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Abstract

21th century is a special period that the human beings meet the global challenge
from both social problems and natural climate. Among them, the shortage of accessible
energy attracts a lot of attentions from researchers.

Bacteria growth depends on several factors such as temperature, humidity, and oxygen le-
vels. Although scientists have yet to fully comprehend how microgravity conditions affect
organisms’ ability to thrive. It is also important to understand that bacteria's metabolic processes
are necessary in converting chemical energy into electrical energy, which plays a crucial role
in powering microbial fuel cells (MFCs).

By collaborating microbial fuel cells (MFCs), microgravity applications, and green
energy, significant outcomes can arise for human beings. Through collaboration,
sustainable energy sources are linked while diminishing greenhouse gas emissions and
reducing dependence on fossil fuels. This crucial role in tackling climate change leads
to improved air quality and overall human health. Moreover, resource conservation and
waste management are facilitated by integrating MFCs with microgravity applications
both in space and on Earth. These consequences align with the Sustainable
Development Goal of ensuring access to affordable, reliable, sustainable, and modern
energy for all, ultimately advancing the quality of life for humanity. Given my current
internship in France focusing on Microfluid sorting innovation for winemaking and the
use of superior yeast strains, the research collaboration among MFCs, microgravity
applications, winemaking treatment, and green energy holds great potential as a future
direction of work.

This study investigates the effect of microgravity on the growth of microorganisms

and microbial fuel cells' electricity production efficiency. Cooperating with Department
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of Mechanical and Electro-Mechanical Engineering at National Yilan University, we
created a Random positioning machine to mimic microgravity condition.
Demonstrating culture of E. coli and Shewanella Oneidensis that were shown to
produce electricity in microgravity conditions and measurement of different voltage in
MFC which is fixed at microgravity device. We hypothesis that the growth of E.
coli and Shewanella Oneidensis is quicker than in normal gravity. The experimental
results showed that the growth rate of E. coli and the electricity production of MFCs
were indeed inhibited. This is caused by insufficient oxygen or the inability of cells to

absorb nutrients evenly.

Key words: Microbial fuel cells, Microgravity adaption, Random positioning

machine, E. coli, Shewanella Oneidensis MR-1
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Background

1. Sustainable development goal (SDG) and Microbial fuel cell (MFC)

Depends on World bank data. Electricity shortage is a global energy crise
which result from population growth, extreme weather, peak demand and
unstable global political situation [1, 2]. In emerging and developing economies,
where a significant portion of each household's budget is already allocated to
food and energy [3, 4], the situation has become even more severe. Furthermore,
depends on International Energy Agency, 770 million people don’t have access
to electricity globally [5]. Therefore, it is important to support the 7th UN SDG
goal, ensuring the access to affordable, reliable, sustainable and modern energy
for all. The use of sustainable and clean energy and related technologies can reduce fuel
costs for marginalized communities. [6, 7] These renewable sources of energy include
solar, wind, geothermal, hydroelectric, and biomass. Solar and wind energy are the most
widely used types due to advancements in technology and decreasing costs. Geothermal
and hydroelectric are important sources particularly in areas with high resources. [8-10]
Biomass is less commonly used but has great potential as a future source of significant
energy production. [11]

In conclusion, the primary driving forces behind the development of
microbial fuel cells are twofold: the growing demand for clean and renewable
energy sources and the continual need for power during extended space missions
[14, 15]. It is evident that these rationales align with the United Nations'

Sustainable Development Goal “Providing universal access to affordable,
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reliable, sustainable, and modern energy for all.”

Microbial fuel cells (MFCs)

Microbial fuel cell (MFC) is a type of device that utilize organic compounds
as a source of fuel to generate electricity [16, 17]. Typically, a MFC is composed
of an anaerobic anode chamber and an aerobic cathode. [20]. In the anode of an
MFC, microorganisms oxidize the organic compounds, leading to the release of
protons and electrons. The electrons produced during the oxidation process
transfer through an external electric circuit to the cathode and combine with
electron acceptors. Afterward, the reduced compound will be form. [18, 19]
Among them, the most common cathodic reactions is the reduction of oxygen.
Wastewater generated from various industrial sources that contain organic
substrates can be used as a critical source for producing bioenergy using MFCs
[20]. Interestingly, National Aeronautics and Space Administration (NASA) is
preparing for long-duration Mars space missions, accommodating larger crews
so that importance of wastewater reuse and recycling on the International Space
Station (ISS) is increasing [21]. As a result, by using MFC, it will become an
innovative way to treat wastewater in space and on the earth and also produce

electricity in same time.

Microbial fuel cells (MFCs) model bacteria

3.1 Escherichia coli K12 MG1655

E. coli is a non-spore-forming, Gram-negative bacterium and also a

classic model organism for various study like bacterial adaptation, bacterial
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genetic, bacterial metabolism etc. [22] Among E. coli strains, Escherichia
coli K12 MG1655 is one of well characterized strains and can produce
electron by utilizing extracellular electron transport (EET) pathway [23].
The transportation of electrons from redox-active electron donors to
acceptors is a crucial mechanism known as extracellular electron transfer
(EET). This process serves essential functions in various redox processes
such as E. coli metabolism transferring organisms to electrons acceptors

which can applied in microbial fuel cells [24].

3.2 Shewanella Oneidensis MR-1

This Gram-negative, facultative anaerobic, heterotrophic bacterium is
one of most studied bacteria strain that is able to use extracellular electron
transfer to transfer electrons extracellularly to solid electron acceptors [25-
27]. A lot of research has been conducted to explore its capacity to respire a
wide range of electron acceptors, including oxygen, nitrate, sulfur
compounds, metals, and organic substances. Furthermore, investigations
have been dedicated to examining its capability as an electrochemically
active bacterium, which can release electrons to electrodes and accept

electrons from electrodes in bio electrochemical systems (BESs) [28, 29].

Space mission

Sixty-six years ago, the initial artificial satellite was launched to undertake
the primary objective of unraveling the enigmas of the heavens. Space
exploration has since become one of the most significant accomplishments in

human history, with spacecraft being utilized for a variety of purposes, including
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meteorology, navigation, space colonization, and transportation of people and
cargo. An important consideration is the issue of waste management during
space missions [30, 31]. Currently, solid waste is gathered in a canister as a part
of the space station's toilet hygiene system, and these canisters are disposed of
during destructive reentry of cargo spacecraft [32]. Meanwhile, urine is
collected separately and processed through the station's Water Recovery
System's distillation assembly to turn it into potable water [33]. Although
astronaut waste is currently transported back to Earth, recycling it would be
more advantageous for longer space expeditions because it contains valuable
resources necessary for astronaut survival. Through recycling, waste can be
transformed into drinkable water, fertilizer, and even electricity with the help of
a recently discovered microbe. The second issue to consider is the shortage of
electricity when traveling through the darkness of space. Solar power is
currently the best source of energy for spacecraft, and engineers have created
efficient technologies to convert solar energy into electrical power. The solar
arrays on the spacecraft generate more electricity than the station requires at any
given time, with approximately 60% of the electricity used to charge the
station's batteries while it is in sunlight [34-36]. However, if the spacecraft is in
darkness for an extended period due to planetary alignment or solar system

malfunction, alternative resources will be needed to provide electricity. [37]

5. Microgravity device and Random positioning machine (RPM)

To mimic the condition in space, random positioning machine is the most
efficient device to approach this goal. A Random Positioning Machine (RPM)

is designed to perform continuous random alterations in orientation with respect
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to the gravitational force experienced by a biological experiment. When the
changes in direction occur at a faster rate comparing to the object’s response
time to gravity, the RPM can produce effects similar to those observed in true
microgravity. Therefore, organisms that exhibit relatively quick responses to
gravity, such as plants and other systems, are ideal subjects for investigation
using RPMs. Through the controlled rotation of two axes, this instrument
reduces the overall cumulative gravitational force at its center [38-40, 50].
(Figure. 1) In the Random Positioning Machine (RPM), when set to random
mode, the speed of individual frames and the direction of rotation are varied in
a random manner. This leads to an unpredictable and symmetrical trajectory.
Placing an experiment precisely at the center of the RPM is crucial because the

rotation of the sample also induces centripetal acceleration.

Specific Aim

Due to the increasing demand for alternative energy and the issue of electricity
shortage, the development of microbial fuel cells has become more crucial. These fuel
cells, which combine microbial model systems with electricity production, have the
potential to provide renewable energy for space missions and human use. However,
more research is necessary to fully understand how bacteria respond to microgravity
and to discover sustainable ways of using this technology. The purpose of this
experiment is to elucidate how microgravity will influence the power generation
efficiency of a fuel cell containing E. coli K12 MG1655 and Shewanella oneidensis
MR-1. The experiment started by measuring the growth curve of E. coli K12 MG1655
and Shewanella oneidensis MR-1 in normal gravity in aerobic condition. Later on,

trying to make a growth curve of E. coli K12 MG1655 and Shewanella oneidensis MR-
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1 in normal gravity and then compare it to the growth curve in microgravity condition.
Afterward, compare the electricity production of microbial fuel cells under normal
gravity and microgravity. We found that the growth of bacteria is slower in microgravity

device.

Material and Method

Bacterial Strains and Growth Conditions

The stock resource of E. coli K12 MG1655 is provided by the DNA
Topoisomerase Laboratory at National Taiwan University led by Prof. Tsai-Kun
LI. Besides, Shewanella oneidensis MR-1 was bought from the Bioresource
Collection and Research Center in Taiwan (BCRC). To culture these bacteria,
Shewanella oneidensis MR-1 and E. coli K12 MG1655 are grown separately in
LB broth at 30°C and 37°C under shaking at 150 rpm overnight. [41, 42] The
bacteria that have been cultured overnight are then adjusted to a specific
concentration as inoculum for the microbial fuel cell (MFC) or bacteria

suspension.

Measurement of the growth curve of E. coli K12 MG1655 and Shewanella

oneidensis MR-1 in normal gravity in aerobic condition

50 ml centrifuge tube were used as the container of bacteria suspension. The
bacteria suspension was mixed with LB broth or artificial wastewater to achieve a
final concentration of an O.D (600nm) value of 0.1 which is usually used as start
concentration [43]. Two strains are growed at 25°C under shaking at 150 rpm over-

night.
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Comparison of bacterial growth curve in microgravity and normal gravity

1. The growth of E. coli K12 MG1655 and Shewanella oneidensis MR-1

We use 50 ml centrifuge tube as the container of bacteria suspension and then
take the cultured bacteria suspension as mentioned above in order to match the
structure design on random positioning machine (RPM). The bacteria suspen-
sion will be mixed with LB to achieve a final concentration of an O.D (600nm)
value of 0.1. The gap between top and tube is covered by parafilm two times in
order to mimic the anaerobic environment. All incubations in the RPM (with a
rotation rate of 12 rpm) and in normal gravity condition will be done at 26°C

because the RDM cannot put into incubator.

2. Investigation of bacterial growth curve by measuring O.D and CFU/ml

21 0O.D
Take 1 ml of suspension from 50 ml centrifuge tube and measuring absorbance at 600 nm at
the beginning of the experiment and after one overnight culture. [44]

2.2 CFU/ml
Take 1 ml of suspension from 50 ml centrifuge tube at the beginning of the experiment and one
day later. The number of bacteria was counted in LB agar plates by using the serial dilution

method and shown as log CFU/ml.

Microbial fuel cells

1. Formation and pretreatment

The MFC (Microbial Fuel Cell) consists of two chambers - the anode, which
is an anaerobic chamber, and the cathode, which is an aerobic chamber. Both
chambers have a diameter of 5 x 5 x 2.5 and contain up to 62.5 ml of elec-

trolyte solution. Square-shaped graphite felts with dimensions of 5x5 cm are
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used in anode and anaerobic chamber which are pretreated by washing with
10% hydrogen peroxide at 85°C for three hours. [45] The graphite felts are
then stored in deionized, distilled water for using. Nafion 117 proton ex-
change membranes are utilized and undergo a pretreatment process involv-
ing immersion in various solutions. Firstly, they are soaked in a 3% hydro-
gen peroxide solution for a duration of one hour. Following this, the mem-
branes are immersed in deionized or distilled water for a period of two hours.
Lastly, they undergo treatment in a 0.5M sulfuric acid solution for an addi-
tional hour. All of these steps are carried out at an approximate temperature
of 802C.The Nafion is rinsed in deionized water between the steps and the

membrane is then stored in ddH, 0. [46]
2. Electrolyte solution

a. Anodic artificial wastewater for single-strain MFC (g/L):
CH,COONa (1), K,HPO, (6.065), KH,PO, (3), NaCl (0.5), NH,CL
(0.1), MgS0O, -7H20 (0.1), Trace metal solution (Sigma Aldrich,
USA) 1 ml. [47]

b. Cathodic solution (g/L):

K3[Fe(CN)¢] (16.4), KH,PO, (3.53), K,HPO, (25.46)
3. Random positioning machine (RPM)

The microgravity device we used is the cooperation product with Thermofluid
Bio-Energy Lab at National Ilan University led by Prof. Chin-Tsan Wang. The
RPM (Figure. 2) can go up to 30 rpm, minimum 10 rpm. It includes 2 motors,

for each frame, both powered through a 24V controller in series with the

actuator, the control program is feeded through the Arduino.
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Results

Growth curve of E. coli k12 mg1655 and Shewanella oneidensis MR-1 under
normal gravity using LB medium or artificial wastewater under Aerobic

environment

First step of this experiment is to confirm the growth speed of two strains in LB
medium and artificial wastewater. From the Figure. 3, we found that E. coli K12
MG1655 and Shewanella oneidensis MR-1 have similar growth trend in LB or
artificial wastewater. When the both bacteria were cultured in LB medium, the

growth rate is much quicker than in artificial wastewater.

The growth curve comparison of OD between normal gravity and microgravity

in anaerobic environment

After culturing E. coli K12 MG1655 and Shewanella oneidensis MR-1 for one
day in LB medium under normal gravity and microgravity conditions, a
comparison of their growth rates revealed no significant difference between the
two environments (Figure. 4). However, when the bacteria were cultured in
artificial wastewater, their growth rate decreased significantly compared to
when cultured in LB medium. LB after 1 day culture show that these two strains

don’t have better growth condition under microgravity.

The growth curve comparison of CFU/ml between normal gravity and

microgravity in anaerobic environment

The results reveal that for Shewanella oneidensis MR-1, between different
culture medium, waste water will let bacteria concentration increase in
microgravity condition whereas the concentration didn’t change in LB group in

microgravity growth condition (Figure. 5).
The voltage of MFC in microgravity powered by E. coli in LB

The voltage measurement that | have done is only MFC in microgravity

9
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powered by E. coli in LB. The figure shows that the voltage keeps in almost
zero during the first 56 hours and then go up to 0.04 MV until 140 hours (Figure.

6).

The operation of random positioning machine

In the figure. we can see that under the rotation rate of 12 rpm. The gravity is
decrease from 1 G to approximately 0.1 G after 1000 seconds and then work

smoothly for keeping gravity at 0.1 G (Figure. 7).

Discussion and conclusion

The growth curve in normal gravity and microgravity

The results show that the bacteria growth is downregulated under microgravity
growth condition which is opposite to our purpose to find a way to improve electricity
production by MFCs. However, it is reasonable because E. coli K12 MG1655 and
Shewanella oneidensis MR-1 can survive between aerobic (outside a host) and
anaerobic condition as part of their lifestyle. [48, 49] E. coli is a bacterium with versatile
metabolism, capable of thriving in oxygen-rich and oxygen-depleted environments. It
utilizes a flexible biochemical approach, prioritizing aerobic respiration over anaerobic
respiration, and anaerobic respiration over fermentation. [50]. For Shewanella
oneidensis MR-1, the reasonable consequence is the metabolism influenced by the
rotation of random positioning machine, gene regulation which need further
exploration. [51]

Figure 5. shows the growth curves of E. coli K12 MG1655 and Shewanella
oneidensis MR-1 in both 1G (normal gravity) and microgravity conditions, measured

by colony-forming units (CFUs). None of the experimental groups exhibited a doubling

10
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of their population throughout the duration of the experiment. This could be attributed
to different exponential growth phases of the two strains or the lack of liquid movement
in the microbial fuel cell (MFC) setup. When considering the growth phases of the two
strains, it can be observed that after one day of culturing, a significant portion of the
cells entered the death phase. [52] Consequently, although there may be a high number
of cells present, their ability to form colonies on agar plates decreased substantially.
The growth curve presented in Figure 5 does not demonstrate any noticeable significant
growth. Another influence of gravity on bacteria is linked to two indirect processes: (a)
settling of cells and nutrients, and (b) buoyant convection. [53] It was found that the
absence of convection decreasing phosphate or oxygen availability in microgravity and
further modifying microbial behavior in Pseudomonas aeruginosa. [54] The diminished
convection resulting in substrate concentration gradients has been suggested as a broad
explanation for the microbial alterations observed in microgravity.

Furthermore, the growth curve analysis of E. coli K12 MG1655 and Shewanella
oneidensis MR-1 in normal gravity is inadequate due to the absence of data points
between 6 and 25 hours, making it difficult to perform a thorough analysis on
exponential phase. Therefore, it is crucial to establish a system that can continuously
monitor the growth conditions within the microgravity device. In previous study,
fluorescent proteins such as green fluorescent protein (GFP) has shown its advantage
in noninvasive methods counting GFP-positive cells with flow cytometry which can be

a way of continuous monitor and future research direction. [55]

The voltage of MFC in microgravity powered by E. coli in LB

The measurement of voltage shows that there are approximately 0.05 V after 56 hours

culture. One of the reasons is that the bacteria was trying to adapt the new growth condition.

11
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Previous study has showed that the distance of electrode and material of electrode will
influence the electricity production. [56] I utilized square-shaped graphite as electrode in my
experiment. One effective way to elevate the electricity is to use other electrode made by
other material. Interestingly, new material electrode such as Ti-TiO» has been reported that
current densities were 476.6 mA/m?” while graphite electrodes has only 31 mA/m?. [57] In the

future work, I think it is an efficient way to use different material as electrode.

Future work

Based on previous studies, microgravity has been shown to elicit varied responses
in bacteria through different mechanisms. These include gene regulation, increased
resistance to environmental factors, formation of thicker biofilms, and changes in
electron transport chains (ETC) [58-63]. In future research, it is crucial to ascertain
the overall trend and determine whether microbial fuel cells exhibit enhanced power
generation capabilities in a microgravity environment, backed by comprehensive data
analysis. Even if we observe improved or diminished power generation efficiency, it
remains uncertain whether it is attributed to an increase in colony numbers, enhanced
power generation efficiency at an individual bacteria level, or improved efficiency
despite an unchanged colony count. Therefore, it is necessary to investigate whether
changes in power generation efficiency under microgravity conditions are linked to
alterations in colony numbers or other factors. This investigation will yield
consequential insights into the underlying mechanisms:

® The growth rate of bacteria is faster, resulting in an increase in the number of

colonies and improved power generation efficiency.

® The growth rate of bacteria remains unchanged, but the power generation

efficiency per unit of bacteria improves.
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® The growth rate of bacteria slows down during power generation, but power
generation efficiency improves.
® The downregulation or upregulation of gene that lead to the change of
bacteria growth
Determining which scenario is more likely requires further investigation and
experimentation under microgravity conditions. In my opinion, the scenario where the
growth rate of bacteria remains constant, but the power generation efficiency per unit
of bacteria improves is highly plausible and represents an ideal condition. This
condition is advantageous as it leads to an upregulation of electricity density while
maintaining a consistent bacterial growth rate. This means that the same rate of nutrition
consumption in the anode can be sustained, resulting in improved power generation
efficiency without compromising the growth of the bacteria. Another important point is
to considering the operation of MFCs fixed in random positioning machine. The factors
including the temperature, PH value, the way to tackle bubble in MFCs during
operation, the way to take bacteria from MFCs. All of the points above will be crucial

to elucidate the mechanism behind MFCs electricity production.

Biofilm status in MFC

According to prior research, a lower external resistance typically results in a greater
rate of electron transfer from the biofilm to the electrode, leading to a greater proton
production rate within the biofilm. This can cause a decrease in pH, creating extreme
environment for the electrochemically active bacteria strains [64]. In my experiment, |
did not assess the biofilm status, which will be a focus of my future work.

In conclusion, if I have sufficient resources to pursue further research, I intend to
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undertake the following steps:

1.

Replicate the growth curve analysis of E. coli k12 mg1655 and Shewanella
oneidensis MR-1 in both normal gravity and microgravity conditions. This time,
measurements of O.D or CFU/ml will be taken every 2 hours to capture a more
detailed picture of bacterial growth dynamics.

Develop a microgravity device that can be accommodated within an incubation
box, allowing for controlled experimentation in a microgravity environment.
Assess the status of the biofilm formed on the electrode to gain insights into its
composition and development.

Explore the influence of different combinations of artificial wastewater to
determine the bacterial preferences and their impact on power generation
efficiency.

In order to apply the microbial fuel cell (MFC) system to a cubic satellite,
miniaturization is being pursued. This approach is being adopted due to
limitations on the Taiwanese side, where the capacity to develop a spaceship is
not available. By miniaturizing the MFC system and integrating it into a cubic
satellite, it becomes feasible to investigate and comprehend the biochemical
adaptations under actual space conditions.

By implementing these strategies, a more comprehensive understanding of

bacterial behavior in microgravity and its implications for power generation efficiency

can be achieved.
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Figures

Figure. 2 RPM made by our team
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