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Abstract

In the field of embedded systems and consumer electronics, Flash memory

has emerged as an excellent storage system. As prices continue to decline and

capacities increase, NAND Flash SSD is showing the potential to substitute

Hard Disk Drives. As a secondary storage, the reliability and performance

issues are important. The lifetime of Flash-based SSD is limited by the erase

count of Flash blocks. Under the multi-package Flash organization, different

data allocation policies can lead to different number of erase operations. In

this thesis, the effect on performance and erase count resulting from different

data allocation policies and Flash architectures is studied.

In terms of erase count, preserving data locality by keeping request un-

striped leads to less erase count. In terms of performance, the experimental

results show that if the workload is light, stripe request to different banks

effectively reduces response time. However, when the workload is relatively

heavy to the serving Flash architecture, keeping request un-striped still has

comparable performance or even better by the assistance of erase count re-

duction.

Keywords — data allocation policy, multi-bank, Flash storage system
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Chapter 1

Introduction

1.1 Introduction

Flash has several attractive features compared to hard disks, such as faster

read access, low power consumption, small size, shock resistance and relia-

bility compared to hard disks. Therefore, Flash-based solid state disks are

rapidly becoming a popular alternative to hard disk drives as permanent

secondary storage[26]. Today, Flash-based SSD is a mature technology for

mainstream personal mobile computing, and is appealed to server and su-

percomputer market.

However, Flash also has some properties that has prevented a complete

replacement of hard disks. These characteristics including the lower bit den-

sity compared to hard disk drives, a limited number of erase operation, and

the comparably slow write performance. On each of these fronts, Some efforts

have been made. For low bit density, the Multi-level cell(MLC) technology

doubles the bit density and lower the bit cost[23]. Since 2000, the capacity

of NAND Flash memory has been doubled every year[21], and is expected
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to continue at that rate until 2010. Multi-package architecture in SSD has

developed to overcome the slow write speed. By properly coordinate the

memory components and operating in parallel, Flash can achieve higher per-

formance than the bandwidth and operation rate of a single Flash chip[1, 2].

In addition, technological enhancements have improved Flash endurance. For

the issue of prolong Flash’s lifetime, high-end SSD adopts a write buffer or

disk cache to reduce write operations. In Flash translation layer(FTL) de-

sign, many wear-leveling algorithms were proposed to balance erase counts

of SSD blocks.

SSD seems excellent from the above depiction. However, the design of

hardware architecture and the details of the FTL are not well known, and

these are closely related to the actual SSD performance. In this thesis, the

evaluation focuses on studying the effectiveness of the combination of many

existing methodologies. How does different FTL design affects the perfor-

mance and lifetime of a SSD? Does different Flash organization alter the

outcomes? I found the following:

1. Under slight workload, serving one request in parallel greatly reduces the

response time. However, when the workload becomes heavier, the benefit

from spreading one request to many banks becomes less significant.

2. Keeping pages of one request together preserves the request’s locality

which results in better garbage collection efficiency. The erase operation can

be reduced in this way, and lifetime of SSD can be prolonged.

3. If we have limited banks, the benefit of parallel execution reduced. In this

case, reducing the parallelism in exchange for less erase count is a good choice.

If the workload is extremely heavy, performance can even be improved by

2



reducing erase operations.

To have a better understand to the interplay between the hardware and

software design, I constructed a cycle-accurate, trace-driven simulator. The

interconnection and the Flash banks are modeled, and basic functionalities

of FTL are implemented. In this evaluation, different data allocation ap-

proaches and Flash organizations are investigated, and their influence to

response time and number of erase operations is discussed.

The rest of the thesis is organized as follows. Chapter 2 introduces the

background knowledge of Flash memory and SSD basics. Chapter 3 discusses

the tradeoffs of the target data allocation policies. Chapter 4 provides the

experimental methodology and results. Related works are in Chapter 5, and

Chapter 6 concludes this thesis.
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Chapter 2

Background

2.1 Flash Characteristics

Flash memory is a non-volatile computer memory that can be electrically

erased and reprogrammed. There are two types of Flash memories, NOR

and NAND [20]. NOR supports random accesses in bytes, and is mainly

used for storing code. NAND, which has a different internal structure, is

designed for data storage with denser capacity, and only allows access in

units of sectors. The comparison between NAND Flash memory and NOR

Flash memory is presented in Table 2.1. We focus this research on NAND

Flash memory because most SSDs available on the market are based on

NAND Flash memories. NAND Flash memory can be classified into two

categories, Single-Level Cell(SLC) and Multi-Level Cell(MLC) NAND. A

SLC Flash memory cell stores only one bit, while a MLC Flash memory cell

can store two more more bits. SLC has lower operational latency and higher

endurance, while the capacity of MLC doubles that of SLC.

Figure 1 shows a typical architecture of a NAND Flash memory [7]. A
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Factor NOR Flash NANS Flash

Read Performance Very Fast Moderate

Write Performance Slow Fast

Erase Performance Very Slow Fast

Random access Possible Impossible

eXecute In Place (XIP) Supported Not Supported

Capacity Small Large

Cost ($/MB) High Low

Table 2.1: Comparison of NOR Flash and NOR Flash. [16, 5]

typical NAND Flash memory consists of multiple blocks, and a block is

partitioned into a fixed number of pages. The typical block size and page

size are 256KB and 4KB [7].

There are three operations in Flash memory: read, write, and erase. The

read and write operation are done in a unit of page, while the unit of erase

is block. Since a write operation can only change bits from 1 to 0, in-place

update of data is not allowed. To avoid costly erase on every write, Flash

memory performs out-place updates. That is, data is written to a free page,

and the old page is invalidated. Pages with valid data are called live pages

or valid pages, while the ones who were invalidated are named dead pages or

invalid pages.

After a certain number of writes, free space on Flash memory would be

low. Therefore, Flash memory reclaims free page by a process called garbage

collection. A garbage collection process first selects a victim block, copies all

live pages on the block to free spaces, and then erases the victim block. Live

5



page copying is considered as the overheads of garbage collection process.

Therefore, a major consideration of victim block selection is to minimize

these overheads.

The number of erase operations that can be done on a block is limited

(i.e., 100K for blocks on a SLC Flash chip [7] and 10K on a MLC Flash

chip [1]). If the number of erase operation on a block exceeds the threshold,

the worn-out block could suffer from frequently write errors. Therefore, the

garbage collection process should be avoided not only for better performance,

but also longer Flash memory lifetime.

2.2 NAND Flash Package Organization and

Commands

The main Flash chip manufacturers now are Samsung and Micron. The

organization of Flash packages between two manufactory are slightly differ-

ent, which are summarized as the following subsection. In this thesis, the

abstraction of a bank is used to indicate the unit that can do operations

independently for general evaluation.
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Figure 2.1: Samsung 4GB Flash Package.

2.2.1 Samsung Flash Package

Figure 2.1 shows the schematic of a Samsung Flash package[1]. A NAND

Flash package consists of dies (also called chips). Dies in a Flash package

shares an 8-bit serial I/O bus and a number of common control signals. The

chip enable and ready/busy signals can be shared or separated, depending on

the cost consideration. If two dies have separate chip enable and ready/busy

signals, they can operate independently. That is, one can accept commands

and data while the other is carrying out another operation. The package

supports interleaved commands to manage these independent operations be-

tween dies.

Each die within a package contains several planes. A plane consists of

blocks with fix number of pages, and a data register with size of one page.

The functional diagram for a Flash die is shown in Figure 2.2[7]. To issue

a command, the command if first written into the command register. Then,

according to the row address and column address given by controller, the

7



Figure 2.2: Samsung Flash Chip Functional Diagram.

target page or block is decoded by X/Y-Buffers Latches and Decoders. If the

command is a read command, the complete page data will then be loaded to

data register in 25μs, and passed out through the serial interface to controller

buffer in 100μs. If the command is a write command, the written data will

first be written to the data register in 100μs, and then be programmed into

the page in 200μs. If the command is a block erase command, the target block

will be erased in 1.5ms. Samsung also implements a copy-back command.

In a copy-back command, the data is read to the data register and program

back to the destination page without crossing the serial pins.

In addition to conventional single plane operations(i.e., page read, page

program, block erase, ... etc.), Samsung Flash chips also support two-plane

commands. The two-plane commands can be executed on either plane-pairs

0&1 or 2&3, but not across other combinations(such as plane 0&2).
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Figure 2.3: Micron Flash Chip Functional Diagram.

2.2.2 Micron Flash Device

In Micron Flash chip(named ’device’ by Micron), a ’cache mode’ concept

is proposed. A Micron device contains blocks with fix number of pages,

data register, and a cache register as shown in Figure 2.3. In the cache

programming mode, data is first copied into the cache register, and then into

the data register in 3μs. Programming starts when the data is loaded into

the data register. At the same time, the cache register becomes available for

loading additional data. Other operational latencies are similar to Samsung

Flash chip.
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2.3 SSD Basics

NAND-based SSDs are constructed from an array of Flash packages. A

generalized block diagram is depicted in Figure 2. A SSD contains host

interface logic, SSD controller, and an array of Flash packages. The host

interface logic support physical host interface connection(for example, USB,

PCI Express, SATA)[22, 13, 12]. The SSD controller consists of a processor,

buffer-manager, and multiplexer. The processor manages the request flow

and takes care all policies required in FTL layer, such as logical block map,

garbage collection policy, and wear leveling policy. An internal buffer man-

ager holds pending and satisfied requests along the primary data path. A

multiplexer implements the MTD layer, which emits commands and handles

transport of data along the serial connections to the Flash packages.

2.3.1 Logical Block Map and Data Allocation Policy

Since writes to Flash cannot be performed in place as on a rotating disk,

SSD must maintain some form of mapping between logical-disk block ad-

dress(LBA) and physical Flash location. The logical block map is usually

held in volatile memory(for example, SRAM) when SSD is executing, and

reconstructed from stable storage at startup time. The mapping granularity

decides the volatile memory requirement. Larger mapping granularity has

little SRAM requirement, but has to deal with read-modify-write problem

when the written size is smaller than the mapping granularity. In this thesis,

we assume page granularity in address mapping.

The physical Flash location for each write request is decided by the data

allocation policy implemented in the SSD controller. For environment such

10



as multi-package SSDs that multiple job can be executed at the same time,

data allocation policy plays an important role on driving all components. For

example, static striping [4, 24] can spread a long sequential requests to many

packages, but may leave some packages idle if the request is not long enough

to occupied all packages, even if there is some other requests waiting to be

served. On the other hand, dynamic striping dispatches a write command

to any free bank, can better utilize all available resources. More elaborate

discussions of data allocation policies are left to chapter 3.

2.3.2 Garbage Collection

As mentioned before, garbage collection has two decision to make: victim

block selection and destination to copy all live pages. Garbage collection

process is triggered when the number of free pages left is less than a specific

threshold(also known as cleaning threshold). In the multi-bank Flash orga-

nization, to ensure that number of available banks would not decrease, the

number of free pages is usually monitored for each bank. In the live page

copying process, the location of the source and destination blocks determine

the copy method. If the source and destination are on the same plane, the live

page copying process can be carried out by copy-back feature without having

to transfer them across the serial pins. However, garbage collection process

can be accelerated by selecting multiple destinations on different banks, and

copy live pages in parallel by concurrently write to the selected banks.

11



2.3.3 Wear Leveling

Only a limited number of erase operations can be done on a given block, so

wear leveling attempts to prolong the life of a Flash device by re-arranging

data so that erasures and re-writes are distributed evenly across the blocks.

Wear leveling algorithms are commonly triggered during garbage collection

or write operations[11, 6, 3]. A conventional wear-leveling mechanism is to

migrate cold data to an aged block, which has larger erase count. Since

the migration involves several page copies and an erase similar to garbage

collection, it can degrade the system performance.

On multi-bank Flash architecture, the wear leveling cluster[24], is also

a design issue. Only lifetime of blocks within a wear leveling cluster can

be balanced. Therefore, larger wear leveling cluster leads to more evenly

distributed lifetime in SSD. However, the migrating overhead will be larger,

inducing greater system performance degradation

12



Chapter 3

Data Allocation Policies on

Multi-Bank

There are three operations supported by Flash memory: read, write, and

erase. Except for write operations, reads and erases do not need further

assignment, for they are already stored in specific locations. For write op-

erations, since the write unit of Flash is a page, every write request that

comes to Flash has to be transformed to many page writes. The function

of a data allocation policy is to decide the physical Flash location for each

page write. Different data allocation policy leads to different load distribu-

tion, parallelism, and garbage collection efficiency. Generally, there are two

approaches to allocate page writes on multi-bank Flash architecture. The

detail of these two approach and their tradeoffs are described as follows.

13



Figure 3.1: Data Allocation Policies on Multi-bank Flash Architecture.

3.1 Striping

The striping approach is to spread page writes of one request to many dif-

ferent banks. By striping, one request can be served by many banks concur-

rently, thus shortening the response time.

There are two striping mechanisms: static striping and dynamic striping,

as discussed in [4, 24]. In static striping, page writes are allocated by their

logical address. For example, if we have a total of x banks, bank assignment

for each page write equals to LBA(mod x). Shin et al. have studied the

performance of various mappings on static striping [24]. In addition to static

striping, dynamic striping get rid of the address limitation. In dynamic

striping, page write is allocated to any free bank. In this way, banks can be

better utilized. The two striping policies are illustrated in Figure 3.1(a),(b).

Since dynamic striping have better performance, for the rest of this thesis,

14



the term ”striping” refers to dynamic striping.

3.2 Non-Striping

Another approach which works very well with the support of parallel requests

is non-striping, which keeps all page writes of one request to one bank, and

assign page writes of the following request to another bank. An example of

non-striping is illustrated in Figure 3.1(c). If we have two requests to serve,

all page writes of the first write request are assigned to one free banks, and

the page writes of the second write request are assigned to another free bank

if there is any. If the workload is heavy, banks can still be fully utilized in

this way.

3.3 Tradeoffs between Striping and Non-Striping

The tradeoffs between striping and non-striping lie in the parallelism and the

garbage collection efficiency. Consider the example shown in Figure 3.2 and

Figure 3.3 which schemes the simplified outcome(only consider the pure write

time) of two requests dispatched by these two policies. Assume two requests

arrive simultaneously. With striping, which is illustrated in Figure 3.2(a)

the page writes of two requests are scattered to two banks. By spreading the

page writes, the average response time for the two requests is 700μs. With

non-striping, which is shown in Figure 3.2(b), the average response time is

800μs. In terms of the physical pages arrangement in Flash blocks, non-

striping gathers page writes of one request together(i.e., in the same block

for most cases). This increase the possibility that pages within a single block

15



Figure 3.2: The Time Diagram of (a)Striping and (b)Non-Striping Data Alloca-

tion Policy.

Figure 3.3: The Arrangement in Flash Blocks by (a)Striping and (b)Non-Striping.

be invalidated at similar time. For example, if the host issue request 1 again,

the corresponding 5 pages in block 0 will be invalidated at the same time

when using non-striping allocation policy, while 3 pages in block 0 and 2

pages in block 1 are invalidated when striping is adopted.

16



Figure 3.4: Illustration of Different Striping Unit Size. (a) Striping Unit Size =

1 page. (b) Striping Unit Size = 2 pages.

3.4 Striping Unit Size

To examine the trade-off between parallelism and garbage collection efficiency

in more detail, a concept ”striping unit size” is introduced. The striping unit

size restricts the number of pages that must be allocated together. Figure

3.4 shows an example of striping unit size equals to (a)one page and (b)two

pages. In the case of two pages striping unit size, every two page writes are

clustered and allocated together. With larger striping unit size, the degree

of parallelism decreases, but the garbage collection efficiency may be better.

17



Chapter 4

Implementation and Evaluation

4.1 Simulation Environment

In order to study the performance and endurance implications of various data

allocation policies and Flash organizations, a trace-driven, cycle accurate

simulator, as shown in Figure 4.1, is built. Traces are gathered by disk I/O

monitor tools(DiskMon in Windows and blktrace in Linux). The trace are

recorded by a 4-tuple (command, LBA, length, issue time). There are two

Figure 4.1: Trace Driven Flash Simulator.
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Software Implementation

Data Allocation Policies Dynamic Striping

(with various striping unit size

Non-Striping

Address Mapping Mechanism Page-level Mapping

Garbage Collection Policy Greedy

Using Copy-back command

Garbage Collection Threshold 5%

Over-Provision 15%

Default Hardware Configurations(Configurable)

Channel Bandwidth 40MB/s

Number of Banks 4

Number of Channel 4

Number of Banks Per Channel 1

Page Size 4KB

Block size 256KB (64 pages)

Timing Parameters(Configurable)

Page Program Time 200 μs

Page Read Time 25 μs

Block Erase Time 1.5 ms

Table 4.1: Detail Implementation of Flash Simulator.
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type of commands: Read and Write. The LBA and length are all in the unit

of disk sector(512 bytes). The recorded issue time is in μs.

The software implementation in Table 4.1 summarized the software im-

plementation of this simulator. Different data allocation policies have been

implemented, such as dynamic striping with various striping unit size, non-

striping algorithm. In addition to data allocation policies, the greedy policy

is chosen for garbage collection policy for it is the most commonly used

cleaning policy. In hardware configuration, a multi-bank Flash architecture

is implemented. The default configuration is listed in Table 4.1, and are all

configurable. The operational latency is followed by[7], and is also summa-

rized in Table 4.1.
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Benchmark SPECWeb Sysmark PCMark

I/O Requests Per Second 11.9 27.0 91.0

Avg Request Size (KB) 9.8 24 38.6

Write Request % 89.8 55.2 43.5

Write Data % 87.7 42.1 57.4

Table 4.2: Workload Characteristics.

4.2 Workload Analysis

The objective of this thesis is to evaluate the performance and endurance

implication under different data allocation policies and Flash multi-bank or-

ganizations. Since most Flash-based storage in mobile platforms(such as

MP3 players, digital cameras, PDAs, ...etc) are usually composed of only 1

Flash chip, only server and PC workloads are considered in this thesis. The

evaluated traces are selected from three public benchmarks: SPECWeb2005,

Sysmark2007, and PCMark2005. The characteristics of selected traces are

listed in Table 4.2. Two special properties can be observed from the sum-

mary: 1. Major portion(90%) of requests in SPECWeb Banking are write,

while for the two other PC traces, around 50%. 2. PCMark has a extremely

high I/O request arrival rate. Some detail elaborations and request addresses,

length distributions are described as follow.

4.2.1 SPECWeb2005 - Banking

SPECWeb2005 mimics the access patterns of real-world web servers. The

trace selected is ”Banking”, which imitates the trades of online banking. 4

banking transactions are modeled: Account information access or Account

21



Figure 4.2: Properties of SPECWeb2005 - Banking. (a) The Address Graph. (b)

The Length Distribution. (c) The Length Distribution of Request 0 to 3000. (d)

The Cumulative Distribution of Write Requests.

Maintenance related, Bill Pay related, Money Transfer, Loan related. De-

tail transactions and the corresponding returned pages, such as login and

welcome message returns few 4KB pages, account summary returns 17KB

pages, bill pay returns 15KB pages, ...etc, can be referred from website of

SPECWeb2005 [8].

The I/O properties of Banking are depicted in Figure 4.2. Compared

to PC traces which will be elaborated next, Banking consists of many short

requests. A snapshot for request 0 to request 3000 is taken as shown in Figure

4.2(c). As statistic in Figure 4.2(d), 77% requests are equal or smaller than

4KB, and 90% requests are equal or smaller than 12KB. Most of the rest 10%

requests scatter between 12KB and 128KB. The maximum request length is

512KB.

4.2.2 Sysmark2007 - E-learning

Sysmark2007 mimics the access patterns of business users. The trace selected

is ”E-learning”, which imitates the tasks executed in the development of an
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Figure 4.3: Properties of Sysmark2007 - E-learning. (a) The Address Graph. (b)

The Length Distribution. (c) The Length Distribution of Request 37000 to 40000.

(d) The Cumulative Distribution of Write Requests.

on-line teaching facility. The E-learning scenario integrates rich image, video,

and audio content in a web page for presentation of learning materials using

programs predominantly from Adobe cumulating in the creation of an Adobe

Flash file. Some usage examples are: Microsoft Power Point 2003, Adobe

Photoshop, Adobe Flash, Adobe Illustrator.

The I/O properties of E-learning are depicted in Figure 4.3. The footprint

of E-learning, as shown in Figure 4.3(a), is more concentrate compared with

footprint of Banking. Beside, the workload is bursty, similar to the PC

traces gathered in [9]. As mentioned to command type, E-learning has more

read requests compared to Banking. These read requests are mingled with

write requests, and the overlaps of read and write addresses are significant.

When speaking of request length, in addition to some extremely long requests

as shown in Figure 4.3(b), most requests are short, like Figure 4.3(c). As

statistic in Figure 4.3(d), 70% requests are 4KB, and 10% requests are 16KB.
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Figure 4.4: Properties of PCMark. (a) The Address Graph. (b) The Length

Distribution. (c) The Length Distribution of Request 37000 to 43000. (d) The

Cumulative Distribution of Write Requests.

4.2.3 PCMark2005

PCMark2005 developed by the model of home PC usage. The tasks including

file(including ordinary files, image, and audio) compression, decompression,

encryption, decryption, text editing, web page rendering, video encoding,

...etc.

The I/O properties are depicted in Figure 4.4. Similar to E-learning,

the footprint is concentrate. One of the unique properties observed from

PCMark is its great overlap of read and write requests as shown in Figure

4.4(a). Moreover, I/O requests are bursty and localized. The other unique

property is that PCMark consisted of lots of long requests. Figure 4.4(c)

shows the length distribution of request 37000 to 43000. Most read requests

are 4KB(8 sectors) and 32KB(64 sectors), and lots of 64KB(128 sectors) write

requests. The cumulated distribution of write request length are shown in

Figure 4.4(d). About 20% of write requests are 16KB(32 sectors) and 40%

of that are 64KB(128 sectors).
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4.3 Striping vs. Non-Striping

The tradeoffs lie in the parallelism and the garbage collection efficiency. In

this section, the performance impact is evaluated by 2 set of experiments.

The first experiment evaluates the performance impact of parallelism. The

evaluation shows that if the workload is heavy, the impact of parallelism to

response time is mitigated. In this case, non-striping and striping will have

similar response time. The second experiment considers both parallelism and

garbage collection overhead. The experimental results show that non-striping

effectively slower the increase of erase count when multiplying number of

banks. On the other hand, when the workload is heavy, non-striping with

slighter garbage collection overhead leads to less response time compare to

striping.

4.3.1 Concurrency

In this experiment, the garbage collection overhead is set to zero. The as-

sumption behind this experiment is that no garbage collection process is

triggered. Therefore, only the concurrency affects system performance. The

normalized response time shown in Figure 4.5 are the average response time

of non-striping relative to the average response time of striping 1. If free

banks are sufficient for serving requests, the striping mechanism can dis-

tribute every page write command to a free bank anytime. In this case, the

normalized write response time will be related to average request length, as

shown in Figure 4.5(f). However, when banks are not sufficient for serving

requests, banks in non-striping are also fully utilized, the normalized write

1 ResponseTimeNon−Striping

ResponseTimeStriping
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Figure 4.5: Response Time of Non-Striping Mechanism Normalized to Striping

without Considering GC Overhead. (a)(b)(c) Are in 4 Bank Flash Architecture.

(d)(e)(f) Are in 8 Bank Flash Architecture.

response time will be close to 1 as shown in Figure 4.5(c).

The response time under different banks are summarized in Figure 4.6.

The normalized response time shown in Figure 4.6 is the average response

time relative to 1 bank. For three selected traces, increasing number of

banks leads to significant performance improvement in striping. On the other

hand, the performance improvement to non-striping depends on workload.

As shown in Figure 4.6(a), a not so heavy workload such as SPECWeb, 2

banks is sufficient for non-striping, further increasing number of banks im-

prove little performance. If workload is heavy such as PCMark, the perfor-

mance improvement is more significant when there are more available banks,

as shown in Figure 4.6(c).
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Figure 4.6: Response Time for Different Number of Banks without Considering

GC Overhead. (a) SPECWeb2005 - Banking. (b) Sysmark2007 - E-learning. (c)

PCMark2005.

Figure 4.7: Erase Count for Different Number of Banks. (a) SPECWeb2005 -

Banking. (b) Sysmark2007 - E-learning. (c) PCMark2005.

4.3.2 Erase Count

Figure 4.7 shows the erase count under different banks. The normalized erase

count in Figure 4.7 is relative to erase count of 1 bank. As expected, the

growth of erase count by striping is faster than non-striping when increasing

number of banks. In addition to this obviously result, one can find that in

Sysmark with striping, a large erase count gap happens when number of bank

increased from 2 to 4.
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Figure 4.8: Normalized Response Time for Different Number of Banks Consid-

ering Garbage Collection. (a) SPECWeb2005 - Banking. (b) Sysmark2007 - E-

learning. (c) PCMark2005.

4.3.3 Performance Considering Garbage Collection

The response time of each benchmark under different number of banks is

shown in Figure 4.8. If banks are sufficient for serving(for example, 8 bank

in the experiments), striping still achieve better performance. However, when

number of bank is limited(2 and 4 banks), non-striping outperforms striping.
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4.4 Different Striping Unit Size

Now we know that striping all page writes to different banks has better par-

allelism, while keeping all page writes together reduces number of garbage

collection. To have a more detail evaluation on parallelism and garbage col-

lection performance, finer striping granularity is examined. Following the

flow of Section 4.3, the performance without garbage collection is first exhib-

ited, and then the erase count and performance impact is discussed.

4.4.1 Concurrency

Figure 4.9(a),(b) shows the response time with different striping unit size

without considering garbage collection. The response time is normalized to

striping unit size = 1. The last point which labeled as NS represents for the

result of non-striping.

As expected, larger striping unit size leads to larger response time, but

traces with short requests(such as SPECWeb) saturate fast. On the other

hand, one can find that Sysmark and PCMark have different curves under 4

bank and 8 bank architecture: little performance degradation under 4 bank

but large under 8 bank. The reason is that 4 banks is not sufficient for

serving these 2 workload easily. Even with non-striping mechanism, banks

are still fully utilized. Therefore, larger striping unit size only results in little

performance degradation.
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Figure 4.9: Experimental Results of Different Striping Unit Size.
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4.4.2 Erase Count

Larger striping unit size improves garbage collection efficiency, thus reduces

erase count, as shown in Figure 4.9(c),(d). When number of banks increase,

striping with small striping unit size generates more garbage collection. Un-

der this circumstance, enlarge striping unit size reduces more erase count, as

in the 8 banks architecture.

Note that in both 4 bank and 8 bank Flash architecture, the erase count

curve raise from striping unit size equals to 1024 pages to non-striping. The

reason is that the write request length in Sysmark varies a lot. The largest

write request writing 47480 sectors, or 23MB. Keeping page writes of long

request on a particular bank leads to imbalance bank utilization. Banks

with higher utilization result in more garbage collection, since the garbage

collection process is triggered more frequently.

4.4.3 Performance Considering Garbage Collection

Figure 4.9(e),(f) shows the response time of different striping unit size in

4 bank and 8 bank Flash architecture. The response time is normalize to

striping unit size = 1.

For SPECWeb, the erase count reduction appears within striping unit

size = 8 to 32. Therefore, the response time follows the trends of response

time not considering garbage collection(as in Figure 4.9(a),(b)) when striping

unit size is smaller than 8 or larger than 32. For striping unit size between

8 and 32, the reduced erase count helps in suppressing the raise of response

time. As in Figure 4.9(f), though the results hints that SPECWeb under this

configuration still prefer parallelism than erase count reduction for better
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performance, the reduced erase count still lessen the performance degradation

of larger striping unit size.

For Sysmark with 4 banks, the erase count reduction occurs within strip-

ing unit size = 1 to 8. Since this traces is relatively heavy for 4 banks,

the response time degradation by less parallelism is not serious as shown

in Figure 4.9(a), erase count reduction leads to significant performance im-

provement as depicted in Figure 4.9(e) withing striping unit size = 1 to 8.

However, when the erase count stops decreasing, the response time turns its

head back to degrade. Under 8 bank configuration, since the workload is

relatively light, reduced erase count only helps in lighten the performance

degradation. Moreover, when striping unit size increase from 1024 pages to

unlimit(non-striping), the increased erase count deteriorate the performance

degradation.

For PCMark, the erase count keeps reducing when enlarge striping unit

size. The performance impact is similar to Sysmark: Under 4 banks, the

workload is relatively heavy, thus larger striping unit size outperforms small

striping unit size by the assistance of erase count reduction; under 8 banks,

the performance degradation is alleviated when erase count reduced.
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Chapter 5

Related Works

5.1 related work

In the past years, the researchers focus on improving performance by care-

fully designing each component in FTL. For address-mapping technique, the

tradeoffs between SRAM requirement and performance is a widely discussed

topic. Block-level mapping was the first solution to reduce SRAM require-

ment. However, block-level mapping leads to huge garbage collection over-

head. Many researches try to minimize the overhead by introducing hybrid

mapping mechanism, such as FAST [18], LAST [17], and adaptive two-level

management scheme proposed by Wu and Kuo[27]. Another approach to re-

duce SRAM requirement is to record address mapping by variant length [19].

When data with sequential logical address are stored successively, mapping

table in SRAM only keeps the first location and the length of the following

successive addresses. A new approach to utilize limited SRAM requirement

and reserve performance of page-level mapping granularity is a demand-based

selective caching mechanism [10] proposed by Gupta et al. They left the
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whole page-level mapping table in the Flash, and load needed partial map-

ping table to SRAM on demand. This approach successfully reduced garbage

collection overhead and improved performance in enterprise-scale storage sys-

tems compare to hybrid mapping mechanisms. For garbage collection poli-

cies, Wu et al. explored the performance of greedy, locality gathering, and

hybrid garbage collection policies under different circumstances [28]. Rosen-

blum et al. proposed cost-benefit policy [15], which is a value-based heuristic,

to minimize the number and overhead of garbage collection. Garbage collec-

tion policy design can further considering wear-leveling effect. Chiang et al.

design a Cost Age Times method [6], which selects the victim block accord-

ing to cleaning cost, ages of live data, and the number of times the block

has been erased. Kim et al. balanced garbage collection performance and

blocks wearing by introduced a concept of leveling degree [14]. Larger lev-

eling degree drives garbage collection to consider wear-leveling more, while

less leveling degree focusing on minimize garbage collection overhead when

choosing victim block. The leveling degree can be adjusted by circumstance.

In addition to garbage collection policy, many wear-leveling researches adopt

the concept of hot-cold swapping, first proposed by Chang and Kuo in 2005

[5], which moves cold data to the block that has been erased many times.

STMicroeleconics [25] implements a two-level wear-leveling techniques. In

the first level, new data are programmed to the free blocks that have the

fewest erase count. When the difference between the maximum and the min-

imum number of erase count per block reaches a specific threshold, the second

level wear-leveling is triggered, and the cold data is copied to the block with

maximum erase count.
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Recently, as SSD market growing, the concentration of researchers moves

to the system-level design. Agrawal et al. [1] explored the design consid-

eration of SSD, and discussed the internal organization. The authors first

described the basic functionality that SSD must have, and then indicated

the major challenges in implementation. They also evaluated some of the

design choices, such as page size, over-provisioning, ganging, and striping.

A larger page size increases number of read-modify-write, thus reduces the

IO performance. Over-provisioning reduces Flash capacity, but improves

garbage collection efficiency. Ganging offers the possibility of scaling capac-

ity without linearly scaling pin density and firmware logic complexity. With

regard to striping, they stripe requests to multiple packages by splitting up

each request into parallel 4KB requests, but the data allocation policy is not

mentioned. Shin et al. [24] target on FTL design exploration for server appli-

cations, and covered a variety of page mapping mechanisms. They evaluated

static allocation by narrow striping and wide striping mapping mechanism,

and found that wide striping mapping mechanism can achieve high paral-

lelism and even distribution of requests in dominant sequential IO workload.

They tested dynamic allocation with chip allocation pool and SSD alloca-

tion pool, and came up with the conclusion that if the workload is random

dominant, larger allocation pool leads to higher parallelism and even dis-

tribution. They also investigated the effect of wear-leveling within different

wear-leveling cluster size. Larger wear-leveling cluster size can even wear

level throughout larger number of blocks, but come with larger overhead and

response time. They concluded that for different workload characteristics,

system requirements, and the remaining lifetime of SSDs, the decisions for
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designing customized FTLs can be varied. Dirik et al. [9] studied the in-

terplay between SSD organization and performance. They explored in detail

the system-level organization choices for SSDs, such as varying number of

busses, speeds and widths of busses, and degree of concurrent access allowed

on each bus, in the context of user-driven workloads. They found that NAND

Flash memory performance is not limited by its serial interface, but its core

interface – the movement of data between the Flash device’s internal storage

array and internal data register. Therefore, performance improvement by ex-

ploiting concurrency (e.g., using multiple independent banks combined with

multiple independent channels) would be more significant than increasing

bandwidth of serial interface.

In this thesis, I focus on different data allocation policy approaches and its

performance impact on different Flash organization. The tradeoffs between

striping and non-striping are discussed, and different striping unit size are

evaluated to detail examined the tradeoffs.

36



Chapter 6

Conclusion

In this thesis, tradeoffs between striping and non-striping are discussed. With

a lighter workload, the striping mechanism leads to a significant performance

improvement proportional to the number of available banks. However, when

the workload becomes heavier, non-striping has comparable performance to

striping. According to the experimental results, the 2 PC workloads with

IOPS greater than 27 is relatively heavy if we have only 4 Flash banks.

Under this circumstance, non-striping induces similar response time as strip-

ing. Non-striping has another advantage: better garbage collection efficiency.

Therefore, if garbage collection will be triggered under heavy workload, non-

striping can have better performance than striping.

With detail examining in different striping unit size, I found that non-

striping is not always the one with least erase count. If the trace contains

various request length including some extremely large request, non-striping

leads to imbalanced bank utilization. The ones with higher utilization trigger

garbage collection frequently, and bring on large erase count.
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