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中文摘要 

21世紀，人類面臨來自社會以及自然氣候的全球化挑戰。在此其中，全球

可利用能源的短缺問題吸引了越來越多科學家的關注。 

细菌的生長取決於多種因素，例如溫度、濕度和氧氣含量。雖然科學家尚

未完全理解微重力條件如何影響生物體的生存能力，但细菌的代謝過程對化學

能轉化為電能至關重要，也在驅動微生物燃料電池（MFCs）中扮演著關鍵角

色。透過微生物燃料電池（MFCs）、微重力應用和綠色能源的應用，人類得以

建立可持續能源來源，同時減少溫室氣體排放並減少對化石燃料的依賴。這些

措施在應對氣候變化方面扮演著關鍵的角色，有助於改善空氣品質和人類整體

健康。此外，將MFCs與微重力應用整合於太空和地球上，還有助於資源保護和

廢物處理。這些成果與聯合國永續發展目標相一致：推動為所有人提供經濟、

可靠、可持續和現代化的能源，從而提升人類生活品質。基於我目前在法國的

實習專注於微流體技術在釀酒過程中的創新和使用優質酵母菌株，我相信

MFCs、微重力應用、釀酒處理和綠色能源的研究合作擁有巨大的未來潛力。 

我的研究探討微重力對微生物生長和微生物燃料電池電力生產效率的影

響。我們與國立宜蘭大學機械與電機工程系合作，創建了一個隨機定位裝置來

模擬微重力環境。透過在微重力條件下培養 E. coli 和 Shewanella Oneidensis MR-

1，得以測量固定在微重力裝置上的微生物燃料電池不同的電壓值。我們假設在

微重力條件下， E. coli 和 Shewanella Oneidensis MR-1的生長速度比正常重力環

境下更快。實驗結果顯示，大腸桿菌的生長速率和MFCs的電力生產確實受到抑

制。這是因為氧氣不足或是細胞無法均勻吸收營養物質導致。 

 

關鍵字: 微生物燃料電池、微重力適應、隨機定位儀、E. coli、Shewanella 

Oneidensis MR-1 
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Abstract 

21th century is a special period that the human beings meet the global challenge 

from both social problems and natural climate. Among them, the shortage of accessible 

energy attracts a lot of attentions from researchers. 

Bacteria growth depends on several factors such as temperature, humidity, and oxygen le-

vels. Although scientists have yet to fully comprehend how microgravity conditions affect 

organisms’ ability to thrive. It is also important to understand that bacteria's metabolic processes 

are necessary in converting chemical energy into electrical energy, which plays a crucial role 

in powering microbial fuel cells (MFCs). 

By collaborating microbial fuel cells (MFCs), microgravity applications, and green 

energy, significant outcomes can arise for human beings. Through collaboration, 

sustainable energy sources are linked while diminishing greenhouse gas emissions and 

reducing dependence on fossil fuels. This crucial role in tackling climate change leads 

to improved air quality and overall human health. Moreover, resource conservation and 

waste management are facilitated by integrating MFCs with microgravity applications 

both in space and on Earth. These consequences align with the Sustainable 

Development Goal of ensuring access to affordable, reliable, sustainable, and modern 

energy for all, ultimately advancing the quality of life for humanity. Given my current 

internship in France focusing on Microfluid sorting innovation for winemaking and the 

use of superior yeast strains, the research collaboration among MFCs, microgravity 

applications, winemaking treatment, and green energy holds great potential as a future 

direction of work.  

This study investigates the effect of microgravity on the growth of microorganisms 

and microbial fuel cells' electricity production efficiency. Cooperating with Department 
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of Mechanical and Electro-Mechanical Engineering at National Yilan University, we 

created a Random positioning machine to mimic microgravity condition. 

Demonstrating culture of E. coli and Shewanella Oneidensis that were shown to 

produce electricity in microgravity conditions and measurement of different voltage in 

MFC which is fixed at microgravity device. We hypothesis that the growth of E. 

coli and Shewanella Oneidensis is quicker than in normal gravity. The experimental 

results showed that the growth rate of E. coli and the electricity production of MFCs 

were indeed inhibited. This is caused by insufficient oxygen or the inability of cells to 

absorb nutrients evenly.  

 

Key words: Microbial fuel cells, Microgravity adaption, Random positioning 

machine, E. coli, Shewanella Oneidensis MR-1 
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Background 

1. Sustainable development goal (SDG) and Microbial fuel cell (MFC) 

Depends on World bank data. Electricity shortage is a global energy crise 

which result from population growth, extreme weather, peak demand and 

unstable global political situation [1, 2]. In emerging and developing economies, 

where a significant portion of each household's budget is already allocated to 

food and energy [3, 4], the situation has become even more severe. Furthermore, 

depends on International Energy Agency, 770 million people don’t have access 

to electricity globally [5]. Therefore, it is important to support the 7th UN SDG 

goal, ensuring the access to affordable, reliable, sustainable and modern energy 

for all. The use of sustainable and clean energy and related technologies can reduce fuel 

costs for marginalized communities. [6, 7] These renewable sources of energy include 

solar, wind, geothermal, hydroelectric, and biomass. Solar and wind energy are the most 

widely used types due to advancements in technology and decreasing costs. Geothermal 

and hydroelectric are important sources particularly in areas with high resources. [8-10] 

Biomass is less commonly used but has great potential as a future source of significant 

energy production. [11] 

In conclusion, the primary driving forces behind the development of 

microbial fuel cells are twofold: the growing demand for clean and renewable 

energy sources and the continual need for power during extended space missions 

[14, 15]. It is evident that these rationales align with the United Nations' 

Sustainable Development Goal “Providing universal access to affordable, 
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reliable, sustainable, and modern energy for all.” 

2. Microbial fuel cells (MFCs) 

Microbial fuel cell (MFC) is a type of device that utilize organic compounds 

as a source of fuel to generate electricity [16, 17]. Typically, a MFC is composed 

of an anaerobic anode chamber and an aerobic cathode. [20]. In the anode of an 

MFC, microorganisms oxidize the organic compounds, leading to the release of 

protons and electrons. The electrons produced during the oxidation process 

transfer through an external electric circuit to the cathode and combine with 

electron acceptors. Afterward, the reduced compound will be form. [18, 19]  

Among them, the most common cathodic reactions is the reduction of oxygen.  

Wastewater generated from various industrial sources that contain organic 

substrates can be used as a critical source for producing bioenergy using MFCs 

[20]. Interestingly, National Aeronautics and Space Administration (NASA) is 

preparing for long-duration Mars space missions, accommodating larger crews 

so that importance of wastewater reuse and recycling on the International Space 

Station (ISS) is increasing [21]. As a result, by using MFC, it will become an 

innovative way to treat wastewater in space and on the earth and also produce 

electricity in same time.  

3. Microbial fuel cells (MFCs) model bacteria  

3.1 Escherichia coli K12 MG1655 

E. coli is a non-spore-forming, Gram-negative bacterium and also a 

classic model organism for various study like bacterial adaptation, bacterial 
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genetic, bacterial metabolism etc. [22] Among E. coli strains, Escherichia 

coli K12 MG1655 is one of well characterized strains and can produce 

electron by utilizing extracellular electron transport (EET) pathway [23]. 

The transportation of electrons from redox-active electron donors to 

acceptors is a crucial mechanism known as extracellular electron transfer 

(EET). This process serves essential functions in various redox processes 

such as E. coli metabolism transferring organisms to electrons acceptors 

which can applied in microbial fuel cells [24]. 

3.2 Shewanella Oneidensis MR-1 

This Gram-negative, facultative anaerobic, heterotrophic bacterium is 

one of most studied bacteria strain that is able to use extracellular electron 

transfer to transfer electrons extracellularly to solid electron acceptors [25-

27]. A lot of research has been conducted to explore its capacity to respire a 

wide range of electron acceptors, including oxygen, nitrate, sulfur 

compounds, metals, and organic substances. Furthermore, investigations 

have been dedicated to examining its capability as an electrochemically 

active bacterium, which can release electrons to electrodes and accept 

electrons from electrodes in bio electrochemical systems (BESs) [28, 29]. 

4. Space mission 

Sixty-six years ago, the initial artificial satellite was launched to undertake 

the primary objective of unraveling the enigmas of the heavens. Space 

exploration has since become one of the most significant accomplishments in 

human history, with spacecraft being utilized for a variety of purposes, including 
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meteorology, navigation, space colonization, and transportation of people and 

cargo. An important consideration is the issue of waste management during 

space missions [30, 31]. Currently, solid waste is gathered in a canister as a part 

of the space station's toilet hygiene system, and these canisters are disposed of 

during destructive reentry of cargo spacecraft [32]. Meanwhile, urine is 

collected separately and processed through the station's Water Recovery 

System's distillation assembly to turn it into potable water [33]. Although 

astronaut waste is currently transported back to Earth, recycling it would be 

more advantageous for longer space expeditions because it contains valuable 

resources necessary for astronaut survival. Through recycling, waste can be 

transformed into drinkable water, fertilizer, and even electricity with the help of 

a recently discovered microbe. The second issue to consider is the shortage of 

electricity when traveling through the darkness of space. Solar power is 

currently the best source of energy for spacecraft, and engineers have created 

efficient technologies to convert solar energy into electrical power. The solar 

arrays on the spacecraft generate more electricity than the station requires at any 

given time, with approximately 60% of the electricity used to charge the 

station's batteries while it is in sunlight [34-36]. However, if the spacecraft is in 

darkness for an extended period due to planetary alignment or solar system 

malfunction, alternative resources will be needed to provide electricity. [37] 

5. Microgravity device and Random positioning machine (RPM)  

To mimic the condition in space, random positioning machine is the most 

efficient device to approach this goal. A Random Positioning Machine (RPM) 

is designed to perform continuous random alterations in orientation with respect 
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to the gravitational force experienced by a biological experiment. When the 

changes in direction occur at a faster rate comparing to the object’s response 

time to gravity, the RPM can produce effects similar to those observed in true 

microgravity. Therefore, organisms that exhibit relatively quick responses to 

gravity, such as plants and other systems, are ideal subjects for investigation 

using RPMs. Through the controlled rotation of two axes, this instrument 

reduces the overall cumulative gravitational force at its center [38-40, 50]. 

(Figure. 1) In the Random Positioning Machine (RPM), when set to random 

mode, the speed of individual frames and the direction of rotation are varied in 

a random manner. This leads to an unpredictable and symmetrical trajectory. 

Placing an experiment precisely at the center of the RPM is crucial because the 

rotation of the sample also induces centripetal acceleration. 

Specific Aim 

Due to the increasing demand for alternative energy and the issue of electricity 

shortage, the development of microbial fuel cells has become more crucial. These fuel 

cells, which combine microbial model systems with electricity production, have the 

potential to provide renewable energy for space missions and human use. However, 

more research is necessary to fully understand how bacteria respond to microgravity 

and to discover sustainable ways of using this technology. The purpose of this 

experiment is to elucidate how microgravity will influence the power generation 

efficiency of a fuel cell containing E. coli K12 MG1655 and Shewanella oneidensis 

MR-1. The experiment started by measuring the growth curve of E. coli K12 MG1655 

and Shewanella oneidensis MR-1 in normal gravity in aerobic condition. Later on, 

trying to make a growth curve of E. coli K12 MG1655 and Shewanella oneidensis MR-
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1 in normal gravity and then compare it to the growth curve in microgravity condition. 

Afterward, compare the electricity production of microbial fuel cells under normal 

gravity and microgravity. We found that the growth of bacteria is slower in microgravity 

device.  

 

Material and Method 

Bacterial Strains and Growth Conditions 

The stock resource of E. coli K12 MG1655 is provided by the DNA 

Topoisomerase Laboratory at National Taiwan University led by Prof. Tsai-Kun 

LI. Besides, Shewanella oneidensis MR-1 was bought from the Bioresource 

Collection and Research Center in Taiwan (BCRC). To culture these bacteria, 

Shewanella oneidensis MR-1 and E. coli K12 MG1655 are grown separately in 

LB broth at 30°C and 37°C under shaking at 150 rpm overnight. [41, 42] The 

bacteria that have been cultured overnight are then adjusted to a specific 

concentration as inoculum for the microbial fuel cell (MFC) or bacteria 

suspension. 

Measurement of the growth curve of E. coli K12 MG1655 and Shewanella 

oneidensis MR-1 in normal gravity in aerobic condition 

50 ml centrifuge tube were used as the container of bacteria suspension. The 

bacteria suspension was mixed with LB broth or artificial wastewater to achieve a 

final concentration of an O.D (600nm) value of 0.1 which is usually used as start 

concentration [43]. Two strains are growed at 25°C under shaking at 150 rpm over-

night. 
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Comparison of bacterial growth curve in microgravity and normal gravity 

1. The growth of E. coli K12 MG1655 and Shewanella oneidensis MR-1  

We use 50 ml centrifuge tube as the container of bacteria suspension and then 

take the cultured bacteria suspension as mentioned above in order to match the 

structure design on random positioning machine (RPM). The bacteria suspen-

sion will be mixed with LB to achieve a final concentration of an O.D (600nm) 

value of 0.1. The gap between top and tube is covered by parafilm two times in 

order to mimic the anaerobic environment.  All incubations in the RPM (with a 

rotation rate of 12 rpm) and in normal gravity condition will be done at 26°C 

because the RDM cannot put into incubator. 

2. Investigation of bacterial growth curve by measuring O.D and CFU/ml 

2.1 O.D  

Take 1 ml of suspension from 50 ml centrifuge tube and measuring absorbance at 600 nm at 

the beginning of the experiment and after one overnight culture. [44] 

2.2 CFU/ml  

Take 1 ml of suspension from 50 ml centrifuge tube at the beginning of the experiment and one 

day later. The number of bacteria was counted in LB agar plates by using the serial dilution 

method and shown as log CFU/ml.  

Microbial fuel cells  

1. Formation and pretreatment 

The MFC (Microbial Fuel Cell) consists of two chambers - the anode, which 

is an anaerobic chamber, and the cathode, which is an aerobic chamber. Both 

chambers have a diameter of 5 x 5 x 2.5 and contain up to 62.5 ml of elec-

trolyte solution. Square-shaped graphite felts with dimensions of 5x5 cm are 
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used in anode and anaerobic chamber which are pretreated by washing with 

10% hydrogen peroxide at 85°C for three hours. [45] The graphite felts are 

then stored in deionized, distilled water for using. Nafion 117 proton ex-

change membranes are utilized and undergo a pretreatment process involv-

ing immersion in various solutions. Firstly, they are soaked in a 3% hydro-

gen peroxide solution for a duration of one hour. Following this, the mem-

branes are immersed in deionized or distilled water for a period of two hours. 

Lastly, they undergo treatment in a 0.5M sulfuric acid solution for an addi-

tional hour. All of these steps are carried out at an approximate temperature 

of 80ºC.The Nafion is rinsed in deionized water between the steps and the 

membrane is then stored in ddH2O. [46] 

2. Electrolyte solution 

a. Anodic artificial wastewater for single-strain MFC (g/L):  

CH3COONa (1), K2HPO4 (6.065),  KH2PO4  (3), NaCl (0.5),  NH4CL 

(0.1), MgSO4  · 7H2O (0.1), Trace metal solution (Sigma Aldrich, 

USA) 1 ml. [47] 

b. Cathodic solution (g/L): 

𝐾3[𝐹𝑒(𝐶𝑁)6] (16.4), KH2PO4 (3.53), K2HPO4 (25.46) 

3. Random positioning machine (RPM) 

The microgravity device we used is the cooperation product with Thermofluid 

Bio-Energy Lab at National Ilan University led by Prof. Chin-Tsan Wang. The 

RPM (Figure. 2) can go up to 30 rpm, minimum 10 rpm. It includes 2 motors, 

for each frame, both powered through a 24V controller in series with the 

actuator, the control program is feeded through the Arduino. 
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Results 

Growth curve of E. coli k12 mg1655 and Shewanella oneidensis MR-1 under 

normal gravity using LB medium or artificial wastewater under Aerobic 

environment 

First step of this experiment is to confirm the growth speed of two strains in LB 

medium and artificial wastewater. From the Figure. 3, we found that E. coli K12 

MG1655 and Shewanella oneidensis MR-1 have similar growth trend in LB or 

artificial wastewater. When the both bacteria were cultured in LB medium, the 

growth rate is much quicker than in artificial wastewater. 

The growth curve comparison of OD between normal gravity and microgravity 

in anaerobic environment 

After culturing E. coli K12 MG1655 and Shewanella oneidensis MR-1 for one 

day in LB medium under normal gravity and microgravity conditions, a 

comparison of their growth rates revealed no significant difference between the 

two environments (Figure. 4). However, when the bacteria were cultured in 

artificial wastewater, their growth rate decreased significantly compared to 

when cultured in LB medium. LB after 1 day culture show that these two strains 

don’t have better growth condition under microgravity. 

The growth curve comparison of CFU/ml between normal gravity and 

microgravity in anaerobic environment 

The results reveal that for Shewanella oneidensis MR-1, between different 

culture medium, waste water will let bacteria concentration increase in 

microgravity condition whereas the concentration didn’t change in LB group in 

microgravity growth condition (Figure. 5).  

The voltage of MFC in microgravity powered by E. coli in LB 

The voltage measurement that I have done is only MFC in microgravity 
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powered by E. coli in LB. The figure shows that the voltage keeps in almost 

zero during the first 56 hours and then go up to 0.04 MV until 140 hours (Figure. 

6).  

 

The operation of random positioning machine 

In the figure.  we can see that under the rotation rate of 12 rpm. The gravity is 

decrease from 1 G to approximately 0.1 G after 1000 seconds and then work 

smoothly for keeping gravity at 0.1 G (Figure. 7).  

Discussion and conclusion 

The growth curve in normal gravity and microgravity 

The results show that the bacteria growth is downregulated under microgravity 

growth condition which is opposite to our purpose to find a way to improve electricity 

production by MFCs. However, it is reasonable because E. coli K12 MG1655 and 

Shewanella oneidensis MR-1 can survive between aerobic (outside a host) and 

anaerobic condition as part of their lifestyle. [48, 49] E. coli is a bacterium with versatile 

metabolism, capable of thriving in oxygen-rich and oxygen-depleted environments. It 

utilizes a flexible biochemical approach, prioritizing aerobic respiration over anaerobic 

respiration, and anaerobic respiration over fermentation. [50]. For Shewanella 

oneidensis MR-1, the reasonable consequence is the metabolism influenced by the 

rotation of random positioning machine, gene regulation which need further 

exploration. [51]  

Figure 5. shows the growth curves of E. coli K12 MG1655 and Shewanella 

oneidensis MR-1 in both 1G (normal gravity) and microgravity conditions, measured 

by colony-forming units (CFUs). None of the experimental groups exhibited a doubling 
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of their population throughout the duration of the experiment. This could be attributed 

to different exponential growth phases of the two strains or the lack of liquid movement 

in the microbial fuel cell (MFC) setup. When considering the growth phases of the two 

strains, it can be observed that after one day of culturing, a significant portion of the 

cells entered the death phase. [52] Consequently, although there may be a high number 

of cells present, their ability to form colonies on agar plates decreased substantially. 

The growth curve presented in Figure 5 does not demonstrate any noticeable significant 

growth. Another influence of gravity on bacteria is linked to two indirect processes: (a) 

settling of cells and nutrients, and (b) buoyant convection. [53] It was found that the 

absence of convection decreasing phosphate or oxygen availability in microgravity and 

further modifying microbial behavior in Pseudomonas aeruginosa. [54] The diminished 

convection resulting in substrate concentration gradients has been suggested as a broad 

explanation for the microbial alterations observed in microgravity. 

Furthermore, the growth curve analysis of E. coli K12 MG1655 and Shewanella 

oneidensis MR-1 in normal gravity is inadequate due to the absence of data points 

between 6 and 25 hours, making it difficult to perform a thorough analysis on 

exponential phase. Therefore, it is crucial to establish a system that can continuously 

monitor the growth conditions within the microgravity device. In previous study, 

fluorescent proteins such as green fluorescent protein (GFP) has shown its advantage 

in noninvasive methods counting GFP-positive cells with flow cytometry which can be 

a way of continuous monitor and future research direction.  [55] 

The voltage of MFC in microgravity powered by E. coli in LB 

 The measurement of voltage shows that there are approximately 0.05 V after 56 hours 

culture. One of the reasons is that the bacteria was trying to adapt the new growth condition. 
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Previous study has showed that the distance of electrode and material of electrode will 

influence the electricity production. [56] I utilized square-shaped graphite as electrode in my 

experiment. One effective way to elevate the electricity is to use other electrode made by 

other material. Interestingly, new material electrode such as Ti-TiO2 has been reported that 

current densities were 476.6 mA/m2 while graphite electrodes has only 31 mA/m2. [57] In the 

future work, I think it is an efficient way to use different material as electrode. 

Future work 

Based on previous studies, microgravity has been shown to elicit varied responses 

in bacteria through different mechanisms. These include gene regulation, increased 

resistance to environmental factors, formation of thicker biofilms, and changes in 

electron transport chains (ETC) [58-63]. In future research, it is crucial to ascertain 

the overall trend and determine whether microbial fuel cells exhibit enhanced power 

generation capabilities in a microgravity environment, backed by comprehensive data 

analysis. Even if we observe improved or diminished power generation efficiency, it 

remains uncertain whether it is attributed to an increase in colony numbers, enhanced 

power generation efficiency at an individual bacteria level, or improved efficiency 

despite an unchanged colony count. Therefore, it is necessary to investigate whether 

changes in power generation efficiency under microgravity conditions are linked to 

alterations in colony numbers or other factors. This investigation will yield 

consequential insights into the underlying mechanisms: 

⚫ The growth rate of bacteria is faster, resulting in an increase in the number of 

colonies and improved power generation efficiency.  

⚫ The growth rate of bacteria remains unchanged, but the power generation 

efficiency per unit of bacteria improves. 
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⚫ The growth rate of bacteria slows down during power generation, but power 

generation efficiency improves. 

⚫ The downregulation or upregulation of gene that lead to the change of 

bacteria growth   

Determining which scenario is more likely requires further investigation and 

experimentation under microgravity conditions. In my opinion, the scenario where the 

growth rate of bacteria remains constant, but the power generation efficiency per unit 

of bacteria improves is highly plausible and represents an ideal condition. This 

condition is advantageous as it leads to an upregulation of electricity density while 

maintaining a consistent bacterial growth rate. This means that the same rate of nutrition 

consumption in the anode can be sustained, resulting in improved power generation 

efficiency without compromising the growth of the bacteria. Another important point is 

to considering the operation of MFCs fixed in random positioning machine. The factors 

including the temperature, PH value, the way to tackle bubble in MFCs during 

operation, the way to take bacteria from MFCs. All of the points above will be crucial 

to elucidate the mechanism behind MFCs electricity production. 

 

Biofilm status in MFC 

According to prior research, a lower external resistance typically results in a greater 

rate of electron transfer from the biofilm to the electrode, leading to a greater proton 

production rate within the biofilm. This can cause a decrease in pH, creating extreme 

environment for the electrochemically active bacteria strains [64]. In my experiment, I 

did not assess the biofilm status, which will be a focus of my future work. 

In conclusion, if I have sufficient resources to pursue further research, I intend to 
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undertake the following steps: 

1. Replicate the growth curve analysis of E. coli k12 mg1655 and Shewanella 

oneidensis MR-1 in both normal gravity and microgravity conditions. This time, 

measurements of O.D or CFU/ml will be taken every 2 hours to capture a more 

detailed picture of bacterial growth dynamics. 

2. Develop a microgravity device that can be accommodated within an incubation 

box, allowing for controlled experimentation in a microgravity environment. 

3. Assess the status of the biofilm formed on the electrode to gain insights into its 

composition and development. 

4. Explore the influence of different combinations of artificial wastewater to 

determine the bacterial preferences and their impact on power generation 

efficiency. 

5. In order to apply the microbial fuel cell (MFC) system to a cubic satellite, 

miniaturization is being pursued. This approach is being adopted due to 

limitations on the Taiwanese side, where the capacity to develop a spaceship is 

not available. By miniaturizing the MFC system and integrating it into a cubic 

satellite, it becomes feasible to investigate and comprehend the biochemical 

adaptations under actual space conditions. 

By implementing these strategies, a more comprehensive understanding of 

bacterial behavior in microgravity and its implications for power generation efficiency 

can be achieved. 
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Figures 

 

Figure. 1 Design diagram of RPM (A.G. Borst. Et al., 2014) 

 

Figure. 2 RPM made by our team 

 



doi:10.6342/NTU202302841

16 
 

 

 

Figure. 3 Growth curve of E. coli K12 MG1655 and Shewanella oneidensis MR-1 

in normal gravity 

 

Figure. 4 Growth curve of E. coli K12 MG1655 and Shewanella oneidensis MR-1 

in 1G and microgravity by OD (600nm) 
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Figure. 5 Growth curve of E. coli K12 MG1655 and Shewanella oneidensis MR-1 

in 1G and microgravity by CFU 

 

 

Figure. 6 The voltage of MFC in microgravity (E.coli in LB)   
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Figure. 7 The microgravity effect measurement by time 
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