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Abstract

Air pollution, particularly fine particulate matter (PM2.s), has significant adverse

health effects and contributes to atmospheric visibility reduction and global climate

change. Understanding the distribution and sources of PMb s is crucial for effective air

quality management. Receptor models, such as Positive Matrix Factorization (PMF),

can help identify pollution sources by analyzing ambient concentration data at receptor

sites.

Online monitoring instruments for PMazs composition allow real-time

measurement of elements, ions, organic carbon (OC), and elemental carbon (EC),

enabling the detection in hourly patterns. PMF modeling, combined with these

measurements, effectively explores PM» s contributions. Adding organic compounds

enhances the identification of pollution sources, particularly secondary organic aerosols

(SOA) in tracking pollution sources. Previous studies emphasized the importance of

organic tracers in PMF modeling, but most have faced limitations in time resolution

due to manual field sampling. Few investigations have incorporated both low time

resolution data of organic compounds and high time resolution data from online

monitoring.

This study was conducted from November 2022 to April 2023 at the Daan Air

Quality Monitoring Station in Taipei, Taiwan. Manual sampling was performed using

v
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quartz filters, with each sampling period lasting 12 hours. The selected organic

compounds were analyzed using ultra-performance liquid chromatography-tandem

mass spectrometry (UPLC-MS/MS). To integrate the hourly component data obtained

from the continuous monitoring at the station, a multilinear engine (ME-2) was

employed for source apportionment.

The study aimed to identify and apportion pollution sources using the PMF model.

Two models were implemented in this study: Model 1, which included 24 species, and

Model 2, which included an additional 7 organic species. For Model 1, it was found

that the optimal solution consisted of 6 factors: traffic (22.4%), dust (4.5%), oil

combustion (17.4%), coal combustion/industry (27.3%), industry (6.5%), and sea salt

(13.1%). In Model 2, an additional source called "Biogenic Source" was identified. This

source was characterized by the presence of 2-methylerythritol (2-MT) and arabitol,

which are indicators of biogenic aerosols. The backward trajectory analysis indicated

that these aerosols originated from surrounding mountainous areas and peripheral

regions. Furthermore, the potential biomass burning pollution in the identified traffic-

related pollution source was identified through the presence of levoglucosan and

succinic acid.

The study highlighted the improved performance of the PMF model with the

inclusion of organic components, as it allowed the identification of the biogenic source,

A\
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which was not previously observed in field studies. The findings provide a scientific

basis for future considerations and regulations regarding pollution in Taipei.

Keywords: Positive Matrix Factorization, Fine Particulate Matter; Organic marker,

UPLC-MS/MS, Multiple time resolution

vi

doi:10.6342/NTU202303372



Contents

PR dER ot s B R e ii
AADSITACE ..ttt ettt et s h et h e e h e et h et h e st et bt et bt et et eneetenas v
COMEBIIES ...ttt ettt ettt e bt e b e s at e eat e e s te e bt e abeesaeesatesabeembeenbee bt esbeesaeesaeeenteans vii
LISt OF FIGUIES ...eiiutiiiiiieeiie ettt ettt e e et tte e st eeeteeesebeessbaeestseessseeensseessseesnsseesssannns X
LSt OF TADLES ...ttt ettt ettt et sb et b et e b bt X
LSt Of APPEIAIXES ..eevvveieiieiieiieriieneeeteete et et esttestrestessse e seessaessaesssessseanseanseesseesssesssessseensanns xi
Chapter 1 INtrOQUCIION. ... .ccuvereieriieiieiieieeree e ete et esteeseesebe e e esseesseessaessaesnseesseessaesseesssennns 1
1.1. BacK@roUN ......cviiiiiiiiiciie ettt ettt st e b e et et e e eneeare e 1
1.2. ReCeptor MOAEL .......ociiiiieiieciiece ettt sttt eebeerbeebeearees 2
1.3. Importance of organic tracers in PMF ..........cccoovviiiniiiniiniieciece e 3
1.4. STUAY QIMIS.c..tieiieiierie e eie ettt ettt et e e e taesteessaessseesseesseesseesssesssesnseenseenses 7
Chapter 2 Materials and MethodS ..........ccvoviiiiiiiiiiie et e 9
2.1, SAMPING SILE ...vvevrieeiieeiietieeieeete ettt ere ettt e s b e et e e tbeesbeeteesteesteeetbeesbeesbeeteesssenssensns 9
2.2, STUAY PeIIOA ...ttt sttt et snb e enreensaenreas 11
2.3, SamPliNng INSITUMENLS .....cveeriieeieeieeteesieestesteereereesseesaessaesssessseesseesseesseesssessseessessses 11
2.4. Chemical analysis Of Organic traCerS........ccuiiviriieviieriierieieeereereereeereestresereeereeareeveas 12
2.4.1. Organic compounds aNaLYSIS.......cc.eeeriririieriiieeriieeiieerteeecreeesreesreeesreeesseeeseneees 12
2.4.2. Data QUAILY....ccocieeieeie ettt ettt et et treenteenreenreen 15

2.5. Receptor MOdel (PIME) ......ccciiiiiiiieiieiieierecte ettt es 15
2.6. Data PIEPTOCESSINE ....eevvvevreriieeiieeieesteestiesresreeseesseesseessaesssessessseesseesssesssessseesesssasssees 17
2.6.1. Calculations Of UNCEITAINLIES .......cc.eeriiiiiierieeieenie ettt st st e 17
2.6.2. Model parameter SELHINES ........ccvveiveeriieirierieeiiesieeereereereeereesreesteesteesrneesseesseereens 19
2.6.3. Source profile iNterPretation.......c.cccveeeveerieerieereereesreerreesreesreeseeseesereeseenseeseesees 20
2.6.4. Mass RECONSITUCTION .....c.cevuiruieiiriieieitieiteste ettt sttt ettt sbeete e 21

2.7 PME MOACING .....cviiiiiiiiiieciie ettt ettt s ta e e abeeaveeabe e beestaesebeeaveenvaenseas 22

vii

doi:10.6342/NTU202303372



Chapter 3 Results and DiSCUSSIONS.......cccuiiviiriieiiieiieiieereereeeteesteesteesresereeseesseessaastanessesssesns 23

3.1. Summary statistics and data Pretreatment ..........cccveeeveeeieereereereeneesieseeseeesiesenasans oo 23
3.1.1. MaSS TECONSIIUCTION .....cetitieuteiieiteteettete st et ste st ente st eate st bt eaesbeesbe sk E e enbeebeeeeenns 23
3.1.2. Data PretreatMent .......ccuveeeiieeeiieeeieeeieeeeteeeieeesveeeteeeseveeeeseeesseessseeenssesssssesssssaans 23

3.2. Factor Identification .........ccceerieriiiiieieee ettt e 26
3.2.1. Factor Identification of Model 1.......c..cccoiiiiiiiiiiiieeeeeeeeeee e 26
3.2.2. Factor Identification of Model 2..........cccoiiiiiiiiiiieiieeeece e 35
3.2.3. Seas0Nal VATIATIOM.....ceuiruiriieiiiteeterie ettt sttt ettt et s be e 47

3.3, SeNSItIVILY ANALYSIS ...ecvieiiieiiieiiiiiietieiteeiteesteeeteeereebeeteebeesteesebeseseesseesseesseesssessseesseens 51

3.4, LIMIEATIONS. ..ttt ettt ettt sttt et e be e bt e s bt e st e et e enbe e bt e sbeesaeesaaeenteens 52

Chapter 4 Conclusions and recOmMmMENdations.............ccvereereerieeriesireesreesreeseeseeseesressseenseens 54

RETETEIICES ...ttt ettt ettt sttt b e e bt e e e sbeenees 56

A PDCIAIXES ..vvieevieiieitieeite ettt et e st e s tteebeebeebe e beestseetseerbeesbe e teeetseeabeeabeerbeenbeeteentbearreerreenreas 66
viii

doi:10.6342/NTU202303372



List of Figures

Figure 1 Scheme of this study for source identification ........................ 8

Figure 2 Sampling Sit€ MaP ......cceevviriirieriiniieieeesieeie et st nae 10

Figure 3 The calculation of major chemical component of mass
reconstruction (non-sea-salt SO4>: SO4> - 0.252[Na*] ) (Chow et al.,

2005) et 22
Figure 4 IM/IS of Model 1 and Model 2.........c.cccoeiiiviininiiniieiieeee 27
Figure 5 The schematic diagram of Model 1 and Model 2..............cc..c........ 27
Figure 6 Source profiles of each chemical species of Model 1 (black bars

denote concentration; gray points denote explained variation) ........... 28
Figure 7 Diurnal plot of Model 2.........cocooviiiiiniiniiiiiceeeeee 29
Figure 8 The contribution of six sources and the reconstructed trend of

PM; 5 concentration (RPM) of Model 1.........cccoevieiiiiiiiiniiiiieiee. 33
Figure 9 Estimation of the source of coal combustion/industry by backward

trajectory HYSPLIT model (24-hour duration) ...........cccceevvevvenuennnene. 34

Figure 10 Source profiles of each chemical species of Model 2 (black bars
denote concentration; gray points denote explained variation) ........... 37

Figure 11 The contribution of six sources and the reconstructed trend of

PM; 5 concentration (RPM) of Model 2.........ccccoevieviieiiieniieieeieen 39
Figure 12 Estimation of the source of biogenic source by backward
trajectory HYSPLIT model (24-hour duration) ...........cccceevvevvenuennnene. 40
Figure 13 Correlation between levoglucosan and K (after excluded the
OULHETS RZ=0.15) .. 43
Figure 14 Correlation between biomass burning markers (levoglucosan and
succinic aid) and traffic markers (Cu and Ba) .........cccceeeeviieeiiinieneenns 43
Figure 15Concentration of cholesterol...........ccccceoeviininiinieniniinecee, 45
Figure 16 Factor contribution of three seasons.........ccccoeceeveevereenenieneenne. 47

Figure 17 Estimation of the source of oil combustion source by backward

trajectory HYSPLIT model (24-hour duration) ...........cccceeveevvenuennnene. 48
Figure 18 Proportion of the source contribution...........cccceeeeveerveneeniennenne. 52
ix

doi:10.6342/NTU202303372



List of Tables

Table 1 Summary of the organic markers of target sources............c.cieenene 6
Table 2 Gradient separation of Method 1 and Method 2 ............c...coeeiennnn. 14
Table 3 The summary of data pretreatment ............cccoceeveeeenieneriiiiineneennes 19
Table 4 Summary statistics of PM2 s components data collected at Daan
AQS (/M) oot 25
Table 5 The sources corresponding to the organic compounds in this study
.............................................................................................................. 38

Table 5 Atmosphere concentrations of cholesterol of previous studies....... 46
Table 6 Summary of contributions of biogenic source in previous study....49
Table 7 The average concentration of traffic-related pollutants in this study

and those measured by nearby ground-level monitor (ppm)................ 50

doi:10.6342/NTU202303372



List of Appendixes

Appendix 1 Calibration curves of 8 organic compounds............cceeieereiiieene 67
Appendix 2 Sampling dates marked as color blue.............coceviiiiniiincinnn. 68
Appendix 3 IS, Matrix spike recovery rate, and MDL of 8 compounds in
UPLC-MS/MS analySsis ....c.ccoovieiiieniieeiienieeieenieeieesiee e 69
Appendix 4 Mass reconstruction exceeding + 40% of measured PM2 s of
€aCh MONth ..ot 70
Appendix 5 Decisions for double counting deletion.............cccceeveerieniennene. 71

Appendix 6 The presentation of peaks of 8 compounds in UPLC-MSMS
ANALYSIS 1.ttt ettt ettt et 72
Appendix 7 Summary of organic compounds concentrations in other studies

X1

doi:10.6342/NTU202303372



Chapter 1 Introduction

1.1.Background

Exposure to air pollutants such as fine particulate matter (PM> 5) causes both acute
and chronic adverse health effects (Jiménez et al., 2009; Mimura et al., 2014), and it
could lead to negative effects on atmospheric visibility and global climate change
(Keim et al., 2005; Long et al., 2023). According to WHO, air pollution was responsible
for 4.2 million deaths in 2016, and it was estimated to cause about 29% of lung cancer
deaths, 43% of COPD deaths, 25% of ischaemic heart disease deaths, and 24% of stroke
deaths.

(https://www.who.int/data/gho/data/themes/topics/indicator-groups/indicator-group-

details/GHO/ambient-air-pollution )

PMb> 5 is a mixture of pollutants and can be contributed by various types of air

pollution sources. Recently, more and more studies focus on source-specific PM» s and

associated composition because the PM> 5 constituent varies with sources and they may

specifically affect human health (Achilleos et al., 2017; Chen & Lippmann, 2009; Kelly

& Fussell, 2012; Stanek et al., 2011; Yan et al., 2022). For example, biomass burning

was found to be associated with CVD mortality (Achilleos et al., 2017) while the

magnitude of estimated risks from the sea salt were smaller (Mar et al., 2006). Many
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studies have evaluated the concentration, chemical composition, and sources of PM> s

to obtain a better understanding of air pollution.

1.2.Receptor model

The receptor model can clarify the relationship between sources and the receptor,

which helps to identify where air pollution might come from by measuring ambient

concentration at a receptor site (Watson, 1984). Source apportionment studies employ

receptor models, such as Positive Matrix Factorization (PMF), to conduct source-

specific analyses. PMF is widely used in such studies due to its effectiveness. Compared

to other models, such as chemical mass balance (CMB) model, PMF requires less prior

knowledge of emission profiles and incorporates a weighting scheme that considers the

uncertainties associated with measured concentrations. By adjusting the uncertainty

estimates, PMF can handle below-detection-limit values and missing data more

effectively (Almeida et al., 2020).

In the application of the PMF model for identifying sources of observed PM; s

chemical species, various measurements are typically used as input data, including

inorganic ions, elements, organic carbon (OC), and elemental carbon (EC). Organic

compounds could be also used as marker species to identify major sources of the

observed PM»s (Heo et al., 2013; Schauer et al., 1996; Simoneit, 1985). Organic

compounds can be divided into two types. Primary organic aerosols (POA) refer to

2
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those directly emitted into the atmosphere, while secondary organic aerosols (SOA) are

formed through oxidation, condensation, and multiphase chemical processes involving

gaseous precursors (Pandis et al.,, 1992). By analyzing the composition and

characteristics of these species, the PMF model can help identify the different sources

contributing to PM; s pollution.

1.3.Importance of organic tracers in PMF

Nowadays, online monitoring instruments for PM2s composition have been

developed. These instruments measure elements, ions, OC/EC in high time resolution

(Bauer et al., 2009; Liu et al., 2019; Young et al., 2016), thus effectively capturing the

concentration changes in different species over time and enabling the detection of daily

source patterns. PMF has been implemented with online monitoring measurements to

explore the PMb> s contributions (Gao et al., 2016; Ho et al., 2018). On the other hand,

analyzing organic compounds usually takes large resources with off-line techniques to

obtain the data compared to inorganic and elemental analyses. Therefore, it is necessary

to assess the additional performance enhancement of adding organic compounds in

PMF modeling.

A 24-h integrated PM> 5 sampling program was conducted to characterize PM» 5 in

the capital of South Korea, Seoul, which is one of the mega-cities in Northeast Asia. It

could be affected by a variety of sources of emissions and transport from outside, which

3
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is similar to Taipei. This study examined the effectiveness of adding organic compounds

as input data in the PMF model. Adding organic compounds separated the

characteristics of biogenic sources from the source profiles that were obtained based on

inorganic species only. By doing so, the correlations between the observed PM» 5 and

the predicted PM 5 were also improved (Shin et al., 2022).

Another study in Hong Kong showed the importance of SOA tracers (Hu et al.,

2010). In PMF analysis, the primary and secondary source contributions to OC in PM> s

were determined by considering major inorganic compounds and organic tracers. This

study emphasized that SOA tracers gave a specific identification in PMF profile, such

as phthalic acid could trace back to Naphthalene, which was from vehicular emission.

This signifies that the inclusion of SOA tracers plays a crucial role in identifying SOA

components. One advantage of utilizing these SOA tracers is their specificity for a wide

range of SOA precursor classes. Therefore, the inclusion of SOA tracers provides

valuable insights into the characterization and identification of SOA sources in PM; 5.

These studies highlight the importance of organic tracers in PMF modeling, but

the time resolution was low due to the limitation of manual field sampling. Relatively

few studies have been performed incorporating low time resolution data of organic

compounds and high time resolution of online monitoring data.

In this study, three SOA tracers and five POA tracers were selected (Table 1) for

4
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identifying their corresponding sources. 2-methylerythritol (2-MT) is the secondary

tracer for isoprene, which was emitted from the biogenic source (Ion et al., 2005). 2,3-

dihydroxy-4-oxopentanoic acid (DHOPA) is the secondary tracer for toluene, which

was the emission of solvent use (Hopke, 2016; Kleindienst et al., 2004; Kleindienst et

al., 2007). Phthalic acid is the secondary tracer for Naphthalene, which is the emission

of vehicles and incomplete combustion of carbonaceous materials (Wang et al., 2015).

As for POA, levoglucosan, succinic acid, cholesterol, arabitol, and mannitol were

selected. Levoglucosan is produced by the thermal alteration of Carbohydrates and

starch which is a marker for biomass burning (Bhattarai et al., 2019; Chan et al., 2005).

Arabitol and mannitol are key components of fungal spores (Bauer et al., 2008).

Succinic acid is one of the low molecular weight dicarboxylic acids (DCAs), which

accounts for an appreciable fraction of the WSOC in biomass-burning aerosols (Akhtar

et al., 2014; Falkovich et al., 2005). Cholesterol is emitted from food cooking (Rogge

etal., 1991).
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Table 1 Summary of the organic markers of target sources

Compounds Type Sources References

2-MT Secondary Biogenic (Edney et al., 2005; Ton et al., 2005)
(Isoprene)

DHOPA Secondary (1) Solvent use (Ding et al., 2017; Kleindienst et
(Toluene) (2) Traffic related al., 2004; Kleindienst et al., 2007)

(3) Biomass burning

Levoglucosan Primary Biomass burning (Bhattarai et al, 2019; Chen &
Lippmann, 2009)

Phthalic acid Secondary (1) Vehicular emission (Wang et al., 2015)
(Naphthalene) (2) Aromatic compounds

Arabitol Primary Fungal spores (Bauer et al., 2008; Golly et al.,
Mannitol Primary 2019)
Succinic acid Primary (1)Photo-oxidation of (Akhtar et al, 2014; Dai et al,

unsaturated fatty acid (from 2011)
Plants and Domestic cooking)

(2) Biomass burning

Cholesterol Primary Cooking marker (He et al., 2004; Rogge et al., 1991)
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1.4.Study aims

The main purposes of this study are to:

(1) Combine high time resolution online monitoring data and low time resolution

organic compounds data in PMF modeling.

(2) Examine the effectiveness of the organic tracers brought to the factor identification

in PMF.

The overall study design is shown in Figure 1.
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Data collection (Daan station)
Hourly Monitoring Data 12-hour filter PM, ; Data

+ Sampler: Sunset OC/EC + Sampler: AFCS
Model 4, Xact635i, IGAC + Chemical analysis: UPLC-
+ Species: PM,;, elements, MSMS

ions, OC/EC + Species: 8 organic tracers
+ 3-hour averaged

Data pretreatment

Null and Disposal and substitution
Missing data

Descriptive N, mean, std, min, max
Statistics

BDL and S/N BDL>70% then dispose
S/N < 0.5 then dispose
0.5 < S/N < 1 then uncertainty*3

calculation Conc > MDL Xij

Uy = J(D'S X MDL;)* (0.1 X xy)?

Conc< MDL | 1/2MDL | 5/6MDL

Missing Median | 4Median

Median:The median of each season

Double K and K*
counting Cland CI
Ca and Ca?*
S and SO,*

Modeling: ME-2 (Multiple Time Resolution)
Model 1: without organic compounds
Model 2: with organic compounds

Figure 1 Scheme of this study for source identification
8
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Chapter 2 Materials and methods

2.1. Sampling site

Taipei, the capital city in Taiwan with a population exceeding 2.6 million, faces a
notable vulnerability to air pollution. This susceptibility is attributed to its geographical
location within a basin, encircled by mountains, and characterized by a high population
density. Though the concentration of PM» s in Taipei was decreasing year by year due
to the implementation of air pollution controlling plan, the annual concentration of
14.01£1.94 pg/m?® (£ # # #< T8 3k & > 2021) was still above the recommended
concentration of WHO Global air quality guidelines (10 pg/m?). The online PM, s
composition measurements used in this study were collected at the Daan air monitoring
station (Figure 2), which is located at the bustling and densely populated area in Taipei.
The station is 4 floors above the ground, situated on Zhongxiao East Road, which is a
major thoroughfare that connects several important neighborhoods in the city. The
measured data including temperature, wind speed, humidity, and air pollutant
concentrations such as PMa 5, PM1o, ozone (O3), nitrogen dioxide (NO»), sulfur dioxide

(80»), elements, OC/EC, etc.
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2.2. Study Period

The study was designed to collect data of three seasons. Transported pollutants

brought by northeast monsoons from neighboring countries could cause a significant

impact on the air quality in northern Taiwan during winter. Therefore, the field sampling

was conducted for three to four weeks in each season (Appendix 2) so that the results

could be compared between seasons. The data of Daan monitoring station from

November, 2022 to April, 2023 was used in this study.

2.3. Sampling instruments

Two Automatic Filter-Changing Samplers (AFCS, PNS 16T-6.3, Comde Derenda;

Germany) were used to collect 12-hour filter samples, which was also applied in

previous studies (Siudek & Ruczynska, 2021; Yatkin et al., 2020). Two filters were

collected at the same time for 12 hours. AFCS automatically transferred the new filter

to the sampling position, and when the sampling was done, the sampled filter would be

transferred back to the cooling chamber. Samples were collected at the flow rate of 38.4

L/min, and the flow rate were checked before and after sampling. The Whatman® QM-

A quartz filters (2.2 um, 47 mm) were used, and filters were pre-baked at 900 C for 4

hours to prevent the residual organic compounds on filters before sampling. Each

sampled filter was preserved in the petri dish, wrapped with parafilm, and stored at -4

11
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C until chemical analysis.

Sunset OC/EC Model 4 was used to measure the OC/EC concentration. The

Xact6251 (Cooper Environment Services, OR, USA) using energy dispersive X-ray

fluorescence (ED-XRF) method was operated to measure forty-two PM s elemental

compositions. Eleven water-soluble ions were analyzed using an In-situ Gas and

Aerosol Composition monitor (IGAC Model S-611EG, Machine Shop, Fortelice

International Co., Ltd., Taiwan) with an ion chromatography (IC) system.

2.4. Chemical analysis of organic tracers

2.4.1. Organic compounds analysis

To identify the possible organic aerosol sources more specifically, this study

collected 12-hour time-integrated filter samples for chemical analysis of PM» 5 organic

components. Two filters from the same period of time were analyzed as one sample

because the doubled mass could be helpful in the UPLC-MS/MS analysis. Isotopes of

selected organic markers were used as internal standards (IS) for quality control. Each

sample was spiked with 1 ug IS, followed by vortex mixing for 30 seconds, ultrasonic

extraction using 10 mL of methanol for 20 min, and separation to obtain the supernatant.

The resulting extracts were filtered through a 0.22 um polytetrafluoroethylene (PTFE)

filter, and the filtered extract was preserved in the amber vial for the following
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chromatography analysis. 5 uL of the final extract was injected into a Waters ACQUITY

Ultra Performance Liquid Chromatography I-Class system (Waters, Milford, MA, USA)

coupled with a Waters Xevo TQ-XS tandem mass spectrometer (UPLC-MS/MS).

Two protocols were used for analyzing the organic compounds. Method 1 was

designed for the analysis of 2-MT, DHOPA, levoglucosan, phthalic acid, succinic acid,

arabitol, and mannitol using a Hypercarb column (2.1 mm x 50 mm, 3 um). Method 2

was designed for the analysis of cholesterolusing a CSH Phenyl-Hexyl column (3.0 mm

x 50 mm, 1.7 um). Method 1 was operated with UniSpray in negative mode, whereas

APCI positive mode was used in Method 2. Ions were monitored with multiple reaction

monitoring (MRM) modes. The gradient separation of Method 1 was conducted with

0.05% NH4OH (v/v) in water (eluent A) and acetone (eluent B), and Method 2 was

conducted with deionized water (eluent A) and methanol (eluent B). Details of the

gradient separation are listed in Table 2. Please refer to Chou (2021) and Albinet et al.

(2019) for detailed information on organic component analysis.

To identify the compounds, the retention times of the LC peaks and the ion spectra

were compared with those of certified standards. Calibration standards were prepared

by adding different quantities of certified standards and a known amount of IS on quartz

filters. Calibration curves were then constructed by plotting the peak area ratios

between the calibration standards and IS against the concentrations of the calibration
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standards. This approach allowed for accurate quantification and identification of the

compounds in the samples. These methods were technically supported by Prof. Chia-

Yang Chen from Institute of Environmental and Occupational Health Sciences, College

of Public Health, National Taiwan University.

Table 2 Gradient separation of Method 1 and Method 2

Method 1 Method 2

Column Hypercarb CSH Phenyl-Hexyl

Oven temperature (°C) 35 40

Flow rate (mL/min) 0.2 1.0

Injection volume (puL) 5 5

Mobile phase A: 0.05% NH4O0H (aq) A: Water
B: Acetone B: Methanol

Gradient (min) A (%) B (%) (min) A (%) B (%)
0 97 3 0 70 30
1.5 97 3 0.5 70 30
3 0 100 3 0 100
4.5 0 100 4 0 100
5.5 97 3 4.2 70 30
8 97 3 6.5 70 30
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2.4.2. Data Quality

Lab and field blank samples were also collected and measured for QA/QC and/or
blank subtraction. The limits of detection (LOD) and quantification (LOQ) were
determined as the lowest analyte concentration that yields a signal-to-noise ratio of 3
and 10, respectively. Method Detection Limit (MDL) were determined as three times
standard deviation of 7 blank filters. Details of the compound spike recovery and MDL
are listed in Appendix 3.

The matrix effect was tested by the post-extraction spiked method before the
analysis of real samples. Matrix-containing recoveries of spiked samples fell within 80
to 120% (Appendix 3), which meant that potential interference could be ignored. Each
batch of samples (14 samples) was conducted with two field blanks and one lab blank.
For each batch of samples, one calibration curve was conducted (R>>0.990), and the

concentration of samples should fall within the range of the calibration curve.

2.5. Receptor model (PMF)

The application of PMF involved using a bilinear receptor model based on the
concept of a mass balance equation. This approach was employed to identify and
quantify potential sources of the observed air pollution levels (Paatero and Tapper,

1994). The model is written as:
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C (1)
X = Z Jirfrj + €ij
k=1

The measured concentration of the j chemical species in the i sample is represented
by xij. The contribution from the k™ source factor to the i sample is denoted as gik. The
source factor, fij, is associated with a real-world source profile, which defines the
fraction of the j chemical species in the k™ source. The residual term is represented by
eij, and p represents the number of sources

The factor contributions and profiles are derived by minimizing the objective

function Q:

Q= Zn:ilxu Y= .1glkfk]l (2)

i=1j=1 ]

where u;; is the uncertainty that corresponds to the j™ species in the i sample, n is the
number of samples, and m is the number of species, representing the size of the
measured concentration matrix.

In this study, The Multilinear Engine (currently in its second version, ME-2) was
applied for PMF modeling of the multiple time resolution data. ME-2 is a flexible PMF
variation applicable to chemically-speciated pollutants considering the different time
scales(Crespi et al., 2016; Kuo et al., 2014; Liao et al., 2015; Liao et al., 2013; Ogulei
et al., 2005). To integrate the data in PMF model, the original bilinear CMB equation

of PMF is adjusted as (Zhou et al., 2004):
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ts2

! Zp: z N 3)
xS] - tsz _ t51 + 1k=1 ik fk] 651

i=ts;
where X is the measured concentration of species j in sample s. ts is the end of time,
while ts; is the start of the time for sample s. The time unit is “hour” which is consistent
with the high time resolution data. Fij denotes the concentration of species j in source
profile p, and gik denotes the normalized time series of source p. P denotes the total
number of sources and es; is the residual term.

The fraction # in the formula means taking the average over the sampling
time for individual sample xs. For the low time resolution organic compounds data, ts>
=12 (hour), ts1 = 1 (hour), so the contribution is divided by 12 hours. To highlight the
organic compounds in the model, the hourly data were averaged into 3-hour data and
thus to2 = 3, ts1 = 1 (hour). The ratio of high resolution and low resolution changed from
1:% to 1:%, which meant that the importance of organic compounds increased in this

model. The fitting performance of the MTR model is verified by previous researches

(Sofowote et al., 2021).

2.6. Data preprocessing
2.6.1. Calculations of uncertainties
The associated uncertainties (u;;) of measurements were calculated from method
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detection limit (MDL) and mass concentration. The equation is as follows:

uij = \/(05 X MDLU)Z + (01 X xi]')z (4)

where MDL; is the MDL of the j species in the i sample. If the measured mass
concentration fell below MDL, it was replaced with half of the MDL value, and the
corresponding uncertainty was set as 5/6 of the MDL value. In cases where values were
missing, they were replaced by the median value of the season and their uncertainties
were set as four times the median (G. Norris et al., 2014). The summary of the data

pretreatment are shown in Table 3.

18

doi:10.6342/NTU202303372



Table 3 The summary of data pretreatment

Condition Concentration | Uncertainty
Conc > MDL Xij
Uj; = \/(05 X MDLU)Z + (01 X xij)z
Conc < MDL 1/2MDL 5/6MDL
Missing Median 4Median

2.6.2. Model parameter settings

Signal-to-noise ratio (S/N) is a parameter for qualities of species:

ifxi]- > Sl'jl then dl] = (xl-j _Si]')/si]'

elseif x;; < s;j,thend;; =0

S
(N)j =

1 n
_Z d;; (5)
Néaij=1

where x;j represents the mass concentration of the j species in the i™ sample, and sjj

represents the corresponding uncertainty. S/N greater than 1 indicates a species with a

“good” signal. The species with S/N greater than 0.5 but less than one were categorized

as “weak”, and S/N less than 0.5 were categorized as “bad” in quality. The uncertainties

of “weak” variables were down-weighted by tripling their original uncertainties. The

variables categorized as “bad” and those with more than 70% missing and below

method detection limit (BDL) values were excluded from the model (Kuo et al., 2014;
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Paatero & Hopke, 2003). The species with Spearman correlation coefficient between
observed and predicted values smaller than 0.6 was omitted from the model.

The maximum individual column mean (IM) and the maximum individual column
standard deviation (IS) were used to determine the appropriate number of sources. The

equations of these two indicators are as below:

1\ 6)
M= m (5}1’1‘)

and

(7)

X
j=1.m n—1

n
1
IS= ma Z(rl-j - fl-)z
i=1

where rjj is the scaled residual of the j species in the i sample, and tj is calculated as
residual divided by uncertainty. These two indicators represent the least fit of species
in the factor solution. When the number of factors reaches a critical value, IM and IS

will experience a significant drop (Lee et al., 1999).

2.6.3. Source profile interpretation
The source profile was interpreted by the explained variation (EV) of each species,
which was used to compare the importance of each species in the source (Anttila et al.,
1995; Lee et al., 1999). EV is calculated as:
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n ij
=1 .2
EV,=1- =
n Xij 7)
=1 0.2

where ¢; is the residual for the /™ species in the i sample. £V should be less than or

equal to 1

2.6.4. Mass Reconstruction
The purpose of mass reconstruction is to identify potential measurement errors and
assess data quality by comparing the calculated sum of the main components within
PM; 5 with the measured mass concentration of PM3 s.
The PMa2 5 mass reconstruction is primarily calculated using seven chemically
representative components (Figure 3), with the following formula (Chow et al., 2015) :
RPM,: = [OM] + [EC] + [SIA] + [CM] + [SS] + [TE] + others (8)
The "others" component represents uncalculated or unidentifiable constituents. It
should be noted that the element Al (aluminum) was not measured at the Daan station.
Therefore, the calculation for PM» s mass reconstruction in this project does not include
Al. However, since metals usually account for a small proportion within PMy s, its

exclusion is not expected to significantly impact the calculation results.

21

doi:10.6342/NTU202303372



Reconstructed PM, s

Organic

Organic Matter (OM)
=1.4[0(]

| |

Elemental Carbon (Black carbon) (EC)
= [EC]

Secondary Inorganic Aerosol (SIA)
= [NHf]+ [NOs] + [non — sea — salt 503_]

Crustal Material (CM)
= 7.73[Al] + 1.63[Ca] + 2.42[Fe] + 1.94[Ti]

Sea Salt (SS)
= 2.54 X [Na™]

Trace Elements (TE)
= [V]+ [Cr] + [Mn] +[Ni] + [Cu] +[Zn] + [Ba] +[PDb]

Figure 3 The calculation of major chemical component of mass reconstruction (non-
sea-salt SO42: SO4* - 0.252[Na'] ) (Chow et al., 2015)

2.7. PMF modeling

Two different time resolution of PM2 s compositions were collected in this study.

The 12-hr filter samples were analyzed for 8 organic acid components. This study used

the data of Daan monitoring station from November, 2022 to April, 2023. The hourly

monitored measurements included 43 heavy metal elements, 2 carbon components, 10

water-soluble ions, and the 12-hour time integrated samples included 8 organic

compounds . The main sources of PM> s affecting the air quality in Taipei City were

22

doi:10.6342/NTU202303372



estimated by PMF model with multiple time resolution data.

Chapter 3 Results and Discussions

3.1. Summary statistics and data pretreatment
3.1.1. Mass reconstruction

In the application of the Chemical Mass Balance model for source apportionment
of pollution, the reasonable difference between the "observed PM2s" and the "mass
reconstructed PM; 5" is defined as 100% + 20% (Watson, Chow et al. 2004). However,
this range is mostly applied to daily data. Considering that the hourly data may contain
higher variability, 40% difference was selected as the screening criterion in this study
to examine the data quality of PM2s. Unfortunately, the data quality of November did
not meet the standard. The values that were out of standard (100% + 40%) accounted
for 52% of the PMs measurements in November. (Appendix 4). As a result,
reconstructed PM». s mass was used as the total variable in the PMF modeling (Walton

et al., 2021).
3.1.2. Data pretreatment

To avoid duplicating concentration calculations, the following species were
selected for modeling based on their better data quality and importance of source
identification (Appendix 5): SO4* (excluding S), element K (excluding K*), element

Ca (excluding Ca*"), and CI" (excluding elemental Cl). To maintain the rationality and
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consistency of the analysis, the data preprocessing followed the PMF operating

guidelines of US Environmental Protection Agency (Gary Norris et al., 2014). The

species with more than 70% missing and below method detection limit (BDL) values

were excluded from the model, and signal-to-noise ratio (S/N) less than 0.5 were also

excluded. If the Spearman correlation between the predicted and observed values of a

species in the model is less than 0.6, it indicates bad performance of the model's

prediction, and the species should also be removed (Huang et al., 2022). The Spearman

correlation for Ba was less than 0.6. However, it was an important non-exhaust traffic

emission indicator. Thus, Ba was kept in the model, and the uncertainty was down-

weighted by 3 times to reduce their influence on the analysis results. The signal-to-

noise ratio (S/N) for cholesterol was less than 0.5, and the model performance became

worse after including cholesterol. Cholesterol was excluded from the input data. After

processing based on the above conditions, a total of 24 species were used for PMF

model analysis. The detailed summary statistics of PM2 s components data are shown

in Table 5.
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Table 4 Summary statistics of PM» s components data collected at Daan AQS (ng/m?)

hourly on-line measurements

12-hr Filter samples

Xact 6251

IGAC S611-EG

UPLC-MS/MS

Species N MDL BDL (%) Mean SD Min Max
PM>s 1385 2000 27 10191.21 6333.86 1889.46 39430.62
K 1653 1170 3 122.67 245.46 ND 4427.38
Ca 1653 300 2 66.77 69.48 3.03 641.83
Ti 1653 160 3 8.7 11.51 ND 141.93
A% 1653 120 46 0.78 1.06 ND 10.6
Cr 1653 140 47 0.68 1.17 ND 26.03
Mn 1653 170 25 5.66 7.36 ND 69.17
Fe 1653 140 2 142.14 119.52 5.52 1386.89
Ni 1653 100 29 0.77 0.94 ND 12.25
Cu 1653 79 3 5.75 11.75 ND 207.98
As 1653 1900 14 25.37 30.54 ND 472.97
Zn 1653 67 3 1.14 0.91 ND 6.25
Se 1653 81 77 0.26 0.44 ND 3.57
Br 1653 100 7 4.92 4.06 ND 26.47
Ba 1653 39 71 431 25.58 ND 507.13
Pb 1653 130 35 3.55 13.23 ND 348.23
oC 1572 400 10 2749.56  1480.91 713.9 10653.3
EC 1572 200 24 482.39 292.83 54.97 2758.4
Na* 1490 50 21 248.59 144.58 ND 1172
NH4" 1504 55 17 1168.18  1103.92 23.18 7397.6
Cr 1504 36 18 389.17 295.25 ND 4925.6
NO2 1504 45 60 77.1 105.71 ND 2127.8
NOs” 1504 45 18 1458.07  1823.55 ND 12687.8
SO4* 1504 38 17 1865.57  1379.83 ND 7637
2-MT 140  0.56 58 0.61 0.81 ND 491
Levoglucosan 140  0.61 0 16.98 11.11 4.11 69.35
DHOPA 140  0.21 3 1.80 1.95 ND 9.06
Phthalic acid 140  2.15 1 13.66 12.46 2.10 62.08
Arabitol 140 0.24 20 2.27 2.89 ND 19.82
Mannitol 140  0.31 10 8.88 12.85 ND 76.26
Succinic acid 140  0.31 0 36.11 17.02 10.60 85.43
Cholesterol 140  0.00 60 0.38 0.43 ND 1.95
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3.2. Factor Identification

After data preprocessing, 3-hour averaged data of 24 species from Daan monitoring

station were used for PMF model analysis, referred to as "Model 1". To evaluate the

impact of organic components on the model results, an additional 7 organic species

were included for PMF analysis, referred to as "Model 2". The hourly data was tested

also, and the factor identification was similar to the results of 3-hour averaged data.

3.2.1. Factor Identification of Model 1

In order to determine the appropriate number of factors for pollution source

apportionment, Model 1 was executed with 3 to 8 factors. Based on mathematical

indicators IM (maximum individual column mean) and IS (maximum individual

column standard deviation), it was inferred that the most likely range for the number of

factors was between 5 and 6 (Figure 4). One of the factors in 5-factor solution were

“sea salt” mixed with “traffic related”. The profiles of 6-factor solution were divided

into different sources. Therefore, 6 factors were chosen as the optimal solution for

Model 1. On the other hand, for Model 2, the most likely number of factors was 7 or 8.

The “industry” was divided into two in the 8-factor solution. Thus, 7 factors were

selected as the best solution for Model 2 (Figure 5).
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The profiles of the 6 factors obtained from the PMF analysis of Model 1 are shown

in the Figure 6. The factors were identified and named based on the indicator species

within the profile (EV > 0.4).
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Traffic related source was identified by high EV of Cu, OC, EC, NO>, and
moderate EV of Ba. Cu potentially originated from the abrasion of brake pads on
vehicles during their operation (Gugamsetty et al., 2012; Querol et al., 2007; Vallius et
al., 2005). Ba was added to lubricating oil to prevent engine damage (Kim et al., 2004).
NOy originated from traffic emissions (Liao & Wu, 2020; Wang et al., 2005).
Contributions from the traffic related source rised during peak traffic hours at 8:00-

10:00 and 17:00-19:00 (Figure 7).
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Figure 7 Diurnal plot of Model 2

Factor 2 was characterized by the highest EV of Ca, Ti, and moderate Fe. Ca, Ti,
and Fe are primarily crustal elements and are associated with dust (Chow et al., 2015;

Galvao et al., 2021). Additionally, some literature suggested that Ca and Ti might also
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be related to construction activities (Galvao et al., 2021; Karnae & John, 2011). Due to
the distinct characteristics of crustal elements, this factor was named "dust" (Liu et al.,
2016; Liu et al., 2017) .

Oil combustion was identified by V and Ni. Previous studies have shown that ship
engines exhaustion contents V and Ni, which are common indicators of oil combustion.
The ship engines exhaustion was from the burning oil by ships in nearby ports
(Gugamsetty et al., 2012; Vallius et al., 2005). Moderate level of NHs" and NOj3
indicated that this pollution source was related to both combustion and secondary
pollution sources. Taipei City has tightened its boiler emission standards since 2017
and gradually phased out fuel boilers. Therefore, fuel-related pollution sources may
come from port ship engine emissions or cross-regional transportation.

Coal combustion/industry was characterized by Pb, K, As, Se, Br, NH4" and
SO4%. Se can be found in coal combustion ash in the form of SeO», which may also be
related to coke and steel production facilities (Lee et al., 2008). Br, K, and Pb originated
from industrial sources and combustion activities, such as coal burning, metal
processing, or smelting (Han et al., 2006). NHs" and SO4* indicated secondary
ammonium sulfate, which are related to industrial activity emissions and is an indicator
of inorganic secondary pollution (Hopke, 1985). Furthermore, the presence of Pb

suggested the possibility of long-range transported pollution, which could be associated
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with coal combustions and industrial emissions (Hsu et al., 2005; Janhéll et al., 2003).

The contribution of six sources and the reconstructed trend of PMjy s concentration

(RPM) are shown in Figure 8. From 2023/1/7 to 1/9, coal combustion/industry had the

highest contribution, and the potential source regions of coal combustion/industry can

be estimated by using the backward trajectory analysis using HYbrid Single-Particle

Lagrangian Integrated Trajectory (HYSPLIT) model developed by National Oceanic

and Atmospheric Administration (Draxler & Rolph, 2010). The height could be selected

to meet the actual sampling height and the atmosphere above, and the model could

simulate the air mass backward trajectory line through calculation based on

meteorological condition. A 24-hr HY SPLIT model at the height of 1000 meters above

ground level was implemented. It was observed that the backward trajectory of this

factor originates from Keelung and eventually traced back to China (Figure 9).

Therefore, the pollution of coal combustion/industry was transported from industrial

districts of China brought by the northeast monsoon.

Recognized by high EVs of Cr, and Mn, the sixth factor could be associated with

industrial emissions (Han et al., 2006). Due to the limited number of industrial sources

within Taipei City, it is likely that the pollutants originate from various industrial parks

located in the surrounding regions (Liao & Wu, 2020; Liao et al., 2017). Na" and CI’

are typical components of sea salt, therefore the last factor was named “sea salt” (Lee
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et al., 1999; Vallius et al., 2005).
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Figure 9 Estimation of the source of coal combustion/industry by backward trajectory
HYSPLIT model (24-hour duration)
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3.2.2. Factor Identification of Model 2

The sources corresponding to the organic compounds in this study are shown in
Table 5. After adding organic compounds into analysis (Figure 10), Model 2
additionally identified a pollution source named "Biogenic Source." Characteristic
species including 2-MT, arabitol and moderate loading of mannitol. 2-MT is commonly
used to trace the SOA formation from isoprene oxidation and primarily originates from
biogenic sources (Edney et al., 2005; Ion et al., 2005). Arabitol and mannitol, on the
other hand, are the components of fungal spores (Golly et al., 2019). Biogenic pollutants
exhibited higher concentrations during daytime and lower concentrations at nighttime.
2-MT is a secondary tracer of isoprene, and it is an important marker for identifying
biogenic source. Isoprene undergoes photochemical reactions with NOx emissions
from vehicles and machinery, leading to the formation of 2-MT (El Haddad et al., 2011;
Garcia et al., 2017). This process could be a possible reason for the higher daytime
contributions observed in Figure 7.

The environments in Taiwan are suitable for fungi to grow, due to the relative
humidity higher than 70% and temperature of 20-30 °C(Li & Kuo, 1992). Figure 11
shows that the two peaks of the high contribution of biogenic source occurred at
2022/11/12 and 2023/4/5. The backward trajectory paths primarily originated from the

surrounding mountainous areas like Yilan (45 3&! 35 % 3| 2B % & o ). Itis speculated
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that the biogenic aerosols from the natural environment in these peripheral regions are

transported to the Daan monitoring station.
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Table 5 The sources corresponding to the organic compounds in this study

Compounds Type Apportion to ...
Secondary . .
2-MT Biogenic
(Isoprene)
Secondary  Biogenic
DHOPA o
(Toluene) Coal combustion/industry
Levoglucosan Primary Traffic related (+Biomass burning)
L. Secondary  Coal combustion/industry
Phthalic acid
(Naphthalene) Traffic related
Arabitol Primary
‘ Biogenic
Mannitol Primary
Succinic acid Primary Traffic related (+Biomass burning)
Cholesterol Primary Excluded from the data
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Figure 11 The contribution of six sources and the reconstructed trend of PM> 5

concentration (RPM) of Model 2
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Phthalates are diesters of 1,2-benzenedicarboxylic acid (phthalic acid) widely used

in industrial applications (Gadi et al., 2019). Phthalic acid is used to trace the secondary

organic aerosol (SOA) derived from naphthalene, typically originating from incomplete

combustion of carbonaceous materials or industrial use (Wang et al., 2015). It was

apportioned to the coal combustion/industry and traffic in the profile of Model 2.

DHOPA is a marker for solvent use, traffic emission, and biomass burning (Ding

et al., 2017; Kleindienst et al., 2004; Kleindienst et al., 2007). The EV of DHOPA did

not exceed 0.4 in all factor. It might be because of the broad range of the source types.

DHOPA is a unique product from the oxidation of toluene in the presence of elevated

NOx (Kleindienst et al., 2007), and it has been identified as a tracer for toluene SOA

(Gao et al., 2019). The temporal trend was similar to 2-MT due to the reaction of NOx

in the daytime (Yuan et al., 2018). This might be the reason why moderate EV of

DHOPA were apportioned to the biogenic source.

Levoglucosan and succinic acid are common markers of biomass burning (Elias

et al., 2001; Urban et al., 2012; Yen et al., 2022). However, levoglucosan and succinic

acid were apportioned to traffic related source of Model 2 with moderate loading of OC

and EC. It was speculated that this might because of specific spatial direction and

temporal trends of levoglucosan were similar to traffic emissions, causing different

pollution sources to be mixed into the same factor. Some studies had found that traffic
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related source could mix with biomass burning (Benchrif et al., 2022; Liu et al., 2016).

Potassium element (K) and potassium ion (K*) were considered as a marker for
biomass burning in previous studies (Andreae, 1983; Lewis et al., 1988; Puxbaum et
al., 2007; Watson & Chow, 2001). However, in the current study, K has a low correlation
with levoglucosan (=0.18) (Figure 13) while the data quality of K* prevented such a
correlation calculation. Although K™ was regarded as a better marker than K (Lewis et
al., 1988; Puxbaum et al., 2007), in Urban et al. (Urban et al., 2012) the authors still
showed that some circumstances could cause a strong influence of non-biomass burning
sources of K* (e.g. from fertilizers), indicating the importance of using levoglucosan as
a marker for biomass burning.

Model 2 provided an opportunity to examine the source mixing issue. The
correlation between biomass burning markers (levoglucosan and succinic aid) and
traffic markers (Cu and Ba) are shown in Figure 14. The data quality of Ba was not
high, therefore the value for reference of the correlation was relatively low. The
correlation between levoglucosan and Cu was 0.35, supporting the modeling results of

retrieving a traffic related factor mixed with biomass burning.
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In this study, the number of not detected (ND) concentration of the cholesterol
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accounted for 60% of the samples (Figure 15), which lead to the low data quality. Table
5 summarized the concentrations of cholesterol measured in previous studies, and the
concentration ranged between ND-6.3 ng/m?® (other compounds are shown in Appendix
7). Source apportionment research showed that cholesterol appears to be one of the
most useful tracers for meat smoke (He et al., 2004). Therefore, the concentration of
cholesterol could differ from each country due to their cooking styles. Before the main
field campaign of this study, a pilot test sampling was conducted at a restaurant
ventilator, where the cooking exhaust gathered and released into the atmosphere. The
concentrations of cholesterol ranged between 0.6-3.7 ng/m>. In the current study, the
average concentration of cholesterol was 0.37, and the concentration ranged between

ND-1.95 ng/m?.
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Table 5 Atmosphere concentrations of cholesterol of previous studies

Sampling time  concentration

studies Study site
(hour) (ng/m?)
This study Taipei, Taiwan 12 ND-1.95
Kathmandu
(Islam et al., 2020) 24 ND-2.9
Valley, Nepal
(Schauer et al., 1996) Los Angeles 24 1.9-2.7
(Fine et al., 2004) Los Angeles 3.5 ND-3
. Pittsburgh,
(Robinson et al., 2006) . 24 0.5-2.5
Pennsylvania
(Wang et al., 2009) Beijing, China 12 2.0-5.0
(He et al., 2006) Beijing, China 24 0.05-6.3
Kuala Lumpur, 24(urban)
(Omar et al., 2007) . ND-3.7
Malaysia 48(rural)
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3.2.3. Seasonal variation

The contributions of each factor in the three seasons are shown in Figure 16. The

contribution of coal combustion/industry was relatively high in winter compared to

the other two seasons. It could be observed that the backward trajectory of this factor

originated from Keelung and eventually traced back to China (Figure 8). According to

Taiwan EPA, during the northeast monsoon, the southward intrusion of continental

cold high-pressure systems, or when high-pressure systems move offshore, the wind

direction near Taiwan often became northerly or northeasterly. Such wind directions

prevailed during the winter, and the wind intensity was relatively stronger. When

foreign pollutants accompanied the northeast winds and moved into Taiwan, areas that

were originally well-ventilated may experience high concentrations of air pollution

(https://airtw.epa.gov.tw/cht/Encyclopedia/pedia02/pedia2_1.aspx ).

Autumn Winter Spring
(Nov. — Dec.) (Jan.) (Mar. — Apr.)
6.0%
12.3% 07% L. ,14.7% 12.5%

| l 12.3%

10.2% i

; 24.7%
9.3% '
| 9.1%

&
B

7\ 4

1.9% 15.2% 12.2%

m oil combustion m coal combustion  m traffic dust mseasalt mindustry m biogenic

Figure 16 Factor contribution of three seasons

The contribution of oil combustion increased in spring. Figure 10 shows that
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there was a consistent contribution of oil combustion from 2023/3/31 to 2023/4/1. A

24-hour HY SPLIT model at the height of 500 and 1000 meters above ground level

was executed. It can be observed that the backward trajectory of this factor originates

from Keelung Port and Taipei Port. The contributions of biogenic source in this study

were 12.3%, 6.0%, and 12.5%, comparable to the values (4% to 14%) reported in

previous studies (Table 6) (Khan et al., 2021; Shin et al., 2022; Waked et al., 2014).
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Figure 17 Estimation of the source of oil combustion source by backward trajectory
HYSPLIT model (24-hour duration)
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Table 6 Summary of contributions of biogenic source in previous study

Reference Region Contributions of Season
biogenic source

This study Taipei, Taiwan 12.3% Autumn
6.0% Winter
12.5% Spring

(Khan et al., 2021) | Tianjin, China 14% Summer

(Shin et al., 2022) | Seoul, Korea 4% The hole year

(Waked et al., Lens, France 9% Spring

2014)

The traffic related source was relatively high during winter (Figure 16). During
winter in Taipei, the cooling effect near the Earth's surface, known as radiative cooling,
leads to lower temperatures. As a result, the temperature increased with altitude. Cold
air accumulating near the ground lead to a phenomenon known as the "inversion layer",
and this phenomenon was strengthened by the Taipei basin (Chang & Lee, 2007; Chou
et al., 2007). The lack of vertical convection due to limited air circulation leads to the
accumulation of pollutants, resulting in poorer air quality (Tsuang & Chao, 1999).
Another reason for the higher traffic levels in winter was because biomass burning was
apportioned in traffic source. Usually the contribution of biomass burning was
relatively higher in winter (Song et al., 2007). In present study, the average
concentration of levoglucosan (marker of biomass burning) of winter was 20.75 ng/m?,
which was higher than the concentration in autumn (15.34 ng/m?) and spring (15.40
ng/m>).
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The traffic contribution was lower than expected as an urban site like Taipei

(12.2%, 15.2%, and 22.6%). This phenomenon could be attributed to the vertical

gradient (Ho et al., 2015; Shi et al., 2012). In Liao et al. (2017), data obtained from

various nearby ground-level monitors indicates twice the levels of traffic-related

pollutants (such as carbon monoxide, non-methane hydrocarbons, and nitrogen oxides)

in comparison to those observed at the study site (Liao et al., 2017). The average

concentration of traffic-related pollutants in this study and those measured by nearby

ground-level monitor are shown in Table 7. The concentrations measured by ground-

level monitor were higher than Daan station in the study months. On the other hand,

from the profile of Model 2, it can be observed that SO4*  and NOs” were low, indicating

the possibility of being attributed to other sources.

Table 7 The average concentration of traffic-related pollutants in this study and those

measured by nearby ground-level monitor (ppm)

Monitor station Cco! NMHC? NO?
ground-level monitor (Datong station) | 0.69 0.18 17.79
This study (Daan station) 0.57 0.15 1.78

Icarbon monoxide (CO)
2non-methane hydrocarbons (NMHC)
3nitrogen oxides (NO)

The previous study of source apportionment in Wanhua Taipei collected hourly

VOC concentrations and 24-hour PM> 5 samples for elemental, water-soluble ions and
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OC/EC. The study showed that secondary aerosol/long-range transport was the largest
contributor to PM» 5 (Liao et al., 2017). Another study located in Chongcheng Taipei
has identified NH4" as the primary contributor by using hourly measurements of PMz s
components. This finding suggests that NH4" may originate from local sources or be
transported as secondary aerosol (Liao & Wu, 2020). Sulfates and combustion
emissions are the dominant factors in the concentration of air pollutants in Bangiao (%
A 4% etal., 2018), and this trend remained consistent throughout all seasons.

A secondary aerosol source was not an individual factor in this study, but the
marker of secondary aerosol, including SO4> and NH4", were apportioned into “coal
combustion/industry” moderately. The coal combustion/industry of this study was from
long-range transport (Figure 8), and this result is similar to the study in Wanhua Taipei
that the secondary aerosol and long-range transport were mixed in one factor (Liao et

al., 2017).

3.3. Sensitivity analysis

The proportion of unidentified of Model 1 and Model 2 is 8.75% and 8.86%,
respectively (Figure 18). The R? of predicted and RPM were 0.595 and 0.625,
respectively. Adding organic compounds slightly improved the prediction of PM2 s,
but it was helpful of separation of the potential sources, such as the biogenic source.

Using the reconstructed PM2 s might cause the total PM2 s become too high due
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to the missing value replaced by the median. Although the uncertainties of RPM were

set as three times of original uncertainties, and the impact of missing value on the

model was neglectable, a sensitivity analysis test was conducted to examine the

influence of missing value, by removing the series of missing RPM data that lasted

over 5 days. The proportion of unidentified dropped to 4% after removing data of

December 1-5 (Figure 10). This test represented the limitation of using RPM as total

PMb 5. Removing missing values to a certain extent is necessary to obtain an accurate

"unidentified" ratio. Therefore, when using this method in the future, it is important to

be mindful of the missing value.

Model 1 Model 2
Unidentified Unidentified
8.75% . Traffic
. 0
ngfgf/ Biogenic _16.23%
Sea sal <2 170 10.10%
13.12% Dust
_4.98%
Indust \_]4)15132[% Sea's -
6.52% _/ ' 11.85%
\_16.63%
Coal : mbustion Indus Oil '
combustion 17.39% 8.78% combustio;
27.33% Coal
\ combustion
22.56%

Figure 18 Proportion of the source contribution

3.4. Limitations

There are several limitations in this study:

(1) Background concentrations of cholesterol were low, which cause the
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difficulties in UPLC-MS/MS analyzing. Cholesterol had to be removed from input data

due to its poor data quality. It is known as a marker for cooking emission, therefore,

this study could not identify cooking emission source as the study designed originally.

(2) To highlight the organic compounds in the model, the hourly data were

averaged into 3-hour data. The high time resolution data had been sacrificed for

enhancing the importance of low time resolution (organic markers). It is suggested to

consider increasing the frequency of manual sampling to enhance temporal resolution

in the future study, extending the weighting of organic components in the model

calculations.

(3) The replacement of missing values in this study was the median of each season.

However, there were other methods to obtain values that could reflect reality. For

example, using linear interpolation instead of the median for the missing values could

be more suitable for hourly data. Replacing measured PM> s with reconstructed PMa s

might lead to some issues that did not encounter before, such as missing values replaced

by the median could cause inconsistent with reality.

(4) The traffic contribution was lower than expected as an urban site like Taipei

(12.2%, 15.2%, and 22.6%). From the profile of Model 2, it can be observed that NO3

were low, indicating the possibility of being attributed to other sources of contamination.

(5) In this study, there was a possibility of overestimation in the contribution from
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biogenic sources. Firstly, biogenic sources lack other supporting identifying
components. Secondly, DHOPA was apportioned into the biogenic source. It was
possible that some combustion sources have been apportioned to biogenic sources,

leading to an overestimation.

Chapter 4 Conclusions and recommendations

The sources of PMazs are highly complex, and the three online monitoring
instruments at the Daan station can not measure organic markers that are useful for
identifying sources. This imposes certain limitations on identifying the sources of
organic aerosol pollution. This study improved upon the limitations of the existing
monitoring instruments by analyzing specific organic components, including 2-MT,
DHOPA, levoglucosan, phthalic acid, succinic acid, arabitol, and mannitol. Through
the analysis of organic compounds, this study further differentiated and identified the
sources.

From the results of Model 2, it can be observed that after incorporating organic
components, the PMF model can resolve a "biogenic source" with indicator species
such as 2-MT and arabitol. This source was not previously identified in the field studies
conducted in Taipei (Ho et al., 2018; Huang et al., 2022; Liao & Wu, 2020), and this

finding highlighted the improvement of PMF performance by involving organic
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components. Furthermore, the backward trajectory model suggested that this pollution

source originated from the surrounding natural environment.

For future improvement of the PMF analysis, it is suggested to consider increasing

the frequency of manual sampling to enhance the temporal resolution and extend the

weighting of organic components in the model calculations. Furthermore, tt could be

more persuasive by increasing the sample size in the model inputs, or including the

summer samples. These steps can further enhance the resolution and accuracy of PMF

analysis. For the cholesterol analysis, other methods are suggested, such as using

nitrogen evaporators to concentrate the samples.

Due to geographical location of Taipei, air pollution in Taipei City is influenced

not only by domestic emission sources but also by transboundary transport, leading to

poor air quality during specific time periods. However, in terms of control strategies, it

is still necessary to focus on domestic pollution sources. This study provides a scientific

basis for future consideration and regulation of pollutions in Taipei. According to the

pollution source analysis conducted in this project during winter, the identified

pollution source categories also include local sources such as traffic, oil combustion,

dust, and biogenic source. Therefore, it is necessary to strengthen control measures for

local pollution sources during winter.
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Appendix 1 Calibration curves of 8 organic compounds

Compound name: Succinic acid

Correlation coefficient: r = 0.997583, °2 = 0995172

Calibration curve: 0.749533 * x-+ 1.36306

Response type: Internal Std ( Ref4 ), Area * (IS Conc. /IS Area )
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Succinic acid
R?>=0.996

Compound name: Arabitol

Correlation coefficient: r = 0.995665, r*2 = 0.991349

Calibration curve: 1.16863 * x+ 2.21337

Response type: Internal Std (Ref3 ), Area * (IS Conc. /15 Area )
Curve type: Linear, Origin: Exclude, Weighting: 1/x Axis trans: None
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Appendix 2 Sampling dates marked as color blue
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Appendix 3 IS, Matrix spike recovery rate, and MDL of 8 compounds in UPLC-
MS/MS analysis

Compounds IS Recovery rate (%)  MDL (ng/mL)
2-MT Meso-erythrtol-De 95-109 1.54
DHOPA (Quantified by external 96-105 0.57

calibration)
Levoglucosan Levoglucosan-d; 96-107 1.68
Phthalic acid Phthalic acid-ds4 93-110 5.95
Succicnic Succicnic acid-d4 84-92 0.87
acid
Arabitol D-Mannitol-13C 101-119 0.65
Mannitol 93-117 0.86
Cholesterol Cholesterol-13C 85-119 0.01
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Appendix 4 Mass reconstruction exceeding + 40% of measured PM2 s of each month

month 8 9 10 11 12 1 3 4
missing 13% 9% 11% 23%  25% 11% 9% 20%
Percent of

Y 0 0 0 0 o
exceeding + 40% 29% 39% 28%  S52% 6% 28% 26% 28%
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Appendix 5 Decisions for double counting deletion

Cl Cl S SO4* K K* Ca Cay"
S/N 7.83 5.6 8.24 7.11 8.17 1.21 8.48 5.88
BDL 124 189 &3 185 67 810 63 178
Important Important
marker marker
excluded excluded for excluded excluded
for sea
secondary
salt
aerosols

S/N: Signal-to-noise ratio (S/N) is a parameter for qualities of species.
BDL: the number of below detection limit
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Appendix 6 The presentation of peaks of 8 compounds in UPLC-MSMS analysis
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Appendix 7 Summary of organic compounds concentrations in other studies

Compounds Reference Concentration (ng/m?)
mean minimum maximum

Arabitol This study 2.27 ND 19.82
L. Liang et al, 2016 7.4 0.7 -
Gehui Wang et al, 2011 - 16.0 -

Mannitol This study 8.88 ND 76.26
L. Liang et al, 2016 10.3 0.9 -
Gehui Wang et al, 2011 - 24.0 -

Mengxin Xiao, 2018 253 3.0 138.0

Succinic acid This study 36.11 10.6 85.43
Gehui Wang et al, 2011 - 50.0 -
Monica Ivone A.M et al., 77.0 48.4 -

2020

2-MT This study 0.61 ND 491
Mengxin Xiao, 2018 13.8 1.6 -

Levoglucosan This study 16.98 4.11 69.35
Gehui Wang et al, 2011 689.0 75.0 -
Monica Ivone A.M et al., 354.0 140.9 -

2020

L. Liang et al, 2016 369.2 23.7 -

DHOPA This study 1.80 ND 9.06
Rui Li et al, 2020 3.9 - -

phthalic acid This study 13.66 2.10 62.08
Gehui Wang et al, 2011 60.8 16.4 -

- means not mentioned in the study
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