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摘要

與他人溝通是我們日常生活中的一項基本能力。然而，患有聲帶萎縮的人在

與他人溝通方面存在困難。值得慶幸的是，一種稱為注射增強的治療方法被創造

來解決這種情況並在多年來被證明是有效的，且廣泛應用於許多聲帶疾病。在大

多數情況下，醫生會將玻尿酸（Hyaluronic Acid）注射到患者的聲帶中，以改善聲

門間隙並幫助聲帶正常閉合。過去，醫生必須從病人的發聲去判斷聲帶恢復情況

以及是否需要補充玻尿酸。近來，使用超音波影像來分析玻尿酸在人體內殘留情

況和作用位置是可行的。隨著電腦視覺領域的發展，可以使用電腦去幫助醫生追

蹤玻尿酸在人體中降解作用以及估算出玻尿酸殘留體積。儘管基於 CNN的模型

在圖像分割任務中取得了優異的性能，但由於卷積運算的局部性，使得它們仍然

無法學習全局和遠程信息。此外，當前大多數分割模型只關注分割任務中的空間

特徵，忽略時間特徵。然而，時間特徵對於醫生推斷玻尿酸體積也很重要。因此，

我們認為時間信息對於模型正確預測玻尿酸也是很重要的。在本研究中，我們提

出了 AFTNet（注意力特徵時間網絡），其中包含基於注意力機制的特徵提取器和

時間模組。借助基於注意力的特徵提取器和時間模組，我們的模型不僅可以更有

效的學習全局和遠程信息，還可以更好地學習目標影片的時間特徵。我們將此模

型應用於我們提出的患者喉嚨數據集，不僅能協助醫生解決難以判斷的鈣化以及

雜訊案例，其性能優於基於 CNN的模型和基於 Transformer的模型。

關鍵字：超音波影像分割、Transformer、卷積神經網路、循環神經網絡、注射喉
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Abstract

Communicating with other people is a basic ability in our daily life. However, those

who suffering from vocal cord atrophy have trouble communicating with others. Thank-

fully, a treatment method called injection laryngoplasty is created to solve this situation,

which being proved effective over the years and widely applied to many vocal cord dis-

orders. In most cases, doctors inject hyaluronic acid (HA) into patients’ vocal cord to

improve the glottal gaps and help vocal cord close properly. Previously, doctors have

to judge the patients’ voice to check the recovery and determine whether to complement

HA. Recently, to observe how HA remains and works at, it is feasible to analyze on ultra-

sound image sequences. With the development of computer vision, doctors can employ

computer-assisting method to track degradation of HA and estimate HA volume in human

body. Although CNN-based models have achieved excellent performance in image seg-

mentation tasks, they still can not learn global and long-range information because of the

locality of convolution operation. Besides, most current segmentation models only focus
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on spatial features, ignoring temporal features in segmentation task. However, temporal

features are also important for doctors to inference HA position. Therefore, we believe

temporal information is also critical for the models to predict HA position correctly. In

this study, we proposed AFTNet(Attention Feature Temporal Network), which contains

attention-based feature extractor and temporal module. With the benefit of attention-based

feature extractor and temporalmodule, ourmodel can not only better learn global and long-

range dependencies, but temporal features of the target videos. We apply this model to

our proposed Patient Throat Dataset, which not only assists doctors in difficult-to-diagnose

calcified and noise cases, but outperforms both CNN-based and Transformer-based mod-

els.

Keywords: Ultrasound Image Segmentation, Transformer, Convolution Neural Net-

work, Recurrent Neural Network, Injection Laryngoplasty
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Chapter 1 Introduction

Figure 1.1: Ultrasound imaging process.

In current society, there are more and more industries that use voice as the main tool,

and the dependence on voice is also increasing, such as teachers, salesmen and singers.

Voice plays an critical role in daily communication, professional performance, and even

artistic performance and has become an indispensable part of daily life. It is worth men-

tioning that the onset age of vocal cord atrophy, which is due to the overuse of vocal cord,

tending to be younger. Vocal cord atrophy is the thinning of one or both vocal muscles.

Since one vocal cord cannot meet another one, patients need to take extreme effort to

force vocal cords to close well during voicing. Patients with vocal cord antrophy may

have a hoarse, husky, or weak voice due to disrupted or obstructed vocal cord vibrations,

resulting in changes in voice quality. Damaged vocal cords can lead to a sore or uncom-

fortable feeling in the throat. Speaking or exerting force to produce sound may further

irritate the damaged vocal cords. The more hoarse the patient’s voice becomes, the more
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they tend to exert force to produce sound. Exerting more force to produce sound can lead

to throat pain and incomplete vocal cord closure. This process would turn into a vicious

circle, making the condition even worse and causing problems in daily life. Thankfully,

a treatment called injection augmentation has been developed into effective practice over

the years and be widely applied to many vocal cord disorders. In most cases, in order

to treat vocal cord atrophy or vocal cord paralysis, the vocal cord would be injected with

Hyaluronic Acid (HA) to improve the glottal gaps and help vocal cord close properly. The

function of HA is to serve as a volume filler, enabling the vocal cords to close properly.

Doctors often judge if there is a need of complement HA by patients’ voice. There was

not effective and efficient method to estimate volume and track the degradation of HA.

Recently, to observe how HA remains and works at vocal cord, doctors employ ultra-

sound image sequences due to its convenience and rapidity. Although we could examine

the change of HA in the throat with ultrasound image sequences, it is still not possible

to directly estimate the volume through ultrasound imaging. The resolution of ultrasound

images is low and the technical threshold of manipulators influence a lot, it is challenging

to interpret HA volume in ultrasound images correctly.

In this task, we calculate the HA volume of ultrasonic image sequences, which can

be used to track and estimate the trend of changes in the HA volume and help doctor make

clinical judgements. Figure 1.1 illustrate the process of ultrasound imaging. The patients

will undergo ultrasound imaging at two, eight and twenty-four weeks after the injection of

HA and we can estimate the HA volume through their ultrasound images. The estimated

HA volume can help the doctor judge the patients recovery and determine whether to

complement HA into patients’ throat. Figure 1.2 illustrate the ultrasound throat image

sequences at two, eight and twenty-four weeks after the injection of HA. As time goes

2
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by, the volume of HA will become smaller, and it will become difficult to segment HA

volume.

Benefiting from advances in the field of computer vision, people can use these tools

to perform medical image analysis. Among them, image segmentation plays an impor-

tant role in medical image analysis. Image segmentation technology could help doctors

not only segment target cells, but segment objects injected into the patients body. Con-

volutional neural networks (CNNs) has dominated in image segmentation domain for a

long time. Starting from FCN [13], which segments images by classifying every pixels to

corresponding labels. Then, U-shape architecture [6, 14, 15] made a significant progress

in medical image segmentation, which contains an encoder to perform down-sampling, a

decoder to perform up-sampling and skip connection to extract multi-scale feature dur-

ing down-sampling steps. However, CNN-based models can not learn global and long-

range dependencies because of the locality of convolution operation. Hence, with the

success in natural language processing (NLP), transformer [8] can also be applied in com-

puter vision field, which could learn global and long-range information. Nevertheless, the

above-mentioned models make a prediction just with single image, the prediction lack of

temporal information. Therefore, we proposed a model with attention-based feature ex-

tractor and temporal module, which can not only learn global and long-range information,

but learn temporal information like the doctor who infers HA area in the current frame

and through the image sequences. With temporal module, we can better segment HA area

even if the edge of HA is not clear. The proposed AFTNet (Attention Feature Temporal

Network) achieves strong performance on our proposed Patient Throat Dataset. It not only

outperforms the CNN-based models and transformer-based models, but not cost too much

computation resources.

3
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(a) 2 weeks (b) 8 weeks (c) 24 weeks

Figure 1.2: Patient ultrasound throat image sequences at different times after the injection
of HA. The 1st row shows ultrasound images in different time while the 2nd row shows the
HA area segmented by doctor. The main difference from other ultrasound image dataset
is that the throat is surrounded by other tissues and the HA area to be segmented is not
obvious.

4
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Chapter 2 Related Work

In this chapter, we first introduce CNN-based models in image segmentation tasks

and the drawbacks of convolution operations. What follows is self attention/Transformer

to complement CNNs. With aids of self attention and Transformer, it is effective to re-

duce the impact of convolution operation in CNN-based models. However, it still has

some drawback to learn long range and global information. Transformer is employed in

computer vision due to its success in Natural Language Processing (NLP). With self atten-

tion mechanism utilized in Transformer, the model can learn long range dependencies of

the images. In the end is the brief introduction of Transformer based backbone in computer

vision.

2.1 CNN-based Models

Convolutional neural networks (CNNs) have been widely used in image segmenta-

tion tasks and have achieved significant success [6, 10, 16]. U-Net [15] is a popular and

widely used architecture for medical image segmentation. It consists of an encoder path

and a decoder path. The encoder path performs downsampling operations to capture con-

text and extract high-level features. The decoder path performs upsampling operations to

recover spatial resolution and combine the low-level and high-level features for segmen-

5
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tation. U-Net has skip connections that allow the decoder to access relevant features from

the encoder, aiding in precise localization, the architecture of U-Net is presented in 2.1.

DeepLab [5] is a state-of-the-art convolutional model for image segmentation. It incorpo-

rates atrous (dilated) convolutions to capture multi-scale contextual information without

significantly increasing the computational cost. DeepLab uses a combination of dilated

convolutions, pooling, and skip connections to improve segmentation performance. It

also includes a final up-sampling step to obtain dense pixel-level predictions. However,

there are some limitation of using CNN-based models in image segmentation. It has dif-

ficulty in capturing fine details: CNNs, especially those with down-sampling operations

like pooling or strides, can lead to a loss of fine-grained details during the encoding pro-

cess. This down-sampling can make it challenging for CNNs to accurately capture small

objects or intricate boundaries in segmentation tasks. Also, CNNs process images in a

local and sequential manner, with limited access to global spatial context. While skip

connections and encoder-decoder architectures partially address this issue, they may not

capture long-range dependencies as effectively as other architectures like transformers.

2.2 Self-attention/Transformer to complement CNNs

Self-attention is a mechanism that can complement convolutional neural networks

(CNNs). By incorporating self-attention mechanisms, models can capture relationships

between distant spatial locations and leverage global context, allowing them to capture

long-range dependencies [1, 4]. Recently, Transformers, which is composed of encoder

and decoder, originally introduced for natural language processing, have also been em-

ployed to computer vision tasks and have achieved remarkable results [3, 12]. The trans-

former architecture relies heavily on self-attention mechanisms. Instead of using convolu-

6
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Figure 2.1: The architecture of U-Net [15].

tional operation, transformers utilize self-attention layers to capture relationships between

spatial locations. By attending to all positions within an input sequence, transformers

can effectively model long-range dependencies and capture global context. Transformer-

based models have shown great potential in tasks such as image classification, object de-

tection, and image segmentation. By incorporating self-attention mechanisms, these mod-

els can capture relationships between distant spatial locations and leverage global context,

allowing them to handle tasks that require capturing long-range dependencies or model-

ing fine-grained details. The combination of CNNs and self-attention provides a powerful

framework for addressing various computer vision challenges.

7
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Figure 2.2: The hierarchical feature maps of Swin Transformer [12].

2.3 Transformer based vision backbones

Transformer-based vision backbones have gained significant attention in recent years

for their effectiveness in various computer vision tasks. Unlike traditional convolutional

neural networks (CNNs) [9, 11, 18], which rely on convolutions for feature extraction,

transformer-based models utilize self-attention mechanisms to capture global dependen-

cies and learn spatial relationships.Vision Transformer (ViT) [8]was one of the first transformer-

based models to be introduced for vision tasks. It applies the transformer architecture

to image classification by dividing the input image into patches and transforming them

into sequence-like data. The model leverages self-attention to capture the relationships

between patches and learns representations for classification tasks. DeiT [19] incorpo-

rates distillation techniques and data augmentations to improve generalization and achieve

state-of-the-art performance in image classification tasks. Swin Transformer [12] intro-

duces a hierarchical design that captures dependencies across different scales, as illustrated

8
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in 2.2, allowing it to model fine-grained details and global context effectively. The Swin

Transformer has demonstrated strong performance in image classification, object detec-

tion, and semantic segmentation tasks. Its hierarchical design, shifted windows, and atten-

tion mechanisms contribute to its ability to capture fine-grained details and global context

efficiently. Swin Transformer represents an exciting advancement in vision transformers

and offers a promising alternative to traditional convolutional neural networks.

9



doi:10.6342/NTU202302561

Chapter 3 Method

Figure 3.1: System overview.

3.1 System Overview

An overview of proposed system is presented in Figure 3.1, which contains five main

procedures: Data Preprocessing, AFTNet, Data postprocessing, calculating HA volume

and HA volume analysis.

Given an ultrasonic video, it first split the video into image frames, which then input

to AFTNet. The model not only extract spatial features, but temporal features of the image

sequences. With attention-based spatial feature extractor, the model will learn long range

dependencies and global context, and temporal let the predictionmore reliable. Afterward,

by applying postprocessing method, the noise of prediction map will be erased and the

10



doi:10.6342/NTU202302561

unexpected results such as predicted area jump too far and suddenly appear or disappear

will also be removed. Finally, we can estimate HA volume of the prediction map and track

the degradation of HA for doctors to take corresponding treatments.

3.2 Data Preprocessing

Because ultrasound data are video format, we convert input data into image frames at

first. For each frame, we concatenate its previous δ frames and last δ frames like inference

method of doctors to better extract temporal features. The schematic diagram is illustrated

in Figure 3.2. Afterward, we feed processed frames to the proposed model with basic data

augmentation, such as rotation and changing contrast in order to enrich the diversity of

training data.

Figure 3.2: Concatenate first δ frames and last δ frames with the current frame.

3.3 Model

Inspired by [7, 21] model architecture, we proposed a network for ultrasound image

sequence segmentation, which feature extractor and temporal module are based on Swin-

UNet [2] and C-LSTM [17] respectively, called AFTNet (Attention Feature Temporal

11
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Network). AFTNet consists of feature extractor, temporal module and refining module,

architecture is illustrated in Figure 3.3. Feature extractor is for spatial feature extraction,

whose attention-based feature extractor block is composed of swin transformer block [12]

can learn global and long-range semantic information to better deal with unclear edge or

noise conditions of the ultrasound images. In order to segment HA area like doctor who

infer from current frame through multiple frames, we employ temporal module to make

our network extract temporal features from image frames, which is helpful to segment HA

area within multiple frames. Refining module can further refine the prediction mask from

temporal module to get a refined result.

Figure 3.3: AFTNet contains three module : Feature Extractor, Temporal Module, Refin-
ing Module.

3.3.1 Feature Extractor

Our feature extractor architecture is based on Swin-Unet [2]. It consists encoder,

bottleneck, decoder and skip connections. Different from the standard multi-head self

attention (MSA) in conventional Transformer block, we construct attention-based fea-

12
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ture extractor block based on Swin Transformer block [12], which uses shifted window

based multi-head self attention to learn representation instead of global self attention. The

window-based multi-head self attention and the shifted window-based multi-head self at-

tention are applied in the two successive blocks, a MLP with GELU activation function

are deposed after each attention block. A layer normalization layer is employed before

each window-based MSA and MLP, and residual connections are used after each module

as illustrated in Figure 3.4. In order to perform down-sampling, patch merging layer is

applied to reduce the feature map to half of the original resolution. Since Transformer is

too deep to be converged [20], we construct bottleneck with two successive Swin Trans-

former blocks to learn the deep feature representation. In decoder, Swin Transformer

blocks are used to learn representation and patch expanding layers are used to implement

up-sampling. In patch expanding layers, the feature map is reshaped into a higher reso-

lution with 2× up-sampling and the feature dimension is reduced to half of the original

feature map. Besides, proposed in UNet[15], skip connections are also applied here to

combine multi-scale features from encoder and decoder, which enable the direct concate-

nate features of encoder and the corresponding decoder. Skip connection can let the model

maintain features of different spatial resolution, which is beneficial to preserving different

spatial resolution information and handling different size of objects segmentation.

3.3.2 Temporal Module

Based on [17], we implement our temporal module inspired by doctor who interprets

HA area of the current ultrasound images through the ultrasound image sequences. First of

all, instead of feeding feature map of the original ultrasound image resolution, the feature

map being fed into temporal module are one-eighth of the original ultrasound images.
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Figure 3.4: Two successive Swin Transformer Blocks [12].

Then, feature maps are fed into Bi-directional C-LSTM uses previous information and

future information during prediction. The output of each time point t of the C-LSTM is

a pixel-wise feature map with temporal information. Then, we concatenate the current

frame with forward and backward C-LSTMs followed by convolution layers and ReLUs,

obtaining the final temporal prediction map.

3.3.3 Refining Module

In refining module, we refine the final prediction map through compressing the pre-

diction map from temporal module. We input the prediction map to 1×1 convolution

followed by ReLU.

3.4 Data Postprocessing

We perform three main step to make our prediction more reliable. First of all, we

set a threshold to check if the predicted mask area is larger than threshold and choose the
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largest connected component. Because HA tends to get together, this can help us remove

very small predicted regions. Then, we calculate localmean and globalmean, respectively.

Local mean is the average coordinates of the mask within current few frames, while global

mean is the average coordinates of the mask in the whole ultrasound image frames. With

local mean and global mean, we can remove predictedmaskwhichmove too far from other

frames, making the prediction more reasonable. Finally, by calculating sliding window

distance, we can avoid mask appear or disappear suddenly.

3.5 HA Volume Analysis

In this step, we get the predicted volume of the input ultrasound images sequences af-

ter the injection of HA in two week, eight weeks and twenty-four weeks, respectively. We

estimate HA volume through binary prediction masks of the ultrasound image sequences.

We calculate HA volume based on mask areas of each image frame, which are formulated

as follows:

V =
((
∑n−1

i=1 A[i] +
∑n

i=2 A[i])× h)

2n
(3.1)

With the benefit of the predicted volume, doctors can better track how much HA

remains in patients’ throat and take corresponding treatments if needed. The experiment

result of HA volume estimation are presented in Section 4.4.
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Chapter 4 Experiments

We conduct experiments on our proposed Patient Throat Dataset. The dataset is col-

lected by the doctor, and consists of ultrasound images of patients’ throat after two weeks,

eight weeks and twenty-four weeks respectively. In the following, we first introduce our

proposed Patient Throat Dataset, which can be divided into four different categories. Then,

experiments are conducted on Patient Throat Dataset, comparing our model with the pre-

vious excellent segmentation models. Afterward, we compare our proposed model with

other excellent segmentation models with different cases of Patient Throat Dataset. The

ablation study of the important modules of our proposed model is presented in the end.

4.1 Datasets

4.1.1 Patient Throat Dataset

We proposed Patient Throat Dataset, which consists of ultrasonic image sequences

of patients’ throats after two weeks, eight weeks and twenty-four weeks of the injection

of HA respectively. There are 82 videos in our dataset, and being annotated by the doctor

with CVAT. The ground truth volumes are computed through the ground truth annotation

of the dataset. The biggest difference from other ultrasound image dataset is that the HA
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in our dataset are blocked by other tissues and the edges of HA are not obvious. Besides,

the dataset can be divided into four cases : normal cases, calcified cases, noisy cases

and the final cases are calcified, contour reappear in the end of the video. The ultrasonic

images and ground truth of different cases are presented in Figure 4.1. The following is

an introduction to the four different types of the proposed Patient Throat Dataset :

Normal Cases The type is composed of clear ultrasound image sequences, and the edge

of HA are obvious.

Calcified Cases Patients’ throats are calcified so that their HA in ultrasound images tend

to be white and the edge between tissue and HA become unclear. Therefore, this

type of ultrasound images are challenging to segment correctly.

Noisy Cases During the ultrasound imaging process, there may be air between the probe

and the skin. There are trivial things, such as tissue inflammation and blood clots in

patients’ throats. It will make the videos look noisy. Hence, this type of ultrasound

images are the most challenging cases of our proposed dataset.

Calcified, contour reappear in the end In the beginning of the type of ultrasound image

sequences are normal while in the end of the video, there are calcified condition in

patients’ throat tissue. The type of cases are a little harder than that of in normal

cases.

4.1.2 Image Phantom Dataset

This dataset is proposed to simulate the ultrasound images of throat, consisting of two

types : normal and calcified types, as illustrated in Figure 4.2. The main function of the

17
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dataset is to help calculate the HA volume because the practical HA volume injected into

the patients may be affected by many factors such as moisture and the inflammation of the

throat tissue of the patients. This condition may cause a discrepancy between the injected

HA into the throat and the actual situation. Besides, with this simulation approach, it’s

possible to increase the quantity of training data. The method used to create this dataset

is that the doctor can make a jelly of a specific volume to simulate various situation of

the patients’ throats, such as normal and calcified types. As a result, the dataset could be

divided into two types : normal and calcified. The detail description of the two types are

illustrated below :

Normal This type is proposed to simulate the normal condition of patient throat. It con-

sists of 1(mL), 2(mL) and 5(mL) jelly volume. The edges between the HA and the

other tissues are obvious.

Calcified This type is proposed to simulate the calcified condition of patient throat. It

consists of 1(mL), 2(mL) and 5(mL) jelly volume. The edges of this type cases

are not obvious. Therefore, the cases of this type are more difficult that the normal

ones.

4.2 Implementation Detail

Experiments were implemented on Python 3.8 and Pytorch 1.11. For all training

cases, data augmentation such as random jitter and random flipping are used to increase

training data diversity. We input eight ultrasound image frames to themodel once at a time.

Each of image frame and patch size are set as 352×416 and 4 respectively. The model

was trained with AdamW optimizer. The learning rate is set as 0.0001 and is controlled
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by multi-step learning rate (MultiStepLR) scheduler. We train and inference on a single

NVIDIA RTX A6000 GPU.

(a) Ultrasound Image (b) Mask (c) Visualization

Figure 4.1: Four different cases of our proposed Patient Throat Dataset. From top to
bottom is normal, calcified, noisy and calcified, contour reappear in the end.
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(a) Normal Image (b) Calcified Image

Figure 4.2: Image Phantom Dataset. (a) is the example images of normal type of Image
Phantom Dataset. The the edge of the target object is clear. (b) is the example images of
calcified type of Image Phantom Dataset. The edge of the target area in calcified cases are
not obvious. Therefore, temporal information is critical for this condition.

4.3 Comparison with Other Segmentation Models

Table 4.1 presents comparison to other segmentationmodels, including both Transformer-

based and CNN-based models. Different from other 2D segmentation models, our pro-

posed model performs much better because it not only learn spatial information of the

image sequences, but learn temporal information with temporal module. First of all, as

Figure 4.5 presents, the edge of target HA is clear and the area is large. Although the case

is easy to segment, the proposed model can segment more precisely than other models.

Then, Figure 4.8 shows the result on calcified case of Patient Throat Dataset, our model

can precisely segment HA even if the edge of HA is not obvious. Because HA would
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degrade over time, it will become difficult to track the residual state of HA in the human

body. Fortunately, our model can segment HA very well even if the remaining volume

is small, the result reveal in Figure 4.7. The reason of our model can segment HA more

precisely is that the temporal module predict HA area like doctors who judge it through

multiple ultrasonic image frames. The predicted area of Swin-UNet is too small while

our model segment more precisely. Finally, the most challenging cases of our proposed

Patient Throat Dataset, are noisy cases, our model can still segment HA accurately, see

Figure 4.6. Because there are trivial things in ultrasound image sequences of noisy cases,

it is challenging for every models to segment HA. With global feature extractor and tem-

poral information, our model can outperform other models.

Table 4.2 reveals comparison with other segmentation models in the different cases

of our proposed dataset. We can observe that our proposed model perform better in all of

cases in Patient Throat Dataset.

Table 4.1: Results on Patient Throat Dataset.

Model IoU(%) Dice(%) Parameters
V-Net [14] 48.51 63.61 132.05M
U-Net [15] 56.07 70.16 24.44M
DeepLabV3 [5] 56.96 70.33 22.43M
Swin-Unet [2] 55.64 69.05 27.16M
TCSNet [22] 58.39 72.04 24.45M
Ours 62.66 75.98 28.61M

Table 4.2: Results of different cases on Patient Throat Dataset.

Normal Calcified Noisy Calcified, contour
reappear in the end

IoU (%) Dice (%) IoU (%) Dice (%) IoU (%) Dice (%) IoU (%) Dice (%)

V-Net 56.37 71.49 46.93 61.82 29.32 44.30 53.51 68.93
U-Net 58.35 71.83 57.01 72.24 43.07 58.76 65.94 79.05
DeepLabV3 60.27 73.76 55.65 68.46 39.20 54.86 67.15 79.95
Swin-Unet 57.67 70.80 54.23 67.95 37.87 52.03 61.14 75.76
TCSNet 64.78 78.16 56.57 70.76 42.75 58.36 63.22 76.68
Ours 66.49 79.29 61.98 71.52 48.57 63.69 68.86 81.05
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4.4 HA Volume Estimation

In Table 4.3 shows the estimated volume of our proposed model on Patient Throat

Dataset at different period of the injection of HA. The error between the estimated vol-

ume and real volume is within 2%. Figure 4.3 presents the degradation of HA volume at

different period after the injection of HA. As the figure illustrated, the predicted volumes

of our proposed model are very close to the ground truth volumes.

Table 4.4 presents the estimated volume of our proposed model on Image Phantom

Dataset with different type. From the results, it can be seen that the predicted volumes

are very close to the actual volumes. However, as illustrated in Figure 4.4, case 6 of the

calcified type, the right-hand portion was not predicted. Therefore, the error rate between

the estimated volume and actual volume is a little higher.

Table 4.3: Estimated volume of HA on Patient Throat Dataset.

Time Estimated Volume(mL) Actual Volume(mL) Error Rate(%)
2 weeks 1.4197 1.3801 2.87
8 weeks 0.7004 0.7131 1.79
24 weeks 0.4713 0.4674 0.84

Figure 4.3: The degradation of HA volume trends in patient throat over time on Patient
Throat Dataset.
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Table 4.4: Estimated volume of HA on Image Phantom Dataset.

Type Case Number Estimated Volume(mL) Actual Volume(mL) Error Rate(%)
Normal 1 0.969 1 3.1
Normal 2 0.940 1 6
Normal 3 1.956 2 2.2
Normal 4 1.937 2 3.3
Normal 5 5.005 5 0.1
Normal 6 5.224 5 4.4
Calcified 1 0.987 1 1.3
Calcified 2 1.072 1 7.2
Calcified 3 0.957 1 4.3
Calcified 4 2.011 2 0.5
Calcified 5 2.062 2 3.1
Calcified 6 2.154 2 7.5
Calcified 7 5.308 5 6.1
Calcified 8 4.922 5 1.5
Calcified 9 5.213 5 4.2

(a) Original image (b) Predict result

Figure 4.4: Image Phantom Dataset.

4.5 Ablation Study

In the ablation analysis, we will explore how the important components of our models

influence performance. Here we conduct two experiments to verify that our temporal

module and postprocessing can improve our performance.
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4.5.1 Temporal Module

Table 4.5 shows that with temporal module, our model can learn the detailed temporal

prediction. The reason why temporal module improves performance is that our model can

learn how to segment HA precisely through the past frames and the future frames like

doctors interpret clinically. Because, sometimes, the doctor will interpret the ultrasound

image from the back to the front frames. With such a module, we can segment ultrasound

image sequences even if the edge of HA is not obvious or the HA area is tiny.

Table 4.5: The impact of temporal module.

Model IoU(%) Dice(%)
w/o Temporal Module 60.64 72.05
w/ Temporal Module 62.66 75.98

4.5.2 Postprocessing

Table 4.6 shows that with our postprocessing, the performance become better. The

reason why postprocessing can improve performance is that it can avoid some cases mis-

judging HA volume by setting a threshold to remove misprediction parts. Also, by calcu-

lating local mean and global mean of masks, it can avoid HA disappear or appear suddenly.

Table 4.6: The impact of postprocessing.

Model IoU(%) Dice(%)
w/o Postprocess 61.76 74.69
w/ Postprocess 62.66 75.98
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Figure 4.5: First to sixth columns in order are : original images, ground truth, UNet predic-
tion, DeepLabV3 prediction, Swin-UNet prediction and our prediction. The experiment
inference on normal cases of Patient Throat Dataset. In this case, although the area of HA
is clear, our proposed model segment the HA more precisely than other models.
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Figure 4.6: First to sixth columns in order are : original images, ground truth, UNet predic-
tion, DeepLabV3 prediction, Swin-UNet prediction and our prediction. The experiment
inference on noisy cases of Patient Throat Dataset.
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Figure 4.7: First to sixth columns in order are : original images, ground truth, UNet predic-
tion, DeepLabV3 prediction, Swin-UNet prediction and our prediction. The experiment
inference on Normal cases of Patient Throat Dataset. The target is tiny.
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Figure 4.8: First to sixth columns in order are : original images, ground truth, UNet predic-
tion, DeepLabV3 prediction, Swin-UNet prediction and our prediction. The experiment
inference on Calcified cases of Patient Throat Dataset.
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Chapter 5 Conclusion

In this paper, we proposed a model with attention-based feature extractor and tem-

poral module for HA ultrasound image sequences segmentation. To leverage the power

of Transformer, we take Swin Transformer block in our attention-based feature extractor

block for feature representation and long-range information learning. Besides, we utilize

temporal module to better segment HA area like doctor who infer through ultrasound im-

age sequences. With such a model, doctors can confirm the residual HA volume in the

patients’ throat and see if it is necessary to supplement HA without requiring invasive

inspection methods.
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