pipeline, the results are generating to

2

either display or to store.

1.2.1 Graphic Pipeline

Processing to get 2D images from 3D models and related configuration is called
rending. Several algorithms are developed to render a picture such as Ray Tracing [26],
“Radiosity” [23], and Rasterization. Rasterization is the one widely used among them. The
algorithm of rasterization shown in figure 1.3 is called as graphic pipeline. Users input
vertexes, primitives (which was formed.by vertex. E.g. triangle is consist by 3 vertexes)
and settings into graphic pipeline. Aft.er'-\g-a?:c-_:é.ssing, tﬁe images formed by pixels are

generated as output. Functions inside pipeliﬁe dp' special tasks which are explained in the

following paragraph..

1. T&L (Transform & Lighting): Transform converts spatial coordinates, which in this
case involves moving three-dimensional objects in a virtual world and converting the
coordinates to a two-dimensional view. Clipping was used to draw things that might be
visible to viewer; it can therefore improve performance by removing the invisible object.
Lighting takes light objects in a virtual scene and calculates to result color of surrounding

objects as the light falls upon them.

2. Primitive Setup: Primitive Setup collects vertices and converts them into primitives
(lines, triangles). Information is generated that will allow later stages to accurately generate

the attributes of every pixel associated with the primitives.

3. Rasterization: Rasterization is responsible for taking an image described in a vector

graphics format (shapes) and converting it into a raster image (pixels or dots) .

4. Pixel processing: Pixel processing processes color of a pixel (aka Texture operation).

Filtering is also the task of pixel processing

5. Frame Buffer Blend: Thissstep i)rocesses multi-frame effect, such as alpha blending,

BitBLT so on.

AN ||

Other methods can be added-into graphic p_ipé:line to get effect you want. “Software

Rendering” do all things on CPU.

1.3 Graphic Processing Unit

From Figure 1-3, we can see the evolution of rasterization graphic pipeline. Render by
software was used originally. But later graphic pipeline was implemented by specific
circuit and named as fix-function pipeline. T&L is the technique that makes Graphic

Processing Unit born. Before popularization of DirectX [9] 7, T&L was computed by CPU.
4

But Nvidia Geforce 256 offloads T&L works to graphic accelerator and graphic accelerator
was named Graphic Process Unit since GPU takes all jobs of graphic pipeline. Later, the
arrival of DX 8 has provided programmable graphic pipeline to us. This turns a new leaf of

the GPU; programmers are able to produce much more the effect they want then.

Input Data Input Data
TRL Vertex
Shading

Primitive

SELUD

Input Data

Software

Geometry
hading
Primitive

~ Rendering |

Rasterization

—
Pixel _
Processing Pixel
Shadin

Frame Bufer
Rendering Blend

Fixfunction Programmable Fmgra1mn‘13hl1e
GraphicPipeline GraphicPipeline Graphic Pipeline
(DX10 ,0GL 3)

Pixel
hading
Frame Bufer

DN

Frame Buffer

Figure 1-3 graphic pipeline

1.4 Shading Language

A shader in the field of computer graphics is a set of software instructions, which is

5

used primarily to calculate rendering effects on graphics hardware with a high degree of
flexibility. Shading languages was developed from the work of Cook, who described how
shade trees [16] could provide a flexible, programmable framework for shading
computations. The RenderMan [28] is the most common shading language for
production-quality rendering. Except offline render system like RenderMan which render
production-quality image, real-time rendering systems is focus more on real-time
requirement. Shading languages for real-time rendering systems is used to provide high
hardware abstraction and the ability, to program -t.:he GPU. Because the strong computation

power and programmability of GPU today, shader is'not merely used for graphic. You can

N
i
=

also use it for science computation orlsd'fgé't}.ling else, works of this kind are named
General Purpose GPU- GPGPU. Because-ofi§omeé constraints in older GPU which make it
hard for GPGPU [16], the new architecture along with CUDA [29] was later proposed for

GPGPU computing.

1.5 Contribution

In this work, we implement shading language compiler and also study the
register allocation and code scheduling for current hardware. We have found that

traditional register allocation algorithm may lose some performance benefit in shading

6

language. Therefore we propose other register allocation method —Tetris Allocation, it
can pack remain part of vector variable to fully use register allocation. Experiments
tell us that we can potentially reduce register usage for some case. Another thing we
have done is the modification of scheduling algorithm to support the forwarding

method provided by hardware.

1.6 Organization:

The overall contents in this thesis are orgaﬂized as follow. Chapter 1 gives very brief
introductions. Chapter 2 introduces GPG h_gzrdware and.OpenGL ES [25] system. And
then chapter 3 describes the inner fo_f compllrer we implément. Tetris Allocation and code
scheduling methods are also described in' this cha.pter. Experiments are in chapter 4 to

show efficiency of the optimization methods. Finally, we gave conclusion and future work

in chapter 5.

Chapter 2

Preliminaries

GPU hardware and OpenGL/ES stanidardsare ‘the: two important elements in 3D
graphic. The characteristics are described in-this chapter. Their relations to our compiler
work are also explained after the descriptiéjn. By the .way, other implementations and

related works are also the materials of this chapter.

2.1 OpenGL /OpenGL ES

OpenGL is a royalty-free, cross-platform API for full-function 2D and 3D graphics. It
creates a flexible and powerful low-level interface between software and graphics
acceleration. The “ES” is the version targeted to embedded system, which was modified

and enhanced from OpenGL desktop/workstation. For OpenGL ES, there is EGL™

specification for portably binding to native windowing systems.

Oreva @§|ES

- EGL 1.2 enables advanced,
Graphlcs context Surface/buffer j ! raﬂdsringtechni ues that

~ combine high-performance
1
EGL 1.2

2D and 3D graphics

Figure 2-1 relation of OpenGL ES & EGL Source: OpenGL ES 2.0 website

OpenGL Application

[
SN

GLU n_ GLUT
v ly M L 7
Interface Library

\
)

OpenGL | OpenGL State Machine

Hardware Software
OpenGL lib OpenGL lib
A\ 4 ;
GPU » Frame buffer

Figure 2-2 overall infrastructure of OpenGL API

Xegl

indirect direct
‘ ‘ rendering renderin

Kernel
space

Figure 2-3 Xegl windows system

As shown in figure 2-2, OpenGL is an API which roughly contains a frontend and a

Sl

g
-I".."‘l." . .l-...-;r _'EE;_‘..' ..f'r
backend. Applications use the fron «compile. application program into an

!

assembly-like language. This assembly-lj

bt

sunig:s the underlying hardware as

=]

Wy g . o
a virtual machine with a nuniib'e?; re visible to the application. The
i, (u._.:} “|

e , (":_E(.l TR
¥ 4 '-\
language into the instruction set which

OpenGL backend then converts th:s‘a.gs;rtibjly;ﬁ}'{‘e'
can run on the GPUs.

From the view of window system, as shown in figure 2-3, several layer are needed to
run OpenGL. “GLX extension” in figure is the interface implementation of OpenGL. “3D
driver” and “LibEGLdri ™ are the drivers provided by vender. Applications use OpenGL
will process by “GLX_extension” and may use the hardware ability to accelerate. It is fun

to see that 2D and X applications are possible to accelerate by hardware. Take example,

Glitz, Glitz is a software library for 2D graphics which provides hardware acceleration.

10

Notice that vendors often implement OpenGL on their own instead of using the built-in

OpenGL to get higher performance.

2.2 GPU Hardware

GPU are originally designed for graphic, therefore the features of graphic deeply

affect design of GPU. Graphic is the computation full of parallelism.

2.2.1 Parallelism

e
=

There are four kinds of parallelism we can ﬁ"g(_i:firor.n graphic computation.

® TLP: The parallelism from différgﬁt tasks =wvertex shader and pixel shader.

® DLP: Program is executed to process huge data. Vertexes are processed by vertex
shader, and pixels are processed by pixel shader.

® SIMD: There are up to four channels in vertex datum or pixel datum, because color
are presented by r,g,b,a elements and ordinate are presented by x,w,z,w.

® [LP: Independent instructions can be executed together.

11

2.2.2 Architecture

GPU architecture is designed to use the parallelism. Designer can use VLIW or
superscalar architecture to utilize different type of ALU in GPU. SIMD always exists
inside PEs (Processing Elements). DLP is explored by the number of PEs, which is the
major computational resource. TLP is the key for unified shader shown in figure 2-4(b).
When some PEs are idle due to the unbalance workload between vertex and fragment
shader, the thread controller in unified shader dispatches some workload to the idle PE.

The result is the improvement of performance,

[Fixed function]

Il

[Fixed function] [Fixed function]

< < ook W
92 92
2 || = 4 B
Thread Controller
- g g - =
[Fixed function] = = = = =
\ J

gs

] Fixed function

(b)Unified Shader

dd Sd
<j 4d Sd <j
dd Sd

[Fixed function

(a)Pipeline

Figure 2-4 Unified Shader

12

2.2.3 Our Hardware

Comparing to GPUs in desktop or workstation, mobile GPUs consider more in power
than performance. Media IC & System and DSP IC lab at NTU have studied GPU for
several years. They have developed a mobile GPU. The features are listed below:

1. Single core is a 2-way VLIW, 4-stage pipeline, 4-channel SIMD and there are special
instructions to support for codec processing (ME).

2. Tt uses OpenGL ES 2.0 as its implementation standard, but it has its own ISA, rather
than vs, ps ARB ISA.

3. There are 2 cores to form an uniﬁeci sﬁ?_g?r-;bne sha&er for vertex shader and one for
fragment shader, but each can tef11_<e gn;)thcl':?:r'— job depended on the workload.

4. CMA registers and hardware thread are used for low-power yet good performance.

2.2.3.1 Stream Processing model:

Stream sperates a program into kernels and streams. Streams are the data to process,
and kernels are the codes to exectue streams. Vertexs shader and Fragement shader are
two kernels. Cordinates, Colors are streams. In our hardware,the hierarchy of memory is
splite as two. CMA handles Temporary register(t), Constant Registe(c), StreamOut

register(u), Input register(v). The Const Registers are related to OpenGL ES constant and

uniform variables. The Input Registers ared related to the inputs of vertex shader. The

13

output registers of fragement is Stream Out Register. Texture instructions are the kind of

instructions that can process data loaded directly form memory. Following figure is the

processing model of 1 shader.

h 4

Input Stream

Data
I

v a)
Stream Processor Stream Input

Core Registers/Cache

v
Temporary Kernel Constant Reference

«® - <
Registers Execution Unit Registers Data

v
Stream Output

Registers/Cache

A

Output Stream

Data
|

Figure 2-5 Stream model

2.23.2 CMA (Configuarable Memory array)
The register file is named as CMA (Configurable Memory Array), because it can
configure its memory (the registers for a thread) for different applications. It has 8 banks
and 16 long-words each bank, totally 128 long words in CMA. Following is a simple

configuration, 4V4P means it uses 4 banks for vertex shader and 2 banks for pixel shader

14

while 6V2P means that 6 banks for vertex shader and 2 for pixel shader. Thread capacity
means that how many treads are; 8V8P means 8§ vertex threads and 8 pixel threads. We can

count registers that 1 thread use.

Physical Bank Thread Capacity
The number is banks by a thread* long

Configuration

4V4P SVSP
words per banks (16 here)/thread. SV 16P
Therefore 16V8P means that 16VEP
4*16/16 = 4 registers per thread l6viep
. 6V2P 12V4P
4*16/8 = 8 registers per thread
12V8P

Figure 2-6 CMA configure
It is needed to notice that CMA is:shared b}{l all .90_res-.
2233 Thread Cont!ro.%frj
The cores in this hardware are -no.t; tlarget forl' vertex or pixel, this means that core can
execute vertex or pixel program depended on the workload. In this hardware, they propose
some skills — AMT ~ ATS, AMS (Adaptive Multi-thread Switch) means that is will change
thread when it meet a long latency instruction like textureload. ATS (Adaptive Task Switch)

1s a thread mechanic to balance the workload of two cores.

15

USKO USKA1

¢/ Intra Thread ™\ / \
Multi-threading
AMT AMT
Thread 0 Thread 0
Inter Thread

Thread 1 Multi-threading Thread 1
Thread 2 Thread 2
Thread 3 Thread 3
Thread 4 (Thread4)
Thread 5 Thread 5

N N

Figure 2-7 ATS

| c Data Foreand h- ?’r:':x |
V0. In:
Thread M:"D Ingtruction
G Vounsto [TF [10 [EXE W8
V0. Inst1 F D[S BE[BE[DE[EBE[EE]WE]
& Vi.hnsio F [10 [EXE LWE \
1 Instt F [1D | BXE [EXE [EXE [EXE [EXE [EXE]
t‘-"E.H‘IS[U IF ID | EXE LWEB
- 20nst IF D E | EXE | EXE EXE I EXE | E)CEI WE |
& 3. Inst0 IF ID | EXE | WE
= V3.Inst1 IF 0| B%E E | EXE | EXE | EXE | EXE | WE
"= 0. Inst2 IF ID | EXE | WE |
I ¥ k) A
Figure2-8.AMS.

2.3 Shading Language Compiler and Related
Work

2.3.1 History

In real-time rendering systems, support for user programmability has evolved with the

underlying graphics hardware. The UNC PixelFlow[5][6] and its accompanying PFMan

16

procedural shading language demonstrated the utility of real-time procedural shading
capabilities from 1992 to 1998. Commercial graphic hardware was configurable that time,
but not user programmable. Multi-pass rendering techniques [1] are used by the related
system. To program graphics hardware, higher-level tools are provided to user.

Graphics architects began to incorporate programmable processors into both the
vertex-processing and fragment-processing stages of single-chip. The Stanford RTSL [3]
system was designed for this type of programmable graphics hardware. Recent
generation of PC graphics hardware continue th@ trend of adding additional programmable
functionality. Of greater significance for_.lapguag_es and compilers, the vertex processor in
some of these architectures departs frolm. ;tge :pr.eviousl SIMD programming model, by
adding conditional branching funéfiopélity and-the-vertex processors. .Since branching

capability cannot be easily supported by RTSL, NVIDIA and Microsoft collaborated on the

design of a new language. Cg [4] and HLSL was born then.

2.3.2 Related Work:

The Stanford RTSL system is a shading compiler designed for Nvidia register
combiner architecture (Geforce 1~Geforce 3). Shader codes without branch are compiled

to fit the hardware. The internal implementation is to find the correct operations for VLIW

17

slots form DAG representation. Specialized methods of code scheduling and register
allocation are used to utilize the ability of hardware. Issue related to performance is also
revealed in this work.

The patent of DX9 shader compiler describes the internal and compilation passes.
Code scheduling and register allocation are still mentioned in this work. DX 9 shader
compiler considers the register usage when scheduling. Optimizations are separated by 2
types, scalar and vector. The compiler of Microsoft generates some standard profiles to
abstract the hardware layer. Vender needs to Writg a JIT to translate profile output to codes
used by its hardware.

AMD in CGO 2008[27] presents suli:;des for. what they have done to optimize
performance. It first de-optimizea-w.hat Mierosoft; compiler has done. Optimized are

somehow not clearly described. But fast compilation is the thing they focus. Register

allocation and code scheduling for hardware are important issues.

Microsoft 4ﬁ/ Shader Code
y
/ ARB profile /L’ JIT

Nvidia

Figure 2-9 shader compiler processing of DX9

2.3.3 Features in Shading Language

Then we briefly compare real-time rendering shading language with general purpose
programming language. The features are shown below.
1. It doesn’t support recursive and pointer.
2. Branch ability has limited support.
3. Specialized built-in function for graphic and vector type computation.
4. The program limited the memory accessing. Input and output are constrained.

Shader compiler implementation-is.affect b}lf the feature. Since less control, it is much
simpler than general purpose compiler.

e
=

-
¥

2.3.4 Compiler for Hardware

In this work, shader codes are directly into binary related to hardware. The work of us
is to implement and proposes some optimization to fully utility hardware. In current system,
compiler directly translates shader code to ISA of our hardware as shown in figure 2-10.
Since the ISA is not compliant to ARB, this is the efficient way for implementation and
user usually does care about the low-level of our hardware.

As RTSL, we do optimizations for the graphic hardware. CMA is the thing we need to

19

consider more. Since CMA is shared by all thread and core, it is possible to lift the number

of threads by reduce register usage. We need to generate code with the possible best CMA

configure also. Then thread controller with AMS, ATS can benefit from the extra threads.

Data forwarding is another thing that compiler has to do since data forwarding path is

existed but not by handle automatically by hardware. We can therefore have a result that

major things in this work are register allocation and code scheduling.

program
/ Shader /
i — /’7'l Compiler
-8 Shader
P ,
a Compiler Linker
— \

[
—

Our hardware Assembler

Figure 2-10 Whole system

20

Chapter 3
Compiler Architecture and

Algorithm

=
o

Shading language compiler 1s differé;it compariﬁg with general CPU language
compilers since it is designed only forshading language. More clearly to say, optimizations
need to consider the features of shading language and hardware. In this chapter, we
describe the compiler internal first and later describe the special optimization methods for

the hardware architecture.

3.1 Overview:

Figure 3-1 lists the internal design of our shading language compiler. We use the

21

frontend from Vincent 3D [14] 2.x as our parser and code generator. Codes generated from
the Vincent 3D front-end are modified from ARB instruction to the self define ISA. Passes

for optimization and analysis are added after the code generator.

] I}
PeegHole and Code Scheduling
Lower

Parserand first

code gen

Inlining

Register allocation

Code Scheduling

Block Refinement

Block Optimizer

I
| A | Ly
. -:'3-.. '\D') ers £hd. v ;l'l-
Figure 3- I?‘Comp’ﬁ;é% Internal
P egegatol

The original Vincent 3D front-end (the compiler and parser.) generate codes while
parsing. After initial codes was generated, Instruction List is the Intermediate
Representation for processing. Instruction List contains 1. Instructions representation
contains op-code, register information. 2. Block is a list of instructions that represent a

basic block. 3. BlockList is a list of Block which represents a program. Our major work

starts by use original IL form. The major works are listed below.

3.1.1 Passes

® Inlining Functions:

No stack frame and no call instruction in our GPU, the function is limited

supported. User can’t t write recursive function. Compiler here embedded the function

body to the place function was called.

— Original
BLOCK || 2
=t
BLOCK
=
x - _
@
BLOCK || [[LBLOCK [2 AL @
N ¥ s [= Add Flow
\ BLOCK || ™ |[i :
W
BLOCK
(a) refine block (b) build CF

Figure 3-2 Refine Basic Block and Build Control Flow

@ Refine Basic Block:

In this pass, basic blocks without instructions are removed. Blocks without branch or
jump and are aggregated to a bigger block. The reason to aggregate bigger block is because

there are more instructions to avoid stall caused by dependence.

23

® [ower:

There are some pseudo or high level instructions for some purposes (such as simplify
the complexity of code generation and so on), they can’t run by target hardware directly. In
this pass, instructions that can’t run by hardware are translate to instructions can directly
run by hardware (called as low level instruction).
® Build Control Flow:

Control flow graph is then built after refining basic blocks. As shown in figure 3-3,
the information of control is known after this pass.:“The control flow information is used
later by data flow analysis.

® Data Flow Analysis:

4= NI

Data Flow Analysis analyzeé ;[he.:'information.; of data (like which variable is used,
which is dead) through blocks on flow graph. Currently we use live-variable analysis to
collect information use for Block Dag.

Live-variable analysis is used to calculate variables that are live at the exit from each
program point. This is used for some optimizations.
® Block DAG(Block Optimizer):

The instructions are transforming to Direct Acyclic Graph representation. We then use

read/write relation of instructions to build DAG. Optimizations like common

24

sub-expression elimination, local deal code elimination and so on are done in DAG form.

For example, in the processing of building DAG, we can also remove some common

sub-expression because common sub-expressions have same node in DAG. Something like

register renaming is done in this pass since we build a new node when destination registers

in instruction is difference.

—» Instruction

—> Instruction |::>

| Instruction

| Instruction <_‘ Instruction

Instruction Instruction

Instruction "'
L) Instruction Instruction Instruction
v - ; .
(a)IL (bYDAG reoresentation

Figure 3-3 DAG Representation

Optimizations for our hardware architecture are called backend. In our work, the major

pass in our work are listed in following.

® (Code scheduling:

Code scheduling changes instruction order to reduce some overhead like Nops and

hardware stall. It can also discovery ILP to fit something like VLIW and help aggressive

25

hardware design (super-scale than have more than 1 execution unit).

In this work, we have use 2 pass code scheduling. The first pass detects
data-forwarding. And the later does the general code scheduling. Nops are inserted in
second pass code scheduling.
® Register allocation:

After middle-end and before register allocation pass, the register is called virtual
register that represents a variable and some renaming information. Register allocation
maps the unlimited virtual registers to'the limited physical register.

We discuss code scheduling and register allocation deeply. in following sections.

AN ||

26

3.2 Code Scheduling

Code scheduling also known as instruction scheduling is a compiler optimization used
to improve instruction-level parallelism, which improves performance on machines with
instruction pipelines, very long instruction word and so on. By means of rearranging the
order of instructions, pipeline stall can be avoided maximally.

There are several types of scheduling method. Scheduling in a block like list
scheduling. Scheduling for loop like software pipeline. Scheduling across blocks and
scheduling for VLIW like tracing scheduling: Consider different situation we may use

different scheduling method.

4= NI

3.2.1 Implementation

We modify list scheduling algorithm for target hardware. The algorithm also takes
care of instruction clocks. In following content, we don’t talk about the clocks of
instruction and how to model timing of instruction because it depends on target hardware.
But it is still important for implementation. By the way, list scheduling is a simple and
flexible algorithm to modify for different proposes. AMD uses a modified listed scheduling

for their VLIW hardware.

27

3.2.2 Dependence Relation

The rearrangements will fail if the dependence relation is violated. Several dependence
relations are described below.

RAR: Previous instructions read data. Later instructions read same data. Reorder
instructions having RAR dependence will not cause error.

RAW: Previous instructions write data. Later instructions read same data. This also called
true dependence.

WAR: Previous instructions readdata; Later instructions write same data.

WAW: Previous instructions write data. I;at-\e%-zi_r.léﬁuctions .write same data.

If we reorder instruction, depeirl_deqc;e re%étioné such.as WAR, RAW, WAW are kept to
avoid wrong result. Other relations are_introduced. when necessary, for example, controls
dependence is defined to keep the correct control flow. Compiler can also define the
relation when it is required.

Scheduling algorithm starts form build the dependence information of instruction. The

function can be done by following algorithm.

28

DAG =record {
Nodes, Roots: set of integer;
Edges: set of (interger x integer),
Label: (integer x integer) -> integer
h
Procedure Build DAG(m . Inst) returns DAG
m:integer
Inst: in array[1..m] of LIRInst
begin
D := <Nodes:®, Edges: ® ;Roots: &>: DAG
Conf: set of integer
J.k: integer

||determine nodes, edges, labels and roots of a basic-block scheduling DAG

forj:==1tomdo
D.Nodes U = {j}

Conf : =®;
fork:=1tondo N7
if Conflict(Inst[k], Inst[j])then), || ;‘;, |
Conf U = {k}] ’5 '.
fi S\ |l
od

if Conf =@ then
D.Roots U = {j}
else
for each k € Confdo
D.Edges U = {k->j}
D.Labels(k,j) := Latency(Inst[k] ,1 ,Inst[j] ,IssueLatency+1);
od
fi
od
return D
end || Build DAG

Figure 3-4 Build DAG Source : Advanced compiler design and implementation ch 9

29

The function “Latency” returns the clock interval between start of inst[K] and

issueLatency+1 clocks after executing inst[j]

3.2.3 List Scheduling

In our work, list scheduling is the method we currently used for the reason of
conservative design in flow control. List scheduling is the simplest algorithm for code
scheduling. The spirit of it is “Topological Sort”. Conceptually, it repeatedly selects
(schedules) a node of the dependency-graph, appénds it to- the current scheduled instruction.
Finally it terminates if the graph is empty;EThe better érder of instructions is therefore

4]

generated. The flow chart of algorithm is shown in.ﬁgure.3-7

3.2.4 List Scheduling for VLIW:

When we don't consider aggressive design like trace scheduling and region scheduling,
list scheduling is a very simple algorithm to support VLIW. The change of instruction
scheduling is selecting independent nodes in dependence DAG. In figure 3-5, B,C can be
choose for VLIW slots if they fit the requirement of slots attribute. In following figure 3-5,

independent nodes are schedule to some instruction, different slots. If there are dependent

30

instructions, it will schedule to different VLIW instructions.

Figure 3-5 List Scheduling for VLIW

3.2.5 Data Forwarding Detection by Compiler

In the situation we face, compiler takes the .responsibility to detect hazards and insert
non operation to keep hardware work prépé&?z:..i?éta hazafds cause by data dependence can
be prevent by nop or forwarding _dat.al. sza fdrwarding gives ALU the needed data
immediately to prevent stall. Hardware provides a mechanism to forward data.

3.2.5.1 Data Forwarding Mechanism of Hardware

Following table shows how to use data forwarding mechanism.

without hardware forwarding software data forwarding
add t2 t1,t0 add GroupA t1,t0
NOP add t3 GroupA,t0
NOP

add t3 t2,t0

Table 3-1 example of forwarding mechanism

GroupA is the Flip-Flop of the execution unit of Add. Different instructions have their own

31

execution unit, SOP instruction has execution unit named GroupC. Compiler here needs

to do data forwarding detection and change instructions to use FF of ALU unit.

The characteristic and limitation of data-forwarding supported by this hardware is listed.

1. GroupX (X is the name of execution unit) FF can only hold 1 clock cycle.

2. By 1, it cans only forwards data that is used only once later. Because it does not write

to register

3. The maximal speedup is 2x in current model. Instruction with Nops is 3 cycles long,

and without Nops is 1 cycle.

Figure 3-6 Dependence DAG

To do data forwarding detection, we can find the instruction to forward DAG used in

list scheduling. The character of data forwarding node are

1. The successors are all scheduled. This can be solved by scheduling.

2. The last scheduled node has only one predecessor.

32

As the attributes are known by us, we can schedule for data forwarding. In the Figure 3-6,

the nodes circled are the node possible to do data-forwarding.

There are two ways we can do this:

1. Passive forwarding: If the node is suitable to do data forwarding, just forward it.

2. Positive forwarding: Finding the node have data forwarding node as possible as we can

The pseudo codes are listed in following.

While (candidate is_still available()){
//general scheduling code :
/*passive data forwarding™®/

If(data fordwarding checki

(1ast_scﬁedule_instruction,c@éﬁt_schedule_instruction))

Modify_SrcReg_of_cﬁfrengi schedule instruction();
Modify_DstReg of\ last _schedule’ instruction();

}
Else{ :
// general scheduling code ...

/I general scheduling code

Figure 3-7 Passive Data Forwarding

This method forward data when the previous instruction can forward data to current

instruction. But this is still not enough. Forwarding data is always good for performance in

current. We therefore need to find all possibility of forwarding. Positive data-forwarding

forwards data of all possibility by some extra overhead. The pseudo code is listed in

following.

33

While (candidate is_still available()){
/*positive data forwarding™*/
if(# of RAW successor of last scheduled instruction == 1){

Can_data forwarding = TRUE;
Forward node =the only RAW succussor;

If(! can data forwarding){
//general scheduling code

Modify SrcReg of current schedule instruction();
Modify DstReg of last schedule instruction();

Figure 3-8 Positive Data Forwarding
Figure 3-9 shows t flow chart of algorithm. Notige that we need only “Positive
Data-forwarding Inst Selection’, “Passivie data-forwarding relation Detection” is useless
because “Positive Data-forwarding Inst Selegnon” is abetter choice. The “General
instruction selection” is the function:that sele-(;cs an ipstruction to schedule. The policies we

used are l.instruction without independence firsts 2. Destination register will be used first.

3. The head nodes in the candidate queue first.

3.3 Register Allocation

Register allocation is the process of multiplexing a large number of target program
variables (or virtual registers) onto a small number of CPU registers. The goal is to keep as

many operands as possible in registers to maximize the execution speed of programs.

34

Register allocation can happen over a basic block (local register allocation), over a whole
function/procedure (global register allocation), or in-between functions as a calling

convention (interprocedural register allocation).

NO

Have candidate?
Yes
. Inst Selection
NO : : Yes
General ,‘_': ': ||
f : Modify related Reg
Instruction Selection s

Passive data-forwarding

relation Detection

A 4

Selection Instruction To

candidates

EXIT

Figure 3-9 Process of instruction scheduling

When a compiler is generating machine code and there are more live variables than

35

the machine registers, it has to "spill" some variables from registers to memory. This incurs
g Y g ry.

a certain cost, as access from memory is typically slower than access from a register.

3.3.1 Implementation

The algorithm we implemented is a modified linear scan allocation. We also call it
as “Tetris Allocation”. The modification can pack variables without full width of vector
type. Following content describes the algorithm and why we use this algorithm. Related

materials are also described in following eontent:

4= NI

3.3.2 Graph Coloring .

Graph coloring is one of the most used register allocation methods because it
generates the possible best register allocation. After IBM develops it, most compilers use
this method for register allocation. Graph coloring maps register allocation problem to
graph problem. It generates interference graph first, which graph have nodes represent
virtual registers and edges represent that virtual registers live in some time interval. Then it
colors on interference graph, which lists in figure 3-10. The key insight to graph coloring

algorithm is called the degree < R rule. Given a graph G which contains a node N with

36

degree less than R, G is R-colorable iff the graph G’, where G’ is G with node N removed,

1s R-colorable.

12 s
5 __________________

Ty

A

B
/ C=B+12 |7 v
C X Y=A+B [T X
X =Y+C 7T

Interference graph

Figure 3-10 Interference graph and live interval

Graph Coloring

While G cannot be R-colored
While graph G has a node N with deg1:é§1ess_.ﬂj3n R
Remove N and its associated edges ffroﬁié,.:and push N on a stack S
End While . || R ||
If the entire graph has been removed.then the graph is R-colorable
While stack S contains a node N r
Add N to graph G and assign it a color from the R colors
End While
Else graph G cannot be colored with R colors
Simplify the graph G by choosing an object to spill and remove its node N
from G
(spill nodes are chosen based on object’s number of definitions and references)
End While

Figure 3-11Graph Coloring Algorithm

37

3.3.3 Linear Scan Allocation

Linear scan allocation [2] is another algorithm that has been recently developed.
Comparing to graph coloring, it have some attributes.

The algorithm

LinearScanRegisterAllocation
active «— {}
foreach live interval i, in order of increasing start point
ExpireOldIntervals(i)
if length(active) = R then
Spill AtInterval(i)
else ‘
register[i] < a register removed from poolof free registers
add i to active, sorted by increasing end point
j ,,-':1;"~ N
ExpireOldIntervals(i) - | | A .
foreach interval j in active, in order’of.increasing end point
if endpoint[j] > startpoint[i] then™ ¥
return
remove j from active

add register[j] to pool of free registers

Spill AtInterval(i)
spill « last interval in active
if endpoint[spill] > endpoint[i] then
register|[i] «— register[spill]
location[spill] «— new stack location
remove spill from active
add 1 to active, sorted by increasing end point
else
location[1] «— new stack location

Figure 3-12 Linear Scan Register Allocation

38

1. Faster, simple: The complexity of graph coloring is O(N”2), but Linear scan is less
than O(N"2). This is because that it have only 1 major pass.
2. The allocation efficiency is not good as graph coloring.

The algorithm is shown in figure 3-9.

3.3.4 Packing

Shading language has vector type. There are vec4, vec3, vec2, int4, int3, int2, bool4,
bool3, bool2 , the longer width of a‘variable is 4 When we consider the hardware issue,
register width is depended on hardware imﬁ_}grﬁéntation. In this work, the register width is

|] I-'; .

4 just as same as the longer width of shhdiﬁé larll"guage’.sl variable. For the vector type, it

needs to do packing: An example of packing is list in/follow.

vec3 a3, b3,c3; After packing....
float a,b,c;

C4.xyz = a4 xyz+b4.xyz;
c3=a3+b3; c4.w = ad.w*bd.w
c=a%*c;

It may cost just 3 register after

It may costs 6 registers. packing.

Table 3-2 Comparison of register usage with and without packing.
3.3.4.1 Packing efficiency factor:

Through the example shows the improvement of 2x. The packing in real case can get

39

that as much benefit as example do. Because following factors.
1. Number of vector type :
If all registers are all vec4, there are not any improvements of register usage reduce.
Consider all variable live during all program life, the efficiency can be mode as
Probility(1)+ probility(2,2)/2 if probility of 3 > 1
Probility(3)+ probility(2,2)/2 + (Probility(1)- Probility(3))/4
2. Live interval :
Live interval is another effect of packing. If-yve don’t consider the live interval, the

register allocation algorithm will produce performance since it is live interval sensitive.

AN ||

3. Implementation:
You can define how to pack Véfiabies. 2 Variébles together, 3 variables togethers, even
pack 4 variables together.

3.3.42 Bitwidth Aware
The first related work that has some differences is “Bitwidth Compilation [20]”, it
finds and analyses the possible shortest width of variables and use it to pack a word length
long variables. The importance of the paper is the method to analysis. Another way is

“Bitwidth Aware Global Register Allocation [20]”. It analyzes and uses coalescing to pack.

In our situation, we don’t need such complex methods. Programs of shading language have

40

already point out “Bitwidth” attribute, what we have to do is packing the possible virtual
vector register together. If we use related methods, it may not run enough fast because
methods are complex and may not benefit much from this algorithm.
3.3.4.3 Discussion about Packing with Graph Coloring

Packing in graph coloring is not an easy work. Since it uses interference graph,
relation of live intervals are transformed to interference relation. Packing may be opposite
to interference relation. Packing relation in interference graphic is the circle in figure 3-13,
but two circles in figure 3-13 have a.same nodexIf we build packing relation first and later

do graph coloring, it cannot workiif‘there are nodes‘circle by more than 1 circle because

N
e

interference graph has no time. informlati.'a;: élnd width information. Circles in graph
coloring are coalescing, but circlesf\Qvit.h: same node cannot view as coalescing. So packing
with graph coloring is not easy. If you need use graph coloring with packing, redesign and
modify algorithm is needed.

If we use pre-packing pass, the register allocation will produce poor performance
since the live interval become longer which is shown in figure 3-14. If packing posts graph
coloring, it needs to another allocation. And there are possible miss for fine grain packing.

The shortages to support packing in graph color are shown in figure 3-14, figure 3-15.

41

Crocting > Cpacking > (_yacking

Figure 3-13 Packing in interference graph

~ On time 1

Width A

‘ »

ﬂ Still have -
possibility to » Width B
packing ~

A 13 Width A

A Width B

v On time|2

—
Packing together
Need allocation again

Figure 3-15 Weakness of post-packing

Support packing with graph coloring is not easy, it always need extra overhead. However
packing is a NP-Complete program. A heuristic algorithm is enough to solve this problem.
3.3.44 Modified Linear Scan Allocation - Tetris Allocation

So we modify Linear Scan Allocation to support packing and called it as “Tetris
Allocation”. It is easier and faster to support packing in graph coloring.

There are 4 kind of type in register pools after modification- Scalar Pool,
Width 2Pool, Width 3Pool, Width 4Pool. If the type of variables can’t mix with other
type, Pools represent Float, Integer, Boolean are needed. The spirit of algorithm is that
original linear scan allocation will;allocate a}nd fre_e for proper width of register.

Major algorithm:

AN ||

Like linear scan algorithm, but Allocation and.‘ExpireOldIntervals” are modified for

packing.

TetrisAllocation
active «— {}
foreach live interval i, in order of increasing start point
ExpireOldIntervals(i)
if length(active) = R then
Spill AtInterval(i)
else
Allocation(i)

add 1 to active, sorted by increasing end point

Figure 3-16 Tetris Allocation

43

Allocation Process:

The function of allocation is changed as following. Besides allocation, adding the

reminding partial to proper free pools is need in this modification. TypeWidth(i) returns

type(float /integer...) and width(1~4) of variable that has liveness i. FulltypeWidth(i)

returns full width..

If numofElementInFreePool(typeWidth(i))!=0

Register[i]< - removeOneFromFreePool(typeWidth(i))
ModifyRegisterChannel(1)

Else numElementInFreePool(FulltypeWidth(i))
Register[i]< - removeOneFromFreePool(FulltypeWidth(i))

Insert the remind width of register to the proper free pool

Figure 317 Allocation of Tetris Allocation
ExpireOldIntervals Process: . T.e;'_
We also need to modify the Ei;l-)irei()ldlntervails-:_Process. Some to notice here, we need

check if there are free pools have the partial width register. If there are, we need to collect

the partial and add to proper free pool with the aggregated width.

foreach interval j in active, in order of increasing end point
if endpoint[j] > startpoint[i] then
return
remove j from active
If there are partial width of register[j] in free pool
Aggregate the partial width of register [j]
Add register([j] with proper width to proper memory pool.

Figure 3-18 ExpireOldIntervals of Tetris Allocation
44

We can see the method is very simple. Comparing with supporting packing in graph
coloring, the shortages meet with doing packing in post-pass or pre-pass can be easily
prevented. And yet it is efficient.
3.3.4.5 Packing Analysis

The algorithm can also analysis what variables to pack from, the information can be
used by other allocation algorithm such as graph coloring and so on. The objective of this
analysis is collecting what variables can pack together. The spirit of it is that variables in
their own live interval can only pack with Variablgs inactive. The information needs more

process to make it useful.

Analysis

A= ||

packingRelation:Hash{a,Set}
active «— {}
foreach live interval i, in order of increasing s_tart_pd:int
ExpireOldIntervals(i)
packingRelation(j) = packingRelation(j) U active

add 1 to active, sorted by increasing end point

ExpireOldIntervals(i)

foreach interval j in active, in order of increasing end point
if endpoint[j] > startpoint[i] then
return

remove j from active

Figure 3-19 Packing Analysis

45

Chapter 4

Experiments

We use code samples from PowerVR: SDK[iS] to-test. The codes contain small and
fundamental shaders, including phong lighting; antisotropic lighting, envmap, fasttnl, ,
reflection, simple , toon, wood. We test the irﬁ'provement ébout register allocation and code

scheduling.

4.1.1 Efficiency of Data Forwarding by Compiler

In this experiment, we compare the instructions with and without data forwarding.
The number in table is instruction count. Since current compiler takes care of nop
generation and forwarding detection. The instruction number can show information about

the relative performance, programs with less instruction is better for performance.

46

with/without phong lighting | antisotropic envmap fasttnl
lighting

vertex 97/112 66/71 79/112 40/50

fragment 2/2 5/10 18/26 8/20

with/without reflection simple toon wood

vertex 63/82 12/24 33/46 33/47

fragment 5/10 2/4 32/36 40/43

Table 4-1 Instruction number used with and without applying data forwarding

The result shows that vertex is much more complex while fragment is simpler. The
vertex shader have much more ILP, therefore the .gain is less the best condition.

Fragment code is simple in commnion, thus it is closed to the best theoretical speedup.
Ni=-0 |
| === ||
.! | M|}
| 19

4.1.2 Efficiency of Packing with Register Allocation
In this experiment, we compare the register usage with and without packing.
The register usage is reported after compiling the shader code. And it is used to configure

CMA. The table in following shows the tests that have improvements.

phong lighting envmap reflection
packing 5 5 4
Without
. 7 6 5
packing

Table 4-2 register usage with and without packing
47

We discover that the fragment shader code in SDK is so simple that it doesn’t have
any gain by packing. When we check the result of vertex, we found only 3 of them have
improvement. There are phone lighting and so on. By checking the code, we found that
variables have all program life are primarily sources for packing in SDK. To make a simple
conclusion, the major performance gain by packing comes from the variables of all
program life scope. If the programs are complex in variables width, it will gain much more.
By the way, the forwarding technique hardware provided can also save 1~2 registers.

Because it doesn’t need to write to a general register but write to a pipeline register.

4.1.3 Discussion:

4= NI

Here we discuss the relation of registerallocation and code scheduling. In currently
scheduling algorithm, it will found ILP as possible. But the effect brings the mass usage of
register. An example is showed in table 4-3.

For register allocation, case 1 only uses 2 temporal registers to get the result. BUT
case 2 uses 4. In this architecture, very limit registers are shared by all thread and there is
no memory to spill. The result is that we need to take care of register usage sometimes to

prevent the shortage of threads.

48

Case 1:Genernel Scheduling

Case 2:Schedule for ILP

//mat3* vec3

Mul t0,c0,v0

Mul t1,c1,v0

NOP

NOP

Add t1,t1,t0

Mul t0,c2,v0

NOP

NOP

Add t1,t0

//another mat3 * vec3
Mul t2,¢3,v1

Mul t3,c4,v1

NOP

NOP

Add t3,t2,t3

Mul t2,¢5,v1

NOP

NOP © N

Add t3,t2,t3

//mat3* vec3
Mul t0,c0,v0
Mul t1,c1,v0
Mul t2,¢3,v1
Mul t3,c4,v1
Add t1,t1,t0
Mul t0,c2,v0
Add t3,t2,t3
Mul t2,¢5,v1
Add t1,t0
NOP

Add t3,t2,t3

Table 4-3 RA vs CS

49

Chapter 5 Conclusion

In our work, a shading language compile for a mobile GPU with self-defined ISA has
been developed. Considering register allocation, packing is a solution to reduce usage of
registers and increasing performance;-Due to some shortages to do allocation under graph
coloring allocation, we propose a simpl¢ élg'(zl_..éf.ficient method to support packing under
linear scan allocation. Experiments: §how th;:t'- some Vertéx programs can therefore reduce
the register usage. When it comes to-discuss about code scheduling, we detect the data
forwarding in compiler and generate code that hardware can directly forward data. It is

necessary for the current hardware to improve performance. These optimizations are

applied without performance regress

50

Chapter 6 Future Work

There are still some works that don’t finish yet. Numbers of optimizations like memory
optimization, loop optimization haven’t done in current implementation. Considering only
register allocation and code scheduling; there arejseveral possible ways for enhancement.

1. Register control by compiler

e
——
4]

Because the usage of register isflﬁnox.?vn by:'-compiler, there are chances to adjust CMA

register usage dynamically for better performance.
a. Compiler can suppress ILP to get register usage for the near best register settings.
b. If there are instructions to dynamic adjust register setting during runtime, it can

get more threads when register usage is low on some program phase.
2. Software forwarding and hardware data forwarding.
Current hardware needs compiler to do data forwarding detection. We can also

combine with hardware data forwarding detection to take both of their goodness

afterward.

51

Bibliography

[1] Eric Chan, Ren Ng, Pradeep Sen, Kekoa Proudfoot, and Pat Hanrahan ,“Efficient
partitioning of fragment shaders for multipass rendering on programmable graphics
hardware,” in Proceedings of the ACM SIGGRAPH/EUROGRAPHICS conference on
Graphics hardware,pp. 69 — 78,2002.

[2] Samuel Larsen, Saman Amarasinghe ,“Explqiting superword level parallelism with
multimedia instruction sets,” ACM SIGPLAII:\EIEjI_iI"Otices, Vo}ume 35, Issue 5, pp.

145-156 ,2000.

[3] William R. Mark, Kekoa Proudfoot ,“Compiling to a VLIW fragment pipeline,” in
Proceedings of the ACM SIGGRAPH/EUROGRAPHICS workshop on Graphics
hardware ,pp. 47 - 56, 2001.

[4]William R. Mark, R. Steven Glanville, Kurt Akeley, Mark J. Kilgard ,”Cg: a system for
programming graphics hardware in a C-like language,” ACM Transactions on Graphics

(TOG), Volume 22 , Issue 3, July 2003.

[5]Marc Olano, Anselmo Lastra ,“A programmable pipeline for graphics hardware,” UMI

52

Order Number: AAI9840971, The University of North Carolina at Chapel Hill ,1998
[6]Marc Olano, Anselmo Lastra “A shading language on graphics hardware: the pixelflow
shading system,” in Proceedings of the 25th annual conference on Computer graphics and
interactive techniques, pp.159-168, July 1998

[7] Brian Guenter, Todd B. Knoblock, Erik Ruf, “Specializing shaders,” in Proceedings of
the 22nd annual conference on Computer graphics and interactive techniques, pp. 343-350,
1995.

[8]Michael D. McCool ,Zheng Qin TiberiuS. Popa ,”Shader metaprogramming,” in
Proceedings of the ACM SIGGRAPH)EURQGR_APHICS conference on Graphics hardware,

pp. 57-68, 2002.

4= NI

[9]http://msdn.microsoft.corn/direci)i. . '

[10]http://www.opengl.org/

[11] https://renderman.pixar.com/products/rispec/
[12]http://www.opengl.org/documentation/glsl/

[13] http://www.khronos.org/opengles/

[14]http://www.vincent3d.com/Vincent3D/software/ogles2/ogles2.html

[15]Steven S. Muchnick, “Advanced compiler design and implementation,” Morgan

Kaufmann Publishers Inc., San Francisco, CA, 1998.

53

[16]http://www.gpgpu.org

[17] R. L. Cook,“Shade Trees.” ACM SIGGRAPH Computer Graphics, Volume 18, Issue 3,
pp- 223-231, 1984.

[18] Gregory J. Chaitin, Mark A. Auslander, Ashok K. Chandra, John Cocke, Martin E.
Hopkins, and Peter W. Markstein, "Register allocation via coloring," Computer Languages
6, pp. 47-57, 1981.

[19] Massimiliano Poletto, Vivek Sarkar. “Linear scan register allocation,” ACM
Transactions on Programming Languages-and Systems (TOPLAS), Volume 21, Issue 5, pp.
895-913, 1999.

[20] M. Stephenson, J. Babb, and S Amaya;%ghe, .“Bitwi.dth Analysis with Application to
Silicon Compilation,” Proceedings'of t_h'e AGM,SIGRLAN 2000 conference on
Programming language design and implemen*ation

[21] You-Ming Tsao, “Scalable and Reconfigurable Stream Processor for Mobile
Multimedia System,” PH.D thesis, 2008.

[22] Yu-Cheng Lin, “Hardware Architecture Design and Implementation of Universal
Vertex/Pixel Shader for 3D Graphics System,” Master Thesis ,2007.

[23] Cindy M. Goral, Kenneth E. Torrance, Donald P. Greenberg, Greenberg and Bennett

Battaile, “Modeling the interaction of light between diffuse surfaces," ACM SIGGRAPH

54

Computer Graphics ,Volume 18, Issue 3, pp. 213-222, July 1984.

[24] http://en.wikipedia.org/wiki/ARB_(GPU assembly language)

[25] http://www.imgtec.com/powervr/insider/sdk/KhronosOpenGLES2xSGX.asp

[26] Turner Whitted, “An improved illumination model for shaded display,”
Communications of the ACM, Volume 23, Issue 6, June1980.

[27] Norm Rubin, “Issues and challenges in compiling for graphics processors, “in
Proceedings of the sixth annual IEEE/ACM international symposium on Code generation
and optimization, pp 2-2, 2008.

[28] https://renderman.pixar.com/

T
=

[29] http://www.nvidia.com/object/cuda_lhof-f;..}i.tml
[30] Sriraman Tallam, Rajiv Gupta “Bitwidth aware global register allocation” in
Proceedings of the 30th ACM SIGPLAN-SIGACT symposium on Principles of

programming languages, pp. 85 — 96, 2003.

55

