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摘要

惡意程式開發與分析偵測一直都是攻擊方和防禦方的軍備競賽，主流的分析

方法會結合動態與靜態分析來試圖截長補短。對於惡意程式開發者而言，如何去

規避分析不讓自己的惡意行為被輕易逆向分析出來，就成為一個相當重要的課

題。對於分析人員來說，動態分析對於要瞭解程式行為是不可或缺的一環，然而

去針對動態分析的規避行為也相當普遍，其中最常見的就是去檢測大部分動態分

析方案皆需要的模擬器環境，這導致在做大規模程式分析時的效果不彰。因此，

能夠定位出這些針對動態分析環境的規避行為，對於徹底解析惡意程式有實質上

的幫助。

有鑑於模擬器檢測手法一直推陳出新，傳統基於靜態特徵來找出模擬器檢測

的方法經常不再堪用。因此，我們開發了名叫 SADroid的系統，透過靜態輔助動

態 (Static-Aided Dynamic)的分析方法，試圖找到模擬器檢測 (反模擬器)在程式碼

中的哪些片段，並找到這些在近期版本的模擬器上的確能夠改變程式行為的檢測

方法。這些檢測方法可作為惡意程式開發者的利器。

關鍵字：惡意程式、動態分析、模擬器檢測、規避行為
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Abstract

Malware development and analysis is an ongoing arms race between attackers and

defenders. Mainstream analysis designs often combine dynamic and static analysis in an

attempt to complement each other’s weaknesses. For malware developers, how to evade

analysis and not let their malicious behavior be easily reversed and analyzed becomes a

critical issue. While dynamic analysis is essential for analysts trying to understand pro-

gram behavior, evasion of dynamic analysis is also common, with one of themost common

designs being the detection of emulator environments which are required for many dy-

namic analysis approaches. This leads to poor performance when conducting large-scale

program analysis. Therefore, the ability to identify these evasion behaviors targeted at

dynamic analysis environments is substantially helpful in thoroughly analyzing malware.

Given that techniques for detecting emulator environments are constantly evolving,

traditional static feature-based approaches for detecting emulator environments are often

no longer effective. As such, we have developed a system called SADroid that uses static-
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aided dynamic analysis to identify segments of code in programs that are used for detect-

ing emulator environments (anti-emulation) and finding techniques that can alter program

behavior on latest emulator versions, which can be used as tools by malware developers.

Keywords: Malware, Dynamic Analysis, Emulator Detection, Evasion
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Chapter 1 Introduction

Reversing an Android app is relatively easier compared to reversing a PC program,

due to the characteristics of languages such as Java and the architecture of the Dalvik

Virtual Machine (DVM), which compiles high-level languages into bytecode that runs

on the DVM. This makes the syntax more readable to humans compared to assembly

language that runs on physical machines [4]. This has led app developers to adopt various

protective measures to prevent their apps from being easily hacked, especially for those

with malicious intentions. To prevent their intentions from being easily analyzed, various

processes are used to resist static and dynamic analysis [20], which will be discussed more

in Chapter 3-2.

Static protections can make it difficult for reverse engineers to understand the true in-

tention of a program in the short term, however the actual behavior of the code will always

manifest during runtime. Researchers can capture this behavior through dynamic analysis

techniques. Therefore, the prevalence of dynamic protection has increased. Among the

various processes of dynamic protection, one of the simplest strategies is to detect the envi-

ronment of dynamic analysis (primarily emulator environments). Most dynamic analysis

tools that have been proposed in the past have been detected due to the unique character-

istics of these emulator environments compared to physical machines [17]. Therefore,

the most commonly used mechanism of dynamic protection is emulator detection (anti-
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emulator).

Developers have many ways for an app to know if it is in an analysis environment,

which can generally be divided into three categories: (1) static device characteristics, (2)

dynamic device characteristics, and (3) hypervisor characteristics. Static device charac-

teristics refer to fixed attributes within the phone, such as device identification, device

information, call information, and hardware attributes. Dynamic device characteristics

refer to attributes that change over time or with use during the app’s execution, such as lo-

cation, network, gestures, light sensors, and CPU status. Hypervisor characteristics refer

to the state change of QEMU executing VM machine code.

Through the differences between these characteristics in physical phones and emula-

tors, apps can distinguish whether they are running in an analysis environment and subse-

quently change their dynamic behavior, such as choosing not to perform certain malicious

actions or terminating processes. This significantly affects the effectiveness of dynamic

analysis, as malware are less likely to trigger sensitive actions in analysis environments

[12]. From the perspective of analysts, if they can find code segments that perform dy-

namic environment checks, they can bypass such checks through modifying bytecode or

using dynamic hooking techniques [22], breaking through the obstacles encountered in

dynamic analysis.

In this study, we developed a static-aided dynamic analysis system, SADroid, to iden-

tify potential emulator detection-based evasion (referred to as evasion) in malicious apps.

Firstly, we used static injection to hook all the necessary monitoring points, and then used

a customized UI input generator, droidbot [15], to drive the app to automatically execute.

After outputting the dynamic execution results, we compared the dynamic analysis traces

2
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from different devices to calculate which basic blocks might contain emulator detection

measures, and thus locate the positions of these checks in the code.

In summary, this research makes the following main contributions:

• Fine-grained bytecode instrumentation: The development of a fully automated

bytecode instrumentation tool for Smali bytecode syntax, which can monitor the

beginning and the end of bytecode methods＇definition, as well as branching and

jumping points, allowing analysts to understand the dynamic behavior and detailed

execution traces of an app at the bytecode level. This leads to the proposal of a

static-aided dynamic analysis approach and POC for locating emulator detection

without modifying the system itself.

• Multi sequences problem: The discussion and resolution of the issue of interleaved

log output from multiple threads during the implementation of parsing the output of

dynamic analysis, which is rarely mentioned in previous dynamic analysis studies.

• Evasion location: The application of an efficient control flow passing counter de-

sign to calculate the location of evasion candidates based on single execution se-

quences (as defined in Chapter 4-2), thereby identifying potential locations for anti-

emulator evasion.

• New anti-emulator patterns: The discovery of 8 previously unreported techniques

for emulator detection.

The ability to identify potentially emulator-detection bytecode basic blocks in the

apps being studied, achieving a precision of about 0.875 on a labeled dataset of malware.

The discussion and resolution of the issue of interleaved log output from multiple threads

3
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during the implementation of parsing the output of dynamic analysis, which is rarely men-

tioned in previous dynamic analysis studies. The application of an efficient control flow

passing counter design to calculate the location of evasion candidates based on single ex-

ecution sequences (as defined in Chapter 4-2).
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Chapter 2 Related Work

In the implementation of emulator detection, one or more features are typically se-

lected [5], and based on the differences between these features on physical machines and

emulators, a conditional statement is used to determine and distinguish the subsequent be-

havior of the code. For instance, in theAndroid Studio emulator, the android.os.Build.DEVICE

property is usually a string starting with ”generic”, while on a physical phone it is related

to the device name. This type of technique can be used to determine whether the code is

running on an emulator.

The most intuitive design for finding evasions such as emulator detection is to stati-

cally scan the entire program for features used in emulator detection [2, 6, 17, 20]. How-

ever, many of the features previously mentioned in the literature for detecting emulators

are no longer applicable to current versions of the API, which means developers need to

find features that are still present in updated versions of the emulator in order to detect it

successfully. We can also further confirm the source of the evasion through code analysis

systems [13, 19, 22], which may require parsing the program’s call graph (CG) and control

flow graph (CFG). For example, by parsing the dependency of a certain branch, we can

try to determine whether the boolean value of the conditional statement is related to the

attributes of the emulator or the analysis environment.

5
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In the past, methods of scanning static features or analyzing static code have had

some obvious drawbacks. If we are looking for emulator detection behavior, then static

methods must list all possibilities for checking. Listing all the properties that can be used

to check the emulator is impossible, as emulator detection techniques are constantly evolv-

ing. Furthermore, as emulators are updated, in previous preliminary experiments, it has

been found that many of the emulator detection methods listed in previous papers [21]

are no longer able to distinguish emulators. This past knowledge needs to be re-examined.

Furthermore, complete static analysis of the program’s graphs to identify the presence of

emulator detection is computationally expensive and can easily result in a high false pos-

itive rate [22]. Because emulator detection is a dynamic means of evasion, we decided

to use dynamic systems to look for differences in behavior caused by emulator detection

and believed that this approach was more suitable for identifying actual evasion behavior.

Using dynamic analysis to detect emulator evasion is a more feasible approach. For

instance, by comparing the dynamic execution trace (API call sequence), it is possible

to find differences in behavior between real devices and emulators, and thus infer the

existence of evasion [10]. However, pure dynamic analysis design usually requires con-

trol over the analysis environment, such as modifying the OS or at least requiring root

privileges [9, 10] in order to monitor dynamic execution. This is a time-consuming and

labor-intensive design that causes inconvenience in deployment and unexpected risks after

modifying the system, and also affects the normal use of other apps. In general, without

modifying the system, even with root privileges, it is only possible to monitor the API

level, such as tracing system calls through strace or monitoring bytecode function calls

through hook frameworks such as Frida and Xposed. However, it is not possible to truly

know the actual branch information executed within a function, which limits the research

6
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on the execution status of program branches and is essential for accurately locating emu-

lator detection locations.

Therefore, SADroid uses a special static-aided dynamic analysis to perform dynamic

analysis without modifying the system or elevating privileges. In addition to being able

to deploy the dynamic analysis environment in a lighter weight way, it can also monitor

more fine-grained levels to avoid the drawbacks of traditional dynamic or static systems,

as shown in Table 2.1. Chapter 4 will explain the architecture design of SADroid.

Table 2.1: We compare three static analysis approaches and one dynamic analysis ap-
proach. The static analysis approaches can locate the position of anti-emulator code with-
out disrupting the system environment, while the dynamic analysis approach does not
require complex code analysis or pre-definition of anti-emulator features. SADroid is de-
signed to incorporate these advantages.

(Comparing Related Work) T A D L S (Our work)
Locate Anti Emulator Code ♠ ♠ ♠ ♠
No Modify The Device ♠ ♠ ♠ ♠
No Program Analysis ♠ ♠

No Predefined Anti Emulator Patterns ♠ ♠

(T: TriggerScope [14](Static, ProgramAnalysis), D: Difuzer [19](Static, Anonymous

Detection), A: Droid-AntiRM [22](Static, Program Analysis, L: Lumus [10](Dynamic,

API Behavior Difference), S: SADroid(Dynamic, Control Flow Behavior Difference).)

7
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Chapter 3 Preliminaries

3.1 Dalvik Bytecode and Smali Syntax

In Android reverse analysis, the main source of code that analysts read is the Dalvik

Bytecode in the APK file. Dalvik Bytecode is a register-based intermediate language that

is different from the stack-based native Java language. Dalvik Bytecode can be converted

to a more human-readable Smali format using the Smali tool [7] in APKTool [3]. Each

original code class is converted to a single Smali file that records the definition of the

class, including its internal methods and variables. There are some special key syntaxes

in Dalvik Bytecode and Smali that we must use, which are described in detail below.

3.1.1 Locals/Parameters Register

In each method of Dalvik bytecode, registers are divided into two categories: locals

and parameters. Locals are placed before parameters. For example, if there are 5 locals and

3 parameters, the entiremethod register in Smali syntaxwill be v0, v1, v2, v3, v4, p0, p1, p2

or v0, v1, v2, v3, v4, v5, v6, v7. The number of locals plus the number of parameters is the

maximum number of registers that can be used in this method. If the method is not a static

method, p0 is the default instance object of the class to which the method belongs. In this

9
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case, p1 and p2 are the parameters of the method.

3.1.2 Register Range of Dalvik Bytecode Instructions

In Dalvik Bytecode, the range of registers that can be used by each instruction also

varies, roughly divided into 16, 256, and 65536 registers. Most instructions can only

use registers v0-v15, while a few instructions can use a wider range of registers. When

modifying Bytecode, the most common cause of app crashes is the misuse of registers

by manually modified instructions that should not be used. For instance, the ”invoke-”

instruction when calling a function will cause a syntax error and cause the app to crash

when it is opened if it is changed to use a parameter above v16. This is also a common

problem we encounter when modifying bytecode instructions later.

3.1.3 Method Invocation Types And Return Value

Corresponding to the method types in Java, Dalvik bytecode also has five ways of

calling methods: ”invoke-virtual”, ”invoke-direct”, ”invoke-static”, ”invoke-super”,

and ”invoke-interface”. Among these, ”invoke-virtual” and ”invoke-interface” are often

unable to be knownwhich instance is called at the static stage, so it is difficult to trace back

to the callee’s method bytecode. This characteristic will cause some restrictions when do-

ing Bytecode Instrumentation later. In addition, when the parameters are more than six,

”invoke-xxx/range” will be used instead of ”invoke-xxx” and consecutive registers must

be used. These will be allocated automatically when compiled into bytecode, but when

analysts need to modify bytecode, there are many restrictions.

10
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3.1.4 Tags for jumps

In the bytecode of the method definition part, information about all branches and ba-

sic blocks is also included. Except for the first block, each basic block is distinguished by

various tags that mark the line at which the block begins in the bytecode. This means that

all instructions related to branching, such as ”if-”, ”goto-”, ”try-catch”, and ”switch”,

are identified by different tags to indicate the position to jump to, which is also needed to

know for fine-grained dynamic trace tracking.

3.1.5 Wide Type Register Usage

In Dalvik Bytecode, the storage length of registers is 32 bits, but for special data

types such as long and double, the length is 64 bits. Therefore, it is not possible to store

such data in a single register, but two consecutive registers are used to store it. Such as, if

the ”move- ” instructions moves double data to register v3, both v3 and v4 will be written

at the same time and cannot be separated, otherwise the app will crash. Instructions that

operate on long data types have the suffix ”-wide”.

3.1.6 Calling Android APIs in Smali Bytecode

In Android, most functions related to the phone environment and interface require

calling Android APIs to achieve, but the source code for these APIs is not included in

the apk, but is instead stored internally on the phone system. This means that we will

not find the source code in the Smali file, and if we want to monitor the call of these

APIs through bytecode instrumentation, we can only operate at the caller’s location. The

specific API list will change with Android version updates and can be referred to the

11
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official documentation [1].

3.1.7 Android Support Libraries in Smali Directories

In the data folder decompiled by APKTool, there are still some Android-related li-

braries, such as the Android Support Library, which is generated by the compiler for com-

patibility with some systems. These codes are basically unrelated to the functions written

by the app developer and are not called, so they can be excluded from static analysis with-

out the need for instrumentation modification.

3.1.8 App Obfuscation Everywhere

In Android app development, it is common practice to use obfuscation tools to pro-

tect the user-defined class names, method names, and variable names from being easily

understood by reverse engineers. These tools often result in meaningless class and method

names, such as a.a.a.a.a.a(), which can make it difficult for analysts to determine the func-

tion of the code during manual reverse engineering. Obfuscation is a major obstacle for

reverse engineers attempting to understand the functionality of an app.

3.2 Android App Protection / Malware Evasion

In Android Apps, various protection measures are commonly applied, such as obfus-

cation, reflection, dynamic loading, encryption, shell, anti-debugging, anti-rooting, anti-

hooking, anti-tampering, and anti-emulator, to prevent the program from being easily re-

versed and analyzed, thereby completely mastering all program logic. In malware, these

protection measures are used to hide malicious behavior characteristics, which is known
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as evasion. There are many types of evasion, which can be broadly classified into static

obfuscation and dynamic checks. The main purpose of static obfuscation is to make the

program code difficult to read, whether manually or automatically, making it difficult

to understand the meaning. Dynamic checks, on the other hand, change the behavior of

the program when certain conditions are met, either by directly terminating the program

or hiding malicious behavior. This type of check for hiding malicious behavior is often

referred to as a logic bomb [18].

In dynamic checks, checking whether an app is running on an emulator or analysis

environment is the most common and intuitive method. Therefore, understanding the

location of these emulator checks is also a starting point for analyzing malware, which is

the main focus of this study. For convenience, the evasions mentioned in this paper refer

to anti-emulator based or analysis environment detection evasions.

3.3 Sensitive APIs List (Target APIs List)

To further understand the activities of these apps with evasion techniques, we col-

lected a target API list from several sources, totaling approximately 16350 API calls. This

list mainly includes Android APIs which require permissions to use, as well as some data

transfer or dynamic loading functions. These are considered sensitive behaviors and are

likely to be used when malware executes their real functions. Therefore, it is common

in android malware analysis studies [15, 19, 22, 23] to collect such an API list to focus

on the target of the analysis. The relationship between the invocation of these APIs and

evasion may seem intuitive, e.g. , adding an evasion technique to control this branch be-

fore calling these APIs in order to avoid being easily detected by analysts. Therefore, we
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believe that this background knowledge is essential.

3.4 ”adb” And ”adb logcat” And ”adb devices”

To communicate between an Android device and a PC, the Android Debug Bridge

(adb) must be used. Through adb commands, we can control an Android device connected

to an adb server from a PC, including both physical phones and emulators. Using adb

commands, we can install/uninstall apps, send UI operation commands to the phone, start

or stop any app, and anything else that can be done on the phone interface. The Logcat

tool within adb is a built-in tool for viewing and filtering logs generated by app execution.

There are several types of log functions in Android, including Log.v(), Log.d(), Log.i(),

Log.w(), and Log.e(), which differ only in the level of alert or notification. Developers

can choose which to use, and these can be used to monitor the dynamic execution track.

The adb devices command lists all Android devices currently connected to the computer,

including physical phones connected via USB and emulators within the computer. Only

devices connected to the PC’s adb server can be operated through adb commands.

3.5 AndroidLifecycle Entry PointsAndNewProcess/Thread

Entry Points

In the process of running an Android app, the app is typically run as a component.

There are four main components in Android: activity, service, content provider, and

broadcast receiver. The user sees each screen of the app as an activity. All the func-

tions of the Android app operate on top of these components, which is why the stages
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of their creation and termination, known as the lifecycle, are very important information

when analyzing an app. These lifecycle stages are often used as entry points in the flow

of an Android app, meaning that the app’s functions begin at these points in the lifecycle.

In addition to the lifecycle, the creation of threads/processes is also an entry point in the

flow of a program. The use of threads is very common in modern programming and is a

characteristic of almost all apps.

3.6 Bytecode Instrumentation

Bytecode Instrumentation [16] is a technique used in dynamic analysis that involves

injecting code into target locations to track or record program behavior. For Android app

APK files, instrumentation using Smali bytecode is an effective form for analysts because

the Smali tool is easy to use and has higher readability for humans. In order to achieve

the goals of this study, a comprehensive understanding of bytecode syntax is necessary, as

even a small error in modification can cause the entire app to crash during execution. After

bytecode instrumentation, the original APK file is repackaged with the injected bytecode

to create a new APK, which is then installed on the target machine for execution.
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Chapter 4 SADroid Approach

Overview

4.1 Research Questions

The research questions we want to understand are:

RQ1: Is there evasion of emulator detection in Android malware, and if so, which code

is causing the evasion?

RQ2: Are there any types of evasion that have not been discovered in previous studies?

RQ3: What are these anti-analysis evasions being used to conceal in terms of app behav-

ior?

4.2 Definitions

Evading Points Candidate(Evasion Candidate): In dynamic analysis, if a basic

block causes behavioral differences between a physical device and an emulator, the block

is referred to as an evasion candidate. Behavioral differences refer to the fact that, after

executing the evasion candidate block, the two devices execute different basic blocks.
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Hidden Behavior And Sensitive Hidden Behavior: The program behavior con-

trolled by a particular evasion candidate is called hidden behavior, meaning that different

child blocks are executed on a physical machine and emulator if it contains APIs from the

target API list, which are considered to have sensitive hidden behavior.

Sensitive Evasion: Within evasion candidates, if it has sensitive hidden behavior, it

is referred to as a sensitive evasion. Of course, it is not easy to determine whether the

developer was aware of this use or intended to detect the presence of an emulator. We

only examine the functionality of the code itself.

Single Execution Sequence: The logs of all the running tracks generated by a single

entry point are grouped into the same sequence, called a single execution sequence. When

an app is running, different threads/call sequences often execute simultaneously, which

results in log output lines that are often not on the same call sequence. We need to split

the original log output lines into multiple single execution sequences to truly understand

the actual behavior of the program.

Free Register(s): In bytecode, a register that can be freely assigned without affecting

the function of the original code is called a free register. For example, at the beginning of a

method, the free registers contain all the locals registers, and before the return instruction,

all the locals minus the register containing the return value, as well as all the parameters

registers.

4.3 Features of Our Approach

SADroid has the following features: 1. Non-invasive dynamic analysis environment,

whichmeans no root permissions are required and the system itself is not modified, and has
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no impact on the system or other apps in use. 2. Static assistance for dynamic analysis, in

order to achieve the effectiveness of dynamic analysis, static analysis is performed on each

app beforehand, and only needed modifications are made to the app’s bytecode. 3. The

ability to track app execution and jump tracks at the basic block level (more fine-grained

than the API level). 4. No source code is required.

4.4 Model Architecture

The model consists of four main components, as shown in Figure 4.1 . These are

the Bytecode Instrumentation Tool (Figure 4.2), the Two-Device UI Fuzzer (Figure 4.3),

the Log Sequence Analyzer (Figure 4.4), and the Dynamic Control Flow Passing Counter

(Figure 4.5). The Bytecode Instrumentation Tool decompiles the APK using APKTool [3]

and then inserts specialized logging functions and other support functions at all monitoring

points, before repackaging the modified APK. The Two-Device UI Fuzzer drives the app

to execute on both physical devices and emulators using the same input search strategy,

generating UI events for both. The Log Sequence Analyzer filters and thoroughly analyzes

the app’s special logs to piece together the original execution flow of the program. The

Dynamic Control Flow Passing Counter, after knowing the dynamic execution track of the

program, counts and compares the execution times of each basic block on two platforms,

and outputs the possible evasion basic block info.
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Figure 4.1: The overall architecture of the SADroid model, where the input is a dataset
of APK files and the output is the evasion candidates and sensitive evasions calculated by
the model.

Figure 4.2: Bytecode Instrumentation Tool

Figure 4.3: Two-Device UI Fuzzer
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Figure 4.4: Log Sequence Analyzer

Figure 4.5: Dynamic Control Flow Passing Counter
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Chapter 5 Implementation Details

5.1 Bytecode Instrumentation Tool

To meet the requirements of subsequent dynamic analysis, static analysis is per-

formed on the bytecode of the entire APK file, followed by a comprehensive rewrite.

The general process is as follows: 1. Use APKTool to convert the dex file into a folder

containing Smali files. 2. For the subfolder of Smali files under the directory, exclude

the Android Official Libraries and then iterate through each developer-defined class file

(Smali file). 3. For each Smali file, read the bytecode in each method , and then inject

the required bytecode code through program code analysis at all targeted points where

monitoring is desired, using an inline hook to inject all necessary logging functions. The

targeted points include the beginning and return before each user-defined method, the call

and return of the target API, before and after branch instructions, the start and end of ”

try-catch”, or exception handling. 4. Re-sign and package the rewritten APK.

The above process is fully automated. In this process, code analysis is a determinative

step, the main purpose of which is to obtain a freely usable free register at all points where

we need to add features. Therefore, we need a comprehensive understanding of the side

effects that these changes to the bytecode have on the original code function, and any

change will cause a cost in register usage that should be minimized as much as possible.
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The following is the process of Bytecode Instrumentation (Figure 5.1), with the specific

code analysis and injection details explained in the following sections.

5.1.1 Special LoggingMethods: PassingArgumentsWithoutAnyReg-

ister

To assist dynamic analysis through static analysis, we need to pass necessary infor-

mation to the android log functions. The android Log functions all have two parameters,

a tag and a message, to print out information. In SADroid, we use a specific tag to allow

the Logcat tool to filter out SADroid’s output logs directly, without seeing logs generated

by other apps on the device. However, no matter what function is called, only registers up

to number 16 can be used, and it is not possible to ensure that a free register within 16 can

be found at any point in the code, so we do not want to pass information to the logging

functions through parameters.

Therefore, SADroid creates a class relevant extra-space (C-space) corresponding to

each class, and uses the C-space to pass the required data to avoid the trouble of passing

parameters when calling logging methods (”invoke-” instructions can only use registers

up to number 16). The specific implementation is to open a new Dex in the original

APK and define a corresponding class inside, defining all significant static variables and

logging methods. Any method called will temporarily borrow the variables in the C-space

corresponding to its class to access the required information, as shown in Figure 5.1.

This design is because we actually cannot accurately know which of the registers

within 16 is free to store the required argument when the program reaches a certain line

of bytecode, which eliminates a lot of unnecessary troubles that cannot be avoided at any
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(a) Before Bytecode Instrumentation

(b) After Bytecode Instrumentation

Figure 5.1: The Process of Bytecode Instrumentation
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point that requires additional invocation.

Figure 5.2: Calling a method(callLog()) that prints the caller→callee relationship without
using parameter registers

5.1.2 Registers Modification And Side Effect Handling

At least one register needs to be available for storing arguments or temporary data

when passing this necessary information. Therefore, the most intuitive approach is to

increase the number of local registers by one. In theory, as long as the number of locals

declared after the method declaration is increased by one, a free register can be obtained.

We name this register vlast.

However, nothing in life is free. When the number and order of registers change, the

most direct impact is that the originally compiled instructions may happen to exceed the

available range, causing the program to crash. In fact, it is almost nonexistent for more

than 256 registers to be used in a Dalvik bytecode method (only one was seen in the entire

dataset), and it is usually just over 16 registers. Therefore, we named the side effects

caused by increasing the number of local registers as the v16 problem (vx is the register

name in the Smali syntax).

To handle the v16 problem, we parse eachDalvik instruction and use a pre-established

register rule table to determine if there are any instructions that are exactly at the limit of the

available registers. For instance, if the ”invoke-” instruction originally has a parameter p2

(the third parameter register) and there are originally 13 locals, then p2would originally be
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equivalent to v15 (which can be directly replaced in the code). However, if the locals are

increased to 14, with the additional register being v13, then p2would shift to v16, which is

exactly at the limit. In this case, we can temporarily store the data originally in p2 in v13,

rewrite the original p2 instruction to v13, and then move it back after the instruction. It is

important to be careful here as ”invoke-” instructions may have a return value, followed

by a ”move-result-” instruction, which cannot be inserted with other instructions.

Although this approach seems perfect, there are still cases of v16 problems that can-

not be solved. We will discuss this in Section 7-1.

5.1.3 Runtime Method-Scoped Random ID Passing Mechanism

During the execution of an app, there is often not just one entry point for the program,

but rather multiple single execution sequences that interweave and output. This makes it

difficult for us to directly read the original Logcat output as the order and trace of code

execution, and we must first split it apart. In the output from both physical devices and

emulators, we see the same code, but the behavior of the two devices when creating an ex-

ecution sequence is different (Figure 5.3), making it difficult for us to distinguish between

single execution sequences using just the thread ID.

Figure 5.3: We see different behaviors in whether threads are opened on emulators and
physical devices, and the execution order is random
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Therefore, during execution, we generate a random ID within each method that is

reached and use it as a dynamic identification. By passing this ID between caller and

callee, we can determine the dynamic call relationship and which method each monitoring

point belongs to.

In order to minimize the cost of accessing registers, the method-scoped random ID

is stored in a static variable within a class. This means that if two methods within the

same class are used at the same time, a collision may occur. To avoid recursive calls or

deep calls to methods within the same class in the same sequence, we store the random ID

and method signature of the method in the free register within the original method scope

before calling any function, and then write it back after the call is complete to avoid space

overlap (Figure 5.4).

Figure 5.4: Illustrates how the random ID is stored within the method space to avoid being
overwritten by any intermediate call sequence

5.1.4 Virtual Method Handling

Since we track inter-method call relationships by rewriting the caller and callee byte-

code during static periods, this method has an inherent limitation, which is that we cannot

accurately know all the callees at static periods, which will inevitably happen when calling

virtual methods.
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Although we cannot know in advance which class defines the instance method, be-

cause every method has been rewritten, it will still output information about the callee in-

stance being called. At this point, we can use Java’s Thread.currentThread().getStackTrace()

to get the names of the called functions. Through this method, we can reattach the original

output sequences that were broken due to calling virtual methods.

5.1.5 Logging Methods Implementation

In order to minimize the number of ”invoke-” instruction＇s parameters as much as

possible, we use specific wrapper functions for each point to bemonitored (such as method

start/end, ”try-catch”, ”if-else”, etc.), which contain the necessary information parsing

and android’s native ”Log” function. All of these wrapper functions do not require any

parameters (Figure 5.5).

Whenever a branch jumps, this wrapper function is called immediately after the

branch tag label. Its function is to concatenate all the information used to identify this

position, including the output type, label content, and random ID, and print it with a spe-

cific SADroid tag in theAndroid Log. This is the coremethod used in static-aided dynamic

analysis. In SADroid, there are a total of 12 such wrapper functions, each of which is used

to monitor different types of code positions, and these methods are defined in the C-space

corresponding to each class.

5.1.6 Multidex Support

Dex (Dalvik Executable Format) is the executable file format for Android, and the

number of methods in a dex file is limited to 65536. For some large-scale apps, they have
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Figure 5.5: SADroid’s actual logging method for monitoring branch instructions, which
calls a function immediately after the label where the branch instruction jumps. There are
also corresponding logging methods for other monitoring points.

to split the file into more than one dex file. As mentioned earlier, during static analysis,

for each original class, we create a new C-space containing many new wrapper functions

and other required functions, which may not be supported by the original dex capacity of

the app. Therefore, we place all these additional C-spaces in a new dex file, and if one is

not enough, we open a second one.

5.2 Two-Device UI Fuzzer

Droidbot [15] is a python-based, extensible, and cross-platformAndroid app UI input

generator (UI fuzzer) that can automatically test UI for Android apps. It reads the screen
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content of each device, examines the available UI operations on the screen, and selects

the UI operation commands (UI events) to be sent based on the set search strategy. The

original Droidbot could only be used to test a single app, so we customized it to input UI

events on different ADB devices using the same search strategy. This way, we can use the

same graph search strategy to execute an app on both a real device and an emulator, and

compare the execution tracks. Then, we filter out all the logs generated by the app being

tested through ADB Logcat’s filter tool and output them to a file for later use.

We chose Droidbot for its ease of use, which allows for quick and easy deployment

and start of automated UI testing, and because it allows users to avoid the low-level details

of interacting with the phone and provides better dynamic analysis performance than the

traditional Android built-in monkey tool.

5.3 Log Sequence Analyzer

During dynamic analysis, SADroid collects the execution traces of the app, which

are output as lines of log. However, not all logs are part of the same call sequence. In

addition to the almost universal presence of multi-threaded execution in apps, there are

also cases where different call sequences are interleaved within a single thread due to the

initialization of various classes and objects. Therefore, it is necessary to split the original

log output into multiple single execution sequences, where each line of the sequence is

part of the same call sequence, for further parsing. The main basis for this splitting is the

dynamic random ID that we embed in the code beforehand. A random ID is generated at

the runtime of a method and maintained until the method returns. When a method calls

another method, in addition to the callee generating its own random ID, the relationship
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between the two random IDs is also output through a log function, allowing us to parse

the dynamic call sequence smoothly in the future.

Log data generated by each app may range from tens to tens of thousands of lines,

where each line is in the format of (location type, location signature, random ID). Location

type includes the start of the first line of instruction before a method, before each return

in a method, before a branch instruction and after a jump, the normal start and end of a ”

try-catch” and after jumping to the exception segment, and the point of loop jump. The

location signature includes the information needed to identify the location, such as the

caller and callee method random IDs in the log function at the start of the method, and

the information on whether it is the true case or the false case in the log function after a

branch instruction. Each line of log must include the corresponding method signature of

this method, which is a string concatenated by the (method name, method parameter type,

method return type). The method signature can uniquely determine a specific method.

The random ID is generated before printing the call relationship at the start of the method

and maintained during the execution of the method (refer to Chapter 5-1-3). It allows all

log functions generated within this method to share it, so each random ID corresponds to

a specific method signature.

While reading the original log data line by line, a calling set is maintained to collect

the methods that are currently being called (stored using random IDs). Whenever a call

relationship is encountered, the calling set is traversed to check if the caller’s ID exists. If

it does, the ID is replaced with the callee’s ID in the set. If not, it indicates the start of a new

single execution sequence, and the callee’s ID is added to the calling set. This happens

when the execution reaches the entry points. Whenever a method return occurs, the ID is

removed from the calling set. Other types of logs are for monitoring the execution trace
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within the method and do not affect the log analysis process in principle. They just need

to be assigned to different single execution sequences according to the ID.

The efficiency of the SADroid algorithm is quite high, with a capability of parsing

over 400K ∼ 500K lines of original log outputs into various single execution sequences

per second, while also handling exceptions. Exception cases will be discussed further in

chapter 7-2.

5.4 Dynamic Control Flow Passing Counter

After obtaining a large number of single execution sequences that reflect the dynamic

execution of the app, each sequence can be used to depict the corresponding Dynamic

Control Flow Graph (DCFG) because it contains information on method call relationships

and control flow execution traces. Since each single execution sequence includes the

signatures of all the basic blocks that were executed, we can use this information to count

the number of times each control flow path in the CFG of a method is executed. This is

the main task of the Dynamic Control Flow Passing Counter (DCFPC).

Intuitively, if a basic block is an evasion candidate, there should be a branch diver-

gence after this block is executed on a physical device and emulator, meaning that the

physical device tends to follow one side of the basic blocks while the emulator follows

the other side, causing a significant difference in the number of times the next block is

executed on different devices. In the DCFPC, we use 0.99 as a proportionate threshold.

If a device has more than 99% of its execution times going through one side of the DCFG

and the other side is similar, we consider this to be a significant difference. Therefore,

as long as we observe such a basic block that meets these conditions on the DCFG, we
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consider it an evasion candidate and output the information of this basic block.

The information of the evasion candidate includes the signature needed to locate this

basic block, which includes the method it belongs to, the label that distinguishes this basic

block, and the child blocks pointed to after the branch. According to the definition of the

evasion candidate, the physical phone and emulator will execute one of the child blocks

respectively, which will contain information on whether the target API exists, helping us

to understand what an app is doing with evasion.
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Chapter 6 Evaluation

We will answer three research questions, including some samples to illustrate the

findings.

6.1 Experiment Environments And Dataset Collection

The main experimental devices are a SAMSUNG Galaxy J6+ with Android API 29

and the emulator (API 29-30) in Android Studio, which are connected to a Win11 host

through adb. The data was downloaded from the official website of AndroZoo [11], which

is currently the largest online app database and is continuously collected. Almost all the

data used in previous papers can be downloaded from AndroZoo through the sha256 of

the APK.

Based on the need for the host environment to run x86 emulators, we selected 373

out of 404 apps from TriggerZoo [18] that can run on the x86 platform for experiments.

TriggerZoo is a dataset containing various logic bombs, which were written into the apps

through automated probing by the authors of the paper. The types of logic bombs include

time, location, text message, network, android.os.BUILD properties, camera, music, and

screen on/off. Each logic bomb includes a specific type of behavior, some of which are

classified as malicious. We expect SADroid to execute some of these logic bombs and
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output those that can be used for emulator detection. TriggerZoo was selected because it

is one of the few open-source datasets with tags related to emulator detection and includes

malicious tags. In addition, there is a small annotated dataset, evadroid [13], consisting

of 22 evasive apps, but since each app has only one main function with an evasion and no

normal functionality, we believe that the results obtained from such data are insufficient

to extend to general apps and do not need to be used.

6.2 Sensitive evasion in Our Dataset

In response to our research question, RQ1: Is there evasion of emulator detection in

Android malware, and if so, which code is causing the evasion? In our dynamic analysis,

we examined the TriggerZoo dataset and found a total of about 100 evasion candidates,

of which 24 were determined to be sensitive evasions after manual review (Table 6.1).

Out of these sensitive evasions, we discovered 2 samples that may not be related to em-

ulator detection, as they are based on the values of the method’s parameters to determine

the direction of execution. It is difficult to determine whether these blocks are based on

emulator detection results.

Table 6.1: Results from the entire dataset

# of total evasion candidates # of sensitive evasion Actual anti-emulator ratio by manual verification
∼ 100 24 87.5% (21)

In regard to labeling, 123 labels out of 349 apps were successfully executed during

dynamic analysis, with 10 of them being evasion candidates, including 9 sensitive evasions

(Table 6.2). One sample was found to be an emulator detection chill block with no code

included. As we know the content of these labels to be emulator environment detection,

the precision of the labeled dataset is 100%. In addition to the labeled sensitive evasions,
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the rest were discovered through additional exploration within the dataset by SADroid,

demonstrating its ability to find unknown evasions.

Table 6.2: Results from the logic bomb labels

# of total triggered label # of evasion candidates # of sensitive evasion Actual anti-emulator ratio
123 10 9 100%

(Table 4: Statistics of output related to labels)

Regarding labels that are not triggered after multiple rounds of automated testing, our

interpretation is that these may belong to code sections that are not easily or will not be

executed, even if these sections contain dynamic analysis protection, they may not have

much opportunity to play, so as an analyzer, it is not necessary to dig them out one by one,

shallow evasions have a greater impact on automated dynamic analysis.

Although dynamic analysis based on random UI testing cannot guarantee that all

code sections will be executed, as the number of executed events increases, we observe

the opportunity for increasing the number of unique evasion candidates. We believe that

given enough time for repeated fuzzing, we will inevitably find more and more evasion

candidates and sensitive evasions.

6.3 Discovery of New Evasion Types

In response to our research question, RQ2: Are there any types of evasions that have

not been discovered in previous studies? In past research, emulator detection was often

identified through the examination of device properties such as Android.os.Build series,

trace-related attributes such as contact lists, and the presence of the QEMU emulator. In

addition, we found that there are still many different types of evasion features that are
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easily ignored by traditional static methods, such as: (1) Built-in date format. (2) Mobile

network and telecommunications information. (3) Determining whether music is in an

active state. (4) Screen lock usually only occurs in physical mobile phone environments,

and mobile phones can still perform app functions while in lock screen state. (5) Different

network connection states, generally speaking, emulators are always connected to the PC’s

virtual network, while the network of physical mobile phones may be disconnected. (6)

Obtaining the maximum frame rate of the camera device. (7) Battery changes, emulators

do not produce battery changes, but physical mobile phones have this feature. (8) The

binary file existence of the ”su” instruction. Refer to Table 6.3 for a comparison of the

differences between our physical device and emulator in these attributes.

Table 6.3: Conduct actual testing on these attributes on both physical device and emulator

Anti-Emulator Patterns On Our Real Device On Android Studio Emulators
API: is24HourFormat() Always True Always False(NULL)

API: getNetworkOperatorName() Always NULL Always ”Android”
API: isMusicActive() Always False Always True
API: isScreenOn() sometimes False Always True

API: getActiveNetworkInfo() sometimes NULL Always False(NULL)
API: getOutputMinFrameDuration() Always 0 Always !=0

Intent: BATTERY_CHANGED Always Status!=2 Always Status=2
File: ”su” binary existence Always False Always True

It is foreseeable that as we delve deeper, the likelihood of finding evasions increases

and these possibilities are not easily identified through black list basedmechanisms. There-

fore, we believe that SADroid can help analysts understand more evasion behaviors in

programs.
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6.4 Actual Sensitive Behavior

In response to our research question, RQ3: What are these anti-analysis evasions

being used to conceal in terms of app behavior? We classified the sensitive evasions we

found according to the sensitive behavior they contained (Figure 6.1).

Figure 6.1: A breakdown of the sensitive behaviors observed in the sensitive evasions
detected by SADroid in our dataset.

For example, in the ”get IMEI” category, the actual code is shown in Figure 6.2:

Figure 6.2: An actual behavior of a sensitive evasion, shown as a pseudo-code in a de-
compilation tool

This code functions to send the IMEI number through a text message if the screen

is locked. The IMEI number is a unique identification number for a mobile device and

can be used to identify a specific mobile device. Because emulators do not lock their

screens, checking the emulator environment and then executing a sensitive behavior that
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sends personal information out is a standard sensitive evasion and is what we aim to find

as an anti-emulator based evasion.

6.5 Bytecode Instrumentation Failure

During the process of bytecode instrumentation, on average it takes around oneminute

to complete the process for each APK file and generate a fully rewritten APK file. How-

ever, among the 373 APK files in the dataset, 27 APK files crashed upon execution after

bytecode instrumentation. Upon further investigation, we found that 24 of these were

APK files that were originally unable to run properly, a problem that was present in the

TriggerZoo dataset. The remaining 3 crashed due to errors introduced by the bytecode in-

strumentation process. As mentioned earlier, there is a small possibility of encountering

syntax errors, which is an inevitable result of automated modification. However, consid-

ering the high level of convenience in usage, the error rate is within an acceptable range.

6.6 Case Studies

6.6.1 True Positive And True Negative

Let’s give an sample to illustrate the appearance of True Positive and True Negative

in code, as shown in Figure 6.3:

SADroid output the decision statement in line 948, which checks for Bluetooth de-

vices, as a sensitive evasion, causing a divergence in behavior between physical and em-

ulated devices. This is a True Positive as the physical and emulated devices often have

significant differences in hardware status, making it a clear anti-analysis evasion.
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Figure 6.3: A sample of True Positive and True Negative in code.

However, in line 940, the program actually executes a decision statement that does

not produce any divergence. After reverse engineering, it is easy to see that it checks

the android.os.BUILD version’s SDK_INT to determine the execution environment and

attempts to filter out certain environments. This check is ineffective for recent versions of

emulators, making it a True Negative for SADroid.

In apps with known environment attribute checks, many such cases are found where

the attributes checked are no longer able to distinguish between emulators and physical

devices on updated versions of Android Studio emulators. Therefore, SADroid does not

output these as evasion candidates and only discovers these True Negatives when we al-

ready know that the labels have been executed.
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6.6.2 ”Try-Catch” as An Evasion

In addition to using branching to evade detection, in some cases it is also possible

to use ”try-catch” blocks to achieve evasion. For example, in the case shown in the

Figure 6.4, a try block is used to catch other packages that may exist on the phone in order

to execute a function of a certain app. These packages may not exist in the emulator, and

by using a ”try-catch” block in this way, it is possible to evade the emulator and jump

to the exception handling branch, resulting in a difference in log sequences between the

emulator and the physical phone.

Figure 6.4: A special case of using a ”try-catch” block to differentiate between a physical
device and an emulator

This technique of evasion has not been mentioned in previous research, thus it is not

possible to find such evasion through static code analysis.

6.6.3 Weird Failed Instrumentation Sample

There are a small number of samples in which it is not possible to successfully per-

form automated rewriting and repackaging of bytecode instrumentation into a runnable

APK. This is usually due to the inclusion of rare syntax, as shown in the Figure 6.5 below:

Normally, if a return value is expected after an ”invoke-” instruction, a ”move-result-

” instruction must follow. This case is unusual in that tags are interspersed between these

instructions. Tags do not belong to the instructions themselves, but are generated during
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Figure 6.5: Rare Smali syntax in which tags are interspersed between the ”invoke-” and
”move-result-” instructions, causing existing bytecode instrumentation algorithms to fail

the process of compiling to Smali in order to distinguish between code segments. How-

ever, when SADroid encounters these tags during the bytecode instrumentation stage, it

generates the log function required for monitoring, breaking the connection between the

”invoke-” and ”move-result-” instructions and causing the packaging to fail.
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Chapter 7 Discussion And Limitation:

7.1 What Cause The Instrumentation Fault

Recalling the actions taken by the Instrumentation process, a local register was added

to every method as a free register for general use. The most direct approach is to increase

the number of locals defined in the method by 1, in which case the free register will appear

at the end of the locals register, which we will refer to as vlast. This approach requires the

least amount of code modification.

However, this change causes the parameters registers that were originally numbered

after vlast to shift by one number. It is easy to see that the most direct result of this is that

the original register number 16 (v15) may be moved to number 17 (v16) in a few cases

(if the added number is before 16). Most v16 problems can be solved using the design

described in Chapter 5-1-2, but there are still a few cases that are difficult to handle. One

of these is when v14-v15 are wide types and need to be checked for invalid instructions. In

cases where only v15 is invalid, as described in Chapter 5-1-2, we can use the free register

as a temporary storage area to swap the data and rewrite the instructions. However, when

v14-v15 are bound together by wide type data, it is almost impossible to move them, and

the invalid instructions resulting from this will cause the app to crash after repackaging.
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Another issue is when a self-defined method is called within another method. In

order to maintain the original method ID within the original method, the ID is temporarily

stored in vlast before the call, as Dalvik bytecode is based on registers rather than a stack.

However, when a parameter of v16 is encountered during an ”invoke-” instruction, the

data in v16must be moved to a free register numbered 16 or lower in order to perform the

”invoke-” instruction. It is usually the case that the free register is vlast, which can lead to

conflicts.

By the way, when an ”invoke-range” includes the range of parameters registers fol-

lowing the SADroid register in the locals register, adding an extra locals register will

directly break the parameter arrangement of the ”invoke-range” and require the addition

of a large amount of data movement instructions. This type of case is not particularly rare.

While this problem can be solved by moving the parameter data extensively, it incurs a

significant performance cost in terms of additional instructions.

The author of Smali has provided a response and discussion [8] on these issues. The

conclusion is that it is difficult and not guaranteed to always have a free register available,

and the difficulty and complexity of the modification increases exponentially if more than

one free register is desired.

7.2 Main Cause of The Exception Line During Log Se-

quence Analysis

During the Log Sequence Analysis stage, we assign each line of log output to a differ-

ent single execution sequence based on its random ID. However, it is not always possible

to do this accurately, as some logs cannot be identified as belonging to a specific sequence,
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known as exception lines. This is because the space where these random IDs are stored is

a specific static variable within a class, regardless of which method within the class it is.

This is also done to save on the use of free registers, as any one free register (not numbered

16 or lower) can be used to retrieve the random ID from the fixed variable space. This

means that if, at the same time point, methods within this class are being invoked concur-

rently, the spaces allocated for their respective IDs will overlap. In fact, this phenomenon

is quite common in practice and can be observed in most apps. When this happens, we

consider these logs to be exception lines and filter them out.

There may be potential solutions to address issues with multi-sequence overlapping

(where it is not allowed to simultaneously read or write variables within the same class),

such as the one described. For example, we could leverage data structures like HashTable

to set up exclusive variable spaces for each sequence (or random ID). However, methods

like these require two free registers, which is another challenge. Therefore, in order to

minimize the negative side effects of changes, we will reserve the improvement of this

issue for future work.

Overall, although the existing methods exhibit very high computational efficiency,

they still have the potential for some errors. After weighing the trade-offs, although it may

not be possible to achieve 100% accurate capture of all dynamic traces, we have struck a

balance in terms of implementation complexity and efficiency, and are still able to output

a considerable number of evasion candidates and sensitive evasions. We believe that we

have preliminarily achieved our research objectives.
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7.3 Static Uncertainty: Virtual Methods Issues And Re-

flection

There are also inherent issues in the SADroid method. What we are actually con-

cerned with is the dynamic analysis trace and results, and in order to capture this infor-

mation, we try to set up monitoring points using static analysis. However, during static

analysis, it is not possible to fully grasp all the crucial information and we need to pass

the caller’s random ID to the callee method’s C-space when calling the method. However,

when invoking a virtual/interface method, it is not possible to directly identify the instance

of the virtual/interface method from the caller’s invocation information, which leads to the

inability to successfully pass on the information to the callee, who is only identified in the

dynamic phase. As described in Chapter 5-1-4, in such cases, we use the stack information

to deduce the call relationship of the origin log sequence. In theory, this can perfectly solve

the problem of virtual methods, but in reality, Thread.currentThread().getStackTrace() can

only obtain the function name and not the parameter format, which may cause difficulty

in determining which of the overloaded methods is being called when multiple sequences

call them simultaneously. Such cases were also observed in the experimental process.

Reflection is a language feature in Java that allows for the determination of which

class’s method to call at runtime, which can lead to issues in determining the call relation-

ship during static analysis, similar to the problem of virtual methods mentioned earlier.

These are also potential causes for exceptions in log analysis.
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7.4 All Evasion Candidates Results And Cause of Anti-

Emulator FNs

In addition to being concerned with the results of sensitive evasions, we were also

curious about whether other evasion candidates included emulator detection. Based on

manual reverse engineering, we classified the evasion candidates into three categories:

anti-emulator, not anti-emulator, and unknown. Anti-emulator means that the evasion

candidate is indeed based on attributes that can differentiate between a physical device

and an emulator environment, and can identify the emulator environment and lead to a

difference in execution branches. These are False Negative Cases output by SADroid.

There are generally two reasons for the existence of such cases. One is Delayed Sensitive

Behavior, which means that after the anti-emulator check is executed, the program does

not immediately perform some critical behavior, but rather performs it deeper down (such

as calling a self-defined method containing malicious behavior). This causes SADroid

to be unable to classify the evasion candidate as a sensitive evasion. The other is Not

Listed Sensitive Behavior, which means that our sensitive API list is based on a collection

of target API lists [15, 19, 23] and may not always be fully updated in the API version,

resulting in the failure to detect the execution of sensitive behavior.

Not anti-emulator means that the evasion candidate is not designed to detect the emu-

lator environment, and may simply perform different functions based on the configuration

or state of the phone. It is possible to occur on both physical devices and emulators, but

may be wrongly classified due to insufficient statistical quantity or coincidence. Some

differences in behavior may occur due to the differences in display or current settings on

the two devices, but the true cause may have nothing to do with the emulator environment.
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For example, the Samsung phone used in the experiment cannot be fully simulated by the

commonly used emulator on the market, and the difference in behavior may not be due

to emulator detection. In addition, sometimes the program’s function itself must perform

different functions based on the specific environmental state, such as the state of a thread

synchronization lock or the arrival of network packet contents, which may cause differ-

ences in branch results in dynamic analysis. These checks on the environment that do not

determine the existence of an emulator are called Neutral Environmental Checks.

Unknown means that it is not possible to determine whether it is related to evasion

at the moment, and the cause of the difference in execution may be based on the value

of certain class variables or static variables, or the parameters of the method. In the vast

majority of cases where app code is obfuscated, it is often not possible to simply analyze

the method through static analysis and deduce the values of variables and parameters. In

such cases, we can only rely on dynamic analysis to understand the function of the method

and the cause of the behavior divergence. There are many such cases in the experimental

results, and it is difficult to accurately classify them.

7.5 Cause of Anti-Emulator FPs: UI/Phone Style Differ-

enceAndNeutral Environmental ChecksAndUnknowns

In the process of manually reviewing the output of the model, it was discovered that

a small number of sensitive evasions may not have been intended to be used for emula-

tor detection. It is possible that the same ”Not anti-emulator” or ”Unknown” situations

described earlier may also occur. The reason for the presence of such situations in sensi-

tive evasions may be that the sensitive behavior list includes some neutral APIs, causing
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SADroid to classify it as a sensitive evasion, but it may not necessarily be an action to

detect an emulator. To further filter out these potential false positives from the output

of sensitive evasions, one feasible approach is to test the same evasion candidates with

more physical mobile devices and emulators, and to conduct experiments using a larger

number of devices to determine whether each case will indeed result in differences be-

tween physical devices and emulators. However, this would lead to a substantial increase

in experimental costs.

To further filter out potential false positives from the output of sensitive evasions, a

feasible approach is to test the same evasion candidates on a larger number of physical

devices and emulators to demonstrate that each case actually causes a difference between

physical devices and emulators. However, this increases the exponential cost of the ex-

periment.

7.6 Limitations - Code Coverage / Not Supported Apps

Overall, while SADroid is able to address the main issues of traditional static and

dynamic approaches, both false positives and false negatives still have some difficult-

to-completely-resolved cases, some of which can be further refined and others that are

limitations of the methodology or tool.

Regarding the dynamic analysis component, SADroid uses automated droidbot to

test and does not provide much human guidance. The primary concern with this dynamic

analysis approach is whether it is possible to reach the location of the evasion. In previous

experiments, anti-emulator code that was reached was able to fully distinguish between

physical devices and emulator environments during dynamic execution, but was unable
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to do so for unreached locations. This problem is more pronounced for apps that require

heavy user interaction, such as games or those requiring login. This issue is reserved for

future work, and can potentially be addressed by replacing droidbot or further customizing

it to increase its exploration ability, or by using a target input generator process to try to

trigger more areas that need analysis.

During the dynamic analysis experiments, it was also observed that some apps pro-

duced very few log lines, partly because there are many apps that require heavy user in-

teraction to function properly, including registration, login, and filling out forms. These

types of apps are very difficult to understand through automated analysis.

Dynamic analysis using the Droidbot open-source project utilizes the minicap tool,

which only supports Android API 30 (Android 11). Subsequently, if you want to run it

on a current version of Android, you will need to use a different tool. Additionally, the

current testing environment is on an x86 PC, which makes it difficult to run an ARM-

based emulator. This means that about 5% of apps that cannot run on an x86 emulator are

currently excluded. Similar limitations with the tools used can also cause some apps to be

unable to be analyzed by SADroid.

In static analysis, the full automation required inevitably sacrifices some success rate

due to syntax limitations in the bytecode. For instance, the switch-case multiple branch

syntax is currently not supported. This is because the position of code jumps after bytecode

instrumentation is not easily calculated based on the offset in the bytecode, making it more

difficult to inject code.

In addition, SADroid’s dynamic analysis relies on static analysis and modification of

the bytecode to be successfully executed. As a result, APKs that have been obfuscated or

52

http://dx.doi.org/10.6342/NTU202303088


doi:10.6342/NTU202303088

tampered with, as well as those with all functions hidden in native code, cannot be directly

analyzed using SADroid and require other countermeasures that are outside the scope of

this research.

Due to these inherent limitations of the SADroid method, as well as implementation

challenges, it may be unable to analyze some cases andmay cause unknown false negatives

(FN). In theory, we cannot guarantee complete analysis and confirmation of a specific

result for any program, so we cannot actually calculate the rate of FN, which is a common

limitation of code analysis.
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Chapter 8 Future Work

In the dynamic analysis part, it would be worthwhile to investigate whether using a

different dynamic analysis engine can effectively increase code coverage. For example,

fastbot, recently released byBytedance, claims to significantly outperform older tools such

as droidbot and monkey in terms of analysis results. For input screens that automated

testing cannot pass, we can try combining manual input or further reversing to bypass

these difficult screens and directly reach the core functions.

In the static part, We consider it is essential to have a deeper understanding of the

Dalvik bytecode syntax and the syntax compiled by the Smali tool, and there may still be

opportunities to find an implementation that is both more complete and less modifying.

Currently, SADroid does not fully support all Dalvik bytecode and dex syntax, so we

can seek a more stable and accurate insertion modification algorithm to try to avoid the

possibility of log analysis errors. In general, there is still a lot of room for improvement

in the static analysis part.

Currently, the number of apps and the average size of apps in the TriggerZoo dataset

are relatively small (about 3-15KB). A key to scalability to larger datasets is still perfor-

mance. Both bytecode instrumentation and UI fuzzing have a lot of room for optimization,

and this will inevitably be a challenge if we want to apply SADroid to a larger dataset of
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apps in the future.
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Chapter 9 Conclusion

In the research of malware, various evasions are a major obstacle for reverse ana-

lysts. In order to assist them in better understanding the behavior of malware, we attempt

to develop an approach for anti-emulator-based evasion to provide new insights into ana-

lyzing these heavily protected programs. We propose the SADroid model, which quickly

analyzes APK files and outputs evasion candidates and sensitive evasions found in the

code to facilitate further research by reverse analysts.

To achieve the goal of comprehensive and detailed monitoring of program execution

while not affecting the system, SADroid uses a static-aided dynamic analysis approach.

By deeply understanding the syntax of dalvik/smali bytecode and addressing the output

issues that must be faced in dynamic analysis, it aims to find emulator detection that is tra-

ditionally difficult to discover and locate. To the best of our knowledge, the completeness

of the bytecode instrumentation function is a trade-off with the complexity of its modifi-

cation, and the more modification there is, the greater the side effects, resulting in a higher

probability of the rewritten app crashing directly. Currently, there are no known concise

and efficient bytecode instrumentation algorithms, making some concessions in both areas

seems to be more practical.

In the experimental results, we also noticed that the types of evasion found by this

57

http://dx.doi.org/10.6342/NTU202303088


doi:10.6342/NTU202303088

approach differ somewhat from those found by traditional mainstream static mechanisms.

For research problems like this, there is no perfect solution that covers everything. As

an analyst, you will need to use different analysis designs to deal with apps with differ-

ent protection measures, and different designs can each have their own advantages and

disadvantages, complementing each other.
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