
國立臺灣大學電機資訊學院電機工程學系

博士論文

Department of Electrical Engineering

College of Electrical Engineering and Computer Science

National Taiwan University

Doctoral Dissertation

晶片上多核處理器與其驗證模型之設計

Design of On-chip Multi-Processor

 and its Verification Model

林光輝

Guang-Huei Lin

指導教授：陳少傑 博士

Advisor: Sao-Jie Chen, Ph.D.

 中華民國 98年 8月

August, 2009

致謝

感謝普林斯頓大學的Ruby Lee教授提供並且指導PLX指令集的使用，使我

們在處理器設計有很好的入門基礎。

感謝威斯康辛大學的胡玉衡教授的指導，使我們對演算法的最佳化、多媒體

應用及處理器架構等有更深入的了解，使得研究得以順利完成。

感謝蘇培陞博士的指導，使我們得以快速掌握電子系統層級這個新興且複雜

的領域，進而開啟軟硬體共同設計的研究方向。

感謝中正大學的熊博安教授與林朝聖同學設計了PLX的即時作業系統。

感謝曉龍在編譯器研究上的貢獻，君任在系統驗證上的貢獻，英誠在NoC

研究上的貢獻，亞南在多媒體演算法上的貢獻，盈貝在FPGA製作的協助，以及

伯壎在生醫電子應用的咨商，使我們的研究完整且有扎實的基礎。

感謝振哲，鴻奎及泗紋在程式撰寫與晶片佈局上的努力，使我們的實作得以

完成。

再次感謝所有協助這個論文完成的所有老師和同學們。

中 文 部 分

i

摘要

這論文是一個研究專案的成果，旨在開發嵌入式多媒體系統使用的晶片上多

核處理器架構。近年來晶片上多核處理器已經成為數位電路設計，計算機輔助設

計，以及嵌入式系統開發的焦點。我們的重點是設計一種新型的基於PLX的單指

令多資料指令集架構的晶片設計平台。本論文探討研究成果的幾個面向，包含各

種單處理器與多處理器的微架構，系統層級軟硬體協同設計和協同驗證，以及平

行化的方法。

ii

iii

目錄

摘要 ..i

第一章 簡介 ...1

第二章 處理器設計 ...2

第三章 系統級設計與驗證..3

第四章 平行化 ...4

第五章 結論 ...5

iv

1

第一章
簡介

 隨著半導體工藝技術已經縮小到奈米級，一個晶片可以包含上億個電晶體。

由於晶片設計的複雜度增加，以及應用多樣性的需求日益提高，使得晶片的市場

及時性 (time-to-market) 與市場延續性 (time-in-market) 之重要性大大提

昇，從而導致可程式化的晶片上多核處理器之普及。而電子系統層級 （ESL）設

計驗證方法的採用降低了大型系統晶片的設計時間並提昇可靠度。

 為提高處理器的性能以期能與特定應用集成電路（ASIC）相抗衡，必須從處

理器的微架構，多處理器通訊與以及軟體平行化等多方面作努力。

 本論文採用由下而上的設計方法。從多媒體的應用分析開始，藉由所遭遇的

問題與提出解決方法，而引導出次字組平行的單指令多資料PLX指令集，超長指

令字組，同時多執行緒，與快取間的直接資訊傳遞等設計架構。內容安排如下：

第二章介紹了這些設計架構的細節，第三章介紹了系統層級設計和驗證，第四章

介紹了軟體的平行化技術，以及最後第五章給出結論。

2

第二章
處理器設計

 在多媒體應用中，大多是處理低解析度的資料。若一個 64 位元處理器能同

時處理8個8位元像素，則效率提高8倍。次字組平行的單指令多資料多媒體延

伸指令集發揮了這個特色。在嵌入式系統，我們通常用定點數取代浮點數以降低

成本與功耗；為解決定點數溢位造成的精確度下降，需要特殊指令來處理。在加

解密及快速傅利葉轉換常需要重新排列資料，而在單指令多資料運作下位元組間

的移動也變成了排列運算；提供各種排列指令可大幅提升效率。當兩個影像重

疊，各像素的亮度應該相加，當相加後亮度太高造成溢位，表現出來的反而是暗

灰色。為避免溢位的失真，相加溢位後亮度應該設為飽和值。飽和運算需要許多

比較與分支指令因此效率極差，提供飽和運算指令對影像處理有極大助益。

 在設計處理器元件時，我們考量的是速度與面積的取捨。在元件中，暫存器

組、快取記憶體控制與乘法器所佔面積最大，加法器面積不大但使用最頻繁，因

此使用面積較大的進位選擇加法器可得最佳效益，並且進位選擇加法器可很容易

支援不同解析度的單指令多資料操作。經由速度-面積的曲線分析，第一版 PLX

處理器的最佳操作速度是260MHz。

 由於多媒體尚有許多 32 位元純數運算，使用 64 位元處理器會浪費許多功

率，因此我們使用超長指令字組的技術使兩個 32 位元指令可同時執行。但此技

術需要較多的暫存器組存取埠與旁路邏輯，會拖慢整體效能。藉由同時多執行緒

技術可消除旁路邏輯以及分支預測邏輯。沒有旁路邏輯的運算單元可以增加管道

級數並平行化，藉由分時多工使第二版PLX2處理器的運算速度加倍至520MHz.

 使用energy-delay-area乘積比較兩版本的效率，對於能平行化且記憶體存

取與計算能重疊的程式，第二版的效率較佳。對於循序演算法，第一版效率較佳。

3

第三章
系統級設計與驗證

 在多處理器系統，處理器間通訊的頻寬決定了晶片的整體效能。多處理器系

統通常連結成網路，而依照記憶體共享方式的不同有四種架構。第一種是各處理

器獨立，處理器間透過網路交換訊息。第二種是完全共享，每個記憶體都有唯一

的位址，可以透過直接記憶體存取方式溝通。第三種是私有快取，資料提供者須

把資料寫入共用記憶體，使用者再從共用記憶體提取。第四種是分享快取，第二

層快取分散在每個處理器，透過快取同步的機制溝通。前兩種方式傳送一筆資料

只要用到一次網路，而後兩種方式需要用到兩到三次網路，前兩種方式較有效

率。由於快取是用來暫存最近用過的資料以免重複自晶片外提取，若用前兩種方

式，軟體設計者須自行管理重複資料提取，這是很大的負擔。

我們設計一個機制，可暫時把快取的一部分當作訊息的先進先出緩存區，使

處理器間可以像第一種方式般直接傳送訊息以減少網路使用，但仍保留快取的優

點。另外設計一個 OpenMP to TLM 的工具以減輕軟體設計負擔。它分析 OpenMP

程式的 shared 參數，依其大小與可平行化程度決定要使用直接傳送還是透過共

用記憶體來溝通。所有的通訊與記憶體存取都改成MPI型式，各程序的運算時間

也用profiling的方法分析出來。產生的程式可放在SystemC TLM平台上跑以得

到較精確的時間資訊。

4

第四章
平行化

 軟體平行化的技術從 1960 年代開始發展。藉由分析迴圈內各變數的相依

性，再用變數更名、純量擴展及迴圈轉置等技術移除假相依，許多迴圈可以轉換

成為單一向量表示。而向量化的程式可以套用在單指令多資料指令集而得到資料

階層的平行化。

 針對次字組平行的單指令多資料指令集，有許多新的挑戰要克服。首先是控

制流，由於次字組無法各別執行分支指令，控制流必須轉換為資料流才能平行

化。第二是記憶體位址對齊，由次字組所組成的向量，其起始位址不一定在 64

位元邊界，運算時須移位對齊。而當需要重新排序與移位時，排序指令的選擇與

使用順序也大幅影響效能。這些工作需要更深入的程式行為分析。

 多媒體應用通常需要大量存取記憶體，減少多餘的記憶體存取也是增加效能

很重要的關鍵。當使用迴圈轉置進行向量化時，可能有許多種可行的組合，而這

些組合中記憶體存取次數最少者通常效能最佳。我們採用一個系統化的方法尋找

最佳組合。首先將所有可平行化的迴圈展開，將所有運算依其資料相依性重建為

一個樹。依照暫存器的數目以及記憶體位址對齊等條件，從最靠近樹根的運算中

找出基本運算方塊重建為最內層的迴圈。接著從剩餘運算中找出其記憶體存取位

址與基本運算方塊重疊最高者，依其規則重建外層迴圈。記憶體存取位址重疊

時，其資料可由先前載入的暫存器經移位得到，因而減少了記憶體存取次數。當

使用同時多執行緒時，多個運算方塊可重疊而得到更高的記憶體資料重利用率。

5

第五章
結論

 我們設計了一個PLX為基礎的晶片上多核處理器。通過分析多媒體應用，我

們決定了次字組平行的單指令多資料指令集架構及所需的特殊指令。第一版PLX

晶片可以運行在260MHz。

透過超長指令字組與單指令多資料的整合設計使 32 位元程式更有效地工作

在 64 位核心上。同時多執行緒技術增加運算單元管道級數和消除旁路邏輯以提

高處理器的速度。改進的PLX2晶片可以運行在520MHz。

為了使訊息在處理器間直接傳送以減少網路通信量，一個將快取的一部分當

作訊息的先進先出緩存區的機制被提出。為了減少軟體設計的負擔，一個工具將

OpenMP程式轉換為MPI,並可在SystemC TLM平台上執行軟硬體協同設計和協同

驗證。

針對PLX單指令多資料與多媒體程式特性提出一個平行化工具。除了向量化

外，另一個重點是減少多餘的記憶體存取以及記憶體邊界對齊的額外負擔。

在奈米時代，使用有特定應用指令集可程式化的晶片上多核處理器，並致力

於提高其性能功率效率是必須的。而這個結合軟硬體的設計流程對系統階層模

型、處理器設計、平行化編譯器與及時作業系統的設計者都是很大的負擔。這篇

論文對於相關領域的知識與整合有概略的探討，希望我們的經驗對於多核系統的

研究設計有所貢獻。

 i

ABSTRACT

This Dissertation is the outcomes of a research project aiming at developing

multi-processor System-on-Chip (SoC) architecture for embedded multimedia

systems. Since its inception a decade ago, SoC has captured the attentions of

application specific integrated circuit (ASIC) design houses, computer aided design

(CAD) companies, and embedded system developers. In particular, the immense

popularity of killer multimedia gadgets, such as the iPod and smart phone, has fueled

unprecedented interests in developing new generation multimedia SoC systems.

We focused on the design of a novel SoC platform based on a PLX

Subword-Parallel Single Instruction Multiple Data (SWP-SIMD) instruction set

architecture. Most of the materials included in this Dissertation are drawn from the

outcomes of our research project. Several single-processor and multi-processor

micro-architectures are deeply studied and adapted to our design. However, the high

level of integration also brings great challenges to system designers. Hardware and

software are necessarily becoming convergent and must be fully concurrent design

endeavors. The system level hardware/software co-design and co-verification

methodologies are also discussed in this Dissertation.

ii

 iii

TABLE OF CONTENTS

ABSTRACT... i

LIST OF CONTENTS ... iii

LIST OF FIGURES ...v

LIST FO TABLES ... vii

LIST OF CODES... ix

CHAPTER 1. INTRODUCTION ..1

CHAPTER 2. ASIP DESIGN ..5

2.1 PLX Processor Design ..6

2.1.1 SWP-SIMD...6

2.1.2 Fixed Point ..11

2.1.3 Permutation...11

2.1.4 Saturation Arithmetic ..12

2.1.5 Critical Path Analysis..12

2.2 Implementation of ME on PLX ...14

2.3 PLX2 Processor Design ...19

2.3.1 MAC on VLIW ...20

2.3.2 Reconfigurable VLIW/SIMD ...21

2.3.3 VLIW Limitation ..23

2.3.4 SMT ..26

2.3.5 Power Efficiency Consideration ...29

2.3.6 PLX2 Performance..30

CHAPTER 3. SYSTEM LEVEL DESIGN AND VERIFICATION35

3.1 Memory Sharing ..36

3.2 Message Pass over Private Cache ..38

3.3 TLM ...40

3.4 OpenMP to TLM..42

iv

CHAPTER 4. PARALLELIZATION ..59

4.1 Vectorization ..59

4.1.1 Dependence Analysis ..60

4.1.2 Loop Normalization ..62

4.1.3 Loop Transformation ..63

4.1.4 Dependence Removal ...63

4.1.5 Strongly Connected Component ...65

4.1.6 Loop Distribution ..66

4.2 SIMDization ..67

4.2.1 Control Flow Conversion ..67

4.2.2 Memory Alignment ...68

4.2.3 Permutation Optimization ...70

4.2.4 Subword Fusion ..71

4.2.5 Matrix Transposition ...71

4.2.6 Reduction ..72

4.2.7 Loop Unrolling ..73

4.3 ILP Scheduling ..74

4.3.1 Software Pipelining ...74

4.3.2 Basic Block Extension ..75

4.4 TLP Scheduling ...76

4.4.1 Profiling ..76

4.4.2 Structuring ...79

4.5 SIMDization for Memory Access Redundancy Optimization81

4.5.1 Spatial Image Filter ...83

4.5.2 SAD ...88

4.5.3 Matrix Multiplication ..92

4.5.4 Performance Analysis ...98

CHAPTER 5. CONCLUSION ...101

REFERENCES ..103

BIOGRAPHY ..107

 v

LIST OF FIGURES

Figure 2-1. Subword-parallel execution ...8

Figure 2-2. Power-aware reconfigurable pipelined adder..................................9

Figure 2-3. High-performance subword-parallel adder10

Figure 2-4. PLX chip architecture...13

Figure 2-5. Delay-area trade-off in components ..13

Figure 2-6. SAD computation using PLX ISA ...17

Figure 2-7. Execution of MAC on VLIW...21

Figure 2-8. Reconfigurable VLIW/SIMD design ...21

Figure 2-9. Register file ...24

Figure 2-10. Bypass path in a 2-issue VLIW ...24

Figure 2-11. Unbundled branch ..26

Figure 2-12. 4-thread time-sharing SMT execution...27

Figure 2-13. Equivalent ALU micro-architecture...30

Figure 2-14. PLX2 chip architecture...31

Figure 3-1. Memory sharing strategies ...37

Figure 3-2. Message passing over private cache...39

Figure 3-3. OpenMP to TLM ..43

Figure 4-1. Dependence graphs ..66

Figure 4-2. Steaming vectors loading ...69

Figure 4-3. Interleaved average/difference implementations70

Figure 4-4. Matrix transposition in SWP-SIMD ..72

Figure 4-5. Software pipelining ...75

Figure 4-6. Basic block tail duplication ...75

Figure 4-7. Loop parallelism ..79

vi

Figure 4-8. Pipeline thread structure ...80

Figure 4-9. SWP-SIMD for Code1 ...85

Figure 4-10. Memory access redundancy of Spatial Image Filter88

Figure 4-11. SWP-SIMD for Code3 ..90

 vii

LIST OF TABLES

Table 2-1. PSNRs of two SAD methods ...19

Table 2-2. VLIW/SIMD configurations ...23

Table 2-3. Component areas of PLX and PLX2...32

Table 2-4. Cost comparison..33

Table 4-1. Performance on four configurations of Spatial Image Filters.......88

Table 4-2. Performance on SIMDization of the three Examples100

viii

 ix

LIST OF CODES

Code 2-1. Modified spiral search algorithm. ...16

Code 3-1. Example OpenMP code. ...47

Code 3-2. Converted pthread code..48

Code 3-3. SystemC TLM platform. ..51

Code 4-1. Spatial image filter..84

Code 4-2. SWP-SIMD code of spatial image filter..86

Code 4-3. Calculation of sixteen 4×4 SADs. ..89

Code 4-4. SWP-SIMD result of 16 4×4 SADs.. ..91

Code 4-5. Matrix multiplication...92

Code 4-6. Second implementation of matrix multiplication.93

Code 4-7. Third implementation of matrix multiplication..............................93

Code 4-8. Fourth implementation of matrix multiplication.95

x

 1

CHAPTER ONE

INTRODUCTION

In last decade, performance/area efficiency is the main concern in designing

chips, all commercial chips must have the highest performance and smallest area. As

semiconductor process geometries have shrunken into nanometer, more and more

gates can be integrated into a chip, thus logic area becomes less sensitive.

In 1965, Gordon Moore predicted that the number of transistors incorporated in

an IC would increase twofold every year. This was really an amazing prediction that

proved to be more accurate than Moore had believed. In the past few decades, the

scale of IC integration has been soaring high. It started from Small Scale Integration

(SSI) with around 100 transistors per IC in 1960s, up to Very Large Scale Integration

(VLSI) accommodating more than 10,000 transistors per IC in 1980s. There is no sign

that such tendency would ever cease. In recent years, the integration scale has only

slightly slowed down to a factor of two for every eighteen months. The outburst of IC

complexity, as predicted by Moore’s Law, is driving the current semiconductor

industry to challenge another cutting edge revolution: System-on-Chip (SoC) with the

capacity of integrating more transistors in a single chip to form an entire electronic

system. This concept is feasible thanks to the very exceptional manufacturing

advances that bring IC nanotechnology to fruition. As Moore's Law continues

unencumbered into the nanometer era, process geometries have shrunken to 65 nm,

chips are reaching the giga-gate scale. A normal 32-bit multiplier may contain 8,000

gates. Adding computation components into an SoC will not increase the chip area too

much.

In SoC era, energy consumption and time-in-market/time-to-market become new

concerns. SoC used in portable handheld consumer electronic products is more and

2

more popular. For handheld devices, battery endurance is an important parameter.

Time-in-market is also as important as time-to-market. Any new chip production

needs to pay a very high non-returnable engineering (NRE) cost even if there is only

a little modification from the previous version. By the same reason, we wish that the

chip can sustain longer and re-useable for more applications. For example, in IP-based

4G wireless communication, we would like to design a chip used for both WiMAX

(Worldwide Interoperability for Microwave Access) and LTE (Long Term Evolution),

while these standards are not well-defined. The key to applying a single integrated

circuit to multiple applications for both time-to-market and time-in-market is

programmability.

An application specific instruction-set processor (ASIP) is a

software-programmable processing-element tailored for this purpose. It provides an

efficient and economic way for a particular application computation. An ASIP may

add some multimedia operations or encryption operations into its instruction-set to

improve performance with low cost-overhead.

Traditional hardware-software partitioning is simply as: critical functions

performed by specific hardware and control-oriented functions by software. Here

specific hardware is defined as an application specific integrated circuit (ASIC)

which is a special design dedicated for an application, and software means running a

code on a general purpose processor. In the last century, most embedded systems need

specific hardware to process multimedia applications, with the constraint of power

consumption or performance. In general, specific hardware is more power-efficient

than software for an application with the same performance. But specific hardware is

less flexible to adapt to new features.

To compete with the performance of ASIC, many parallelization techniques are

adapted into ASIP. These techniques include data level parallelism (DLP) in a single

instruction multiple data (SIMD) processor, instruction level parallelism (ILP) in a

very large instruction word (VLIW) processor, thread level parallelism (TLP) in a

multi-threading processor. Armed with these parallelism mechanisms, multi-processor

3

system-on-chip (MPSoC) becomes more and more feasible and popular in portable

handheld consumer electronic products.

Therefore, a specialized parallel compiler becomes more important to optimize

an application on a specific multi-core processor. This kind of parallel compiler has

not only to translate high-level programming language instructions into the target

ASIP codes, but also to schedule these instructions to exploit the parallelization

capability of that ASIP.

Software needs to run on its target processor. While processor and compiler are

designing, software is unable to design until a prototype was developed. Without

verification by software, the processor is not guaranteed to meet system constraints,

thus the ASIP needs to be re-designed many times. To reduce the long cycle, both

developing software as early as possible and evaluating system constraints at a higher

system level become very important.

Electronic system-level (ESL) design methodology has been introduced to

decrease design cost and design time for large scale SoCs. Two methodologies had

been introduced to implement an ESL design, a bottom-up process and a top-down

process [1][2].

The top-down process begins from specification. It automatically decomposes a

specification into hardware and software under cost, power and performance

constraints. In this process, a system is described at a high abstraction layer by an

architecture description language (ADL). Such a processor described in ADL can

easily change its instruction set, pipeline stage, register file size, and issue width. The

C compiler, instruction set simulator, and synthesizable RTL code can be generated

automatically. The algorithm that should be processed by a dedicated hardware to

satisfy performance requirement must be translated into RTL code by high level

synthesis (HLS) technique.

In a bottom-up process, the fundamental building blocks of an SoC are

intellectual property (IP) cores, which are reusable hardware blocks designed to

perform the particular task regarded in a given component. An IP core could either be

4

a programmable component like a processor such as ARM or MIPS, or a hardware

entity with fixed behavior like an MPEG accelerator. Different IP cores are

interconnected on an SoC by a communication structure, such as a shared bus or a

network-on-chip (NoC), in order to establish communication among them. IP reuse is

the main challenge in a bottom-up process. A reusable IP can be obtained from the

third-party IP provider. While every IP provider has a large amount of in-house IPs, it

is difficult to integrate IPs from different providers without a standard. Typically IP

providers would not release their RTL design. The time spent to identify a third-party

IP and integrate it into the designed system places this approach at an unfavorable

position compared to designing the IP in-house. A higher level Transaction Level

Modeling (TLM) description is more feasible for IP providers to protect their design.

TLM is the current promotion methodology used for hardware/software

co-design before and after hardware/software partitioning. Before partitioning, TLM

could be used to create a point-to-point, addressless functional yet concurrent system

model, reusing IP behaviors from application engineers. After partitioning, TLM

automatically wraps the behavior in the address-mapped TLM model for embedded

software functional verification.

PLX [3], developed by Professor Ruby Lee at Princeton University, is a native

subword-parallel single instruction multiple data (SWP-SIMD) instruction set

architecture (ISA) [4] that supports high-performance, low-cost multimedia

information processing, 3-D graphical processing and permutation instructions for

security operations.

This Dissertation intends to discuss many of the above mentioned

hardware-software codesign issues that we encountered in designing a PLX-based

embedded multimedia SoC platform. The contents are organized as follows. Chapter 2

introduces techniques in designing ASIP. Chapter 3 describes the system level design

and verification. Chapter 4 introduces software parallelization techniques specifically

tailored for PLX. Finally, a conclusion is drawn in Chapter 5.

 5

CHAPTER TWO

ASIP DESIGN

Today's growth in markets for consumer electronics, wireless electronics, and

hand-held devices requires cost-efficient solutions that supply high performance

computing, energy efficiency, and programmability. General-purpose processors are

poorly suited to meet the requirements of energy efficiency and competitive cost.

ASICs are unable to provide sufficient programmability. As a result, a variety of

Application Specific Instruction-set Processors (ASIP) is emerging to meet the

requirement.

General-purpose processors are the ones used in desktop PCs and servers.

Development tools for desktop processor are popular, and there are millions of

software developed for desktop processor. Thus, using general-purpose processor can

reduce time-to-market. But this solution is not optimized on some critical metrics

including performance, cost, power, and size. Many embedded multimedia systems

are handheld systems, such as MP3 players, PDAs and 3G phones. A single

general-purpose processor is unable to handle real-time functions such as

communication, camera, video, audio, touch screen, TV, and GPS in time, or it will

consume too much power.

Many embedded processors have worse performance on general applications, but

have much better performance on some specific applications than the general-purpose

processors. The well-known examples are digital signal processor (DSP) and network

processor.

Embedded system devices normally embody the functionality they implemented.

In other words, they are designed to run a few codes with a predictable pattern. In

contrast, applications of a general-purpose system are known in advance. A traditional

6

embedded system design flow is to select a pre-designed platform from IP provider

which may satisfy power/performance constraint, then to spend most of the effort on

developing software for this system.

We had designed two processors tailor for multimedia application. The first

processor PLX utilizes subword-parallel instruction set architecture (ISA) to improve

multimedia application performance. The second version PLX2 improves

energy-delay-area efficiency by including Very Long Instruction Word (VLIW) and

Simultaneous Multi-Threading (SMT) techniques.

2.1 PLX Processor Design

In a RISC processor, all operation execution should complete in one cycle.

Complex operation will increase critical path thus reduce clock rate. In deciding the

instruction set architecture, we prefer the operations which can improve multimedia

application performance without reducing clock rate. By this constraint, we

implement subword-parallel single-instruction-multiple-data (SWP-SIMD),

fixed-point, permutation, and saturation arithmetic operations into PLX ISA.

2.1.1 SWP-SIMD

Supercomputer with vector processor was developed in the 1960s to increase the

scientific computation speed. Since scientific program codes contain many

one-dimensional vector and two-dimensional matrix operations, using a vector

processor can perform these operations simultaneously to improve performance. A

vector processor is also called a single-instruction multiple-data (SIMD) machine

because it can apply one instruction on many data elements. Such kind of parallelism

is often called data level parallelism (DLP).

Multimedia applications mostly perform low-precision data, such as 16-bit audio

samples and 8-bit video pixels. Today the ALU word size in a processor is mostly

sixty-four bits. It is a waste to compute 16-bit data using a 64-bit ALU. If the 64-bit

ALU can compute four 16-bit data simultaneously, its throughput will be higher. A

processor owing an instruction set architecture (ISA) with this feature is called a

 7

subword-parallel single instruction multiple data (SWP-SIMD) processor [3]. It

works as an SIMD vector machine, but performs in a single register. Many

low-precision data are packed into a superword which occupies a register, and each

element is called subword which only occupies part of a register. This feature is also

called multimedia extension for it is specified for multimedia applications. MAX-1 is

the first SWP-SIMD ISA for HP PA-RISC processor [4], introduced in January 1994.

PLX [5] is an SWP-SIMD ISA developed by Professor Ruby Lee at Princeton

University. The main feature of PLX is that it is native to SWP-SIMD. Its vector

function unit supports 8/16/32/64 subword widths, and its scalar function unit is just

the 64-bit subword subset in a vector unit. A typical multimedia code contains many

scalar operations, such as loop counter or memory index, which disable vector

pipeline to execute smoothly. A native SWP-SIMD can execute scalar and vector

operations in the same core to reduce scalar-vector communication overhead.

Power-aware is a benefit obtained from the SWP-SIMD feature. The term

power-aware is often ascribed to any system which design has been sensitive to

energy consideration; its connotation in recent work has been shown in [6]:

(1) The system allows its clients to adjust the expected quality and also the

tolerable latency/throughput constraints.

(2) When such adjustments are made, the energy consumption is expected

to vary accordingly, i.e., higher energy dissipation is tolerated by clients

for higher quality (or lower latency) and vice-versa.

There are many topics on power/performance trade-offs. At the circuit level,

since the CMOS power consumption is proportional to voltage square, the core and

bus buffer supply voltages usually have to be reduced to save power. At the logic level,

gated clock when datapath is not working can reduce unnecessary logic switching

power. At the system level, the supply power of a non-active core can be turned off.

The disadvantage is its requiring a long stable time to turn on again, which may cause

real-time request failure. At the algorithm level, datapath width adjustment can get the

most power budget. For example, if a program performing only 8-bit operations with

8

a value range of -128 to +127 is implemented in a 32-bit ALU, the register switching

of bits 8 to 31 are meaningless and the power is thus wasted.

Most applications contain variables of different widths. An MPEG-2 video

decoder [7], for example, contains fifty 1-bit Boolean variables, nine 8-bit char

variables, thirty-nine 16-bits short variables, seventeen 24-bit variables, and

eighty-two 32-bit variables. If implemented in a 16-bit datapath, the 24-bit and 32-bit

operations cannot be completed in one cycle and the performance will be degraded,

but the power spent on fewer bit operations is saved by the reduction of meaningless

switching. This example showed that when the datapath width is larger than 28 bits,

the performance increases little, but the power and area are still increased linearly, so

the best power-efficient design occurs at 28 bits.

Most processor-based system design is unable to change the datapath width, or

they need to change instruction set architecture to adjust datapath width [8], which

needs extra cost for decoding the second instruction set. PLX’s native

subword-parallelism design extends the flexibility to change datapath width during

software execution, which can improve the computation power efficiency.

Figure 2-1 demonstrates the subword parallel processing concept of PLX

instruction padd Rd,Rs1,Rs2. Eight 8-bit data are packed into one 64-bit word.

They are processed by one padd instruction, taking only one cycle. With the

appropriate subword boundaries, this technique results in the parallel processing of

subwords. The degree of parallelism is within an instruction and depends upon the

size of the subword.

Figure 2-1. Subword-parallel execution.

Rs2
Rs1

Rd

 9

Figure 2-2 shows a logic level power-aware concept. Figure 2-2(a) is a 4-bit

pipelined adder. The maximum delay (T) is two half-adder delays at stage 4. The

highest performance is 1/T operations per second. When the system requires only half

of the performance, the clock frequency can reduce to 1/2T, and the power

consumption is also reduced to half. Now the clock cycle 2T is much larger than the

maximum delay, T. Figure 2-2(b) changes the pipeline registers of Stage 1 and Stage 3

into buffers, the critical path delay is one full-adder plus two half-adders plus register

setup time, it is a little lower than 2T. The combinational logic propagation power is

increased because it is more complex, but register power is reduced. Using

well-designed combinational logic, the total power consumption can be reduced

greatly. Figure 2-2(c) extends the adder to support subword parallel. Compared to

Figure 2-2(a), it uses 4 extra adders, but can compute four 1-bit additions in one stage,

two 2-bit additions in two stages, or one 4-bit addition in 4 stages. When data

precision is low, higher stages can be gated to save power.

Adjusting the pipeline structure dynamically will increase the complexity of data

dependence detection. An instruction is dependent to previous instruction needs

bypass logic to forward result as described in Section 2.3.3. On a dynamic pipeline

architecture, the bypass logic becomes complex. An alternate power-aware circuit

implementation for SMT is described in Section 2.3.5. In SMT, bypass logic is not

needed, thus no extra power waste on bypass logic.

Figure 2-2. Power-aware reconfigurable pipelined adder.

D D DD D D

DDDDD

DDDDDDDD

D D DD D D

DD DDDD

DDDDD DDDDD

(a) (b) (c)

10

Another subword-parallel ALU design is for high-performance purposes. Figure

2-3 shows a 64-bit wide carry-select adder structure, where all the subword 8-bit

adders are designed to complete an addition in one clock cycle. At the beginning, two

pairs of 8-bit subword additions are computed in each 8-bit ALU, one with a carry-in

of 0 and the other with a carry-in of 1. Then these two obtained results are

respectively stored in the two registers waiting for the select control signal to select

one addition result to output. In such way, we can have eight 8-bit precision addition

operations done in one cycle. For a 16-bit precision addition, the four multiplexer

control signals “16” are high and the other “32” and “64” control signals are low, such

that the carry-out of an even byte can pass through the multiplexer and serve as the

select control signal to select the result of an odd byte, we can thus have four 16-bit

subword addition results generated at one clock cycle. For a 64-bit precision addition,

all the multiplexer control signals are high, and we can have one 64-bit full-word

addition result generated, which datapath delay is the longest, equal to the delay of

one 8-bit adder plus those of the fourteen multiplexers. In such design, all instructions

are required to be completed in one cycle, making the pipeline control simpler.

Figure 2-3. High-performance subword-parallel adder.

1 0

DC

c i

1 6

A 7 B 7 A 6 B 6 A 5 B 5 A 4 B 4 A 3 B 3 A 2 B 2 A 1 B 1 A 0 B 0

1 0

DC

1 0

DC

0

3 2

0

1 6

0

1 0

DC

1 6

1 0

DC

1 0

DC

0

3 2

0

1 6

0

1

DC

0

0

6 4

 11

2.1.2 Fixed Point

Most scientific algorithms such as object rotation require floating-point

operations. To implement floating-point operations by integer instructions is too slow

for them. Thus, scientific requirement drives processor to integrate floating-point

instructions.

Due to the limitations of human eye and ear sensitivity, some precision loss on

image pixels and audio samples is acceptable. For example in a DCT algorithm, using

12-bit fixed-point to represent a cosine value is good enough for most image quality

requirements. Floating-point hardware is more complex than fixed-point hardware.

For cost and power efficiency, most multimedia applications use fixed-point

operations. Fixed-point operation is combination of integer arithmetic operation and

a shift operation. In typical integer operations, most-significant bits (MSB) are

truncated when the result is overflow. The following shift operation for fixed-point

cannot recover this error. For example, assume that a 32-bit fixed-point has a 16-bit

decimal part and a 16-bit integer part, where a value 1.502 is represented as

0x00018083. The multiplication result 1.502×1.502=2.256≡0x00024189.

By integer multiplication, 0x00018083×0x00018083 will be truncated into

0x41894309 due to the 32-bit limitation. Thus right shift the last 16 bits will derive

a wrong result 0x00004189. To avoid overflow, we can right shift 8 bits on the two

multiplicands before multiplication; the result will be 0x000180×0x000180

=0x00024000. This result has 2.6% loss in precision, which is not acceptable. A

better solution is to right shift on the 64-bit multiplication result before writing it into

a register file. It needs a specific instruction (mulshr16) which adds a shifter after the

multiplier.

2.1.3 Permutation

Permutation operations are widely used in many algorithms. Datatype

conversion is the basic permutation operation in many processors. Symmetric-key

cryptographic algorithms such as DES and AES are based on complex permutation.

12

RGB components are mixed in video samples. Permutation in hardware is just a wire

routing, but it is costly in software. To permute a data typically needs many shift and

and/or operations.

On subword-parallel execution, moving of neighbor elements in packed register

becomes a special type of permutation. For example in FFT, data should be reordered

into butterfly sequences before next iteration, which becomes a permutation operation

on a packed register. Thus permutation becomes more critical, it is better to offer

abundant permutation instructions to reduce software effort. Each permutation

instruction can be implemented by using multiplexers in an ALU which cost is much

lower.

2.1.4 Saturation Arithmetic

Saturation arithmetic is useful for multimedia applications. When two image

pixels or audio samples are mixed, their intensions are added. By typical integer

addition, mixed white pixel will become light gray when its most significant bit (MSB)

is truncated. To avoid the wrong result, software should keep the mixed intension as a

maximum white value when overflow occurs. This function is called saturation

arithmetic described as in the following code

if (a+b>255) y=255;

else y=a+b;

Conditional branch is an inefficient operation on RISC processor. It causes

pipeline refill that wastes many cycles. While saturation arithmetic should apply on

all pixels during image processing, it is better to offer specific saturation instructions

to improve efficiency in multimedia applications.

2.1.5 Critical Path Analysis

Figure 2-4 shows our designed PLX chip architecture. It is a 5-stage pipelined

RISC design. The IFETCH stage gets instruction from ICACHE and handles interrupt.

The DECODE stage extracts operand register addresses froman instruction word. The

 13

OPFETCH stage gets operands from the register file. The EXECUTION stage

contains two units, ALU and Load/Store. The WRITE stage writes execution results

into the register file.

Figure 2-4. PLX chip architecture.

Figure 2-5. Delay-area trad-off in components.

Reg
File

jmp

ALU

ma md

tag RAM

LRU

WriteBack

Load/
Store

DCACHE

tag
RAM

LRU

Reload
ICACHE

Ibuf
addr

IFETCH

Rs1 Rs2
RdPd

pred

const

DECODE

WRITE

PC
res

src2

src1

OPFETCH
const

CPSR

Iret

Timer0
Timer1

CacheCtrl

PCI BUS

Iret

Interrupt

D
elay(ns)

Area (µm2)

0

1

2

3

4

5

6

7

8

9

10

0 50000 100000 150000 200000 250000 300000 350000 400000

add8

add16

add32

add64

mul8

mul16

mul32

simdadds

simdmul16

simdmul32

cache

regf2r1w

regf4r2w

simdmul16

mul32

cache

simdmul32

regf2r1w

regf4r2w

14

On RISC architecture, operations in the execution stage should complete in one

cycle. Figure 2-5 shows the area and speed trad-off in some components designed

using TSMC 0.18 µm standard cells. Each curve represents a component designed in

various structures such as carry-look-ahead or carry-select. The simdmul32 is the

critical path, its minimum delay is 5.45ns. This path performs 32-bit multiplication

and right shift for fixed-point, thus its delay is larger than a 32-bit multiplication. In

multimedia applications, most algorithms only use 16-bit multiplication. The 32-bit

multiplication is used at rate-distortion computation and some high level protocols,

which are not critical for performance. To reduce critical path delay, we only

implement a 16-bit multiplier, the new critical path delay is 2.93ns on simdmul16.

In Figure 2-5, we can see the area of simdmul16 and cache at 3.71ns is much

lower than that at 2.93ns. For performance/area tradeoff, we implement the PLX chip

at 260MHz speed.

The second critical path is in cache. A cache-hit load has 4 jobs to do: (1)

generate memory address from the operand register, (2) get cache row address from

the tag array, (3) get cache content from RAM, and (4) write content into register file.

On a single-cycle RISC processor, only 2 cycles (EXECUTION and WRITE stages)

are available for these 4 jobs. Jobs (1) and (2) should be combined. A fast 32-bit adder

in Load/Store unit adds address base from operand src2 and address offset from

instruction const field. The generated memory address is directly sent to tag without

using buffer. The path delay is 2.9ns in a 32-bit adder plus tag lookup latency. The fast

32-bit carry-look-ahead adder takes 1.12ns, and tag lookup takes 1.78ns. In designing

PLX2, this path delay should be cut by SMT to execute at 520MHz.

2.2 Implementation of ME on PLX

In video encoding, motion estimation (ME) occupies more than 70%

computation. This section utilizes PLX ISA to improve ME performance.

H.264 advanced video coding (AVC) is the state of the art video coding standard.

The sum-of-absolute-difference (SAD) is a criterion used in block-based matching

 15

motion estimation algorithms to gauge the similarity between a given macroblock in

the current frame and corresponding macroblock in a reconstructed reference frame.

The displacement between these two macroblocks is a candidate motion vector. For a

K×L macroblock, one has

where C(i, j) is the luminance value of a current frame pixel and R(i, j) is the

luminance value of a reference frame pixel. Argument (m,n) is the displacement

between these two blocks. The motion vector (MV) is defined as the displacement that

yields the minimum SAD value:

(,)

arg min (,),
m n searchrange

MV SAD m n
∈

=

where the search range is a neighboring region in the reference frame(s) where the

motion vector is to be found. For a CIF-size video frame, a search range of 16 is

mostly used. By a full search strategy, the maximum number of displacements that

must be evaluated will be 162=256.

In H.264, the 16×16 macroblock can be partitioned into 16×8, 8×16 sub-blocks,

or 8×8 sub-blocks to improve the quality of motion estimation at the expense of

additional computation and motion vectors. In fact, if the 8×8 block size is selected,

each 8×8 block may further be decomposed into 4×8 or 8×4, or 4×4 sub-blocks.

Hence, the number of MVs per macroblock ranges from 1 MV for the entire 16×16

macro-block, up to 16 MVs, each for a 4×4 sub-block. In all, 41 MVs need to be

evaluated, from which a specific sub-block partition will be chosen as the optimal set

of motion vectors by solving a rate-distortion optimization problem.

Instead of using a full search algorithm that may consume excessive CPU cycles

without yielding significant performance benefit, we implemented a Modified Spiral

Search (MSS) [9] algorithm, where the search starts from the center of the search

region and moves outward in a spiral-like order. If the distortion of a point is greater

1 1

0 0
(,) | (,) (,) |,

K L

i j
SAD m n C i j R i m j n

− −

= =

= − + +∑∑

16

than a threshold, the next few points are skipped. In all, the number of skipped search

points is proportional to the distortion and displacement. A high-level implementation

of the MSS algorithm is given in Code 2-1.

To implement the MSS motion estimation algorithm using PLX ISA, our strategy

is to exploit the SIMD sub-word parallel instructions to reduce execution cycles of

Steps d, e, and f in Code 2-1. Assume that both the 16×16 macroblocks in the current

frame and in the reference frame respectively have been loaded into an on-chip data

memory in a row-major ordering. As such, an entire 1×16 row of pixels of either

macroblock can be loaded into the two 64-bit PLX register without incurring any

overhead. Then the 4×4 SAD calculation (Sep d) can be performed efficiently using

the sub-word parallel instructions.

Code 2-1. Modified spiral search algorithm.

While two 8-bit values are subtracted, the result precision is 9-bit, which

becomes overflow on an 8-bit scalar operation unit. The loaded pixels should be

extended into 16-bit by using double registers, where computation is doubled.

Motion estimation is a losable algorithm. We care about which MV has a

minimum SAD, but the SAD value itself is not important. PLX saturation arithmetic

Set 41 minimum SAD values to infinity;
Set 41 motion vectors to (0,0);
k=0;
while(k<(searchrange×searchrange)) begin
 a. get displacement (m,n) from lookup table;
 b. set current frame address pointer to (0,0);
 c. set reference frame address pointer to (m,n);
 d. calculate SAD of 16 4×4 partitions;
 e. calculate SAD of other 25 partitions;
 f. compare 41 SAD with the minimum SAD, and
 replace minimum SAD and motion vectors;
 g. k+=step(SAD,m,n);
end while
Select the set of motion vector(s) according to some
rate-distortion criterion.

 17

instruction is useful to reduce SAD computation. Assume that the minimal SAD value

is less than 255, then saturating the other non-minimal SADs into 255 will not change

the MV search result. The MV search will miss only when the minimal SAD is greater

than 255, which means no similar macroblock is found, and a bad macroblock is

chosen for reference.

The modified SAD operation using saturation arithmetic becomes:

SAD (m, n) =∑ ∑
−

=

−

=

++−
1

0

1

0

)|)),(),((|(
N

i

N

j
njmiRjiCsatsat

Figure 2-6 shows the process to compute 16 4×4 SADs. The basic routine is to

compute 16 4×1 subresults in parallel. This routine takes 8 load, 4 saturation substract

(psubs), 4 absolute (abs), and 3 saturation addition instructions, and the results are

saved in a 64-bit register. This routine executes 8 times to compute all the 64 4×1

subresults. These subresults are arranged as a 4×16 matrix in 8 registers. Then the

matrix is transposed for computing the 4×4 SADs. The matrix transposition takes 16

PLX permutation instructions. The 4×4 summation takes 6 instructions. Thus Step d

of Code 2-1 takes 174 cycles. This result is 7.2 times faster than scalar operation, and

3.2 times faster than the process without using saturation arithmetic instruction.

Figure 2-6. SAD computation using PLX ISA.

4x1

00 01

10 11

02 03

12 13

20 21

30 31

22 23

32 33

cur0

ref0

cur1

ref1

cur2

ref2

cur3

ref3

00 10 20 30 01 11 21 31 02 12 22 32 03 13 23 33

4x4

8x4

all 4x1
transpose

8x8

psubs abs

psubs abs

psubs abs

psubs abs

18

The 16 4×4 SADs are stored in two 64-bit registers. Step e of Code 2-1 computes

the other 25 SADs, it totally takes 29 cycles by the following steps:

(1) Add every even and odd byte pair to get eight 8×4 SADs. Right shift 8-bit

in a 16-bit subword mode can parallelly generate odd bytes. This step takes

6 cycles.

(2) Add the first to fourth bytes with the fifth to eighth bytes in every 64-bit

register. The result is the eight 4×8 SADs. This step takes 8 cycles.
(3) Add every even and odd word pair from the results in Step 2 to get four

8×8 SADs, pack them into one register. This step takes 6 cycles.
(4) Add every even and odd 16-bit subword pair of from the results in Step 3 to

get two 16×8 SADs. This step takes 2 cycles.
(5) Add first two 16-bit subwords with the last two 16-bit subwords to get two

8×16 SADs, pack the results in Step 4 into one register. This step takes 5
cycles..

(6) Add the two results in Step 4 to get a 16×16 SAD. This step takes 2 cycles.

The 41 SADs are stored in 9 registers. They are compared to the saved minimum

SAD to decide MV. If any one SAD is lower than the saved minimum SAD, this new

value will replace the minimum SAD and the MV be updated. A parallel-compare

instruction is used for comparison. If the first operand is less than the second operand,

the result subword is set to -1 (all bit be 1) , otherwise it is set to zero, as shown in the

following definition:

 P[n]=(I1[n]<I2[n])?-1:0, 0 ≤n<subword number

Parallel-replace is performed by the following operation:

 O[n]=(P[n]&new[n])|(~P[n]&old[n]) , 0≤n<subword number

Each SAD register needs one compare, one inverse, 4 logical AND, and 2 logical

OR operations to update minimal SAD and MV. Step f of Code 2-1 takes 72 cycles.

Assume that the modified spiral search only searches 1/3 points, and Steps a, b, c,

and g take 20 cycles, the total number of motion estimation execution cycles in a

macroblock takes 256×(20+174+29+72)/3=25173 cycles. To process a CIF-size

(352×288) video, the frame rate in a 260MHz processor can be 260000000/

(25173×352×288/16/16)=26 frames per second. To meet the 30-frames real-time

 19

constraint, we have to reduce the number of search points to 1/3.5, which will lower

image quality. In next section, we will use other parallelization techniques to improve

performance.

Table 2-1 lists the PSNR (Peak Signal-to-Noise Ratio) of H.264 reconstructed

frames using 16-bit operation and 8-bit saturation operation on two sequences. The

sequence Stefan has fast moving, and sequence Weather has little moving. From the

results shown on the two sequences, the 8-bit saturation method is only a little bit

worse than the 16-bit method, but 8-bit method is much faster than 16-bit method.

That illustrates PLX ISA is useful to improve motion estimation performance.

Table 2-1. PSNRs of two SAD methods.
PSNR Stefan Weather
Frame 16bit 8bit-sat 16bit 8bit-sat

1 37.35942 37.35031 37.52711 37.52356
2 37.29617 37.28674 37.71939 37.71754
3 37.25709 37.23658 37.80259 37.80131
4 37.07474 37.07342 37.81671 37.81664
5 36.99427 36.99151 37.81785 37.81560
6 36.91317 36.91058 37.79967 37.79784
7 36.92029 36.88299 37.76962 37.76885
8 36.88774 36.87031 37.74985 37.74801
9 36.81931 36.80784 37.73409 37.72860

Average 37.05802 37.04559 37.74854 37.74644

2.3 PLX2 Processor Design

On the implementation of video encoding in Section 2.2, we had encountered the

following problems:

(1) Power is wasted on 32-bit scalar operations. Except SIMD operations, a

multimedia application has so many 32-bit scalar operations to execute,

such as Huffman decoding in H.264. Using a 64-bit processor to perform

these 32-bit operations will waste power.

20

(2) Clock rate is restricted by a single-cycle ALU. To improve clock rate, ALU

should be pipelined.

(3) Video size is restricted by processor performance. To perform video with a

larger size, without increasing the clock rate, we need other parallelization

techniques to improve performance and energy efficiency.

(4) Memory stall is large. The performance analysis in last section does not

include memory stall, otherwise the actual frame rate is much lower.

We will describe how to utilize VLIW and SMT techniques to solve these

problems in the following.

2.3.1 MAC on VLIW

In digital signal processing, multiply-accumulation (MAC) is the most often used

operation. A finite-impulse response (FIR) filter equation is represented as

On software implementation, each pair of ci and xt-i are multiplied and

accumulated into yt. Some DSP processor such as TI TMS320C541 [10] implements

MAC with automatic looping and index increase, which can process above equation

as a single operation. Since MAC is composed of multiplication and addition

operations, it is always the longest path in an ALU. Clock rate is restricted by MAC

critical path, thus it is not chosen in PLX ISA.

MAC critical path can be reduced in a VLIW processor. VLIW is a type of

instruction level parallelism (ILP) machine, which uses multiple ALUs to execute

multiple instructions in one cycle. Instruction parallelism is determined by compiler.

On a 4-issue VLIW, FIR can be implemented as shown in Figure 2-7. When c0

and xt are multiplied in ALU2 at time 1, c1 and xt-1 are loaded at the same time. The

four ALUs perform as a 3-stage pipelined ALU at this example. Thus, an N-stage

MAC operation just needs N+2 cycles to complete.

∑
−

=
−×=

1

0

N

i
itit xcy

 21

time ALU0 ALU1 ALU2 ALU3

0 Load c0 Load xt

1 Load c1 Load xt-1 MUL (0)

2 Load c2 Load xt-2 MUL (1) ADD (0)

3 MUL (2) ADD (1)

4 ADD (2)

 Figure 2-7. Execution of MAC on VLIW.

In a VLIW processor, all ALUs only perform the basic instruction, thus the ALU

design can be as simple as a RISC. Complex special operations mus be handled in

software. The power efficiency of a VLIW is worser than the processor with a MAC

instruction, but it offers flexibility to implement special operations in software.

2.3.2 Reconfigurable VLIW/SIMD

In order to execute 32-bit operations on a 64-bit processor efficiently, we make a

special two-issue design: an instruction-level reconfigurable VLIW/SIMD design.

Figure 2-8 shows this design, where the 64-bit ALU is partitioned into two 32-bit

ALUs, each controlled by a control unit OPC. In order to let this design function well,

the instruction encoder and register file designs are modified.

 (b) 32-bit VLIW configuration (c) 64-bit SIMD configuration
Figure 2-8. Reconfigurable VLIW/SIMD design.

31 30 29 28 24 23 22 18 17 13 12 8 7 2 1 0

ILP Pred OP V Rd Rs1 Rs2 SubOP sw

ALU
RES RES

O
P

C

O
P

C

63
62
61
60

1
0

V=1

IBUFF 32-bit RegF

ALU
RES RES

O
PC

O
P

C

63
62
61
60

1
0

V=0,ILP=1
V=0

IBUFF 32-bit RegF

Instruction
encoding

(a)

22

An ISSUE stage is inserted between the DECODE and OPFETCH stages. It

checks the V and ILP flags in an instruction word to decide how to dispatch control

signals to the two OPCs. The V flag indicates that this instruction is a 64-bit vector

operation; otherwise it is a 32-bit scalar operation. The ILP flag indicates that this

instruction is independent to the previous instruction, thus both can be executed in

parallel. This flag set by compiler helps the ISSUE stage to select instructions to form

a VLIW. Without this flag, the ISSUE stage has to check the dependence of

instructions in instruction buffers by itself.

Dealing with 32-bit operations, the register file should be 32-bit wide. The

original 32-item 64-bit wide register file is reorganized into 64-item 32-bit wide, with

four read ports and two write ports.

On the 32-bit two-issue VLIW configuration, two instructions are dispatched into

two OPCs, as shown in Figure 2-8(b). The 5-bit operand field in an instruction word

is mapped to register file address bit 1 to bit 5, and register file address bit 0 is set by

V, the thread bank flag.

On the SIMD configuration as shown in Figure 2-8(c), the two ALUs are

logically merged as a 64-bit element. The same instruction is dispatched to both OPCs

such that the two ALUs will perform the same operation as an SIMD processor does.

The even register port address bit 0 is set to 0, and odd register port address bit 0 is set

to 1, thus two neighboring 32-bit registers are combined as a 64-bit register to serve

the 64-bit operation.

All possible VLIW/SIMD configurations are listed in Table 2-2.

 23

Table 2-2. VLIW/SIMD Configurations.
1st V 1st ILP 2nd V 2nd ILP thread

bank
ALU0
OPC

ALU1
OPC

EvenPort
addr b0

OddPort
addr b0

1 X X X X 1st 1st 0 1
0 X 0 0 0 1st NOP 0 No use
0 X 0 0 1 1st NOP 1 No use
0 X 1 X 0 1st NOP 0 No use
0 X 1 X 1 1st NOP 1 No use
0 X 0 1 0 1st 2nd 0 0
0 X 0 1 1 1st 2nd 1 1

2.3.3 VLIW Limitation

VLIW processor implements dependence removal and operation scheduling by a

compiler. The hardware cost of implementing these two techniques in a superscalar

processor is high; it is not affordable for portable devices. Since operation

dependences can be determined in a program code, it can be optimized by a compiler

to save hardware cost. The disadvantage is that software needs re-compilation when

processor micro-architecture is changed. It is not acceptable for a general-purpose

desktop processor, but feasible for an embedded processor.

In designing VLIW processor, the overhead is on its register file size. As shown

in Figure 2-8, the register file port number is doubled. When the number of access

ports doubled, the routing area is squared as shown in Figure 2-9. That is, chip cost is

increased in both area and speed. As shown in Figure 2-5, the curve regf4r2w

depicts the delay-area relation of the 64-item 32-bit wide, 4-read 2-write register file

used in PLX2. Its area is much larger than regf2r1w, the 32-item 64-bit wide PLX

register file.

24

Figure 2-9. Register file.

The bypass logic causes another overhead. On a pipelined RISC architecture,

ALU result is buffered in a temporal result register before it is written into the register

file. To avoid blocking on continuous read-after-write dependent instructions, bypass

logic is used to forward ALU result in a previous instruction to the ALU input port or

to the operand register in a current instruction. Figure 2-10 shows the bypass logic on

a 2-issue VLIW processor. Variables R2 used in S2 and R3 used in S3 were modified

in previous cycle, they should be forwarded from ALU result to ALU operand input

port. R1 used in S3 was modified two cycles before; it should be forwarded from

ALU result to operand register. Each ALU result needs to be forwarded to all ALU

input ports and operand registers. A large fan-out induces a long wire delay and thus

slows down the clock rate.

Figure 2-10. Bypass path in a 2-issue VLIW.

S1 loadi R1,1 | loadi R2,2
S2 add R3,R2,3 | nop
S3 sub R4,R1,R3 | nop

S1

S2

S3

PR

RES

ALU
0

RES

ALU
1

IF: Instruction Fetch OP: Operand fetch
DE: Decode EX: Execution
IS: Issue WB: Write back

IF DE IS OP EX WB

IF DE IS OP EX WB

IF DE IS OP EX WB

(a) 2-Port (b) 4-Port

 25

Control flow handling is more important for VLIW processor design. A control

flow induces a conditional branch, which may cause instruction stream change. On a

VLIW processor, when two ALUs generate different branches, which will be the next

instruction to execute?

A simple way is to avoid packing multiple branch operations in one cycle, but it

will degrade performance. The better solution is using predication execution, or

so-called if-conversion. This technique changes control flow into data flow by

introducing a condition expression to be the third operand. Then the instruction

stream can be packed in one line. The implementation of predication requires extra

flags to store the comparison result, which will be passed to ALU as the third operand.

On a pipelining architecture, branch induces pipeline re-fill that wastes

computation power. On a VLIW processor, a pipeline stage contains many operations,

thus the waste becomes higher. On a high-performance processor, accurate branch

prediction hardware is necessary. On an embedded processor, simpler methods are

used to reduce hardware complexity.

A solution is using an unbundled branch technique, which is introduced in HP

PlayDoh architecture [11]. Unbundled means that the compare instruction and

branch instruction are far away. It works in a way similar to delayed branch [12] but

not the same. Figure 2-11 shows this technique. Figure 2-11(a) is a traditional RISC

code. After the branch instruction S5 executed, S2 will also execute by delayed

branch, then pipeline is cleared and refilled by S6. Figure 2-11(b) is a code using

unbundled branch. At T=5, when the comparison operation in S1 is executed, and the

compared result is true, instruction fetch stage (IF) changes to fetch from S6. At T=5,

S5 is loaded in the IF stage, S6 address can be extracted from IF buffer by a simple

decoder. But note that many other pipeline stages in S2 to S4 are not cleared. They

should be independent instructions such that the pipeline can continue their

executions without wasting time. Then, when S5 reaches T=9, the program counter

(PC) is set for S6 execution without changing pipelines.

26

 Figure 2-11. Unbundled branch

2.3.4 SMT

Threading is a way for a code to split itself into two or more concurrently (or

pseudo-simultaneously) running tasks. In general, a task spends much time on waiting

peripheral I/O response. Since peripheral I/O communication is much slower than the

CPU speed, direct memory access (DMA) is often used to handle peripheral I/O

communication. When a CPU wishes to send a message to peripheral I/O, it puts data

in memory and calls DMA to transfer the data. After transmission, DMA will generate

an interrupt to inform the CPU. During transmission, the CPU is idling.

Multitask OS improves CPU utilization by time-sharing. Assume that an OS has

picked a task to execute once. Sometimes, when this task is waiting for I/O, or when it

has been run for such a long time that a timer interrupt occurs, OS will pick another

thread to execute. By multi-tasking, I/O latency is overlapped with other tasks under

execution.

Context switch is an overhead for multi-tasking. When OS wishes to pick a task,

it should save the current task context into memory and load the new task context

from memory. The context contains register file, program status, and resource

configurations. A context switch needs hundreds of cycles.

S1: bool P1=(R1==R2)
S2~S4: independent instructions
S5: if (P1) PC=loc1
…
loc1:
S6: ADD R3,R4,R5 (b)

S1: CMP R1,R2,P1
S5: P1 JMP loc1
S2: …

loc1:
S6: ADD R3,R4,R5 (a)

T= 1 2 3 4 5 6 7 8 9 10 11

fetch S6

S1

S2
S3
S4

S5

S6

IF DE IS OP EX WB
IF DE IS OP EX WB

IF DE IS OP EX WB
IF DE IS OP EX WB

IF DE IS OP EX WB

IF DE IS OP EX WB

 27

In real-time systems, some event requires fast response. For example on a

communication system with a 1Gbps bandwidth and a packet size of 1Kbit, the data

in buffer should be read in 1µs before next packet comes in. In time-sharing

multitasks, the time to wait OS switch context may exceed real-time constraint.

Simultaneous multi-threading (SMT) [13] can solve this problem by applying

hardware-supported thread level parallelism.

The original SMT design was used to fill wide superscalar execution slots.

Superscalar execution slots are often wasted by a long dependent instruction stream

that exceeds its instruction buffer capacity. Instead of increasing instruction buffer

size, a more efficient way is to fetch instructions from many independent threads.

While a superscalar core can execute instructions out-of-order, mixed instructions

from different threads will not change the execution unit design. Intel

Hyper-Threading technique [14] is one example of commercial SMT implementation.

We implement SMT in another style. Figure 2-12 shows this concept, there are

four threads running in time-sharing, this design can reduce ALU complexity. At the

IFETCH stage, four instruction streams are kept alive simultaneously. Each

instruction stream possesses its own program counter. The ISSUE stage dispatches

VLIW instructions into ALU from one of available streams. If all streams are

available, they are dispatched in a round-robin order.

Figure 2-12. 4-thread time-sharing SMT execution.

SA1: ADD R1,R2,1
SA2: MUL R3,R1,R4

T= 1 2 3 4 5 6 7 8 9 10 11 12 13 14

IF DE IS OP EX1EX2 WBSA1

SB1
SC1

SD1

SA2

SB2

SC2

SD2

IF DE IS OP EX1EX2 WB
IF DE IS OP EX1EX2 WB

IF DE IS OP EX1EX2 WB

IF DE IS OP EX1EX2 WB
IF DE IS OP EX1EX2 WB

IF DE IS OP EX1EX2 WB

IF DE IS OP EX1EX2 WB

SB1: SUB R11,R12,2
SB2: ADD R13,R14,1

SC1: SUB R11,R12,2
SC2: ADD R13,R14,1

SD1: LD R30,R31(2)
SD2: ADD R32,R30,1

28

The time-sharing SMT implementation has three major benefits: (1) fast

real-time response, (2) higher clock rate, and (3) reduced memory access latency.

For an event which needs fast real-time response, a thread can be used to monitor

the event status, while other threads are performing the main computation. On a

4-thread SMT processor, the CPU utilization is 75%. An aggressive design can let this

monitor thread idle, and set it be woken up by a specified event without generating an

interrupt. The ISSUE stage will not dispatch instruction from idle thread, thus CPU

utilization can be 100% occupied by the other threads. When the event occurs, the

instruction next to idle is dispatched. While this instruction is already in instruction

buffer, the response time is only one cycle.

In Figure 2-12, instruction SA2 uses variable R1 which was modified in SA1. In

single cycle RISC execution, SA1 result should be forwarded to SA2 by a bypass

logic as described in Figure 2-9. But since SA2 will use R1 at 4 cycles after SA1’s

execution, the time is enough for R1 being written into register file, thus the bypass

logic is not needed, which saves wire delay and area. Moreover, ALU can be divided

into two pipeline stages. The 4-thread SMT now can work as four logical processors,

each has a 4-cycle execution. The critical path from the operand fetch, the execution,

to the write back stages has 4 cycles to wait. Thus ALU is given two cycles for

execution, shown as the EX1 and EX2 stages in Figure 2-12. The multiplier can be

pipelined into two stages, thus improving clock rate. When more physical threads are

used, more complex operations such as MAC can be implemented without worrying

about the critical path delay.

Multi-cycle execution simplifies function unit design. A typical double-precision

floating-point function unit should be divided into four pipelining stages to balance its

critical path delay the same as an integer function unit. When a program is mixed with

integer and floating point instructions, integer function unit is often stalled to wait the

floating point be ready. When integer and floating function units have the same

pipeline stages, instruction scheduling becomes easier.

 29

Memory access latency can be hidden under multi-threaded execution. When a

cache-miss occurs, the thread enters idle. But the ISSUE stage can continue to

dispatch instructions from other threads. On a computation dominant case, memory

access latency can be fully overlapped. On the motion estimation example, the

memory bandwidth required for a CIF with a rate of 30 frames per second is 6 MB/s.

The bandwidth of a 32-bit 266-MHz, 3-cycle latency, and 8-burst double data rate

(DDR) SDRAM is 304 MB/s. The required bandwidth is much lower than the

SDRAM bandwidth, thus the memory access latency can be fully hidden.

2.3.5 Power Efficiency Consideration

Combination of SMT and SWP-SIMD features, the ALU power can be reduced.

In micro-architecture view, a pipelined ALU is equivalent to two non-pipelined ALUs

working in an interleaving way. Figure 2-12 shows such two circuits.

Figure 2-13(a) shows a two-stage pipelined ALU. On designing a pipelined ALU,

it is difficult to evenly dispatch a critical path delay into two parts, thus the clock rate

is unable to be doubled. Figure 2-13(b) shows a two-ALU design, the left ALU works

in even time and the right one works in odd time. Each ALU uses two cycles for

execution, and the clock rate can be really doubled. On PLX, the ALU critical path is

on the 16-bit multiplier which restricts clock rate to 260MHz. Using the circuit as

shown in Figure 2-13(b), the clock rate can be speeded up to 520MHz.

Though the ALU area is doubled, it can be reduced. In multimedia applications,

80% of operations are 8- or 16-bit subword-parallel additions and comparisons. The

path delay of a 16-bit addition is lower than half of a 16-bit multiplication. As shown

in Figure 2-13(b), only low-precision addition/comparison operations are

implemented on the right ALU, which area occupies only 1/8 of the original ALU. At

the ISSUE stage, low-precision instructions are all dispatched to the right ALU, it

works as single-cycle ALU run at 520MHz. The left ALU is idle without consuming

power. This design is an alternate power-aware design compared to Figure 2-2.

30

Figure 2-13 Equivalent ALU micro-architecture.

2.3.6 PLX2 Performance

Figure 2-14 shows the PLX2 chip architecture. It uses two processor cores, each

is a 4-thread SMT, 2-issue VLIW design. In IFETCH, 4 threads of instructions are

read from ICACHE and saved in their own IBUFF. Each core contains 4 ALUs, two

smaller and two larger. The smaller ALU includes only 8- and 16-bit

additions/comparisons that can be executed in a single cycle. The larger ALU contains

multiplier that needs two cycles to execute. In DCACHE, tag search result is buffered

in row register to reduce cache-hit critical path latency. The two cores share their

ICACHE and DCACHE. Only the owner core can update the tag and RAM content,

but another core can lookup the tag and read content from RAM. The shared-cache

design reduces cache capacity requirement and simplifies cache coherence.

Regfile

Src1 Src2

Result

Regfile

Src1a Src2a

Result

Src1b Src2b

t=0,2,4 t=1,3,5

f ’=0.5f

t=2,4,6 t=3,5,7

(a) Pipelined (b) Doubled non-pipelined

 31

Figure 2-14 PLX2 chip architecture

Table 2-3 lists the area of PLX and PLX2 components for comparison. The

designs use TSMC 0.18 µm standard cells. The DCACHE area is mainly occupied by

the tag array, and the data RAM area is not counted. Each of the 4 threads in IFETCH

has its own PC and a 4-item IBUFF. ALU is 32-bit in PLX2 and 64-bit in PLX. The

ALU in PLX2 does not use bypass logic, so it is half smaller than the PLX ALU. The

register file in PLX2 uses double access ports, and its working speed is double of PLX,

and its area is larger than the PLX register file.

1

ICACHE

SDRAM Other IP

DCACHE

Load/
Store

S1b S2b

RES

S3b S4b

RES

O
P

C

O
P

C

md ma

AHB
bridge

RegFile

PC00
PC01

IBUF00
IBUF01

ISSUE

IFETCH

PC02
PC03

IBUF02
IBUF03

S1a S2a S3a S4a

tag

RAM

OPFETCH

row

O
P

C

O
P

C

ALU

Load/
Store

S1bS2b

RES

S3bS4b

RES

O
P

C

O
P

C

mdma

AHB
bridge

RegFile

PC00
PC01

IBUF00
IBUF01

ISSUE

IFETCH

PC02
PC03

IBUF02
IBUF03

S1aS2aS3aS4a

tag

RAM

OPFETCH

row

O
P

C

O
P

C

ALU

32

Table 2-3 Component areas of PLX and PLX2.

Table 2-4 lists comparisons on the execution cycle, the current of some

algorithms, and the cost of PLX and PLX2. Current is obtained from FastSpice

simulation results. The external SDRAM, cache RAM and I/O pad are excluded in

current and area computation. PLX frequency is 260MHz and PLX2 is 520 MHz.

To compare efficiency, we use a cost function of energy-delay-area product. The

lower the cost the better the efficiency. The equation is listed as follows:

 Execution delay: t = cycles/freq (MHz)

 Energy consumption: E = current(A)×1.8(V)×t

 Cost function = E×t×area

= (cycles2 × area×current×1.8)/freq2

The algorithm motion estimation (ME) on PLX2 implementation is partitioned

into 8 threads to fully utilize PLX2 dual-core resource, where each thread is used to

compute one search point.

The Huffman variable length decoding (VLD) is a 32-bit sequential algorithm,

which can be improved by VLIW. Motion compensation (MC) is a memory access

dominant algorithm with few computation. On PLX2, these two algorithms are

implemented as two threads of a core. The memory access latency of MC can be

overlapped with VLD computation.

The algorithm YUV reads an image in a YUV420 format from memory, converts

it into an RGB format, and writes it back to memory. It can be divided into 8 threads,

but the computation is not heavy enough to hide memory access latency.

Component PLX
(mm2)

N

PLX2
(mm2)

N Component PLX
(mm2)

N PLX2
(mm2)

N

ICACHE 0.070 1 0.070 2 OPFETCH 0.007 1 0.014 2
DCACHE 0.140 1 0.140 2 LoadStore 0.003 1 0.003 2
IFETCH 0.013 1 0.054 2 SmallALU - 0 0.009 4
Dec/Issue 0.003 1 0.005 2 LargeALU 0.146 1 0.063 4
OPC 0.002 1 0.002 8 RegFile 0.212 1 0.365 2

 33

The algorithm FIR2 is a 2-D spatial image filter. By the cache capacity limitation,

many pixels should be loaded in groups many times. Using multi-threading can

reduce the memory access redundancy thus improve efficiency.

The algorithm RSA computes modular multiplication using Montgomery

algorithm [15] which only uses addition and shift operations. It is a sequential

algorithm with heavy computation and no cache-miss. The 1024-bit addition uses 32

32-bit additions with carry propagation. On PLX2 without bypass logic, a dependent

addition has to wait 3 cycles, thus the execution time is much longer than PLX.

On cost computation, the one-core area is used for ME, FIR2 and RSA. In

general, for an algorithm that can be parallelized by VLIW and SMT, and which

memory latency can be overlapped with computation, PLX2 has better efficiency. For

a sequential algorithm or memory dominant algorithm, PLX is better.

Table 2-4. Cost comparison.

Algorithm PLX
cycles

Current
(A)

Cost PLX2
Cycles

Current
(A)

Cost

ME 9990684 0.042 6.653×107 4984254 0.163 4.329×107

VLD 9624 0.035
MC 1820 0.021

5.255×101 6324 0.081 1.732×101

YUV 382761 0.039 9.068×104 271341 0.131 1.031×105

FIR2 38812 0.075 1.793×103 27168 0.143 5.642×102

RSA 109568 0.038 7.240×103 404480 0.019 1.662×104

34

 35

CHAPTER THREE

SYSTEM LEVEL DESIGN AND VERIFICATION

Dual-processor architecture is widely used in modern handheld embedded

systems such as smart phone. It typically contains a DSP to handle baseband and

image computation, and a 32-bit CPU to handle peripheral function blocks and

general-purpose processing. On a smart phone, many function blocks need processors

to handle: the Real-Time Clock (RTC) for scheduling; LCD Controllers for display;

Keyboard, Digitizer and Touch Panel Controllers for human interface input; Voice

Codec for speaker and microphone; Baseband Codec connected to a radio frequency

(RF) front-end for wireless communication; GPS for navigation; SD card interface for

storage; Smartcard Controller for authentication; USB/UART/I2C to communicate

with other systems; and an H.264 hardware accelerator to assist video processing. All

these function blocks are real-time functions, and are connected by a bus hierarchy.

These function blocks are typically built as ASIC components for power or

performance issue.

With the progress of technology, the ASIP power and performance are now

competitive with ASIC, such that some of the above function blocks can now be

replaced by programmable ASIP. Therefore, multi-processor system on chip (MPSoC)

with ASIPs inside becomes feasible for handheld devices.

Baseband is a candidate to move into software. In near future, smart phone will

be required to support many wireless communication standards, including GSM,

GPRS, W-CDMA, 802.11 a/b/g, Bluetooth, WiMAX, GPS, DVB-T, and so on. To

support so many standards, Software Defined Radio (SDR) brings programmable and

dynamically reconfigurable method to implement the multiple-standard

communication systems. A wide-band zero-IF receiver is used in modern wireless

36

devices to down convert wireless signal directly to data frequency, and do all

baseband processing in software.

3.1 Memory Sharing

In a multi-processor system, inter-processor communication bandwidth

dominates system performance. Processors are connected as a network. In an off-chip

interconnection, the number of links is determined by the pin-out limitation. Many

interconnection topologies such as hyper-cube or token-ring have been introduced to

deal with the interconnection cost and broadcast efficiency trade-off. In an on-chip

interconnection, this limitation is not critical. The topology choice is determined by

the memory sharing strategies.

Multi-processor has four memory sharing strategies to choose. Figure 3-1(a)

shows a distributed system where memories in processors are not shared. Data

transfer should pass through a message-passing channel. Figure 3-1(b) shows a

shared-address local memory system where each memory is assigned a unique

address and connected to a bus. Data can be directly transferred between memories

through DMA. Figure 3-1(c) depicts a private cache system, where each processor has

its private L1 cache. When a processor wishes to transfer data to another processor,

the producer should write data into shared L2 cache for consumer to read. Figure

3-1(d) shows a distributed shared cache system, where L2 caches are distributed in

processors. When an L1 cache miss occurs, cache coherence logic forwards the

memory request to the L2 cache that owns the data.

The choice of memory sharing strategy is a trade-off between hardware cost,

communication bandwidth and software design effort. A hardware cache is used to

buffer recently used data to reduce external memory access latency. To implement a

cache, except the storage memory, it needs large tag array and cache coherence logic.

Whenever a processor writes data to shared memory, cache coherence logic should

broadcast this information to all other processors to synchronize their cache content

[16], which will occupy large communication bandwidth.

37

Without a hardware cache, the chip area and communication bandwidth can be

reduced. Software should correctly buffer the frequently used data to avoid reloading

it from external memory to reduce system performance. It is a heavy loading for

software programmer, especially when a complex data structure is used. Some

modern processor such as IBM Cell processor [17] performs data pre-fetch prediction

in compiler to reduce software programmer effort.

Our PLX is a newly-designed processor, and its compiler is under development.

We make an OpenMP to TLM tool to analyze data sharing and data reuse from

OpenMP code, which will be discussed in Section 3.4. Currently this tool is only able

to analyze array, and cannot correctly handle pointer and large data structure. As a

tradeoff, we had implemented a hardware cache to buffer local variables which can

reduce programmer’s effort, and used the OpenMP to TLM tool to handle global

shared-data. The cache coherence is determined in this tool, thus hardware cache

coherence logic and bandwidth can be saved.

Figure 3-1. Memory sharing strategies.

(a) Distributed System

MEM

MEM MEM M1000

M2000

P1 P2 P3 P1 P2 P3
M3000

Message Pass DMA

(c) Private Cache

 P1 P2 P3
L1 L1 L1

Shared L2

(d) Distributed Shared Cache

L2

L2

 P1 P2 P3

L2
L1 L1 L1

Ext Mem

(b) Shared Address Local Memory

Cache Coherence

38

3.2 Message Passing over Private Cache

The computation of multimedia application can be largely speeded up by PLX

ISA as shown in Chapter 2. Thus, data transfer becomes the major part of a program.

The inter-processor communication bandwidth always dominates system performance.

As shown in Figure 3-1, data transfer on a hardware cache system needs two

communications. In order to reduce the communication bandwidth, we modify the

cache design to allow a message be directly transferred to another processor without

going through the shared L2 cache.

On a typical message-passing interface (MPI), the producer specifies a memory

address and calls a Send function to perform the transaction. The data is packed into

a packet with a sender ID and a receiver ID in the packet header. Router forwards a

packet by these IDs. When the packet arrives at the consumer first-in first-out (FIFO)

buffer, a Recv function moves it to the target memory.

On a private cache system, when the producer specifies a data in a memory

address to SEND, the memory content may not be in the cache. Thus a cache-miss

read occurs, and the producer has to load it from main memory into cache. The

consumer should also allocate a space in cache to receive the packet. If all cache lines

are dirty, a cache-miss write occurs. We need to flush a cache line into main memory

to generate a space. Thus, the communication is triple, and the bandwidth used is

larger than the method with a shared L2 cache. And the packet should be buffered in a

router to wait for the cache-miss being over. It blocks other transactions from passing

through the router.

For the MPI to work efficiently, at the producer side the data should be locked in

a cache to guarantee no cache-miss read occurs, and at the consumer side the cache

should serve as a FIFO to receive data in the packet.

Our implementation as shown in Figure 3-2 utilizes a cache tag array, where a

cache is logically partitioned into many cache lines and each cache line has a tag to

indicate its physical address. Two flags are used in each cache line. The lock flag

disables the cache line to be swapped-out, thus the memory content can stay in cache.

39

The valid flag set to one indicates that the cache line is buffering a memory data;

otherwise, the cache line can be used as a FIFO. That is, when the cache line is not

valid (set to 0), its tag can be used to save the incoming packet header sequentially as

a FIFO. As shown in Figure 3-2, processor P1 wishes to send 512 bytes from address

9100 to P2. It should lock the cache lines before sending. The 512-byte data is

partitioned into two packets to fit the cache line size. In processor P2, 3072 bytes of

cache spaces are allocated to form a FIFO before any communication. The tag in the

FIFO cache line if set to -1 indicates that it is empty. When a packet is received, its

header is sequentially saved in an empty cache line tag. If another processor sends a

packet at the same time, these two packets will be saved in an interleaving way. When

the last packet is received, an event is triggered to wakeup the Recv function. Instead

of copying data from FIFO to the target memory, our design can directly set the target

address point to a tag to save the memory copy time.

Figure 3-2. Message passing over private cache.

P2: allocate_fifo(3072);
Recv(&6800,P1,512)

R1 R2

Recv(void *p,int SenderID, int n)
{
 while(!lastpacket(SenderID))
 wait(fifoevent);

for(i=0;i<n/linesize;i++) {
j=findfifo(SenderID,i);
invalid(p+i*linesize;

 tag[j]=p+i*linesize;
 valid[j]=1;

}
}

1000
9100
1300
9200

-1
-1
-1
-1

1
1
0
0

0
0
1
1

2000
3400
1,0
3,0

1,1,e
3,1
-1
-1

0
0
0
0

1
1
1
1

R3

1
1
1
0

0
0
1
1

 2000
3400
6800
3,0

6900
3,1
-1
-1

1
0
0
0

1
1
1
1

lock
valid tag

0
1
0
1
1
1
1
1

lock P1: Send(&9100,P2,512);

40

3.3 TLM

Network-on-Chip (NoC) [18] is becoming an important research topic for future

large scale chips. NoC is connected by routers. A typical NoC router has 5 ports

connected to its 4 (east, south, west, and north) neighboring routers and to an attached

processor. Each processor is attached to a router.

By network propagation latency, router micro-architecture can be differentiated

as static routing or dynamic routing. In static routing, resources on the routing path

are allocated before transaction. Message is directly forwarded to destination with

only one cycle of latency on each router. IBM Cell processor works in a static routing

style. In dynamic routing, the router buffers a full packet instead of a word. Intel

tera-flops processor [19] works in a dynamic routing way. For research purpose, MIT

RAW processor [20] implements both static and dynamic routing channels on chip.

In dynamic routing, routing resource is not initially allocated, thus a packet may

stay in a router for a long time when its outgoing port is occupied by other transaction.

Deadlock possibly occurs when many transactions are waiting each other to release

resource. Networking strategy becomes the key factor in system performance rather

than processor core speed. Many routing algorithms had been introduced for

supercomputer and NoC. A wormhole routing [21] requires less buffer, because a

large packet is cut into many smaller FLITs (FLow control unIT). Router begins to

transmit when the first flit is received instead of buffering flits to form a full packet.

Deadlock free routing [22], congestion avoidance routing [23], and flow

maximization routing [24][25] are more aggressive algorithms for specific

applications. In a heavy communication system, the latency varies according to its

routing algorithms and applications.

On a large chip, clock skew becomes so large that EDA tools cannot guarantee

signal integrity all over the chip. Globally asynchronous locally synchronous (GALS)

technique [26] is introduced to solve the problem. Each processor and router work on

their own clock. Router communicates asynchronously to its neighbors. Many

asynchronous connection protocols had been introduced for such GALS

41

communication, including the two-phase, four-phase, dual-rail, and current-mode

protocols. Dual-rail design uses redundant lines to encode data such that the receiver

can check whether all bits are stable, thus the communication is delay-insensitive

[27][28]. In a current-mode design [29], signal uses a lower voltage swing to save

power. In a two-phase design, the sender changes a req signal and sends data at the

same time; the receiver has to latch data whenever the req change is detected. It

causes a risk when the req transmission is faster than the data. Using four-phase

protocol is safer. Sender should set up data no later than the req rise. Receiver raises

an ack after the req rise is detected. Receiver latches data when req falls. While sender

is locally synchronous, data setup time needs at least one cycle. The maximum

throughput is two cycles per data.

Network congestion is a main concern on multi-processor performance. A task

will be stalled when its required data is blocked en route. Many static task scheduling

algorithms [30] [31] had been introduced to maximize resource utilization. In these

static task scheduling algorithms, all data are assumed to be received at task beginning,

and be sent at task ending. Actually, this assumption is not correct, communication

may occur during task execution. Thus, the real-time constraint should be verified

after task scheduling.

The NoC transactions come from three ways:

(1) Synchronization by pthread_create and pthread_join.

(2) Core-to-core message passing.

(3) Cache misses.

To simulate communication between multi-processors, using a cycle-accurate

model will spend too much time. Transaction Level Modeling (TLM) offers the ability

to simulate C source code on an abstracted hardware description.

TLM is developed for architecture level design and exploration. Literally a

transaction is the exchange of goods, services or funds; or a communicative action or

activity involving two parties or things that reciprocally affect or influence each other.

Both meanings have two ingredients, exchange/communication and goods/influence.

42

In an electronic system, the goods or influence can be considered as the computation

or the effect of the computation. There are many discussions regarding TLM over the

years, and the definitions, terminologies and libraries had been developed by the

OSCI TLM Working Group (TLM WG) [32].

SystemC is an executable and integrating language for representing a design at

abstraction levels above RTL. SystemC provides a number of datatypes that are useful

for hardware design. These datatypes are implemented in C++ classes. To simulate a

large design such as an MPSoC on RTL will spend days or months. TLM using

SystemC [33] is becoming a standard for communication verification.

3.4 OpenMP to TLM

Many languages and tools had been introduced to simplify multi-processor

programming, such as Message Passing Interface (MPI) [34], Portable Operating

System Interface (POSIX) pthread [35], OpenMP [36], and StreamIt [37]. MPI is

mostly used in a distributed system which describes communications between

processors explicitly. OpenMP is suitable for shared-memory programming. Compiler

often transforms OpenMP code into POSIX pthread, by inserting thread creation,

synchronization, and memory management codes from OpenMP directives.

As described in Section 3.2, we wish to handle inter-processor communication

explicitly in software. Thus the OpenMP shared-memory code should be converted

into MPI-like code to describe transaction explicitly.

Figure 3-3 shows the works in a tool that converts an OpenMP code into a

POSIX pthread code. Work (1) inserts pthread_create and pthread_join for

processor synchronization from #pragma omp directives, and creates a thread body

for each thread. There are three ways to perform data sharing. If the shared data size is

small, we can directly pass it to the target processor using the method described in

Section 3.2, Work (2) inserts a Send and a Recv function calls in the caller function

and the created thread body respectively. If the shared data is large, but can be

partitioned into smaller independent blocks, the Send and Recv are inserted in a

43

loop to perform sequentially as in Work (4). A large non-parallelizable data, as shown

in Work (3), can only pass through shared L2 cache, and a cache flush code is inserted.

We should specify a processor ID for a thread to execute. A profiling with a given test

pattern is performed to get the ID of each loaded function. Work (5) performs

fine-grain parallelization on a loop to convert it into SIMD instructions to improve

performance and get more correct function loading information. Parallelization will

be described in Chapter 4 in more detail. The converted code is verified on a SystemC

TLM platform. In a function with a large number of data accesses, cache-miss

possibly dominates network bandwidth. A memory read is converted into a

cache_read function and a memory write is converted into a cache_write

function in Work (6) to integrate cache-miss transactions into verification. As shown

in Work (7), the function execution time obtained by profiling is inserted at the end of

every function to emulate the computation loading on our SystemC TLM platform.

`

Figure 3-3. OpenMP to TLM

main()

{

 #pragma omp parall sessions

 {

 #pragma omp session shared(r2)

 Func2(&r2);

 #pragma omp session shared(pic)

 Func1(pic);

 }

 #pragma omp parallel for \

 private(i) shared(dat)

 for(i=0;i<32;i++)

Func3(dat[i]);

 }

Func3()

{ for(i=0;i<N;i++) {

 …=A[x];

 B[y]=…;

 }

}

(1) synchronization:
 pthread_create/pthread_join

(2) Small shared data:
insert Send/Recv

(3) Large data, non-parallelizable:
 flush to shared L2 cache

(4) Large data, parallelizable:
 Send/Recv in loop

(6) Large data access:
 …=cache_read(&A[x])
 cache_write(&B[y],…)

(5) Fine grain loop:
 parallelize to SIMD

(7) Execution time:
 wait(1000,SC_NS)

44

In the following, we use an example to show above works and the SystemC

TLM verification. Code 3-1 is an OpenMP code. Code 3-2 is its converted pthread

code. Code 3-3 is the SystemC TLM platform.

The benefit of SystemC TLM implementation is that the code can run in its

original style, and the timing information can obtain from this SystemC platform.

Each PLX2 contains 4 physical threads. In software view, the four physical

threads work as four logical processors sharing a cache. Logical processor is the unit

for thread creation and message passing. In Code 3-2, each physical thread is assigned

a logical processor ID, it is combined of a processor ID and a physical thread ID. For

example in Code 3-2, value LP4 means the thread is created at physical thread 0

(0=(4%4)) of processor 1 (1=(4/4)). Each logical processor can read its private status

LPID to locate its position. In following example, the system has 4 processors, thus

LPID value is from LP0 to LP15.

In Code 3-1, Func3 occupies most computation. We allocate eight logical

processors (LP8 to LP15) for Func3. The other two functions Func1 and Func2

each uses one logical processor (LP4 and LP5).

In Code 3-2, thread body ThreadA, ThreadB, and ThreadC are created.

Instructions under #pragma omp are moved into thread bodies. Send, Recv,

fifoalloc, cacheflush and cacheinvalid functions are inserted in related

thread body by the conversion of shared data.

At system startup, all logical processors fetch an instruction from memory

address 0. All logical processors except LP0 goes to IDLE soon by checking if its

LPID is not 0, as shown by the first instruction in function main. Only LP0

continues to execute the other main functions.

The function pthread_create sends a FORK packet to the target logical

processor. The receiver hardware generates an interrupt whenever a control packet is

received; target logical processor will save its current program counter (next to IDLE)

and switches to an interrupt handler. When the function execution finishes, a JOIN

packet is replied to the sender, then program returns to an IDLE status again.

45

In OpenMP coding, whether a variable is shared by or private to a thread should

be carefully assigned in a clause list. A variable declared as private assumes that a

thread initializes the variable and no other threads use it. A local variable will be

added in the thread to replace the variable in the original code.

A main difference between an MPSoC and a multi-processor supercomputer is

the limited local storage capacity. Cell processor has 256KB, RAW processor has

32KB, and Intel tera-flops has only 3KB memory in a core. A CIF picture size is

300KB, it exceeds all the MPSoC’s local storage capacity. Thus large data cannot be

directly transferred core-to-core, they should be stored in a shared memory and loaded

into the target core by a cache-miss mechanism.

In Code 3-2, 32 mydata blocks need to be computed by Func3, each logical

processor works on 4 blocks. Instead of transferring 4 blocks at the function

beginning, ThreadC sequentially processes these 4 blocks, thus reduces the needed

FIFO size.

Func1 is a large data example. The array pic is too large for core-to-core

transfer. Array pic is allocated by function main, LP4 does not know its address at

compile time. Thus its address should be sent to LP4, for ThreadA knows where to

fetch data. Before ThreadA is created, pic should flush into a shared L2 cache for

other core to use. While a partial data may be swapped in/out many times, the

communication induced by cache-miss is dependent to the algorithm behavior. In

Func1 of Code 3-2, all memory access codes are replaced by functions cacheread

and cachewrite to emulate the behavior in TLM.

Each logical processor has its own private resource, such as the LPID status.

When two threads read their LPID, they should get a different value. We use C++

object to implement a private access. In Code 3-3, class LogicProcessor includes

Code 3-2, thus the original C code can execute correctly without further manual

modification.

Code 3-3 implements the MPSoC TLM platform. The processor and physical

thread numbers are configurable by defining ProcessorNum and ThreadNum.

46

Processors are connected as a 2-D mesh by routers. An I/O controller and a

shared-memory are included in the platform.

Routing algorithm is important to improve communication efficiency. Best

routing algorithm is dependent on traffic style. On this example, we implement an

X-Y routing algorithm. A flit has a one-word header and 8-word data. Transferring

one word needs 2 cycles by using a 4-phase GALS channel as described in Section

3.3. Router buffers a flit before forwarding it to next router. Control packet has higher

priority. Other packet priority is decided by its age, the time that it remains in router.

Thus, the maximum latency of a flit in a router is 90 cycles, and the minimum latency

of a packet is 18 cycles multiplied by the communication distance.

On SystemC modeling, components are implemented as module

(SC_MODULE). Processors and routers are declared as SC_MODULE. The function

threadcall in Processor module initializes the main function in every

physical threads. In SystemC, all threads work in parallel, thus resource conflict such

as two threads want to send their packets at a time will occur. In Code 3-3, variable

sendlock in Processor module is used to perform mutual exclusion. If the

Sender hardware is occupied by one thread, the other Send functions are stalled

until a sendevent is issued when the transfer is complete. The Receiver function

in Processor module checks the cmd field in a packet to decide what to do when

the packet is received. A FORK packet will induce an interrupt to call the specified

function. A JOIN packet will clear the threadwait flag in LogicalProcessor

class. A DCACHEACK packet will refresh cache-miss content. And an MSG packet will

update FIFO.

Delay is inserted in Sender and Route by wait function to emulate

communication latency. Computation delay is inserted in Func3. The SystemC

simulation result is at the approximate-time (AT) level.

47

Code 3-1. Example OpenMP code.

main()
{
 int r2;
 char *pic=new char[352*288];
 //run OS only on LP0
 if (LPID!=0) {
 while(1) IDLE();
 }
 #pragma omp parall sessions
 {
 #pragma omp session shared(pic)
 Func1(pic);
 #pragma omp session shared(r2)
 Func2(&r2);
 }
 //sequential code
}
Func1(char *pic)
{
//induce cache-miss
…=pic[x];
pic[y]=…

}
Func2(int *r2)
{
 int i;
 struct mydata dat[32];
 //setup, sequential
for(i=0;i<32;i++) dat[i].a=…;
#pragma omp parallel for \
private(i) shared(dat)
for(i=0;i<32;i++) func3(dat[i]);

}
Func3(struct mydata *blk)
{
//heavy computations
…

}

48

Code 3-2. Converted pthread code.

main()

{

 int i,r1,r2;

char *pic=new char[352*288];

 pthread_t tid[2];

 if (LPID!=0) {

 while(1) IDLE();

 }

 fifoalloc(3072);

cacheflush(pic,352*288);

cacheinvalid(pic,352*288);

 pthread_create(&tid[0], LP4, id_ThreadA, 0);

 pthread_create(&tid[1], LP5, id_ThreadB, 0);

 Send(&pic,LP4,4);

 Send(&r2,LP5,4);

 Recv(&r2,LP5,4);

 for(i=0;i<2;i++) pthread_join(tid[i]);

 cacheinvalid(pic,352*288);

 //sequential code

}

void ThreadA(void *param)

{

 int *pic;

 fifoalloc(4);

 Recv(&pic,LP0,4);

 cacheinvalid(pic,352*288); //reload pic

 Func1(pic);

 cacheflush(pic,352*288); //write result to L2 cache

 fifofree();

}

Func1(char *pic)

{

//induce cache-miss

…=cacheread(&pic[0]);

cachewrite(&pic[1],…)

}

49

void ThreadB(void *param)

{

 int r2;

 fifoalloc(datn*8);

 Recv(&r2,LP0,4);

 Func2(&r2);

 Send(&r2,LP0,4);

 fifofree();

}

Func2(int *r2)

{ int i,t,p,n[8];

 mydata dat[32];

 //setup, sequential

for(i=0;i<32;i++) dat[i].a=…;

pthread_t tid[8];

for(t=0;t<8;t++) {

pthread_create(&tid[t],LP8+t,id_ThreadC,0);

 }

 for(t=0;t<8;t++) {

 Send(&dat[t*4],

LP8+t,datn);

 n[t]=0;

 }

 do {

 wait(recvevent);

 for(t=0;t<8;t++) {

 if (nb_Recv(

&dat[t*4+n[t],

LP8+t,datn)

 { n[t]++;

 if (n[t]<4))

 Send(&dat[t*4+n[t]]

,LP8+t,datn);

 }

cacheinvalid(

&dat[t*4+n[t]],datn);

 //calc recvdata,release

cacheinvalid(

&dat[t*4+n[t]-1],datn);

 } while(not_all_4(n));

for(t=0;t<8;t++)

pthread_join(tid[t]);

}

50

void ThreadC(void *param)

{

int i;

mydat *blk=new mydat;

 fifoalloc(datn);

 for(i=0;i<4;i++) {

Recv(blk,LP5,datn);

Func3(blk);

Send(blk,LP5,datn);

cacheinvalid(blk,datn);

 }

fifofree();

}

void Func3(mydata *blk)

{

heavy computation

 wait(tmFunc3,SC_NS);

}

void InterruptCall()

{switch(intrfunc) {

case id_ThreadA:

ThreadA(intrparam);

break;

case id_ThreadB:

ThreadB(intrparam);

break;

case id_ThreadC:

ThreadC(intrparam); break;

}

SendJoin(intrcaller);

}

51

Code 3-3. SystemC TLM platform.

SC_MODULE(CHIP)

{

 sc_out<bool > poff;

 Processor *P[ProcessorNum];

 Router *R[ProcessorNum];

 MEM *M;

 IOC *C;

 sc_signal<bool > poffx[ProcessorNum];

 sc_fifo<flit> rto[ProcessorNum][5];

 sc_fifo<flit> pro[ProcessorNum];

 sc_fifo<flit> chx[ProcessorNum][4];

 sc_fifo<flit> memo;

 sc_fifo<flit> ioco;

 SC_CTOR(CHIP)

 {int i,j;

 for(i=0;i<ProcessorNum;i++) {

 P[i]=new Processor("Processor");

 R[i]=new Router("Router");

 for(j=0;j<ThreadNum;j++) {

 P[i]->T[j].LPID=i*ThreadNum+j;

 }

 P[i]->iport(rto[i][Center]);

 P[i]->oport(pro[i]);

 if (i==0) P[i]->poff(poff);

 else P[i]->poff(poffx[i]);

 R[i]->RID=i;

 R[i]->iport[Center](pro[i]);

 R[i]->oport[Center](rto[i][Center]);

 R[i]->oport[East](rto[i][East]);

 R[i]->oport[North](rto[i][North]);

 R[i]->oport[West](rto[i][West]);

 R[i]->oport[South](rto[i][South]);

 }

 M=new MEM("MEM");

 M->oport(memo);

 M->iport(rto[MPos][MPort]);

 C=new IOC("IOC");

 C->oport(ioco);

 C->iport(rto[CPos][CPort]);

 for(i=0;i<ProcessorNum;i+=MeshWidth) {

52

 for(j=0;j<MeshWidth;j++) {

 if (j!=MeshWidth-1) R[i+j]->

 iport[East](rto[i+j+1][West]);

 else if ((i+j==MPos)&&(MPort==East))

 R[i+j]->iport[East](memo);

 else if ((i+j==CPos)&&(CPort==East))

 R[i+j]->iport[East](ioco);

 else R[i+j]->iport[East](chx[i+j][East]);

 …//other directions similar

 }

 }

};

///

SC_MODULE(Router)

{sc_port<sc_fifo_out_if<flit> > oport[5];

 sc_port<sc_fifo_in_if<flit> > iport[5];

 int RID;

 flit ibuff[5];

 char irdy[5],iage[5],odir[5],odecide[5];

 char routedir(flit *f) //XY route

 { char target=f->head.dstid/ThreadNum;

 if (RID==target) {

 return((odecide[f->head.dport]==-1)?

f->head.dport:-1);

 } else {

 if ((RID/MeshW)==(target/MeshW)) { //same row

 if (RID<target) return((odecide[East]==-1)?East:-1);

 else return((odecide[West]==-1)?West:-1);

 } else if (same col) {

 if (RID<target)

return((odecide[North]==-1)?North:-1);

 else

return((odecide[South]==-1)?South:-1);

 } else if ((RID%MeshW)>(target%MeshW))

{//left side

…

 }

 }

void Route()

 { int i,j;

 char k, prior[5];

 while(1) {

 for(i=0;i<5;i++) if (irdy[i]) iage[i]++;

53

 for(i=0;i<5;i++) {

 if (!irdy[i]) {

 if (iport[i]->nb_read(ibuff[i])) {

 printdebug('R','I',RID,0,0, ibuff[i]);

 irdy[i]=true; iage[i]=0;

 }

 }

 }

decide_by(ibuff,iage);

 for(i=0;i<5;i++) {

 if (odecide[i]!=-1) {

 if (oport[i]->num_free()!=0) {

 printdebug('R','O',RID,odecide[i],i,

 ibuff[odecide[i]]);

 oport[i]->write(ibuff[odecide[i]]);

 irdy[odecide[i]]=0;

 }

 }

 }

 wait(transtime,SC_NS);

 }

 }

 SC_CTOR(Router) {

 SC_THREAD(Route);

 }

};

///

SC_MODULE(Processor)

{ sc_port<sc_fifo_out_if<flit> > oport;

 sc_port<sc_fifo_in_if<flit> > iport;

 LogicProcessor T[ThreadNum];

///////////////////////SC_THREAD

 int threadcnt;

 void threadcall()

 { int ord = threadcnt ++ ;

 T[ord].main();

}

///////////////////////Send

 bool sendlock;

 sc_event sendevent;

 bool issending() { return(sendlock); }

 void Sender(char *ptr, char cmd, char ctrl,

54

char src, char dst, char dport, int len)

 { int p,j;

 flit f;

 sendlock=1;

 f.head.srcid=src; f.head.dstid=dst;

 f.head.cmd=cmd; f.head.headflit=1;

 f.head.dport=dport;

 f.head.tailflit =(len<=FlitSize) ;

 if (cmd==pktcmd_ctrl) f.head.ord=ctrl;

 else if (f.head.cmd==pktcmd_dcachew) f.head.ord=len;

else f.head.ord=0;

 if (len<FlitSize) j=len; else j=FlitSize;

 p=0;

 if (j!=0) memcpy(&f.dat,ptr+p,j);

 do {

 if (oport->num_free()!=0) {

 oport->write(f);

 f.head.headflit=0;

 f.head.ord++;

 p+=j;

 if ((len-p)>FlitSize) j=FlitSize;

else {j=len-p; f.head.tailflit=1;}

 if (j!=0) memcpy(f.dat,ptr+p,j);

 wait(transtime, SC_NS);

 } else {

 wait(clockcycle, SC_NS);

 }

 } while(j!=0);

 sendevent.notify();

 sendlock=0;

 }

void fork(char dthread, char srcid,

int intrfunc, void *param)

 {

 T[dthread].intrcaller=srcid;

 T[dthread].intrfunc=intrfunc;

 T[dthread].intrparam=param;

 T[dthread].intrevent.notify();

 }

void join(char dthread,char srcid)

 {

 T[dthread].threadwait[srcid]=0;

 T[dthread].joinevent.notify();

55

 }

bool nb_Recv(void *addr,unsigned char srcid,

unsigned char dstid, int len)

 { int r,s,a,n,rown;

 flithead m;

 for(r=0;r<cacherows;r++) {

 if (cachelock[r]) {

 m.w=cachetag[r][0];

 if ((m.w!=-1)&&(m.srcid==srcid)&&

(m.dstid==dstid)&&m.tailflit) break;

 }

 }

 if (r==cacherows) return(false);

 for(all locked rows & sets) {

 cachetag[r][s]=addr+(s<<cachecdb);

 cachevalids[r][s]=1;

 memcpy(a,&cacheram[r][0][0][0],n);

 }

 return(true);

 }

///////////////////////Receiver HW

 void Receiver()

 { flit f; int dthread;

 while(1) {

 if (iport->nb_read(f)) {

 dthread=f.head.dstid&(ThreadNum-1);

 switch(f.head.cmd) {

 case pktcmd_ctrl:

 switch(f.head.ord) {

 case ctrlpkt_fork:

 fork(dthread,f.head.srcid,f.wdat[0]);

 break;

 case ctrlpkt_join:

 join(dthread,f.head.srcid);

 break;

 }

 break;

 case pktcmd_dcacheack:

 memcpy(&cacheram[rdr][rds][rdc][0],

f.dat,FlitSize);

 rdc++;

 dcacheackevent.notify();

56

 break;

 case pktcmd_msg:

 fifowrite(&f);

 if (f.head.tailflit)

T[dthread].recvevent.notify();

 break;

 }

 }

 wait(clockcycle,SC_NS);

 }

 }

void readmem(int t,int s,int c)

{ int dat[2];

 dat[0]= cachetag[r][s]; dat[1]=FlitSize*Cols;

if (dat[0] in IOC range) {

 dcore=CPos; dport=CPort;

} else {dcore=MPos; dport=MPort;}

 Send(dat,pktcmd_dcachereq,dcore,dport);

 wait(dcacheackevent);

}

int cacheread(void *addr)

 { cachebusy=1;

 c=(addr>>cachedatb)&cachecolmask;

 s=(addr>>(cachecdb))&cachesetmask;

 m=addr&~cachescdmask;

 r=find((cachetag[r][s]==m)&&cachevalid);

 if (r not found) { //read miss

 r=findlru(s);

 cacheflushcol(r,s);

 cachetag[r][s]=m;

 readmem(r,s,c);

 cachevalid[r][s][c]=1;

 }

 cachebusy=0;

 cacheevent.notify();

 return(cacheram[r][s][c][addr&bytemask]);

 }

void fifowrite(flit *f)

 { int r,s,c;

 flithead m; m.w=f->head.w;

 if ((m.ord&cachescmask)==0) {

 c=0; s=0;

 do {

57

 for(r=0;r<cacherows;r++)

 if (cachelock[r]&&(cachetag[r][0]==-1)

&& (fifothread[r]==(m.dstid&3)))

break;

 if (r==cacherows) //Receiver hangup

wait(fifoevent);

 } while(r==cacherows);

 m.headflit=0; cachetag[r][0]=m.w;

 } else {

 c=(addr>>cachedatb)&cachecolmask;

 s=(addr>>(cachecdb))&cachesetmask;

 r=find_tag_with_same_id(m);

 }

 memcpy(cacheram[r][s][c],f->dat,FlitSize);

 cachevalid[r][s][c]=1;

 }

SC_CTOR(Processor)

 {

 for(int j=0;j<ThreadNum;j++) {

 T[j].parant=this;

 sc_thread_handle handle[j] =

simcontext()->register_thread_process("",

 SC_MAKE_FUNC_PTR(

 Processor, threadcall), this);

 …

}

 }
///

class LogicProcessor

{

public:

 int LPID,intrfunc,intrcaller;

 Processor *parant;

 sc_event intrevent, joinevent, recvevent,

 void *intrparam;

 bool threadwait[ProcessorNum*ThreadNum];

#include "Code3-2"

void IDLE()

{

while(1) { wait(intrevent); InterruptCall(); }

}

void pthread_create(pthread_t *tid, int attrib, int pfunc,

58

void *param)

{ int dat[3];

 threadwait[attrib]=true;

 if (((attrib^LPID)>>ThreadNumb) == 0)) {

 parant->fork((attrib&(ThreadNum-1)),

LPID,pfunc,param);

 } else {

 dat[0]=pfunc; dat[1]=(int)param;

 while (parant->issending())

wait(parant->sendevent);

 parant->Send((char *)dat,pktcmd_ctrl,

ctrlpkt_fork,LPID,attrib,CENTER,8);

 }

 *tid=&threadwait[attrib];

}

void pthread_join(pthread_t tid)

{while(*tid) { wait(joinevent); }

}

void Send(void *ptr, int dst, int num)

{while (parant->issending()) wait(parant->sendevent);

 parant->Sender((char

*)ptr,pktcmd_msg,0,LPID,dst,CENTER,num);

}

void Recv(void *ptr, int src, int num)

{ while (!parant->nb_Recv(ptr, src, LPID, num))

{wait(recvevent); }

}

int cacheread(void *ma)

{while (parant->iscachebusy())

wait(parant->cacheevent);

 return(parant->cacheread(ma));

}

void cachewrite(void *ma,int v, int bytes)

{while (parant->iscachebusy())

wait(parant->cacheevent);

 parant->cachewrite(ma,v,bytes);

}

void fifoalloc(int bytes)

{while (parant->iscachebusy())

wait(parant->cacheevent);

 parant->fifoalloc(bytes);

}

};

 59

CHAPTER FOUR

PARALLELIZATION

Parallel processing had been developed in 1960s on some high-speed vector

processors such as ILLIAC-IV and Cray-1 to increase the scientific computation

speed. Since scientific codes contain many one-dimension vector and two-dimension

matrix operations, a vector processor is often used to perform these operations

simultaneously on its processing elements. Since then, many parallelization

techniques have been developed.

4.1 Vectorization

A basic way to explore code parallelism is to transform operations in a loop into

as many vector operations as possible. In most cases, parallelism is destroyed by bad

code structure. Vectorization techniques try to improve parallelism by dependence

reduction and loop transformation. The techniques described in this section are from

the background of our parallelization tool development.

A vector is represented as A[begin: end: stride]. The array index is

extended to 3 literals to represent the vector operation performing on element begin,

begin+stride, begin+2*stride, …, end. When stride is 1, it can be

omitted. For example, the following code:

 for(I=1;I<=64;I++) C[I]=A[I+1]+B[2*I-1]

can be represented as a vector addition

 C[1:64]=A[2:65]+B[1:127:2]

In addition to scientific computation, people wish to utilize the vector

computation in more fields. To optimize a general algorithm into vector needs

in-depth analysis. Vectorization technique for sequential code had been widely studied

60

in the 1970s. In general, vectorization technique transforms nested loops into vector

by dependence analysis, dependence removal, and loop transformation as decribed in

the following subsections.

4.1.1 Dependence Analysis

If there is no semantic difference between executing a loop in a sequential order

and executing it as a vector operation, this loop is able to parallelize. A counter

example is shown in the following code

 for(I=1;I<=64;I++) A[I+1]=A[I]+B[I];

On executing the code as a sequential loop, we have the following result:

A[3]new=A[2]new+B[2]old= A[1]old+B[1]old+B[2]old. On executing it as a

vector operation: A[2:65:1]=A[1:64:1]+B[1:64:1], the result will become

A[3]new=A[2]old+B[2]old, which is different to the result obtained by executing it

as a sequential loop; thus the loop is unable to parallelize.

In above example, the operand of the second iteration uses the result of the first

iteration A[2]new. In other words, the execution of the second iteration is dependent

on the first iteration. Two statements can be executed in parallel only when there is no

dependence between them. The statements of the first iteration and the second

iteration are dependent, so they cannot be executed in parallel as a vector.

Dependence can be classified into the following four types [38]:

(1) Flow dependence, or Read after Write (RAW) dependence.

If one operand of the second statement is the result of the first statement, the

second operation should wait until the first statement finishes.

(2) Anti dependence, or Write after Read (WAR) dependence.

If the second statement overwrites one operand of the first statement, the

second statement cannot be executed earlier than the first statement to avoid

change of operand value.

61

(3) Output dependence, or Write after Write (WAW) dependence.

If two statements write to the same destination, they cannot be executed

simultaneously to avoid having an ambiguous result.

(4) Input dependence, or Read after Read (RAR) dependence.

When two statements use the same operand, they are said having input

dependence.

Input dependence is not an actual dependence because the statement execution is

not dependent on each other. Input dependence is used to group the statements closer

such that we can reuse the same operand from the register to save memory load time.

The anti and output dependences can be removed by the variable rename

technique, thus they are also called false dependences, and only the flow dependence

is called a true dependence.

Therefore, the loop-carried flow dependence actually limits vectorization. To

precisely determine the loop-carried flow dependence, we can analyze the array index

relationship of the statements in a loop [39]. Consider the generalized expression:

 for(I=1;I<=N;I++) A[a+b*I]=f(A[c+d*I])+g(I);

where g(I) does not use array A. Relative to the above example, a=1, b=1, c=0,

d=1, g(I)=B[I] and f(A[x])=A[x]. To analyze a loop-carried flow

dependence is to check whether the result A[a+b*x] is used as an operand

A[c+d*y] at a later iteration. The loop-carried flow dependence exists if and only if

there exist integers x and y, 1≤x<y≤N, such that a+b*x=c+d*y.

By the number theorem, the equation a+b*x=c+d*y has integer solution x, y if

and only if a-c is multiple of GCD(b, d), or GCD(b, d)|(a-c), where GCD is

the Greatest Common Divisor. From the above example, GCD(b, d) = GCD(1,1)

= 1, a-c = 1-0 = 1, GCD(b,d)|(a-c) is true.

For a loop that contains many statements, we should check whether the statement

result is used as operand by any other statement at the later iteration or not, that is, we

should check the GCD(b,d)|(a-c) for all statement pairs.

62

The single loop dependence check can be extended to nested loop. For example,

given the following sample code:

 for(K=1;K<=L;K++)
 for(J=1;J<=M;J++)

 for(I=1;I<=N;I++) A[a0+a1*I+a2*J+a3*K]=

 f(A[b0+b1*I+b2*J+b3*K]);

The dependence checking is performed from the innermost loop to the outmost

loop. At a specific outer loop J =x2 and K=x3, the innermost loop contains loop-carried

dependence if and only if there exist 1≤x1≤N, 1≤x2≤M, and 1≤x3<y3≤L, such that

a0+a1*x1+a2*x2+a3*x3 = b0+b1*x1+b2*x2+b3*y3, or (a1-b1)*x1+(a2-b2)

*x2 +a3*x3-b3*y3 = b0-a0. The integer solution exists when

GCD(a1-b1,a2-b2,a3,b3)|(b0-a0). Similarly, the dependence check equation

for the second loop is GCD(a1-b1,a2,b2,a3,b3)|(b0-a0), and

GCD(a1,b1,a2,b2,a3,b3)|(b0-a0) for the outmost loop.

4.1.2 Loop Normalization

By the number theorem, the above GCD test for dependence analysis works only

when the loop index begins from 1, ends at a number N, and increases by 1. General

loop that does not satisfy this constraint needs to normalize.

Given the following code:

P=10;

 for(J=0;J<100;J=J+2) A[P++]=A[2*J]+J;

By performing analysis on the loop argument, we can replace the loop index J to

a new index K, that is, J=2*K-2, and change the loop index dependent variable P to

P=K+9. The loop is transformed into:

 for(K=1;K<=50;K++) A[K+9]=A[4*K-4]+(2*K-2);

Now this loop is normalized and dependence check can be performed.

63

4.1.3 Loop Transformation

Consider the following code:

 for(J=1;J<=M;J++)
 for(I=1;I<=N;I++) A[I][J]=A[I-1][J];

This code fills the whole array with row 0 in an order of column by column, and

the inner loop contains loop-carried dependence. If the code is transformed into:

 for(I=1;I<=N;I++)
 for(J=1;J<=M;J++) A[I][J]=A[I-1][J];

By exchanging the two loops, the new code works row by row. The two results

are the same but the later row-wise order can work more efficiently in a vector

machine.

Loop transformation procedure sequentially selects a pair of loops in which it is

legal to apply a transformation, and checks its dependence by GCD test as described

above. If more than one solution is available, the performance or data locality gain is

used to help decision making.

Loop transformation is the key technology to improve parallelism and data

locality. Many transformations had been introduced [40][41]. For example, loop

skewing helps systolic array algorithms to utilize memory; loop interchange and

reversal helps linear algebra that contains dense matrices.

4.1.4 Dependence Removal

Instruction Level Parallelism can be improved by removing false dependence.

The techniques include variable rename, scalar expansion, node splitting and control

flow conversion. The following code is used to explain.

 for(I=1;I<=N;I++) {
S1: v=A[I]+B[I];

S2: v=v*C[I];

S3: C[I+1]=v+I

S4: D[I]=D[I-1]+D[I+1]+2;

S5: if (E[I]>F[I])

64

S6: R[I]=E[I]-F[I];

S7: else R[I]=E[I]+F[I];

 }

S1 and S2 are outputs dependent on variable v that restricts S1 vectorization. If

variable v from the result in S2 and the operand in S3 is renamed to w, the output

dependence is removed. This technique is called variable rename. The lifetime of a

local variable starts from its value settled, thus renaming it as a new variable will not

cause semantic differences.

S1 contains loop-carried output dependence to itself on variable v; this

dependence disables S1 to vectorize. Renaming variable v to v[I] removes this

dependence. This technique is called scalar expansion for it expands a scalar variable

into an array. The disadvantage is that it needs to allocate more memory.

S4 contains a loop-carried flow-dependence, where D[1] is modified at the

second iteration and then loaded at the second iteration by D[I-1]. S4 contains 2

additions, one is vectorizable. The non flow-dependent part D[I+1]+2 can be lifted

to a new statement, and store its result on a new variable T[I-1], then use T[I-1]

to replace the non flow-dependent part in the original statement. After that, the new

statement becomes vectorizable. This technique is called node splitting. The index I-1

of the new variable T is aligned to the flow dependence part D[I-1] such that the

data shift which is required for ILLIAC-IV array architecture can be performed in

parallel.

S6 and S7 have control dependence on S5. The program counter (PC) value set

by S5 conditional branch operation is the address of S6 or S7, which will depend on

the S5 comparison operation result. It causes the program counter value to become

ambiguous when all iterations of S5 are executed simultaneously. In other words, S5

has loop-carried output dependence on program counter. To avoid program counter

ambiguity, conditional branch operations should be removed. In ILLIAC-IV, each PE

contains a mode register that can disable the current instruction execution. When a PE

is disabled, the relative result keeps no change. The conditional branch execution can

65

be changed to execute all statements with a proper vector mask. A new Boolean array

is added to store the S5 comparison result. The Boolean array (1-bit for each element)

is sent to the mode register or vector mask register when the S6 vector is executing,

and its complement is sent when the S7 vector is executing. The execution with mask

expression works as a three-operand one-result operation, the three operands are the

original two ALU operands plus the vector mask; such control flow conversion [42]

technique changes control dependence into data dependence.

The result after dependence removal is shown in the following code:

 for(I=1;I<=N;I++) {
S1: v[I]=A[I]+B[I];

S2: w=v[I]*C[I];

S3: C[I+1]=w+I;

S4a: T[I-1]= D[I+1]+2;

S4b: D[I]=D[I-1]+T[I-1];

S5: VM[I]=(E[I]>F[I]);

S6: R[I]=(VM[I])?(E[I]-F[I]);

S7: R[I]=(~VM[I])?(E[I]+F[I]);

 }

4.1.5 Strongly Connected Component

The above transformation can be performed more efficiently by applying the

graph theorem on the dependence graph.

As defined, a dependence graph [43] is a directed graph, whose nodes represent

code statements, and arcs are dependences. Figure 4-1 shows the dependence graph of

the example in Section 4.1.4.

On a directed graph, a strongly connected components (SCC) is defined as: for

every pair of nodes u and v if there is a path from u to v and a path from v to u. An

SCC can be found by using depth-first search technique [44].

In geometric view, an SCC contains nodes that form a circle. A circle in a

dependence graph means that there are loop-carried dependences on these statements,

which are not vectorizable. A single-tone SCC is defined as an SCC having only one

node and no arc to itself; thus, it is vectorizable.

66

Figure 4-1. Dependence graphs: (a) original and (b) after dependence removal.

4.1.6 Loop Distribution

If we treat an SCC as a single supernode, all the arcs in a dependence graph will

have a forward direction. The loop can be partitioned into many sub-loops on a

forward-only path that will not make a semantic difference. All SCCs have to be

changed into independent loops, and the original loop headers have to be distributed

to these new loops. A single-tone SCC can be directly transformed into a vector. The

result of the above example then becomes:

S1: v[1:N]=A[1:N]+B[1:N];

 for(I=1;I<=N;I++) {

S2: w=v[I]*C[I];

S3: C[I+1]=w+I;

 }

S4a: T[0:N-1:1]= D[2:N+1:1]+2;

S4b: for(I=1;I<=N;I++) D[I]=D[I-1]+T[I-1];

S5: VM[1:N]=(E[1:N]>F[1:N]);

S6: R[1:N]=(VM[1:N])?(E[1:N]-F[1:N]);

S7: R[1:N]=(~VM[1:N])?(E[1:N]+F[1:N]);

S S

S4

S S S

S

S

S S

S4

S

S

S S(a) (b)

flow output control

SCC Single-tone SCC

anti

67

4.2 SIMDization

A subword-parallel SIMD processor has more restrictions than a vector machine.

For example, a subword-parallel SIMD core is restricted on memory access. Given

the following code:

for(I=1;I<=64;I++) C[I][I]=A[I][I]+1;

The memory items are discontinuous. To process the above example, PLX has to

load the discontinuous memory items A[0][0] and A[1][1] by different load

instructions, and pack them into one register to process addition instruction together.

While memory access latency is very long, the addition of A[0][0] can finish when

waiting for A[1][1] to be loaded in a sequential execution scalar processor. Packing

operations would not improve performance, but would increase the pack/unpack

overhead.

When vector items are continuous, subwords can be loaded together by one load

instruction, and memory access count can be reduced. It induces extra effort to handle

neighboring data in a subword-parallel SIMD mode.

4.2.1 Control Flow Conversion

Control flow conversion that converts if-else control into execution with mask is

introduced in Section 4.1.4. Implementing an execution with mask needs three read

ports on a register file and three operand ports on an ALU for the extra mask operand,

and the register file write port needs to be byte writable; thus, the hardware cost is

increased. While most of the time, control flow will not become the performance

bottleneck, increasing hardware cost is not worthy.

A multiplexer behavior, such as R=X?A:B, can be implemented using an

AND-OR logic as R=(X&A)|(~X&B). The S6 and S7 statements in the example of

Section 4.1.4 can be changed to:

 S6: R[I]=(VM[I]&(E[I]-F[I]))|(~VM[I]&R[I]);
 S7: R[I]=(~VM[I]&(E[I]+F[I]))|(VM[I]&R[I]);

68

The two statements can be further optimized as:

R[I]=(VM[I]&(E[I]-F[I]))|(~VM[I]&(E[I]+F[I]));

The new statement only contains basic logic operations that can execute on a

2-operand ALU. But VM[I] is one-bit length and E[I]-F[I] are subwords. Before

its execution, VM[I] has to expand into a subword size for the bitwise AND/OR

operation. This expansion is performed by the subword-parallel comparison operation

in S5. Subword-parallel ALU sets every bit in the related subword to 1 (as an integer

value -1) when the comparison result is true, and sets to 0 when the comparison is

false.

4.2.2 Memory Alignment

For cost and power consideration, most RISC processors require all memory

accesses to be aligned, that is, the data loaded from memory cannot cross the 64-bit

boundary if the processor is of 64-bit length. An across-boundary access should be

split by a compiler.

Memory alignment becomes more critical when using an SWP-SIMD processor

on multimedia applications, where we are asked to pack the memory components into

one superword to be accessed together. Although each component does not cross the

boundary, the packed one may cross. For example on processing an RGB24 format

picture, the packed element is 24-bit (8-bit for each of the Red, Green and Blue

components), the third element will cross the 64-bit boundary. Another example is

Motion Estimation. This algorithm shifts a search window one pixel at each iteration,

making most reference frame accesses misaligned.

Current technology handles misaligned vectors as a stream [45]. Registers are

used for each vector as a stream buffer. Vector elements are collected in the registers

and shifted to the proper aligned position. Figure 4-2 shows the concept. Assume that

the data precision is 16-bit, a vector begins from w1, and the vector length is 4.

Loading 64-bit from w1 will cross the 64-bit boundary. To avoid the misalignment

problem, Vload instruction loads two words from w0 and w4, and use Vpermute

69

instruction to combine the loaded words. The second word is kept in a stream register

for the following vector.

Operands of a vector equation may have different stream shifts. As the following

example shows:

C[2:66]=A[1:65]+B[3:67];

Using the above policy, both streams A and B have to left shift 1 and 3 positions

respectively, and the addition result has to right shift two positions. If they have to be

aligned to stream C, stream A has to right shift one position and stream B left shift one

position, saving one shift operation.

By above discussion, many policies are possible to handle the stream shift.

(1) Zero Shift: It is the same as Figure 4-2. This policy shifts each

misaligned load stream with an offset of zero, and shifts the store stream

from offset zero to the alignment of the store address.

(2) Eager Shift: This policy shifts each load stream directly to the alignment

of the store stream.

(3) Lazy Shift: This policy pushes the shift towards the root of the

expression tree as close as possible. And

(4) Dominant Shift: This policy shifts to the most frequent alignment

position in equation.

Figure 4-2. Streaming vector loading.

w0 w1 w2 w3 w4 w5 w6 w7 w8 w9 w11
64 bit 64 bit64 bit

Vload(w0) Vload(w4)

w0 w1 w2 w3

Vload(w8)

w4 w5 w6 w7 w8 w9 w10 w11

Vpermute Vpermute

w1 w2 w3 w4 w5 w6 w7 w8

w10

70

4.2.3 Permutation Optimization

Data length conversion can also be handled in streams [46]. When the variables

in a statement have different precisions, the load streams have to be unpacked with

the largest precision, and the result has to be packed with the same precision as the

store variable.

While the subwords of an SIMD instruction are packed into a register, each

subword cannot be easily moved alone. In order to unpack four 16-bit subwords in a

register with a 32-bit precision, the first subword should right shift 16 bits and the

second subword right shift 32 bits to combine into a new register; the third subword is

left shifted 16-bit and combined with the forth subword. In total, 3 shift and 2

combine operations are needed, not including the sign extension.

Many multimedia algorithms themselves contain permutation, such as the

butterfly-order on FFT, or the average/difference of two audio channels on MP3.

Efficiently handling permutations is not easy. Figure 4-3 shows two implementations

of a simple example in MP3 encoder, which calculates the average and difference of

the left and right channel samples.

Figure 4-3. Interleaved average/difference implementations.

The left channel is the even parts of the audio sample array, and the right channel

is its odd parts. The results should also be interleaved into a one-dimension array.

Figure 4-3(a) first left shifts samples to a stream aligned on the right channel, then

0 1 2 3 1 2 3 x 0 1 2 3 4 5 6 7

0 1 2 3

0 1 2 3

0 1 2 3 0 1 2 3 0 1 2 3

0 1 2 3 0 1 2 3

0 1 2 3 4 5 6 7

Ra

Rt

Ra

Rt

Rb

Rc Rd Rc Rd

Re Rf

Rb

71

calculates its average and difference, and packs them into the result register. Figure

4-3(b) loads double samples into two registers, packs their even and odd parts,

calculates their average and difference, and packs the even and odd results into the

result register. The first method uses 5 registers and 5 operations to get 4 result

samples; the second implementation uses 7 registers and 8 operations to get 8 result

samples. The throughput of the second implementation is higher, but it needs more

registers, a tradeoff in optimization. Optimizing a code with the fewest permutation

instructions can be formulated as a multi-cut problem which is NP-hard [47].

4.2.4 Subword Fusion

General software contains many non-vector operations. Packing them into a

superword to process together may increase performance. When addition and

subtraction operations are adjacent, negating the subtraction operand and adding them

in subword-parallel can improve performance.

MIT University first introduced the concept of fusioning these operations [48].

They used a heuristic-based two-cluster partitioning algorithm. Instructions are

partitioned into scalar and vector parts. One instruction is moved from the scalar part

to the vector part once, and the vector part is re-packed to find the minimum cost. The

cost contains pack/unpack overhead.

Vienna University extended the fusion on addition/subtraction pair to increase

SIMD utilization [49]. They use depth-first search based sorting method with

chronological backtracking to discover SIMD style parallelism in a scalar code block,

aiming to reduce the overall instruction count. The addition/subtraction pair finding is

considered as reducing number of source operands.

4.2.5 Matrix Transposition

Most processors store array elements in row-wise. Column vector items are not

continuous in memory. They should be loaded independently and packed together.

Packing four column elements into a superword needs four non-sequential memory

load and three pack operations, which is a large overhead relative to the small code

72

size. To speedup, we can load a 4×4 array from memory into 4 registers, which only

needs 4 memory loads. Then transposing the array to get 4 column vectors.

Transposition can be efficiently obtained by eight PLX permutation instructions as

shown in Figure 4-4. The first stage exchanges the odd subwords in an even row and

the even subwords in an odd row by using two permutation instructions. The second

stage exchanges double words of row0/row2 and row1/row3, each takes two

permutation instructions.

Figure 4-4. Matrix transposition in SWP-SIMD.

4.2.6 Reduction

An extra effort to parallelize multimedia application is to convert summation.

Considering the following code:

 for(I=1;I<=N;I++) s=s+f(A[I]),

which contains loop-carried dependence on variable s, vectorization can do nothing.

While summation is often used in multimedia applications, it greatly affects the

performance. While the SWP-SIMD vector length is short, the loop can be partitioned

into partial summations such that we can sequentially summarize these partial results

at the final stage [50], as shown in the following code:

 psum[0:VL-1]=0;
 for(I=1;I<=N/VL;I++)

psum[0:VL-1]+=f(A[I:I+VL-1];

 for(I=0;I<VL;I++) s+=psum[I];

(a) even/odd word (b) double word (c) result

73

4.2.7 Loop Unrolling

The vector length of a subword-parallel SIMD processor is short; it can be only 4

or 8 depending on data precision. While a loop iteration count is usually larger than

the short vector length, the loop has to be unrolled to fit the short vector length. The

example in Section 4.1.4 can be implemented in either one of the following two ways

(only the first S1, S3 and S3 statements are shown here):

S1: for(I=1;I<=N;I+=VL)

v[I:I+VL-1]=A[I:I+VL-1]+B[I:I+VL-1];

 for(I=1;I<=N;I++) {

S2: w=v[I]*C[I];

S3: C[I+1]=w+I;

 }

Or
 for(I=1;I<=N;I+=VL) {
S1: v[0:VL-1]=A[I:I+VL-1]+B[I:I+VL-1];
 for(J=0;J<VL;J++) {
S2: w=v[J]*C[I+J];
S3: C[I+1+J]=w+I+J;

 }
 }

The first implementation unrolls the loop after loop distribution, and the second

implementation unrolls the loop before loop distribution. The second implementation

allocates v in a register file, which saves the memory access time for v. As

semi-conductor technology progresses, the register access time is much faster than the

memory one; thus, the performance difference of the two implementations becomes

significant.

The second implementation is not always better than the first implementation

when it causes data cache swap. If a loop contains many array variables that cannot all

fit in a data cache, the partial data of array A that were preloaded in cache (which

amount is larger than the vector length) at S1 will be replaced, so it will waste more

time to reload array A from the main memory at each iteration. This will overcome the

gain of register reuse.

74

The optimal solution for loop distribution is to group all SCCs that are connected

by dependence in one loop, but cannot be too large to cause cache swap. The

optimization has to compromise between cache strategy and register allocation.

Memory access latency usually affects performance greatly. Software pipelining

[51] can be applied to further improve memory access efficiency. With software

pipelining, we can reschedule ALU instructions to fill the time when memory load is

waiting. By considering memory sequential accesses and hardware pipeline

architecture, and using software pipelining, the performance can improve 34% [52].

4.3 ILP Scheduling

Instruction level parallelism (ILP) scheduling assigns operations into a 2-D slot

of spatial and time dimension. ILP scheduling can be divided into cyclic and acyclic

scheduling methods. Cyclic scheduling works on loop and acyclic scheduling works

on a basic block code region.

4.3.1 Software Pipelining

Figure 4-5 shows one cyclic scheduling method called software pipelining.

Assume that this machine is a 3-issue VLIW. A loop of iterations 0 to n-1 contains 6

operations from A to F. Operation A is loop-carried dependent to B, so A1 can be

executed in parallel with C0 at the earliest time slot. There are two schedules, as

shown in Figure 4-5(a), where the first ALU executes iterations 0, 3, etc; the second

ALU executes iterations 1, 4, etc; and the third ALU executes iterations 2, 5, etc. In

Figure 4-5(b), the first ALU executes all A and B operations; the second ALU

executes all C and D operations; and the third ALU executes all E and F operations.

Schedule (a) has better data locality which is necessary for clustering architecture, but

schedule (b) optimizes different functions on the 3-issue ALU.

In general, data dependences exist in various types. A data may be referenced k

iterations later where k is not 1. Then the software pipelining cannot be as simple as

the above example. Sometimes it requires using a heuristic method, such as modulo

scheduling, to schedule.

75

Figure 4-5. Software pipelining.

4.3.2 Basic Block Extension

Acyclic scheduling works on a basic block code region. A basic block has a

single entrance at its head and an exit at its tail in a control flow graph. No backward

arc is inside a basic block. The code formation is a heuristic process, it selects

instructions with data dependence constraint and resource usage conflict, to target

optimization of code size or power consumption.

A larger code region has more instructions to select and gets better efficiency.

The key technique of acyclic scheduling is to enlarge the code region. A basic

technique is loop unrolling. It removes the backward arc in the control flow graph,

thus the basic block is extended to contain n times of operations.

Tail duplication is another technique to extend basic block. As shown in Figure

4-6, the control flow graph is partitioned into 4 basic blocks by an if-else decision.

Duplicating BB4 and moving them into the if-else region will reduce the basic

block number to 3, but BB2 and BB3 are enlarged.

Figure 4-6. Basic block tail duplication.

BB1

BB2 BB3

BB4

BB1

BB2 BB3

BB4 BB4

A0
B0
C0 A1
D0 B1
E0 C1 A2
F0 D1 B2
A3 E1 C2
B3 F1 D2
C3 A4 E2
D3 B4 F2
E3 C4 A5

A0
B0
A1 C0
B1 D0
Ai+2 Ci+1 Ei
Bi+2 Di+1 Fi
 Cn-1 En-2
 Dn-1 Fn-2
 En-1
 Fn-1

 i=0 to n-3

(a) (b)

76

Control flow always limits the instruction stream to fill ILP wide spatial slot.

Sometimes if we know by profiling that a branch has a higher probability to execute,

it must be executed in parallel with a current basic block. The speculation technique

will bring this branch ahead before the check point to improve parallelism, and the

execution will be recovered if the speculation result is negative.

Preload is a frequently used speculation method. A memory load is able to

execute whenever the load/store unit is not in use. If the control flow branches to

another path, the loaded data is just waste and will not affect the result. In moving

more instructions before the branch, more registers are required to store these

temporary results, which reduce the number of available registers in the basic block.

4.4 TLP Scheduling

Multitask OS scheduling is maintained on two levels: process and thread. A

process is a standalone program. Killing a process during scheduling will not affect

other processes. Process has its own heap and stacks memory, file handler, and so on.

Synchronization between processes is seldom. Thread is a piece of process execution

stream. Threads are not independent, killing a single thread may cause process

execution to fail. Each thread has its own stack, but the heap memory and file handler

are shared with others.

Threaded programming offers software portability for parallelization. On a serial

machine, threads can work concurrently by time sharing; on a simultaneous

multi-threading or multi-processor machine, threads can work in parallel

simultaneously. The difference of scheduling is taken care by the OS. To achieve

portability, a standard to handle threads is necessary.

4.4.1 Profiling

In a general code, 90% of the execution time is spent on 10% of the code.

Profiling is used to tell the programmer where the performance bottleneck is. The

result of profiling is statistical information on a code, such as execution time,

subroutine call statistics, operations used, and memory access time.

77

Static profiling works by analyzing the representation of a program code without

executing it. The non runtime environment gives the possibility of going into greater

detail in the analysis but also places restrictions on it. Non deterministic properties,

such as recursion, dynamic data structures, and non bound loops in a code region

cannot be estimated without running data from the input, which in turn requires

dynamic profiling.

Dynamic profiling, on the other hand, executes a code with a given testbench

instead of analyzing it. During execution the profiler gathers a code which is being

executed and properties of the execution that are deemed interesting. The dynamic

profiling cannot give the engineer as profound information on the code as the static

profiling does, but it can report in detail what happens during the execution of the

code with a well-defined set of inputs.

In order to discover parallelism, data dependence is one of the most important

characteristics in a code. A code can often be clustered by its spurious dependences;

for example, the accesses of two memory objects may be conflicting, if the objects

cannot be proved independent. A single spurious dependence can prevent multiple

opportunities for parallel execution. Analysis clarifies the picture either by finding

precise data dependences or by removing spurious ones to improve parallelism [53].

The chief obstacle to discovering opportunities to parallelize a multimedia

application is identifying dependences between pointer references. A high-quality

pointer analysis is essential in determining the relationship between pointer references.

However, there are many coding constructs and programming practices that veil the

true picture of memory usage from pointer analysis. For some of these cases, like

recursive data structures and arrays, more specialized analyses such as shape analysis

and array analysis will be very helpful in clarifying the picture.

Pointer analysis determines what objects a memory reference can possibly

access. Heap-sensitive pointer analysis finds whether the allocation function for a

particular type of dynamically-allocated memory object is frequently reused to

allocate multiple objects. Such kind of code reuse is a must to distinguish objects that

78

share a static allocation site. Field-sensitive pointer analysis will group together all of

the objects pointed to by a structure. This prevents the compiler from distinguishing

objects through those pointers. This case appears regularly since multimedia programs

commonly manipulate multiple data channels, and programmers use structures to

organize data hierarchically.

Array analysis can indicate whether or not the pointers really refer to the same

memory location, when two pointers are known to refer to the same object. This form

of analysis conveys information about which loop iteration carries a data dependency.

Array analysis can also determine whether different loops access the disjoint subsets

of a given object. Finally, array analysis can be used to derive the data correlation

between iterations of separate loops.

One important aspect of multimedia applications is that they often have a range

of supported sample rates, sizes, or resolutions and use many symbolic variables in

the interest of code reuse. Dimensions determined at runtime create non-affine

expressions and variable loop bounds, which stymie many simple array

disambiguation tests. In these cases, value constraints analysis can be obtained or

computed to assist the array disambiguation.

Value constraint analysis finds the information about the possible range or other

constraints on a value, it can be critical in evaluating symbolic tests. Many variables

in a code have a relatively small set of values during the majority of code execution,

restricted by control flow tests or written constants.

Value relationship inference helps to find out the relationship between the values

of different variables. Often, one variable is used to compute the value of several

other variables. When related variables appear in an index expression, symbolic

analyses typically lose precision unless they know the relationship between the

variables. These relationships are found by tracking values back through def-use

relationships to find common terms. This requires inter-procedural expression

computation through memory objects, often dynamically-allocated, to find the

relationships between values [54].

79

4.4.2 Structuring

Structuring the threads of a task helps to maximize concurrency and minimize

synchronization effort. Some structure patterns [55] used to parallelize a code are

presented in the following.

The basic structure is parallel threading. Typically parallel threads are

decomposed from an independent loop. When each iteration of a loop depends on

different data, they can be separated into threads and executed in parallel via loop

distribution as shown in Figure 4-7(a). When one loop produces a data that will be

consumed by the following loop, and each iteration of the following loop only

depends upon a limited and known number of iterations of the previous loop and does

not overwrite the first loop's input data, it is possible to execute part of the two loops

in parallel as long as the real data dependences are respected. Figure 4-7(b) shows

such an example.

Figure 4-7. Loop parallelism.

The second structure is pipeline threading. This kind of structure can be derived

by using the software pipelining technique as depicted in Figure 4-5. Load balance is

a challenge in pipelining structure; it is restricted by loop-carried dependence. Figure

4-8 demonstrates an example. Figure 4-8(a) shows the data dependency graph of a

loop body, where a loop-carried dependence is represented by a backward arc. Due to

the existence of this arc, the graph has to be partitioned into three partial functions: A,

B and C. Figure 4-8(b) shows that the iterations of all functions are partitioned into

i=1
↓
N i=2 i=3

i=1

i=2

i=3

i=N

j=1

j=2

j=3

j=N

i=1
↓
N

j=1
↓
N (a) (b)

i=1

80

threads and schedules as pipelining, each thread should wait for its dependent thread

to finish by pthread_join. Figure 4-8(b) is a message-passing implementation.

Three threads are partitioned into three processors. Send/receive is used for

synchronization, each work waits its requested data before it can run.

Figure 4-8. Pipeline thread structure.

The third structure is task/data decomposition. Assume that an algorithm has to

compute the average and difference of RGB components in an image. The two jobs

are independent; they can be parallelized by task decomposition. The processing on

RGB components is independent, they can be parallelized by data decomposition.

Data decomposition structure is often used to handle large input data such that all

threads can perform the same computation on different data areas. The data is often a

multi-dimension array that can be decomposed into multi-dimension grids. Single

Program Multiple Data (SPMD) coding style in which multiple threads run the same

code is a way to save instruction space. Each thread needs a mechanism to distinguish

its data grid. On thread creating, a parameter is put on its stack header as an argument;

thread can use this parameter to identify its grid location.

Task decomposition is often applied by a divide and conquer approach. A

complex task can usually be partitioned into many independent simpler sub-tasks.

Recursive algorithms such as binary search is an example of divide and conquer,

which main thread creates two child threads to search the two parts of an input

database. Each child thread also creates two child threads until the search range is

small enough.

A B C

A0 A1 A2

B0 B1 B2

C0 C1 C2

(a) DDG (b) Pipelined threads (c) 3 threads with communication

C1 C2

join

A0 A1 A2

B0 B1 B2

C0 C1 C2 C0 C1

send

81

4.5 SIMDization for Memory Access Redundancy Optimization

In memory access dominated applications, good memory access organization

will greatly improve the performance. To reduce memory bandwidth, the memory

reuse concept is often used in an optimized compiler [56]. When a compiler works on

an array-based program, it will analyze reference patterns in the program to derive a

linear transformation of the data, and reorganize the computation to reuse the data

from memory hierarchy.

Memory misalignment is a critical problem when running multimedia

applications on an SWP-SIMD core. Most RISC-based processor requires all memory

accesses to be aligned, that is, the data loaded from memory cannot cross the 64-bit

boundary if the processor is of 64-bit width. In an SWP-SIMD core, many memory

components are packed as one superword to be accessed together. Although each

component is under boundary, the packed one may cross the boundary. For example

on processing RGB24 format picture, the packed element is 24-bit (8-bit for each of

the Red, Green and Blue components), the third element has to cross the 64-bit

boundary.

To adapt memory reuse concept for an SWP-SIMD core, avoiding misalignment

is very important. This will increase the complexity of the linear transformation

method. We introduce a graphical method to simplify the data organization analysis

for an SWP-SIMD core. Our method sequentially selects an aligned basic block, and

then parallelizes the operations bound to this block to avoid misalignment.

The first stage is to find a parallelizable memory load operation and its

maximum parallelizable code range. From the memory load operation, the

loop-carried data dependence is checked from the innermost loop to the outer loop. A

parallelizable operation might be hidden under bad coding style. To find the largest

parallelizable loop, all false dependences should be removed by the techniques

introduced in Section 4.1. After dependence removal, an SCC in the data dependence

graph as shown in Fig. 3 represents the largest parallelizable part of the algorithm.

The memory load operation in a single-tone SCC is chosen to begin our procedure. A

82

single-tone SCC memory load operation represents that all memory items covered by

this operation are able to perform simultaneously. Thus we can reorganize the

computation sequence to fit our SWP-SIMD PLX platform constraint.

After a parallelizable memory load operation in the largest loop is determined,

we have to examine its cover area and redundancy. The memory cover area is

obtained by exploring the memory index in the loop. For a multimedia application,

the cover area usually forms a 2-D rectangle. The redundancy is obtained by dividing

the load operation count by the cover area word count. For example, 8 load operations

work on a 16-byte (two 64-bit words) area, the redundancy is 8/2=4. It means we can

reduce memory access time to 1/4 if all reuses can be applied.

The second stage is to group operations from the store operation on the unrolled

data flow graph. The group is used to select proper operations to pack into an

SWP-SIMD core. From each store operation, operations can be grouped by backward

tracing till the leaf of load operations. These operations are necessary to generate the

store result. A data should be kept in register until it is written into memory. Grouping

store operations as soon as possible can reduce the number of registers used for

temporary data. Thus the operations in the same group have higher priority to pack

together.

With these groups, we can examine the redundancy information. For a regular

array-based code, each group may cover the same size of load block by their load

operations. If a memory item can be reused for two blocks, their load blocks are

overlapped on this item. The load block offset can be transformed into a linear form to

help the block reorganization. For the image filter example in Section 4.1, the load

block is 3×3, and the next block is one item right or down shift.

The third stage is to allocate an aligned basic block, which is the smallest

memory area to preserve in register for reuse, and to be merged with the loaded

blocks. The left-top load block is selected first. When its right edge is not aligned to

the (64-bit) word boundary, the right load block, which is not overlapped, is merged

into the basic block. With this basic block size, we can immediately know how many

83

registers are necessary to buffer the basic block. If we have enough registers, the basic

block can be extended right or down to increase register reuse.

The fourth stage is to analyze which groups need to reuse from this basic block.

The groups whose load operations are binding to the first row of the basic block are

chosen. These blocks may extend the load area to the right. The extra load result can

be reused for the next basic block. These groups become the unit to generate an

SWP-SIMD code.

The other groups can be generated by repeatedly applying the above four stages.

The outer loop can first go either rightward (in the x-axis direction) or downward (in

the y-axis direction). The direction which has a better reuse rate is chosen first.

We use three examples to explain this strategy. The first spatial-image filter

example containing much redundant memory access will be described in detail. The

second SAD example shows that its load block is not overlapped. And the third matrix

multiplication shows the application of a simple loop-unrolling parallelization

method.

4.5.1 Spatial Image Filter

A spatial image filter is a 2-D FIR (finite impulse response) filter, defined as:

),
2

,
2

(*),(),(
1

0

1

0

LjyKixfjihyxg
K

i

L

j
−+−+= ∑∑

−

=

−

=

where f(x,y) is the image value at position (x,y), g(x,y) is the result image value, and h

is the filter impulse response matrix of size K×L. For example, a 3×3 sharpness filter

which can emphasize object boarder is given as:
















−=

111
171
111

h

The C code for a 96×96 image and 3×3 impulse response is listed as follows. The

border of array f is extended and filled with zero to simplify FIR boundary

management.

84

Code 4-1. Spatial image filter.
short f[98][98], g[98][98];
const short h[3][3]={{1,1,1},{1,-7,1},{1,1,1}};
register short R1,R2,R3,R4;

for(y=1;y<=96;y++) {
 for(x=1;x<=96;x++) {

S0: R4=0;
 for(j=0;j<3;j++) {
 for(i=0;i<3;i++) {

S1: R1=f[y+j-1][x+i-1];
S2: R2=h[j][i];
S3: R3=R1*R2;
S4: R4+=R3;

 }
 }

S5: g[y][x]=R4;
 }
}

The first stage is to find a parallelizable memory load operation, which is S1 in

this example. The largest parallelizable loop in S1 is the loop indexed by y. The S1

operation count is 96×96×3×3=82944, and the size of f array is 98×98×2=19208 bytes.

This will derive a redundancy of 82944/(19208×8/64)=34. Since the redundancy

value is large, we can expect to get good performance improvement by memory reuse.

The second stage is to group operations from each store instruction. The store

operations in S5 are within the loop indexed by y and x. This group is shown as the

blue area in Figure 4-9. The left-top load block f[0:2][0:2] covered by the group

of index {y,x}={1,1} is the purple area. The binding of load operations and

memory items are also shown on Figure 4-9.

The third stage is to allocate an aligned basic block. The left-top load block

f[0:2][0:2] is not aligned to the 64-bit boundary. The right non-overlapped block

f[0:2][3:5] belongs to the group indexed by {y,x}={1,4}, which is not

aligned either. The next two blocks f[0:2][6:8] and f[0:2][9:11] are added

to reach the alignment boundary. The aligned basic block is f[0:2][0:11], and it

belongs to groups indexed by {y,x}={1,1},{1,4},{1,7},{1,10}. Nine

registers are used to buffer this basic block.

85

Figure 4-9. SWP-SIMD for Code 4-1.

The load operations bound to the first word of the basic block are y+j-1=0 and

0 ≤ x+i-1 ≤ 3, and they contain S1 in iterations {y,x,j,i}=

{1,1,0,0:2},{1,2,0,0:2},{1,3,0,0:1} and {1,4,0,0}, having 9

operations in total. S1{1,1,0,0:2} and S1{1,4,0,0} are within the basic block

groups, they are packed to generate first vector load instruction. By similar analysis,

S1{1,2,0,0:2} will induce a block f[0:2][1:12] by groups of

{y,x}={1,2},{1,5},{1,8},{1,11}. The block is overlapped on basic block

with 1 item offset. Thus the left 11 columns can be shifted out from the 9 registers of

the basic block, but the rightmost column needs to be loaded. The extended load block

f[0:2][0:15] uses 12 registers to buffer. S1{1,3,0,0:1} induces a block

f[0:2][2:13] which is able to be reused from the extended load block. Thus,

groups of {y,x}={1,3},{1,6},{1,9},{1,12} are selected.

The SWP-SIMD instructions can be generated by processing the remaining data

flow graph. It begins from the first generated vector load instruction, shown as the

yellow area in Figure 4-9. The constant assignment S2 is expanded to fit the

SWP-SIMD size. The summation operation S4 is converted into partial summation.

The next step can move to the right (x-index) or down (y-index) in a similar way. The

right basic block f[0:2][13:24] targets groups {y,x}={1,13:24}. The

S1;0,0

S2;0,0

S3;0,0

S4;0,0

S1;1,0

 S5

S1;0,1

S2;0,1

S3;0,1

S4;0,1

S1;0,2

S2;0,2

S3;0,2

S4;0,2

y=1
x=1 S1;2,0

S1;0,0

S2;0,0

S3;0,0

S4;0,0

 S5

S1;0,1

S2;0,1

S3;0,1

S4;0,1Array f

86

overlapped area with the extended block is f[0:2][12:15], where 27 load

operations of the target groups are bound to it. The down basic block f[1:3][0:11]

targets groups {y,x}={2,1:12}. The overlapped area is f[1:2][0:12], where

72 load operations of the selected groups are bound to it. The better reuse rate is

y-axis.

The result pseudo code is built as follows. The outmost loop is x, increased by 12.

The inner loop is y, increased by 1. The basic block is loaded into 12 RL registers at

the beginning of y loop. At y=1, the 12 registers are loaded from memory, as listed in

SLa. The following y loop only needs to load 4 registers, the other 8 registers are able

to be reused from the previous iteration, as listed in SLb. The loop k represents the

three reuse phases. The basic block is the one obtained when k=0. The other k loops

are the two reused phases indexed by S1{1,2,0,0:2} and S1{1,3,0,0:1} as

discussed above. The innermost loop j contains the three rows of a block. In loop j,

R1 is shifted out from RL by an index of k. Finally, partial summation should be

summarized as S4b.

Code 4-2. SWP-SIMD code of spatial image filter.

short f[98][98], g[98][98];

const short h[3][3]={{1,1,1},{1,-7,1},{1,1,1}};

register packed_short RL[3][0:15];

register packed_short R1[0:11],R2[0:11],R3[0:11],

R4[0:11],Rs[0:11];

for(y=1;y<=96;y+=12) {

 for(x=1;x<=96;x++) {

S0: R4[j][0:11]=0;

 if (y==1) { //first y, load from memory

SLa: for(j=0;j<2;j++) {

for(i=0;i<4;i++) RL[y+j-1][i*4:i*4+3]=

 *(&f[j][x+i*4]);

 }

 } else { //reuse 2 rows from last y

SLb: for(j=0;j<2;j++) {

for(i=0;i<4;i++) RL[j][i*4:i*4+3]=

RL[j+1][i*4:i*4+3];

 for(i=0;i<4;i++) RL[2][i*4:i*4+3]=

87

*(&f[y+1][x+i*4]);

 }

 for(k=0;k<3;k++) { //k=0:basic block,

//others: overlapped block

 for(j=0;j<3;j++) {

S1: R1[0:11]=RL[j][0:15] << (k*16);

S2: R2[0:11]={h[j][0:2],h[j][0:2],

h[j][0:2],h[j][0:2]};

S3: R3[0:11]=R1[0:11]*R2[0:11];

S4a: R4[0:11]+=R3[0][0:11];

 }

 //final sequential summation

S4b: Rs[k]=R4[0][0]+ R4[0][1]+ R4[0][2];

 Rs[k+3]=R4[0][3]+ R4[0][4]+ R4[0][5];

 Rs[k+6]=R4[0][6]+ R4[0][7]+ R4[0][8];

 Rs[k+9]=R4[0][9]+ R4[0][10]+ R4[0][11];

 } //k

S5: for(j=0;j<12;j+=4) g[y][x+j:x+j+3]=Rs[j:j+3];

 }//y

}//x

The concept of memory access redundancy is represented in Figure 4-10. Figure

4-10(a) is the aligned basic block decided at the third stage. On the second x iteration,

the load block moves right as shown in Figure 4-10(b). The purple area is overlapped

with Figure 4-10(a) that can move from the load registers. Only the red area needs to

load. The red area is larger than the needed block, and it is used at the third x iteration

as shown in Figure 4-10(c). Thus the third x iteration does not load any memory.

Figure 4-10(d) shows the load block of the second y iteration.

While there is no loop-carried dependence in Code 4-2, it is parallelizable by

multi-thread, and loop x and loop y are exchangeable. By careful code scheduling, the

memory access redundancy of x-axis and y-axis can be combined to get more

performance improvement. Table 4-1 shows the results of 4 configurations. The first

two configurations are single thread by putting x or y at the outer loop. The last two

configurations uses two threads, their performances are better than the single thread

configuration.

88

Figure 4-10. Memory access redundancy of Spatial Image Filter.

Table 4-1. Performance on four configurations of Spatial Image Filters.

 Thread num Outmost loop Second loop Cycles

A 1 y x 51448

B 1 x y 38812

C 2 y x 30613

D 2 x y 27168

4.5.2 SAD

H.264/AVC is one of the newest video encoding standards. The basic processing

unit in H.264 is a 16×16 macro-block, and a picture has to be partitioned into

macro-blocks before processing. In video encoding, motion estimation is the major

computational part, which occupies 78% of the computation power [57]. In video

encoding, a prediction block is formed based on previously encoded and reconstructed

blocks with motion vectors (MV). A motion vector is defined as the displacement of

an encoding (current frame) block and a reconstructed (reference frame) block that

yields the minimum sum-of-absolute-difference (SAD) value in a search range. In

summary, SAD is a criterion used to gauge the similarity between two blocks.

 (3,1) (6,1) (9,1) (12,1)
(1,2) (4,2) (7,2) (10,2)

(2,1) (5,1) (8,1) (1,1) (4,1) (7,1) (10,1)

(a) (b)

(c) (d)

 (11,1)

89

For a K×L block, one has

∑∑
−

=

−

=

++−=
1

0

1

0
|),(),(|),(

K

i

L

j
jnimRjiCnmSAD ,

where C(i, j) is the luminance value of a current frame pixel and R(i, j) is the

luminance value of a reference frame pixel. Argument (m,n) is the displacement of

two blocks, and K×L is the block size. A block can be a 16×16 macro-block, or one of

40 sub-blocks including sixteen 4×4, eight 8×4, eight 4×8, four 8×8, two 16×8, and

two 8×16 blocks. The SAD of a larger sub-block can be derived from the smallest

sixteen 4×4 SADs. Thus, the basic operation is to calculate the sixteen 4×4 SADs.

Figure 2-6 shows the sixteen 4×4 sub-blocks ordering in a 16×16 macro-block.

The algorithm used to calculate the sixteen 4×4 SADs on displacement (m,n) is shown

in the following Code 4-3. PICW and PICH are picture width and height, BX and BY

are macroblock location, sb is the sub-block number, and row and col are row and

column numbers in a sub-block.

There are two memory load operations: S1 and S2. The largest parallelizable

loop in S1 is the loop indexed by sb. The S1 operation count is 16×4×4=256, and the

C array size used is 16×16=256 bytes. Thus, the redundancy is 256/(256×8/64)=8.

This redundancy value is the same as the SWP-SIMD vector length, which means no

memory can be reused. The group of store operations in S5 is shown as the blue area

in Figure 4-11.

Code 4-3. Calculation of sixteen 4×4 SADs.
unsigned char C[PICH][PICW]; //current_frame;

unsigned char R[PICH][PICW]; //reference_frame;

register unsigned char R1,R2;

register short R3,R4, SAD[16];

for(sb=0;sb<16;sb++) {

 S0: R4=0;

 for(row=0;row<4;row++) {

 for(col=0;col<4;col++) {

S1: R1=C[BY+sb/4+row][BX+(sb%4)*4+col];

S2: R2=R[BY+n+sb/4+row][BX+m+(sb%4)*4+col];

90

S3: R3= R1-R2;

S4: R3=abs(R3);

S5: R4+=R3;

 }

 }

S6: SAD[sb]=R4;

}

Figure 4-11. SWP-SIMD for Code 4-3.

The left-top load block C[BY:BY+3][BX:BX+3] belongs to the group

indexed by sb=0, which is not aligned to the 64-bit boundary. Its right non-overlapped

block C[BY:BY+3][BX+4:BX+7] belongs to the group indexed by sb=1, which is

aligned. Only four registers are used as the buffer memory. It has room to expand the

basic block, which is decided as C[BY:BY+3][BX:BX+15] that uses eight

registers.

To deal with the outer loop, where no load block can leave rightward (in the

x-axis direction), we can only go downward (in the y-axis direction). And we observe

that all load operations bound to the basic block were transformed already, the next

block C[BY+4:BY+7][BX:BX+15] to deal with is not overlapped with the basic

block. The result pseudo code is built as follows. The outmost loop is indexed by sb.

While the basic block does not need to buffer for reuse, and the remaining four rows

S1;0,0

S2;0,0

S3;0,0

S5;0,0

S1;1,0

 S6

S1;0,1

S2;0,1

S3;0,1

S5;0,1

S1;0,2

S2;0,2

S3;0,2

S5;0,2

sb=0 S1;2,0

S1;0,3

S2;0,3

S3;0,3

S5;0,2

S4;0,0 S4;0,1 S4;0,2 S4;0,3

S1;0,0

S2;0,0

S3;0,0

S5;0,0

S1;1,0

 S6

S1;0,1

S2;0,1

S3;0,1

S5;0,1

S1;0,2

S2;0,2

S3;0,2

S5;0,2

sb=1 S1;2,0

S1;0,3

S2;0,3

S3;0,3

S5;0,2

S4;0,0 S4;0,1 S4;0,2 S4;0,3

91

behave the same, they are rolled into a loop indexed row-wise. While alignment check

is based on array C, alignment may occur at array R. This can be checked by offset m.

While S2b contains misaligned access, we can use one additional load and one shift to

maintain the alignment. While S3 works on 16-bit precision, the 8-bit precision R1b

and R2b should be expanded into 16-bit precision by using a permutation instruction,

as listed in S1w and S2w.

Code 4-4. SWP-SIMD result of 16 4×4 SADs.
unsigned char C[PICH][PICW]; //current_frame;

unsigned char R[PICH][PICW]; //reference_frame;

register packed_byte R1b[0:15], R2b[0:23];

register packed_short R1w[0:15], R2w[0:15], R3[0:15],

R4[0:15], Rs[0:3];

for(sb=0;sb<16;sb+=4) {

 S0: R4[0:15]=0;

 for(row=0;row<4;row++)

S1: for(j=0;j<2;j++) R1[j*8:j*8+7]=

 *(&C[BY+sb/4+row][BX]);

 If ((m%16)==0) {

S2a: for(j=0;j<2;j++) R2[j*8:j*8+7]=

 *(&R[BY+n+sb/4+row][BX+m]);

 } else {

S2b: for(j=0;j<3;j++) R2[j*8:j*8+7]=

 *(&R[BY+n+sb/4+row][BX+m-(m%15)]);

 R2[0:15]=R2[0:23]<<((m%16)*8);

 }

S1w: R1w[0:15]=byte2short(R1b[0:15]);

S2w: R2w[0:15]=byte2short(R2b[0:15]);

S3: R3[0:15]=R1w[0:15]-R2w[0:15];

S4: R3[0:15]=abs(R3[0:15]);

S5a: R4[0:15]+=R3[0:15];

 }

S5b: Rs[sb]=R4[0]+R4[1]+R4[2]+R4[3];

 Rs[sb+1]=R4[4]+R4[5]+R4[6]+R4[7];

 Rs[sb+2]=R4[8]+R4[9]+R4[10]+R4[11];

 Rs[sb+3]=R4[12]+R4[13]+R4[14]+R4[15];

S6: SAD[sb:sb+3]=Rs[0:3];

}

92

4.5.3 Matrix Multiplication

Matrix multiplication is a basic function module in many linear algebra programs.

The equation is represented as C=A×B where C is an M×N matrix, A is an M×K

matrix, and B is a K×N matrix. Sometimes B needs to be transposed to have C=A×BT,

if B is an N×K matrix. The code for matrix multiplication is listed as follows.

Code 4-5. Matrix multiplication.

int A[M][K], B[K][N], C[M][N];

register int R1,R2,R3,R4;

for(m=0;m<M;m++) {

 for(n=0;n<N;n++) {

 S0: R4=0;

 for(k=0;k<K;k++) {

S1: R1=B[k][n];

S2: R2=A[m][k];

S3: R3=R2*R1;

S4: R4+=R3;

 }

S5: C[m][n]=R4;

 }

}

In the above code, the entire matrix B is loaded at every m iterations. If the cache

is large enough, matrix B will be loaded with data in cache at the first m iterations,

and reuse data in cache at other m iterations. If the cache is not large enough, only

part of matrix B’s data could be loaded from main memory, which increases the

execution cycle estimation complexity. In the following discussion, we assume that

the cache is large enough to hold a whole matrix. The case of a large matrix

multiplication will be discussed later.

Assume that a register has P subwords (register width=4P bytes for a float data

type). All S1 and S2 are for loading a new block data. S1 has M×N×K counts, each of

the M×K/P loads take β cycles to load data from main memory; each of the others

takes α cycle to reload data from cache. S2 has M×N×K count, each of the N×K/P

loads take β cycles to load from main memory; each of others takes α cycle to reload

data from cache. The total execution count is then (N×K/P)×β+(M×N×K-N×K/P)×

93

α+(M×K/P)×β+(M×N×K-M×K/P)×α+M×N×(1+K×(1+1)+1)=(2MNK-NK/P-M

K/P)α+(NK/P+ MK/P)β +2MNK+2MN.

The following Code 4-6 shows how to unroll the loop of index k in factor P to

use the subword-parallel feature in a SIMD core.

Code 4-6. Second implementation of matrix multiplication.

float A[M][K], B[K][N], C[M][N];

register packed_float R1[0:P-1],R2[0:P-1],

R3[0:P-1],R4[0:P-1];

for(m=0;m<M;m++) {

 for(n=0;n<N;n++) {

 S0: R4[0:P-1]=0;

 for(k=0;k<K;k+=P) {

S1: for(j=0;j<P;j++) R1[j]=B[k+j][n];

S2: R2[0:P-1]=*(&A[m][k]);

S3: R3[0:P-1]=R2[0:P-1]*R1[0:P-1];

S4: R4[0:P-1]+=R3[0:P-1];

 }

S5: C[m][n]=R4[0]+R4[1]+… +R4[P-1];

 }

}

P times of loads in S2 are merged into one load operation. S1 loads a matrix B in

the vertical direction, which cannot be merged. Instead, P load and P-1 pack

operations are used. S3 and S4 can be combined into subword-parallel. The final S5

summation takes 2P cycles. If K is a multiple of P, the total execution count is then

(N×K/P)×β+(M×N×K-N×K/P)×α+(M×K/P)×β+(M×N×K/P-M×K/P)×α+M×N×

(1+K/P×(1+1)+2P)=(MNK+MNK/P-NK/P-MK/P)α+(NK/P+MK/P)β+2MNK/P+

2MNP+MN.

The inefficiency of S1 load wastes too much time. We try to unroll the loop of

index n and keep the loop of index k.

Code 4-7. Third implementation of matrix multiplication.

float A[M][K], B[K][N], C[M][N];

register packed_float R1[0:P-1],R2[0:P-1],

R3[0:P-1],R4[0:P-1];

94

for(m=0;m<M;m++) {

 for(n=0;n<N;n+=P) {

 S0: R4[0:P-1]=0;

 for(k=0;k<K;k++) {

S1: R1[0:P-1]=*(&B[k][n]);

S2: R2[0]=*(&A[m][k]);

S6: R2[0:P-1]={R2[0],…,R2[0]};

S3: R3[0:P-1]=R2[0:P-1]*R1[0:P-1];

S4: R4[0:P-1]+=R3[0:P-1];

 }

S5: C[m][n:n+P-1]=R4[0:P-1];

 }

}

Loop n is unrolled in factor P. While elements in matrix A are the same for all n

iterations, they are loaded in S2 and duplicated to fill the register in S6. P loads of S1

are merged into one load operation. The total execution count is

(N×K/P)×β+(M×N/P×K-N×K/P)×α+(M×K/P)×β+(M×N/P×K-M×K/P)×α+
M×N/P×(1+K×(1+1+1)+1)=(2MNK/P-NK/P-MK/P)α+(NK/P+MK/P)β+
3MNK/P+2MN/P.

Compared to Code 4-6, the load counts of S1 and final sequential summation are

both much reduced; thus the performance of Code 4-7 is better than Code 4-6. The

main reason is that applying subword-parallel on row-major operations can improve

them. Code 4-7 works by partitioning a matrix C into many 1×P sub-matrices, and the

P multiplications can be calculated in parallel.

An M×N matrix multiplication can be partitioned into sub-matrix multiplications

as follows.

G
Nq

H
MpBAC rq

J
K

r
prpq <≤<≤=∑

−

=

0,0,
1

0

Matrix C is partitioned into sub-matrices, each sub-matrix is

of H×G size. The size of sub-matrix A is H×J, and the size of sub-matrix B is J×G.

Code 4-7 is the special case of H=1, J=1 and G=P. Generally for H, G and J, the

sub-matrix multiplication code is as follows.

G
N

H
M ×

95

Code 4-8. Fourth implementation of matrix multiplication

float A[M][K], B[K][N], C[M][N];

register packed_float R1[J][G/P][0:P-1],R5[0:P-1],

R2[H][J/P][0:P-1],R3[0:P-1],R4[H][G/P][0:P-1];

for(m=0;m<M;m+=H) {

 if (J==K) {

 for(h=0;h<H;h++)

 for(k=0;k<K;k+=P)

S2a: R2[h][k][0:P-1]=*(&A[m+h][k]);

 }

 for(n=0;n<N;n+=G) {

 for(i=0;i<H;i++)

 for(j=0;j<G;j+=P)

 S0: R4[i][j/P][0:P-1]=0;

 for(k=0;k<K;k+=J) {

 for(j=0;j<J;j+)

 for(g=0;g<G;g+=P)

S1: R1[j][g/P][0:P-1]=*(&B[k+j][n+g]);

 if (J!=K) {

 for(h=0;h<H;h++)

 for(j=0;j<J;j+=P)

S2b: R2[h][j/P][0:P-1]=*(&A[m+h][k+j]);

 }

 for(h=0;h<H;h++) {

 for(g=0;g<G;g+=P) {

 for(j=0;j<J;j+=P) {

 for(i=0;i<P;i++) {

S6: R5[0:P-1]=

 {R2[h][j/P][i],…,R2[h][j/P][i]};

S3: R3[0:P-1]=

R5[0:P-1]*R1[j+i][g/P][0:P-1];

S4: R4[h][g/P][0:P-1]+=R3[0:P-1];

 } //i

 } //j

 } //g

 } //h

 } //k

 for(i=0;i<H;i++)

 for(j=0;j<G;j+=P)

S5: C[m+i][n+j:n+j+P-1]=R4[i][j/P][0:P-1];

 } //n

} //m

96

In every k loop, the H×J elements of sub-matrix A are loaded into R2 by S2b,

and the J×G elements of sub-matrix B are loaded into R1 by S1. When J is equal to K,

H×J sub-matrix occupies a full row of matrix A, R2 remains unchanged for all n

iterations, thus it can be moved out of loop n to S2a. This kind of load redundancy

removing can deliver better performance.

For J=K, the total execution count is then:

(N×K/P)×β+(M/H×N/G×K×G/P-N×K/P)×α+(M×K/P)×β+
(M/H×H×K/P-M×K/P)× α+M/H×N/G

×(H×G/P+K/K×(H×G/P×K×(1+1+1))+H×G/P)

=(MNK/HP-NK/P)α+(NK/P+MK/P)β+2MN/P+3MNK/P.

This equation is not related to parameter G, it decreases when H increases. The

reason is that the count of S2a becomes constant to load a matrix A, redundancy only

exists on S1 that has relation to H. The minimum execution count occurs on the

largest H count derived from the register used.

Code 4-8 uses JH/P+JG/P+HG/P+2 registers, it should be less than the

available register number Q, as shown in the following inequation:

JH/P+JG/P+HG/P+2 ≤ Q
Maximum H is represented as:

 H ≤ (PQ-JG-2P)/(J+G)
H increases when G decreases. To use subword-parallel feature, G should be a

multiple of P, and the minimum is P. The maximum H for Q=32, J=K=16 and

G=P=4 is H=[(4×32-8×4-2×4)/(8+4)]=2.

The inequation of J then becomes:

 J ≤ (PQ-HG-2P)/(H+G) (4-1)

When maximum J occurs at minimum H=1 and G=P, the above inequation

becomes

J ≤ (PQ-P-2P)/(1+P)

97

When K is greater than the maximum J, a register is not large enough to hold a

full row of matrix A, so R1 should be reloaded at each n iteration. The total execution

count of Code 4-8 with J!=K is

count=(N×K/P)×β+(M/H×N/G×K/J×J×G/P-N×K/P)×α+(M×K/P)×β
+(M/H×N/G×K/J×H×J/P-M×K/P)×α+M/H×N/G×

(H×G/P+K/J×(H×G/P×J×(1+1+1))+H×G/P)

= (MNK/HP+MNK/GP-NK/P-MK/P)α+
(NK/P+MK/P)β+2MN/P+ 3MNK/P. (4-2)

The above equation is not related to J, that is, the partition of dimension K does

not affect the execution cycle. We can select a minimum J (=P) to reserve register for

other dimensions.

By the basic arithmetic average theory:

 HGGH ≥+
2

The lower bound of Eq (4-2) is

count ≥ ((MNK/P)(2/ HG))α+(-NK/P-MK/P)α+
(NK/P+MK/P)β+ 2MN/P+ 3MNK/P.

The minimum execution count will occur at HG which is maximum and satisfies

Eq (4-1). This is an integer programming problem to be solved. Since the available

register number Q is not large, if the solution space is small, it can be directly counted.

For example, if Q=32, J=P=4, the maximum HG is 56. While G should be a

multiple of P to utilize subword-parallel feature, we can select G=8 and H=7.

In geometric view, the larger the sub-matrix of C, the fewer iteration needed. The

maximum HG is the maximum size of sub-matrix C.

Large matrix multiplication can be partitioned with similar thinking. The

register-cache relation is extended to cache-memory relation. When a matrix is too

large to fit in the cache, it can be partitioned into smaller sub-matrices that can fit in

98

the cache, and perform sub-matrix multiplication. If the sub-matrix of C is H’ ×G’,

sub-matrix of A is H’ ×J’, sub-matrix of B is J’ ×G’, and cache size is Q’, to fit the 3

sub-matrices into a cache, the inequation is”

J’H’+J’G’+H’G’≤Q’ (4-3)

Similar to the discussion on Code 4-8, if J’=K, the sub-matrix H’×J’ can fill a

full row of matrix A, and remains in cache with an N dimension moving, the

performance is the best. If the cache size is not large enough to fit J’=K, assign J’ to

a minimum of P, and select a maximum H’×G’, where G’ must be a multiple of P

and satisfy Eq. (4-3).

The above discussion requires that the matrix dimensions N and K are a multiple

of the subword capacity P to fully utilize the subword-parallel feature. If they are not

a multiple of P, the rightmost or bottommost sub-matrix multiplication should work

under lower parallelism.

When M=1, the matrix multiplication changes to a vector-matrix multiplication.

Eq. (4-2) is able to use for M=1 and H=1, the minimum execution counts occur at

maximum G that satisfies Eq. (4-1).

When N=1, the matrix multiplication changes to a matrix-vector multiplication.

A one-dimension vector is stored as a row in memory. Elements in a row can be

loaded together, the P load operations in S1 of Code 4-6 can be merged into one load

operation, thus Code 4-6 can be used for N=1.

When K=1, matrix A is a column vector and matrix B is a row vector, and the

resultant matrix C is an M×N array built of vector scalars. The first resultant row is a

vector with B scalars of A[0], and the second resultant row is a vector with B scalars

of A[1]. The result is the same as Code 4-7 with K=1.

4.5.4 Performance Analysis

To calculate the performance, some platform parameters, such as cache block

size and memory access latency, are needed.

99

The latency of loading data from main memory is α cycles, and the burst length

is 4 for a 32-bit SDRAM. The cache word line is 32 bytes, and the latency of cache hit

load is β cycles. The cache contains a line buffer; sequentially loading from the line

buffer needs γ cycles of latency. On a portable device running at 100MHz clock, the

typical value of β is 7, which includes address calculation, bus issue, SRAM address

assert, SRAM data load, send to store stage, write into register buffer, and fetch into

operand. The average value of α is 20, which contains cache miss, external bus

request, and SDRAM refresh wait. Cache size is assumed to be large enough to buffer

all data.

To focus on comparing load reuse, memory store latency and all arithmetic

instructions are assumed to be 1-cycle. All codes have been unrolled to remove the

jump invalidation penalty and memory address calculation overhead. The execution

cycles of above 3 codes are listed in Table 4-2, assuming α=20, β=7, γ=3,

M=N=K=32, and P=8. Without loss of generality, we assume that data in the current

frame exist in cache, and those in the reference frame are loaded from main memory

for the SAD example.

We can observe from Table 4-2 that memory access latency of the Spatial Image

Filter example is largely reduced, but ALU execution has only two times speedup. It

is because the additional shift operation SLb and the final sequential summation S4b

occupy a large part of the execution time. In the SAD and Matrix Multiplication

examples, loaded data are not reused; their speedup is contributed to SWP-SIMD

parallelization.

100

Table 4-2. Performance on SIMDization of the three Examples.

 Original SWP-SIMD Speedup

 Memory Total Memory Total M T

Spatial

Image

Filter

588α+27550β+5

4806γ=369028

MT+267264=

636292

588α+686β+1862γ

=22148

MT+124320

=146468

16.60 4.34

SAD 16α+496γ=1808 MT+800=260

8

16α+48γ=464 MT+136=

600

3.89 4.34

Matrix

Multipl

ication

(MK/8+NK/8)α+

(2MNK-MK/8-N

K/8-3MNK/4)β+

(3MNK/4)γ=

363776

MT+2MNK+

2MN=431360

(MK/8+NK/8)α+

(MNK/4P+2MNK/

P-MK/8-NK/8)β+(

3MNK/4P+(P-4)M

NK/2P)γ=101632

MT+3MNK/

4+MN/2=

126720

3.57 3.40

 101

CHAPTER FIVE

CONCLUSION

We had designed a PLX-based multi-processor system-on-chip. The system

design was started with knowledge obtained from many multimedia applications. By

analyzing multimedia applications, we decided that the processor needs an

SWP-SIMD instruction set to process low-resolution pictures in a data level

parallelism way. The first version PLX chip can run at 260MHz.

Multimedia applications can be parallelized on thread level parallelism. The

simultaneous multi-threading technique improves processor performance/power

efficiency by increasing ALU pipeline stages and removing bypass logics. A

VLIW/SIMD instruction-level configurable issue-logic design enables 32-bit scalar

operations to work more efficiently in a 64-bit core. The improved PLX2 chip can run

at 520MHz.

To enable messages be sent directly core-to-core to reduce communication traffic,

a message-passing over private cache design is introduced by configuring the cache to

perform as FIFO. To reduce the programmer effort, an OpenMP to TLM tool is made

to transform OpenMP code into an MPI code. A SystemC TLM platform was

introduced for system level hardware/software co-design and co-verification.

A parallelization tool is made to transform fine grain loop tailored for a PLX

SWP-SIMD feature. It focuses on reducing memory access redundancy by aligning

memory boundary and reusing the memory content loaded in the register and cache.

For the cost/power efficiency and programmability purposes, a system-on-chip

embedded with an application-specific instruction set processor is necessary at the

nano-meter era. A complicated hardware-in-the-loop design flow induces heavy work

on engineers who have to develop system level models, a multi-level parallelized

102

processor, a parallel compiler, and a real-time OS for the multi-core SoC. This

Dissertation gives an overall introduction to materials on all these knowledge domains.

The experiences gained in the implementation of a PLX processor by system-level

design and verification tools can shorten the design cycle. We hope that our success

will encourage more multi-core system research and implementation.

103

REFERENCES

[1] R. Bergamaschi, L. Benini, K. Flautner, W. Kruijtzer, A.

Sangiovanni-Vincentelli, and K. Wakabayashi, "The State of ESL Design,"
IEEE Design & Test of Computers, vol. 25, no. 6, pp. 510-519, Nov. 2008.

[2] R. Gupta, Arvind, G. Berry, and F. Brewer, "Advances in ESL Design," IEEE
Design & Test of Computers, vol. 25, no. 6, pp. 510-519, Nov. 2008.

[3] R. B. Lee and A. M. Fiskiran, "PLX: a Fully Subword-Parallel Instruction Set
Architecture for Fast Scalable Multimedia Processing," Proceedings of IEEE
International Conference on Multimedia and Expo, pp.117-120, Aug. 2002.

[4] R. B. Lee, “Accelerating Multimedia with Enhanced Microprocessors,” IEEE
Micro, vol. 15, no. 2, pp. 22-32, Apr. 1995.

[5] R. B. Lee and A. M. Fiskiran, "PLX: An Instruction Set Architecture and
Testbed for Multimedia Information Processing," Journal of VLSI Signal
Processing, vol. 40, no. 1, pp. 85-108, May 2005.

[6] Y. Cao and H. Yasuura, “A System-Level Energy Minimization using Datapath
Optimization,” Proceedings of International Symposium on Low Power
Electronics and Design, pp. 231-236, Aug. 2001.

[7] T. Ishihara and H. Yasuura, “Programmable Power Management Architecture
for Power Reduction,” IEICE Transactions on Electronics, vol. E81-C, no. 9,
pp.1473-1480, Sep. 1998.

[8] A. Sinha, A. Wang, and A. P. Chandrakasan, “Algorithmic Transforms for
Efficient Energy Scalable Computation,” Proceedings of International
Symposium on Low Power Electronics and Design, pp. 31-36, Jul. 2000.

[9] N. Kroupis, M. Dasygenis, K. Markou, D. Soudris and A. Thanailakis, “A
Modified Spiral Search Motion Estimation Algorithm and its Embedded
System Implementation,” Proceedings of IEEE International Symposium on
Circuits and Systems, pp. 347-350, May 2005.

[10] http://focus.ti.com/lit/ug/spru538/spru538.pdf

[11] V. Kathail, M. Schlansker and B. Rau, "HPL-PD Architecture Specification:
Version 1.1," Technical Report HPL-93-80,
http://www.hpl.hp.com/techreports/93/HPL-93-80R1.html, Hewlett-Packard
Laboratories, Feb. 2000.

[12] T. R. Gross and J. L. Hennessy, "Optimizing Delayed Branches," Proceedings
of the 15th Annual Workshop on Microprogramming, ACM SIGMICRO, pp.
114-120, Oct. 1982.

[13] D. M. Tullsen, S. J. Eggers, and H. M. Levy, "Simultaneous multithreading:
Maximizing on-chip parallelism," Proceedings of the 22nd Annual
International Symposium on Computer Architecture, pp. 392-403, Jun. 1995.

104

[14] D. T. Marr, F. Binns, D. L. Hill, G. Hinton, D. A. Koufaty, J. A. Miller and M.
Upton, "Hyper-Threading Technology Architecture and Microarchitecture,"
Intel Technology Journal, vol. 6, no. 1, pp. 36-46, Feb. 2002.

[15] P. L. Montgomery, “Modular Multiplication without Trial Division,”
Mathematics of Computation, vol. 44, no. 170, pp. 519-521, Apr. 1985.

[16] A. Agarwal, R. Simon. M. Horowitz, and J. Hennessy, "An Evaluation of
Directory Schemes for Cache Coherence," Proceedings of the 15th Annul
International Symposium on Computer Architecture, pp. 280-289, Jun. 1988.

[17] J. Balart, M. Gonzalez, X. Martorell, E. Ayguade, Z. Sura, T. Chen, T. Zhang,
Ke. O'Brien, and Ka. O'Brien, "A Novel Asynchronous Software Cache
Implementation for the Cell-BE Processor," Proceedings of the 20th
International Workshop on Languages and Compilers for Parallel Computing,
pp. 125-140, Oct. 2007.

[18] W. J. Dally and B. Towles, "Route Packets, Not Wires: On-Chip
Interconnection Networks," Proceedings of the 38th Conference on Design
Automation, pp. 684-689, Jul. 2001.

[19] S. Vangali, J. Howard, G. Ruhi, S. Dighe, H. Wilson, J. Tschanz, D. Finan, P.
Iyer, A. Singh, T. Jacob, S. Jain, S. Venkataraman, Y. Hoskotel, and N. Borkarl,
"An 80-Tile 1.28TFLOPS Network-on-Chip in 65nm CMOS," Proceedings of
IEEE International Solid-State Circuits Conference, pp. 98-589, Feb. 2007.

[20] E. Waingold, M. Taylor, D. Srikrishna, V. Sarkar, W. Lee, V. Lee, J. Kim, M.
Frank, P. Finch, R. Barua, J. Babb, S. Amarasinghe, and A. Agarwal, "Baring it
all to Software: Raw Machines," IEEE Computer, vol. 30, no. 9, pp. 86-93, Sep.
1997.

[21] C. J. Glass and L. M. Ni, "The Turn Model for Adaptive Routing," Proceedings
of the 19th Annual International Symposium on Computer Architecture, pp.
278-287, May 1992.

[22] G. M. Chiu, "The Odd-even Turn Model for Adaptive Routing," IEEE
Transactions on Parallel and Distributed Systems, vol. 11, no. 7, pp. 729-738,
Jul. 2000.

[23] Y. C. Lan, M. C. Chen, A. P. Su, Y. H. Hu, and S. J. Chen, "Fluidity Concept for
NoC: A Congestion Avoidance and Relief Routing Scheme," Proceedings of
IEEE International SOC Conference (SOCC), pp. 65-70, Sep. 2008.

[24] A. Mekkittikul and N. McKeown, "A Practical Scheduling Algorithm to
Achieve 100% Throughput in Input-Queued Switches," Proceedings of the
17th Annual Joint Conference of the IEEE Computer and Communications
Societies (INFOCOM), vol. 2, pp. 792-799, Mar.-Apr. 1998.

[25] Y. C. Lan, M. Chen, A. Su, Y. H. Hu, and S. J. Chen, “Flow Maximization for
NoC Routing Algorithms,” Proceedings of IEEE Computer Society Annul
Symposium on VLSI, pp. 335-340, Apr. 2008.

[26] D. M. Chapiro, "Globally-Asynchronous Locally-Synchronous systems," Ph.D.
dissertation, Stanford University, Stanford, California, USA, Oct. 1984.

[27] E. Nigussie, J. Plosila, and J. Isoaho, "Delay-Insensitive On-chip
Communication Link using Low-swing Simultaneous Bidirectional Signaling,"
Proceedings of the IEEE Computer Society Annual Symposium on Emerging
VLSI Technologies and Architectures, pp. 217-222, Mar. 2006.

105

[28] T. Verhoeff, "Delay Insensitive Codes--an Overview," Distributed Computing,
vol. 3, no. 1, pp. 1-8, Mar. 1988.

[29] R. Bashirullah, W. Liu, and R. K. Cavin III, "Current-Mode Signaling in Deep
Submicrometer Global Interconnects," IEEE Transactions on Very Large Scale
Integration Systems, vol. 11, no. 3, pp. 406-417, Jun. 2003.

[30] Y. K Kwok and I. Ahmad, "Static Scheduling Algorithms for Allocating
Directed Task Graphs to Multiprocessors," ACM Computing Surveys, vol. 31,
no. 4, pp. 406 - 471, Dec. 1999.

[31] M. K. Dhodhi, I. Ahmad, A. Yatama and I. Ahmad, "An Integrated Technique
for Task Matching and Scheduling onto Distributed Heterogeneous Computing
Systems," Journal of Parallel and Distributed Computing, vol. 62, no. 9, pp.
1338-1361, Sep. 2002.

[32] http://www.systemc.org/groups

[33] A. Clouard, K. Jain, F. Ghenassia, L. Maillet-Contoz, and J. P. Strassen, "Using
Transactional Level Models in a SoC Design Flow," in SystemC Methodologies
and Applications, Chapter 2, pp. 29-63, Ed. W. Müller, W. Rosentiel, and J. Ruf,
Kluwer Academic Publishers, 2003.

[34] http://www.mcs.anl.gov/mpi/standard.html

[35] http://standards.ieee.org/regauth/posix/

[36] http://openmp.org/wp

[37] W. Thies, M. Karczmarek, and S. Amarasinghe, "StreamIt: A Language for
Streaming Applications," Proceedings of the International Conference on
Compiler Construction, pp.179-196, Apr. 2002.

[38] D. J. Kuck, R. H. Kuhn, D. A. Padua, B. Leasure, and M. Wolfe, " Dependence
Graphs and Compiler Optimizations," Proceedings of the 8th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pp.
207-218, Jan. 1981.

[39] K. Kennedy and R. Allen, "Automatic Translation of FORTRAN Programs to
Vector Form,” ACM Transactions on Programming Languages and Systems,
vol. 9, no. 4, pp. 491-554, Oct. 1987.

[40] M. E. Wolf and M. S. Lam, "A Loop Transformation Theory and an Algorithm
to Maximize Parallelism," IEEE Transactions on Parallel and Distributed
Systems, vol. 2, no. 4, pp. 452-471, Oct. 1991.

[41] A. Darte and F. Vivien, "A Classification of Nested Loops Parallelization
Algorithms," Proceedings of IEEE Symposium on Emerging Technologies and
Factory Automation, vol. 1, pp. 217-234, Oct. 1995.

[42] J. R. Allen, K. Kennedy, C. Porterfield and J. Warren, "Conversion of Control
Dependence to Data Dependence," Proceedings of the 10th ACM
SIGACT-SIGPLAN Symposium on Principles of Programming Languages, pp.
177-189, Jan. 1983.

[43] R. Kramer, R. Gupta and M. L. Soffa, "The Combining DAG: a Technique for
Parallel Data Flow Analysis,” IEEE Transactions on Parallel and Distributed
Systems, vol. 5, no. 8, pp. 805-813, Aug. 1994.

[44] R. Tarjan, “Depth-first Search and Linear Graph Algorithms,” SIAM Journal on
Computing, vol. 1, no. 2, pp. 146-160, 1972.

106

[45] A. E. Eichenberger, P. Wu, and K. O'Brien, "Vectorization for SIMD
Architectures with Alignment Constraints," Proceedings of SIGPLAN
Conference on Programming Language Design and Implementation, pp. 82-93,
Jun. 2004.

[46] P. Wu, A. E. Eichenberger, and A. Wang, "Efficient SIMD Code Generation for
Runtime Alignment and Length Conversion," Proceedings of International
Symposium on Code Generation and Optimization, pp. 153-164, Mar. 2005.

[47] G. Ren, P. Wu, and D. Padua, "Optimizing Data Permutations for SIMD
Devices,” Proceedings of ACM SIGPLAN Conference on Programming
Language Design and Implementation, pp. 118-131, Jun. 2006.

[48] S. Larsen and S. Amarasinghe, "Exploiting Superword Level Parallelism with
Multimedia Instruction Sets,” Proceedings of ACM SIGPLAN Conference on
Programming Language Design and Implementation, pp. 145-156, Jun. 2000.

[49] F. Franchetti, S. Kral, J. Lorenz, and C. W. Ueberhuber, "Efficient Utilization of
SIMD Extensions,” Proceedings of IEEE Special Issue on Program Generation,
Optimization, and Platform Adaptation, vol. 93, no. 2, pp. 409-425, Feb. 2005.

[50] S. Larsen, R. Rabbah, and S. Amarasinghe. “Exploiting Vector Parallelism in
Software Pipelined Loops,” Proceedings of the 38th International Symposium
on Microarchitecture, pp.119-129, Nov. 2005.

[51] D. M. Lavery and W. M. Hwu, “Modulo Scheduling of Loops in
Control-Intensive Non-Numeric Programs,” Proceedings of the 29th Annual
International Symposium on Microarchitecture, pp. 126-137, Dec. 1996.

[52] G. H. Lin, S. J. Chen, R. B. Lee, and Y. H. Hu, "Memory Access Optimization
of Motion Estimation Algorithms on a Native SIMD PLX Processor,”
Proceedings of IEEE Asia-Pacific Conference on Circuits and Systems, pp.
567–570, Dec. 2006.

[53] S. Ryoo, S-Z Ueng, C. I. Rodrigues, R. E. Kidd, M. I. Frank, and W. M. Hwu,
"Automatic Discovery of Coarse-Grained Parallelism in Media Applications,"
Transactions on High-Performance Embedded Architectures and Compilers,
Springer, vol. 4050, pp. 194-213, Jan. 2007.

[54] P. Tu and D. Padua, "Gated SSA-based Demand-Driven Symbolic Analysis for
Parallelizing Compilers," Proceedings of International Conference on
Supercomputing, pp. 414-423, Jul. 1995.

[55] T. G. Mattson, B. A. Sanders, and B. L. Massingill, Patterns for Parallel
Programming, Addison Wesley, 2005.

[56] M. W. Hall, J. M. Anderson, S. P. Amarasinghe, B. R. Murphy, S.-W. Liao, E.
Bugnion and M. S. Lam, "Maximizing Multiprocessor Performance with the
SUIF Compiler," IEEE Transactions on Computers, vol. 29, no. 12, pp.84-89,
Dec. 1996.

[57] T.-C. Chen, S.-Y. Chien, Y.-W. Huang, C.-H. Tsai, C.-Y. Chen, T.-W. Chen, and
L.-G. Chen, “Analysis and Architecture Design of an HDTV 720p 30 Frames/s
H.264/AVC Encoder,” IEEE Transactions on Circuits and Systems for Video
Technology, vol. 16, no. 6, pp. 673-688, Jun. 2006.

107

BIOGRAPHY

Education:
1991 B.S. Mechanical Engineering, National Chiao Tung University
1998 M.S. Graduate Institute of Electrical Engineering, National Taiwan University
2009 Ph.D. Graduate Institute of Electrical Engineering, National Taiwan University.

Published List:

International Journal:
1. Y. N. Wen, G. H. Lin, S. J. Chen, and Yu-Hen Hu, "Optimal Multiple-Bit

Huffman Decoding," IEEE Transactions on Circuits and Systems for Video
Technology IEEE Circuits and Systems, 2009.

Local Journal:
2. G. H. Lin, Y. N. Wen, X. L. Wu, S. J. Chen, and A. P. Su, “SIMD Code

Generation for Multimedia Application,” International Journal of Electrical
Engineering, vol.16, no. 1, Feb. 2009, pp. 1-12.

International Conferences:
3. P. H. Cheng, G. H. Lin, Y. P. Chen, T. N. Chien, J. S. Lai, and S. J. Chen, “Design

of a Healthcare Standard Chip,” The 8th World Multiconference on Systemics,
Cybernetics and Informatics (SCI), Orlando, Florida, USA, July 2004, vol. 12, pp.
128-132.

4. P. H. Cheng, F. M. Shyu, G. H. Lin, S. J. Chen, and J. S. Lai, “Moving Toward
Healthcare Data Exchange Chip,” Medinfo, San Francisco, California, USA, pp.
1551, Sep. 2004.

5. P. H. Cheng, T. H. Yang, C. H. Yang, G. H. Lin, F. Lai, C. L. Chen, H. H. Lee, Y.
S. Sun, J. S. Lai, S. J. Chen, “A Collaborative Knowledge Management Process
for Implementing Healthcare Enterprise Information Systems,” IEEE/IEE
International Engineering Management Conference (IEMC), Newfoundland,
Canada, pp. 604-607, Sep. 2005.

6. G. H. Lin, S. J. Chen, R. B. Lee, and Y. H. Hu, “Memory Access Optimization of
Motion Estimation Algorithms on a Native SIMD PLX Processor,” IEEE
Asia-Pacific Conference on Circuits and System (APCCAS), Singapore, pp.
567-570, Dec. 2006.

108

7. G. H. Lin, Y. N. Wen, X. L. Wu, S. J. Chen, and Y. H. Hu, “Design of a SIMD
Multimedia SoC Platform,” IEEE International SOC Conference (SOCC),
Hsinchu, Taiwan, ROC, pp. 51-54, Sep. 2007.

8. C. J. Wei, G. H. Lin, Y. N. Wen, S. J. Chen, and Y. H. Hu, “Symbolic Verification
and Error Prediction Methodology,” IEEE International SOC Conference (SOCC),
Hsinchu, Taiwan, ROC, pp. 201-204, Sep. 2007.

Local Conferences:
9. Y. H. Hsieh, G. H. Lin, and S. J. Chen, " Design and Implementation of an RSA

Encryption/Decryption Processor on IC Smart Card," The 10th VLSI Design/CAD
Symposium, NanTou, Taiwan, ROC, pp. 343-346, Aug. 1999.

10. T. W. Chung, C. Yu, G. H. Lin, and S. J. Chen, “Design and Implementation of
2-D Discrete Wavelet Transform VLSI Architecture for JPEG2000,” The 13th
VLSI Design/CAD Symposium, TaiTung, Taiwan, ROC, pp.363-366, Aug. 2002.

11. C. F. Yang, G. H. Lin, Y. H. Hsieh, and S. J. Chen, “A Dual-Mode Channel-Select
Filter for WLAN and Bluetooth,” The 15th VLSI Design/CAD Symposium,
Kenting, Taiwan, ROC, pp. 2-11, Aug. 2004.

12. G. H. Lin, Y. N. Wen, S. J. Chen, and Y. H. Hu, “Multimedia SoC System Level
Virtual Platform Design,” The 17th VLSI Design/CAD Symposium, HuaLien,
Taiwan, ROC, pp. 329-332, Aug. 2006.

13. G. H. Lin, C. C. Jean, S. J. Chen, and A. P. Su, “SIMD Code Generation for
Multimedia,” The 18th VLSI Design/CAD Symposium, HuaLien, Taiwan, ROC,
pp. 519-522, Aug. 2007.

14. C. J. Wei, G. H. Lin, Y. N. Wen, S. J. Chen, and Y. H. Hu, “Error Estimation for
Saturation Arithmetic Functions,” The 19th VLSI Design/CAD Symposium,
Kenting, Taiwan, ROC, pp. 110-113, Aug. 2008.

Book:
15. S. J. Chen, G. H. Lin, P. A. Hsiung, and Y. H. Hu, Hardware Software Co-design

of a Multimedia SoC Platform, Springer, 2009.

