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Abstract
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comparable performance or even better by the assistance of erase count re-
duction.

Keywords — data allocation policy, multi-bank, Flash storage system
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replacement of hard disks. These C vl 1cs 1nclud1ng the lower bit den-
sity compared to hard disk drives, a limited number of erase operation, and
the comparably slow write performance. On each of these fronts, Some efforts
have been made. For low bit density, the Multi-level cell( MLC) technology
doubles the bit density and lower the bit cost[23]. Since 2000, the capacity

of NAND Flash memory has been doubled every year[21], and is expected



to continue at that rate until 2010. Multi-package architecture in SSD has
developed to overcome the slow write speed. By properly coordinate the
memory components and operating in parallel, Flash can achieve higher per-
formance than the bandwidth and operation rate of a single Flash chip[1, 2].
In addition, technological enhancements have improved Flash endurance. For
the issue of prolong Flash’s lifetime, high-end SSD adopts a write buffer or
disk cache to reduce write operations. In Flash translation layer(FTL) de-
sign, many wear-leveling algorithmg Were propo d, to balance erase counts
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of SSD blocks.

SSD seems ex(

many
i
erfor-

mance an i / 3 oani er the
|

. '-vt\.r'
‘ g ' ' dore SN
. -*@-'fxr o)
1. Under shg wor i inl paralle Q@Iy _

_ .- eh, 5 : h{} c‘i"‘che benefit
from spreading on ' bﬁﬁ’nes es

eav
N
which results in better garbage collecti

uces the

‘Sf\@ 1ﬁcant

e request’s locality

c1ency. The erase operation can
be reduced in this way, and lifetime of SSD can be prolonged.

3. If we have limited banks, the benefit of parallel execution reduced. In this
case, reducing the parallelism in exchange for less erase count is a good choice.

If the workload is extremely heavy, performance can even be improved by



reducing erase operations.

To have a better understand to the interplay between the hardware and
software design, I constructed a cycle-accurate, trace-driven simulator. The
interconnection and the Flash banks are modeled, and basic functionalities
of FTL are implemented. In this evaluation, different data allocation ap-
proaches and Flash organizations are investigated, and their influence to
response time and number of erase operations is discussed.

The rest of the thesis is o ized ) Chapter 2 introduces the




Chapter 2
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NAND' Flash n & nory can be classified into two

NAND Flash memories.
categories, Single-Level Cell(SLC) and Multi-Level Cell(MLC) NAND. A
SLC Flash memory cell stores only one bit, while a MLC Flash memory cell
can store two more more bits. SLC has lower operational latency and higher

endurance, while the capacity of MLC doubles that of SLC.

Figure 1 shows a typical architecture of a NAND Flash memory [7]. A
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Factor NOR Flash | NANS Flash

Read Performance Very Fast Moderate

Write Performance Slow Fast

Erase Performance Very Slow Fast
Random access Possible Impossible

eXecute In Place (XIP) | Supported | Not Supported

Capacity Small Large

mparison %—@R Flagh I

| . . !
update of dafaiis na [T | i n@@y)@te Flash

memory performs t : i : @ 1tte a free page,
and the old pageai invali data alled live pages

invalid pages.

After a certain number of writes, free space on Flash memory would be
low. Therefore, Flash memory reclaims free page by a process called garbage
collection. A garbage collection process first selects a victim block, copies all

live pages on the block to free spaces, and then erases the victim block. Live



page copying is considered as the overheads of garbage collection process.
Therefore, a major consideration of victim block selection is to minimize
these overheads.

The number of erase operations that can be done on a block is limited
(i.e., 100K for blocks on a SLC Flash chip [7] and 10K on a MLC Flash
chip [1]). If the number of erase operation on a block exceeds the threshold,

the worn-out block could suffer from frequently write errors. Therefore, the

only for better performance,
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Each die within a package contains several planes. A plane consists of

supports interleaved col

tween dies.

blocks with fix number of pages, and a data register with size of one page.
The functional diagram for a Flash die is shown in Figure 2.2[7]. To issue
a command, the command if first written into the command register. Then,

according to the row address and column address given by controller, the
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In addition to conventional single plane operations(i.e., page read, page
program, block erase, ... etc.), Samsung Flash chips also support two-plane
commands. The two-plane commands can be executed on either plane-pairs

0&1 or 2&3, but not across other combinations(such as plane 0&2).
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2.3 SSD Basics

NAND-based SSDs are constructed from an array of Flash packages. A
generalized block diagram is depicted in Figure 2. A SSD contains host
interface logic, SSD controller, and an array of Flash packages. The host
interface logic support physical host interface connection(for example, USB,
PCI Express, SATA)[22, 13, 12]. The SSD controller consists of a processor,

buffer-manager, and multiplexer. The processor manages the request flow
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held in volatile m% h. \[},ﬂ‘,executlng, and
reconstructed from stab gi Wnapplng granularity

%t Startup fim.
|'
decides the volatile memory requir

er mapping granularity has

little SRAM requirement, but has to deal with read-modify-write problem
when the written size is smaller than the mapping granularity. In this thesis,
we assume page granularity in address mapping.

The physical Flash location for each write request is decided by the data

allocation policy implemented in the SSD controller. For environment such

10



as multi-package SSDs that multiple job can be executed at the same time,
data allocation policy plays an important role on driving all components. For
example, static striping [4, 24] can spread a long sequential requests to many
packages, but may leave some packages idle if the request is not long enough
to occupied all packages, even if there is some other requests waiting to be
served. On the other hand, dynamic striping dispatches a write command

to any free bank, can better utilize all available resources. More elaborate

process is

threshold

- ol 1 y

can be accelerated by selecting multiple destinations on different banks, and

copy live pages in parallel by concurrently write to the selected banks.
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2.3.3 Wear Leveling

Only a limited number of erase operations can be done on a given block, so
wear leveling attempts to prolong the life of a Flash device by re-arranging
data so that erasures and re-writes are distributed evenly across the blocks.
Wear leveling algorithms are commonly triggered during garbage collection
or write operations[11, 6, 3]. A conventional wear-leveling mechanism is to

migrate cold data to an aged block, which has larger erase count. Since

the migration involves several

12



Chapter 3
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Page writes

B (One request) - . (One request)

Handling

bank, bank, bank; banks bank, ban bank banks
(free)  (busy) (free) (free) (free) (busy) (freef (free)
(a) Static Striping (b) Dynamic Striping

bank, bank; bank, banks
(free)  (busy) (free) (free)
(c) Non-Striping

11‘J L

The stripifigltapproac _ lest to ’E‘i y dif-
l_"‘.. |
ferent ban v:‘; ip ¢ ed b anks*concur-

rently, thus 1'

There are .. ) and{?y an e strlplng,
@ i cated by their
logical address. For exan y  ba ? S, bank assignment
for each page write equals to ; g 1in et al. have studied the
performance of various mappings on static striping [24]. In addition to static
striping, dynamic striping get rid of the address limitation. In dynamic
striping, page write is allocated to any free bank. In this way, banks can be

better utilized. The two striping policies are illustrated in Figure 3.1(a),(b).

Since dynamic striping have better performance, for the rest of this thesis,
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the term ”striping” refers to dynamic striping.

3.2 Non-Striping

Another approach which works very well with the support of parallel requests
is non-striping, which keeps all page writes of one request to one bank, and

assign page writes of the following request to another bank. An example of

non-striping is illustrated in Figu C e have two requests to serve,
all page writes of th? .‘v; write r'g%leSt edsto ne free banks, and
the page writes of the second wrjﬁg‘éques i to a ther free bank

garbage COH' ' GHCY. i 2:? 3.2 and

Figure 3.3 Whl, Sﬁ e Sithpli ' y consia!é;:l."l ' pure write

time) of two requ 2 i : WO lié@s 1 I:é\two requests
5 &% 2=

\ﬁ@d in Figure 3.2(a)

arrive snnultaneously.-@ With stﬁfpﬁng, Which

page writes, the average response time for the two requests is 700us. With
non-striping, which is shown in Figure 3.2(b), the average response time is
800us. In terms of the physical pages arrangement in Flash blocks, non-
striping gathers page writes of one request together(i.e., in the same block

for most cases). This increase the possibility that pages within a single block

15



D request, - request; D request, - request;

banky barky i ﬁ i ii
bank; Bl ' =]
o5 30 Bag Bl 0 200 400 600 800 1000 ime
(a) Striping (b) Non-Striping

Figure 3.2: The Time Diagram of (a)Striping and (b)Non-Striping Data Alloca-

tion Policy.

; D request; | D request,
page- | B request,  page- BE reques,
block - block -

(a) Striping (b) Non-Striping
L
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request

ﬁbanks

(a) (b)

Figure 3.4: Tllustration of Different Striping Unit Size. (a) Striping Unit Size =

1 page. (b) Striping Unit Size = 2 pages.

3.4 Striping Unit Size

To examine the trade-off betwee e collection efficiency

17



Chapter 4
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FIlE Sys(em
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\
Dis Disk s Ti Flash
\ | Trace >
Windows_: diskmun :1/ parser [“Controlled’ — 2| Fash
inux; blktrace _.:J banks

Figure 4.1: Trace Driven Flash Simulator.
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Software Implementation

Data Allocation Policies Dynamic Striping
(with various striping unit size

Non-Striping

Address Mapping Mechanism | Page-level Mapping

Garbage Collection Policy«

“H Using Copy-hack command

.

Garbage Collegtio T,-%ibol 0 ?v‘q e
, g

Over-Provisi 15% )

W ol
i 1

Default ; onﬁ%ms(cmlrable i

Channel dwidt ﬁh S |
Number arfks 3 | ﬁ * |
Number of Channel 4 2

Number ofidBanks Pe an eh 1 il
Page Size ' - o 4KB -Q'P e
Block size b % gt '
Timing Parameters(C _ ﬁg;iébleﬁ .,f

Page Program Time

Page Read Time 25 ps

Block Erase Time 1.5 ms

Table 4.1: Detail Implementation of Flash Simulator.
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type of commands: Read and Write. The LBA and length are all in the unit
of disk sector(512 bytes). The recorded issue_time is in ps.

The software implementation in Table 4.1 summarized the software im-
plementation of this simulator. Different data allocation policies have been
implemented, such as dynamic striping with various striping unit size, non-

striping algorithm. In addition to data allocation policies, the greedy policy

is chosen for garbage collection policy for it is the most commonly used

20



Benchmark SPECWeb | Sysmark | PCMark
I/O Requests Per Second 11.9 27.0 91.0
Avg Request Size (KB) 9.8 24 38.6
Write Request % 89.8 55.2 43.5
Write Data % 87.7 42.1 57.4

Table 4.2: Workload Characteristics.

4.2 Workload Anﬁ%
1s is - éaluate"%'perfor%and endurance
_ la Iti-bank or-
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.'-$ 1 4 %, E E—-

implication undet ata ati
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The objective of this:

Flash chip y
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high I/O request arrfg%ate S%ﬁetaﬂ elaﬁ%t

length distributions are kv %%m

4.2.1 SPECWeb2005 - Banking

'e(!afﬂ:mp‘ e sum-

. b%&u .are write,
: G

rk ha$ a extremely

@' X
fons f&#‘xéquest} addresses,

\I'

SPECWeb2005 mimics the access patterns of real-world web servers. The
trace selected is ”Banking”, which imitates the trades of online banking. 4

banking transactions are modeled: Account information access or Account
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4.2.2 Sysmark2007 - E-learning

Sysmark2007 mimics the access patterns of business users. The trace selected

is "E-learning”, which imitates the tasks executed in the development of an
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When speaking of request length, in addition to some extremely long requests

as shown in Figure 4.3(b), most requests are short, like Figure 4.3(c).

As

statistic in Figure 4.3(d), 70% requests are 4KB, and 10% requests are 16KB.
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.5 e other unique
shows the length distribution of requ 0 l.l to 43000. Most read requests
are 4KB(8 sectors) and 32KB(64 sectors), and lots of 64KB(128 sectors) write
requests. The cumulated distribution of write request length are shown in

Figure 4.4(d). About 20% of write requests are 16KB(32 sectors) and 40%
of that are 64KB(128 sectors).
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4.3 Striping vs. Non-Striping

The tradeoffs lie in the parallelism and the garbage collection efficiency. In
this section, the performance impact is evaluated by 2 set of experiments.
The first experiment evaluates the performance impact of parallelism. The
evaluation shows that if the workload is heavy, the impact of parallelism to
response time is mitigated. In this case, non-striping and striping will have

similar response time. The second experlment considers both parallelism and

effectively slower t
P e

ocess is

ance The

normalized responsetime-gh @;,IFigure 4 5%

e t V 2e -' response time
of non-striping relative ‘tor tl b\‘%rage response i striping . If free

banks are sufficient for serving Pecudsts. vf.‘-j‘-i rlplng mechanism can dis-
tribute every page write command to a free bank anytime. In this case, the
normalized write response time will be related to average request length, as
shown in Figure 4.5(f). However, when banks are not sufficient for serving

requests, banks in non-striping are also fully utilized, the normalized write

1 ResponseTimeNon—Striping
ResponseTimestriping
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As shown in Figure 4.6(a)
banks is sufficient for non-striping, further increasing number of banks im-
prove little performance. If workload is heavy such as PCMark, the perfor-
mance improvement is more significant when there are more available banks,

as shown in Figure 4.6(c).
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number of banks. In addition to this obviously result, one can find that in
Sysmark with striping, a large erase count gap happens when number of bank

increased from 2 to 4.
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4.4 Different Striping Unit Size

Now we know that striping all page writes to different banks has better par-
allelism, while keeping all page writes together reduces number of garbage
collection. To have a more detail evaluation on parallelism and garbage col-
lection performance, finer striping granularity is examined. Following the
flow of Section 4.3, the performance without garbage collection is first exhib-
ited, and then the erase count and performance impact is discussed.
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4.4.2 FErase Count

Larger striping unit size improves garbage collection efficiency, thus reduces
erase count, as shown in Figure 4.9(c),(d). When number of banks increase,
striping with small striping unit size generates more garbage collection. Un-
der this circumstance, enlarge striping unit size reduces more erase count, as
in the 8 banks architecture.

Note that in both 4 bank and 8 bank Flash architecture, the erase count

)

collection " is firi _ Al g
|y P"'h
h“

- i
Figure 4.9(e)s(f)" s S fiit size in
g 20 é) 'Q"

4 bank and ‘.;_- & : at 13@ rmalize to

For SPECWeb, the eras ppre ithm striping unit
size = 8 to 32. Therefore, ch < ponse time . ws the trends of response
time not considering garbage collection(as in Figure 4.9(a),(b)) when striping
unit size is smaller than 8 or larger than 32. For striping unit size between
8 and 32, the reduced erase count helps in suppressing the raise of response
time. As in Figure 4.9(f), though the results hints that SPECWeb under this

configuration still prefer parallelism than erase count reduction for better
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performance, the reduced erase count still lessen the performance degradation
of larger striping unit size.

For Sysmark with 4 banks, the erase count reduction occurs within strip-
ing unit size = 1 to 8. Since this traces is relatively heavy for 4 banks,
the response time degradation by less parallelism is not serious as shown
in Figure 4.9(a), erase count reduction leads to significant performance im-
provement as depicted in Figure 4.9(e) withing striping unit size = 1 to 8.

However, when the erase count. stopsjdec . the response time turns its
_ ey Ry At - 1 =

he performance

degradation. Mo1 ¢ from 1024 pages to
Tk
unlimit(nonssripa ] A C rformance

For Prk‘th CEPE Lt hen enlarge Str t:{; unit
-] S !
size. The ‘performa der 4 banks, the
8 -
workload is relatiwely T8Striping Unit Size'o n,.s-f' s small
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Chapter 5
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mapping mechanist T';-
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- Lr_, 'JF',‘_"!T *.;'-"11 .1 d
duce SRAM requirement is to record dddréss mapping by variant length [19].
When data with sequential logical address are stored successively, mapping
table in SRAM only keeps the first location and the length of the following
successive addresses. A new approach to utilize limited SRAM requirement

and reserve performance of page-level mapping granularity is a demand-based

selective caching mechanism [10] proposed by Gupta et al. They left the
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whole page-level mapping table in the Flash, and load needed partial map-
ping table to SRAM on demand. This approach successfully reduced garbage
collection overhead and improved performance in enterprise-scale storage sys-
tems compare to hybrid mapping mechanisms. For garbage collection poli-
cies, Wu et al. explored the performance of greedy, locality gathering, and
hybrid garbage collection policies under different circumstances [28]. Rosen-

blum et al. proposed cost-benefit policy [15], which is a value-based heuristic,

to minimize the number and Om gai
tion policy design can Iﬁg“ coéisﬁering

design a Cost A%$m$:ethoh 6

i »4..;_‘ collectlon Garbage collec-

In addition t¢ ollg ' poli : i@,ﬁse@es adopt
the concept of . : : uo in 2005
d many times.
ehng techniques. In
the first level, new data are prbgfam 0 {he free blocks that have the
fewest erase count. When the difference between the maximum and the min-
imum number of erase count per block reaches a specific threshold, the second

level wear-leveling is triggered, and the cold data is copied to the block with

maximum erase count.

34



Recently, as SSD market growing, the concentration of researchers moves
to the system-level design. Agrawal et al. [1] explored the design consid-
eration of SSD, and discussed the internal organization. The authors first
described the basic functionality that SSD must have, and then indicated
the major challenges in implementation. They also evaluated some of the
design choices, such as page size, over-provisioning, ganging, and striping.
A larger page size increases number of read-modify-write, thus reduces the
10 performance. Over-provisioning jreduces 4

T ] A AL
garbage collection effigi i@ .?Egﬁg offersithe .
ity without lineaiéﬁaﬁui-pin .' vand 5 K Omplexity. With
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e
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They tested d" 1"a11 1 with 1o datiox wpool and SSD alloca-
tion pool, and can@w g theqf‘?‘ipclusion@ if the )qp‘&ioad is random
. :‘:ﬁ' . - il >
dominant, larger allocar%ﬁgiﬁg hi }ﬁ] elism and even dis-
. ; @? P
tribution. They also investigated the 0 '-\;vear-leveling within different

wear-leveling cluster size. Larger wear-leveling cluster size can even wear

ist
"-

level throughout larger number of blocks, but come with larger overhead and
response time. They concluded that for different workload characteristics,

system requirements, and the remaining lifetime of SSDs, the decisions for
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designing customized FTLs can be varied. Dirik et al. [9] studied the in-
terplay between SSD organization and performance. They explored in detail
the system-level organization choices for SSDs, such as varying number of
busses, speeds and widths of busses, and degree of concurrent access allowed
on each bus, in the context of user-driven workloads. They found that NAND
Flash memory performance is not limited by its serial interface, but its core

interface — the movement of data between the Flash device’s internal storage

)

o

striping a 1d
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Chapter 6

In this thes.is.7 " Ptwg [Tipi scussed. With

a lighter wo

striping is not always the one with least erase count. If the trace contains

various request length including some extremely large request, non-striping
leads to imbalanced bank utilization. The ones with higher utilization trigger

garbage collection frequently, and bring on large erase count.
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