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中中中文文文摘摘摘要要要

為了處理層次性和組合性的決策問題，智能代理人需要任務結構和

子任務規則的領域知識表示，以進行規劃和推理。先前的方法通常假

設預定義的子任務存在，因為在缺乏領域知識的狀況下確定子任務具

有困難性。因此，我們提出了一個框架，從專家示範中自動歸納推論

子任務以解決複雜任務。該框架涵蓋了經典規劃、深度強化學習和演

化計算，過程包括為歸納符號規則、從目標構建任務結構，以及基於

任務結構提供內在獎勵。我們利用基因程式設計進行符號規則推論，

在此過程中，規則模型的選擇反映了先驗領域知識的效果規則。我們

在兩個環境中評估了該框架，包括 Minecraft 環境，並證明它提升

了深度強化學習代理的學習效率。此外，我們還展示了該框架能通過

組合任務結構和推論新規則，展現在任務和技能層面的通用性。本研

究對於整合框架作為解決層次性現實世界問題的認知架構提供了深入

的觀點。

關關關鍵鍵鍵詞詞詞

歸納學習、示範學習、決策問題、深度強化學習、經典規劃、遺傳程

式設計
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Abstract

To deal with hierarchical and compositional decision-making prob-

lems, intelligent agents necessitate domain knowledge representation on

task structures and subtask rules for planning and reasoning. Previous

approaches often rely on strong assumptions about pre-defined subtasks

due to the difficulty of determining subtasks lacking domain knowledge.

Therefore, we propose a framework that automatically induces subtasks

from expert demonstrations to solve complex tasks. The framework en-

compasses planning, deep reinforcement learning (DRL), and evolution-

ary computation, and the procedure involves inducing symbolic rules,

constructing task structures from goals, and providing intrinsic rewards

based on task structures. We utilize genetic programming for symbolic

rule induction, where the selection of the rule model reflects prior do-

main knowledge of effect rules. We evaluate the framework in two en-

vironments, including the Minecraft environment, and demonstrate

that it improves the performance of DRL agents. In addition, we also

demonstrate the generalizability in task and skill level by composing the

task structure and inducing the new rules. This research contributes in-

sights into integrated frameworks as a cognitive architecture to address

hierarchical real-world problems.

Keywords

Inductive Learning, Learning from Demonstration, Decision Making,

Deep Reinforcement Learning, Classical Planning, Genetic Programming
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Chapter 1

Introduction

Real-world decision-making problems often exhibit these two key properties: hier-

archy and compositionality, which are usual for humans daily. Hierarchical tasks

comprise sequential subtasks that must be achieved in a specific order. Before

accomplishing each subtask, satisfying the corresponding precondition is essential.

Compositional tasks indicate that these subtasks can be reassembled into various

tasks. These subtasks possess identical preconditions and effects which can be gener-

alized to unseen tasks. However, the agents often lack the knowledge of task hierar-

chy and compositionality. Without prior knowledge of task structures and feedback,

exploring real-world tasks with these properties remains challenging [23, 50, 2, 42].

To address these issues, the agent’s possession of planning capabilities is requi-

site to effectively tackling the problems, and knowledge representation with composi-

tional structures plays a critical role in planning and reasoning processes [30]. Many

approaches have been proposed for hierarchical task structures [32]. Some of these

approaches focus on the application of options or high-level policies [44, 23], while

others develop curriculum learning methods to guide the agent in a bottom-up task

learning process [46]. However, the drawback of these approaches is that they make

strong assumptions about pre-defined subtasks, owing to the bottleneck of auto-

matically determining subtasks in diverse environments without domain knowledge.

1

http://dx.doi.org/10.6342/NTU202303054


doi:10.6342/NTU202303054

Due to these assumptions, the adaptability and applicability of these approaches

are restricted when applied in real-world scenarios.

In contrast, from a cognitive science perspective, humans can rapidly grasp

rules by observing the behaviors of others and their corresponding outcomes [8,

51]. Likewise, intelligent agents exhibit generalization in two aspects. Firstly, task

generalization enables agents to solve compositional tasks by transferring skills from

previous tasks. We leverage these general skills to solve various tasks with similar

subtasks. Secondly, skill generalization enables agents to associate their own skills

and adapt to learn related skills. These two-level generalizations allow agents to

tackle complex decision-making problems from previous learning. Once the goal is

given, humans employ prior knowledge to decompose the tasks into known subtasks

and hierarchically accomplish the desired goal. Inspired by the observation, we

devise an automatic framework for learning symbolic rules and task structures from

expert demonstrations. By leveraging induced prior knowledge, this framework aims

to effectively facilitate the agent to achieve the tasks.

The proposed method combines the strengths of reinforcement learning (RL)

and classical planning. RL is an inductive learning approach in which an agent

interacts with an environment and learns a policy by taking actions and receiving

feedback as rewards. Deep reinforcement learning (DRL) has been developed in

recent years, integrating RL techniques with deep learning methods. DRL enables

agents to effectively solve high-dimensional decision-making problems once deemed

intractable [4]. However, DRL poses the drawback of sample efficiency, necessitat-

ing substantial experience for training. On the other hand, classical planning is a

deductive approach that utilizes symbolic knowledge and logical deduction to de-

termine action plans. Classical planning relies on a pre-defined domain-dependent

knowledge base for scheduling, which is impractical in real-world scenarios. There-

fore, we propose a method that extracts and utilizes the representation in planning

language to facilitate DRL agents in training efficiency. This provides insight into

integrating the techniques of high-level abstraction and low-level execution.

2
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The main contribution of our work is that we devise an automatic framework

that encompasses the procedure of extracting knowledge from demonstration, induc-

ing planning languages and rules for each subtask, and building hierarchical graphs

from goals. This architecture enables task generalization by composing task struc-

ture from subtasks to deal with unseen tasks. Additionally, we introduce genetic

programming to induce symbolic rules to the framework. Evolutionary methods

offer advantages in terms of flexibility and adaptability [6], which promote skill

generalization. We claim that it can efficiently adapt to similar rules in few-shot

demonstrations once the rules are established.

Thesis Objective

The proposes of the thesis are listed below:

• Designing a framework to solve hierarchical and compositional decision-making

tasks by integrating inductive and deductive learning. The framework utilizes

classical planning and DRL and leverages automatically induced rules from

demonstrations for planning.

• Introducing genetic programming for symbolic regression, generating symbolic

programs to describe the domain knowledge. The method enables the frame-

work to induce flexible symbolic rules from demonstrations.

• Proposing an architecture that captures the knowledge specific to the domain,

leading to enhanced generalizability across different tasks. The approach en-

ables task generalization by composing task structures from induced subtasks

and skill generalization by adapting to varied symbolic rules.

In this work, an automatic framework is devised to learn symbolic rules and task

structures from expert demonstrations. The framework infers abstracted knowledge

and constructs the task structure to extract the knowledge from raw data. The

3
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DRL agents follow the navigation from the inferred structures and rules by providing

intrinsic rewards. This allows the agents to learn various complex tasks.

Roadmap

The rest of the thesis is organized as follows:

• Chapter 2 provides the background and related works of the thesis. Pre-

vious studies about learning from demonstrations and subtask inference are

introduced in this chapter.

• Chapter 3 introduces preliminaries, problem definitions, and the concept of

critical actions.

• Chapter 4 elaborates on the proposed framework and approaches, including

the workflow and the modules in each step.

• Chapter 5 provides the descriptions of the test problems to evaluate the

capability of hierarchical and compositional task learning.

• Chapter 6 presents the experiment results and discussion of the proposed

framework. The limitations of the work are discussed in this chapter.

• Chapter 7 gives the conclusions and future works where the analysis and

application of critical actions can be further investigated.

4
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Chapter 2

Background

This chapter presents the research about hierarchical decision-making problems

throughout the domains of classical planning and DRL. The field of classical plan-

ning provides valuable insights into preconditions, effects, and their relationship with

task structures and transitions. The progress of DRL in recent years also provides

a method to efficiently learn the policy. Our proposed framework integrates DRL

and planning to improve training efficiency and transfer knowledge by automatically

inducing the knowledge.

In addition, drawing inspiration from prior works about state abstraction and

subtask inference, we proposed a graph structure representation called critical action

graph for representing task structures. By incorporating these ideas, the research

endeavors discussed in this chapter contribute to advancing our understanding and

addressing challenges associated with hierarchical decision-making in the aforemen-

tioned domains.

Sections 2.1, 2.2 and 2.3 provide a comprehensive overview of the core concepts

underlying the proposed framework. These concepts encompass DRL, planning,

and evolutionary computation. Section 2.4 provided a thorough examination of the

related works. This comprehensive exploration establishes a solid foundation for the

subsequent discussions and analyses conducted throughout this research.

5
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2.1 Deep Reinforcement Learning

In recent years, RL has witnessed remarkable progress, particularly in DRL. This

advancement can be attributed to the rapid growth and capabilities of deep learn-

ing, which excels in extracting representations from complex data [4]. The incor-

poration of deep learning has empowered agents to tackle intricate decision-making

problems that were previously considered insurmountable. With DRL, agents can

effectively navigate high-dimensional and challenging environments, leveraging deep

neural networks’ robust representation learning capabilities.

Despite these significant strides, learning hierarchical tasks with sparse rewards

remains a persistent challenge for DRL [23]. One of the contributing factors is sample

inefficiency. Many real-world problems comprise multiple subtasks, and efficiently

learning these hierarchical relationships is crucial for achieving superior performance.

In our framework, DRL serves as an execution module for adaptation in en-

vironments. Once abstract knowledge structures are established, intrinsic rewards

are provided when the agent executes these skills in the desired order to achieve

the tasks. Given the skills and intrinsic rewards, the agent optimizes its policy to

complete each subtask properly.

2.2 Classical Planning

Classical planning, another subfield of artificial intelligence, aims to develop au-

tonomous strategies for solving planning and scheduling problems [5]. Unlike RL,

planning agents use pre-defined symbolic rules to determine the action to reach the

goal. Specifically, classical planning excels at finding action sequences to attain

desired goals in deterministic and known environments. Nevertheless, in unknown

stochastic environments, classical planning agents encounter challenges when ex-

ploring these environments due to limitations in the expressiveness of models.
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In classical planning, an agent or planning system considers planning domain

definition language (PDDL) [14, 40], consisting of the initial state, the goal state,

and a set of available actions with their preconditions and effects. The planner

uses this information to search for a sequence of actions that can transform the

initial state into the desired goal state while satisfying any constraints or conditions

specified.

Researchers in classical planning have developed efficient and effective planners

that can handle large-scale problems. Once the context of PDDL is defined, the

plans can be optimized for different criteria using off-the-shelf planners. However,

it requires pre-defined language for reasoning, which relies on predefined languages

and structures. This limits their applicability to general real-world problems. In

this study, we propose a novel approach that combines classical planning with data-

driven techniques, such as DRL and evolutionary computation. This integration

allows classical planning to leverage its inherent strengths while effectively address-

ing the challenges posed by unseen problems.

2.3 Evolutionary Computation

Evolutionary computation is a computational approach inspired by the process of

natural evolution. Instead of explicitly programming algorithms to search for solu-

tions, evolutionary computation relies on the process of natural selection and evolu-

tion to iteratively improve and refine candidate solutions over multiple generations.

This technique is widely used to solve complex optimization and black-box search

problems in various problems. Due to the mechanism of selection by fitness, evolu-

tionary computation is regarded as a general method for search problems.

In this study, evolutionary computation is regarded as a means to explore and

optimize the space of possible knowledge representations and learning algorithms.

We employ genetic programming to implement symbolic regression for rule gener-
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ation. Symbolic regression differs from deep learning, as it offers flexibility in gen-

erating models or programs with domain-specific operators that can adapt to the

given data. Genetic programming evolves the programs represented as expression

trees based on the data and corresponding outputs.

Our approach uses genetic programming and symbolic regression to generate

symbolic rules tailored to the specific problem domain. The process involves the

evolution of a diverse set of programs, which enables the exploration of different

program structures and compositions to find the most suitable programs to describe

the rules. This allows for discovering rules that accurately capture the underlying

patterns and relationships within the data.

2.4 Related Works

Our framework encompasses the prior works, including learning abstraction from

demonstration and subtask inference. Learning abstraction from demonstration

provides methods that extract the state and action abstraction from raw demon-

strations. We utilize abstract knowledge to infer the task structure and rules. In

this section, we introduce these works that focus on these topics.

2.4.1 Learning Abstraction from Demonstrations

State abstraction plays a crucial role in enhancing the agent’s reasoning capabilities

in high-level planning. By extracting symbolic representations from low-level states,

the agent becomes capable of generalizing knowledge across tasks [1]. Several studies

have showcased the effectiveness of state abstraction in decision-making problems [1,

16, 15].

One of the methods of learning abstraction is learning from demonstrations.

Demonstrations are traces of actions and corresponding states generated by opti-
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mal or sub-optimal policies. Agents can learn the policies from demonstrations since

demonstrations encompass valuable information regarding task composition and rel-

evant features [8]. Some methods were developed to extract task decomposition and

abstraction from demonstrations [17, 9]. This work extends these approaches to

introduce inferred knowledge to RL.

2.4.2 Subtask Inference

Several approaches that leverage hierarchical and compositional structures of tasks

are devised with the various implementation of planning and reasoning. The prior

works focus on two subfields: hierarchical task learning and compositional task

learning. Hierarchical task learning focuses on dividing tasks into smaller subtasks,

while compositional task learning focuses on learning multiple tasks by composing

subtasks with different task structures. These two subfields significantly overlap

since the compositional subtask is often decomposed from hierarchical tasks. Both

of them manipulate subtasks to construct task structures.

Hierarchical Task Learning

For solving complex problems in RL through task decomposition and scheduling of

subtasks at a higher level, a proper hierarchical structure is crucial to represent the

task. Various methods have been proposed for constructing hierarchical structure

representation [32], including graph [46], automata [13, 47, 22, 50], programs [45],

and hierarchical task networks [17, 42]. On the other hand, some approaches utilize

the capabilities of deep learning with the use of intrinsic rewards [23, 11].

Despite the success of these methods in building hierarchical models shown in

previous work, how to induce the required subtasks had not been addressed. Hence,

we develop a method to identify the subtasks by inducing symbolic knowledge and

utilizing them as the atom of hierarchical task representation.
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Compositional Task Learning

On the other hand, research works specifically address how to leverage compositional

tasks and transfer the knowledge to multiple tasks. The work of these fields seeks

to utilize shared information and relationships between tasks to improve overall

performance. Some works in this field emphasize the decomposition of skills and the

ability to flexibly compose tasks [2, 43, 49, 26, 45]. Some approaches in hierarchical

task learning also support compositional task learning [41, 12, 45]. By composing

the task structure, generalizability can be realized to solve unseen tasks.

10
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Chapter 3

Problem Formulation and

Preliminaries

In this chapter, we commence by introducing the preliminaries and problem defi-

nitions of the decision-making problems within the context of the Markov decision

process (MDP) and PDDL. Subsequently, we delve into the core concepts of our

framework, including critical actions and critical action graphs, and highlight their

connections to preconditions and effects in classical planning.

3.1 Markov Decision Process

The proposed framework aims to solve decision-making problems with hierarchical

and compositional properties. Therefore, we focus on sparse-reward goal-directed

problems in RL, which can be formulated as MDP problems illustrated in Figure 3.1.

MDP can be expressed as a four-tuple < S,A, T ,R >, where S denotes state

space, A denotes action space, T denotes transition function and R denotes reward

function. To distinguish the states and actions in RL and planning domain, we

use MDP states and MDP actions to denote the states in S and the actions in A,

respectively.
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Environment

Agent state

action reward

next state

Figure 3.1: The illustration of reinforcement learning in MDP problems. The agent

observes the state s and executes the action a; then the environment gives the agent

reward R(s, a) and the next state s′ = T (s, a) based on s and a.

Similar to planning problems, the objective of the goal-directed problem is to

execute a sequence of actions to achieve a desired goal. The difference is that the RL

agent receives rewards in each step, while in the sparse-reward scenario, the agent

only receives rewards when achieving tasks.

3.2 Planning Domain Definition Language

PDDL is a planning language using first-order logic to express the states and actions

in a specific domain. In PDDL, actions are regarded as operators transferring the

initial state to the goal state. The preconditions and effects of each action specified

the usage of the operator represented as symbolic formulas.

In this work, the problems of building task structures are transferred into plan-

ning problems by employing PDDL. To harness the strength of the planning lan-

guage, formulated domain and problem descriptions in PDDL from MDP problems

are required. The essential components of the domain description include the spec-

ification of objects, predicates, and actions with preconditions and effects. The
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problem description includes an initial state and goal specification. These specifica-

tions allow off-the-shelf planners to deduce the optimal action sequence for achieving

the desired goal.

Incorporating the representation of PDDL allows us to address complex MDP

problems in a structured and reusable manner. It also empowers agents to develop

high-level planning capabilities to achieve tasks by clearly and intuitively represent-

ing the task structure and goals. In the next section, we will introduce the definition

of the state and the action model of MDP problems in the context of PDDL.

3.3 MDP Problems in Planning Language

In original MDP problems, each state consists of a list of n values that describe the

features of the worlds. In the planning domain, the features can be represented as

variables. Assuming that the meaning of the features from MDP environments is

known, we define variable symbol space Q as a set containing all n variable symbols.

Each symbol q ∈ Q represents a specific state feature, and each feature has a distinct

value represented as sq ∈ R. In this work, we focus on integer values and denote

sq ∈ Z. That is, an MDP state refers to the list of value [sq1 , sq2 , · · · , sqn ], and the

state can be transformed into a PDDL state as a conjunction of symbolic formulas

∧
q∈Q

(q = sq). (3.1)

For instance, in Figure 3.2, we present a simplified example of the Minecraft

environment, which is further detailed in Chapter 5. The figure shows a 4×4 grid-

world with a wood-picking place, a workbench, and an agent. The agent possesses

information about the inventory and its current location, which is represented in

Q = {wood, stick, at wood, at workbench},
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Inventory
empty

Inventory
wood ✕ 2

Inventory
stick ✕ 1

right
right
down
pickup
pickup

down
left
make1

MDP
actions

MDP
actions

Figure 3.2: An simplified example in Minecraft.

where wood represents the number of woods in the inventory, stick represents the

number of sticks in the inventory, at wood means whether the agent is at the wood-

picking place and at workbench means whether the agent is at the place of work-

bench. Action space A is defined as

A = {up, down, left, right, pickup, make1}.

In this task, the agent can pick up a wood by executing pickup at the wood-picking

place and making a stick by executing make1, consuming two woods at the work-

bench. The objective of the agent is to get a stick. Initially, the agent’s inventory is

empty and not located at either the wood-picking place or the workbench. Hence,

the initial state is represented as

(wood = 0) ∧ (stick = 0) ∧ (at wood = 0) ∧ (at workbench = 0).

The goal specification of the task is (stick = 1). After the agent picks two woods

and remains at the wood-picking place, the state can be expressed as

(wood = 2) ∧ (stick = 0) ∧ (at wood = 1) ∧ (at workbench = 0).
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Then the agent goes to the workbench and makes a stick. After making a stick and

consuming two woods, the state is change to

(wood = 0) ∧ (stick = 1) ∧ (at wood = 0) ∧ (at workbench = 1).

Previous works encode tasks in binary representation to denote the completion

or satisfaction of each subtask [21, 42]. However, binary encoding is adverse to

generalization due to the growing dimensionality of input, making identifying the

relationships between variables impractical. Therefore, we consider numeric vari-

ables as more compatible representations. By doing so, our framework can induce

symbolic rules to handle more complex tasks that share common domain knowledge.

Notably, numeric variables can be handled using first-order logic in the context of

PDDL. This enables the agent to present generalizability by manipulating the sym-

bolic rules in task and skill levels.

3.4 Critical Action

In this section, we introduce the core concept of the proposed framework: critical

actions. A critical action is an action essential in the progress of tasks. In original

MDP problems, some actions are used for general purposes, such as movement or

changing directions, while others are crucial for the task and must be performed in a

specific order. These actions correspond to subtasks in hierarchical tasks. Precisely,

certain effects change the state to meet the goal specification. By reasoning from the

goal specification, the critical effects necessary to achieve the goal are determined,

and the preceding critical effects are the effects that satisfy the precondition of the

succeeding one. This leads to a recurrent definition of the effects of the action

model in planning. Based on the definition of critical effects, we define the critical

action that specifies the critical effects and the required preconditions. Based on the

effects, we induce the related MDP action and preconditions from demonstrations to
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construct a critical action model. By formulating the critical actions of the problem,

we can search for the task structure for variable compositional tasks.

In this research, we employ deterministic critical action models whose assump-

tion is that the symbolic rules are invariant with the tasks. For instance, inMinecraft,

making a stick always consumes two woods. However, when dealing with real-world

scenarios, some configurations may be variant, such as the position of the work-

bench or the probabilistic movement. In such cases, the deterministic model may

not be suitable. However, the issue can be solved by DRL, which can adapt to

probabilistic and variant rules through inductive learning. Integration of DRL and

classical planning lead to a synergy that efficiently deals with different features of

the environment.

3.4.1 Effect and Precondition Variable Space

To efficiently induce the rules, we assume that the meaning of the features in a

state are known. The properties mark whether the feature depends on hierarchical

subtasks and whether agents can change the features. There are two categories to

describe the features:

• Precondition variable space P indicates the variables which will change over

time and can be affected by agents. For instance, at wood is a precondition

variable, as (at wood = 1) is the precondition of (pick wood).

• Effect variable space E indicates the variables which directly affect the execu-

tion of the subtask and change after executing critical action. These features

indicate the progress of the tasks. For instance, wood is an effect variable.

For instance, wood, at workbench and at wood in Minecraft are considered

precondition variables since agents can change them and will affect the execution of

some subtasks, such as pickup wood or make stick. However, stick and wood are

considered effect variables since the value will change after executing pickup wood
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or make stick, while at wood is independent of the progress of the tasks. The vari-

ables that belong to neither effect variables nor precondition variables are atemporal.

To construct critical actions, we search for the preconditions and effects in the cor-

responding variable space. The rules of such variables can be learned independently

and can be learned by DRL agents.

In the following section, we will introduce the action schema of critical action.

We provide the specification of the action schema, including MDP action, variables

and rules of precondition and effect. By determining the action schemata of the crit-

ical actions, the task structure can be deduced by composing these critical actions.

3.4.2 Action Schema

In PDDL, an action schema contains the specification of how an action causes effects

and what preconditions are required to execute the action [36]. Let ψ be a critical

action, the action schema of ψ is defined as a tuple (aψ,Pψ,Eψ, F
P
ψ , F

E
ψ ). The

denotations are listed below:

• aψ ∈ A denotes the MDP action that can be executed if the current state

entails the precondition of ψ in MDP problems. Specifically, if the precondition

is satisfied, executing aψ will cause the effects. We differentiate between critical

action ψ and action properties aψ in a critical action executed directly by

agents in MDP environments. Critical actions are the time-invariant elements

in knowledge systems, whereas aψ are the actions executed in environments.

• Eψ ⊆ E denotes a set of effect variables where the corresponding features

change when executing aψ. Detailed symbolic rules are described in FE
ψ .

• FE
ψ denotes effect rules which is a set of formulas indicating what effect that

caused by executing aψ.

17

http://dx.doi.org/10.6342/NTU202303054


doi:10.6342/NTU202303054

Table 3.1: Symbols and examples of an action schema.

Name Symbol Example

Critical action ψ make stick

MDP action aψ make1

Effect variables Eψ {wood, stick}

Effect rules FE
ψ {(wood - 2), (stick + 1)}

Precondition variables Pψ {at workbench, wood}

Precondition rules FP
ψ {(at workbench = 1), (wood ≥ 2)}

wood  ≥  2 at_workbench = 1

stick + 1wood - 2

make_stick
make1

Preconditions

Action name
MDP action

Effects

Figure 3.3: The illustration of make stick action schema.

• Pψ ⊆ P denotes a set of precondition variables related to the features that

are required to be specific values for executing aψ. Detailed symbolic rules are

described in FP
ψ .

• FP
ψ denotes precondition rules which is a set of formulas indicating what sit-

uation should be satisfied for executing aψ.

For instance, the critical action make stick is shown in Table 3.1 and Fig-

ure 3.3. The effect rules FE
make stick is {(wood− 2), (stick + 1)} where Emake stick is

{wood, stick}, and the precondition rules FP
make stick is {(wood ≥ 2), (at workbench = 1)},

where Pmake stick is {wood, at workbench}. This critical action describes the situa-

tion that if the agent executes amake stick and (wood ≥ 2) ∧ (at workbench = 1) are

satisfied, the effects (wood− 2) and (stick + 1) will occur.
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For convenience in the description in this work, we name the critical action

(e.g. make stick) according to their consequence, and it is unknown for the frame-

work. The detailed definition will be discussed in Sections 3.4.3 and 3.4.4.

3.4.3 Effect Rule

An effect rule is a function fq : R → R which transfers the specific feature value

sq to another value s′q in the transition. FE
ψ is a set of effect rules to describe the

change of s related to Eψ which defined as

Eψ = {q | s′q = fq(s) ∀ fq ∈ FE
ψ after action ψ executed}. (3.2)

For instance, the effect rules of make stick are wood - 2 and stick + 1, while

Emake stick is {wood, stick}, which indicate that executing make stick will acquire

one stick and consume two woods. That is, if the current state is represented as

(wood = 4) ∧ (stone = 3) ∧ (stick = 0) ∧ (iron = 0)

∧ (at wood = 0) ∧ (at stone = 0) ∧ (at iron = 0)

∧ (at workbench = 1) ∧ (at toolshed = 0),

after executing make stick, the state will be transferred to

(wood = 2) ∧ (stone = 3) ∧ (stick = 1) ∧ (iron = 0)

∧ (at wood = 0) ∧ (at stone = 0) ∧ (at iron = 0)

∧ (at workbench = 1) ∧ (at toolshed = 0).

The underlines in the state highlight the changed variables corresponding to the

effects. The effect of the critical action in the context of planning is the conjunction

of the effect rules. The rules are the critical effects that are the essence of the critical

actions for planning.
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3.4.4 Precondition Rule

A precondition rule is a logical formula fq : R → {0, 1} that determines whether

the variable q is satisfied to execute aψ, and FP
ψ is a set of precondition rules.

Precondition variables Pψ means that all q ∈ Pψ must met some requirements

which is described in FP
ψ . Pψ are defined as below:

Pψ = {q | fq(sq) ∀ fq ∈ FP
ψ before action ψ executed}. (3.3)

The precondition of the critical action is a conjunction of FP
ψ . For instance,

the precondition rules of critical action make stick are wood ≥ 2, at workbench = 1

whilePmake stick = {wood, stick}. This indicate that (wood ≥ 2)∧(at workbench = 1)

must be true to execute make stick. That is, it requires at least two woods and

stays at the workbench to make a stick. The precondition rules are determined after

specifying the critical effects, which describes the necessary conditions for executing

critical effects.

3.5 Critical Action Graph

In our work, we represent the symbolic knowledge structures as critical action graphs

illustrated in Figure 3.4. Given a set of critical actions and a desired goal, a critical

action graph is an in-tree structure where the root is the critical action that can

achieve the goal directly. The predecessors of a critical action are the required

critical actions that should be satisfied before executing a successor critical action.

The white blocks show the connection between preconditions and effects of the

critical actions; the yellow block denotes the goal of the given task.

Building a critical action graph requires backward search techniques that search

for what critical action can satisfy the precondition. For example, in Figure 3.4,

to achieve the goal stick = 1 with the initial state stick = 0, critical action
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wood ≥ 2 at_workbench = 1

stick + 1wood - 2

make_stick
make1

stick = 1

at_wood = 1

pickup_wood
pickup× 2

wood+(1×2)

× 1

stick = 0

Figure 3.4: The critical action graph for make stick.

make stick is considered as the root for its effect stick+1. Then, to execute

make stick, the precondition wood ≥ 2 and at workbench should be satisfied. Since

the at workbench are not in effect variables, we only search for the critical action

which can lead to wood ≥ 2. Therefore the critical action pick wood is found to

become the successor of make stick. The agent needs to execute pick wood two

times, which is also marked in the critical action graph. Once the critical action

graph is built, agents can leverage the knowledge to solve the task.

Effect variable space E are the features that connect each critical action, such

as wood, and precondition variable space P are the features that are not connected

with other effects in the critical action graph, such as at wood and at workbench

in Figure 3.4. Since only the variables in E can be the effects of critical actions,

the search space can be reduced by only considering chaining the effect rules and

precondition rules whose corresponding variables are in E when performing backward

chaining.

In summary, we introduce critical actions as the action model in classical plan-

ning. By defining critical effects, we establish a connection between the low-level
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execution in MDP problems and the action models that represent high-level abstrac-

tions in the planning domain. The action schemata serve to describe the fundamental

elements of planning. The next section will present the approach to automatically

induce critical actions from demonstrations.
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Chapter 4

Inducing Hierarchical Structure

and Symbolic Knowledge

This chapter presents a comprehensive elaboration of the proposed framework. Sec-

tion 4.1 provides the overview of the proposed frameworks, including the architec-

ture and the procedure. The framework consists of two main modules: induction

and training modules. Section 4.2 introduces the induction module that extracts

symbolic rules from expert demonstrations and constructs critical action models.

Section 4.3 introduces the training module that leverages symbolic knowledge of

the models to provide intrinsic rewards during the agent’s training process. These

modules are incorporated with the DRL module to learn the low-level execution in

MDP environments.

4.1 Overview

The architecture of our framework is illustrated in Figure 4.1. The induction module

first determines the critical actions from demonstrations offline. The training module

deduces the task structure and builds the critical action graph online from the given

goal. The critical action graph contains all subtask dependencies which provide
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Critical Action Graph
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Figure 4.1: The overview of the framework. The induction module infers the critical

actions online, and the training module builds critical action graphs and provides

intrinsic rewards for agents.

intrinsic rewards for the agent to learn subtasks gradually. While the environment

provides extrinsic sparse rewards, intrinsic rewards from our framework incentivize

the agent to achieve the desired subtasks with specified effects, augmenting the

learning efficiency of the DRL agent. With the hints of intrinsic rewards, the off-

the-shelf DRL module learns to adapt to the tasks.

4.2 Induction Module

The induction module learns symbolic rules from demonstrations and specifies the

critical actions ψ and their schemata (aψ,Pψ,Eψ, F
P
ψ , F

E
ψ ). The procedure of the

induction module is illustrated in Figure 4.2. This induction process requires expert

demonstrations as input which is explained in Section 4.2.1. In Section 4.2.2, ex-

tracting action-effect linkages (a,P) from demonstrations using mutual information

is illustrated. In Section 4.2.3, given (a,E), we introduce symbolic regression and
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Demonstrations

Mutual Information

TrueFalse

stickt+1woodt+1

Symbolic Regression

Decision Tree Classification

Action-Effect Linkages

make ↔ {wood, stick}

Effect

stickt＋1woodt－2

stick 1wood 2

＋-

Precondition

wood ≥ 2

False at_workbench ≥ 1

action at state st effects is desired effects?

make1

wood = 2, at_workbench = 1, ... wood-2, stick+1 True
wood = 0, at_workbench = 1, ... ∅ False
wood = 3, at_workbench = 0, ... ∅ False

⋮ ⋮ ⋮

state st action at next state st+1

wood = 4,
stick = 0,

at_workbench = 1,
...

make1

wood = 2,
stick = 1,

at_workbench = 1,
...

⋮ ⋮ ⋮

Figure 4.2: The procedure of induction modules.

evolutionary computation to induce effect rules FE. in In Section 4.2.4, once FE is

determined, the module leverages the rules to determine the precondition properties

P, FP for each (a,E, FE) using decision trees. After these steps, the components

of critical action schemata are all determined. Noticing that we name the critical

action ψ for the convenience of reference, which are not known when inducing action

schemata.

4.2.1 Collecting Demonstrations

Demonstration is finite alternating sequence of states and actions [s1, a1, s2, ..., sk, ak, sk+1],

where st denotes the state at time t and at denotes the action after observing st at

time t. Demonstrations are often generated by human experts, programs, or pre-

trained agents. Sampled from an expert’s behavior indicates that all demonstrations

will successfully reach the goal, which implies the information of task structure and

procedure, such as the consequence of the actions and the sequence of the subtasks.
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A transition in time t in demonstrations is defined as [st, at, st+1], where the effects

caused by at refers to the difference between st and st+1. Section 4.2.2 introduces

the method to extract the action-effect linkages from transitions.

To collect demonstrations, we implement rule-based programs that utilize pre-

defined heuristics to make decisions and choose actions. In our frameworks, a sub-

optimal policy is acceptable as it helps identify counterexamples for inferring the

rules. The framework extracts symbolic knowledge from the underlying information

and relation in demonstrations.

4.2.2 Extracting Action-Effect Linkages from Demonstra-

tions

The concept of action-effect linkages is based on the outcome assumption that one

action only impacts some features of a state. Before searching effect rules, what

features are impacted need to be known. Therefore, we will first determine action-

effect linkages by calculating mutual information [39] between actions and effects if

we observe the effects that often occur after executing a. The algorithm are shown in

Algorithm 1. Let E is a set of possible effect variable combinations in the transitions

of demonstrations. The mutual information M(a,EE) is defined as follows:

M(a,EE) =
∑
a∈A

∑
EE∈E

PAE(a,EE)log
PAE(a,EE)

PA(a)PE(EE)
, (4.1)

where PA(a) is the count of transitions taking action a; PE(EE) is the count of

transitions that include variables in EE ; PAE(a,EE) is the count of transitions that

include changed variables in EE and occur when the agent executes a. We take the

logarithm of mutual information as the metric to avoid incorrect thresholds caused

by extremely high mutual information. To determine the linkage, we use two-center

clustering, which divides the pairs into two clusters with the threshold of a maximum

gap. We select the clusters with higher values as linkages.
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Algorithm 1 Extracting Action-Effect Linkages

Input: Demonstrations D, action set A, effect set E
Output: Action-effect pairs with linkagesL
L← ∅
for a in A do

Na ← ∅
for EE in E do

Na ← Na +M(a,EE)

end for
t← Two-Center-Clustering(M)
for EE in E do

if M(a,EE) ≥ t then
L← L+ (a,EE)

end if
end for

end for

For instance, in the task of getting a stick, all combinations of effect variables

that occurred in demonstrations are defined as

E = {{wood}, {wood, stick}}. (4.2)

Given action space A = {left, right, up, down, pickup, make1}, we observe link-

ages linkages between the action pick up and the effect variables {wood}, as well as

between the action make1 and the effect variables {wood, stick}. By identifying

these action-effect pairs, we can narrow down the search space for effect rules to

E . A transition with (a,EE) indicates that the action a resulted in changes to the

variables in EE in the transition. We then effectively induce symbolic rules based on

these pairs. Noting that although we have selected the effects with their correspond-

ing actions, we are not certain whether these effects are the critical effects, since the

mutual information does not provide the information of dependencies between the

effects. The dependencies of critical effects and critical actions are not revealed until

the construction of critical action graphs.
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4.2.3 Determining Effect Symbolic Rules

Once the action-effect pairs with linkage are identified, the induction module pro-

ceeds to search for symbolic effect rules denoted as FE, caused by action a for given

(a,E). The objective is to find each effect rule fq in F
E related to (a,E). A rule fq

is a symbolic program whose input is the state before executing a and output is the

value of variable q in E after executing a. Let stq denotes sq at time t. The objective

of induction is to find the program that correctly predicts the corresponding value

st+1
q of variable q given st in the transitions.

The selection of the symbolic rule model plays a pivotal role in the induc-

tion process. The model of rules compatible with the expression of effects facili-

tates effective inference. For instance, adopting integer numerical expressions as the

model for symbolic rules can be effective in integer domains. This can be considered

prior knowledge of the problem formulation, which allows our method to acquire

rules essential for efficient learning, distinguishing itself from alternative model-free

methodologies.

In this work, we employ genetic programming for symbolic regression, with de-

tailed implementation settings provided in Section 5.3.2. Each rule fq corresponds

to a program representing a variable in E. For each run, the goal is to discover the

symbolic program that accurately predicts the value of the corresponding variable

sq in the next state given the current state. This process allows the determination

of the rules defined as FE corresponding to the effect variables in E. The illustra-

tions are shown in Figure 4.3. For instance, to induce the symbolic effect rules of

pickup wood, we require the effect variables Epickup wood = {wood}. This method

allows the induction module to determine the rules for each effect variable in E, de-

noted as FE. In the next section, we introduce the method for inducing precondition

variables and rules P, FP given tuple (aψ,E, F
E).
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-

wood 2

action effect variable state st next state st+1

make1 wood

wood = 2, ... wood = 0, ...

wood = 4, ... wood = 2, ...

wood = 3, ... wood = 1, ...

woodt+1 = woodt - 2

fitness = 1

÷

wood 2

woodt+1 = woodt ÷ 2

fitness = 0.33

make1 ↔ {wood, stick}

Figure 4.3: The illustration of symbolic regression using genetic programming.

4.2.4 Determining Precondition

After FE are found, precondition variables P and precondition rules FP of critical

action are identified by classifying whether the transition is consistent with FE.

The process involves minimal consistent determination (MCD) and the decision tree

method. Given a and FE, the approach should find the formula from transitions

[st, at, st+1] in demonstrations. The formula can decide what preconditions should

be satisfied in st, leading to desired effects after at.

Assumed that st+1
q is the value of variable x in st, and st+1

q is the value of q after

transition, a consistent determination x ≻ q means that if some transitions share

the variable x that have identical values in stx, then s
t+1
q must be consistent which

also have identical values. MCD is the smallest subset of relevant variables that is

necessary to predict the specific outcome [36]. For instance, making a stick neces-

sitates the current position at a workbench and at least two woods in Minecraft

environment. Hence, the MCD of the precondition for critical action make stick

is {wood, at workbench}. The algorithm of consistent determination and MCD are

depicted in Algorithm 2 and 3.

MCD yields a more concise hypothesis to find the decision formula. Combining

with MCD, a decision tree algorithm aims to learn the classification of whether the
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Algorithm 2 Consistent-Determination

Input: a subset of features F ; a set of samples S
Output: Truth Value: if F is consistent determination of S
H: empty hash table
for s in S do

v ← the values of s for F
c ← the class of s
if exist (v′, c′) in H such that v = v′ but c ̸= c′ then

return False
end if
insert (v, c) to H

end for

Algorithm 3 Minimal-Consistent-Determination

Input: a set of features A with size n; a set of samples S
Output: minimal consistent determination
for i = 0 to n do

for each Ai: subset of A with size i do
if Consistent-Determination(Ai, S) then

return Ai
end if

end for
end for

transition is consistent with the rules in FE in demonstrations. This integration

improves the learning performance of original decision tree algorithms [36].

The proposed framework uses classification and regression tree (CART) [27] to

build decision trees. CART is a supervised learning algorithm that generates binary

trees by recursive partitioning, where each internal node represents a decision based

on a specific variable, and each leaf node represents a prediction.

Let data partitioned at the internal node m denoted as Dm with nm samples.

The algorithm aims to find a decision with a variable q and a threshold t to partition

Dm into two subsets D0
m and D1

m with n0
m and n0

m samples. The entropy of Di
m is

defined as below:

H(Di
m) = −

∑
Di

m

Di
k

Di
m

log(
Di
k

Di
m

), (4.3)

where Dq represents the data that is correctly classified in Di
m.
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The loss function of the partition is defined as follows:

G(Dm, q, t) =
n0
m

nm
H(D0

m) +
n1
m

nm
H(D1

m). (4.4)

In each partition, the algorithm’s objective is to find the (q, t) that minimizes

G(Dm, q, t) at node m. This process is repeated recursively until a stopping cri-

terion is met.

In the given transition [st, at, st+1] with (a,E) in demonstrations, the current

states st are taken as inputs to a decision tree, and the outcome of the decision tree

is a true value that whether st+1 consistent with the rules in FE. After generating

decision tree by CART, the model of this decision tree is then transferred into a

conjunction of rules by logical simplification and set as the precondition rules FP,

while P is the set of variables mentioned in FP. Considering the precondition is

the conjunction of the precondition rules while the formula of the decision tree may

involve disjunction, the decision tree model is transferred into the disjunctive normal

form. Each clause in the disjunctive normal form is considered the precondition for

different critical actions.

4.2.5 Summary

After the aforementioned procedure, all action schemata (a,P,E, FP, FE) is deter-

mined. The rules in FP and FE can be simplified by symbolic deduction. These

rules identify whether an action is critical when training an agent. The workflow

of our framework is depicted in Figure 4.4. In the next section, we delve into the

training module, which involves constructing critical action graphs and providing

intrinsic rewards.
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Collecting
Demonstrations

 Extracting
Action-Effect Linkage

 Determining
Effect Symbolic Rules

Demonstrations

Action-Effect Pairs

 Determining
Precondition Rules

Effect Rules

Precondition Rules Critical Action Schemata

Induction Module 
Expert

Figure 4.4: The workflow of the induction module with input and output of each

method.

4.3 Training Module

After the induction process, the critical action schemata serve as the components of

a knowledge model that guides the agent in the training stage. The dependencies

among the critical actions can be deduced through symbolic computation. During

the training stage, the training module derives critical action graphs as the task

structures. After establishing the structure, intrinsic rewards are assigned based on

whether the execution of the action satisfies the induced action schema in the graph.

If the agent successfully performs an action that meets the specified preconditions

and effects, it receives an additional intrinsic reward. Further details are discussed

in Sections 4.3.1, 4.3.2 and 4.3.3.
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4.3.1 Inferring Critical Action Graph

Once the critical actions schemata are defined, the task structure inference prob-

lem can be transferred into a planning problem and be solved by any off-the-shelf

planners such as fast forward planning system [20] and fast downward planning sys-

tem [18]. Critical action graphs are composed during the training stage to handle

various tasks according to the goal that the agent is asked to achieve.

Given a goal G (e.g. stick = 1) and an initial state (e.g. stick = 0), the

proposed framework deduces the required critical actions of G by backward chaining

and expresses the dependencies in a tree structure. The illustration of the critical

action graph is shown in Figure 3.4. In symbolic computation, the effects of a

critical action are regarded as operators, and the precondition of a critical action

in the critical action graph should be satisfied. Starting from the goal, the module

search for the critical action to find the desired effect for unconnected precondition.

Maximum operation steps are set to terminate the search. Once the critical action is

found, the critical action will consider as the predecessor of previous critical actions.

The number of required execution are also recorded.

4.3.2 Deep Reinforcement Learning Agent

In the training stage, we aim to train a DRL agent that can learn the subtask by

leveraging the feature-extracting power of neural networks. The induction module

only specifies the coarse-grained critical action to express temporal order. Therefore,

the framework utilizes DRL to complete the fine-grained decision-making tasks.

RL is a reward-directed approach that can be used to solve MDP problems.

The goal of RL agents is to sequentially find environment actions that can receive

maximum expected accumulative rewards from the environment. Specifically, DRL

agents utilize deep learning the approximate the optimal policy with neuron net-

works. DRL uses the policy gradient method to update the policy. In the proposed
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method, we use advantage action-critic (A2C) [28, 10] as the DRL agent, which

detail introduction is in Section 5.3.1.

Tthe problem of sparse reward is that the environment only provides informa-

tion when the task is achieved. Therefore, merely DRL agents are not efficient in

solving the tasks. In next section, we introduce the mechanism of intrinsic reward

and defined the intrinsic reward based on critical action graph.

4.3.3 Intrinsic Rewards

During the training stage, we train an agent with intrinsic rewards generated from

the critical action graph. The modified rewards function is illustrated as follows:

Rint(s) =


+1 if execute a critical action

0 otherwise.

(4.5)

That is, if the agent succeeds in executing the critical effects, it will receive an

intrinsic reward. However, the number of execution is known and there is a limit on

the number of times the agent can receive this intrinsic reward. This prevents the

agent from solely focusing on obtaining intrinsic rewards This method prevent the

agent from solely focusing on obtaining intrinsic reward. Given the original reward

function Rext as extrinsic rewards, the overall reward of the MDP problem is

R(s) = Rext(s) +Rint(s). (4.6)

When the preconditions of a critical action ψ are satisfied, the agent is expected

to execute the corresponding action aψ. If the agent successfully achieves the desired

effects, it receives an intrinsic reward. This approach is akin to curriculum learning,

where simpler tasks are presented to the agent initially to facilitate learning more

complex tasks gradually. The intrinsic reward serves as an incentive for the agent to
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Figure 4.5: The workflow of the training module with input and output of each

method.

select actions that lead to the desired effects. Conversely, if the agent takes an action

that leads to undesired effects, such as violating effect rules, it will receive a penalty.

However, it is important to note that our model only specifies positive critical ac-

tions and does not explicitly identify actions that may have negative consequences.

Therefore, the implementation of a penalty depends on the specific domain.

We serve intrinsic rewards as an augmentation, which allows for applying the

methods on off-the-shelf DRL agents, enabling flexibility to enhance the DRL model.

Compared to the original DRL agents, our framework’s agents require less time to

master jobs with sparse rewards. Particularly in challenging situations, agents with

our framework can do tasks unachievable for the original agents.

4.3.4 Summary

In this section, we introduce the procedure of the training module and the compo-

nents of the module. The workflow of the training module is shown in Figure 4.5.

The critical action schemata are considered as subtasks and the critical action graph

expresses the dependencies of the subtasks. Backward chaining is employed to de-

termine the dependencies among critical actions. The formation of critical action
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graphs as task structures is then used to provide intrinsic rewards based on execut-

ing actions satisfying induced action schema. In the next section, the experiments

to demonstrate the capability of our framework are shown.
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Chapter 5

Test Environments and

Experiment Settings

In this chapter, we introduce two MDP environments Switch and Minecraft

for evaluation. The first environment Switch is focused on assessing the abil-

ity to sequentially achieve subtasks in hierarchical tasks. The second environment

Minecraft is designed to evaluate the ability to construct various task structures

with multiple subtasks for compositional tasks. Both environments are set in a 8×8

grid. Agents can move in the grid with action up, down, left, right and interact

with the object on the grid according to the configuration of the environment. For

each environment, several tasks are designed for testing effectiveness and generaliz-

ability. Detail descriptions are elaborated in Sections 5.1 and 5.2. In addition, in

Section 5.3, the parameters and settings of the proposed framework are specified.

In Section 5.4, we introduce the algorithms we selected for comparison and their

implementation details.
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5.1 Switch

The environment Switch is designed to evaluate the ability to solve hierarchical

tasks. In Switch, several switches are placed on the grid. The objective of the

agent in Switch is to sequentially turn on switches in a pre-determined order.

We define the state variables as

Q = {x, y, at switch, next switch, goal switch},

where x and y indicate the position of the agent on the grid. at switch indi-

cates the switch the agent stays at. If the agent does not stay at any switch, this

variable is set to zero. next switch indicates which switch should be activated in

the following actions. goal switch denotes the last switch and also implies how

many switches should be turned on. The action space A contains five actions:

{left, right, up, down, toggle}. toggle enables the agent to activate or deactivate

a switch.

The switches have three states:

• available: When the agent executes the action toggle on the switch, the

switch is activated to on.

• on: The switch is currently activated. If the agent executes the action toggle

at the switch, it will be deactivated and turned to available.

• off : The agent can not change the status of the switch.

When a switch is on, it activates the next switch in the pre-defined order and

turns the switch from off to available. However, if a previously activated switch

is turned to available (not on), all subsequent switches will also be deactivated.

This makes it challenging for RL agents to solve the task through random walks or

exploration alone.

38

http://dx.doi.org/10.6342/NTU202303054


doi:10.6342/NTU202303054

2

1

3

4

On

Available

Off

Figure 5.1: Visualization of Switch environment. The goal of the agent is to turn

on all switches in a specific order. The figure shows the state of 4-Switches-

Incremental. Green circles indicate on, yellow switches indicate available, and

gray switches indicate off.

An example is shown in Figure 5.1. Assumed there are n switches labeled from

1 to n located in Switch, the rule of order is to turn on switches incrementally,

and the goal switch = 4. That is, the agent needs to activate switches 1, 2, 3, and

4, respectively. At first, only switch 1 is available, and others are off. The agent

is tasked with activating switches in sequential order. After we operate switch 1,

switch 1 is set to on, and switch 2 is set to available. However, if any switch i in on

state is deactivated, for all switch j where j ≥ i are set to off, and switch i are set

to available.

For instance, when the agent stays at (1, 2) where switch 2 is at and going to

turn on switch 2, the state is represented as

(x = 1) ∧ (y = 2) ∧ (at switch = 2) ∧ (next switch = 2).

After the agent turns on switch 2, the next switch to turn on becomes switch 3, and

the state will transfer to:

(x = 1) ∧ (y = 2) ∧ (at switch = 2) ∧ (next switch = 3)
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The state means that switch 2 is on and switch 3 is available. Now the agent should

go to switch 3 and turn on the switch. If the agent goes to (2, 2) where there is no

switch, the state will transfer to

(x = 2) ∧ (y = 2) ∧ (at switch = 0) ∧ (next switch = 3).

In addition, we define the difficulty of the tasks on the number of switches.

Due to the possibility of deactivation, when the number of switches increases, it

becomes intractable for RL agents to achieve the tasks only by exploration. Since

the critical actions of the environment remain the same, our framework is capable

of generalizing the critical actions from an easy task to a difficult one. To evaluate

the capability of the proposed framework, we design several situations, including

the number of switches, sequential order, and distractors. In the following sections,

the settings of the tasks are listed and discussed.

5.1.1 Number of Switches

We use the number of switches to evaluate the performance on different difficulties

of tasks. When the number of switches increases, the tasks become more difficult

as it has more chance to turn off the switch. We show that our framework enables

DRL agents to learn difficult tasks, and the critical action can be generalized to

different numbers of switches.

5.1.2 Order

To analyze the capability of skill generalization, We define two types of orders in-

cluding Incremental and Odd. Incremental indicates that the switches should

be turned on in incremental order. That is, if four switches need to be turned on,

we set goal switch = 4 and the activate order is 1, 2, 3, and 4. Odd indicates

that the switches should be turned on in odd order where goal switch = 7 and the
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Figure 5.2: Visualization of Switch environment with 4, 8 and 16 switches.

activate order is 1, 3, 5, and 7 if there are four switches. We will show that given

the critical actions from the demonstrations in one type of order, the framework can

adapt to new rules from few-shot demonstrations in another type of order.

5.1.3 Distractors

In the distractor setting, available switches are added to the environment. The

agent can turn on and off the distractor switches, but the action does not help to

achieve the tasks. In n-switch incremental-order tasks, the switches labeled n+1 to

2n are set as distractors. In n-switch incremental-order tasks, the switches labeled

2, 4, ..., 2n are set as distractors. This setting evaluates whether the agent acquires

the ability to select correct switches and neglects the incorrect ones.

5.1.4 Four Rooms

In the four-room setting, two lines of walls divide the gridworld into four rooms

according to the four-room configuration in Minigrid. Every two rooms are inter-

connected by a gap in the walls. In this scenario, the agent is required to navigate

through the rooms considering the walls to activate the switches. This setting eval-

uates the efficacy of DRL involving navigating obstacles at low-level execution.
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Figure 5.3: Visualization of Switch environment with distractors in different order.

The dotted stroke circles represent distractors which is initally available.
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Figure 5.4: Visualization of Switch environment with four rooms. The gray squares

represent walls which can not move across.

5.2 Minecraft

Minecraft is inspired by the computer game Minecraft and is similar to the en-

vironment in previous works [41, 2, 45, 7]. The agent can pick up the primary

materials on the map and make different tools in specific places consuming the ma-

terials. The goal of each task is to acquire the desired materials or tools. The

state variables include {x, y, at <place>, <inventory>}, where at <place> de-

notes whether the agent is at the <place>, and <inventory> denotes the number

of materials or tools the agent holds. For instance, at workbench = 1 means the

agent is at the workbench, and wood = 3 means the agent has three wood.
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Inventory
wood ✕ 2, stone ✕ 3

at_wood

at_stone

at_iron
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at_workbench

at_toolshed
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Figure 5.5: Visualization of Minecraft environment.

In our experiments, thirteen types of items are designed in the inventory: wood,

stone, stick, iron, gen, stone pickaxe, iron pickaxe, wool, paper, scissors,

bed, jukebox, enhance table. There are seven places on the gird world: at wood,

at stone, at iron, at gem, at sheep, at workbench, at toolshed. The state vari-

ables Q are defined as

Q = {wood, stone, stick, iron, gen, stone pickaxe, iron pickaxe,

wool, paper, scissors, bed, jukebox, enhance table,

at wood, at stone, at iron, at gem, at sheep,

at workbench, at toolshed}.

The action space A contains eight actions: {left, right, up, down, make1,

make2, make3, make4}. The agent crafts different items when executing different

make actions (make1, make2, make3, make4) and at different places (workbench or

toolshed). The formulas of the items are listed in Table 5.1, and the dependency

of the subtasks is illustrated in Figure 5.6. The agent needs to get the materials to

create desired items. We test two single tasks with different difficulties Iron and

EnhanceTable, and a multiple task Multiple that sample the goal at random.
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Table 5.1: Formulas in Minecraft environment

Inventory Action Preconditions

Effects

wood pickup
at wood = 1

wood + 1

stone pickup
at stone = 1

stone + 1

iron pickup
at iron = 1 stone axe ≥ 1

iron + 1

gem pickup
at gem = 1 iron axe ≥ 1

gem + 1

wool pickup
at sheep = 1 scissors ≥ 1

wool + 1

stick make1
at workbench = 1

stick + 1 wood − 1

stone pickaxe make1
at toolshed = 1

stone pickaxe + 1 stone − 3 stick − 2

iron pickaxe make2
at toolshed = 1

iron pickaxe + 1 iron − 3 stick − 2

scissors make2
at workbench = 1

scissors + 1 iron − 2

paper make3
at workbench = 1 scissors ≥ 1

paper + 1 wood − 1

bed make3
at toolshed = 1

bed + 1 wood − 3 wool − 3

jukebox make4
at workbench = 1

jukebox + 1 wood − 3 gem − 1

enhance table make4
at toolshed = 1

enhance table + 1 stone − 3 paper − 2 gem − 1
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make_stick

pickup_wood pickup_stone

make_stone_pickaxe

pickup_iron

make_iron_pickaxe

pickup_gem

make_scissors

pickup_woolmake_paper

make_jukebox make_enhance_table make_bed

Figure 5.6: Dependency of subtasks in Minecraft. We select Iron and En-

hanceTable as test problems, and the detail illustration about effects and the

preconditions of the problems are shown in Appendix A.

5.3 Implementation Detail

In this section, we elaborate on the implementation detail of the proposed framework

that was used in the experiments. We implement several modules using off-the-shelf

packages and approaches, including the agents with A2C, and genetic programming

as symbolic regression with gplearn.
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CNN
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Figure 5.7: The architecture of DRL agents incorporates A2C methods. The actor

generates actions, and the critic evaluates the actor’s output.

5.3.1 Advantage Actor-Critic

A2C are used for the DRL module in our framework. The actor-critic method is a

temporal difference method where an actor module is served as a policy, and a critic

module is regarded as a value function. A2C implements the advantage function

representing the advantage of taking a particular action in a given state compared

to the average expected reward. In each step, the agent’s policy π with parameter

θ executes an action according to the state from the environment and consequently

receives rewards. After termination, the probability of trajectories τ occurred are

expressed as

pθ(τ) = p(s1)
T∏
t=1

pθ(s
t|st−1, at)p(a

t|st). (5.1)
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Given the trajectories τ , the policy gradient of expected rewards R̄π derived from τ

are provided to update the neuron network which defined as

∇R̄θ(τ) =
N∑
n=1

Tn∑
t=1

(rt + V π(st+1, G)− V π(st, G))∇logpθ(at|st), (5.2)

where V π(st, G) denotes the value function learned by critics with parameters π,

which indicate the expected accumulated rewards from t to end of the episode, and

rt+V π(st+1, G)−V π(st, G) denotes advantage function which implies the difference

between rewards rt and the reward estimator V π(st, G) − V π(st+1, G). The policy

update rule for the actor is

θ′ ← θ + α∇R̄θ(τ), (5.3)

where α denotes the learning rate. The objective of A2C is to minimize cross-entropy

of ∇R̄π.

In this work, torch-ac [25] is used for the implementation of the DRL module in

our framework. The model structure is described below and illustrated in Figure 5.7.

Firstly, the model takes the observation from the environment as input. In our

problem, the observation is the information of the gridworld and the PDDL state.

The gridword is directly encoded by a four-layer convolution neuron network with

32× 64× 96× 128 channel size, and the state that transfers into PDDL is encoded

by a two-layer 64× 64 fully-connected network. Two types of encoded observation

are concatenated and encoded by another two-layer 64×64 fully-connected network.

The output-encoded observation then uses as the input of the actor network and

the critic network. The actor network executes the actions, and the critic network

evaluates the actions.

5.3.2 Genetic Programming

Genetic programming is employed as a symbolic regressor for determining symbolic

effect rules in the proposed methods, illustrated in Figure 5.8. We use the gplearn
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Figure 5.8: The procedure of genetic programming.

package for implementation and the parameter settings of are shown in Table 5.2.

Given the action-effect linkage (a,E), the transitions with action a are selected as

the training data. For each effect variable e in E, the algorithm’s objective is to find

the program that predicts the symbolic programs of e when executing the actions

with the highest accuracy.

Each program is represented as an expression tree where input is the current

state in the transition and output is the predicted value of e. The algorithm com-

prises several steps: initialization, evaluation, selection, crossover, and mutation.

Initially, the population P , which is a set of programs, is randomly generated.

Fitness evaluation is then performed on all programs; a subset of programs with

the highest fitness values is selected. These programs serve as parents to produce

offspring Poffspring through crossover and mutation mechanisms. Through iterative

selection and production, the evolution of the population to discover the programs

that best fit the given data. The evaluation metric used in genetic programming is
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Table 5.2: The parameter setting of genetic programming. The parameter with two
values indicates that the settings are different in two phases.

Parameters Value (first/second phrase)

population size 2000/2000

tournament size 200/200

generations 20/10

p crossover 0.6/0.6

p subtree mutation 0.2/0.2

p hoist mutation 0.1/0.1

p point mutation 0.05/0.05

max samples 0.95/0.95

parsimony coefficient 0.0001/0.005

function set {+,−,×,÷}/{+,−,×,÷}

the percentage of correct effect prediction which is shown below:

fitness(fq) =
# of transitions with (a,E) consistent with fq

# of transitions with (a,E)
, (5.4)

where transition consistent with fq means that the predicted effect fq(s
t) from the

current state st is consistent with the actual effect st+1
q given transition [st, at, st+1].

According to the integer variable representation in this work, arithmetic opera-

tions {+,−,×,÷} are selected as the function set. This implies that we assume that

the effects are learnable using these operations. To be precise, the effects in the do-

main can be expressed by the function set and can be discovered through evolution.

Also, to prevent bloat issues in which the program grows extremely larger to fit the

data, the algorithm contains two phases: exploring and pruning. The best programs

with the highest accuracy are determined in the exploring phase. Subsequently, in

the pruning phase, the program with high parsimony while maintaining the same

accuracy is selected as the output. The maximum number of generations in pruning

phrases is the logarithm of the length of the best program in exploring phrases.
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5.3.3 Reward Function

The reward function is decided by the number of steps for achieving the tasks and

the maximum number of steps. The function are defined as follow:

Rext =
stepmax − step

stepmax
, (5.5)

where stepmax is the maximum number of steps in the environment, and step is the

steps the agent has done. Baseline agents only receive rewards when the tasks are

achieved, while our framework provides intrinsic rewards for agents mentioned in

Equation 4.5. Each time when the agent executes the correct critical actions, the

reward are calculated where step is the current number of steps. The maximum

steps in two environments are 25600.

5.4 Compared Algorithms

To assess the effectiveness of our framework, we have chosen several RL algorithms

that share similarities with our approach. Firstly, we compare our work to the prox-

imal policy optimization (PPO) [38] and Deep Q-Network (DQN) [29] algorithm as

a standard RL baseline. Secondly, we evaluate our framework against other relevant

works in the field. Our framework learns from demonstrations to acquire rules and

employs intrinsic rewards to guide the agent. As a result, we select behavior cloning

(BC) [35] and generative adversarial imitation learning (GAIL) [19] for comparison

in terms of learning from demonstrations and rewarding impact-driven exploration

(RIDE) [34] for comparison in terms of intrinsic rewards. In the following sections,

we provide a detailed explanation and implementation of these algorithms.
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5.4.1 Proximal Policy Optimization and Deep Q-Network

We select two classic DRL algorithms for evaluation: PPO and DQN. PPO was

proposed by OpenAI in 2017 [38]. It is an on-policy reinforcement learning algo-

rithm that aims to optimize policies for decision-making tasks. It utilizes the ideas

from trust region policy optimization [37] which ensures that the policy update

remains within a certain range to prevent drastic policy changes. In contrast to

A2C, PPO incorporates a clip parameter that bounds the ratio between the new

and old policies during the policy update. On the other hand, DQN developed by

Google DeepMind [29] is a model-free reinforcement learning algorithm combining

deep neural networks with Q-learning. In DQN, neural networks are used to ap-

proximate the Q function which evaluates the taken actions. The algorithm employs

experience replay to store and randomly sample past experiences, which stabilizes

learning and prevents overfitting. DQN has demonstrated impressive capabilities

in handling high-dimensional state spaces, making it suitable for various complex

tasks. Additionally, DQN utilizes a target network to reduce the risk of divergence

during training.

For PPO, we use the implementation in torch-ac package. The architecture of

the model is the same as our method illustrated in Figure 5.7. The batch size is

256; the entropy coefficient is 0.1; the value loss coefficient is 0.5; clipping epsilon

is 0.2. For DQN, we use the implementation in stable baselines3 package [33] for

implementation and use the default settings of the packages.

5.4.2 Rewarding Impact-Driven Exploration

RIDE incorporates intrinsic rewards to incentivize the agent to take actions that

have significant change. RIDE draws inspiration from the intrinsic curiosity module

(ICM) which encourages the agent to explore the unseen states. Let the state

embedding representation is ϕ(st) at time t, ICM leverages the Euclidean distance

between the predicted embedding and actual embedding of the next state L =
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||ϕ̂(st+1)−ϕ(st+1)||22 to determine the intrinsic rewards. The forward model predicts

ϕ̂(st+1) and aims to minimize L, while the inverse model predict the action â by

ϕ(st) and ϕ(st+1) and aims to minimize the cross entropy between â and a. Instead

of encouraging the agent to deviate from its predictions in ICM, RIDE uses the

Euclidean distance between consecutive states L = ||ϕ(st+1) − ϕ(st)||2, motivating

the agent to actively explore and alter the current state within the environment.

The intrinsic reward function of RIDE is defined as

RIDE(s
t, at, st+1) =

||ϕ(st+1)− ϕ(st)||2√
Nvisited(st+1)

, (5.6)

where Nvisited(s
t) is the number of visiting state st in this episode. We use the same

configuration in the original paper [34]. The intrinsic reward coefficient is 0.1 and

entropy cost is 0.0005, and the baseline cost is 0.5.

5.4.3 Behavior Cloning

BC is a supervised-learning approach used to imitate expert behavior. The model

learns to map input states to corresponding actions based on the provided expert

demonstrations. The objective of BC is to perform tasks with similar proficiency as

the expert, leveraging the knowledge and skills encoded in the demonstrations.

However, the limitation of BC is the lack of exploration and adaptability. BC

relies on expert demonstrations and lacks the ability to actively explore the envi-

ronment or learn from its own experiences. This can hinder the agent’s performance

on unseen tasks. In contrast, our method also relies on the demonstrations without

rewards to induce the model, assuming these demonstrations represent the desired

behavior. The key distinction is that our framework is model-based, incorporat-

ing action schemata to enhance its capabilities. We use stable baseline3 [33] for

implementation and use the default settings of the packages.
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5.4.4 Generative Adversarial Imitation Learning

GAIL is an imitation learning approach developed in 2016 that combines the strengths

of generative models and adversarial training. The objective of GAIL is to learn a

policy that can imitate an expert’s behavior by jointly training a generator and a

discriminator. Given states, the generator generates actions, while the discrimina-

tor learns to distinguish between the actions generated by the generator and those

performed by the expert. This method incorporates the actor-critic method as the

generator. The key advantage of GAIL is its ability to handle environments with

sparse rewards. Since GAIL does not require explicit reward signals, it can learn

from implicit feedback provided by the discriminator. This makes it particularly

well-suited for tasks where expert demonstrations may be scarce or difficult to ob-

tain. In the experiment, we use stable baseline3 [33] for implementation. PPO is

used as the generator, which settings are the same in Section 5.4.1. The demonstra-

tion batch size is 1024, and the replay buffer capacity is 2048.
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Chapter 6

Experiments and Discussions

In Chapter 4, we define the testing environments and provide implementation de-

tails. In this chapter, we present the empirical results conducted in the Switch and

Minecraft environments. We begin with the preliminary experiment results of the

framework are shown in Section 6.1, followed by a comparison of the framework’s

performance with other algorithms in Section 6.2. We then demonstrate the frame-

work’s capabilities for task generalization and skill generalization in Section 6.3.

Finally, we discuss the limitations of our current work and offer insights for future

improvements in Section 6.4.

6.1 Preliminary Experiment Results

In this section, we analyze the output of each process in the induction module and

training module. In Section 6.1.1, we show that mutual information between actions

and effects is a suitable metric for identifying linkages. In Section 6.1.2, we present

the accuracy of inducing effect rules using genetic programming. In Section 6.1.3,

we show the efficacy of employing pre-training and intrinsic rewards in the training

module for navigating DRL agents.
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6.1.1 Action-Effect Linkage

In Section 4.2.2, we introduce the concept of action-effect linkages, which help iden-

tify the co-occurred effects and actions. We assume that if there is a relation between

an action and its effects, they will co-occur with a higher probability. The degree

of association between action-effect pairs can be identified by measuring the mu-

tual information. Figure 6.1 presents the experimental results in Minecraft and

Switch environments and shows the relationship between the logarithm of mutual

information and action-effect linkages. The heat map visualizes the values of all

action-effect pairs, with darker colors indicating higher values and stronger associa-

tions. For clarity, we only list the variables in effect variable space E in Minecraft

in Figure 6.1b, as these variables are used to induce the effect rules.

The results demonstrate a significant difference in mutual information between

linked action and effect variables compared to unrelated ones. This means that

when there is a relationship between action and effect variables, their co-occurrence

increases, resulting in higher mutual information values. In Figure 6.1a, there is

a linkage between next switch and toggle, which indicates that the change of

next switch often caused by toggle in Switch environment. In Figure 6.1b, the

higher values also distinguish the linkage and show which action affects the inventory

in Minecraft environment.

6.1.2 Symbolic Regression

The proposed framework necessitates a robust symbolic regression module to gener-

ate the symbolic rules. In Section 5.3.2, we introduce genetic programming as sym-

bolic regression for induction. Since genetic programming is a randomized search

method, empirical results are shown to discuss the success rate of finding correct

rules and how much demonstrations required to capture the symbolic rules.
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Figure 6.1: Heatmap of mutual information.
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Figure 6.2: The accuracy of symbolic regression using genetic programming. The

demonstrations are sampled from random subtasks, and the accuracy is the success

rate of inducing 27 rules in Minecraft out of five runs.

The setting of the experiment is described as follows. In Minecraft environ-

ment, there are 27 effect rules listed in Table 5.1. We sample different numbers of

demonstrations from random subtasks. The parameters of genetic programming are

the same as the setting in Table 5.2. We test all the effect rules in each run and

calculate the number of correct programs compared to the ground truth settings.

The result is the average accuracy out of five runs shown in Figure 6.2. The result

shows that the accuracy reaches 97.5% when sampling 64 demonstrations. Thus,

we claim that the effect rules can be induced through genetic programming when a

sufficient number of demonstrations are available.

6.1.3 Intrinsic Reward and Pre-Training

In this section, we provide experiment results to support the efficacy of intrinsic

rewards and pre-training in enhancing the performance of DRL in Switch. Intrinsic

rewards are given according to the critical action graph which encompasses the

required subtasks of the task. When the agent correctly executes the critical action
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that activates the switches, it receives a +1 reward. If there are n switches in

the environment, the agent can only receive n times rewards. On the other hand,

pre-training helps bootstrap the DRL agent to learn difficult tasks. If the task

structures are known, the agent can effectively learn the tasks by pretraining in

simpler environments. These techniques are incorporated into our framework, which

serves as a guiding mechanism for the DRL agent to successfully complete tasks.

To evaluate the efficacy of the techniques, we design two experiments to evalu-

ate the techniques. First, we compare the learning curves of DRL with and without

intrinsic rewards in the 4-Switches task. The results illustrated in Figure 6.3

demonstrate that incorporating intrinsic rewards significantly improves training ef-

ficiency. The agent trained with intrinsic rewards outperforms the baseline method

receiving 95% of average extrinsic rewards. Second, we examine the agent’s per-

formance with pre-training and intrinsic rewards in 16-Switches. The results are

shown in Figure 6.4. In this case, although the agent is pre-trained in 4-Switches,

it still fails to learn the task without intrinsic rewards and does not receive any

rewards during training, while the agent with intrinsic rewards receives higher aver-

age rewards. This result highlights the significance of intrinsic rewards in facilitating

efficient task learning.

Then we compare the training efficiency between two different approaches with

intrinsic rewards: The first approach pre-trains the agent in 4-Switches, and the

second approach only provides intrinsic rewards in 16-Switches. Noting that 4-

Switches serves as a preliminary task that the agent must successfully accomplish

the goal of 4-Switches as the subgoal of 16-Switches. Although the approach

with both pre-training and providing intrinsic rewards is more effective than only

intrinsic rewards, the agent fails to learn the tasks with only pre-training. Also, the

task difficulties depend on domains based on the complexity and the configuration of

environments. Therefore, it often requires hand-craft tasks with different difficulties

for training, which is against our assumption of automatic induction and training.

Thus, we select intrinsic rewards as the role of guiding DRL agents.
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Figure 6.3: The training performance with intrinsic rewards in 4-Switches envi-

ronment. The baseline is A2C without intrinsic rewards.

0 1 2 3 4 5
Steps (M)

0.0

0.2

0.4

0.6

0.8

1.0

Re
wa

rd
s

Pretrain
Intrinsic
Pretrain+Intrinsic

Figure 6.4: The training performance comparing pretraining and intrinsic rewards

in 16-Switches environment.
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6.2 Experiment Results on Performance

This section presents the experiment results on Switch and Minecraft. Results

in Switch demonstrate the ability to learn hierarchical tasks, while Minecraft

shows the performance of learning compositional tasks and multiple tasks. We run

the experiments over five random seeds and show the mean of the training curves

over 5M steps out of five runs. In each plot, the solid lines are the mean of training

curves, and the shaded region is the standard deviation.

6.2.1 Switch

We evaluate four tasks in Switch, The tasks 4-Switches, 8-Switches and 16-

Switches evaluate the performance of the algorithm when the hierarchy of tasks

increases. Besides, 4-Switches-4-Distractors and 4-Switches-4-Rooms are

set to test the performance in various environments. For each run, we collect 20

demonstrations for BC, GAIL, and our method. The results are shown in Table 6.1

and Figures 6.5 and 6.6. Our method improves the average rewards and training

efficiency compared to the other algorithms, especially on 16-Switches tasks. In 4-

Switches, the proposed method achieves 96±01% of rewards, while others achieve

less than 34% of rewards. The difference in performance is more significant in com-

plicated tasks. While other methods failed to learn the tasks, our method achieves

90±01% and 75±03% of rewards in 8-Switches and 16-Switches, respectively. In

addition, in 4-Switches-4-distractors and 4-Switches-4-Rooms, all methods

have lower performance compared with 4-Switches due to the distractors and the

walls, while our method still reaches 91±05% average rewards, which outperforms

other methods. In summary, the result shows that our method improves training

efficiency, especially when the tasks are more difficult to reach the goal.
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Figure 6.5: Training performance in Switch with different numbers of switches.
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Figure 6.6: Training performance in Switch with distractors and rooms.
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Table 6.1: Performance in Switch environment after 5M steps.

Task PPO DQN RIDE BC GAIL Ours

4-Switches .34±.07 .56±.05 .32±.18 .07±.07 .30±.08 .96±.01

8-Switches .00±.00 .00±.00 .00±.00 .00±.00 .00±.00 .90±.01

16-switches .00±.00 .00±.00 .00±.00 .00±.00 .00±.00 .75±.03

4-Switches-4-Distractors .24±.08 .08±.05 .08±.12 .00±.03 .06±.04 .95±.02

4-Switches-4-Rooms .27±.10 .20±.10 .26±.09 .00±.00 .21±.04 .92±.01

Table 6.2: Performance in Minecraft environment after 5M steps.

Task PPO DQN RIDE BC GAIL Ours

Iron .84±.01 .30±.10 .75±.09 .00±.03 .17±.12 .82±.02

EnhanceTable .63±.09 .16±.04 .20±.04 .00±.00 .03±.02 .73±.05

Multiple .46±.15 .15±.07 .50±.06 .00±.06 .45±.14 .74±.03

6.2.2 Minecraft

This section shows the empirical result about Minecraft Environment. In Mul-

tiple, we randomly select a task as the goal at the beginning of each episode. In

this scenario, the task of each episode is selected uniformly at random. In addition,

we select the task of getting an iron and the task of getting a enhance table as the

metrics named Iron and EnhanceTable, respectively. In each run, 64 demon-

strations with random goals are collected for our methods and imitation learning

approaches. This configuration demonstrates that our method is able to induce

critical actions from shared subtasks and construct the graph based on the desired

goal. The results are shown in Figure 6.7 and Table 6.2. In simple tasks such as

Iron, PPO and RIDE reach high performance as well as our method. However, in

difficult tasks such as EhanceTable, only our method outperforms other methods

with 73±05% of average rewards. In addition, in Multiple, our method receives

74±03% rewards than other methods.
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Figure 6.7: Training performance in Minecraft environment.

6.3 Generalizability

In this section, we demonstrate the generalizability of our method. Our method

leverages demonstrations to construct the critical action model. This model defines

subtasks through critical actions consisting of preconditions, effects, and MDP ac-

tions. These components are compositional, providing a level of generalizability to

the agents. For comparison, we select BC and GAIL, both of which also learn from

demonstrations. In Sections 6.3.2 and 6.3.3, we will show the result of performing

task generalization and skill generalization.
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Figure 6.8: The performance of BC, GAIL and our methods with different demon-

strations after 5M steps in 4-Switches-Incremental.

6.3.1 Preliminaries

To assess generalizability, we assume that a sufficient number of demonstrations are

available to train the agent within the original domain. In this section, we examine

the performance of BC, GAIL, and our method using varying numbers of demon-

strations. The results shown in Figure 6.8 demonstrate that BC achieves an average

reward of 97% with 250 demonstrations. Our approach, on the other hand, achieves

a comparable average reward of 96% with only 20 demonstrations for induction. In

contrast, GAIL requires more than 500 demonstrations to achieve the same perfor-

mance level. For equitable comparison, we employ 250 demonstrations for all meth-

ods in the subsequent experiments. Our focus lies in contrasting the performance

differences between the original and shifted domains. In Sections 6.3.2 and 6.3.3,

we will demonstrate the generalizability of our method at task and skill levels,

while other learning-from-demonstration methods failed to generalize the knowledge

learned from the original domain.
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6.3.2 Task Generalization

Task generalization enables the agents to learn the new task with the prior knowledge

of learned tasks. Our method employs the critical action model, which is general-

izable at the task level by constructing new structures from known critical actions.

Thus, the proposed framework can provide task generalization if the rules of the

environment remain unchanged. On the other hand, BC utilizes supervised learning

to imitate the given demonstration, which limits the agent’s ability to generalize

knowledge when encountering unseen tasks, while GAIL utilizes generative adver-

sarial networks and training agents by distinguishing between actions generated by

the policy network and actions from expert demonstrations. These model-free imi-

tation learning approaches suffer from the issue of distribution shift. If the training

domain varies from the demonstration domain, the agent fails to learn the tasks.

In our study, we define a shifted domain as a scenario where the tasks share

the same critical actions but have different task structures that have not been en-

countered before. This means that although the actions required to accomplish the

tasks are identical, the way they are organized or sequenced in each task is unfa-

miliar to the agent. In our framework, the training module can reason the required

critical actions and compose the task structure of unseen tasks based on few-shot

demonstrations.

To demonstrate these properties, we evaluate in 4-switches-incremental

and its shifted domains. We collect 250 demonstrations in 4-switches-incremental

for all methods, train 300 epochs for BC, and run 5M steps for GAIL and our meth-

ods. The results in Table 6.3 demonstrate that the performance of BC and GAIL

drops in the shifted domain, whereas our model outperforms other methods in the

shifted domain. Our method induces critical action turn on, and the framework

constructs different critical action graphs with the critical actions, which enables

the agent adapts to the shifted domain.
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Table 6.3: The generalization performance in four tasks.

Task BC GAIL Ours

4-switches-incremental (demonstrations) .95±.07 .30±.08 .96±.01

8-switches-incremental .26±.07 .10±.02 .90±.02

4-switches-4-distractors-incremental .00±.00 .10±.07 .95±.02

4-switches-4-distractors-odd .00±.00 .11±.06 .95±.01

6.3.3 Skill Generalization

In Section 4.2.3, we introduce genetic programming for reasoning symbolic rules.

One advantage of employing evolutionary computation is its adaptability. We define

a variant critical action ϕ from ψ where Pϕ = Pψ and Eϕ = Eψ while FP
ϕ or

FE
ϕ changes. If a critical action ψ varied, the induced symbolic programs and the

population are able to evolve and adapt to new rules. Since Pϕ and Eϕ are known,

the procedure starts from inducing effect rules FE
ϕ .

We focus on few-shot demonstration generalization. That is, given sufficient

demonstrations of original tasks and few-shot demonstrations of varied tasks, whether

the agent can adapt to new skills and learn the tasks. We collect 250 demonstrations

in 4-Switches-Incremental and four-shot demonstrations in 4-Switches-Odd

for BC and GAIL. We induce the new critical action starting from the step of deter-

mining effect rules in Section 4.2.3. For GAIL and our method, agents are trained

in 4-Switches-4-distractors-Odd configuration. The result in Table 6.3 shows

that the performance of BC and GAIL decrease in 4-Switches-4-distractors-

Odd. In contrast, our method induces new critical actions from few-shot demon-

strations and provides intrinsic rewards when the agent activates the switch in an

odd order.
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6.4 Discussions

This section discusses the framework and its performance in different aspects. In

Section 6.4.1, another approach to constructing task structures using induction from

demonstrations is discussed. In Section 6.4.2, we contrast with other approaches

focusing on learning from demonstrations and hierarchical task learning. These

methods are not compared in the experiments due to the different scenarios. In

Section 6.4.3, the limitations of the framework are also discussed.

6.4.1 Extracting Task Structures from Demonstrations

In some cases, when the environment is partially observable, the critical action

model may be incomplete, Especially when the preceding critical action’s effects

and succeeding one’s preconditions are not directly associated, leading to the failure

of deducing the critical action model due to a lack of information. One solution to

this issue is extracting the critical action sequences from demonstrations and con-

structing critical action graphs from the sequences illustrated in Figure 6.9. Given

the critical action model, we can label the critical actions and discover the sequential

order of the critical actions. Some related works develop approaches to induce the

task structure from action sequences, including automata [47, 13] and hierarchical

task network [17], which can also be utilized in our frameworks. However, these

methods rely on the demonstration quality and can not generalize to unseen tasks.

6.4.2 Comparison with Other Methods

In the previous section, we compare the performance between our methods and

other studies. However, these methods have a limitation that may fail in different

scenarios. In this section, we furtherly discuss the assumption and the limitation of

these methods, including exploration-based intrinsic rewards and imitation learning.
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Figure 6.9: The illustration of inducing task structures from critical action se-

quences.

Exploration-Based Intrinsic Rewards

RIDE encourages the agent to explore the environment by rewarding the behav-

ior that significantly changes the environment. Its predecessor ICM incentives the

behavior of exploring unexpected states. These methods expect that exploration im-

proves the effectiveness of learning. However, sometimes exploration may hinder the

agent from achieving the goal. For instance, exploration may lead to frequently de-

activating the switches in Switch. In the environment with a long episode length,

The agent will urge to pursue intrinsic reward instead of reaching the goal [48].

These methods also suffer from exploration-exploitation dilemmas that the hyper-

parameter of exploration-exploitation balance needs to be hand-crafted [24].

In contrast, our method not only incentives the unexpected or significant effects

but the correct effects. The framework has the knowledge of critical action graphs

and provides the reward when the agent executes specific critical actions. The

number of execution are also included in critical action graphs. This enable the

framework stop providing reward if the agent tends to gain short-term intrinsic

rewards without achieving the long-term goal.
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Imitation Learning

In this study, we select BC and GAIL as the benchmarks of imitation learning. These

techniques train an agent to directly imitate desired behaviors from state-action pair

in demonstrations. The process of BC involves collecting expert demonstrations

and training agents to learn the mapping between states and actions of demonstra-

tions. The model is trained to approximate the expert’s behavior by minimizing

the discrepancy between generated and expert actions without explicitly modeling

the underlying decision-making process. GAIL leverages the concept of Generative

Adversarial Networks, where the generator generates actions imitating the expert’s

actions, while the discriminator aims to differentiate between the two.

However, BC and GAIL suffer from the issue of distribution shift caused by the

sampling bias from demonstrations. Also, they lack the ability to adapt to other

unseen tasks in the same domain due to the limited data that some situations are

absent in demonstrations. Sufficient demonstrations in testing domains are necessary

for these imitation learning methods. Therefore, despite few-shot demonstrations in

the shifted domains given, the agent using these techniques failed to achieve the tasks

in these domains. In contrast to BC and GAIL, our proposed method addresses the

limitations by employing model-based learning, our framework induces the model in

terms of critical actions, which enables the DRL agents to possess generalizability

by re-inducing rules and task structures. In Sections 6.3.2 and 6.3.3, we assess

the generalizability in both task and skill levels. Under the specific scenario, our

framework is capable to adapt to unseen tasks.

6.4.3 Limitation

While the improvement of performance is demonstrated in this chapter, there are

some unaddressed issues in this thesis. First, the method is tested in a deterministic

environment, and the configuration of the logical formula in critical actions does not

consider the probability of multiple outcomes. This can be solved by introducing
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Figure 6.10: The training performance of our framework in Minecraft-Multiple

with the deterministic and probabilistic environments.

a probabilistic model for abstraction. Some researchers have delved to develop

probabilistic rules in planning domains [31, 3]. In this work, we focus on introducing

the idea of critical actions. Hence we opt to use deterministic models. Nevertheless,

the proposed method works in the probabilistic environment at the execution level.

In this work, we use the DRL module for execution, which has the capability of

handling stochastic environments. To show this property, we train the agent in

the Minecraft-MultiTask with a probabilistic moving configuration. When the

agent executes up, down, left, right, it moves to desired direction with a probability

of 0.8, but turns to the left or right of the desired direction with each probability of

0.1. The result in Figure 6.10 shows that the DRL agent can still learn the task in

the probabilistic domain.

Second, although the empirical results show that each module in the framework

generates optimal output with high probability, incorrect inference in some processes

may lead to error propagation. For instance, if incorrect effects are found during

symbolic regression, the critical action may mislead the task structure construction

and therefore fail to provide correct rewards. In induction modules, action-effect
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linkage extraction and precondition determination employed deterministic methods,

and these methods were affected by the amount and distribution of demonstrations.

On the other hand, evolutionary computation applied in effect rules determination

is a stochastic method that with some probability the outcome is not optimal. This

situation can be avoided by increasing the population in the algorithm or sampling

several times to acquire more accurate results.

Last but not least, the induction of critical actions is offline and relies on

demonstrations. Although we have demonstrated adaptability using offline few-shot

demonstrations, the framework does not leverage the online data for adaptation.

Consider the zero-shot generalization scenario, the agent should acquire the abil-

ity to infer new rules and optimize the critical action graph during the interaction

with the environment. Therefore, there is a potential for further improvement by

incorporating online data for real-time adaptation.

In summary, we evaluate the performance of our framework in various do-

mains and compared it with other approaches that use demonstrations and intrin-

sic rewards for learning. We discussed the strengths and limitations of different

algorithms, highlighting the drawbacks of existing methods and emphasizing the

advantages of our proposed framework in these scenarios. Despite the successes of

our method, we also acknowledge its limitations and future work should focus on

addressing these challenges.
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Chapter 7

Conclusion and Future Work

In this study, we present a framework to address goal-directed MDP problems by in-

tegrating DRL and planning techniques. Our framework involves the representation

of symbolic knowledge as critical action graphs and the procedure of automatically

extracting knowledge from learnable tasks. Specifically, we elaborate on the process

of extracting knowledge from demonstrations within the DRL domain, constructing

a critical action model within the planning domain, and subsequently leveraging

this knowledge back into the DRL domain by providing intrinsic rewards. The com-

bination of inductive learning and deductive learning enables the agent to perform

high-level abstraction and low-level execution. In addition, the proposed framework

shows generalizability at task and skill levels due to the compositionally of the crit-

ical action model. At the task level, the training module deduces unseen tasks and

constructs critical action graphs from known critical actions which leads to task

generalization; At the skill level, the induction module infers new effect rules from

few-shot demonstration while the linkages of action-effect pairs are known.

Evolutionary computation for symbolic regression provides adaptability in dy-

namically changing environments. Under the mechanism of evolutionary computa-

tion, the agent is capable of adapting to new environments by evolving and gener-

ating new symbolic knowledge from a pool of candidate programs. The symbolic
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programs are considered atoms that capture fundamental rules observed in the do-

mains. These rules are then combined to form critical actions, which encompass the

effects and preconditions. The critical actions which operate as components at a

higher level of abstraction constitute the building blocks of task structures. There-

fore, diversity of rules is essential for fostering flexible intelligence, as it enables

versatility in problem-solving, and evolutionary computation inspired by natural

evolution aligns with these principles by promoting the generation and preservation

of diverse and varied concepts.

Some approaches can be improved in future works. We demonstrated that in-

trinsic rewards are one of the intuitive methods to facilitate the agent’s training

efficiency. The design emphasizes the cooperation of two independent modules, one

for abstraction and planning and the other for execution and adaptation. However,

using traditional neural networks to learn multi-tasks is not the most efficient ap-

proach. To maximize the utility of the symbolic knowledge, hierarchical reinforce-

ment learning which alternate options when executing different subtasks is more

suitable in this case. The critical action provides a guide to pre-train the options by

setting initial states in which the precondition is satisfied and the goal is to make

the effect occur. On the other hand, the curriculum learning scenario can also be

adopted with this framework. Given the critical action graphs, tasks can be gener-

ated by selecting part of the graphs and setting the top preconditions satisfied as

the initial state and the bottom effect as the desired goal.

By representing knowledge as critical actions and employing critical action

graphs, we provide a structured and organized means of capturing and utilizing

symbolic knowledge within DRL. The procedures of subtask decomposition combine

planning and DRL, leading to effective learning in goal-directed tasks. The com-

positionality of the critical action model enables different levels of generalization,

indicating its potential to address a wide range of general problems. Our work of-

fers a holistic perspective to effectively handle general goal-directed decision-making

problems with the integration of inductive and deductive learning.
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Appendix A

Task Structure of Test Problems

The appendix shows the critical action graphs of tasks Iron and EnhanceTable

in Minecraft. Due to the complexity of graph, we only illustrate partial graphs

which include all nodes with a depth of 2 or less from the goal.
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Appendix B

Mutual Information of

Action-Effect Pairs in Minecraft

The appendix shows the full heatmap of mutual information between actions and

variables in Minecraft. All variables including non-effect variables are listed.

Noted that although we ignore non-effect variables for further induction, the asso-

ciation of actions and their consequence can also be detected by calculating mutual

information.
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Figure B.1: Mutual information of action-effect pairs in Minecraft
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