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Abstract

Persistent rehabilitation can help post-operation patients maintain functionality of

shoulder motion. It prevents body from more severe symptoms such as lymphedema

and keeps well capability of doing activities of daily life. However, lots of patients

always ignore the importance of persistent rehabilitation due to the deficiency of self-

awareness about body status. It makes patients do not spontaneously continue reha-

bilitation for at least one year. Therefore, it is necessary to provide a mechanism that

makes patients gain much incentive to motivate them to do rehabilitation more fre-

quently.

Based on the signals from accelerometer and bending sensor, this thesis adopts the

supervised learning technique to implement the shoulder functionality evaluation sys-

tem with linear regression model. The system identifies the most stable shoulder range

of motion according to the six shoulder evaluation exercises performed by patients. It

also shows the assessment for capability of activities of daily life in order to instantly

boost self-awareness about shoulder health status. Not only the feasibility study shows

that the mean square error in prediction angle of shoulder range of motion is below

12◦, but also the system obtains the positive affirmation from real-world patients and

physical therapist after they try out the system.

Keywords: Accelerometer, Bending Senser, Posture Recognition, Linear Regres-

sion
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Chapter 1

Introduction

1.1 Motivation

It is very important to do rehabilitation in order to reduce the incidence of complica-

tions after operation. In general, breast cancer patients probably suffer from some post-

operative complications such as change in appearance, decrease in muscle strength,

and deterioration of shoulder range of motion. In order to avoid these complications,

patients are educated to do rehabilitation exercises periodically after surgery during at

least one year. Persistent rehabilitation can help patients keep normal circulation of

lymph and maintain functionality of shoulder motion so that they can prevent body

from more severe symptoms such as Lymphedema.

However, lots of patients always ignore the importance of persistent rehabilitation

and do not spontaneously continue it for at least one year. The reasons why they are

not motivated to persist on rehabilitation is that rehabilitation is tedious and uncom-
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 2 CHAPTER 1. INTRODUCTION

fortable, and that the benefit from rehabilitation is not instantly and obviously reflected

on the advancement of patients’ body status. As a result, when patients notice that

they can scarcely doing activity of daily life as usual, they are always infected with

severe lymphedema. It will have two main harmful influences on both physical and

psychological aspects. First of all, it causes shoulder range of motion to deteriorate.

The poor functionality of shoulder motion actually makes people not perform activity

of daily life well and have low quality of life. Thus, they need more time and efforts to

recover their health. Secondly, it makes patients’ appearances unattractive so that they

are not interested in public activities due to less confidence in their appearances. This

negative impact on their mental health will make patients gradually lose their social

ability.

Consequently, it is worth designing and implementing the mechanism that makes

post-operation survivors more aware of their body status and gain incentive to encour-

age themselves doing rehabilitation more frequently. Moreover, it can track patients’

rehabilitation progress and show the records to patientsDrelatives, friends, or physical

therapists so as to give patients instant advises and encouragement.

1.2 Background

In order to design the mechanism mentioned above, we have to get involved in some

preliminaries. In this section, we will describe the background about how to design and

implement the mechanism in terms of clinical medicine preliminaries and wearable

computer technology.
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1.2.1 Clinical Medicine Preliminaries

The robust functionality of shoulder motion is necessary for people to perform ac-

tivities of daily life well. In clinical research, the achievement in [20] presents that

the capability of shoulder motion is highly relative to the stable ability of performing

activities of daily life. Another achievement in [11] verifies that shoulder motion is

massively involved in the private activities, including combing hair, wearing under-

wear, going to toilet, and so on. In other words, the poor functionality of shoulder

motion makes people not perform activities of daily life well.

Generally speaking, there is a typical metric for evaluation in shoulder functional-

ity, called range of motion (ROM). Matsen just uses this metric to define the required

shoulder range of motion for each primary activity of daily life in [11], which is shown

in Table 1.1. In practice, patients are asked to finish each exercise of shoulder evalua-

tion as possible as they can and keep the last posture for seconds. Physical therapists

will observe patients for the whole time and regard the most stable posture as the in-

dex of current shoulder functionality. The evaluation exercises are six exercises for

evaluation of shoulder range of motion such as flexion, abduction, extension, internal

rotation, external rotation, and horizontal abduction. The detailed definition of each

exercise is defined in Appendix A and diagrams of each exercise are described in Ap-

pendix B.

To sum up, if we want to implement a mechanism to help patients be much aware

of their healthy status, it is necessary to accurately recognize what is the most stable

posture performed by patients when they do a specific evaluation exercise.
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Table 1.1: Relation between ADLs and shoulder ROM
ADLs Exercise Required ROM
Comb hair Abduction 0◦ ∼ 100◦

External rotation 0◦ ∼ 90◦

Wear underwear Extension 38◦ ∼ 56◦

Tielet horizontal abduction 0◦ ∼ 69◦

Internal rotation 0◦ ∼ 90◦

Take something high flexion 0◦ ∼ 148◦

Eat and drink flexion 36◦ ∼ 52◦

1.2.2 Wearable Computing Technology

The recent achievements of WearIT@work project proposes the feasibility of wearable

application in the field of healthcare, industry production, maintenance, and emergency

response [16]. The most obvious characteristic is highly portable; thus, its significant

result demonstrates that wearable computing solutions are successful not only in plau-

sible scenarios but also in real-world application. It inspires us to design the mecha-

nism for tracking shoulder motion functionality using wearable sensor.

Also, according to the clinical observation, we discover some characteristics when

patients practice exercises of shoulder evaluation. One is that patients do exercises

slowly, and the other is that each evaluation exercise can be simplified as the motions

along sagittal plane, coronal plane, or transverse plane 1.1. When patients are deployed

an accelerometer on the external side of lower arm to do exercises, it can capture the

motion change along sagittal plane and coronal plane by the effect of gravity. Be-

sides, a bending sensor can capture the motion along transverse plane when patients

are equipped with bending sensor between an upper arm and a shoulder joint by sensor

curvature.
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Figure 1.1: Body Planes

Consequently, when patients do the exercise, postures performed by them can be

recognized by the accelerometer and the bending sensor under the some deployment

constraints.

1.3 Objectives

According to what mentioned in previous sections, the objectives of this thesis is to

implement a wearable computing system with a accelerometer and a bending sensor.

It will evaluate functionality of shoulder in terms of range of motion, and then based

on the information in Table 1.1 to analyze these ranges of motion and assess the capa-

bility of primary activities of daily life. The system overview is showed in Figure 1.2.
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Figure 1.2: System overview

Furthermore, we not only verify the feasibility of the system by evaluating the per-

formance with physical therapists but also survey usersDacceptance by user studies.

1.4 Thesis Structure

The remainder of this thesis is organized as follow. In Chapter 2, we explore other

research fields related to our thesis. In Chapter 3, we explain problem definition, pro-

posed solution, and what the system is. In Chapter 4, we describe how to implement

this system including hardware and software. In Chapter 5, we evaluation our system

performance and survey the comments from domain expert and real-world patients.

Finally, Chapter 6 is the conclusion and future work.



 

Chapter 2

Related Work

In 2007, Pan [17] adopts activity recognition technique to identify patients’ rehabilita-

tion exercises. This information can help doctors monitor which exercises performed

by patients. However, it is difficult to recognize the quality and quantity of rehabilita-

tion exercises. This information deficiency makes the evaluation of shoulder function-

ality unreachable. Instead, the thesis provides the mechanism to detect shoulder range

of motion for evaluation in shoulder functionality.

According to the proposed system outline in previous chapter, there are three main

components to support whole system, which are accelerometer, bending sensor, and

posture recognition technique. In this chapter, I explore the state-of-the-art about

wearable computing system in views of these three relevant sections. At beginning,

I will introduce several wearable computing systems and ideas, which make use of

accelerometer to help people solve real problems. In addition, I will present some cre-

ative projects, which implement interesting system with bending sensor to improve our

7
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quality of life. Finally, I will provide some research achievement about the feasibility

of posture recognition based on wearable computing system.

2.1 Accelerometer Application

Accelerometer is a prevalent and popular tool in wearable computing system as a result

of its reduced size and light weight. Undoubtedly, it is widely applied to wearable

computing system in order to detect or recognize human activity and body movement

for various purposes, which include physical exercise recognition, gesture recognition,

and activity of daily life(ADL) recognition. I will describe the recent works one after

another in the following sections.

2.1.1 Physical Activity Recognition

The advance of physical activity recognition might improve the feasibility of intelli-

gent health assessment that help people become aware of whether their energy con-

sumption is balanced so as to make human stay physically fit and health. In 2007,

Chang et al. [8] were well aware that no mechanism is used for tracking of free weight

exercise. They incorporated two three-axis accelerometers to automatically recognize

which type of exercise people do and how many repetitions the specific exercise per-

formed. One of the accelerometer was embedded into workout glove to track hand

motion and another one was equipped on waist to catch the body posture information.

In their designed experiment, they define nine free weight exercises as target classes

and use Naı̈ve Bayes and Hidden Markov Model(HMM) as classifiers to recognize
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what people perform; moreover, they develop peak detection algorithm based on ac-

celerometer signal strength and apply Viterbi algorithm with a Hidden Markov Model

to count repetitions of exercise. The result shows the recognition accuracy is almost

90% and roughly 5% miscount rate for counting repetitions.

Similarly, Tapia et al. [19] deployed five three-axis wireless accelerometers and

one heart rate monitor on certain human body parts, which are upper arm, lower arm,

waist, thigh, and leg, to track human physical exercises. However, their achievement

not only recognize the physical the exercise performed but also detected the intensity

of exercise during a period of time. In their experiment, they regarded thirty physical

gymnasium activities as target classes and use Naı̈ve Bayes and Decision Tree as clas-

sifiers to separately process subject-dependent and subject-independent analyses. The

result shows that recognition accuracy performance of 94.6% for subject-dependent

and 56.3% for subject-independent. It indicates that body characteristics has high di-

versity between individual subjects so finding a dominant approach to perform well in

cross subjects scenario is hard for wearable computing system.

2.1.2 Hand Gesture Recognition

Contemporary innovative human-computer interface design and implementation is based

on the development of gesture recognition. Obviously, the accelerometer is the proper

solution on wearable computing system to capture finger movement and wrist ori-

entation. In 2007, Chen [3] used accelerometers to realize multi-degree-of-freedom

interface based on surface electromyography (sEMG) signals system. Although EMG-

based interface systems performed well on recognition of moving fingers on a small
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scale and clenching a fist by analyzing muscle activities, they have difficulties ex-

tracting gesture withdrawal and hand rotation information from sEMG. Thus, they

deployed accelerometers on one wrist and one back of hand to capture what EMG-

based systems can hardly fetch. The experiment collected twenty four kinds of hand

gestures and the result showed that a accelerometer improved the recognition accuracy

of 5-10% compared with the experiment used EMG sensor solely.

2.1.3 ADL Recognition

ADL recognition technique is indispensable for constructing ubiquitous context-aware

computer system applications that are the components in intelligent space. In 2004,

Bao et al. [1] explored this problem by using five biaxial wireless accelerometers

placed on different body parts, which include arm, wrist, waist, thigh and leg. They

adopted several machine learning approaches to recognize twenty common ADLs such

as reading, watching TV, brushing teeth, and so on. The result demonstrated the best

performance recognizing these defined activities with accuracy of 84%. Moreover, the

result also suggested that suitable places to deploy accelerometers are thighs and the

dominant wrist, which are determinant body position in view of ADL recognition.

In 2007, Jeong et al. [9] prototyped a real-time system with a single small-size

accelerometer on waist in order to monitor activity volume and recognize emergency

situation such as falling during daily life. They adopted simple signal processing tech-

niques instead of machine learning technique to reach their goal. They defined five

activities, walk, run, fall, stand, and lie, and then got the recognition accuracy of above

98% based on their designed experiment.
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2.2 Bending Sensor Application

back problem is attributed to A bad seating posture and there is no means to properly

avoid this harmful habit. Therefore, Dunne et al. [4] employed a garment-integrated

bending sensor to develop the seated spinal posture monitoring system for long-term

computer users in working environment. It can observe users’ seated posture and re-

spond real-time feedbacks on computer screen to make users aware of poor seating

posture.

Furthermore, Simone et al. [18] believed that results from measurement in the

clinic setting do not exactly reflect the hand functionality when people participate so-

cial activities, which affects the quality of exercise prescription for rehabilitation treat-

ment. They designed a wearable sensor glove with bending sensor to evaluate hand

functional capability according to fingers bending capability. Their future vision is

that wearable device can evaluate people’s range of motion in their daily activities.

2.3 Posture Recognition Technology

Posture recognition problem can be solved by two approaches: vision-based approach

and wearable-based approach. There is no dominant technique because of pros and

cons among these two techniques. From the aspect of vision-based approach , although

it provides high recognition performance, it costs high computation power and low

portability [2]; in contrast, wearable-based approach has less computation cost and

high portability, but it may bring lower recognition accuracy. In this section, I will

depict a series of works in wearable-based approach to do posture recognition task.
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Giorgino et al. in [7] use conductive elastomers as strain senors attaching on up-

per limbs and defines seven postures, which are four postures consisting of one exer-

cise movement and three error postures for rehabilitation process. They developed a

tight-fitting garment attached with several conductive elastomers on upper limbs and

evaluate whether it is general enough to recognize postures after the sensor is taken off

and put back on. However, they only calls for one subject to do that experiment. In

order to make it more significant, they call for more people to collect the data set under

the same methodology and deployment. In [6], researchers collect data from multiple

subjects instead of a single subject. They verify that the classification model is general

enough not only for a single subject but multiple subjects after sensor is taken off and

put back on. Each sample in this data set is almostly classified into correct class label.

In addition, C. Mattmann verifies the feasibility of calculating the upper body

posture with elongation sensors integrated into a tight-fitting clothing [14]. First of

all, C. Mattamann utilized an optical motion tracking system to observe the different

elongation pattern in tight-fitting cloth with respect to these four predefined postures,

which are bending forward, bending backward, moving the arms forward, and lift-

ing the shoulder. He found that it is easy to discriminate these patterns by human

eyes. Furthermore, In [15], they deploy strain sensitive fibers to the undershirt and

verify that different postures are recognized by measuring distinguishable elongation

patterns of five postures, which are lifting shoulder, twisting(left/right), bending side-

ward(left/right), bending forward, bending strongly forward, and moving shoulder for-

ward. They observed that it is obvious to extract elongation patterns in tight-fitting

cloth from the data value of strain sensor with respect to different postures. Moreover,
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They request eight participants wearing the garment described in [13] and performing

27 upper body postures in [12]. They invited eight male subjects and each of them

wear this garment and performed 27 predefined upper body postures. They use Naı̈ve

Bayes as a classifier with 5-fold cross validation procedure to evaluate their experi-

ment. The classification rate of 84% was achieved for all-user classification and 65%

for an independent user.
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Chapter 3

Shoulder Functionality Evaluation

System

3.1 System overview

Figure 3.1 shows the architecture and flow chart of the system. It has to detect user

shoulder healthy status in terms of range of motion and functionality of activities of

daily life. The Posture recognition module takes charge of recognizing postures per-

formed by user, and then the Posture analysis module determines the most stable pos-

ture among the postures performed and assess the capability about activities of daily

life. In this section, we will describe hardware deployment, system input and out-

put, and the solution we proposed in the following sections. Moreover, The detailed

descriptions about each components in the system are presented in Chapter 4.

15
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Figure 3.1: System Architecture

3.2 Hardware Deployment

We instrument a three-axis accelerometer onto the outside of lower arm and let the

positive x-axis direction forward to the sky. In addition, we deploy two bending sensors

on the shoulder sling and let users wear the sling. There are two bending sensors in

the trunk front-end and back-end. The diagrams of hardware deployment are shown in

Figure 3.2. Figure 3.2(a) illustrates the appearance of deploying sensors on body, and

Figure 3.2(b) depicts the positive direction for each axis of accelerometer and where

the two bending sensors are deployed.
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(a) Front view (b) Side View

Figure 3.2: Sensor Deployment

3.3 Problem Definition

3.3.1 Input

Users wear an accelerometer and two bending sensors on their upper limbs to do six

evaluation exercises. The order of exercise is flexion, abduction, extension, external

rotation, internal rotation, and horizontal abduction. For each exercise, users have to

follow two steps described as follow. The first step is called calibration mode and the

second one is called operation mode.

1. Hold the starting posture for a period of time.

2. Hold the extreme posture after the starting posture for longer period of time.
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Before describing the input, I have to define some notations.

Definition 3.1 I regard t1 as flexion, t2 as abduction, t3 as extension, t4 as internal

rotation, t5 as external rotation, and t6 as horizontal abduction.

Then, I denote Cti is a set of sensor data collected at first step and Eti is a set of sensor

data collected at second step when users do exercise ti. The inputs are described as

follow:

Input1 = (Ct1 , Ct2 , Ct3 , Ct4 , Ct5 , Ct6)

Input2 = (Et1 , Et2 , Et3 , Et4 , Et5 , Et6)

3.3.2 Output

The system will generate two kinds of outputs. One is a set of the most stable postures

for each evaluation exercise, and the other is the capability of activities of daily life

based on the result of the most stable postures set. Also, I have to define some notations

before describing the output.

Definition 3.2 According to the observation from Table 1.1, we discover that “comb-

ing hair”, “wearing underwear” ,and “fetching something from high place” are re-

quired the best shoulder functionality to perform them. Thus, choose them as targets

we want to evaluate. Here, we denote ADL1 as “combing hair”, ADL2 as “wearing

underwear” , and ADL3 as “fetching something from high place”.

Definition 3.3 We define pti,s as the starting posture. pti,j is the posture relative to the

pti,s, and j degree is the shoulder angle of motion relative to the starting posture for
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Figure 3.3: Diagram of Posture definition for flexion

each exercise type ti. we define posture set P as following.

Let F = {pti,j|i = 1 , 0 ≤ j ≤ 180, j ∈ N}

Let G = {pti,j|i = 3 , 0 ≤ j ≤ 60, j ∈ N}

Let H = {pti,j|i ∈ {2, 4, 5, 6} , 0 ≤ j ≤ 90, j ∈ N}

P = F ∪G ∪H

We take flexion for example to present what pti,s and pti,j mean in Figure 3.3. The

diagrams from left to right are pt1,s, pt1,30, pt1,90, and pt1,150. To sum up, I denote Pti as

the most stable posture for each exercise type ti and SADLi
as the capability of activity

of daily life ADLi. The outputs are described as follow:

Output1 = (Pt1 , Pt2 , Pt3 , Pt4 , Pt5 , Pt6) , ∀Pti ∈ P

Output2 = (sADL1 , SADL2 , SADL3) , ∀SADLi
∈ N
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3.4 Proposed Solution

3.4.1 Posture recognition module

The main task of this module is using a sequence of postures to represent what users

performs when they do the specific exercise. Thus, the most important function in

this module is to accurately recognize the postures performed by users. Generally

speaking, we can regard this task as supervised learning problem and make use of

machine learning method to solve it.

Usually, there are several steps when using machine learning method on this prob-

lem. The first step is to collect lots of sensor data by requesting users hold different

postures. Then, the second step is to transfer sensor data into features that represent

the characteristics of original data to construct the “Postures model”. Figure 3.4 shows

the diagram of model training stage. Finally, when users wear the sensors to do eval-

uation exercises, the “Posture classifier” will recognize what users perform based on

the “Postures model”.

3.4.2 Posture analysis module

This module takes charge of two tasks. One of them is to decide the most stable

posture from the posture set generated by “Posture recognition module”. The other is to

determine the functionality of three primary activities of daily life based on the relation

between these activities and shoulder range of motion in Table 1.1. In other words, I

try to use statistical method to extract both meaningful and readable information from
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Figure 3.4: Diagram of Training Postire Model

postures.
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Chapter 4

Implementation

4.1 Hardware

The accelerometer used in the system is ADXL330 single-chip produced by Texas In-

strument1. It is a 3-axis accelerometer with measurement range of ±3g and sensitivity

of 20 mg. Also, the bending sensor used in the system is piezo-resistive sensor. This

type of sensor is more reliable and portable than other types mentioned in the survey

produced by Dunne[5].

In order to sample accelerometer and bending sensor signals, I use Taroko as sen-

sor board to design and implement an wireless sensor tool kit. It is controlled by

MSP430F1611 and embedded a single-chip CC2420 that is 2.4GHz IEEE 802.15.4

compliant radio frequency transceiver.

The tool kit is composed of sender and receiver. For a sender, analog signals from

1http://www.ti.com

23



 24 CHAPTER 4. IMPLEMENTATION

Figure 4.1: Schematic of Sensor work flow

accelerometer and bending sensor are sampled at the rate of 10 Hz and converted by

ADC, an Analog-to-digital converter, module into digital signals. In addition, signals

have to go through a low-pass filter in order to remove the noise caused by circuit.

Finally, signals are transmitted via 2.4G bandwidth for wireless communication to re-

ceiver. For a receiver, it is connected to the host PC and waits for any packages sent by

remote senders. When receiving the data, it passes them through RS-232 communica-

tion to the host computer. Figure 4.1 shows the schematic diagram of the sensor work

flow and the realization of sensor toolkit is shown in Figure 4.2.
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(a) Accelerometer node

(b) Bending sensor node

Figure 4.2: Sensor Components

4.2 Posture Recognition

4.2.1 Simple Signal Processing

After I observe each evaluation exercise in detail, I discover that each exercise is a

limb movement in which we regard the specific joint as pivot and rotate the limb along



 26 CHAPTER 4. IMPLEMENTATION

one of the body planes. For example, internal rotation and external rotation are the

movements in which we regard the elbow as pivot and rotate the lower arm along

coronal plane. From the aspect of the accelerometer instrumented on the external

side of lower arm, only the x-axis and z-axis change the signal values dramatically

according to the gravity effect. Besides, horizontal abduction is the movement in which

we regard the shoulder joint as pivot and shift arm outward along transverse plane.

Only the bending sensors change the signal values tremendously according to bended

curve.

Therefore, I can choose the dominant signal sources to do basic signal processing

and extract the features for each exercise type. The detail settings are described as

follow.

• Flexion: x-axis and y-axis of accelerometer.

• Abduction: x-axis and z-axis of accelerometer.

• Extension: x-axis and y-axis of accelerometer.

• Internal rotation: x-axis and z-axis of accelerometer.

• External rotation: x-axis and z-axis of accelerometer.

• Horizontal abduction: front-end and back-end bending sensors.

For each exercise ti, the signal processing is composed of two steps. First, all sig-

nals in Eti separately subtract ones in Cti to form a new set of calibrated signals CSti

representing the difference between the posture performed and the starting posture.
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The equation 4.1 is the implementation.

CSti = Eti − Cti , ∀i ∈ {1, 2, 3, 4, 5, 6} (4.1)

Second, extract signals from dominant axes of calibrated signals CSti , and then com-

bine them into a single sequence of signal dsti . For each CSti , there are five signals

including three axes ( x-axis, y-axis , z-axis ) of accelerometer, one signal from front-

end bending sensor, and one signal from back-end bending sensor. The accelerometer

manual shows that each signal changes values linearly to the the incline difference

with regard to gravity direction, and the bending sensor manual depicts that the signal

changes values linearly to the bending curvature. I take advantage of the property to

combine dominant signals from CSti into a sequence of signal dsti . In order to ex-

plain how to select dominant signals and combine them, I define some notations in

Definition 4.1 and show the implementation in equation 4.2.

Definition 4.1 I denote x, y, z as the three axes of accelerometer, f as the first chan-

nel of bending sensor deployed in front-end body ,and b as the second channel of

one deployed in back-end body. Therefore, cschannel
ti

as a sequence of signal from the

channel when users perform exercise ti, where channel ∈ {x, y, z, f, b}. In other

words, CSti =
(
csx

ti
, csy

ti , cs
z
ti
, csf

ti , cs
b
ti

)
.

dsti =





csx
ti

if i = 1

csx
ti

+ csz
ti

if i = 2, 5

csy
ti − csz

ti
if i = 3

csz
ti
− csx

ti
if i = 4

csf
ti − csb

ti
if i = 6

(4.2)
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4.2.2 Feature Extraction

The calibrated value of bending sensor actually reflects the motion change along trans-

verse plane. It changes the value based on the bended curvature. Also, for accelerome-

ter, the DC component of calibrated signals can capture the motion change along sagit-

tal plane and coronal plane. It changes value according to the incline difference with

respect to gravity direction. Thus, the value of bending sensor and the DC component

of accelerometer represent the characteristics of any postures based on the hardware

deployment.

Consequently, I set the window and let it slide with overlapped half of size to ex-

tract feature for each exercise ti. The feature extracted from bending sensor is mean

value over the window. The DC component of the accelerometer signal among the

window is mean according to the analytic result in [10]. So, the feature from ac-

celerometer is also mean value over the window. I denote wj as the j-th window,

size as window size, sj as the starting index of wj , and dsti is a sequence of values

(v1, v2, ..., vk, ..., vn). Equation 4.3 shows how to transfer the values over the window

wj into a single feature value fj .

fj =
1

size

sj+size∑

k=sj

(vk) (4.3)

According to the equation aboved, I configure size as 5 samples and transfer a se-

quence of values dsti into a set of features point Fti = (f1, f2, ..., fj, ..., fm), where m

is the number of windows.
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4.2.3 Posture Classifier

Posture classifier is the most important component in this system. it has to recognize

the postures performed by users. Before deciding how to implement the posture clas-

sifier, I do some preliminary to observe the relationship between features and posture.

I request a subject to wear the sensors mentioned previously to do abduction and hor-

izontal abduction. The subject holds ten postures pt5,j for internal rotation and ten

postures Pt6,j for horizontal abduction, where j ∈ {0, 10, 20, ..., 90}. In Figure 4.3, the

y axis means the shoulder angle of motion relative to starting posture and the x axis

means feature values. I discover that there is approximately linearity between feature

and posture. In other words, the posture is the approximately linear function of feature

values.

Consequently, I use linear regression to model this relationship. The “Posture

model” is a set of parameters of linear function. For each exercise ti, there are two

parameters Ati and Bti for linear function. The “posture classifier” uses two parame-

ters to generate the predicted value, and then determine what is the posture performed

by users. Equation 4.4 shows how to infer range of motion angle.

angle = Ati × fti + Bti (4.4)

The posture representing this range of motion angle is pti,angle. The set of features will

be transformed to a set of postures by “Posture classifier”, and pass them to “Posture

analysis” for next step processing.

Moreover, how to decide the parameters for each exercise is the most important

stage for constructing the posture recognition module. In the following section, I will
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(a) Horizontal abduction

(b) Abduction

Figure 4.3: Relation between features and posture

narrate how to decide the parameters with machine learning method, and the perfor-

mance of posture classifier is evaluated in section 5.1. It is a necessary step to verify

the feasibility of designed system.
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Posture Model Trainning

A set of labeled data (y1, x2), (y2, x2), ..., (yi, xi), ..., (yn, xn) are necessary for training

linear regression model. I regard yi as angle value and x as the feature value to train

model with least square method. In this section, I suppose the two parameters are m

and b. The linear regression function is

y = f(x) = mx + b

Let Yi is the value of f(xi), which means Yi is the best predicted value of linear re-

gression model. I have to minimize the following equation based on the least square

method.

E =
n∑

i=1

[yi − Yi]
2 =

n∑

i=1

[yi − (mxi + b)]2

In order to minimize E, m and b have to satisfy the following equation.

m =
n

∑n
i=1 xiyi − (

∑n
i=1 xi −∑n

i=1 yi)

n
∑n

i=1 xi
2 −∑n

i=1 xi

b =
1

n
(

n∑

i=1

yi −m
n∑

i=1

xi)

4.3 Posture Analysis

A set of postures performed is the input for this module.

First of all, this module constructs a histogram to show what proportion of postures

performed falling into each of several posture categories. In the histogram, the x-axis

is split to non-overlapping intervals. Each interval represents a certain range of angle.

The y-axis is the frequency of postures in the given input posture set. Then, the posture
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Figure 4.4: Diagram of histogram

that has the most high frequency is the most stable posture. Figure 4.4 shows the

diagram of histogram among postures performed.

Secondly, this module generates the score to represent the capability of three activ-

ities of daily life according to the most stable posture among total exercise and Table

1.1. I denote angletj is the range of motion from the most stable posture performed

for exercise tj , and boundADLi,tj is the most extreme range of motion with exercise tj

according to activity category ADLi. Equation 4.5 shows the implementation about
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posture analysis.

TADLi
=





{2, 5} if i = 1

{3, 4, 6} if i = 2

{1} if i = 3

SADLi
=

1

N(TADLi
)

∑

j∈TADLi

angletypej

boundADLi,typej

(4.5)
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Chapter 5

Evaluation

In this section, I design some experiments to evaluate the system performance in two

aspects. One is that whether the wearable sensors have the enough capability of ac-

curately recognizing posture performed by user. It is the fundamental performance of

proposed system. The other is that whether target users are willing to use this system,

and whether they are exactly motivated to do rehabilitation frequently.

5.1 Feasibility Study

5.1.1 Data Collection

Each subject has to wear sensors as Figure 3.2 and hold these 69 different postures to

collect labeled data. The 69 posture are pt1,j , where j ∈ {0, 10, 20, ..., 180}, and pt2,j ,

pt3,j , ..., pt6,j , where j ∈ {0, 10, 20, ..., 90}. In practical, I call for 13 subjects wearing

accelerometer and bending sensor to hold the 69 postures for 3 seconds.

35
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5.1.2 Methodology

Because I use linear regression to be the model for posture classifier, the prevailing

evaluation metric is root mean squared error and the standard deviation of root mean

squared error. After collecting a set of labeled data, I do some signal processing steps

as described in section 4.2.1 and extract features with the method mentioned in sec-

tion 4.2.2 to form a feature set. Therefore, there are 12 samples for each posture after

feature extraction and totally 10764 samples among 69 postures performed by 13 sub-

jects.

For each exercise, I regard the features from the same subject as one fold, and

create a 13-fold partition of the collected data to process 13-folds cross validation for

estimation of system performance. In other words, I use subject-based cross validation

to evaluate the performance of classifier.

5.1.3 Result

The result of performance evaluation is shown in Figure 5.1. The x-axis is six eval-

uation exercises and the y-axis is the error angle degree with respect to the ground

truth. The Mean bar represents average of mean squared error, and the SD illustrates

standard deviation of mean squared error.

General speaking, the overall mean squared errors angle from each of exercise

type is less than 12◦. Besides, taking standard deviation of mean square error into

consideration, the max error angle is also under 15◦. According to the opinions from

physical therapist, The error angle must be less than 20◦ so that the system has the
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Figure 5.1: Result of Feasibility Study

enough feasibility to deployed in real-world situation. Therefore, the result of this

feasibility study shows that the solution we proposed is feasible in aspect of system

performance.

However, flexion (t1) and horizontal abduction (t6) are two exercises that give

higher error rate than others. For flexion, only x-axis of accelerometer can be ex-

tracted feature as a result of the characteristics of exercise. Because accelerometer

changes values less near +1G and -1G, the feature samples collected when subjects

hold pt1,0 and pt1,10 are not clearly discriminated. For the same reason, the samples

collected from pt1,170 and pt1,180 are hardly distinguished. In Figure 5.2, the fact is

shown clearly. For horizontal abduction, the deployment of bending sensor is much

complicated than accelerometer. Large diversity about bending sensor deployment

causes much noise among labeled data.
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Figure 5.2: Relation between features and posture for flexion

5.2 Field test

5.2.1 Methodology

I implement two user interfaces for users. One is used for shoulder evaluation, and

the other is used for checking result of evaluation. First of all, user interface used for

shoulder evaluation is composed of remote controller (Figure 5.3(a)) and software ap-

plication (Figure 5.3(b)). The remote controller is used for users to decide when the

system starting the evaluation process. The software application displays the infor-

mation about which exercise type users performed in current state. For each exercise

type, the software interface consists of calibration mode and operation mode. The cal-

ibration mode asks the users to record their starting posture. Following calibration, the

software enters operation mode and users can freely start the evaluation process.
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Secondly, becasue all data are stored in the remote website, I implement a web-

based page (Figure 5.3(c)) for users to examine their functionality in shoulder range

of motion and to assess the capability about activities of daily life. Users can check

posture histogram to be aware their functionality and survey the score bar for three

primary activities of daily life via browser.

Moreover, I go to the Foundation of Breast Cancer Prevention and Treatment1 for

calling for real-world patients trying the system based on the supervision of physical

therapist. The system recognizes the most stable posture performed by real-world

patients in real time and instantly illustrates the shoulder functionality as the feedback.

After that, I make an interview with them after trying out the system in order to get

some suggestions.

5.2.2 Result

There are two main comments from physical therapist. One is that the performance of

recognizing what postures performed by users is accurate enough to let this system be

realized in real world. She gives the recognition performance a quantitative score 80

based on the full score 100, and declares that she is willing to recommend the system

to the target users. The other is that the appearance of sensor and complication of

deployment are needed to be improved so as to enhance user acceptance.

After three patients make an initiative to try out the system, all of them affirm

that the system makes them more aware of their body status. Also, they declare that

the system will provide patients incentive to motivate themselves to do rehabilitation.

1http://www.breastcf.org.tw/
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However, all of them agree with the statement that the complications of deployment are

needed to be improved. It is the main obstacles for them to accept the system. Further-

more, they expect the system can display much abundant and various information. If

the system can recommend them what rehabilitation exercise suitable for current body

state to improve themselves, it will provide much incentive and novelty for patients.
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(a) Remote controller

(b) Software application

(c) Web-base page

Figure 5.3: User Interface
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Chapter 6

Conclusion

This thesis presents a pioneering study on the feasibility: whether the wearable com-

puting system is practical for detecting shoulder range of motion performed by post-

operation patients. The proposed system is aims to visualize the shoulder healthy status

as incentives to motivate the patients to do exercises spontaneously. This chapter pro-

vides the summary of the key contributions of the system and gives attention to the

future work to overcome the current limitations.

6.1 Summary of Work

We take the most stable upper limb posture to represent capability of shoulder range of

motion. Then, detection for shoulder range of motion is transferred to the recognition

of upper limb posture. Thus, we regard this recognition task as a supervised learning

problem and use machine learning method to solve it. In the first step, we design

43
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wireless devices of an accelerometer and two bending sensors to sense the shoulder

motion along human planes. In the second step, we call for 13 subjects wearing sensors

to collects lots of training data by requesting them to hold each of pre-defined postures.

Finally, we use subject-based cross validation to evaluate the system performance of

recognition accuracy.

Furthermore, we conduct the simple field test on the help of Foundation of Breast

Cancer Prevention and Treatment to get some comments and suggestions about the

proposed system.

6.2 Summary of Contributions

This thesis verifies that the accelerometer and the bending sensor have adequate sens-

ing ability to capture the change among shoulder motion. Meanwhile, It also proves

that it is feasible to take advantage of linear regression model for upper limbs posture

recognition with supervised learning techniques.

The experiment result shows that the root mean squared error angle is below 12◦ for

six evaluation exercises by means of subject-based 13 folds cross validation. The per-

formance of accuracy satisfies the requirements from physical therapist. Besides, the

result of simple field test demonstrates that the real-world patients affirm that the sys-

tem actually provide them incentive to promote self-awareness about shoulder healthy

status and motivate them to do exercises.
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6.3 Future Work

The current achievements just take the initial step toward this issue. There are several

key points to be modified for polishing the system. First of all, the accelerometer and

bending sensor are featured with low computation cost and low energy consumption.

It suggests that this mechanism can be implemented on mobile computing device to

improve the portability . Second, the patients and physical therapist also proclaim that

the way of deploying sensors is complex and the appearance of sensors is not attrac-

tive. The sensor decoration and the way of hardware deployment may be ameliorated

to improve the user acceptance and practicality. Third, the system may take domain

knowledge into consideration to generate much meaningful and abundant information

such as rehabilitation program recommendation. Finally, the system may be conducted

much formal user study from large target users in order to gain the much reliability and

validity.
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Appendix A

Evaluation Exercises Definition

• Flexion

Starting posture Stand, palms inward, thumbs forward, arm at sides.

Movement Raise arms with straight elbow along sagittal plane until almost

overhead .

• Extension

Starting posture Stand, palms inward, thumbs forward, arm at sides.

Movement Raise arms with straight elbow along the sagittal plane with oppo-

site direction of flexion.

• Abduction

Starting posture Stand, palms inward, thumbs forward, arm at sides.
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Movement Raise arms with straight elbow along coronal plane until on the

same height of shoulder.

• Internal rotation

Starting posture Stand, elbow bended with angle 90 degree between upper and

lower arm, and arm parallel with coronal plane on the same height of shoul-

der.

Movement Regard elbow as pivot and lower arm rotate upward along sagittal

plane until parallel with coronal plane.

• External rotation

Starting posture Stand, elbow bended with angle 90 degree between upper and

lower arm, and arm parallel with coronal plane on the same height of shoul-

der.

Movement Regard elbow as pivot and lower arm rotate downward along sagittal

plane until parallel with coronal plane.

• Horizontal abduction

Starting posture Stand, palms inward, arm parallel with sagittal plane with the

same height of shoulder.

Movement Shift arm outward along transverse plane until parallel with coronal

plane.



 

Appendix B

Evaluation Exercise Diagrams

The following diagrams are depicted the six evaluation exercise. The order from left

to right in each diagram shows a series of postures derived from processing specific

evaluation exercises along time sequence.

Figure B.1: Shoulder flexion
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Figure B.2: Shoulder extension

Figure B.3: shoulder abduction
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Figure B.4: Shoulder internal rotation

Figure B.5: Shoulder external rotation
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Figure B.6: Shoulder external rotation


