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Abstract

Communicating with other people is a basic ability in our daily life. However, those
who suffering from vocal cord atrophy have trouble communicating with others. Thank-
fully, a treatment method called injection laryngoplasty is created to solve this situation,
which being proved effective over the years and widely applied to many vocal cord dis-
orders. In most cases, doctors inject hyaluronic acid (HA) into patients’ vocal cord to
improve the glottal gaps and help vocal cord close properly. Previously, doctors have
to judge the patients’ voice to check the recovery and determine whether to complement
HA. Recently, to observe how HA remains and works at, it is feasible to analyze on ultra-
sound image sequences. With the development of computer vision, doctors can employ
computer-assisting method to track degradation of HA and estimate HA volume in human
body. Although CNN-based models have achieved excellent performance in image seg-
mentation tasks, they still can not learn global and long-range information because of the

locality of convolution operation. Besides, most current segmentation models only focus
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on spatial features, ignoring temporal features in segmentation task. However, temporal

features are also important for doctors to inference HA position. Therefore, we believe

temporal information is also critical for the models to predict HA position correctly. In

this study, we proposed AFTNet(Attention Feature Temporal Network), which contains

attention-based feature extractor and temporal module. With the benefit of attention-based

feature extractor and temporal module, our model can not only better learn global and long-

range dependencies, but temporal features of the target videos. We apply this model to

our proposed Patient Throat Dataset, which not only assists doctors in difficult-to-diagnose

calcified and noise cases, but outperforms both CNN-based and Transformer-based mod-

els.

Keywords: Ultrasound Image Segmentation, Transformer, Convolution Neural Net-

work, Recurrent Neural Network, Injection Laryngoplasty
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Chapter 1 Introduction

-

Figure 1.1: Ultrasound imaging process.

In current society, there are more and more industries that use voice as the main tool,
and the dependence on voice is also increasing, such as teachers, salesmen and singers.
Voice plays an critical role in daily communication, professional performance, and even
artistic performance and has become an indispensable part of daily life. It is worth men-
tioning that the onset age of vocal cord atrophy, which is due to the overuse of vocal cord,
tending to be younger. Vocal cord atrophy is the thinning of one or both vocal muscles.
Since one vocal cord cannot meet another one, patients need to take extreme effort to
force vocal cords to close well during voicing. Patients with vocal cord antrophy may
have a hoarse, husky, or weak voice due to disrupted or obstructed vocal cord vibrations,
resulting in changes in voice quality. Damaged vocal cords can lead to a sore or uncom-
fortable feeling in the throat. Speaking or exerting force to produce sound may further

irritate the damaged vocal cords. The more hoarse the patient’s voice becomes, the more
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they tend to exert force to produce sound. Exerting more force to produce sound can lead
to throat pain and incomplete vocal cord closure. This process would turn into a vicious
circle, making the condition even worse and causing problems in daily life. Thankfully,
a treatment called injection augmentation has been developed into effective practice over
the years and be widely applied to many vocal cord disorders. In most cases, in order
to treat vocal cord atrophy or vocal cord paralysis, the vocal cord would be injected with
Hyaluronic Acid (HA) to improve the glottal gaps and help vocal cord close properly. The
function of HA is to serve as a volume filler, enabling the vocal cords to close properly.
Doctors often judge if there is a need of complement HA by patients’ voice. There was
not effective and efficient method to estimate volume and track the degradation of HA.
Recently, to observe how HA remains and works at vocal cord, doctors employ ultra-
sound image sequences due to its convenience and rapidity. Although we could examine
the change of HA in the throat with ultrasound image sequences, it is still not possible
to directly estimate the volume through ultrasound imaging. The resolution of ultrasound
images is low and the technical threshold of manipulators influence a lot, it is challenging

to interpret HA volume in ultrasound images correctly.

In this task, we calculate the HA volume of ultrasonic image sequences, which can
be used to track and estimate the trend of changes in the HA volume and help doctor make
clinical judgements. Figure 1.1 illustrate the process of ultrasound imaging. The patients
will undergo ultrasound imaging at two, eight and twenty-four weeks after the injection of
HA and we can estimate the HA volume through their ultrasound images. The estimated
HA volume can help the doctor judge the patients recovery and determine whether to
complement HA into patients’ throat. Figure 1.2 illustrate the ultrasound throat image

sequences at two, eight and twenty-four weeks after the injection of HA. As time goes
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by, the volume of HA will become smaller, and it will become difficult to segment HA

volume.

Benefiting from advances in the field of computer vision, people can use these tools
to perform medical image analysis. Among them, image segmentation plays an impor-
tant role in medical image analysis. Image segmentation technology could help doctors
not only segment target cells, but segment objects injected into the patients body. Con-
volutional neural networks (CNNs) has dominated in image segmentation domain for a
long time. Starting from FCN [13], which segments images by classifying every pixels to
corresponding labels. Then, U-shape architecture [6, 14, 15] made a significant progress
in medical image segmentation, which contains an encoder to perform down-sampling, a
decoder to perform up-sampling and skip connection to extract multi-scale feature dur-
ing down-sampling steps. However, CNN-based models can not learn global and long-
range dependencies because of the locality of convolution operation. Hence, with the
success in natural language processing (NLP), transformer [¢] can also be applied in com-
puter vision field, which could learn global and long-range information. Nevertheless, the
above-mentioned models make a prediction just with single image, the prediction lack of
temporal information. Therefore, we proposed a model with attention-based feature ex-
tractor and temporal module, which can not only learn global and long-range information,
but learn temporal information like the doctor who infers HA area in the current frame
and through the image sequences. With temporal module, we can better segment HA area
even if the edge of HA is not clear. The proposed AFTNet (Attention Feature Temporal
Network) achieves strong performance on our proposed Patient Throat Dataset. It not only
outperforms the CNN-based models and transformer-based models, but not cost too much

computation resources.
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(a) 2 weeks (b) 8 weeks (c) 24 weeks

Figure 1.2: Patient ultrasound throat image sequences at different times after the injection
of HA. The 1st row shows ultrasound images in different time while the 2nd row shows the
HA area segmented by doctor. The main difference from other ultrasound image dataset
is that the throat is surrounded by other tissues and the HA area to be segmented is not
obvious.
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Chapter 2 Related Work

In this chapter, we first introduce CNN-based models in image segmentation tasks
and the drawbacks of convolution operations. What follows is self attention/Transformer
to complement CNNs. With aids of self attention and Transformer, it is effective to re-
duce the impact of convolution operation in CNN-based models. However, it still has
some drawback to learn long range and global information. Transformer is employed in
computer vision due to its success in Natural Language Processing (NLP). With self atten-
tion mechanism utilized in Transformer, the model can learn long range dependencies of
the images. In the end is the brief introduction of Transformer based backbone in computer

vision.

2.1 CNN-based Models

Convolutional neural networks (CNNs) have been widely used in image segmenta-
tion tasks and have achieved significant success [0, 10, 16]. U-Net [15] is a popular and
widely used architecture for medical image segmentation. It consists of an encoder path
and a decoder path. The encoder path performs downsampling operations to capture con-
text and extract high-level features. The decoder path performs upsampling operations to

recover spatial resolution and combine the low-level and high-level features for segmen-
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tation. U-Net has skip connections that allow the decoder to access relevant features from
the encoder, aiding in precise localization, the architecture of U-Net is presented in 2.1.
DeepLab [5] is a state-of-the-art convolutional model for image segmentation. It incorpo-
rates atrous (dilated) convolutions to capture multi-scale contextual information without
significantly increasing the computational cost. DeepLab uses a combination of dilated
convolutions, pooling, and skip connections to improve segmentation performance. It
also includes a final up-sampling step to obtain dense pixel-level predictions. However,
there are some limitation of using CNN-based models in image segmentation. It has dif-
ficulty in capturing fine details: CNNs, especially those with down-sampling operations
like pooling or strides, can lead to a loss of fine-grained details during the encoding pro-
cess. This down-sampling can make it challenging for CNNs to accurately capture small
objects or intricate boundaries in segmentation tasks. Also, CNNs process images in a
local and sequential manner, with limited access to global spatial context. While skip
connections and encoder-decoder architectures partially address this issue, they may not

capture long-range dependencies as effectively as other architectures like transformers.

2.2 Self-attention/Transformer to complement CNNs

Self-attention is a mechanism that can complement convolutional neural networks
(CNNs). By incorporating self-attention mechanisms, models can capture relationships
between distant spatial locations and leverage global context, allowing them to capture
long-range dependencies [ !, 4]. Recently, Transformers, which is composed of encoder
and decoder, originally introduced for natural language processing, have also been em-
ployed to computer vision tasks and have achieved remarkable results [3, 12]. The trans-

former architecture relies heavily on self-attention mechanisms. Instead of using convolu-
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Figure 2.1: The architecture of U-Net [15].

tional operation, transformers utilize self-attention layers to capture relationships between

spatial locations. By attending to all positions within an input sequence, transformers

can effectively model long-range dependencies and capture global context. Transformer-

based models have shown great potential in tasks such as image classification, object de-

tection, and image segmentation. By incorporating self-attention mechanisms, these mod-

els can capture relationships between distant spatial locations and leverage global context,

allowing them to handle tasks that require capturing long-range dependencies or model-

ing fine-grained details. The combination of CNNs and self-attention provides a powerful

framework for addressing various computer vision challenges.
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2.3 Transformer based vision backbones

Transformer-based vision backbones have gained significant attention in recent years
for their effectiveness in various computer vision tasks. Unlike traditional convolutional
neural networks (CNNs) [9, 11, 18], which rely on convolutions for feature extraction,
transformer-based models utilize self-attention mechanisms to capture global dependen-
cies and learn spatial relationships. Vision Transformer (ViT) [¢] was one of the first transformer-
based models to be introduced for vision tasks. It applies the transformer architecture
to image classification by dividing the input image into patches and transforming them
into sequence-like data. The model leverages self-attention to capture the relationships
between patches and learns representations for classification tasks. DeiT [19] incorpo-
rates distillation techniques and data augmentations to improve generalization and achieve
state-of-the-art performance in image classification tasks. Swin Transformer [!2] intro-

duces a hierarchical design that captures dependencies across different scales, as illustrated
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in 2.2, allowing it to model fine-grained details and global context effectively. The Swin
Transformer has demonstrated strong performance in image classification, object detec-
tion, and semantic segmentation tasks. Its hierarchical design, shifted windows, and atten-
tion mechanisms contribute to its ability to capture fine-grained details and global context
efficiently. Swin Transformer represents an exciting advancement in vision transformers

and offers a promising alternative to traditional convolutional neural networks.
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Chapter 3 Method
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Figure 3.1: System overview.
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3.1 System Overview

An overview of proposed system is presented in Figure 3.1, which contains five main

procedures: Data Preprocessing, AFTNet, Data postprocessing, calculating HA volume

and HA volume analysis.

Given an ultrasonic video, it first split the video into image frames, which then input
to AFTNet. The model not only extract spatial features, but temporal features of the image
sequences. With attention-based spatial feature extractor, the model will learn long range
dependencies and global context, and temporal let the prediction more reliable. Afterward,

by applying postprocessing method, the noise of prediction map will be erased and the
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unexpected results such as predicted area jump too far and suddenly appear or disappear
will also be removed. Finally, we can estimate HA volume of the prediction map and track

the degradation of HA for doctors to take corresponding treatments.

3.2 Data Preprocessing

Because ultrasound data are video format, we convert input data into image frames at
first. For each frame, we concatenate its previous 0 frames and last § frames like inference
method of doctors to better extract temporal features. The schematic diagram is illustrated
in Figure 3.2. Afterward, we feed processed frames to the proposed model with basic data
augmentation, such as rotation and changing contrast in order to enrich the diversity of

training data.

Figure 3.2: Concatenate first 0 frames and last ¢ frames with the current frame.

3.3 Model

Inspired by [7, 21] model architecture, we proposed a network for ultrasound image
sequence segmentation, which feature extractor and temporal module are based on Swin-

UNet [2] and C-LSTM [17] respectively, called AFTNet (Attention Feature Temporal
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Network). AFTNet consists of feature extractor, temporal module and refining module,
architecture is illustrated in Figure 3.3. Feature extractor is for spatial feature extraction,
whose attention-based feature extractor block is composed of swin transformer block [ 1 2]
can learn global and long-range semantic information to better deal with unclear edge or
noise conditions of the ultrasound images. In order to segment HA area like doctor who
infer from current frame through multiple frames, we employ temporal module to make
our network extract temporal features from image frames, which is helpful to segment HA
area within multiple frames. Refining module can further refine the prediction mask from

temporal module to get a refined result.
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3.3.1 Feature Extractor

Our feature extractor architecture is based on Swin-Unet [2]. It consists encoder,
bottleneck, decoder and skip connections. Different from the standard multi-head self

attention (MSA) in conventional Transformer block, we construct attention-based fea-

12 doi:10.6342/NTU202302561



ture extractor block based on Swin Transformer block [12], which uses shifted window
based multi-head self attention to learn representation instead of global self attention. The
window-based multi-head self attention and the shifted window-based multi-head self at-
tention are applied in the two successive blocks, a MLP with GELU activation function
are deposed after each attention block. A layer normalization layer is employed before
each window-based MSA and MLP, and residual connections are used after each module
as illustrated in Figure 3.4. In order to perform down-sampling, patch merging layer is
applied to reduce the feature map to half of the original resolution. Since Transformer is
too deep to be converged [20], we construct bottleneck with two successive Swin Trans-
former blocks to learn the deep feature representation. In decoder, Swin Transformer
blocks are used to learn representation and patch expanding layers are used to implement
up-sampling. In patch expanding layers, the feature map is reshaped into a higher reso-
lution with 2x up-sampling and the feature dimension is reduced to half of the original
feature map. Besides, proposed in UNet[ 5], skip connections are also applied here to
combine multi-scale features from encoder and decoder, which enable the direct concate-
nate features of encoder and the corresponding decoder. Skip connection can let the model
maintain features of different spatial resolution, which is beneficial to preserving different

spatial resolution information and handling different size of objects segmentation.

3.3.2 Temporal Module

Based on [ 1 7], we implement our temporal module inspired by doctor who interprets
HA area of the current ultrasound images through the ultrasound image sequences. First of
all, instead of feeding feature map of the original ultrasound image resolution, the feature

map being fed into temporal module are one-eighth of the original ultrasound images.
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Figure 3.4: Two successive Swin Transformer Blocks [12].

Then, feature maps are fed into Bi-directional C-LSTM uses previous information and
future information during prediction. The output of each time point ¢ of the C-LSTM is
a pixel-wise feature map with temporal information. Then, we concatenate the current
frame with forward and backward C-LSTMs followed by convolution layers and ReL.Us,

obtaining the final temporal prediction map.

3.3.3 Refining Module

In refining module, we refine the final prediction map through compressing the pre-
diction map from temporal module. We input the prediction map to 1x1 convolution

followed by ReLU.

3.4 Data Postprocessing

We perform three main step to make our prediction more reliable. First of all, we
set a threshold to check if the predicted mask area is larger than threshold and choose the
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largest connected component. Because HA tends to get together, this can help us remove
very small predicted regions. Then, we calculate local mean and global mean, respectively.
Local mean is the average coordinates of the mask within current few frames, while global
mean is the average coordinates of the mask in the whole ultrasound image frames. With
local mean and global mean, we can remove predicted mask which move too far from other
frames, making the prediction more reasonable. Finally, by calculating sliding window

distance, we can avoid mask appear or disappear suddenly.

3.5 HA Volume Analysis

In this step, we get the predicted volume of the input ultrasound images sequences af-
ter the injection of HA in two week, eight weeks and twenty-four weeks, respectively. We
estimate HA volume through binary prediction masks of the ultrasound image sequences.
We calculate HA volume based on mask areas of each image frame, which are formulated

as follows:

V= (5 Al + 300, Al x h)
2n

3.1)

With the benefit of the predicted volume, doctors can better track how much HA
remains in patients’ throat and take corresponding treatments if needed. The experiment

result of HA volume estimation are presented in Section 4.4.
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Chapter 4 Experiments

We conduct experiments on our proposed Patient Throat Dataset. The dataset is col-
lected by the doctor, and consists of ultrasound images of patients’ throat after two weeks,
eight weeks and twenty-four weeks respectively. In the following, we first introduce our
proposed Patient Throat Dataset, which can be divided into four different categories. Then,
experiments are conducted on Patient Throat Dataset, comparing our model with the pre-
vious excellent segmentation models. Afterward, we compare our proposed model with
other excellent segmentation models with different cases of Patient Throat Dataset. The

ablation study of the important modules of our proposed model is presented in the end.

4.1 Datasets

4.1.1 Patient Throat Dataset

We proposed Patient Throat Dataset, which consists of ultrasonic image sequences
of patients’ throats after two weeks, eight weeks and twenty-four weeks of the injection
of HA respectively. There are 82 videos in our dataset, and being annotated by the doctor
with CVAT. The ground truth volumes are computed through the ground truth annotation

of the dataset. The biggest difference from other ultrasound image dataset is that the HA
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in our dataset are blocked by other tissues and the edges of HA are not obvious. Besides,
the dataset can be divided into four cases : normal cases, calcified cases, noisy cases
and the final cases are calcified, contour reappear in the end of the video. The ultrasonic
images and ground truth of different cases are presented in Figure 4.1. The following is

an introduction to the four different types of the proposed Patient Throat Dataset :

Normal Cases The type is composed of clear ultrasound image sequences, and the edge

of HA are obvious.

Calcified Cases Patients’ throats are calcified so that their HA in ultrasound images tend
to be white and the edge between tissue and HA become unclear. Therefore, this

type of ultrasound images are challenging to segment correctly.

Noisy Cases During the ultrasound imaging process, there may be air between the probe
and the skin. There are trivial things, such as tissue inflammation and blood clots in
patients’ throats. It will make the videos look noisy. Hence, this type of ultrasound

images are the most challenging cases of our proposed dataset.

Calcified, contour reappear in the end Inthe beginning of the type of ultrasound image
sequences are normal while in the end of the video, there are calcified condition in
patients’ throat tissue. The type of cases are a little harder than that of in normal

casces.

4.1.2 Image Phantom Dataset

This dataset is proposed to simulate the ultrasound images of throat, consisting of two

types : normal and calcified types, as illustrated in Figure 4.2. The main function of the
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dataset is to help calculate the HA volume because the practical HA volume injected into
the patients may be affected by many factors such as moisture and the inflammation of the
throat tissue of the patients. This condition may cause a discrepancy between the injected
HA into the throat and the actual situation. Besides, with this simulation approach, it’s
possible to increase the quantity of training data. The method used to create this dataset
is that the doctor can make a jelly of a specific volume to simulate various situation of
the patients’ throats, such as normal and calcified types. As a result, the dataset could be
divided into two types : normal and calcified. The detail description of the two types are

illustrated below :

Normal This type is proposed to simulate the normal condition of patient throat. It con-
sists of 1(mL), 2(mL) and 5(mL) jelly volume. The edges between the HA and the

other tissues are obvious.

Calcified This type is proposed to simulate the calcified condition of patient throat. It
consists of 1(mL), 2(mL) and 5(mL) jelly volume. The edges of this type cases
are not obvious. Therefore, the cases of this type are more difficult that the normal

oncs.

4.2 Implementation Detail

Experiments were implemented on Python 3.8 and Pytorch 1.11. For all training
cases, data augmentation such as random jitter and random flipping are used to increase
training data diversity. We input eight ultrasound image frames to the model once at a time.
Each of image frame and patch size are set as 352x416 and 4 respectively. The model

was trained with AdamW optimizer. The learning rate is set as 0.0001 and is controlled
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by multi-step learning rate (MultiStepLR) scheduler. We train and inference on a single

NVIDIA RTX A6000 GPU.

(a) Ultrasound Image (b) Mask (¢) Visualization

Figure 4.1: Four different cases of our proposed Patient Throat Dataset. From top to
bottom is normal, calcified, noisy and calcified, contour reappear in the end.
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(a) Normal Image (b) Calcified Image

Figure 4.2: Image Phantom Dataset. (a) is the example images of normal type of Image
Phantom Dataset. The the edge of the target object is clear. (b) is the example images of
calcified type of Image Phantom Dataset. The edge of the target area in calcified cases are
not obvious. Therefore, temporal information is critical for this condition.

4.3 Comparison with Other Segmentation Models

Table 4.1 presents comparison to other segmentation models, including both Transformer-
based and CNN-based models. Different from other 2D segmentation models, our pro-
posed model performs much better because it not only learn spatial information of the
image sequences, but learn temporal information with temporal module. First of all, as
Figure 4.5 presents, the edge of target HA is clear and the area is large. Although the case
is easy to segment, the proposed model can segment more precisely than other models.
Then, Figure 4.8 shows the result on calcified case of Patient Throat Dataset, our model
can precisely segment HA even if the edge of HA is not obvious. Because HA would
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degrade over time, it will become difficult to track the residual state of HA in the human
body. Fortunately, our model can segment HA very well even if the remaining volume
is small, the result reveal in Figure 4.7. The reason of our model can segment HA more
precisely is that the temporal module predict HA area like doctors who judge it through
multiple ultrasonic image frames. The predicted area of Swin-UNet is too small while
our model segment more precisely. Finally, the most challenging cases of our proposed
Patient Throat Dataset, are noisy cases, our model can still segment HA accurately, see
Figure 4.6. Because there are trivial things in ultrasound image sequences of noisy cases,
it is challenging for every models to segment HA. With global feature extractor and tem-

poral information, our model can outperform other models.

Table 4.2 reveals comparison with other segmentation models in the different cases
of our proposed dataset. We can observe that our proposed model perform better in all of

cases in Patient Throat Dataset.

Table 4.1: Results on Patient Throat Dataset.

Model IoU(%) Dice(%) | Parameters
V-Net [14] 48.51 63.61 132.05M
U-Net [15] 56.07 70.16 24.44M

DeepLabV3 [5] | 56.96 70.33 22.43M
Swin-Unet [2] 55.64 69.05 27.16M
TCSNet [22] 58.39 72.04 24.45M
Ours 62.66 75.98 28.61M

Table 4.2: Results of different cases on Patient Throat Dataset.

Calcified, contour

reappear in the end
IoU (%) Dice (%) | IoU (%) Dice (%) | IoU (%) Dice (%) | IoU (%) Dice (%)

Normal Calcified Noisy

V-Net 596.37 71.49 46.93 61.82 29.32 44.30 53.51 68.93
U-Net 58.35 71.83 57.01 72.24 43.07 58.76 65.94 79.05
DeepLabV3 | 60.27 73.76 95.65 68.46 39.20 54.86 67.15 79.95
Swin-Unet 27.67 70.80 54.23 67.95 37.87 52.03 61.14 75.76
TCSNet 64.78 78.16 96.57 70.76 42.75 58.36 63.22 76.68

Ours 66.49 79.29 61.98 71.52 48.57 63.69 68.86 81.05
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4.4 HA Volume Estimation

In Table 4.3 shows the estimated volume of our proposed model on Patient Throat

Dataset at different period of the injection of HA. The error between the estimated vol-

ume and real volume is within 2%. Figure 4.3 presents the degradation of HA volume at

different period after the injection of HA. As the figure illustrated, the predicted volumes

of our proposed model are very close to the ground truth volumes.

Table 4.4 presents the estimated volume of our proposed model on Image Phantom

Dataset with different type. From the results, it can be seen that the predicted volumes

are very close to the actual volumes. However, as illustrated in Figure 4.4, case 6 of the

calcified type, the right-hand portion was not predicted. Therefore, the error rate between

the estimated volume and actual volume is a little higher.

Table 4.3: Estimated volume of HA on Patient Throat Dataset.

Time Estimated Volume(mL) Actual Volume(mL) | Error Rate(%)
2 weeks 1.4197 1.3801 2.87
8 weeks 0.7004 0.7131 1.79
24 weeks 0.4713 0.4674 0.84

1009

Residual Volume Ratio(%)

20 1

90 A

80

70 A

60

50 1

40 -

30 1

—— Ground Truth
‘.' —— Prediction

O.VO OjS 110 115 2.'0 2.'5 3.|0 3.|5 4"0 4.'5 S.IO 5.I5 610
Time (month)

Figure 4.3: The degradation of HA volume trends in patient throat over time on Patient

Throat Dataset.
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Table 4.4: Estimated volume of HA on Image Phantom Dataset.

Type Case Number | Estimated Volume(mL) Actual Volume(mL) | Error Rate(%)
Normal 1 0.969 1 B.1
Normal 2 0.940 1 6
Normal 3 1.956 2 2.2
Normal 4 1.937 2 33
Normal 5 5.005 5 0.1
Normal 6 5.224 5 4.4
Calcified 1 0.987 1 1.3
Calcified 2 1.072 1 7.2
Calcified 3 0.957 1 4.3
Calcified 4 2.011 2 0.5
Calcified 5 2.062 2 3.1
Calcified 6 2.154 2 7.5
Calcified 7 5.308 5 6.1
Calcified 8 4.922 5 1.5
Calcified 9 5.213 5 4.2

(a) Original image (b) Predict result

Figure 4.4: Image Phantom Dataset.

4.5 Ablation Study

In the ablation analysis, we will explore how the important components of our models
influence performance. Here we conduct two experiments to verify that our temporal

module and postprocessing can improve our performance.
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4.5.1 Temporal Module

Table 4.5 shows that with temporal module, our model can learn the detailed temporal
prediction. The reason why temporal module improves performance is that our model can
learn how to segment HA precisely through the past frames and the future frames like
doctors interpret clinically. Because, sometimes, the doctor will interpret the ultrasound
image from the back to the front frames. With such a module, we can segment ultrasound

image sequences even if the edge of HA is not obvious or the HA area is tiny.

Table 4.5: The impact of temporal module.

Model IoU(%) Dice(%)
w/o Temporal Module | 60.64 72.05
w/ Temporal Module | 62.66 75.98

4.5.2 Postprocessing

Table 4.6 shows that with our postprocessing, the performance become better. The
reason why postprocessing can improve performance is that it can avoid some cases mis-
judging HA volume by setting a threshold to remove misprediction parts. Also, by calcu-

lating local mean and global mean of masks, it can avoid HA disappear or appear suddenly.

Table 4.6: The impact of postprocessing.

Model IoU(%) Dice(%)
w/o Postprocess | 61.76 74.69
w/ Postprocess | 62.66 75.98
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Figure 4.5: First to sixth columns in order are : original images, ground truth, UNet predic-
tion, DeepLabV3 prediction, Swin-UNet prediction and our prediction. The experiment
inference on normal cases of Patient Throat Dataset. In this case, although the area of HA
is clear, our proposed model segment the HA more precisely than other models.
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Figure 4.6: First to sixth columns in order are : original images, ground truth, UNet predic-
tion, DeepLabV3 prediction, Swin-UNet prediction and our prediction. The experiment
inference on noisy cases of Patient Throat Dataset.
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Figure 4.7: First to sixth columns in order are : original images, ground truth, UNet predic-
tion, DeepLabV3 prediction, Swin-UNet prediction and our prediction. The experiment
inference on Normal cases of Patient Throat Dataset. The target is tiny.
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Figure 4.8: First to sixth columns in order are : original images, ground truth, UNet predic-
tion, DeepLabV3 prediction, Swin-UNet prediction and our prediction. The experiment
inference on Calcified cases of Patient Throat Dataset.
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Chapter S Conclusion

In this paper, we proposed a model with attention-based feature extractor and tem-
poral module for HA ultrasound image sequences segmentation. To leverage the power
of Transformer, we take Swin Transformer block in our attention-based feature extractor
block for feature representation and long-range information learning. Besides, we utilize
temporal module to better segment HA area like doctor who infer through ultrasound im-
age sequences. With such a model, doctors can confirm the residual HA volume in the
patients’ throat and see if it is necessary to supplement HA without requiring invasive

inspection methods.
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