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ABSTRACT

This Dissertation is the outcomes of a research project aiming at developing
multi-processor System-on-Chip (SoC) architecture for embedded multimedia
systems. Since its inception a decade ago, SoC has captured the attentions of
application specific integrated circuit (ASIC) design houses, computer aided design
(CAD) companies, and embedded system developers. In particular, the immense
popularity of killer multimedia gadgets, such as the iPod and smart phone, has fueled
unprecedented interests in developing new generation multimedia SoC systems.

We focused on the design of a novel SoC platform based on a PLX
Subword-Parallel Single Instruction Multiple Data (SWP-SIMD) instruction set
architecture. Most of the materials included in this Dissertation are drawn from the
outcomes of our research project. Severa single-processor and multi-processor
micro-architectures are deeply studied and adapted to our design. However, the high
level of integration also brings great challenges to system designers. Hardware and
software are necessarily becoming convergent and must be fully concurrent design
endeavors. The system level hardware/software co-design and co-verification

methodologies are also discussed in this Dissertation.
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CHAPTER ONE
INTRODUCTION

In last decade, performance/area efficiency is the main concern in designing
chips, all commercial chips must have the highest performance and smallest area. As
semiconductor process geometries have shrunken into nanometer, more and more
gates can be integrated into a chip, thus logic area becomes less sensitive.

In 1965, Gordon Moore predicted that the number of transistors incorporated in
an 1C would increase twofold every year. This was really an amazing prediction that
proved to be more accurate than Moore had believed. In the past few decades, the
scale of I1C integration has been soaring high. It started from Small Scale Integration
(SSI) with around 100 transistors per 1C in 1960s, up to Very Large Scale Integration
(VLSI) accommodating more than 10,000 transistors per |C in 1980s. Thereisno sign
that such tendency would ever cease. In recent years, the integration scale has only
slightly slowed down to a factor of two for every eighteen months. The outburst of IC
complexity, as predicted by Moore's Law, is driving the current semiconductor
industry to challenge another cutting edge revolution: System-on-Chip (SoC) with the
capacity of integrating more transistors in a single chip to form an entire electronic
system. This concept is feasible thanks to the very exceptional manufacturing
advances that bring IC nanotechnology to fruition. As Moore's Law continues
unencumbered into the nanometer era, process geometries have shrunken to 65 nm,
chips are reaching the giga-gate scale. A normal 32-bit multiplier may contain 8,000
gates. Adding computation components into an SoC will not increase the chip areatoo
much.

In SoC era, energy consumption and time-in-market/time-to-market become new

concerns. SoC used in portable handheld consumer electronic products is more and



more popular. For handheld devices, battery endurance is an important parameter.
Time-in-market is also as important as time-to-market. Any new chip production
needs to pay a very high non-returnable engineering (NRE) cost even if thereis only
a little modification from the previous version. By the same reason, we wish that the
chip can sustain longer and re-useable for more applications. For example, in IP-based
4G wireless communication, we would like to design a chip used for both WIMAX
(Worldwide Interoperability for Microwave Access) and LTE (Long Term Evolution),
while these standards are not well-defined. The key to applying a single integrated
circuit to multiple applications for both time-to-market and time-in-market is
programmability.

An application specific instruction-set processor (ASIP) is a
software-programmable processing-element tailored for this purpose. It provides an
efficient and economic way for a particular application computation. An ASIP may
add some multimedia operations or encryption operations into its instruction-set to
improve performance with low cost-overhead.

Traditional hardware-software partitioning is smply as: critica functions
performed by specific hardware and control-oriented functions by software. Here
specific hardware is defined as an application specific integrated circuit (ASIC)
which is a special design dedicated for an application, and software means running a
code on a general purpose processor. In the last century, most embedded systems need
specific hardware to process multimedia applications, with the constraint of power
consumption or performance. In general, specific hardware is more power-efficient
than software for an application with the same performance. But specific hardware is
less flexible to adapt to new features.

To compete with the performance of ASIC, many parallelization techniques are
adapted into ASIP. These techniques include data level parallelism (DLP) in asingle
instruction multiple data (SIMD) processor, instruction level parallelism (ILP) in a
very large instruction word (VLIW) processor, thread level parallelism (TLP) in a

multi-threading processor. Armed with these parallelism mechanisms, multi-processor



system-on-chip (MPSoC) becomes more and more feasible and popular in portable
handheld consumer electronic products.

Therefore, a specialized parallel compiler becomes more important to optimize
an application on a specific multi-core processor. This kind of paralel compiler has
not only to translate high-level programming language instructions into the target
ASIP codes, but also to schedule these instructions to exploit the parallelization
capability of that ASIP,

Software needs to run on its target processor. While processor and compiler are
designing, software is unable to design until a prototype was developed. Without
verification by software, the processor is not guaranteed to meet system constraints,
thus the ASIP needs to be re-designed many times. To reduce the long cycle, both
developing software as early as possible and evaluating system constraints at a higher
system level become very important.

Electronic system-level (ESL) design methodology has been introduced to
decrease design cost and design time for |large scale SoCs. Two methodologies had
been introduced to implement an ESL design, a bottom-up process and a top-down
process [1][2].

The top-down process begins from specification. It automatically decomposes a
specification into hardware and software under cost, power and performance
constraints. In this process, a system is described at a high abstraction layer by an
architecture description language (ADL). Such a processor described in ADL can
easily change its instruction set, pipeline stage, register file size, and issue width. The
C compiler, instruction set simulator, and synthesizable RTL code can be generated
automatically. The algorithm that should be processed by a dedicated hardware to
satisfy performance requirement must be translated into RTL code by high level
synthesis (HLS) technique.

In a bottom-up process, the fundamental building blocks of an SoC are
intellectual property (IP) cores, which are reusable hardware blocks designed to

perform the particular task regarded in a given component. An IP core could either be



a programmable component like a processor such as ARM or MIPS, or a hardware
entity with fixed behavior like an MPEG accelerator. Different IP cores are
interconnected on an SoC by a communication structure, such as a shared bus or a
network-on-chip (NoC), in order to establish communication among them. IP reuse is
the main challenge in a bottom-up process. A reusable IP can be obtained from the
third-party 1P provider. While every IP provider has alarge amount of in-house IPs, it
is difficult to integrate IPs from different providers without a standard. Typically 1P
providers would not release their RTL design. The time spent to identify a third-party
IP and integrate it into the designed system places this approach at an unfavorable
position compared to designing the IP in-house. A higher level Transaction Level
Modeling (TLM) description is more feasible for |P providers to protect their design.

TLM is the current promotion methodology used for hardware/software
co-design before and after hardware/software partitioning. Before partitioning, TLM
could be used to create a point-to-point, addressless functional yet concurrent system
model, reusing IP behaviors from application engineers. After partitioning, TLM
automatically wraps the behavior in the address-mapped TLM model for embedded
software functional verification.

PLX [3], developed by Professor Ruby Lee at Princeton University, is a native
subword-parallel single instruction multiple data (SWP-SIMD) instruction set
architecture (ISA) [4] that supports high-performance, low-cost multimedia
information processing, 3-D graphical processing and permutation instructions for
security operations.

This Dissertation intends to discuss many of the above mentioned
hardware-software codesign issues that we encountered in designing a PLX-based
embedded multimedia SoC platform. The contents are organized as follows. Chapter 2
introduces techniques in designing ASIP. Chapter 3 describes the system level design
and verification. Chapter 4 introduces software parallelization techniques specifically

tailored for PLX. Finally, aconclusion isdrawn in Chapter 5.



CHAPTER TWO
ASIPDESIGN

Today's growth in markets for consumer electronics, wireless electronics, and
hand-held devices requires cost-efficient solutions that supply high performance
computing, energy efficiency, and programmability. General-purpose processors are
poorly suited to meet the requirements of energy efficiency and competitive cost.
ASICs are unable to provide sufficient programmability. As a result, a variety of
Application Specific Instruction-set Processors (ASIP) is emerging to meet the
requirement.

General-purpose processors are the ones used in desktop PCs and servers.
Development tools for desktop processor are popular, and there are millions of
software devel oped for desktop processor. Thus, using general-purpose processor can
reduce time-to-market. But this solution is not optimized on some critical metrics
including performance, cost, power, and size. Many embedded multimedia systems
are handheld systems, such as MP3 players, PDAs and 3G phones. A single
general-purpose processor is unable to handle real-time functions such as
communication, camera, video, audio, touch screen, TV, and GPS in time, or it will
consume too much power.

Many embedded processors have worse performance on general applications, but
have much better performance on some specific applications than the general -purpose
processors. The well-known examples are digital signal processor (DSP) and network
Processor.

Embedded system devices normally embody the functionality they implemented.
In other words, they are designed to run a few codes with a predictable pattern. In

contrast, applications of a general-purpose system are known in advance. A traditional



embedded system design flow is to select a pre-designed platform from |P provider
which may satisfy power/performance constraint, then to spend most of the effort on
developing software for this system.

We had designed two processors tailor for multimedia application. The first
processor PLX utilizes subword-parallel instruction set architecture (ISA) to improve
multimedia application performance. The second version PLX2 improves
energy-delay-area efficiency by including Very Long Instruction Word (VLIW) and
Simultaneous Multi-Threading (SMT) techniques.

2.1 PLX Processor Design

In a RISC processor, al operation execution should complete in one cycle.
Complex operation will increase critical path thus reduce clock rate. In deciding the
instruction set architecture, we prefer the operations which can improve multimedia
application performance without reducing clock rate. By this constraint, we
implement  subword-parallel  single-instruction-multiple-data  (SWP-SIMD),

fixed-point, permutation, and saturation arithmetic operationsinto PLX ISA.

21.1SWP-SIMD

Supercomputer with vector processor was developed in the 1960s to increase the
scientific computation speed. Since scientific program codes contain many
one-dimensional vector and two-dimensional matrix operations, using a vector
processor can perform these operations simultaneously to improve performance. A
vector processor is aso called a single-instruction multiple-data (SIMD) machine
because it can apply one instruction on many data elements. Such kind of parallelism
is often called data level parallelism (DLP).

Multimedia applications mostly perform low-precision data, such as 16-bit audio
samples and 8-bit video pixels. Today the ALU word size in a processor is mostly
sixty-four bits. It is a waste to compute 16-bit data using a 64-bit ALU. If the 64-bit
ALU can compute four 16-bit data simultaneoudly, its throughput will be higher. A

processor owing an instruction set architecture (ISA) with this feature is caled a



subword-parallel single instruction multiple data (SWP-SIMD) processor [3]. It
works as an SIMD vector machine, but performs in a single register. Many
low-precision data are packed into a superword which occupies a register, and each
element is called subword which only occupies part of aregister. This feature is also
called multimedia extension for it is specified for multimedia applications. MAX-1 is
the first SWP-SIMD ISA for HP PA-RISC processor [4], introduced in January 1994.

PLX [5] is an SWP-SIMD ISA developed by Professor Ruby Lee at Princeton
University. The main feature of PLX is that it is native to SWP-SIMD. Its vector
function unit supports 8/16/32/64 subword widths, and its scalar function unit is just
the 64-bit subword subset in a vector unit. A typical multimedia code contains many
scalar operations, such as loop counter or memory index, which disable vector
pipeline to execute smoothly. A native SWP-SIMD can execute scalar and vector
operations in the same core to reduce scalar-vector communication overhead.

Power-aware is a benefit obtained from the SWP-SIMD feature. The term
power-aware is often ascribed to any system which design has been sensitive to
energy consideration; its connotation in recent work has been shown in [6]:

() The system allows its clients to adjust the expected quality and also the

tolerable latency/throughput constraints.

(2 When such adjustments are made, the energy consumption is expected
to vary accordingly, i.e., higher energy dissipation is tolerated by clients
for higher quality (or lower latency) and vice-versa.

There are many topics on power/performance trade-offs. At the circuit level,
since the CMOS power consumption is proportional to voltage square, the core and
bus buffer supply voltages usually have to be reduced to save power. At the logic level,
gated clock when datapath is not working can reduce unnecessary logic switching
power. At the system level, the supply power of a non-active core can be turned off.
The disadvantage is its requiring a long stable time to turn on again, which may cause
real-time request failure. At the algorithm level, datapath width adjustment can get the

most power budget. For example, if a program performing only 8-bit operations with



avalue range of -128 to +127 isimplemented in a 32-bit ALU, the register switching
of bits 8 to 31 are meaningless and the power is thus wasted.

Most applications contain variables of different widths. An MPEG-2 video
decoder [7], for example, contains fifty 1-bit Boolean variables, nine 8-bit char
variables, thirty-nine 16-bits short variables, seventeen 24-bit variables, and
eighty-two 32-bit variables. If implemented in a 16-bit datapath, the 24-bit and 32-bit
operations cannot be completed in one cycle and the performance will be degraded,
but the power spent on fewer bit operations is saved by the reduction of meaningless
switching. This example showed that when the datapath width is larger than 28 bits,
the performance increases little, but the power and area are still increased linearly, so
the best power-efficient design occurs at 28 bits.

Most processor-based system design is unable to change the datapath width, or
they need to change instruction set architecture to adjust datapath width [8], which
needs extra cost for decoding the second instruction set. PLX’s native
subword-parallelism design extends the flexibility to change datapath width during
software execution, which can improve the computation power efficiency.

Figure 2-1 demonstrates the subword parallel processing concept of PLX
instruction padd Rd, Rs1, Rs2. Eight 8-bit data are packed into one 64-bit word.
They are processed by one padd instruction, taking only one cycle. With the
appropriate subword boundaries, this technique results in the parallel processing of
subwords. The degree of paralelism is within an instruction and depends upon the

size of the subword.
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Figure 2-1. Subword-parallel execution.




Figure 2-2 shows a logic level power-aware concept. Figure 2-2(a) is a 4-bit
pipelined adder. The maximum delay (T) is two haf-adder delays at stage 4. The
highest performance is 1/T operations per second. When the system requires only half
of the performance, the clock frequency can reduce to 1/2T, and the power
consumption is aso reduced to half. Now the clock cycle 2T is much larger than the
maximum delay, T. Figure 2-2(b) changes the pipeline registers of Stage 1 and Stage 3
into buffers, the critical path delay is one full-adder plus two half-adders plus register
setup time, it is alittle lower than 2T. The combinational logic propagation power is
increased because it is more complex, but register power is reduced. Using
well-designed combinational logic, the total power consumption can be reduced
greatly. Figure 2-2(c) extends the adder to support subword parallel. Compared to
Figure 2-2(a), it uses 4 extra adders, but can compute four 1-bit additions in one stage,
two 2-bit additions in two stages, or one 4-bit addition in 4 stages. When data
precision islow, higher stages can be gated to save power.

Adjusting the pipeline structure dynamically will increase the complexity of data
dependence detection. An instruction is dependent to previous instruction needs
bypass logic to forward result as described in Section 2.3.3. On a dynamic pipeline
architecture, the bypass logic becomes complex. An aternate power-aware circuit
implementation for SMT is described in Section 2.3.5. In SMT, bypass logic is not

needed, thus no extra power waste on bypass logic.
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Figure 2-2. Power-aware reconfigurable pipelined adder.
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Another subword-parallel ALU design is for high-performance purposes. Figure
2-3 shows a 64-bit wide carry-select adder structure, where al the subword 8-bit
adders are designed to complete an addition in one clock cycle. At the beginning, two
pairs of 8-bit subword additions are computed in each 8-bit ALU, one with a carry-in
of 0 and the other with a carry-in of 1. Then these two obtained results are
respectively stored in the two registers waiting for the select control signal to select
one addition result to output. In such way, we can have eight 8-bit precision addition
operations done in one cycle. For a 16-bit precision addition, the four multiplexer
control signals“16” are high and the other “32” and “64” control signals are low, such
that the carry-out of an even byte can pass through the multiplexer and serve as the
select control signal to select the result of an odd byte, we can thus have four 16-bit
subword addition results generated at one clock cycle. For a 64-bit precision addition,
al the multiplexer control signals are high, and we can have one 64-bit full-word
addition result generated, which datapath delay is the longest, equal to the delay of
one 8-bit adder plus those of the fourteen multiplexers. In such design, all instructions

are required to be completed in one cycle, making the pipeline control simpler.

A7 B7 A6 B6 A5 B5 A4 B4 A3 B3 A2 B2 Al B1 A0 BO

Figure 2-3. High-performance subword-parallel adder.
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2.1.2 Fixed Point

Most scientific algorithms such as object rotation require floating-point
operations. To implement floating-point operations by integer instructions is too slow
for them. Thus, scientific requirement drives processor to integrate floating-point
instructions.

Due to the limitations of human eye and ear sensitivity, some precision |0ss on
image pixels and audio samples is acceptable. For example in a DCT agorithm, using
12-hit fixed-point to represent a cosine value is good enough for most image quality
requirements. Floating-point hardware is more complex than fixed-point hardware.
For cost and power efficiency, most multimedia applications use fixed-point
operations. Fixed-point operation is combination of integer arithmetic operation and
a shift operation. In typical integer operations, most-significant bits (MSB) are
truncated when the result is overflow. The following shift operation for fixed-point
cannot recover this error. For example, assume that a 32-bit fixed-point has a 16-bit
decima part and a 16-bit integer part, where a value 1.502 is represented as
0x00018083. The multiplication result 1. 502x1. 502=2. 256=0x00024189,
By integer multiplication, 0x00018083x0x00018083 will be truncated into
0x41894309 due to the 32-bit limitation. Thus right shift the last 16 bits will derive
a wrong result 0x00004189. To avoid overflow, we can right shift 8 bits on the two
multiplicands before multiplication; the result will be 0x000180x0x000180
=0x00024000. This result has 2.6% loss in precision, which is not acceptable. A
better solution is to right shift on the 64-bit multiplication result before writing it into
aregister file. It needs a specific instruction (mulshrl6) which adds a shifter after the

multiplier.

2.1.3 Permutation
Permutation operations are widely used in many agorithms. Datatype
conversion is the basic permutation operation in many processors. Symmetric-key

cryptographic algorithms such as DES and AES are based on complex permutation.
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RGB components are mixed in video samples. Permutation in hardware is just a wire
routing, but it is costly in software. To permute a data typically needs many shift and
and/or operations.

On subword-parallel execution, moving of neighbor elements in packed register
becomes a special type of permutation. For example in FFT, data should be reordered
into butterfly sequences before next iteration, which becomes a permutation operation
on a packed register. Thus permutation becomes more critical, it is better to offer
abundant permutation instructions to reduce software effort. Each permutation
instruction can be implemented by using multiplexers in an ALU which cost is much

lower.

2.1.4 Saturation Arithmetic

Saturation arithmetic is useful for multimedia applications. When two image
pixels or audio samples are mixed, their intensions are added. By typical integer
addition, mixed white pixel will become light gray when its most significant bit (M SB)
is truncated. To avoid the wrong result, software should keep the mixed intension as a
maximum white value when overflow occurs. This function is called saturation
arithmetic described as in the following code

i f (a+b>255) y=255;
el se y=a+b;

Conditional branch is an inefficient operation on RISC processor. It causes
pipeline refill that wastes many cycles. While saturation arithmetic should apply on
all pixels during image processing, it is better to offer specific saturation instructions

to improve efficiency in multimedia applications.

2.1.5 Critical Path Analysis
Figure 2-4 shows our designed PLX chip architecture. It is a 5-stage pipelined
RISC design. The IFETCH stage gets instruction from ICACHE and handles interrupt.

The DECODE stage extracts operand register addresses froman instruction word. The
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OPFETCH stage gets operands from the register file. The EXECUTION stage

contains two units, ALU and Load/Store. The WRITE stage writes execution results

into the register file.

OPEETCH
DECODE | iconst
[Rsl [ Rs2 src2 a
[ Pd Rd :__
const il Esrcl [EE L]
Interrupt Load * Reg
IFETCH Stor¢  ALU File
[PC ] Ibuf
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cPS WRITE
. PSR
tag tag L4 RAM
RAM ) | Iret |
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PCI BUS
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Figure 2-4. PL X chip architecture.
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On RISC architecture, operations in the execution stage should complete in one
cycle. Figure 2-5 shows the area and speed trad-off in some components designed
using TSMC 0.18 ym standard cells. Each curve represents a component designed in
various structures such as carry-look-ahead or carry-select. The simdmul32 is the
critical path, its minimum delay is 5.45ns. This path performs 32-bit multiplication
and right shift for fixed-point, thus its delay is larger than a 32-bit multiplication. In
multimedia applications, most algorithms only use 16-bit multiplication. The 32-bit
multiplication is used at rate-distortion computation and some high level protocols,
which are not critical for performance. To reduce critica path delay, we only
implement a 16-bit multiplier, the new critical path delay is 2.93ns on ssmdmul 16.

In Figure 2-5, we can see the area of simdmul16 and cache at 3.71ns is much
lower than that at 2.93ns. For performance/area tradeoff, we implement the PLX chip
at 260MHz speed.

The second critical path is in cache. A cache-hit load has 4 jobs to do: (1)
generate memory address from the operand register, (2) get cache row address from
the tag array, (3) get cache content from RAM, and (4) write content into register file.
On a single-cycle RISC processor, only 2 cycles (EXECUTION and WRITE stages)
are available for these 4 jobs. Jobs (1) and (2) should be combined. A fast 32-bit adder
in Load/Store unit adds address base from operand src2 and address offset from
instruction const field. The generated memory address is directly sent to tag without
using buffer. The path delay is 2.9ns in a 32-bit adder plus tag lookup latency. The fast
32-bit carry-look-ahead adder takes 1.12ns, and tag lookup takes 1.78ns. In designing
PL X2, this path delay should be cut by SMT to execute at 520MHz.

2.2 Implementation of ME on PL X

In video encoding, motion estimation (ME) occupies more than 70%
computation. This section utilizes PLX |SA to improve ME performance.
H.264 advanced video coding (AVC) isthe state of the art video coding standard.

The sum-of-absolute-difference (SAD) is a criterion used in block-based matching
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motion estimation algorithms to gauge the similarity between a given macroblock in
the current frame and corresponding macroblock in a reconstructed reference frame.
The displacement between these two macroblocks is a candidate motion vector. For a

KxL macroblock, one has

K-1L-1

SAD(m,n) = > > |C(i,j)-R(@i +m, j +n)|
i=0 j=0
where C(i, ) is the luminance value of a current frame pixel and R(i, j) is the
luminance value of a reference frame pixel. Argument (m,n) is the displacement
between these two blocks. The motion vector (MV) is defined as the displacement that
yields the minimum SAD value:
MV =arg min  SAD(m,n),

(m,n)0searchrange

where the search range is a neighboring region in the reference frame(s) where the
motion vector is to be found. For a ClF-size video frame, a search range of 16 is
mostly used. By a full search strategy, the maximum number of displacements that
must be evaluated will be 16°=256.

In H.264, the 16x16 macroblock can be partitioned into 16x8, 8x16 sub-blocks,
or 8x8 sub-blocks to improve the quality of motion estimation at the expense of
additional computation and motion vectors. In fact, if the 8x8 block size is selected,
each 8x8 block may further be decomposed into 4x8 or 8x4, or 4x4 sub-blocks.
Hence, the number of MV's per macroblock ranges from 1 MV for the entire 16x16
macro-block, up to 16 MVs, each for a 4x4 sub-block. In all, 41 MVs need to be
evaluated, from which a specific sub-block partition will be chosen as the optimal set
of motion vectors by solving a rate-distortion optimization problem.

Instead of using a full search algorithm that may consume excessive CPU cycles
without yielding significant performance benefit, we implemented a Modified Spiral
Search (MSS) [9] algorithm, where the search starts from the center of the search

region and moves outward in a spira-like order. If the distortion of a point is greater
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than a threshold, the next few points are skipped. In al, the number of skipped search
points is proportional to the distortion and displacement. A high-level implementation
of the MSS algorithm is given in Code 2-1.

To implement the M'SS motion estimation algorithm using PLX I1SA, our strategy
is to exploit the SIMD sub-word parallel instructions to reduce execution cycles of
Steps d, e, and f in Code 2-1. Assume that both the 16x16 macroblocks in the current
frame and in the reference frame respectively have been loaded into an on-chip data
memory in a row-major ordering. As such, an entire 1x16 row of pixels of either
macroblock can be loaded into the two 64-bit PLX register without incurring any
overhead. Then the 4x4 SAD calculation (Sep d) can be performed efficiently using

the sub-word parallel instructions.

Code 2-1. Modified spiral search algorithm.

Set 41 m ninmum SAD values to infinity;
Set 41 notion vectors to (0,0);
k=0;
whi | e( k<(sear chrangexsear chrange)) begin
get displacenent (mn) from |l ookup table;
set current franme address pointer to (0,0);
set reference frane address pointer to (mn);
cal cul ate SAD of 16 4x4 partitions;
cal cul ate SAD of other 25 partitions;
conpare 41 SAD with the m ni mum SAD, and
repl ace m ni mum SAD and notion vectors;
g. k+=step(SAD, m n);
end while
Sel ect the set of npbtion vector(s) according to sone
rate-distortion criterion.

_"('DO_OUQJ

While two 8-bit values are subtracted, the result precision is 9-bit, which
becomes overflow on an 8-bit scalar operation unit. The loaded pixels should be
extended into 16-bit by using double registers, where computation is doubled.

Motion estimation is a losable agorithm. We care about which MV has a

minimum SAD, but the SAD value itself is not important. PLX saturation arithmetic
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instruction is useful to reduce SAD computation. Assume that the minimal SAD value
isless than 255, then saturating the other non-minimal SADs into 255 will not change
the MV search result. The MV search will miss only when the minimal SAD is greater
than 255, which means no similar macroblock is found, and a bad macroblock is
chosen for reference.
The modified SAD operation using saturation arithmetic becomes:
SAD (M 1) =" sat (Y sat (C(i, )~ RGi+m,  + ) )

i=0 i=0
Figure 2-6 shows the process to compute 16 4x4 SADs. The basic routine is to

compute 16 4x1 subresultsin parallel. This routine takes 8 load, 4 saturation substract
(psubs), 4 absolute (abs), and 3 saturation addition instructions, and the results are
saved in a 64-bit register. This routine executes 8 times to compute al the 64 4x1
subresults. These subresults are arranged as a 4x16 matrix in 8 registers. Then the
matrix is transposed for computing the 4x4 SADs. The matrix transposition takes 16
PLX permutation instructions. The 4x4 summation takes 6 instructions. Thus Step d
of Code 2-1 takes 174 cycles. Thisresult is 7.2 times faster than scalar operation, and

3.2 times faster than the process without using saturation arithmetic instruction.

cur0
refO

curl

refl

EeE e e ([ [ [

s n ez [

R R R R R R R
WISIIIFIIIES,

Figure 2-6. SAD computation using PLX 1SA.
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The 16 4x4 SADs are stored in two 64-bit registers. Step e of Code 2-1 computes
the other 25 SADs, it totally takes 29 cycles by the following steps:
(1) Add every even and odd byte pair to get eight 8x4 SADs. Right shift 8-bit
in a 16-bit subword mode can parallelly generate odd bytes. This step takes
6 cycles.
(2) Add the first to fourth bytes with the fifth to eighth bytes in every 64-bit

register. The result isthe eight 4x8 SADs. This step takes 8 cycles.

(3) Add every even and odd word pair from the results in Step 2 to get four
8x8 SADs, pack them into one register. This step takes 6 cycles.

(4) Add every even and odd 16-bit subword pair of from the resultsin Step 3 to
get two 16x8 SADSs. This step takes 2 cycles.

(5) Add first two 16-bit subwords with the last two 16-bit subwords to get two
8x16 SADs, pack the results in Step 4 into one register. This step takes 5
cycles..

(6) Add thetwo resultsin Step 4 to get a 16x16 SAD. This step takes 2 cycles.

The 41 SADs are stored in 9 registers. They are compared to the saved minimum
SAD to decide MV. If any one SAD islower than the saved minimum SAD, this new
value will replace the minimum SAD and the MV be updated. A parallel-compare
instruction is used for comparison. If the first operand is less than the second operand,
the result subword is set to -1 (all bit be 1) , otherwise it i's set to zero, as shown in the
following definition:

P[n]=(11[n]<I2[n])?-1:0, 0<n<subwordnumber

Parallel-replace is performed by the following operation:

A n]=(P[n] &new{ n] ) | (~P[n] &l d[ n]) , O<n<subword number

Each SAD register needs one compare, one inverse, 4 logical AND, and 2 logical
OR operations to update minimal SAD and MV. Step f of Code 2-1 takes 72 cycles.

Assume that the modified spiral search only searches 1/3 points, and Steps a, b, c,
and g take 20 cycles, the total number of motion estimation execution cycles in a
macroblock takes 256x(20+174+29+72)/3=25173 cycles. To process a ClF-size
(352x288) video, the frame rate in a 260MHz processor can be 260000000/
(25173x352%x288/16/16)=26 frames per second. To meet the 30-frames real-time
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constraint, we have to reduce the number of search points to 1/3.5, which will lower
image quality. In next section, we will use other parall€lization techniques to improve
performance.

Table 2-1 lists the PSNR (Peak Signal-to-Noise Ratio) of H.264 reconstructed
frames using 16-bit operation and 8-bit saturation operation on two sequences. The
sequence Sefan has fast moving, and sequence Weather has little moving. From the
results shown on the two sequences, the 8-bit saturation method is only a little bit
worse than the 16-bit method, but 8-bit method is much faster than 16-bit method.

That illustrates PLX I SA is useful to improve motion estimation performance.

Table 2-1. PSNRs of two SAD methods.

PSNR

Sefan

Weather

Frame

16bit

8hit-sat

16hit

8hit-sat

37.35942

37.35031

37.52711

37.52356

37.29617

37.28674

37.71939

37.71754

37.25709

37.23658

37.80259

37.80131

37.07474

37.07342

37.81671

37.81664

36.99427

36.99151

37.81785

37.81560

36.91317

36.91058

37.79967

37.79784

36.92029

36.88299

37.76962

37.76885

36.88774

36.87031

37.74985

37.74801

36.81931

36.80784

37.73409

37.72860

37.05802

37.04559

37.74854

37.74644

2.3 PLX2 Processor Design
On the implementation of video encoding in Section 2.2, we had encountered the
following problems:
(1) Power is wasted on 32-bit scalar operations. Except SIMD operations, a
multimedia application has so many 32-bit scalar operations to execute,
such as Huffman decoding in H.264. Using a 64-bit processor to perform

these 32-hit operations will waste power.
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(2) Clock rateis restricted by a single-cycle ALU. To improve clock rate, ALU
should be pipelined.

(3) Video sizeisrestricted by processor performance. To perform video with a
larger size, without increasing the clock rate, we need other parallelization
techniques to improve performance and energy efficiency.

(49) Memory stall is large. The performance analysis in last section does not
include memory stall, otherwise the actual frame rate is much lower.

We will describe how to utilize VLIW and SMT techniques to solve these

problemsin the following.

23.1MAConVLIW
In digital signal processing, multiply-accumulation (MAC) is the most often used
operation. A finite-impulse response (FIR) filter equation is represented as
N-1
Y =2 G XX,
i=0

On software implementation, each pair of ¢ and X. are multiplied and
accumulated into y;.. Some DSP processor such as TI TMS320C541 [10] implements
MAC with automatic looping and index increase, which can process above equation
as a single operation. Since MAC is composed of multiplication and addition
operations, it is always the longest path in an ALU. Clock rate is restricted by MAC
critical path, thusit isnot chosenin PLX ISA.

MAC critical path can be reduced in a VLIW processor. VLIW is a type of
instruction level paralelism (ILP) machine, which uses multiple ALUs to execute
multiple instructionsin one cycle. Instruction parallelism is determined by compiler.

On a 4-issue VLIW, FIR can be implemented as shown in Figure 2-7. When co
and x; are multiplied in ALU2 at time 1, ¢; and x..1 are loaded at the same time. The
four ALUs perform as a 3-stage pipelined ALU at this example. Thus, an N-stage

MAC operation just needs N+2 cycles to complete.
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time | ALUO ALU1 ALU2 ALU3
0 Load ¢y Load x;
Load c; Load ., | MUL (0)
Load ¢, Loadx., | MUL (1) | ADD (0)
MUL (2) | ADD (1)
ADD (2)
Figure 2-7. Execution of MAC on VLIW.

AW (N (P

InaVLIW processor, al ALUs only perform the basic instruction, thus the ALU
design can be as simple as a RISC. Complex special operations mus be handled in
software. The power efficiency of a VLIW is worser than the processor with a MAC

instruction, but it offersflexibility to implement special operations in software.

2.3.2 Reconfigurable VLIW/SIMD

In order to execute 32-bit operations on a 64-bit processor efficiently, we make a
specia two-issue design: an instruction-level reconfigurable VLIW/SIMD design.
Figure 2-8 shows this design, where the 64-bit ALU is partitioned into two 32-bit
ALUs, each controlled by a contral unit OPC. In order to let this design function well,

the instruction encoder and register file designs are modified.

. 31 30 2928 242322 1817 1312 87 21 0
Instruction
encoding "LHP@” ® M Rd ‘RSl ‘RSZ labop ‘9""
(@
IBUFF 32-bit RegF IBUFF 32-bit RegF
63 63 [
62 [ 62 |

~V=0,ILP=]] 61 61
V=0 60 | V=1 60
1 1
\( 0 1o
/
74 i R
VAY A3 2 B [
U
ALU L % 4+ ALU
| L |

2dO

I

(b) 32-bit VLIW configuration  (c) 64-bit SIMD configuration
Figure 2-8. Reconfigurable VLIW/SIMD design.




22

An ISSUE stage is inserted between the DECODE and OPFETCH stages. It
checks the V and ILP flags in an instruction word to decide how to dispatch control
signals to the two OPCs. The V flag indicates that this instruction is a 64-bit vector
operation; otherwise it is a 32-hit scalar operation. The ILP flag indicates that this
instruction is independent to the previous instruction, thus both can be executed in
parallel. This flag set by compiler helps the ISSUE stage to select instructions to form
a VLIW. Without this flag, the ISSUE stage has to check the dependence of
instructionsin instruction buffers by itself.

Dealing with 32-bit operations, the register file should be 32-bit wide. The
original 32-item 64-bit wide register file is reorganized into 64-item 32-bit wide, with
four read ports and two write ports.

On the 32-bit two-issue VLIW configuration, two instructions are dispatched into
two OPCs, as shown in Figure 2-8(b). The 5-bit operand field in an instruction word
is mapped to register file address bit 1 to bit 5, and register file address bit 0 is set by
V, thet hread bank flag.

On the SIMD configuration as shown in Figure 2-8(c), the two ALUs are
logically merged as a 64-bit element. The same instruction is dispatched to both OPCs
such that the two ALUs will perform the same operation as an SIMD processor does.
The even register port address bit 0 is set to 0, and odd register port address bit O is set
to 1, thus two neighboring 32-bit registers are combined as a 64-bit register to serve
the 64-bit operation.

All possible VLIW/SIMD configurations are listed in Table 2-2.



23

Table 2-2. VLIW/SIMD Configurations.

1%V (1% ILP 2" V2" |LP |thread| ALUO|AL U1 |EvenPort|OddPort
bank |OPC |OPC |addr b0 |addr bO

1 |X X X X 1 1% o 1

0 |X 0 |0 0 1% |NOP |0 No use

0 (X 0 |0 1 1% [NOP |1 No use

0 X 1 X 0 1% |NOP |0 No use

0 X 1 |X 1 1% |NOP |1 No use

0 X 0 N1 0 1% 2@ o 0

0 |X 0 1 1 1 M 1 1

2.3.3VLIW Limitation

VLIW processor implements dependence removal and operation scheduling by a
compiler. The hardware cost of implementing these two techniques in a superscalar
processor is high; it is not affordable for portable devices. Since operation
dependences can be determined in a program code, it can be optimized by a compiler
to save hardware cost. The disadvantage is that software needs re-compilation when
processor micro-architecture is changed. It is not acceptable for a general-purpose
desktop processor, but feasible for an embedded processor.

In designing VLIW processor, the overhead is on its register file size. As shown
in Figure 2-8, the register file port number is doubled. When the number of access
ports doubled, the routing areais squared as shown in Figure 2-9. That is, chip cost is
increased in both area and speed. As shown in Figure 2-5, the curve r egf 4r 2w
depicts the delay-area relation of the 64-item 32-bit wide, 4-read 2-write register file
used in PLX2. Its area is much larger than r egf 2r 1w, the 32-item 64-bit wide PLX

register file.
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(a) 2-Port

The bypass logic causes another overhead. On a pipelined RISC architecture,
ALU result is buffered in atemporal result register before it is written into the register
file. To avoid blocking on continuous read-after-write dependent instructions, bypass
logic is used to forward ALU result in a previous instruction to the ALU input port or
to the operand register in a current instruction. Figure 2-10 shows the bypass logic on
a 2-issue VLIW processor. Variables R2 used in S2 and R3 used in S3 were modified
in previous cycle, they should be forwarded from ALU result to ALU operand input
port. R1 used in S3 was modified two cycles before; it should be forwarded from
ALU result to operand register. Each ALU result needs to be forwarded to al ALU

input ports and operand registers. A large fan-out induces a long wire delay and thus

(&5

(b) 4-Port

Figure 2-9. Register file.

slows down the clock rate.

S1 loadiRl,1 zg/\ﬁadifRz,Z

S2 add R '3 | nop

S3 sub R4,RI'R3 | nop

S1 [iIF |pE| I1S| OP| EXWH]

S2 [IF |DE] 1S | OBYEX \WB|

S3 [IF [DE]| IS{ oP EX|wH]|
IF: Instruction Fetch OP: Operand fetch

DE: Decode EX: Execution

IS: Issue WB: Write back

Figure 2-10. Bypass path in a 2-issue VLIW.
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Control flow handling is more important for VLIW processor design. A control
flow induces a conditional branch, which may cause instruction stream change. On a
VLIW processor, when two ALUs generate different branches, which will be the next
instruction to execute?

A simple way is to avoid packing multiple branch operations in one cycle, but it
will degrade performance. The better solution is using predication execution, or
so-caled if-conversion. This technique changes control flow into data flow by
introducing a condition expression to be the third operand. Then the instruction
stream can be packed in one line. The implementation of predication requires extra
flags to store the comparison result, which will be passed to ALU as the third operand.

On a pipelining architecture, branch induces pipeline re-fill that wastes
computation power. On a VLIW processor, a pipeline stage contains many operations,
thus the waste becomes higher. On a high-performance processor, accurate branch
prediction hardware is necessary. On an embedded processor, simpler methods are
used to reduce hardware complexity.

A solution is using an unbundled branch technique, which is introduced in HP
PlayDoh architecture [11]. Unbundled means that the conpar e instruction and
br anch instruction are far away. It worksin away similar to delayed branch [12] but
not the same. Figure 2-11 shows this technique. Figure 2-11(a) is a traditional RISC
code. After the branch instruction S5 executed, S2 will also execute by delayed
branch, then pipeline is cleared and refilled by S6. Figure 2-11(b) is a code using
unbundled branch. At T=5, when the comparison operation in Sl is executed, and the
compared result is true, instruction fetch stage (IF) changes to fetch from S6. At T=5,
S5 is loaded in the IF stage, S6 address can be extracted from IF buffer by a simple
decoder. But note that many other pipeline stages in S2 to $4 are not cleared. They
should be independent instructions such that the pipeline can continue their
executions without wasting time. Then, when S5 reaches T=9, the program counter

(PC) isset for S6 execution without changing pipelines.



26

S1: CMP R1,R2,P1 S1: bool P1=(R1==R2)

S5: P1JMP  locl S2~S4: independent instructions
S2: ... S5: if (P1) PC=locl

locl: locl:

S6: ADD R3,R4,R5 @ S6: ADD R3,R4,R5 (b)

T= 1 2 34 5 6 7 8 9 10 11
S1 [IF |[DE] I1S| OP EXwB|
[IF [DE[ IS] OF ézx|WB|
[IF [DE| |SJ/0P| EX|wh|
[IF |DE| I1S| OP EX|WH|
[IF |DE] 1S | OP EX|WH|
fetch s\e‘IIF IDE | IS| oA EX|WB]|

8 4 8Y

Figure 2-11. Unbundled branch

2349MT

Threading is a way for a code to split itself into two or more concurrently (or
pseudo-simultaneously) running tasks. In general, a task spends much time on waiting
peripheral 1/0 response. Since peripheral 1/O communication is much slower than the
CPU speed, direct memory access (DMA) (is often used to handle peripheral 1/0
communication. When a CPU wishes to send a message to peripheral 1/0, it puts data
in memory and calls DMA to transfer the data. After transmission, DMA will generate
an interrupt to inform the CPU. During transmission, the CPU isidling.

Multitask OS improves CPU utilization by time-sharing. Assume that an OS has
picked atask to execute once. Sometimes, when this task iswaiting for 1/0, or when it
has been run for such a long time that a timer interrupt occurs, OS will pick another
thread to execute. By multi-tasking, 1/0 latency is overlapped with other tasks under
execution.

Context switch is an overhead for multi-tasking. When OS wishes to pick atask,
it should save the current task context into memory and load the new task context
from memory. The context contains register file, program status, and resource

configurations. A context switch needs hundreds of cycles.
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In real-time systems, some event requires fast response. For example on a
communication system with a 1Gbps bandwidth and a packet size of 1Kbit, the data
in buffer should be read in 1ys before next packet comes in. In time-sharing
multitasks, the time to wait OS switch context may exceed real-time constraint.
Smultaneous multi-threading (SMT) [13] can solve this problem by applying
hardware-supported thread level parallelism.

The origina SMT design was used to fill wide superscalar execution slots.
Superscalar execution slots are often wasted by a long dependent instruction stream
that exceeds its instruction buffer capacity. Instead of increasing instruction buffer
size, a more efficient way is to fetch instructions from many independent threads.
While a superscalar core can execute instructions out-of-order, mixed instructions
from different threads will not change the execution unit design. Intel
Hyper-Threading technique [14] is one example of commercial SMT implementation.

We implement SMT in another style. Figure 2-12 shows this concept, there are
four threads running in time-sharing, this'design can reduce ALU complexity. At the
IFETCH stage, four instruction| streams are kept alive simultaneously. Each
instruction stream possesses its own program counter. The ISSUE stage dispatches
VLIW instructions into ALU from one of available streams. If al streams are

available, they are dispatched in around-robin order.

SAL:ADDRLR21 SB1: SUBRILR122 || SCL:SUBRI1LR122 | SD1:LD R3Q,R31(2)
SA2: MUL R},Rl,R4 SB2: ADD R13R14,1 (| SC2:ADD R13R14,1 || SD2: ADD R32R30,1

T= 1 2 34 5 6 78 9 10 11 1213 14
SAL[IF [DE] IS [ oPEXIEX2WBH

sB1  [IF |DE] IS| OPEX1EX2WB|

SC1 [IF |[DE] IS] 0P|E>g/]1r£'x2|WB|

SD1 [IF [DE| IS] C(SP|EXJJE>‘42|WB|

SA2 [IF |DE] |\é~| 0P|Ex\‘_‘,|Ex2|WB|

SB2 [IF_|DE [ IS| oPEX1EX2WB]

sc2 [IF_|DE [ IS \OPEX1EX2WB]
SD2 [IF |DE|\|§| OPEX1EX2WB|

Figure 2-12. 4-thread time-sharing SMT execution.
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The time-sharing SMT implementation has three major benefits. (1) fast
real-time response, (2) higher clock rate, and (3) reduced memory access latency.

For an event which needs fast real-time response, a thread can be used to monitor
the event status, while other threads are performing the main computation. On a
4-thread SMT processor, the CPU utilization is 75%. An aggressive design can let this
monitor thread idle, and set it be woken up by a specified event without generating an
interrupt. The ISSUE stage will not dispatch instruction from idle thread, thus CPU
utilization can be 100% occupied by the other threads. When the event occurs, the
instruction next to idle is dispatched. While this instruction is aready in instruction
buffer, the response time is only one cycle.

In Figure 2-12, instruction SA2 uses variable R1 which was modified in SAL. In
single cycle RISC execution, SA1 result should be forwarded to SA2 by a bypass
logic as described in Figure 2-9. But since SA2 will use R1 at 4 cycles after SAl's
execution, the time is enough for R1 being written into register file, thus the bypass
logic is not needed, which saves wire delay and area. Moreover, ALU can be divided
into two pipeline stages. The 4-thread SMT now can'work as four logical processors,
each has a 4-cycle execution. The critical path from the operand fetch, the execution,
to the write back stages has 4 cycles to wait. Thus ALU is given two cycles for
execution, shown as the EX1 and EX2 stages in Figure 2-12. The multiplier can be
pipelined into two stages, thus improving clock rate. When more physical threads are
used, more complex operations such as MAC can be implemented without worrying
about the critical path delay.

Multi-cycle execution simplifies function unit design. A typical double-precision
floating-point function unit should be divided into four pipelining stages to balance its
critical path delay the same as an integer function unit. When a program is mixed with
integer and floating point instructions, integer function unit is often stalled to wait the
floating point be ready. When integer and floating function units have the same

pipeline stages, instruction scheduling becomes easier.
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Memory access latency can be hidden under multi-threaded execution. When a
cache-miss occurs, the thread enters idle. But the ISSUE stage can continue to
dispatch instructions from other threads. On a computation dominant case, memory
access latency can be fully overlapped. On the motion estimation example, the
memory bandwidth required for a CIF with arate of 30 frames per second is 6 MB/s.
The bandwidth of a 32-bit 266-MHz, 3-cycle latency, and 8-burst double data rate
(DDR) SDRAM is 304 MB/s. The required bandwidth is much lower than the

SDRAM bandwidth, thus the memory access latency can be fully hidden.

2.3.5 Power Efficiency Consideration

Combination of SMT and SWP-SIMD features, the ALU power can be reduced.
In micro-architecture view, a pipelined ALU is equivalent to two non-pipelined ALUs
working in an interleaving way. Figure 2-12 shows such two circuits.

Figure 2-13(a) shows a two-stage pipelined ALU. On designing a pipelined ALU,
it isdifficult to evenly dispatch a critical path delay into two parts, thus the clock rate
is unable to be doubled. Figure 2-13(b) shows atwo-ALU design, the left ALU works
in even time and the right one works in odd time. Each ALU uses two cycles for
execution, and the clock rate can be really doubled. On PLX, the ALU critical path is
on the 16-bit multiplier which restricts clock rate to 260MHz. Using the circuit as
shown in Figure 2-13(b), the clock rate can be speeded up to 520MHz,

Though the ALU area is doubled, it can be reduced. In multimedia applications,
80% of operations are 8- or 16-bit subword-parallel additions and comparisons. The
path delay of a 16-bit addition is lower than half of a 16-bit multiplication. As shown
in Figure 2-13(b), only low-precison addition/comparison operations are
implemented on the right ALU, which area occupies only 1/8 of the original ALU. At
the ISSUE stage, low-precision instructions are all dispatched to the right ALU, it
works as single-cycle ALU run at 520MHz. The left ALU is idle without consuming

power. Thisdesign is an alternate power-aware design compared to Figure 2-2.
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t=0,2,4 Redfile t=1,3,5
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'=0.5f
Result t=3,5,7
(a) Pipelined (b) Doubled non-pipaiined
Figure 2-13 Equivalent ALU micro-architecture.
2.3.6 PL X2 Performance

Figure 2-14 shows the PL X2 chip architecture. It uses two processor cores, each
is a 4-thread SMT, 2-issue VLIW design. In IFETCH, 4 threads of instructions are
read from ICACHE and saved in their own IBUFF. Each core contains 4 ALUS, two
smaler and two larger. The smaler ALU includes’ only 8- and 16-hbit
additions/comparisons that can be executed in asingle cycle. The larger ALU contains
multiplier that needs two cycles to execute. In DCACHE, tag search result is buffered
in row register to reduce cache-hit critical path latency. The two cores share their
ICACHE and DCACHE. Only the owner core can update the tag and RAM content,
but another core can lookup the tag and read content from RAM. The shared-cache

design reduces cache capacity requirement and simplifies cache coherence.
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Figure 2-14 PL X2 chip architecture

Table 2-3 lists the area of PLX and PLX2 components for comparison. The
designs use TSMC 0.18 ym standard cells. The DCACHE areais mainly occupied by
the tag array, and the data RAM areais not counted. Each of the 4 threads in IFETCH
has its own PC and a 4-item IBUFF. ALU is 32-bit in PLX2 and 64-bit in PLX. The
ALU in PLX2 does not use bypass logic, so it is haf smaller than the PLX ALU. The
register filein PLX2 uses double access ports, and its working speed is double of PLX,

and its areaislarger than the PLX register file.
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Table 2-3 Component areas of PLX and PLX2.

Component | PLX | N | PLX2 N | Component PLX [N |[PLX2 |N
(mm?) (mm?) (mm?) (mm?)
ICACHE |0.070 |1 | 0.070 2 | OPFETCH 0007 |1 |0.014 |2
DCACHE [0.140 |1 |0.140 2 | LoadStore 0.003 {1 |[0.003 |2
|IFETCH 0.013 |1 |0.054 2 | SmalALU - 0 |0.009 |4
Dec/lssue | 0.003 |1 | 0.005 2 | LargeALU 0146 |1 [0.063 |4
OPC 0.002 |1 |0.002 8 | RegFile 0212 |1 {0365 |2

Table 2-4 lists comparisons on the execution cycle, the current of some
algorithms, and the cost of PLX and PLX2. Current is obtained from FastSpice
simulation results. The external SDRAM, cache RAM and I/O pad are excluded in
current and area computation. PLX frequency is 260MHz and PLX2 is 520 MHz.

To compare efficiency, we use a cost function of energy-delay-area product. The
lower the cost the better the efficiency. The equation islisted as follows:

Executiondelay: t = cycles/freq (Miz)

Energy consumption: E = current (A) x1. 8(V) xt

Cost function = Ext xar ea

(cycl es? x areaxcurrent x1. 8)/freq?

The algorithm motion estimation (ME) on PLX2 implementation is partitioned
into 8 threads to fully utilize PLX2 dual-core resource, where each thread is used to
compute one search point.

The Huffman variable length decoding (VLD) is a 32-bit sequential algorithm,
which can be improved by VLIW. Motion compensation (MC) is a memory access
dominant algorithm with few computation. On PLX2, these two agorithms are
implemented as two threads of a core. The memory access latency of MC can be
overlapped with VLD computation.

The algorithm YUV reads an image in a' Y UV420 format from memory, converts
it into an RGB format, and writes it back to memory. It can be divided into 8 threads,

but the computation is not heavy enough to hide memory access latency.
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The algorithm FIR2 is a 2-D spatial image filter. By the cache capacity limitation,
many pixels should be loaded in groups many times. Using multi-threading can
reduce the memory access redundancy thus improve efficiency.

The agorithm RSA computes modular multiplication using Montgomery
algorithm [15] which only uses addition and shift operations. It is a sequentia
algorithm with heavy computation and no cache-miss. The 1024-bit addition uses 32
32-bit additions with carry propagation. On PLX2 without bypass logic, a dependent
addition hasto wait 3 cycles, thus the execution time is much longer than PLX.

On cost computation, the one-core area is used for ME, FIR2 and RSA. In
general, for an algorithm that can be parallelized by VLIW and SMT, and which
memory latency can be overlapped with computation, PLX2 has better efficiency. For

a sequential algorithm or memory dominant algorithm, PLX is better.

Table 2-4. Cost comparison.

Algorithm | PLX Current | Cost PLX2 Current | Cost
cycles (A) Cycles (A)

ME 9990684 | 0.042 | 6.653x107 | 4984254 |0.163 | 4.329x10’
VLD 9624 0.035 |5.255x10" | | 6324 0081 | 1.732x10"
MC 1820 0.021

YUV 382761 | 0.039 0.068x10"| 271341 | 0.131 | 1.031x10°
FIR2 38812 0.075 1.793x10° | 27168 0.143 | 5.642x10°
RSA 109568 | 0.038 7.240x10° | 404480 | 0.019 | 1.662x10*
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CHAPTER THREE
SYSTEM LEVEL DESIGN AND VERIFICATION

Dual-processor architecture is widely used in modern handheld embedded
systems such as smart phone. It typically contains a DSP to handle baseband and
image computation, and a 32-bit CPU to handle peripheral function blocks and
general-purpose processing. On a smart phone, many function blocks need processors
to handle: the Real-Time Clock (RTC) for scheduling; LCD Controllers for display;
Keyboard, Digitizer and Touch Panel Controllers for human interface input; Voice
Codec for speaker and microphone; Baseband Codec connected to a radio frequency
(RF) front-end for wireless communication; GPS for navigation; SD card interface for
storage; Smartcard Controller for authentication; USB/UART/I2C to communicate
with other systems; and an H.264 hardware accelerator to assist video processing. All
these function blocks are real-time functions, and are connected by a bus hierarchy.
These function blocks are typically built as ASIC components for power or
performance issue.

With the progress of technology, the ASIP power and performance are now
competitive with ASIC, such that some of the above function blocks can now be
replaced by programmable ASIP. Therefore, multi-processor system on chip (MPSoC)
with ASIPs inside becomes feasible for handheld devices.

Baseband is a candidate to move into software. In near future, smart phone will
be required to support many wireless communication standards, including GSM,
GPRS, W-CDMA, 802.11 a/b/g, Bluetooth, WiMAX, GPS, DVB-T, and so on. To
support so many standards, Software Defined Radio (SDR) brings programmable and
dynamically reconfigurable method to implement the multiple-standard

communication systems. A wide-band zero-1F receiver is used in modern wireless
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devices to down convert wireless signal directly to data frequency, and do all

baseband processing in software.

3.1 Memory Sharing

In a multi-processor system, inter-processor communication bandwidth
dominates system performance. Processors are connected as a network. In an off-chip
interconnection, the number of links is determined by the pin-out limitation. Many
interconnection topologies such as hyper-cube or token-ring have been introduced to
dea with the interconnection cost and broadcast efficiency trade-off. In an on-chip
interconnection, this limitation is not critical. The topology choice is determined by
the memory sharing strategies.

Multi-processor has four memory sharing strategies to choose. Figure 3-1(a)
shows a distributed system where memories in processors are not shared. Data
transfer should pass through a message-passing channel. Figure 3-1(b) shows a
shared-address local memory system where each memory is assigned a unique
address and connected to a bus. Data can be directly transferred between memories
through DMA. Figure 3-1(c) depicts a private cache system, where each processor has
its private L1 cache. When a processor wishes to transfer data to another processor,
the producer should write data into shared L2 cache for consumer to read. Figure
3-1(d) shows a distributed shared cache system, where L2 caches are distributed in
processors. When an L1 cache miss occurs, cache coherence logic forwards the
memory request to the L2 cache that owns the data.

The choice of memory sharing strategy is a trade-off between hardware cost,
communication bandwidth and software design effort. A hardware cache is used to
buffer recently used data to reduce externa memory access latency. To implement a
cache, except the storage memory, it needs large tag array and cache coherence logic.
Whenever a processor writes data to shared memory, cache coherence logic should
broadcast this information to all other processors to synchronize their cache content

[16], which will occupy large communication bandwidth.
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Without a hardware cache, the chip area and communication bandwidth can be
reduced. Software should correctly buffer the frequently used data to avoid reloading
it from external memory to reduce system performance. It is a heavy loading for
software programmer, especialy when a complex data structure is used. Some
modern processor such as IBM Cell processor [17] performs data pre-fetch prediction
in compiler to reduce software programmer effort.

Our PLX is a newly-designed processor, and its compiler is under development.
We make an OpenMP to TLM tool to anayze data sharing and data reuse from
OpenMP code, which will be discussed in Section 3.4. Currently this tool is only able
to analyze array, and cannot correctly handle pointer and large data structure. As a
tradeoff, we had implemented a hardware cache to buffer local variables which can
reduce programmer’s effort, and used the OpenMP to TLM tool to handle global
shared-data. The cache coherence is determined in this tool, thus hardware cache

coherence logic and bandwidth can be saved.

(a) Distributed System (b) Shared Address Local Memory
P1 P2 P1 P2 P3
' MEM || [MEM] | MEM | 'M1000|  [M2000] |M3000]
Message Pass DMA
(c) Private Cache (d) Distributed Shared Cache

P1 P2

| Shared L2 | | Ext Mem | | Cache Coherence |

Figure 3-1. Memory sharing strategies.
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3.2 Message Passing over Private Cache

The computation of multimedia application can be largely speeded up by PLX
ISA as shown in Chapter 2. Thus, data transfer becomes the major part of a program.
The inter-processor communication bandwidth always dominates system performance.
As shown in Figure 3-1, data transfer on a hardware cache system needs two
communications. In order to reduce the communication bandwidth, we modify the
cache design to allow a message be directly transferred to another processor without
going through the shared L2 cache.

On atypical message-passing interface (MPI), the producer specifies a memory
address and calls a Send function to perform the transaction. The data is packed into
a packet with a sender ID and a receiver ID in the packet header. Router forwards a
packet by these IDs. When the packet arrives at the consumer first-in first-out (FIFO)
buffer, aRecv function movesit to the target memory.

On a private cache system, when the producer specifies a data in a memory
address to SEND, the memory content may not be in the cache. Thus a cache-miss
read occurs, and the producer has to load it from main memory into cache. The
consumer should also allocate a space in cache to receive the packet. If all cache lines
are dirty, a cache-miss write occurs. We need to flush a cache line into main memory
to generate a space. Thus, the communication is triple, and the bandwidth used is
larger than the method with a shared L2 cache. And the packet should be buffered in a
router to wait for the cache-miss being over. It blocks other transactions from passing
through the router.

For the MPI to work efficiently, at the producer side the data should be locked in
a cache to guarantee no cache-miss read occurs, and at the consumer side the cache
should serve as a FIFO to receive data in the packet.

Our implementation as shown in Figure 3-2 utilizes a cache tag array, where a
cache is logically partitioned into many cache lines and each cache line has a tag to
indicate its physical address. Two flags are used in each cache line. The lock flag

disables the cache line to be swapped-out, thus the memory content can stay in cache.
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The valid flag set to one indicates that the cache line is buffering a memory data;
otherwise, the cache line can be used as a FIFO. That is, when the cache line is not
valid (set to 0), its tag can be used to save the incoming packet header sequentially as
a FIFO. As shown in Figure 3-2, processor P1 wishes to send 512 bytes from address
9100 to P2. It should lock the cache lines before sending. The 512-byte data is
partitioned into two packets to fit the cache line size. In processor P2, 3072 bytes of
cache spaces are alocated to form a FIFO before any communication. The tag in the
FIFO cache line if set to -1 indicates that it is empty. When a packet is received, its
header is sequentialy saved in an empty cache line tag. If another processor sends a
packet at the same time, these two packets will be saved in an interleaving way. When
the last packet is received, an event is triggered to wakeup the Recv function. Instead
of copying datafrom FIFO to the target memory, our design can directly set the target

address point to atag to save the memory copy time.

P2: allocate fifo(3072);

— <y

§ P1: Send(&9100, P2, 512): §% tag Recv(&6800, P1, 512)
0] [1000) 0[] [2000

1] (9100 0|[1] [3400

0| [1300 1/l0 [ 1,0

1] [9200 1o [ =0

1 [ -1 10 [1,1,e

1 [ -1 10 [ 51

1 [ -1 10 [ -1

1 [ -1 4o [ -1

Recv(void *p,int SenderID, int n)

whi | e(!l ast packet (Sender|D))
wait (fifoevent);

for(i=0;i<n/linesize;i++) {
j=findfifo(SenderlD,i);
invalid(p+i*linesize;
tag[j]=p+i *linesize;

validj]=1:

FPIRREPIFIOIO]

Figure 3-2. Message passing over private cache.
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33TLM

Network-on-Chip (NoC) [18] is becoming an important research topic for future
large scale chips. NoC is connected by routers. A typical NoC router has 5 ports
connected to its 4 (east, south, west, and north) neighboring routers and to an attached
processor. Each processor is attached to arouter.

By network propagation latency, router micro-architecture can be differentiated
as static routing or dynamic routing. In static routing, resources on the routing path
are allocated before transaction. Message is directly forwarded to destination with
only one cycle of latency on each router. IBM Cell processor works in a static routing
style. In dynamic routing, the router buffers a full packet instead of a word. Intel
tera-flops processor [19] works in a dynamic routing way. For research purpose, MIT
RAW processor [20] implements both static and dynamic routing channels on chip.

In dynamic routing, routing resource is not initially allocated, thus a packet may
stay in arouter for along time when its outgoing port is occupied by other transaction.
Deadlock possibly occurs when many transactions are waiting each other to release
resource. Networking strategy becomes the key factor in system performance rather
than processor core speed. Many routing algorithms had been introduced for
supercomputer and NoC. A wormhole routing [21] requires less buffer, because a
large packet is cut into many smaller FLITs (FLow control uniT). Router begins to
transmit when the first flit is recelved instead of buffering flits to form a full packet.
Deadlock free routing [22], congestion avoidance routing [23], and flow
maximization routing [24][25] are more aggressive algorithms for specific
applications. In a heavy communication system, the latency varies according to its
routing algorithms and applications.

On alarge chip, clock skew becomes so large that EDA tools cannot guarantee
signal integrity al over the chip. Globally asynchronous locally synchronous (GALS)
technique [26] is introduced to solve the problem. Each processor and router work on
their own clock. Router communicates asynchronously to its neighbors. Many

asynchronous connection protocols had been introduced for such GALS
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communication, including the two-phase, four-phase, dual-rail, and current-mode
protocols. Dual-rail design uses redundant lines to encode data such that the receiver
can check whether all bits are stable, thus the communication is delay-insensitive
[27][28]. In a current-mode design [29], signa uses a lower voltage swing to save
power. In a two-phase design, the sender changes a req signal and sends data at the
same time; the receiver has to latch data whenever the req change is detected. It
causes a risk when the req transmission is faster than the data. Using four-phase
protocol is safer. Sender should set up data no later than the req rise. Receiver raises
an ack after the req rise is detected. Receiver latches data when req falls. While sender
is localy synchronous, data setup time needs at least one cycle. The maximum
throughput istwo cycles per data.

Network congestion is a main concern on multi-processor performance. A task
will be stalled when its required data is blocked en route. Many static task scheduling
algorithms [30] [31] had been introduced to maximize resource utilization. In these
static task scheduling algorithms, all data are assumed to be received at task beginning,
and be sent at task ending. Actually, this assumption is not correct, communication
may occur during task execution. Thus, the real-time constraint should be verified
after task scheduling.

The NoC transactions come from three ways:

(1) Synchronization by pt hr ead_cr eat e and pt hr ead_j oi n.

(2) Core-to-core message passing.

(3) Cache misses.

To simulate communication between multi-processors, using a cycle-accurate
model will spend too much time. Transaction Level Modeling (TLM) offers the ability
to ssimulate C source code on an abstracted hardware description.

TLM is developed for architecture level design and exploration. Literally a
transaction is the exchange of goods, services or funds; or a communicative action or
activity involving two parties or things that reciprocally affect or influence each other.

Both meanings have two ingredients, exchange/communication and goods/influence.
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In an electronic system, the goods or influence can be considered as the computation
or the effect of the computation. There are many discussions regarding TLM over the
years, and the definitions, terminologies and libraries had been developed by the
OSCI TLM Working Group (TLM WG) [32].

SystemC is an executable and integrating language for representing a design at
abstraction levels above RTL. SystemC provides a number of datatypes that are useful
for hardware design. These datatypes are implemented in C++ classes. To simulate a
large design such as an MPSoC on RTL will spend days or months. TLM using

SystemC [33] is becoming a standard for communication verification.

3.4 0penMPtoTLM

Many languages and tools had been introduced to simplify multi-processor
programming, such as Message Passing Interface (MPl) [34], Portable Operating
System Interface (POSIX) pthread [35], OpenMP [36], and Streamlt [37]. MPI is
mostly used in a distributed system which describes communications between
processors explicitly. OpenMP is suitable for shared-memory programming. Compiler
often transforms OpenMP code into POSIX pthread, by inserting thread creation,
synchronization, and memory management codes from OpenMP directives.

As described in Section 3.2, we wish to handle inter-processor communication
explicitly in software. Thus the OpenMP shared-memory code should be converted
into MPI-like code to describe transaction explicitly.

Figure 3-3 shows the works in a tool that converts an OpenMP code into a
POSIX pthread code. Work (1) inserts pt hr ead_cr eat e and pt hr ead_j oi n for
processor synchronization from #pr agma onp directives, and creates a thread body
for each thread. There are three ways to perform data sharing. If the shared data sizeis
small, we can directly pass it to the target processor using the method described in
Section 3.2, Work (2) inserts a Send and a Recv function calls in the caller function
and the created thread body respectively. If the shared data is large, but can be

partitioned into smaller independent blocks, the Send and Recv are inserted in a



loop to perform sequentially as in Work (4). A large non-parallelizable data, as shown
in Work (3), can only pass through shared L2 cache, and a cache flush code is inserted.
We should specify a processor ID for athread to execute. A profiling with a given test
pattern is performed to get the ID of each loaded function. Work (5) performs
fine-grain parallelization on a loop to convert it into SIMD instructions to improve
performance and get more correct function loading information. Paralelization will
be described in Chapter 4 in more detail. The converted code is verified on a SystemC
TLM platform. In a function with a large number of data accesses, cache-miss
possibly dominates network bandwidth. A memory read is converted into a
cache_read function and a memory write is converted into a cache_wite
function in Work (6) to integrate cache-miss transactions into verification. As shown
in Work (7), the function execution time obtained by profiling is inserted at the end of

every function to emulate the computation loading on our SystemC TLM platform.

mai n()

{ 1) synchronization:

pthread create/pthread_join

#pragma onp parall sessi
{ (2) Small shared data:

sessi on shared(rzj/ insert Send/Recv

#pragnma o

Func2(&r2);

#pragnma onp sessi on shar ed( pi ¢)(3) Large data, non-parallelizable:
Funcl(pic); flush to shared L2 cache

}

(4) Large data, parallelizable:

#pragnma o arallel for \
prag wp Send/Recv in loop

private(i) shared(dat)
for(i=0;i<32;i++)
Func3(dat[i]);

}
Func3()

{ for(i :O;W.:c&he_read(&A[x])
JFAX] cache write(&B[y],...)
Byl e
} (7) Execution time:

} wait(1000,SC_NS)

(5) Fine grain loop:
paralelizeto SIMD

(6) Large data access:

Figure 3-3. OpenMPto TLM



In the following, we use an example to show above works and the SystemC
TLM verification. Code 3-1 is an OpenMP code. Code 3-2 is its converted pthread
code. Code 3-3 isthe SystemC TLM platform.

The benefit of SystemC TLM implementation is that the code can run in its
origina style, and the timing information can obtain from this SystemC platform.

Each PLX2 contains 4 physical threads. In software view, the four physical
threads work as four logical processors sharing a cache. Logical processor is the unit
for thread creation and message passing. In Code 3-2, each physical thread is assigned
alogical processor ID, it is combined of a processor ID and a physical thread ID. For
example in Code 3-2, value LP4 means the thread is created at physical thread O
(0=(4%4)) of processor 1 (1=(4/4)). Each logical processor can read its private status
LPI D to locate its position. In following example, the system has 4 processors, thus
LPI Dvalueisfrom LPO to LP15.

In Code 3-1, Func3 occupies most computation. We allocate eight logical
processors (LP8 to LP15) for Func3. The other two functions Funcl and Func?2
each uses one logical processor (LP4 and LP5).

In Code 3-2, thread body Thr eadA, Thr eadB, and Thr eadC are created.
Instructions under #pr agnma onp are moved into thread bodies. Send, Recv,
fifoalloc, cacheflushandcachei nval i d functionsareinserted in related
thread body by the conversion of shared data.

At system startup, all logical processors fetch an instruction from memory
address 0. All logical processors except LPO goes to | DLE soon by checking if its
LPI D is not O, as shown by the first instruction in function mai n. Only LPO
continues to execute the other mai n functions.

The function pt hr ead_cr eat e sends a FORK packet to the target logica
processor. The receiver hardware generates an interrupt whenever a control packet is
received; target logical processor will save its current program counter (next to | DLE)
and switches to an interrupt handler. When the function execution finishes, aJO N

packet is replied to the sender, then program returns to an | DLE status again.



In OpenMP coding, whether a variable is shared by or private to a thread should
be carefully assigned in a clause list. A variable declared as private assumes that a
thread initializes the variable and no other threads use it. A local variable will be
added in the thread to replace the variable in the original code.

A main difference between an MPSoC and a multi-processor supercomputer is
the limited local storage capacity. Cell processor has 256KB, RAW processor has
32KB, and Intel tera-flops has only 3KB memory in a core. A CIF picture size is
300K B, it exceeds all the MPSoC’s local storage capacity. Thus large data cannot be
directly transferred core-to-core, they should be stored in a shared memory and loaded
into the target core by a cache-miss mechanism.

In Code 3-2, 32 nydat a blocks need to be computed by Func3, each logical
processor works on 4 blocks. Instead of transferring 4 blocks at the function
beginning, Thr eadC sequentialy processes these 4 blocks, thus reduces the needed
FIFO size.

Funcl is a large data example. The array pi ¢ is too large for core-to-core
transfer. Array pi c is allocated by function mai n, LP4 does not know its address at
compile time. Thus its address should be sent to LP4, for Thr ead A knows where to
fetch data. Before Thr eadA is created, pi ¢ should flush into a shared L2 cache for
other core to use. While a partial data may be swapped in/out many times, the
communication induced by cache-miss is dependent to the algorithm behavior. In
Funcl of Code 3-2, all memory access codes are replaced by functionscacher ead
and cachew i t e to emulate the behavior in TLM.

Each logical processor has its own private resource, such as the LPI D status.
When two threads read their LPID, they should get a different value. We use C++
object to implement a private access. In Code 3-3, classLogi cPr ocessor includes
Code 3-2, thus the original C code can execute correctly without further manual
modification.

Code 3-3 implements the MPSoC TLM platform. The processor and physical

thread numbers are configurable by defining Processor Num and Thr eadNum
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Processors are connected as a 2-D mesh by routers. An 1/O controller and a
shared-memory are included in the platform.

Routing algorithm is important to improve communication efficiency. Best
routing algorithm is dependent on traffic style. On this example, we implement an
X-Y routing algorithm. A flit has a one-word header and 8-word data. Transferring
one word needs 2 cycles by using a 4-phase GALS channel as described in Section
3.3. Router buffers aflit before forwarding it to next router. Control packet has higher
priority. Other packet priority is decided by its age, the time that it remains in router.
Thus, the maximum latency of aflit in arouter is 90 cycles, and the minimum latency
of a packet is 18 cycles multiplied by the communication distance.

On SystemC modeling, components are implemented as module
(SC_MODULE). Processors and routers are declared as SC_ MODULE. The function
t hreadcal | in Processor module initializes the mai n function in every
physical threads. In SystemC, all threads work in parallel, thus resource conflict such
as two threads want to send their packets at a time will occur. In Code 3-3, variable
sendl ock in Processor module is used to perform mutual exclusion. If the
Sender hardware is occupied by one thread, the other Send functions are stalled
until asendevent isissued when the transfer is complete. The Recei ver function
in Pr ocessor module checks the cnd field in a packet to decide what to do when
the packet is received. A FORK packet will induce an interrupt to call the specified
function. A JO N packet will clear thet hr eadwai t flaginLogi cal Processor
class. A DCACHEACK packet will refresh cache-miss content. And an MSG packet will
update FIFO.

Delay is inserted in Sender and Route by wait function to emulate
communication latency. Computation delay is inserted in Func3. The SystemC

simulation result is at the approximate-time (AT) level.
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Code 3-1. Example OpenMP code.

mai n()

int r2;
char *pi c=new char[ 352*288];
/[/run OGS only on LPO
if (LPID =0) {
while(l) |IDLE();

#pragma onp parall sessions

#pragma onp sessi on shared(pic)
Funcl(pic);
#pragma onp session shared(r?2)
Func2( &r2);

// sequenti al code
Funcl(char *pic)

//induce cache-m ss
.=pic[x];
picl[y]=...

Func2(int *r2)

o
int i;
struct nydata dat[32];
/| setup, sequenti al
for(i=0;i<32;i++) dat[i].a=.;
#pragma onp parallel for \
private(i) shared(dat)
for(i=0;i<32;i++) func3(dat[i]);

}
Func3(struct nydata *bl k)

/I heavy conputations
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Code 3-2. Converted pthread code.

mai n()

{
int i,rl,r2;

char *pi c=new char [ 352*288] ;

pthread t tid[2];
if (LPID =0) {
while(1l) |IDLE();
}
fifoalloc(3072);
cachef | ush(pi c, 352*288) ;

cachei nval i d(pi c, 352*288) ;

pt hread_create(&tid[0],
pt hread_create(&tid[1],
Send( &pi c, LP4, 4) ;
Send( & 2, LP5, 4);
Recv(é&r 2, LP5, 4);

LP4, id_ThreadA, O0);
LP5, id_ThreadB, 0);

for(i=0;i<2;i++) pthread join(tid[i]);
cachei nval i d( pi c, 352*288) ;

/| sequential code

}
voi d ThreadA(voi d *param

{
int *pic;
fifoalloc(4);
Recv( &pi c, LPO, 4);

cachei nval i d(pi c, 352*288); //reload pic

Funcl1(pic);
cachef | ush(pi c, 352*288) ;
fifofree();

}

Funcl(char *pic)
{
//induce cache-m ss
..=cacheread(&pic[0]);
cachewrite(&pic[1],.)

/[/wite result to L2 cache



voi d ThreadB(void *param
{
int r2;
fifoall oc(datn*8);
Recv( &r2, LPO, 4);
Func2( &r2);
Send( & 2, LPO, 4);
fifofree();
}
Func2(int *r2)
{ int i,t,p,n[8];
nmydat a dat[ 32];
/| setup, sequenti al
for(i=0;i1<32;i++) dat[i].a=.,;
pthread_t tid[8];
for(t=0;t<8;t++) {
pthread create(&id[t], LP8+t,id _ThreadC, 0);
}
for(t=0;t<8;t++) {
Send( &dat [t *4],
LP8+t, datn);
n[t]=0;
}
do {
wai t (recvevent);
for(t=0;t<8;t++) {
if (nb_Recv(
&dat[t*4+n[t],
LP8+t , dat n)
{ n[t]++
if (n[t]<4))
Send(&dat[t*4+n[t]]
, LP8+t , dat n) ;
}
cachei nval i d(
&dat[t*4+n[t]], datn);
/'l calc recvdata,rel ease
cachei nval i d(
&dat[t*4+n[t]- 1], datn);
} while(not_all_4(n));
for(t=0;t<8;t++)
pthread join(tid[t]);

49
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voi d ThreadC(voi d *param
{
int i;
nmydat *bl k=new nydat ;
fifoall oc(datn);
for(i=0;i<4;i++) {
Recv( bl k, LP5, dat n) ;
Func3(bl k) ;
Send( bl k, LP5, dat n) ;
cachei nval i d( bl k, datn);

}
fifofree();

}

voi d Func3(nydata *bl k)
{

heavy conputati on

wai t (t nFunc3, SC_NS) ;

}

void InterruptCall ()
{switch(intrfunc) {
case id_ThreadA:
Thr eadA(i nt rparam ;
br eak;
case id_ThreadB
Thr eadB(i nt rparam ;
br eak;
case id_ThreadC
ThreadC(i ntrparam); break;
}

SendJoin(intrcaller);

}



Code 3-3. SystemC TLM platform.

SC_MODULE( CHI P)

{

sc_out <bool > pof f;
Processor *P[Processor Num ;
Router *R[ ProcessorNum ;
MEM *M
| OC *C
sc_si gnal <bool > pof f x| Processor Nun ;
sc_ fifo<flit> rto[ProcessorNuni[5];
sc_fifo<flit> pro[ProcessorNun;
sc fifo<flit> chx[ProcessorNuni[4];
sc fifo<flit> meno;

sc_fifo<flit> ioco;
SC _CTOR(CHI P)
{int i,j;

for(i=0;i<ProcessorNum i ++) {
P[i]=new Processor ("Processor");
Rl i]=new Router("Router");
for(j=0;] <ThreadNumj++) ({

P[i]->T[j].LPID=i*ThreadNumtj ;

}
Pl[i]->iport(rto[i][Center]);
P[i]->oport(pro[i]);
if (i==0) P[i]->poff(poff);
el se P[i]->poff(poffx[i]);
Ri]->RID=i;
Rli]->iport[Center](prof[i]);
Ri]->oport[Center](rto[i][Center]);
Rli]->oport[East](rto[i][East]);
Rli]->oport[North](rto[i][North]);
Rl i]->oport[West](rto[i][Wst]);
R[i]->oport[South](rto[i][South]);

}

M=new MEM " MEM') ;

M >oport (meno) ;

M >i port(rto[ MPos][ MPort]);
C=new 1 OC("1 CC");

C->oport (i oco);

C->iport(rto[ CPos][CPort]);

for(i=0;i<ProcessorNunm i +=MeshW dt h) {
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for(j=0;j<MeshWdth;j++) {
if (j!'=MeshWdth-1) Ri+]->
iport[East](rto[i+ +1][West]);
else if ((i+ ==MPos) &&( MPort ==East))
R[i+j]->iport[East] (nmeno);
else if ((i+ ==CPos) &&( CPort==East))
Rli+j]->iport[East](ioco);
else Ri+j]->port[East](chx[i+j][East]);
.Ilother directions simlar
}
}
3
FELEEEEEE bbb rrirrrrrrri
SC_MODULE( Rout er)
{sc_port<sc fifo_out if<flit> > oport[5];

sc_port<sc_fifo_ in_if<flit> > i port[5];
i nt Rl D;
flit i buff[5];

char irdy[5],iage[5], odir[5], odeci de[ 5];
char routedir(flit *f) //XY route
{ char target=f->head. dstid/ ThreadNum
if (RID==target) {
return((odeci de[ f->head. dport] ==-1)?
f->head. dport:-1);
} else {
if ((RID MeshW==(target/MeshW) { //same row

if (RID<target) return((odeci de[ East]==-1)?East:-1);

el se return((odeci de[ West ] ==-1)?West:-1);
} else if (same col) {
if (RID<target)
return((odecide[ North]==-1)?North:-1);
el se
return((odeci de[ Sout h] ==-1) ?Sout h: -1);
} else if ((R DXAVeshW >(target %veshW)
{//left side

}

}
voi d Rout e()

{int i,j;

char k, prior[5];

while(1l) {

for(i=0;i<5;i++) if (irdy[i]) iage[i]++
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for(i=0;i<5;i++) {

if (lirdy[i]) {

if (iport[i]->nb_read(ibuff[i])) {
printdebug('R,"'I',RID, 0,0, ibuff[i]);
irdy[i]=true; iage[i]=0;

}

}

}
deci de_by(i buff,iage);
for(i=0;i<5;i++) {
if (odecide[i]!=-1) {
if (oport[i]->numfree()!=0) {
printdebug('R," O ,R D odecide[i], i,
i buf f[ odecide[i]]);
oport[i]->wite(ibuff[odecide[i]]);
i rdy[ odeci de[i]] =0;
}
}
}
wai t (transtime, SC_NS);
}

}
SC CTOR(Rout er) {

SC_THREAD( Rout e) ;

}
¥

FEEEEEEEE bbb rriririr

SC_MODULE( Pr ocessor)

{ sc_port<sc fifo out _if<flit> > oport;
sc_port<sc_fifo_in_if<flit> > i port;
Logi cProcessor T[ ThreadNum ;

FEEEEEErrrrrirrrirrlrll SC_THREAD
int threadcnt;
voi d threadcall ()

{ int ord = threadcnt ++ ;
T[ord]. main();
}

LEErrrrrririrrrririrlll Send
bool sendl ock;
sc_event sendevent;
bool issending() { return(sendlock); }
voi d Sender(char *ptr, char cnd, char ctrl



char src, char dst, char dport, int |en)
{ int pj;
flit f;
sendl ock=1;
f.head. srcid=src; f.head.dstid=dst;
f.head. cnd=cnd; f.head. headflit=1;
f. head. dport =dport;
f.head.tailflit =(len<=FlitSize)
if (cnmd==pktcnd_ctrl) f.head.ord=ctrl;
else if (f.head.cnd==pktcnd_dcachew) f.head. ord=len;
el se f. head. or d=0;
if (len<FlitSize) j=len; else j=FlitSize;
p=0;
if (j!=0) mencpy(& .dat,ptr+p,j);
do {
if (oport->numfree()!=0) {
oport->write(f);
f. head. headf | it =0;
f. head. or d++;
p+=j
if ((len-p)>FlitSize) j=FlitSize;
else {j=len-p; f.head.tailflit=1;}
if (j!=0) mencpy(f.dat,ptr+p,j);
wait(transtime, SC.NS);
} else {
wai t (cl ockcycl e, SC NS);
}
} while(j!=0);
sendevent . noti fy();
sendl ock=0;
}
void fork(char dthread, char srcid,
int intrfunc, void *paran
{
T[dthread].intrcaller=srcid;
T[dt hread].intrfunc=intrfunc;
T[ dt hread] . i nt r par am=par am
T[dthread].intrevent.notify();
}

voi d join(char dthread, char srcid)

{
T[dt hread] . t hreadwai t [ srci d] =0;

T[dt hread].joi nevent.notify();



}

bool nb_Recv(void *addr, unsi gned char srcid,

unsi gned char dstid, int |en)

{ int r,s,a,n, row,;
flithead m
for(r=0;r<cacherows;r++) {
if (cachelock[r]) {

m w=cachetag[r][0];

if ((mw =-1)&&(m srcid==srcid)&&

(mdstid==dstid)&mtailflit) break;

}

}

if (r==cacherows) return(false);
for(all |ocked rows & sets) {

cachetag[r][ s] =addr +( s<<cachecdb) ;
cacheval ids[r][s] =1;
mencpy(a, &acheranfr][0][0][0O], n);
}
return(true);
}
[HEEEErrrrrrrrrriilEl [l Recei ver HW
voi d Receiver ()
{ flit f; int dthread;
while(l) {
if (iport->nb_read(f)) {
dt hr ead=f . head. dsti d&( Thr eadNum 1) ;
switch(f.head.cnd) {
case pktcnmd ctrl
switch(f.head.ord) {
case ctrl pkt_fork:

fork(dthread, f. head.srcid,f.wdat[0]);

br eak;

case ctrl pkt_join:
join(dthread, f. head. srcid);
br eak;

}

br eak;

case pktcnd_dcacheack
mencpy(&cacheranfrdr][rds][rdc][0],

f.dat,FlitSize);

rdc++;

dcacheackevent . notify();

55
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br eak;
case pktcnd_nsg:
fifowite(&f);
if (f.head.tailflit)
T[dt hread] . recvevent. notify();

br eak;

}

}

wai t (cl ockcycl e, SC NS);
}
}
void readnmen(int t,int s,int c)
{ int dat[2];

dat[ 0] = cachetag[r][s]; dat[1]=FlitSize*Col s;
if (dat[0] in I1CC range) {
dcor e=CPos; dport=CPort;
} else {dcore=MPos; dport=MPort;}
Send(dat, pkt cnd_dcacher eq, dcor e, dport);
wai t (dcacheackevent) ;
}
i nt cacheread(void *addr)
{ cachebusy=1;
c=(addr >>cachedat b) & achecol nmask;
s=(addr >>(cachecdb) ) &acheset mask;
mFaddr &-cachescdnmask;
r=find((cachetag[r]][s]==m & cacheval i d);
if (r not found) { //read m ss
r=findlru(s);
cachef l ushcol (r, s);
cachetag[r][s]=m
readmen(r, s, c);
cachevalid[r][s][c]=1;
}
cachebusy=0;
cacheevent . notify();
return(cacheran{r][s][c][addr&bytenmask]);
}
void fifowite(flit *f)
{ int r,s,c;
flithead m m w=f->head.w,
if ((mord&cachescnask)==0) {
c=0; s=0;
do {
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for(r=0;r<cacherows;r++)
if (cachel ock[r] &&(cachetag[r][0]==-1)
&% (fifothread[r]==(mdstid&3)))
br eak;
i f (r==cacherows) //Receiver hangup
wai t (fifoevent);
} whil e(r==cacherows);
m headf | it =0; cachetag[r][0] =m w,
} else {
c=(addr >>cachedat b) &achecol nask;
s=(addr>>(cachecdb)) & acheset nmask;
r=find _tag wth_sane_id(m;
}
mencpy(cacheranfr][s][c],f->dat,FlitSize);
cachevalid[r][s][c]=1;
}
SC CTOR( Processor)
{
for(int j=0;j<ThreadNumj ++) {
T[j].parant=this;
sc_thread _handl e handle[j] =
si ncontext ()->regi ster _thread process( "",
SC_MAKE_FUNC_PTR(
Processor, threadcall ), thisl );

}

}
FEEEEEEEEr bbb b rrrrriri

cl ass Logi cProcessor

{

public:

int LPID intrfunc,intrcaller;

Processor *parant;

sc_event intrevent, joinevent, recvevent,
void *intrparam

bool threadwait[Processor Nunt Thr eadNuni ;
#i ncl ude " Code3-2"

void | DLE()
{

while(l) { wait(intrevent); InterruptCall(); }
}

voi d pthread_create(pthread_t *tid, int attrib, int pfunc,
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voi d *param
{ int dat[3];
threadwai t[attrib] =true;
if (((attrib”LPID)>>ThreadNunb) == 0)) {
parant->fork((attrib& ThreadNum 1)),
LPI D, pf unc, paran ;
} else {
dat [ O] =pfunc; dat[1]=(int) param
whi | e (parant->i ssending())
wai t ( par ant - >sendevent) ;
par ant - >Send( (char *)dat, pktcnd_ctrl,
ctrlpkt _fork, LPID, attri b, CENTER, 8);
}
*tid=& hreadwai t[attrib];
}
void pthread_join(pthread_t tid)
{while(*tid) { wait(joinevent); }
}
void Send(void *ptr, int dst, int num
{whil e (parant->issending()) wait(parant->sendevent);
par ant - >Sender ( (char
*)ptr, pktcnd_nsg, 0, LPI D, dst , CENTER, num ;
}
void Recv(void *ptr, int src, int num
{ while (!parant->nb_Recv(ptr, src, LPID, num)
{wai t (recvevent); }
}
int cacheread(void *ma)
{whil e (parant->i scachebusy() )
wai t ( parant->cacheevent);
return(parant->cacheread(m));
}
voi d cachewite(void *ma,int v, int bytes)
{whil e (parant->iscachebusy() )
wai t ( parant->cacheevent);
par ant - >cachewri t e(ma, v, byt es) ;
}
void fifoalloc(int bytes)
{whi | e (parant->i scachebusy() )
wai t ( parant->cacheevent);
par ant - >fifoal | oc(bytes);

}
b
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CHAPTER FOUR
PARALLELIZATION

Parallel processing had been developed in 1960s on some high-speed vector
processors such as ILLIAC-IV and Cray-1 to increase the scientific computation
speed. Since scientific codes contain many one-dimension vector and two-dimension
matrix operations, a vector processor is often used to perform these operations
simultaneously on its processing elements. Since then, many parallelization

techniques have been developed.

4.1 Vectorization

A basic way to explore code parallelism is to transform operations in a loop into
as many vector operations as possible. In most cases, parallelism is destroyed by bad
code structure. Vectorization techniques try to improve parallelism by dependence
reduction and loop transformation. The techniques described in this section are from
the background of our parallelization tool development.

A vector is represented as Albegi n: end: stride]. The array index is
extended to 3 literals to represent the vector operation performing on element begi n,
begi n+stride, begin+2*stride, ..., end. When stride is 1, it can be

omitted. For example, the following code:

for(1=1;1<=64;1++) C[1]=A[l+1] +B[2*]-1]

can be represented as a vector addition

d 1: 64] =A] 2: 65] +B[ 1: 127: 2]

In addition to scientific computation, people wish to utilize the vector
computation in more fields. To optimize a general algorithm into vector needs

in-depth analysis. Vectorization technique for sequential code had been widely studied
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in the 1970s. In general, vectorization technique transforms nested loops into vector
by dependence analysis, dependence removal, and loop transformation as decribed in

the following subsections.

4.1.1 Dependence Analysis

If there is no semantic difference between executing a loop in a sequential order
and executing it as a vector operation, this loop is able to parallelize. A counter

example is shown in the following code

for(1=1;1<=64;1++) All+1]=A[1]+B[1];

On executing the code as a sequential loop, we have the following result:
Al 3] new=Al 2] newtB[ 2] o1a= Al 1] o1 ¢+B[ 1] o1 ¢+B[ 2] 01 4. On executing it as a
vector operation: Al 2: 65: 1] =A[ 1: 64: 1] +B[ 1: 64: 1], the result will become
Al 3] new=Al 2] o1 atB[ 2] o1 ¢, Which is different to the result obtained by executing it
as a sequential loop; thus the loop is unable to parallelize.

In above example, the operand of the second iteration uses the result of the first
iteration Al 2] new. In other words, the execution of the second iteration is dependent
on the first iteration. Two statements can be executed in parallel only when there is no
dependence between them. The statements of the first iteration and the second
iteration are dependent, so they cannot be executed in parallel as a vector.

Dependence can be classified into the following four types [38]:

(1) Flow dependence, or Read after Write (RAW) dependence.

If one operand of the second statement is the result of the first statement, the
second operation should wait until the first statement finishes.

(2) Anti dependence, or Write after Read (WAR) dependence.

If the second statement overwrites one operand of the first statement, the
second statement cannot be executed earlier than the first statement to avoid

change of operand value.
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(3) Output dependence, or Write after Write (WAW) dependence.

If two statements write to the same destination, they cannot be executed
simultaneously to avoid having an ambiguous result.

(4) Input dependence, or Read after Read (RAR) dependence.

When two statements use the same operand, they are said having input
dependence.

Input dependence is not an actual dependence because the statement execution is
not dependent on each other. Input dependence is used to group the statements closer
such that we can reuse the same operand from the register to save memory load time.

The anti and output dependences can be removed by the variable rename
technique, thus they are also called false dependences, and only the flow dependence
is called a true dependence.

Therefore, the loop-carried flow dependence actually limits vectorization. To
precisely determine the loop-carried flow dependence, we can analyze the array index

relationship of the statements in a loop [39]. Consider the generalized expression:

for(I=1;1<=N;|++) Alatb*1]=f (A[c+d*1]) +g(l);

where g(I) does not use array A. Relative to the above example, a=1, b=1, c¢=0,
d=1, g(l)=B[l] and f(A X])=Alx]. To analyze a loop-carried flow
dependence is to check whether the result Al a+b*x] is used as an operand
Al c+d*y] at a later iteration. The loop-carried flow dependence exists if and only if
there exist integers X and y, 1<x<y<N, such that a+b* x=c+d*y.

By the number theorem, the equation a+b* x=c+d*y has integer solution X, y if
and only if a- ¢ is multiple of GCD( b, d),or GCD( b, d)| (a-c), where GCD is
the Greatest Common Divisor. From the above example, GCD( b, d) = GCD(1, 1)
=1, a-¢c = 1-0 =1, GCD(b,d)]| (a-c) istrue.

For a loop that contains many statements, we should check whether the statement
result is used as operand by any other statement at the later iteration or not, that is, we

should check the GCD( b, d) | (a-c) for all statement pairs.
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The single loop dependence check can be extended to nested loop. For example,

given the following sample code:
for (K=1; K<=L; K++)
for(J=1;J<=M J++)
for(1=1;1<=N;1++) Al apta*| +ay*J+az*K] =
f (Al botbi*1 +by* J+b3* K] ) ;

The dependence checking is performed from the innermost loop to the outmost
loop. At a specific outer loop J =X, and K=X3, the innermost loop contains loop-carried
dependence if and only if there exist 1<x31<N, 1<x»<M and 1<Xx3<y3<L, such that
apta* Xi+ao* Xotasz* Xz = bo+tb1* X1+bo* Xo+bs*ys, or (ai1- by) *x1+(az- by)
*X, +as*Xsz-bsz*ys = Dbg-ap. The integer solution exists when
GCD( a1- by, az- by, as, bz) | (bo- ag) . Similarly, the dependence check equation
for the second loop is GCD(ai-bi, az, bz, as, bs)| (bo-ap), and
GCD( a1, bi, az, by, as, b3) | (be-ag) for the outmost loop.

4.1.2 Loop Normalization

By the number theorem, the above GCD test for dependence analysis works only
when the loop index begins from 1, ends at a number N, and increases by 1. General
loop that does not satisfy this constraint needs to normalize.

Given the following code:

P=10;
for(J=0; J<100; J=J+2) A P++] =A[ 2*J] +J;

By performing analysis on the loop argument, we can replace the loop index J to
a new index K, that is, J=2*K-2, and change the loop index dependent variable P to
P=K+9. The loop is transformed into:

for (K=1; K<=50; K++) A[ K+9] =A[ 4* K- 4] +( 2* K- 2) ;

Now this loop is normalized and dependence check can be performed.
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4.1.3 Loop Transformation

Consider the following code:

for(J=1;J<=M J++)
for(1=1;1<=N1++) ALIT[J]=A[I-1][J];

This code fills the whole array with row 0 in an order of column by column, and

the inner loop contains loop-carried dependence. If the code is transformed into:

for(1=1;1<=N,1++)
for(J=1;J<=M J++) A[I][J]=A1-1][J];

By exchanging the two loops, the new code works row by row. The two results
are the same but the later row-wise order can work more efficiently in a vector
machine.

Loop transformation procedure sequentially selects a pair of loops in which it is
legal to apply a transformation, and checks its dependence by GCD test as described
above. If more than one solution is available, the performance or data locality gain is
used to help decision making.

Loop transformation is the key 'technology to improve parallelism and data
locality. Many transformations had been introduced [40][41]. For example, loop
skewing helps systolic array algorithms to utilize memory; loop interchange and

reversal helps linear algebra that contains dense matrices.

4.1.4 Dependence Removal

Instruction Level Parallelism can be improved by removing false dependence.
The techniques include variable rename, scalar expansion, node splitting and control

flow conversion. The following code is used to explain.

for(l1=1;,1<=N;1++) {
S1: v=A[I]+B[ I ];
S2: v=v*(I];
S3: 1 +1] =v+l
S4. DI]=D[I-1] +D[ | +1] +2;
S5: if (E[I]>F[1])
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S6: RIT]=E[I]-F[I];
S7: else RII|=E[I]+F[I];
}

S1 and S2 are outputs dependent on variable v that restricts S1 vectorization. If
variable v from the result in S2 and the operand in S3 is renamed to w, the output
dependence is removed. This technique is called variable rename. The lifetime of a
local variable starts from its value settled, thus renaming it as a new variable will not
cause semantic differences.

S1 contains loop-carried output dependence to itself on variable V; this
dependence disables S1 to vectorize. Renaming variable v to V[ 1] removes this
dependence. This technique is called scalar expansion for it expands a scalar variable
into an array. The disadvantage is that it needs to allocate more memory.

S4 contains a loop-carried flow-dependence, where D[ 1] is modified at the
second iteration and then loaded at the second iteration by D] | - 1] . S4 contains 2
additions, one is vectorizable. The non flow-dependent part Df | +1] +2 can be lifted
to a new statement, and store its result on a new variable T[ | - 1] , then use T[ | - 1]
to replace the non flow-dependent part in the original statement. After that, the new
statement becomes vectorizable. This technique is called node splitting. The index I-1
of the new variable T is aligned to the flow dependence part D[ | - 1] such that the
data shift which is required for ILLIAC-IV array architecture can be performed in
parallel.

S6 and S7 have control dependence on S5. The program counter (PC) value set
by S5 conditional branch operation is the address of S6 or S7, which will depend on
the S5 comparison operation result. It causes the program counter value to become
ambiguous when all iterations of S5 are executed simultaneously. In other words, S5
has loop-carried output dependence on program counter. To avoid program counter
ambiguity, conditional branch operations should be removed. In ILLIAC-IV, each PE
contains a mode register that can disable the current instruction execution. When a PE

is disabled, the relative result keeps no change. The conditional branch execution can
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be changed to execute all statements with a proper vector mask. A new Boolean array
is added to store the S5 comparison result. The Boolean array (1-bit for each element)
is sent to the mode register or vector mask register when the S6 vector is executing,
and its complement is sent when the S7 vector is executing. The execution with mask
expression works as a three-operand one-result operation, the three operands are the
original two ALU operands plus the vector mask; such control flow conversion [42]
technique changes control dependence into data dependence.

The result after dependence removal is shown in the following code:

for(l=1;1<=N; 1 ++) {

S1: viI]=A[I]1+B[I];

S2: w=v[I1]*(1];

S3: Il +1] =w+l ;

Sda: T[I1-1]= DI +1] +2;

S4b: D[I]=D[I-1]+T[I-1];

Sb: VM I]=(E[I]>F[1]);

S6: ROTT=(VML])?(E[I]-F[1]);

ST: ROITT=(~WM I])?2(E[1]+F[1]);
}

4.1.5 Srongly Connected Component

The above transformation can be performed more efficiently by applying the
graph theorem on the dependence graph.

As defined, a dependence graph [43] is a directed graph, whose nodes represent
code statements, and arcs are dependences. Figure 4-1 shows the dependence graph of
the example in Section 4.1.4.

On a directed graph, a strongly connected components (SCC) is defined as: for
every pair of nodes U and V if there is a path from U to v and a path from Vv to u. An
SCC can be found by using depth-first search technique [44].

In geometric view, an SCC contains nodes that form a circle. A circle in a
dependence graph means that there are loop-carried dependences on these statements,
which are not vectorizable. A single-tone SCC is defined as an SCC having only one

node and no arc to itself; thus, it is vectorizable.
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Figure 4-1. Dependence graphs: (a) original and (b) after dependence removal.

4.1.6 Loop Distribution

If we treat an SCC as a single supernode, all the arcs in a dependence graph will
have a forward direction. The loop can be partitioned into many sub-loops on a
forward-only path that will not make a semantic difference. All SCCs have to be
changed into independent loops, and the original loop headers have to be distributed
to these new loops. A single-tone SCC can be directly transformed into a vector. The

result of the above example then becomes:

S1: Vv[1:NJ=A[1:N +B[1: N ;
for(l=1;1<=N;1++) {
S2: w=v[I]*C1I];
S3: g | +1] =w+l ;
}
S4a: T[O0:N-1:1]= D 2: N+1: 1] +2;
S4b: for(l1=1;1<=N1++) D1]=D[1-1]+T[I-1];
Sb: VM 1I:N=(E[1:N>F[1: N );
S6: RLN=(VW1N)?(E[1:N-F[1: N );
S7: RIL:N=(~-VM 1:N)?(E[1:N+F[1: N ) ;
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4.2 SIMDization

A subword-parallel SIMD processor has more restrictions than a vector machine.
For example, a subword-parallel SIMD core is restricted on memory access. Given

the following code:

for(l=1;1<=64;1++) CI]J[I]=A1]]1]+1;

The memory items are discontinuous. To process the above example, PLX has to
load the discontinuous memory items Al O] [ O] and A[ 1] [ 1] by different load
instructions, and pack them into one register to process addition instruction together.
While memory access latency is very long, the addition of A[ O] [ O] can finish when
waiting for A[ 1] [ 1] to be loaded in a sequential execution scalar processor. Packing
operations would not improve performance, but would increase the pack/unpack
overhead.

When vector items are continuous, subwords can be loaded together by one load
instruction, and memory access count can be reduced. It induces extra effort to handle

neighboring data in a subword-parallel SIMD mode.

4.2.1 Control Flow Conversion

Control flow conversion that converts if-else control into execution with mask is
introduced in Section 4.1.4. Implementing an execution with mask needs three read
ports on a register file and three operand ports on an ALU for the extra mask operand,
and the register file write port needs to be byte writable; thus, the hardware cost is
increased. While most of the time, control flow will not become the performance
bottleneck, increasing hardware cost is not worthy.

A multiplexer behavior, such as R=X?A: B, can be implemented using an
AND-OR logic as R=( X&A) | (~X&B) . The S6 and S7 statements in the example of

Section 4.1.4 can be changed to:

S6: RIT=(W I1&E[IT-F[II))|(~-VMI]1&R[1]);
S7: RIT=(~-VMIT&EI]+F[1]1))|(VWMI]&R[1]);
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The two statements can be further optimized as:

ROTT=(VMIT&E[IT]T-F[IT)) [ (~VM I T&E[I]+F[1]));

The new statement only contains basic logic operations that can execute on a
2-operand ALU. But VM | ] is one-bit lengthand E[ | ] - F[ | ] are subwords. Before
its execution, VM | ] has to expand into a subword size for the bitwise AND/OR
operation. This expansion is performed by the subword-parallel comparison operation
in S5. Subword-parallel ALU sets every bit in the related subword to 1 (as an integer
value -1) when the comparison result is true, and sets to 0 when the comparison is

false.

4.2.2 Memory Alignment

For cost and power consideration, most RISC processors require all memory
accesses to be aligned, that is, the data loaded from memory cannot cross the 64-bit
boundary if the processor is of 64-bit length. An across-boundary access should be
split by a compiler.

Memory alignment becomes more critical when using an SWP-SIMD processor
on multimedia applications, where we are asked to pack the memory components into
one superword to be accessed together. Although each component does not cross the
boundary, the packed one may cross. For example on processing an RGB24 format
picture, the packed element is 24-bit (8-bit for each of the Red, Green and Blue
components), the third element will cross the 64-bit boundary. Another example is
Motion Estimation. This algorithm shifts a search window one pixel at each iteration,
making most reference frame accesses misaligned.

Current technology handles misaligned vectors as a stream [45]. Registers are
used for each vector as a stream buffer. Vector elements are collected in the registers
and shifted to the proper aligned position. Figure 4-2 shows the concept. Assume that
the data precision is 16-bit, a vector begins from wl, and the vector length is 4.
Loading 64-bit from w1 will cross the 64-bit boundary. To avoid the misalignment

problem, VI oad instruction loads two words from WO and W4, and use Vper nut e
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instruction to combine the loaded words. The second word is kept in a stream register
for the following vector.
Operands of a vector equation may have different stream shifts. As the following

example shows:

Cl 2: 66] =A[ 1: 65] +B[ 3: 67] ;

Using the above policy, both streams A and B have to left shift 1 and 3 positions
respectively, and the addition result has to right shift two positions. If they have to be
aligned to stream C, stream A has to right shift one position and stream B left shift one
position, saving one shift operation.

By above discussion, many policies are possible to handle the stream shift.

(1) Zero Shift: It is the same as Figure 4-2. This policy shifts each
misaligned load stream with an offset of zero, and shifts the store stream
from offset zero to the alignment of the store address.

(2) Eager Shift: This policy shifts each load stream directly to the alignment
of the store stream.

3) Lazy Shift: This policy pushes ! the shift towards the root of the
expression tree as close as possible. And

4) Dominant Shift: This policy shifts to the most frequent alignment

position in equation.

le—— 64bit —>dle— 64bit —dle— 64bit —>|
|w0|wl|W2|W3|W4|w5|w6|w7|w8|w9|w10|w11|

[wo |[wl|[w2|w3]| [wad]|ws|w6|w7]||w8][wo|wio]wll]

= e

|w1|w2|w3|w4| |W5|W6|W7|W8|

Figure 4-2. Streaming vector loading.
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4.2.3 Permutation Optimization

Data length conversion can also be handled in streams [46]. When the variables
in a statement have different precisions, the load streams have to be unpacked with
the largest precision, and the result has to be packed with the same precision as the
store variable.

While the subwords of an SIMD instruction are packed into a register, each
subword cannot be easily moved alone. In order to unpack four 16-bit subwords in a
register with a 32-bit precision, the first subword should right shift 16 bits and the
second subword right shift 32 bits to combine into a new register; the third subword is
left shifted 16-bit and combined with the forth subword. In total, 3 shift and 2
combine operations are needed, not including the sign extension.

Many multimedia algorithms themselves contain permutation, such as the
butterfly-order on FFT, or the average/difference of two audio channels on MP3.
Efficiently handling permutations is not easy. Figure 4-3 shows two implementations
of a simple example in MP3 encoder, which calculates the average and difference of

the left and right channel samples.
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Figure 4-3. Interleaved average/difference implementations.

The left channel is the even parts of the audio sample array, and the right channel
is its odd parts. The results should also be interleaved into a one-dimension array.

Figure 4-3(a) first left shifts samples to a stream aligned on the right channel, then
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calculates its average and difference, and packs them into the result register. Figure
4-3(b) loads double samples into two registers, packs their even and odd parts,
calculates their average and difference, and packs the even and odd results into the
result register. The first method uses 5 registers and 5 operations to get 4 result
samples; the second implementation uses 7 registers and 8 operations to get 8 result
samples. The throughput of the second implementation is higher, but it needs more
registers, a tradeoff in optimization. Optimizing a code with the fewest permutation

instructions can be formulated as a multi-cut problem which is NP-hard [47].

4.2.4 Subword Fusion

General software contains many non-vector operations. Packing them into a
superword to process together may increase performance. When addition and
subtraction operations are adjacent, negating the subtraction operand and adding them
in subword-parallel can improve performance.

MIT University first introduced the concept of fusioning these operations [48].
They used a heuristic-based two-cluster partitioning algorithm. Instructions are
partitioned into scalar and vector parts. One instruction is moved from the scalar part
to the vector part once, and the vector part is re-packed to find the minimum cost. The
cost contains pack/unpack overhead.

Vienna University extended the fusion on addition/subtraction pair to increase
SIMD utilization [49]. They use depth-first search based sorting method with
chronological backtracking to discover SIMD style parallelism in a scalar code block,
aiming to reduce the overall instruction count. The addition/subtraction pair finding is

considered as reducing number of source operands.

4.2.5Matrix Transposition

Most processors store array elements in row-wise. Column vector items are not
continuous in memory. They should be loaded independently and packed together.
Packing four column elements into a superword needs four non-sequential memory

| oad and three pack operations, which is a large overhead relative to the small code
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size. To speedup, we can load a 4%4 array from memory into 4 registers, which only
needs 4 memory loads. Then transposing the array to get 4 column vectors.
Transposition can be efficiently obtained by eight PLX permutation instructions as
shown in Figure 4-4. The first stage exchanges the odd subwords in an even row and
the even subwords in an odd row by using two permutation instructions. The second
stage exchanges double words of rowO/row2 and rowl/row3, each takes two

permutation instructions.

N
Svon

(a) even/odd word  (b) double word (c) result
Figure 4-4. Matrix transposition in SWP-SIMD.

4.2.6 Reduction

An extra effort to parallelize multimedia application is to convert summation.

Considering the following code:

for(1=1;1<=N; 1 ++) s=s+f (A[l]),

which contains loop-carried dependence on variable S, vectorization can do nothing.
While summation is often used in multimedia applications, it greatly affects the
performance. While the SWP-SIMD vector length is short, the loop can be partitioned
into partial summations such that we can sequentially summarize these partial results

at the final stage [50], as shown in the following code:

psuni 0: VL- 1] =0;
for(1=1;1<=N VL; | ++)

psunf O: VL-1] +=f (A[ I : | +VL-1];
for(1=0;1<VL;I|++) s+=psunil];
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4.2.7 Loop Unrolling

The vector length of a subword-parallel SIMD processor is short; it can be only 4
or 8 depending on data precision. While a loop iteration count is usually larger than
the short vector length, the loop has to be unrolled to fit the short vector length. The
example in Section 4.1.4 can be implemented in either one of the following two ways

(only the first S1, S3 and S3 statements are shown here):

S1: for(l=1;1<=N;1+=VL)
v[I:1+VL-1]=A[I : I +VL-1] +B[ | : | +VL- 1] ;
for(l=1;1<=N,I++) {

S2: w=v[I]*CI];
S3: 1 +1] =w+l ;
}
Or
for(I=1;I<=N;I+=VL) {
S1: V[0:VL-1]=A[L:I+VL-1]+B[[:I+VL-1];
for(J=0;J<VL;J++) {
S2: w=v[J*CII+H]T;
S3: ClI+1+]]J=w+IH];
}
H

The first implementation unrolls the loop after loop distribution, and the second
implementation unrolls the loop before loop distribution. The second implementation
allocates v in a register file, which saves the memory access time for V. As
semi-conductor technology progresses, the register access time is much faster than the
memory one; thus, the performance difference of the two implementations becomes
significant.

The second implementation is not always better than the first implementation
when it causes data cache swap. If a loop contains many array variables that cannot all
fit in a data cache, the partial data of array A that were preloaded in cache (which
amount is larger than the vector length) at S1 will be replaced, so it will waste more
time to reload array A from the main memory at each iteration. This will overcome the

gain of register reuse.
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The optimal solution for loop distribution is to group all SCCs that are connected
by dependence in one loop, but cannot be too large to cause cache swap. The
optimization has to compromise between cache strategy and register allocation.

Memory access latency usually affects performance greatly. Software pipelining
[51] can be applied to further improve memory access efficiency. With software
pipelining, we can reschedule ALU instructions to fill the time when memory load is
waiting. By considering memory sequential accesses and hardware pipeline

architecture, and using software pipelining, the performance can improve 34% [52].

4.3 L P Scheduling

Instruction level parallelism (ILP) scheduling assigns operations into a 2-D slot
of spatial and time dimension. ILP scheduling can be divided into cyclic and acyclic
scheduling methods. Cyclic scheduling works on loop and acyclic scheduling works

on a basic block code region.

4.3.1 Softwar e Pipelining

Figure 4-5 shows one cyclic scheduling method called software pipelining.
Assume that this machine is a 3-issue VLIW. A loop of iterations 0 to n-1 contains 6
operations from A to F. Operation A is loop-carried dependent to B, so A; can be
executed in parallel with C, at the earliest time slot. There are two schedules, as
shown in Figure 4-5(a), where the first ALU executes iterations 0, 3, etc; the second
ALU executes iterations 1, 4, etc; and the third ALU executes iterations 2, 5, etc. In
Figure 4-5(b), the first ALU executes all A and B operations; the second ALU
executes all C and D operations; and the third ALU executes all E and F operations.
Schedule (a) has better data locality which is necessary for clustering architecture, but
schedule (b) optimizes different functions on the 3-issue ALU.

In general, data dependences exist in various types. A data may be referenced k
iterations later where K is not 1. Then the software pipelining cannot be as simple as
the above example. Sometimes it requires using a heuristic method, such as modulo

scheduling, to schedule.
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Figure 4-5. Software pipelining.

4.3.2 Basic Block Extension

Acyclic scheduling works on a basic block code region. A basic block has a
single entrance at its head and an exit at its tail in a control flow graph. No backward
arc is inside a basic block. The code formation is a heuristic process, it selects
instructions with data dependence constraint and resource usage conflict, to target
optimization of code size or power consumption.

A larger code region has more instructions to select and gets better efficiency.
The key technique of acyclic scheduling is to enlarge the code region. A basic
technique is loop unrolling. It removes the backward arc in the control flow graph,
thus the basic block is extended to contain ntimes of operations.

Tail duplication is another technique to extend basic block. As shown in Figure
4-6, the control flow graph is partitioned into 4 basic blocks by an i f - el se decision.
Duplicating BB4 and moving them into the i f - el se region will reduce the basic

block number to 3, but BB2 and BB3 are enlarged.

BBI [BB1 |

BB2 BB3 BB2 BB3

BB4 BB4

Figure 4-6. Basic block tail duplication.
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Control flow always limits the instruction stream to fill ILP wide spatial slot.
Sometimes if we know by profiling that a branch has a higher probability to execute,
it must be executed in parallel with a current basic block. The speculation technique
will bring this branch ahead before the check point to improve parallelism, and the
execution will be recovered if the speculation result is negative.

Preload is a frequently used speculation method. A memory load is able to
execute whenever the | oad/ st or e unit is not in use. If the control flow branches to
another path, the loaded data is just waste and will not affect the result. In moving
more instructions before the branch, more registers are required to store these

temporary results, which reduce the number of available registers in the basic block.

4.4 TLP Scheduling

Multitask OS scheduling is maintained on two levels: process and thread. A
process is a standalone program. Killing a process during scheduling will not affect
other processes. Process has its own heap and stacks memory, file handler, and so on.
Synchronization between processes is seldom. Thread is a piece of process execution
stream. Threads are not independent, killing a single thread may cause process
execution to fail. Each thread has its own stack, but the heap memory and file handler
are shared with others.

Threaded programming offers software portability for parallelization. On a serial
machine, threads can work concurrently by time sharing; on a simultaneous
multi-threading or multi-processor machine, threads can work in parallel
simultaneously. The difference of scheduling is taken care by the OS. To achieve
portability, a standard to handle threads is necessary.

4.4.1 Profiling

In a general code, 90% of the execution time is spent on 10% of the code.
Profiling is used to tell the programmer where the performance bottleneck is. The
result of profiling is statistical information on a code, such as execution time,

subroutine call statistics, operations used, and memory access time.



77

Satic profiling works by analyzing the representation of a program code without
executing it. The non runtime environment gives the possibility of going into greater
detail in the analysis but also places restrictions on it. Non deterministic properties,
such as recursion, dynamic data structures, and non bound loops in a code region
cannot be estimated without running data from the input, which in turn requires
dynamic profiling.

Dynamic profiling, on the other hand, executes a code with a given testbench
instead of analyzing it. During execution the profiler gathers a code which is being
executed and properties of the execution that are deemed interesting. The dynamic
profiling cannot give the engineer as profound information on the code as the static
profiling does, but it can report in detail what happens during the execution of the
code with a well-defined set of inputs.

In order to discover parallelism, data dependence is one of the most important
characteristics in a code. A code can often be clustered by its spurious dependences;
for example, the accesses of two memory objects may be conflicting, if the objects
cannot be proved independent. A single spurious dependence can prevent multiple
opportunities for parallel execution., Analysis clarifies the picture either by finding
precise data dependences or by removing spurious ones to improve parallelism [53].

The chief obstacle to discovering opportunities to parallelize a multimedia
application is identifying dependences between pointer references. A high-quality
pointer analysis is essential in determining the relationship between pointer references.
However, there are many coding constructs and programming practices that veil the
true picture of memory usage from pointer analysis. For some of these cases, like
recursive data structures and arrays, more specialized analyses such as shape analysis
and array analysis will be very helpful in clarifying the picture.

Pointer analysis determines what objects a memory reference can possibly
access. Heap-sensitive pointer analysis finds whether the allocation function for a
particular type of dynamically-allocated memory object is frequently reused to

allocate multiple objects. Such kind of code reuse is a must to distinguish objects that
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share a static allocation site. Field-sensitive pointer analysis will group together all of
the objects pointed to by a structure. This prevents the compiler from distinguishing
objects through those pointers. This case appears regularly since multimedia programs
commonly manipulate multiple data channels, and programmers use structures to
organize data hierarchically.

Array analysis can indicate whether or not the pointers really refer to the same
memory location, when two pointers are known to refer to the same object. This form
of analysis conveys information about which loop iteration carries a data dependency.
Array analysis can also determine whether different loops access the disjoint subsets
of a given object. Finally, array analysis can be used to derive the data correlation
between iterations of separate loops.

One important aspect of multimedia applications is that they often have a range
of supported sample rates, sizes, or resolutions and use many symbolic variables in
the interest of code reuse. Dimensions determined at runtime create non-affine
expressions and variable loop bounds, which 'stymie many simple array
disambiguation tests. In these cases, value constraints analysis can be obtained or
computed to assist the array disambiguation.

Value constraint analysis finds the information about the possible range or other
constraints on a value, it can be critical in evaluating symbolic tests. Many variables
in a code have a relatively small set of values during the majority of code execution,
restricted by control flow tests or written constants.

Value relationship inference helps to find out the relationship between the values
of different variables. Often, one variable is used to compute the value of several
other variables. When related variables appear in an index expression, symbolic
analyses typically lose precision unless they know the relationship between the
variables. These relationships are found by tracking values back through def-use
relationships to find common terms. This requires inter-procedural expression
computation through memory objects, often dynamically-allocated, to find the

relationships between values [54].
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4.4.2 Sructuring

Structuring the threads of a task helps to maximize concurrency and minimize
synchronization effort. Some structure patterns [55] used to parallelize a code are
presented in the following.

The basic structure is parallel threading. Typically parallel threads are
decomposed from an independent loop. When each iteration of a loop depends on
different data, they can be separated into threads and executed in parallel via loop
distribution as shown in Figure 4-7(a). When one loop produces a data that will be
consumed by the following loop, and each iteration of the following loop only
depends upon a limited and known number of iterations of the previous loop and does
not overwrite the first loop's input data, it is possible to execute part of the two loops
in parallel as long as the real data dependences are respected. Figure 4-7(b) shows

such an example.
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Figure 4-7. Loop parallelism.

The second structure is pipeline threading. This kind of structure can be derived
by using the software pipelining technique as depicted in Figure 4-5. Load balance is
a challenge in pipelining structure; it is restricted by loop-carried dependence. Figure
4-8 demonstrates an example. Figure 4-8(a) shows the data dependency graph of a
loop body, where a loop-carried dependence is represented by a backward arc. Due to
the existence of this arc, the graph has to be partitioned into three partial functions: A,

B and C. Figure 4-8(b) shows that the iterations of all functions are partitioned into
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threads and schedules as pipelining, each thread should wait for its dependent thread
to finish by pt hr ead_j oi n. Figure 4-8(b) is a message-passing implementation.
Three threads are partitioned into three processors. Send/receive is used for

synchronization, each work waits its requested data before it can run.

A0 AO| |[Al]| |A2
d join send ¢
Ab B[ BO| Bl B2
(a) DDG (b) Pipelined threads (c) 3 threads with communication

Figure 4-8. Pipeline thread structure.

The third structure is task/data decomposition. Assume that an algorithm has to
compute the average and difference of RGB components in an image. The two jobs
are independent; they can be parallelized by task decomposition. The processing on
RGB components is independent, they can be parailelized by data decomposition.

Data decomposition structure is often used to handle large input data such that all
threads can perform the same computation on different data areas. The data is often a
multi-dimension array that can be decomposed into multi-dimension grids. Sngle
Program Multiple Data (SPMD) coding style in which multiple threads run the same
code is a way to save instruction space. Each thread needs a mechanism to distinguish
its data grid. On thread creating, a parameter is put on its stack header as an argument;
thread can use this parameter to identify its grid location.

Task decomposition is often applied by a divide and conquer approach. A
complex task can usually be partitioned into many independent simpler sub-tasks.
Recursive algorithms such as binary search is an example of divide and conquer,
which main thread creates two child threads to search the two parts of an input
database. Each child thread also creates two child threads until the search range is

small enough.
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4.5 SIMDization for Memory Access Redundancy Optimization

In memory access dominated applications, good memory access organization
will greatly improve the performance. To reduce memory bandwidth, the memory
reuse concept is often used in an optimized compiler [56]. When a compiler works on
an array-based program, it will analyze reference patterns in the program to derive a
linear transformation of the data, and reorganize the computation to reuse the data
from memory hierarchy.

Memory misalignment is a critical problem when running multimedia
applications on an SWP-SIMD core. Most RISC-based processor requires all memory
accesses to be aligned, that is, the data loaded from memory cannot cross the 64-bit
boundary if the processor is of 64-bit width. In an SWP-SIMD core, many memory
components are packed as one superword to be accessed together. Although each
component is under boundary, the packed one may cross the boundary. For example
on processing RGB24 format picture, the packed element is 24-bit (8-bit for each of
the Red, Green and Blue components), the third element has to cross the 64-bit
boundary.

To adapt memory reuse concept for an SWP-SIMD core, avoiding misalignment
is very important. This will increase the complexity of the linear transformation
method. We introduce a graphical method to simplify the data organization analysis
for an SWP-SIMD core. Our method sequentially selects an aligned basic block, and
then parallelizes the operations bound to this block to avoid misalignment.

The first stage is to find a parallelizable memory load operation and its
maximum parallelizable code range. From the memory load operation, the
loop-carried data dependence is checked from the innermost loop to the outer loop. A
parallelizable operation might be hidden under bad coding style. To find the largest
parallelizable loop, all false dependences should be removed by the techniques
introduced in Section 4.1. After dependence removal, an SCC in the data dependence
graph as shown in Fig. 3 represents the largest parallelizable part of the algorithm.

The memory load operation in a single-tone SCC is chosen to begin our procedure. A
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single-tone SCC memory load operation represents that all memory items covered by
this operation are able to perform simultaneously. Thus we can reorganize the
computation sequence to fit our SWP-SIMD PLX platform constraint.

After a parallelizable memory load operation in the largest loop is determined,
we have to examine its cover area and redundancy. The memory cover area is
obtained by exploring the memory index in the loop. For a multimedia application,
the cover area usually forms a 2-D rectangle. The redundancy is obtained by dividing
the load operation count by the cover area word count. For example, 8 load operations
work on a 16-byte (two 64-bit words) area, the redundancy is 8/2=4. It means we can
reduce memory access time to 1/4 if all reuses can be applied.

The second stage is to group operations from the store operation on the unrolled
data flow graph. The group is used to select proper operations to pack into an
SWP-SIMD core. From each store operation, operations can be grouped by backward
tracing till the leaf of load operations. These operations are necessary to generate the
store result. A data should be kept in register until it is written into memory. Grouping
store operations as soon as possible can reduce the number of registers used for
temporary data. Thus the operations in the same group have higher priority to pack
together.

With these groups, we can examine the redundancy information. For a regular
array-based code, each group may cover the same size of load block by their load
operations. If a memory item can be reused for two blocks, their load blocks are
overlapped on this item. The load block offset can be transformed into a linear form to
help the block reorganization. For the image filter example in Section 4.1, the load
block is 3x3, and the next block is one item right or down shift.

The third stage is to allocate an aligned basic block, which is the smallest
memory area to preserve in register for reuse, and to be merged with the loaded
blocks. The left-top load block is selected first. When its right edge is not aligned to
the (64-bit) word boundary, the right load block, which is not overlapped, is merged

into the basic block. With this basic block size, we can immediately know how many
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registers are necessary to buffer the basic block. If we have enough registers, the basic
block can be extended right or down to increase register reuse.

The fourth stage is to analyze which groups need to reuse from this basic block.
The groups whose load operations are binding to the first row of the basic block are
chosen. These blocks may extend the load area to the right. The extra load result can
be reused for the next basic block. These groups become the unit to generate an
SWP-SIMD code.

The other groups can be generated by repeatedly applying the above four stages.
The outer loop can first go either rightward (in the x-axis direction) or downward (in
the y-axis direction). The direction which has a better reuse rate is chosen first.

We use three examples to explain this strategy. The first spatial-image filter
example containing much redundant memory access will be described in detail. The
second SAD example shows that its load block is not overlapped. And the third matrix
multiplication shows the application of a simple loop-unrolling parallelization

method.

4.5.1 Spatial Image Filter

A spatial image filter is a 2-D FIR (finite impulse response) filter, defined as:

a(xy) =

Sl MR . L
E h(ii, D*f(x+i-—,y+j—-—),
2 (1, ™ 1( 5 y+| 2)

i=0 j=
where f(X,y) is the image value at position (X,y), g(X,y) is the result image value, and h
is the filter impulse response matrix of size KXL. For example, a 3%3 sharpness filter

which can emphasize object boarder is given as:

I 1 1
h=|1 -7 1
I 1 1

The C code for a 96x96 image and 3x3 impulse response is listed as follows. The
border of array f is extended and filled with zero to simplify FIR boundary

management.
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Code 4-1. Spatial image filter
short f[98][98], g[98][98];
const short h[3][3]1={{1,1,1},{1,-7,1},{1,1,1}};
regi ster short R1, R2, R3, R4;
for(y=1; y<=96;y++) {

for(x=1; x<=96; x++) {

SO: R4=0;
for(j=0;j<3;j++) {
for(i=0;i<3;i++) {

S1: R1=f[y+] - 1] [ x+i-1];
S2: R2=h[j][i];
S3: R3=R1* R2;
S4: R4+=R3;
}
}
Ss: \ ol yl [ x] =R4;
}

The first stage is to find a parallelizable memory load operation, which is S1 in
this example. The largest parallelizable loop in S1 is the loop indexed by y. The S1
operation count is 96x96x3x3=82944, and the size of f array is 98x98x2=19208 bytes.
This will derive a redundancy of 82944/(19208x8/64)=34. Since the redundancy
value is large, we can expect to get good performance improvement by memory reuse.

The second stage is to group operations from each store instruction. The store
operations in S5 are within the loop indexed by y and x. This group is shown as the
blue area in Figure 4-9. The left-top load block f [ 0: 2] [ 0: 2] covered by the group
of index {y, x} ={ 1, 1} is the purple arca. The binding of load operations and
memory items are also shown on Figure 4-9.

The third stage is to allocate an aligned basic block. The left-top load block
f[0:2][0: 2] isnot aligned to the 64-bit boundary. The right non-overlapped block
f[0:2][3:5] belongs to the group indexed by {y, x}={1, 4}, which is not
aligned either. The next two blocks f[ 0: 2] [ 6: 8] and f[ 0: 2] [ 9: 11] are added
to reach the alignment boundary. The aligned basic block is f [ 0: 2] [ 0: 11] , and it
belongs to groups indexed by {y, x}={1, 1},{1,4},{1,7},{1, 10}. Nine

registers are used to buffer this basic block.
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The load operations bound to the first word of the basic block are y+j - 1=0 and
0O < x+i-1 < 3, and they contain S1 in iterations {y,X,],i}=
{1,1,0,0:2},{1,2,0,0:2},{1,3,0,0:1} and {1, 4,0,0}, having 9
operations in total. S1{ 1, 1, 0, 0: 2} and S1{ 1, 4, 0, 0} are within the basic block
groups, they are packed to generate first vector load instruction. By similar analysis,
S1{1,2,0,0:2} will induce 'a 'block f[0:2][1:12] by groups of
{y,x}={1,2},{1,5},{1, 8}, {1, 11} . The block is overlapped on basic block
with 1 item offset. Thus the left 11 columns can be shifted out from the 9 registers of
the basic block, but the rightmost column needs to be loaded. The extended load block
f[0:2][0:15] uses 12 registers to buffer. S1{1, 3, 0, 0: 1} induces a block
f[0:2][2:13] which is able to be reused from the extended load block. Thus,
groups of {y, x} ={ 1, 3}, {1, 6}, {1, 9}, {1, 12} are selected.

The SWP-SIMD instructions can be generated by processing the remaining data
flow graph. It begins from the first generated vector load instruction, shown as the
yellow area in Figure 4-9. The constant assignment S2 is expanded to fit the
SWP-SIMD size. The summation operation S4 is converted into partial summation.
The next step can move to the right (x-index) or down (y-index) in a similar way. The

right basic block f[0:2][13: 24] targets groups {Yy, x}={1, 13: 24}. The
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overlapped area with the extended block is f[ 0: 2] [ 12: 15], where 27 load
operations of the target groups are bound to it. The down basic block f [ 1: 3] [ 0: 11]
targets groups {y, X} ={ 2, 1: 12} . The overlapped area is f [ 1: 2] [ 0: 12] , where
72 load operations of the selected groups are bound to it. The better reuse rate is
y-axis.

The result pseudo code is built as follows. The outmost loop is X, increased by 12.
The inner loop is y, increased by 1. The basic block is loaded into 12 RL registers at
the beginning of y loop. At y=1, the 12 registers are loaded from memory, as listed in
SLa. The following y loop only needs to load 4 registers, the other 8 registers are able
to be reused from the previous iteration, as listed in SLb. The loop k represents the
three reuse phases. The basic block is the one obtained when k=0. The other k loops
are the two reused phases indexed by S1{1, 2, 0, 0: 2} and S1{1, 3, 0, 0: 1} as
discussed above. The innermost loop j contains the three rows of a block. In loop j,
R1 is shifted out from RL by an index of k. Finally, partial summation should be

summarized as S4b.

Code 4-2. SWP-SI MD code of spatial image filter
short f[98][98], g[98][98];
const short h[3][3]={{1,1,1},{1,-7,1},{1,1,1}};
regi ster packed_short RL[3][0:15];
regi ster packed_short R1[O0:11], R2[0:11], R3[0: 11],
R4[ 0: 11], Rs[ O0: 11] ;
for(y=1;y<=96; y+=12) {
for(x=1; x<=96; x++) {

SO: R4[j][0:11] =0;
if (y==1) { //first y, load from nmenory
SLa: for(j=0;j<2;j++) {

for(i=0;i<4;i++) RL[y+j-1][i*4:i*4+3] =
(& [j1Ix+i*4]);
}
} else { //reuse 2 rows fromlast y
SLb: for(j=0;j<2;j++) {
for(i=0;i<4;i++) RL[j][i*4:i*4+3]=
RL[j+1][i*4:i*4+3];
for(i=0;i<4;i++) RL[2][i*4:i*4+3] =



87

(& [y+1] [ x+i*4]);
}
for (k=0; k<3; k++) { //k=0: basi c bl ock,
[l others: overlapped bl ock
for(j=0;j<3;j++) {

S1: R1[ 0: 11]=RL[j ][ 0: 15] << (k*16);
S2: R2[0: 11]1={h[j][0:2],h[j][0:2],
h[j100:2],h[j][0:2]};

S3: R3[ 0: 11] =R1[ 0: 11] *R2[ 0: 11] ;
SAa: R4[ 0: 11] +=R3[ 0] [ 0: 11] ;

}

/[lfinal sequential summation
S4b: Rs[k]=R4[ 0] [0] + R4[O][1]+ R4[0][2];

Rs[ k+3] =R4[ 0] [ 3] + R4[ 0] [4] + R4[ O] [5];
Rs[ k+6] =R4[ 0] [ 6] + R4[ O] [ 7]+ R4[ O] [8];
Rs[ k+9] =R4[ 0] [ 9] + R4[ 0] [ 10] + R4[ O] [ 11];
} 11k
S5: for(j=0;j<12;j+=4) g[y][x+]:x+ +3] =Rs[] 1] +3];
Yy
} 1 x

The concept of memory access redundancy is represented in Figure 4-10. Figure
4-10(a) is the aligned basic block decided at the third stage. On the second x iteration,
the load block moves right as shown in Figure 4-10(b). The purple area is overlapped
with Figure 4-10(a) that can move from the load registers. Only the red area needs to
load. The red area is larger than the needed block, and it is used at the third x iteration
as shown in Figure 4-10(c). Thus the third x iteration does not load any memory.
Figure 4-10(d) shows the load block of the second y iteration.

While there is no loop-carried dependence in Code 4-2, it is parallelizable by
multi-thread, and loop x and loop y are exchangeable. By careful code scheduling, the
memory access redundancy of x-axis and y-axis can be combined to get more
performance improvement. Table 4-1 shows the results of 4 configurations. The first
two configurations are single thread by putting x or y at the outer loop. The last two
configurations uses two threads, their performances are better than the single thread

configuration.
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Figure 4-10. Memory access redundancy of Spatial Image Filter.

Table 4-1. Performance on four configurations of Spatial Image Filters.

Thread num | Outmost loop | Second loop Cycles
A 1 y X 51448
B 1 X y 38812
C 2 y 28 30613
D 2 X y 27168

4.5.2 SAD

H.264/AVC is one of the newest video encoding standards. The basic processing
unit in H.264 is a 16X16 macro-block, and a picture has to be partitioned into
macro-blocks before processing. In video encoding, motion estimation is the major
computational part, which occupies 78% of the computation power [57]. In video
encoding, a prediction block is formed based on previously encoded and reconstructed
blocks with motion vectors (MV). A motion vector is defined as the displacement of
an encoding (current frame) block and a reconstructed (reference frame) block that
yields the minimum sum-of-absolute-difference (SAD) value in a search range. In

summary, SAD is a criterion used to gauge the similarity between two blocks.
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For a KXL block, one has

K-1L-1

SAD(m,n) = > |C(i, j)-R(m+i,n+j)|,

i=0 j=0

where C(i, ) is the luminance value of a current frame pixel and R(, ]) is the
luminance value of a reference frame pixel. Argument (m,n) is the displacement of
two blocks, and KXL is the block size. A block can be a 16x16 macro-block, or one of
40 sub-blocks including sixteen 4x4, eight 8x4, eight 4x8, four 8x§, two 16%8, and
two 8x16 blocks. The SAD of a larger sub-block can be derived from the smallest
sixteen 4x4 SADs. Thus, the basic operation is to calculate the sixteen 4x4 SADs.

Figure 2-6 shows the sixteen 4x4 sub-blocks ordering in a 16x16 macro-block.
The algorithm used to calculate the sixteen 4x4 SADs on displacement (m,n) is shown
in the following Code 4-3. PICW and PICH are picture width and height, BX and BY
are macroblock location, sb is the sub-block number, and row and col are row and
column numbers in a sub-block.

There are two memory load operations: S1 and S2. The largest parallelizable
loop in S1 is the loop indexed by sb. The S1 operation count is 16x4x4=256, and the
C array size used is 16x16=256 bytes. Thus, the redundancy is 256/(256%8/64)=8.
This redundancy value is the same as the SWP-SIMD vector length, which means no
memory can be reused. The group of store operations in S5 is shown as the blue area

in Figure 4-11.

Code 4-3. Calculation of sixteen 4x4 SADs.
unsigned char CCPICH [PICW; //current frane;
unsigned char RIPICH [PICW; //reference_ frane;
regi ster unsigned char Rl, R2;
regi ster short R3, R4, SAD 16];
for(sb=0; sb<16; sh++) {
SO: R4=0;
for(row=0; row4; rowt+) {
for(col =0; col <4; col ++) {
S1: R1=C[ BY+sb/ 4+r ow] [ BX+(sh%) *4+col ] ;
S2: R2=R[ BY+n+sb/ 4+r ow] [ BXtmt(sb%l) *4+col | ;
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S3: R3= R1- R2;
4. R3=abs( R3);
S5: R4+=R3;
}
}
S6: SAD[ sb] =R4;
}

Figure 4-11. SWP-SIMD for Code 4-3.

The left-top load block C[ BY: BY+3] [ BX: BX+3] belongs to the group
indexed by sb=0, which is not aligned to the 64-bit boundary. Its right non-overlapped
block ([ BY: BY+3] [ BX+4: BX+7] belongs to the group indexed by sb=1, which is
aligned. Only four registers are used as the buffer memory. It has room to expand the
basic block, which is decided as ([ BY: BY+3] [ BX: BX+15] that uses eight
registers.

To deal with the outer loop, where no load block can leave rightward (in the
x-axis direction), we can only go downward (in the y-axis direction). And we observe
that all load operations bound to the basic block were transformed already, the next
block ([ BY+4: BY+7] [ BX: BX+15] to deal with is not overlapped with the basic
block. The result pseudo code is built as follows. The outmost loop is indexed by sb.

While the basic block does not need to buffer for reuse, and the remaining four rows
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behave the same, they are rolled into a loop indexed row-wise. While alignment check
is based on array C, alignment may occur at array R. This can be checked by offset m.
While S2b contains misaligned access, we can use one additional load and one shift to
maintain the alignment. While S3 works on 16-bit precision, the 8-bit precision R1b
and R2b should be expanded into 16-bit precision by using a permutation instruction,

as listed in S1w and S2w.

Code 4-4. SWP-SIMD result of 16 4x4 SADs.
unsigned char CCPICH [PICW; //current frane;
unsigned char RIPICH [PICW; //reference_franeg;
regi ster packed_byte R1b[O0:15], R2b[O0:23];
regi ster packed short R1wW 0:15], R2wf 0: 15], R3[0:15],
R4[ 0: 15], Rs[O0: 3];
for (sb=0; sb<16; sb+=4) {

SO: R4[ 0: 15] =0;
for (row=0; r ow<4; r ow++)
S1: for(j=0;j<2;j++) RL[]*8:]*8+7]=

* (& BY+sb/ 4+row] [ BX] ) ;

If ((n?Pd6)==0) {

S2a: for(j=0;j<2;j++) R2[]*8:]*8+7]=
*( &R[ BY+n+sb/ 4+row] [ BX+n]) ;

} else {

S2b: for(j=0;]<3;j++) R2[)*8:]*8+7] =
*( &R[ BY+n+sb/ 4+r ow] [ BX+m (n?d45)]) ;
R2[ 0: 15] =R2[ 0: 23] <<( ( n?d.6) *8) ;

}
Slw R1w 0: 15] =byt e2short (R1lb[ O0: 15] ) ;
S2w. R2w 0: 15] =byt e2short ( R2b[ 0: 15] ) ;
S3: R3[ 0: 15] =R1wf 0: 15] - R2wf 0: 15] ;
4. R3[ 0: 15] =abs(R3[ 0: 15] ) ;
Sha: R4[ 0: 15] +=R3[ 0: 15] ;

}
S5b:  Rs[sb] =R4[ 0] +R4[ 1] +R4[ 2] +R4[ 3] ;
Rs[ sb+1] =R4[ 4] +R4[ 5] +R4[ 6] +R4[ 7] ;
Rs[ sb+2] =R4[ 8] +R4[ 9] +R4[ 10] +R4[ 11] ;
Rs[ sb+3] =R4[ 12] +R4[ 13] +R4[ 14] +R4[ 15] ;
S6: SAD[ sb: sb+3] =Rs[ 0: 3] ;
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4.5.3 Matrix Multiplication

Matrix multiplication is a basic function module in many linear algebra programs.
The equation is represented as C=AxB where C is an MXN matrix, A is an MxK
matrix, and B is a KXN matrix. Sometimes B needs to be transposed to have C=AxB",

if B is an NXK matrix. The code for matrix multiplication is listed as follows.

Code 4-5. Matrix multiplication
int AAIMIK], B[KI[N, OM[N;
regi ster int Rl, R2, R3, R4;
for(m0; nkM mt+) {
for(n=0; n<N; n++) {

SO: R4=0;

for(k=0; k<K; k++) {
S1: R1=B[ k] [ n];
S2: R2=Al m [K] ;
S3: R3=R2*R1,;
4. R4+=R3;

}
Sb: d M [ n] =R4;

}
}

In the above code, the entire matrix B is loaded at every m iterations. If the cache
is large enough, matrix B will be loaded with data in cache at the first m iterations,
and reuse data in cache at other m iterations. If the cache is not large enough, only
part of matrix B’s data could be loaded from main memory, which increases the
execution cycle estimation complexity. In the following discussion, we assume that
the cache is large enough to hold a whole matrix. The case of a large matrix
multiplication will be discussed later.

Assume that a register has P subwords (register width=4P bytes for a float data
type). All S1 and S2 are for loading a new block data. ST has MxNxK counts, each of
the IMKK/ P loads take B cycles to load data from main memory; each of the others
takes a cycle to reload data from cache. S2 has MXNXK count, each of the NxK/ P
loads take B cycles to load from main memory; each of others takes a cycle to reload

data from cache. The total execution count is then ( NxK/ P) xp+( MxNxK- NxK/ P) x
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ot ( MK/ P) xB+( MKNXK- MK/ P) xo+MKNx( 1+Kx( 1+1) +1) =( 2M\K- NK/ P- M
K/ P) a+( NK/ P+ MK/ P) B +2NMNK+2IWN.
The following Code 4-6 shows how to unroll the loop of index k in factor P to

use the subword-parallel feature in a SIMD core.

Code 4-6. Second i npl ementation of matrix nultiplication.
float AIM[K], B[KI[N, OM[N;
regi ster packed float R1[0: P-1], R2[0: P-1],
R3[0: P-1], R4[ O: P- 1] ;
for (m=0; kM m++) {
for(n=0; n<N; n++) {

SO: R4[ O0: P- 1] =0;

for (k=0; k<K; k+=P) {
S1: for(j=0;j<P;j++) RL[j]=B[k+j][n];
S2: R2[0: P-1] =*(&AI M [ k] ) ;
S3: R3[0: P-1] =R2[ 0: P-1] *R1[ O: P- 1] ;
S4. R4[ 0: P-1] +=R3[ 0: P- 1] ;

}
Sb: CmM[n]=R4[ 0] +R4[ 1] +... +tR4[ P- 1] ;

}
}

P times of loads in S2 are merged into one load operation. S1 loads a matrix B in
the vertical direction, which cannot be merged. Instead, P load and P-1 pack
operations are used. S3 and S4 can be combined into subword-parallel. The final S5
summation takes 2P cycles. If K is a multiple of P, the total execution count is then
(NXK/P)XBHMXNXK-NXK/P)*xa+(MXK/P)*xB+(M*xNxK/P-MxK/P)xa+MxXNx
(1+K/Px(1+1)+2P)=(MNK+MNK/P-NK/P-MK/P)a-+NK/P+MK/P)B-+2MNK/P+
2MNP+MN.

The inefficiency of S1 load wastes too much time. We try to unroll the loop of

index n and keep the loop of index k.

Code 4-7. Third inplenentation of matrix nultiplication.
float AIM[K], B[KI[N, M[N;
regi ster packed _float R1[O: P-1], R2[0: P-1],

R3[0: P-1], R4[ O0: P-1];
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for(m0; nkM mt+) {
for (n=0; n<N; n+=P) {

SO: R4[ 0: P- 1] =0;

for(k=0; k<K; k++) {
S1: R1[0: P-1] =*(&B[Kk][n]);
S2: R2[ 0] =*(&A[ M [K] ) ;
S6: R2[ 0: P-1] ={R2[ 0], .., R2[ O] };
S3: R3[0: P-1] =R2[ 0: P-1] *R1[ O: P- 1] ;
S4: R4[ 0: P-1] +=R3[ 0: P- 1] ;

}
S5 m[n:n+P-1] =R4[ 0: P- 1] ;

}
}

Loop n is unrolled in factor P. While elements in matrix A are the same for all n
iterations, they are loaded in S2 and duplicated to fill the register in S6. P loads of S1
are merged into one load operation. The total execution count is
(NxK/ P) xg+( MKN/ PxK- NxK/ P) xo+( MXK/ P) x3+( MKN/ PxK- MK/ P) xa+
MKN/ Px( 1+Kx( 1+1+1) +1) =( 2MNK/ P- NK/ P- MK/ P) o+ ( NK/ P+MK/ P) g+
3MNK/ P+2MN P.

Compared to Code 4-6, the load counts of S1 and final sequential summation are
both much reduced; thus the performance of Code 4-7 is better than Code 4-6. The
main reason is that applying subword-parallel on row-major operations can improve
them. Code 4-7 works by partitioning a matrix C into many 1xP sub-matrices, and the
P multiplications can be calculated in parallel.

An MxN matrix multiplication can be partitioned into sub-matrix multiplications

as follows.
Ko
Y M N
Cpq =D AB,.0sp<—,0sqg<—
=0 H G

Matrix C is partitioned into M N sub-matrices, each sub-matrix is
H G
of HxG size. The size of sub-matrix A is HXJ, and the size of sub-matrix B is JxG.

Code 4-7 is the special case of H=1, J=1 and G=P. Generally for H, G and J, the

sub-matrix multiplication code is as follows.
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Code 4-8. Fourth inplenentation of matrix nultiplication
float ALM[K], B[KI[N, OMI[N;
regi ster packed float RI[J][GE P][0: P-1], R5[ 0: P-1],
R[H [J/P][0:P-1] ,R3[0: P-1] ,RA[H [G P] [ O0: P-1] ;
for(m=0; kM mt=H) {
if (J==K) {
f or (h=0; h<H; h++)
f or (k=0; k<K; k+=P)
S2a: R2[ h] [ k][ O: P-1] =*( &A] mth] [ K] ) ;
}
for(n=0; n<N; n+=G {
for(i=0;i<Hi++)
for(j=0;j<Gj+=P)
SO: Ra[i][j/P][O:P-1] =0;
for (k=0; k<K; k+=J) {
for(j=0;j<J;j+)
for (g=0; g<G g+=P)
S1: R1[j]1[g/P][0: P-1] =*(&B[ k+] ][ n+d]) ;
if (J'=K) {
f or (h=0; h<H;, h++)
for(j=0;j<J;j+=P)
S2b: R2[h][j/P][0O: P-1] =*(&A[ mth] [k+j ]) ;
}
for (h=0; h<H h++) {
for(g=0; g<G g+=P) {
for(j=0;j<J;j+=P) {
for(i=0;i<P;i++) {

S6: R5[ 0: P-1] =
{R[h][j/PITi], ..R[N][j/PI[i]};
S3: R3[0: P-1] =
R5[0: P-1]*R1[j+i][g/P][0: P-1];
4. R4[ h][g/ P][0: P-1] +=R3[ 0: P- 1] ;
Yol
Y1
} 119
} /lh
} Ik

for(i=0;i<Hi++)
for(j=0;j<Gj+=P)
S5: i ][N+ :n+j +P- 1] =R4[i ][]/ P][O: P-1];
} //n
} //m
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In every k loop, the HxJ elements of sub-matrix A are loaded into R2 by S2b,
and the JxG elements of sub-matrix B are loaded into R1 by S1. When J is equal to K,
HxJ sub-matrix occupies a full row of matrix A, R2 remains unchanged for all n
iterations, thus it can be moved out of loop n to S2a. This kind of load redundancy
removing can deliver better performance.

For J=K, the total execution count is then:

(NxK/ P) xp+( M HxN GxKxG P- NxK/ P) xa+( MxK/ P) x+
(M HxHxK/ P- MkK/ P) x o+M HxN G

X( HxG P+K/ Kx( HxG PxKx( 1+1+1)) +HxJ P)

=( MNK/ HP- NK/ P) o+( NK/ P+MK/ P) 3+2MV P+3IMNK/ P.

This equation is not related to parameter G, it decreases when H increases. The
reason is that the count of S2a becomes constant to load a matrix A, redundancy only
exists on S1 that has relation to H. The minimum execution count occurs on the
largest H count derived from the register used.

Code 4-8 uses JH P+JG P+HGE P+2 registers, it should be less than the
available register number Q, as shown in the following inequation:

JH P+JE P+HG P+2 < Q

Maximum H is represented as:

H< (PQJG2P)/(J+Q

H increases when G decreases. To use subword-parallel feature, G should be a
multiple of P, and the minimum is P. The maximum H for Q=32, J=K=16 and
G=P=4 is H=[ (4%32- 8x4-2x4) [ (8+4)] =2.

The inequation of J then becomes:

J < (PQHG2P)/ (HQ (4-1)

When maximum J occurs at minimum H=I1 and G=P, the above inequation

becomes

J < (PQ P-2P)/ (1+P)
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When K is greater than the maximum J, a register is not large enough to hold a
full row of matrix A, so R1 should be reloaded at each n iteration. The total execution

count of Code 4-8 with JI=K is

count =( NxK/ P) xg+( M HxN GxK/ JxJxG P- NxK/ P) xa+( MxK/ P) %3
+( M HxN GxK/ JxHxJ/ P- MKK/ P) xor+M HxN Gx
( HXE P+K/ Jx( HXE PxJx( 1+1+1) ) +HxGE P)
= ( MNK/ HP+MNK/ GP- NK/ P- MK/ P) o+
( NK/ P+MK/ P) g+2MN P+ 3MNK/ P. (4-2)

The above equation is not related to J, that is, the partition of dimension K does
not affect the execution cycle. We can select a minimum J (=P) to reserve register for
other dimensions.

By the basic arithmetic average theory:

H+G . /HG

2

The lower bound of Eq (4-2) is

count = ((MK/ P)(2/ yHG)) ot+(- NK/ P- MK/ P) o+
( NK/ P+MK/ P) g+ 2MN/ P+ 3MNK/ P.

The minimum execution count will occur at HG which is maximum and satisfies
Eq (4-1). This is an integer programming problem to be solved. Since the available
register number Q is not large, if the solution space is small, it can be directly counted.
For example, if Q=32, J=P=4, the maximum HG is 56. While G should be a
multiple of P to utilize subword-parallel feature, we can select G=8 and H=7.

In geometric view, the larger the sub-matrix of C, the fewer iteration needed. The
maximum HG is the maximum size of sub-matrix C.

Large matrix multiplication can be partitioned with similar thinking. The
register-cache relation is extended to cache-memory relation. When a matrix is too

large to fit in the cache, it can be partitioned into smaller sub-matrices that can fit in
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the cache, and perform sub-matrix multiplication. If the sub-matrix of C is H* xG’,
sub-matrix of A is H’ xJ’, sub-matrix of B is J’ XG’, and cache size is Q’, to fit the 3
sub-matrices into a cache, the inequation is”

JJH +J3' G +H G <Q (4-3)

Similar to the discussion on Code 4-8, if J' =K, the sub-matrix H xJ’ can fill a
full row of matrix A, and remains in cache with an N dimension moving, the
performance is the best. If the cache size is not large enough to fit J’ =K, assign J’ to
a minimum of P, and select a maximum H XG , where G must be a multiple of P
and satisfy Eq. (4-3).

The above discussion requires that the matrix dimensions N and K are a multiple
of the subword capacity P to fully utilize the subword-parallel feature. If they are not
a multiple of P, the rightmost or bottommost sub-matrix multiplication should work
under lower parallelism.

When M=1, the matrix multiplication changes to a vector-matrix multiplication.
Eq. (4-2) is able to use for M=1 and H=1, the minimum execution counts occur at
maximum G that satisfies Eq. (4-1).

When N=1, the matrix multiplication changes to a matrix-vector multiplication.
A one-dimension vector is stored as a row in memory. Elements in a row can be
loaded together, the P load operations in S1 of Code 4-6 can be merged into one load
operation, thus Code 4-6 can be used for N=1.

When K=1, matrix A is a column vector and matrix B is a row vector, and the
resultant matrix C is an MxN array built of vector scalars. The first resultant row is a
vector with B scalars of A[0], and the second resultant row is a vector with B scalars

of A[1]. The result is the same as Code 4-7 with K=1.

4.5.4 Performance Analysis

To calculate the performance, some platform parameters, such as cache block

size and memory access latency, are needed.
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The latency of loading data from main memory is a cycles, and the burst length
is 4 for a 32-bit SDRAM. The cache word line is 32 bytes, and the latency of cache hit
load is B cycles. The cache contains a line buffer; sequentially loading from the line
buffer needs y cycles of latency. On a portable device running at 100MHz clock, the
typical value of B is 7, which includes address calculation, bus issue, SRAM address
assert, SRAM data load, send to store stage, write into register buffer, and fetch into
operand. The average value of a is 20, which contains cache miss, external bus
request, and SDRAM refresh wait. Cache size is assumed to be large enough to buffer
all data.

To focus on comparing load reuse, memory store latency and all arithmetic
instructions are assumed to be 1-cycle. All codes have been unrolled to remove the
jump invalidation penalty and memory address calculation overhead. The execution
cycles of above 3 codes are listed in Table 4-2, assuming =20, =7, y=3,
M=N=K=32, and P=8. Without loss of generality, we assume that data in the current
frame exist in cache, and those in the reference frame are loaded from main memory
for the SAD example.

We can observe from Table 4-2 that memory access latency of the Spatial Image
Filter example is largely reduced, but ALU execution has only two times speedup. It
is because the additional shift operation SLb and the final sequential summation S4b
occupy a large part of the execution time. In the SAD and Matrix Multiplication
examples, loaded data are not reused; their speedup is contributed to SWP-SIMD

parallelization.
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Table 4-2. Performance on SIMDization of the three Examples.

Original SWP-SIMD Speedup

Memory Total Memory Total M T

Spatial | 588a+27550B8+5 | MT+267264= | 588a+686p+1862y | MT+124320 | 16.60 4.34

Image | 4806y=369028 636292 =22148 =146468

Filter

SAD 160+4967=1808 | MT+800=260 | 16a+48y=464 MT+136= 389 | 434
8 600

Matrix | (MK/8+NK/8)a+ | MT+2MNK+ | (MK/8+NK/8)a+ MT+3MNK/ | 3.57 | 3.40
Multipl | (2MNK-MK/8-N | 2MN=431360 | (MNK/4P+2MNK/ | 4+MN/2=
ication | K/8-3MNK/4)p+ P-MK/8-NK/8)B+( | 126720

(3MNK/4)y= 3MNK/4P+(P-4)M

363776 NK/2P)y=101632
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CHAPTER FIVE
CONCLUSION

We had designed a PLX-based multi-processor system-on-chip. The system
design was started with knowledge obtained from many multimedia applications. By
anayzing multimedia applications, we decided that the processor needs an
SWP-SIMD instruction set to process low-resolution pictures in a data level
parallelism way. Thefirst version PLX chip can run at 260MHz.

Multimedia applications can be parallelized on thread level parallelism. The
simultaneous multi-threading technique improves processor performance/power
efficiency by increasing ALU pipeline stages and removing bypass logics. A
VLIW/SIMD instruction-level configurable issue-logic design enables 32-bit scalar
operations to work more efficiently in a64-bit core. The improved PLX2 chip can run
at 520MHz.

To enable messages be sent directly core-to-core to reduce communication traffic,
amessage-passing over private cache design is introduced by configuring the cache to
perform as FIFO. To reduce the programmer effort, an OpenMP to TLM tool is made
to transform OpenMP code into an MPI code. A SystemC TLM platform was
introduced for system level hardware/software co-design and co-verification.

A parallélization tool is made to transform fine grain loop tailored for a PLX
SWP-SIMD feature. It focuses on reducing memory access redundancy by aligning
memory boundary and reusing the memory content loaded in the register and cache.

For the cost/power efficiency and programmability purposes, a system-on-chip
embedded with an application-specific instruction set processor is necessary at the
nano-meter era. A complicated hardware-in-the-loop design flow induces heavy work

on engineers who have to develop system level models, a multi-level parallelized
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processor, a parallel compiler, and a real-time OS for the multi-core SoC. This
Dissertation gives an overall introduction to materials on all these knowledge domains.
The experiences gained in the implementation of a PLX processor by system-level
design and verification tools can shorten the design cycle. We hope that our success

will encourage more multi-core system research and implementation.
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