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Abstract

Measuring causal effects is crucial in various research. Understanding the impact of
an explanatory variable on an outcome variable is essential for evaluating the effectiveness
of policy changes or interventions. However, to maintain the exogeneity of explanatory
variables, researchers may need to consider high-dimensional control variables. In this
framework, the traditional least squares method is inapplicable. To address this problem,
Belloni et al. (2014) proposed the post-double selection (PDS) method. This method has
received a lot of attention in econometrics. Although Belloni etal. (2014) have proved that
the PDS estimator is asymptotically normal under suitable conditions, it is still important
to evaluate how the PDS method behaves in finite samples. This study explores the finite-
sample performance of the PDS estimator under different choices of statistical learning
methods for the double selection. I also apply the PDS method to assess the significance

of technical indicators in explaining stock returns.

Keywords: Causal Inference, Statistical Learning, Risk Premium, Technical Indica-

tors, Model Selection
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1 Introduction

Measuring causal effects is a crucial topic in various research, including medicine,
biology, economics, and finance. Understanding the causal effect of an explanatory vari-
able on an outcome variable is essential for evaluating whether a particular policy change,
or an intervention, is beneficial or harmful. However, since the explanatory variable may
not be automatically exogenous, researchers need to employ a suitable design to avoid the
endogeneity problem. A possible solution is to use a suitable set of control variables for
applying the conditional independence assumption to causal inference. While the use of
control variables has been extensively studied, a critical challenge arises when the num-
ber of control variables exceeds the sample size. In this high-dimensional context, the

traditional estimation method is infeasible.

To address this high-dimensional problem, it is necessary to impose a suitable as-
sumption of sparsity on the controls. This assumption requires that the number of truly
useful control variables is smaller than the sample size in a certain sense. At first sight, one
might regard that, under such a sparsity assumption, the choice of control variables might
be facilitated using the least absolute shrinkage and selection operator (Lasso) of Tibshi-
rani (1996) (27), or other statistical learning methods, before estimating the causal effect.
However, Belloni et al. (2014) (2) demonstrate that this post-selection method might gen-

erate an omitted variable bias (OVB), and propose the post-double selection (PDS) method
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to avoid the OVB and maintain the exogeneity of the explanatory variable. The PDS
method first applies a Lasso-type method to the regression of the explanatory variable on
the control variables and the regression of the dependent variable on the control variables
for “doubly selecting” suitable control variables. Subsequently, it applies the least squares
(LS) method to the regression of the dependent variable on the explanatory variable and
the “doubly selected” control variables for estimating the causal effect. The resulting LS
estimator for the causal effect is called the PDS estimator. Belloni et al. (2014) (2) prove

that, under suitable conditions, the PDS estimator is asymptotically normal.

Many studies use the PDS method to investigate empirical issues. An example of this
can be found in the work of Berset et al. (2023) (4), where they utilized the PDS method
to examine the impact of fiscal revenue shocks on local fiscal policy. Enke (2020) (9) in-
vestigates whether moral values affect voting behavior. Liu-Evans and Mitra (2019) (21)
investigate the impact of bank stability on the size of the unregulated, non-tax-paying in-
formal sector, among many others. Moreover, the PDS method has also been applied in
financial research. In particular, due to the relatively short history of financial data, re-
searchers often repeatedly use similar data to discover pricing factors of risky assets. This
practice might lead to the data-snooping bias, as noted by Lo and MacKinlay (1990) (22)
and Harvey et al. (2016) (14), among others. Avoiding this bias is important for financial
research. To consider this issue, Feng et al. (2020) (11) apply the PDS method to inves-
tigate whether a set of newly released factors are truly useful for explaining the excess
return of risky assets by controlling for a large amount of historical factors proposed by
different researchers. Their empirical study shows that the PDS method is effective for

this empirical investigation.

Nonetheless, it is still important to evaluate the finite-sample performance of the

2 doi:10.6342/NTU202301747
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PDS method because the sample size is indeed limited in empirical studies. Recently,
Wiithrich and Zhu (2023) (30) compared the performance of different choices of tuning
parameter with Lasso for implementing the PDS method. They found that the PDS estima-
tor may still have OVB in finite samples under certain types of data generating processes
(DGP) for some popular choices of tuning parameters. To address this concern, they sug-
gest checking the robustness of the PDS method to OVB by increasing the regularization
parameter A. In addition, Drukker and Liu (2022) (8) evaluate the finite-sample perfor-
mance of the Neyman-orthogonal estimator, which is related to the PDS method, based on
a generalized linear model. In particular, they consider different versions of Lasso with
the tuning parameters selected by the Bayesian Information Criterion (BIC), the plug-in
method of Belloni et al. (2012) (1), a cross-validation (CV) method and the sure indepen-
dence screening as well as stepwise methods for variable selection. The simulations of

these two studies mainly consider Lasso for variable selection.

Theoretically, the PDS method is based on the “high-dimensional linear model se-
lection (HLMS) condition” of Belloni et al. (2014) (2), which might allow researchers to
use not only Lasso but also other statistical learning methods for double selection (under
suitable assumptions). This study considers a number of statistical learning methods for
double selection and assess the finite-sample performance of the resulting PDS estimators.
Specifically, I consider not only the Lasso but also the smoothly clipped absolute deviation
(SCAD) method of Fan and Li (2001) (10), the minimax concave penalty (MCP) method
of Zhang (2010) (32) and the adaptive Lasso of Zou (2006) (35) for the double selection.
These statistical learning methods are all capable of generating sparsity under suitable
choices of their tuning parameters. In addition, I consider different selection methods for

the tuning parameters, including a CV method and an information-criterion-based selec-
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tion method. I adopt a Monte Carlo simulation to evaluate the finite-sample performance
of the PDS estimator under different choices of these double-selection methods. In addi-
tion, I apply the PDS method with different choices of the double-selection methods: to

investigate the effectiveness of technical indicators in explaining stock returns.

The remainder of this thesis is organized as follows. In Chapter 2, I present the basic
framework of PDS and discuss the statistical learning methods that I consider for double
selection. In Chapter 3, I introduce the simulation designs, and present the simulation
results. In Chapter 4, I illustrate the empirical application. Finally, I conclude this thesis

in Chapter 5.
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2  Econometric Methods

In the following, I review the PDS method and the statistical learning methods that I

used in this thesis.

2.1 The PDS method
The PDS method is built on the following linear regression:

Y; = I;BO + le-’yy + CZ', E[€Z|Z‘Z, Zz'] = O, = {1, ...,N}, (21)

T; = 2iYe +vi, Elvi|z] =0, (2.2)

as shown by Equations (2.2) and (2.3) of Belloni et al. (2014) (2), where y; is the outcome
variable, x; is a vector of explanatory variables with dimension p, 3, is the parameter
vector (that is, the treatment effect when x; is interpreted as a vector of treatment vari-
ables), z; is a vector of control variables, with dimension k, that contains both irrelevant
and relevant controls, v, and 7, are nuisance parameters, and (; and v; are zero-mean
error terms. Suppose that the sample size is /N. The high-dimensional context appears
when p > N. This study focuses on the linear model, and hence omits the additional
approximation errors considered by Belloni et al. (2014) (2) generated by approximating

a non-parametric model.

5 doi:10.6342/NTU202301747


http://dx.doi.org/10.6342/NTU202301747

To obtain a reliable inference for Sy, the PDS method first applies a variable-selection
method, such as the Lasso, to the first-stage regression of z; ; on z;, where z; ; is the jth
element of ; for j = 1,..., p. In addition, it applies the same selection method to another
first-stage regression of y; on z;. Let I 1,; be the control variables selected for z; ;, and I. 9
be the control variables selected for y;. Define [ = (7 I, ;)UI, as the set of the doubly
selected control variables. The PDS estimator for (3, denoted as B, is the LS estimator
based on the second-stage regression of y; on x; and the doubly selected control variables;

that is,

where Z; is a subset of z; defined by I. An important feature of the PDS method is that
the PDS estimator can be shown to be asymptotically normal under suitable conditions.

In particular, as shown by Equation (2.10) of Belloni et al. (2014) (2), as N — oo,
o 'VN(B - Bo) % N(0, 1), (2.3)

where 02 = (Ev?) ' E(v}(?)(Ev?) ™!, and I, is the identical matrix with dimension p.

The basic idea underlying the PDS method is to exploit the sparsity (assumption)
of the high-dimensional controls for dimension reduction. Obviously, B is computable
only if such a sparsity is assumed and that the selection methods for the first-stage (high-
dimensional) regression could suitably capture the sparsity. An important sufficient con-
dition underlying the asymptotic normality is the HLMS condition, which requires the
first-stage selection method to satisfy suitable conditions of sparsity and “good estimation

quality.” Belloni et al. (2014) (2) recommended using a version of Lasso proposed by

Belloni et al. (2012) (1), referred to as the plug-in Lasso here, for the double selection. In
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this study, I consider more statistical learning methods for the double selection.

2.2 Statistical learning methods

To review these methods, I consider the first-stage reduced-form regression:
yi = 20 + €,

where 6 := (01, ...,0d;) is a k-dimensional parameter vector, and ¢; is a zero-mean error.
In addition, I consider the statistical learning methods, or said the penalized regressions,

that share the following objective function:

k
Q)+ Y P50, (24)

where Q(6) := + S (y;— 20)? is the sample mean squared error of the aforementioned
regression, and P, (+) is a penalty function that includes A as a tuning parameter; see, e.g.,
Equation (2) of Wu and Wang (2020) (29) for this expression of the objective function.

By a suitable design of P, (-), the minimization of this objective function with respect to

0 generates the sparsity of the estimator for d, which is applicable to the selection of z;.
2.2.1 Lasso
The Lasso of Tibshirani (1996) (27) sets P»(|0;]) = A|0;|, and has the solution path:

k
oreso(X) = argmin {Q() + Y A6},
5 s

7 doi:10.6342/NTU202301747
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which is a function of the tuning parameter \. A larger A may make SL“SS"()\) sparser.
Therefore, the choice of A might affect the finite-sample performance of the PDS method
via changing the double selection. It is known that Lasso may select the true set of non-
zero true coefficients under quite restrictive conditions, as demonstrated by Zhao and Yu
(2006) (34). In addition, Leng et al. (2006) (20) demonstrated that Lasso may not have the
variable-selection consistency when its objective is designed for prediction. Zou (2006)
(35) also shown that Lasso may not serve as an oracle estimator proposed by Fan and
Li (2001) (10), which can select correct model when sample size is large enough. The
imperfect selection of Lasso may also influence the finite-sample performance of the PDS
method. To deal with these problems of Lasso, the penalty function of Lasso needs to be

suitably modified.

To refine the original Lasso, Belloni et al. (2012) (1) proposed a modification of the
original Lasso, referred to as the plug-in Lasso here. This method generates the following

estimator for §:

k
o 7o = argmin{Q(0) + A Y _ |I;0;},
5 =

in which [ ; 1s the “penalty loading”:

and A is a “plug-in” penalty term:

A=2-cVNO (1 —y/2k),

where ®~1(-) is the quantile function of N (0, 1), and c and -y are, respectively, suggested to

be 1.1and (1/N)%% in Footnote 10 of Belloni et al. (2014) (2). However, for convenience,

8 doi:10.6342/NTU202301747
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[ simply implement the plug-in Lasso using the R package hdm which computes the €2 in

the penalty loading using an iteration method. Note that, unlike the original Lasso, the A

of the plug-in Lasso is not a free parameter.

22.2 SCAD

The SCAD method of Fan and Li (2001) (10) has the solution path:

k
0P ()) = argmin {Q(5) + > Palgsl,
j=1

based on a non-convex penalty function:

Pallo;]) =

\

200|607 \2

Zf5J <A,
. if A< )] < aA,

Following Fan and Li (2001) (10), I set a = 3.7. The SCAD penalty matches the

Lasso penalty when ¢; is small. However, the SCAD penalty converges to a constant at

a quadratic rate when J; is sufficiently large. By this design, the SCAD avoids the large

bias of the Lasso.

223 MCP

The MCP method of Zhang (2010) (32) has the solution path:

k
SMEP(\) = arg?in {Q6) + Y _Palél}.
j=1

doi:10.6342/NTU202301747
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based on another non-convex penalty function:

2
6]'

A6 = 5%, if |6;] < aA,
Pa(l6;]) = (2:5)

2 if 10;] > a.

We set @ = 3. The MCP penalty also matches the Lasso penalty when §; is small, but
converges to a constant when J, is sufficiently large. Like the SCAD, this design also
helps correct the large bias of Lasso. Compared with SCAD, MCP deviates from the

Lasso penalty and converges to a constant at a faster rate.

2.2.4 Adaptive Lasso

The adaptive Lasso of Zou (2006) (35) has the solution path:
p
§49(X\) = argmin {Q(5) + ) Mb;|6,]},
s ,
7j=1

where w; is a weight for 0, based on an initial estimator for d;. Unlike the aforementioned
methods, the adaptive Lasso aims to control the bias of Lasso using suitable weights. Fol-

lowing Zou (2006) (35), I set the initial estimator as the jth element of the ridge estimator:
A . p
6"49¢ — argmin{Q(d) + A Z 52},
5 :
7j=1
and set the weight:

N5, i 67 £,

wj:

0, otherwise,

where S;idg ° is the jth element of §"id9e.

10 doi:10.6342/NTU202301747
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2.3 Choices of tuning parameter

The choice of tuning parameter plays a key role in determining the performance of
the statistical learning method, with the exception of the plug-in Lasso. In this study, I

consider the ten-fold CV method and a BIC method for the choice of the tuning parameter.

2.3.1 The ten-fold CV method

It is standard to choose the tuning parameter of a statistical learning method by min-
imizing the “k-fold CV,” which serves as an estimator for the mean squared prediction
errors generated by the statistical learning method. In this study, I consider the ten-fold
CV method, and implement this method using the R package functions: cv.glmnet and
cv.ncvreg. Let C'V(\) be the ten-fold CV of a statistical learning method evaluated at a

specific value of A\. This method chooses A as:
AV = argmin C'V ().
A

In practice, the minimization is facilitated by examining a set of knots of A; see, e.g.,

Hastie et al. (2015) (15).

2.3.2 A BIC method

In the literature, there are also studies that propose using a BIC method for the choice
of the tuning parameter. Several studies have found that the tuning parameter selected by
the BIC-based selection methods could outperform its counterpart selected by the CV

method. See Hui et al. (2015) (19), Xiao and Sun (2019) (31), and Wang et al. (2009)

11 doi:10.6342/NTU202301747
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(28), among others. Zhang et al. (2010) (33) also demonstrated that using a BIC method
to select tuning parameters could consistently identify the true model under suitable con-
ditions, while using an AIC method tends to select over-fitted models. In this study, I

consider the tuning parameter selected by the following BIC method:
APIC — argmin BIC()),
A

where the BIC is of the form:

BIC(\) = Nlog(N™"Y " (y; — 2/0()))?) + k() log(N),

i=1

with k() denoting the number of non-zero elements of (\). This BIC is defined on
the solution path of the statistical learning method. This is somewhat different from the
conventional BIC for the linear regression. See also Drukker and Liu (2022, Section 2.3.4)

(8) for the use of this BIC.

12 doi:10.6342/NTU202301747
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3 Simulation

In this chapter, I present the simulation designs and provide a summary of the simu-
lation results. This simulation considers two designs of DGP. The first design is built on
a two-stage model considered by Belloni et al. (2014) (2). The second design is based on

a simulation setting which is similar to that of Drukker and Liu (2022) (8).

To investigate how the sample size and the statistical learning method influence

the finite-sample performance of the PDS estimator, I consider the following settings of
(N, k):

1. (N, k)= (100, 200),

2. (N, k) = (200,200),

3. (N, k) = (400, 200).
Case 1 and 2 are high-dimensional settings with N < k. Case 3 is a large-dimensional
setting with N > k£ and a large k. The statistical learning methods being evaluated in
this study include Lasso, SCAD, MCP and adaptive Lasso. For each of these methods,

I choose the tuning parameter using the 10-fold CV or the BIC method. In addition, I

consider the plug-in Lasso method for comparison.

13 doi:10.6342/NTU202301747
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3.1 Simulation designs

In this section, I discuss the two designs of DGP. The first design follows the simula-
tion of Belloni et al.(2014) (2). The main focus of their simulation is to show that the PDS
method outperforms the post single-selection method. In comparison, I aim to compare
different statistical learning methods for implementing the PDS method. They considered

the following DGP:

Yi = ;B0 + Zz{(C?ﬂ’y) + G

ri = 2;(CaVe) + i,
which implies the following two reduced-form regressions:

Y; = Z;(Cx%tﬁo + Cy’Yy) + (C@ + /601)1')7

x; = 2j(CaVa) + Uiy

that are, respectively, of the R*’s: R? and R2 which are determined by the coefficients: ¢,

and c,; the parameters are set to be 5y = 0.5 and

Ty = VY= = {j_2}5:1 )

¢, and c, are selected to ensure that Ri = R2 = 0.8; the error terms: (; and v; are

independent N (0, 1) random variables; z; is one-dimensional, and
zi~ N (07 Z)v

where ¥, = (0.9)V "4 for j, £ = 1,2,... k.

14 doi:10.6342/NTU202301747
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The second design is more intuitive. It is similar to the design considered by Drukker

and Liu (2022, Section 3.1) (8). The DGP is of the form:
y; = BPal + Bxf + B2l + 2o + €,

where xf, x; and x? are, respectively, of a big coefficient, a small coefficient and the zero

coefficient such that

(8°,8°,8°) = (0.5,0.25,0),

Yo 1s set to be

v = {0.5,...,0.5,0, ..., 0},
N — N~
10 k—10

that is the first ten elements (the remaining elements) of v, are all equal to 0.5 (zero),

(xb, 25,29, 2)) ~ N(0,%),

(R Rt A e )

where ¥ has the (j, £)thelement X, = (0.9)V =4 forj, ¢ = 1,2,...,k+3,ande; ~ N(0,1)

and independent of the (2%, x5, 29, 20).

[ R 2 e )

3.2 Simulation results

In this simulation, I set the number of simulation replications to be £ =1000.
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3.2.1 Performance of the PDS estimator

Following Belloni etal. (2014) (2), I present the simulation results based on a measure

of estimation accuracy:

R

1 R
RMSE = . Z(ﬁ(r) — B)?,

r=1

where B(T) is the PDS estimate of the rth replication, and (3 is the associated true parameter
which is defined in the first simulation design (is set to be 3°, 3° or 3° in the second

simulation design), and a measure of asymptotic validity:

R
Rej = %ZH(!\/N(B(T) —B)/6w)| = Zo.ors),
r=1

where I(-) is the indicator function, Z 975 is the 97.5% quantile of N(0, 1), and &,y is the

standard error of the PDS estimator in the rth replication which is computed following

Belloni et al. (2014) (2).

Note that RM SE is the simulated root mean square error (RMSE) of the PDS es-
timator, which measures the estimation quality of the PDS method. A lower value of
RM SFE indicates better estimation performance. In addition, Rej is the simulated rejec-
tion frequency of a two-sided test at the 5% level. If the PDS method performs well, the
asymptotic normality of the PDS method implies that Rej should be close to 5%. A value
of Rej thatis closer to 5% indicates that the finite-sample performance of the PDS method

is closer to the asymptotic normality implied by the theory.

I report RMSE and Rej for the first simulation design in Table 3.1 and for the

second simulation design in Table 3.2 (when 3, = /3°), in Table 3.3 (when 3, = °) and
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in Table 3.4 (when 3, = 3°). The main simulation findings are summarized below.

1. The measure of estimation accuracy and the measure of asymptotic validity both
improve as the sample size increases. This holds for all statistical learning methods

and to both simulation designs.

2. Among the statistical learning methods, the Lasso and the adaptive Lasso with the
tuning parameters, selected by the BIC, tend to outperform other methods in terms

of their RMSFE’s and Rej’s.

3. In comparison, the SCAD and the MCP do not perform well in this simulation. This
might be related to the fact that these two methods include an additional hyper-

parameter “a” which is set to be fixed in this simulation. However, this is a conjec-

ture that needs to be further examined in future studies.

4. For the Lasso and the adaptive Lasso, the BIC tends to outperform the ten-fold CV

for the choice of their tuning parameters.

5. Focusing on the second design, the estimation accuracy of the PDS method increases

with the value of f.

6. Although the plug-in Lasso method and the adaptive Lasso with the tuning param-
eter selected by the BIC perform have similar finite-sample performance, a closer
comparison shows that the adaptive Lasso method tends to be more stable than the

plug-in method in terms of their simulation performance.

This simulation shows that, at least for the simulation designs being considered, the adap-
tive Lasso with the tuning parameter selected by the BIC is a proper statistical learning
method for the use of the PDS method.
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Table 3.1: B Performance for Design 1 (R? = 0.8)

k 200 200 200

N 100 200 400
Method RMSE Rej RMSE Rej RMSE Rej

Ccv 0.138  0.107 0.079  0.059 0.053  0.053
Lasso BIC 0.111  0.077 0.073  0.055 0.052  0.063

plug-in ~ 0.107  0.061 0.071  0.048 0.050  0.043

Ccv 0.119  0.083 0.072  0.041 0.063  0.101
adaptive Lasso

BIC 0.107  0.06 0.071  0.054 0.053  0.057

Ccv 0.124  0.102 0.075  0.055 0.052  0.053
SCAD

BIC 0.124  0.111 0.076  0.071 0.053  0.054

Ccv 0.117  0.092 0.074  0.059 0.052  0.058
MCP

BIC 0.142  0.137 0.074  0.058 0.054  0.07

Note. CV represents the tuning parameter chosen through the 10-fold CV.
BIC represents the tuning parameter chosen through the BIC method.

Table 3.2: B Performance for Design 2 (5, = %)

k 200 200 200

N 100 200 400
Method RMSE Rej. RMSFE Rej. RMSFE Rej.

Ccv 0.262 0.076 0.178  0.072 0.111  0.040
Lasso BIC 0.245  0.070 0.174  0.065 0.110  0.038

plug-in  0.241  0.061 0.174  0.072 0.110  0.036

Ccv 0.246  0.067 0.174  0.071 0.120  0.065
adaptive Lasso

BIC 0.242  0.066 0.174  0.069 0.110  0.040

Ccv 0.267  0.085 0.190  0.065 0.118  0.055
SCAD

BIC 0.270  0.069 0.192  0.066 0.118  0.048
MCP Ccv 0.276  0.083 0.198  0.081 0.118  0.051

BIC 0.276  0.075 0.196  0.080 0.118  0.054

Note. CV represents the tuning parameter chosen through the 10-fold CV.
BIC represents the tuning parameter chosen through the BIC method.
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Table 3.3: 3 Performance for Design 2 (6 = 3*)

k 200 200 200

N 100 200 400
Method RMSE  Rej. RMSE  Rej. RMSE  Rej.

Ccv 0.351 0.072 0.228 0.062 0.153 0.048
Lasso BIC 0.323 0.062 0.225 0.064 0.153 0.056

plug-in  0.324 0.061 0.226 0.060 0.153 0.054

CvV 0.328 0.056 0.226 0.061 0.153 0.053

adaptive Lasso
BIC 0.325 0.061 0.226 0.060 0.153 0.051

Cv 0.356 0.064 0.251 0.066 0.157 0.047
BIC 0.358 0.066 0.254 0.064 0.160 0.056

SCAD

Ccv 0.356 0.074 0.254 0.065 0.158 0.050
BIC 0.359 0.066 0.254 0.065 0.156 0.054

MCP

Note. CV represents the tuning parameter chosen through the 10-fold CV.
BIC represents the tuning parameter chosen through the BIC method.

Table 3.4: /5’ Performance for Design 2 (5, = )

k 200 200 200

N 100 200 400
Method RMSE  Rej. RMSE Rej.  RMSE Rej.

cv 0380  0.067 0228  0.059 0162  0.052
Lasso BIC 0334 0064 0222 0056 0.159  0.056

plug-in  0.339 0.066 0.221 0.057 0.159 0.056

Ccv 0.348 0.068 0.222 0.056 0.162 0.055

adaptive Lasso
BIC 0.338 0.066 0.222 0.058 0.159 0.055

CvV 0.368 0.071 0.246 0.066 0.164 0.058
BIC 0.369 0.063 0.250 0.059 0.166 0.059

SCAD

CvV 0.375 0.065 0.241 0.048 0.163 0.054
BIC 0.387 0.068 0.243 0.054 0.165 0.058

MCP

Note. CV represents the tuning parameter chosen through the 10-fold CV.
BIC represents the tuning parameter chosen through the BIC method.
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3.2.2 Performance of variable selection

Since the performance of the PDS method heavily depends on the double-selection
process, it is important to further evaluate how the statistical learning methods perform for
the double selection. For this purpose, I present the double-selection frequencies for the
first 20 elements of z;, generated by different statistical learning methods, in Figure 3.1
for the first simulation design and in Figure 3.2 for the second simulation design in the

case where N = 400.

Recall that, in the first simulation design, the j control variable has the coefficient
572, and hence that the relevance of the j control variable rapidly decays to zero as j

increases. In particular, j 2

= 0.01 as j = 10. In the second simulation design, the first
ten elements of the control variable vector have non-zero coefficients, and the remaining

elements have zero coefficients. Thus, I consider the first ten elements of z; as (rough)

relevant controls for the (first) second simulation design.

The main simulation findings of this part are summarized below.

1. InFigures 3.1 and 3.2, both the SCAD and the MCP show an obvious under-selection
of the second element of z;. It is speculated that this might be related to the high
correlations among the control variables. In my experience, this problem is refined
if T change the simulation setting of ¥, to be ¥;, = (0.5)7 =¥, while the simulation

result is not reported here.

2. The SCAD and the MCP tend to under-select relevant controls in comparison with
other statistical learning methods. This might be related to the fact that these two

methods include larger penalty terms than others. See Figure 3.3 for a compari-
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son between the penalty functions of Lasso, SCAD, and MCP, in which the tuning

parameter ) is evaluated at its simulated average from the design 2.

. The adaptive Lasso tends to have better performance than other statistical learning

methods in the double selection. This point is particularly obvious for the second

design.
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Figure 3.3: Penalty Comparison (Design 2)
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4 Empirical Application

In investment, practitioners often utilize the historical information on stock prices and
trading volumes to generate “technical indicators” for predicting changes in stock prices.
There is also academic research focused on evaluating the profitability of technical-trading
strategies; see, e.g., Sullivan et al. (1999) (26), Mitra (2002) (23), Q1 and Wu (2006) (25),
Hsu et al. (2010) (18), among others. In addition, there are several studies that aim at
evaluating whether technical indicators are useful for predicting equity premiums; see,
e.g., Dai et al. (2021) (7), Goh et al. (2012) (13) and Henrique et al. (2018) (17), among
many others. In particular, Neely et al. (2014) (24) consider the problem of predicting eq-
uity premiums using macroeconomic indicators and a set of technical indicators, including
the price moving-average rules, the trading-volume-based indicators, and the momentum
rules. They considered a linear regression with 14 macroeconomic indicators and 14 tech-
nical indicators for assessing whether the technical indicators are useful for predicting eq-
uity premiums. By construction, a moving-average variable includes the “window size” as
a parameter to be selected. Neely et al. (2014) (24) choose the parameters of the technical
indicators in a subjective way. However, as mentioned by Chinco et al. (2019) (6), a sub-
jective choice of parameters for the technical indicators may not be suitable for capturing

market information.

To deal with this problem, this study considers a linear regression that includes a

23 doi:10.6342/NTU202301747


http://dx.doi.org/10.6342/NTU202301747

large-dimensional technical indicators with different choices of parameters as predictors
without pre-selecting the parameters in a subjective way, and applies the PDS method
to assessing the significance of the indicators as a data-driven method for the choice of
the parameters (or said for the choice of the technical indicators). For simplicity, this
study does not include the macroeconomic indicators, and is fully based on the in-sample

analysis.

4.1 Technical indicators

Following Neely et al. (2014) (24), I consider three sets of technical indicators. Let
P, be the stock price or index at time t. The first one is a set of price moving average

indicators:

17 MAs,t Z MAl,t7

S (s,1) =

0, otherwise,

where the price moving average:

13- |
MA;; = jzpt—z', j={s1}
i=0

is dependent on the choice of a short window size s and a long window size [ > s. This
set of indicators reduce short-term fluctuations of price using moving averages and aim
to capture the direction of price trend. Given the choice of s and [, SM4(s, ) generates a
bullish signal, or said a “golden cross,” if the short-term moving average curve intersects

the long-term moving average curve from below.

The second one is a set of trading-volume moving average indicators. This set of
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indicators is built on the concept of “on-balance volume (OBV).” The OBV at time ¢ is

defined as:

t
OBV, = Z VOL,D;,

i=1

where VOL; is the volume at time 4, and

]-7 B_-Pi—1207
Di:

-1, P —-PF_<0.

The basic idea of OBV is that an increase in trading volume during price advances (de-
clines) might reflect an anticipation of a bullish (bearish) sentiment. Given OBV, a trading-

volume moving average indicator is defined as:

1, MAJPY > MAPPY,

0, otherwise,

where

13
MAPY = ;Z OBV,_; j = {s,1}.
=0
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The third one is a momentum indicator which is defined as:

1) Pt 2 Pt—m7
S0 (m) =

0, otherwise.
This indicators assesses whether the stock price at time ¢ is higher than the price m months
ago. The basic idea of this indicator is that stock price might continue to move in the known
direction when the momentum is strong enough. In what follows, I denote these three
sets of indicators as: MA, VOL and MOM. The definitions of the three sets of technical

indicators follow Equations (2), (4) and (6) of Neely et al. (24).

4.2 Data

In this empirical application, I set F; to be the S&P500 index at the ¢th month in the
sampling period: January 1950 to December 2022, and define the equity premium at the

t + 1th month as:

i1 = log(Pry1) — log(P;) — log(1 + 75.441),

where 7,41 is the treasury bill rate, which is considered the risk-free rate. I obtain the
time-series data for the S&P 500 index and the risk-free rate from Amit Goyal’s website,
and obtain the data for the S&P 500 volume from the website of “Stooq.” The sample size
available for the PDS estimation is 863. This calculation is based on the monthly data from
1950 to 2022, which amounts to 73 * 12 = 876 months. However, we need to subtract the
first 12 months because they are used to estimate the signals. Additionally, considering

a one-period lag in the predictive regression, the resulting sample size is 863. Since this
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empirical application is built on monthly time series, I consider all possible combinations
of (s, [, m) within one year for establishing the technical indicators. In particular, there are
a total of 66 different choices of (s, 1), that is C5* = 66, for the MA and VOL indicators,

and 12 different choices of m, thatis m = 1, 2,..., 12, for the MOM indicators.

4.3 Predictive regression

This empirical analysis is conducted using the following regression model:
revr =+ S8+ e, (4.1)

where « is an intercept, S; is a 144 x 1 vector of technical indicators, (3 is a vector of
regression coefficients, and €,, is a zero-mean error. Since the number of parameters is
still smaller than the sample size for this regression, the LS method is still computable.
However, we might expect that the LS estimator is inefficient because this regression
is “large-dimensional.” Therefore, this study only considers the LS method a baseline
estimation method, and focuses on the PDS method for the estimation of 5. To implement

the PDS method, I consider the following partition of the regression:
T = a+ (8°) Ff + Z(/BJ)/FtJ +é€i+1, ¢ € {MA, VOL, MOM}, (4.2)
je
where I comprises the 66 MA indicators, the 66 VOL indicators or the 12 MOM indi-

cators, and F comprises the remaining indicators (that serve as the control variables).
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4.4 Empirical findings

I report the calculation results from Equation (4.2) in tables 4.2 to 4.6. In Table 4.1,
I report the technical indicators that are significant at the 5% level based on the PDS esti-
mation with different choices of statistical learning methods and their counterparts based
on the LS method. This table shows that using the PDS method allows us to identify a
greater number of potentially useful technical indicators than the LS method. A possible
interpretation is that, compared to the LS method, the PDS method is more efficient for
estimation by exploiting the sparsity of controls; see Feng et al. (2020) (11) for a simi-
lar fining in a different empirical application. In addition, certain technical indicators are
commonly selected by the PDS methods with different statistical learning methods. Ex-
amples include MA(10,11), VOL(1,4), MOM(2), and MOM(5). This empirical finding
suggests that these indicators are potentially useful for predicting equity premium at least
from an in-sample viewpoint. In comparison, it is common to choose (s, ) in a subjective
way such as MA(1,9) or VOL(3,12). It is interesting to observe that such a subjective

selection is not significant in this empirical application.

Table 4.1: Technical Indicator Selection

MAC(s, 1) VOL(s, 1) MOM(m)
cv (3% (1.9) (B9, (3.6). (6,7) 2,5
Lasso ]
BIC  (89),(10,11) (14),3,5),(3,6) 2,5
plugin - o) b0y (14, G.6) 2,5
3,5), (1,9), (8,9
adaptive Lasso Ccv gl,l)l),(( ), ( » (3.5), 0.11) 2,5
BIC  (89),(10 ,11) (14),(3,5),(3,6) 2,5
Cv 10,11 1.4), 3,6 2,5
SCAD BIC Es 9), ()10,11) &,43, &,53, (3,6) 2.5
cv 1,11, (10,11 1,4), (6,7 2,5
MCP BIC %1,113, &o,u% &,4%, §3,53 2.5
OLS 3.7) (3.6) 5

Note. CV represents the tuning parameter chosen through the 10-fold CV.
BIC represents the tuning parameter chosen through the BIC method.
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Table 4.2: Empirical Results for MA Indicators

Lasso adaptive Lasso

MA(s, 1) Ccv BIC plug-in Ccv BIC

1,2 0.003(0.005) -0.007(0.005 Oé0.006 0.004(0.006 =0.006(0.005
1,3) 0.002(0.006 0.001(0.006 0.005(0.006 0.003(0.006 0(0.006
2,3) -0.002(0.005)  0.003(0.005) -0.002(0.006 -0.001(0.005 0.002(0.005
(1,4) 0.003(0.008)  0.002(0.008)  0.002(0.008) 0.003(0.008) 0.005(0.008
(2,4) 0.004(0.007) -0.001(0.007)  0.004(0.007) 0.002(0.007) -0.001(0.007)
(3,4) 0.003(0.005)  0.004(0.005)  0.004(0.006) 0.003(0.005) 0.005(0.005)
1,5) 0.013(0.010)  0.017(0.010)  0.012(0.011 0.014(0.010) 0.018(0.011
2,5) —0.008(0.010% —0.002(0.010% —0.007?0.010 —0.003(0.010% -0.001(0.010
3,5) -0.018(0.009)* -0.014(0.009) -0.021(0.008)**  -0.018(0.008)* -0.013(0.009
(4,5) -0.003(0.006)  0.002(0.006) -0.002(0.006 -0.002(0.006) 0.001(0.006
(1,6) -0.016(0.012) -0.018(0.012) -0.018(0.012) -0.019(0.012) -0.017(0.012)
(2,6) -0.001(0.010)  -0.006(0.010) -0.002(0.011) -0.005(0.010) -0.006(0.010)
(3,6) -0.003(0.008) 0(0.009)  -0.004(0.008) -0.001(0.008) 0.002(0.009)
4,6) -0.001(0.009)  -0.002(0.009 0(0.009 -0.003(0.009 -0.003(0.009
5,6) 0.006(0.006 0.003(0.006 0.004(0.006 0.003(0.006 0.003(0.006
1,7) -0.009(0.010)  -0.005(0.009) -0.012(0.010 -0.009(0.010 -0.005(0.009
(2,7) -0.005(0.012)  0.006(0.013) -0.006(0.012) 0(0.013) 0.007(0.012
(3,7) 0.017(0.010)  0.012(0.010)  0.022(0.010)* 0.014(0.010) 0.011(0.009)
4,7) -0.007(0.010)  -0.007(0.010) -0.009(0.010) -0.005(0.010) -0.008(0.010)
5,7) 0.007(0.008)  0.004(0.008)  0.009(0.008) 0.005(0.008) 0.005(0.008
6,7) —0.004(0.006; -0.005(0.007 —0.002?0.007 -0.005(0.006 -0.005(0.006
1,8) -0.010(0.012)  -0.009(0.011) -0.011(0.013 -0.011(0.012 -0.008(0.012
2,8) 0.010(0.013)  0.006(0.014 0.013(0.012 0.006(0.013 0.005(0.014
(3,8) -0.008(0.011) -0.014(0.011)  -0.008(0.011) -0.012(0.011) -0.013(0.012)
(4,8) 0.011(0.011) ~ 0.015(0.012)  0.011(0.011) 0.014(0.011) 0.017(0.012)
(5,8) 0.005(0.009)  0.005(0.009)  0.010(0.009) 0.005(0.009) 0.005(0.009)
6,8) 0.005(0.009)  0.007(0.009)  0.001(0.010 0.008(0.009) 0.006(0.009
7,8) —0.006(0.007; -0.006(0.007 —0.00Sé0.007 -0.006(0.007 -0.005(0.007
1,9) 0.039(0.015)*  0.028(0.016 0.038(0.017)* 0.032(0.015)* 0.027(0.016
2,9) 0(0.015)  0.003(0.017) -0.007(0.017 0.002(0.016 0.004(0.017
(3,9) -0.010(0.020)  -0.008(0.021) -0.013(0.021) -0.007(0.020) -0.010(0.021)
(4,9) -0.008(0.015) -0.017(0.015) -0.002(0.016) -0.017(0.015) -0.019(0.015)
(5,9) -0.014(0.011)  -0.012(0.011) -0.018(0.012) -0.013(0.011) -0.013(0.011)
6,9) 0.005(0.012)  0.006(0.012 0.004(0.012 0.005(0.012 0.007(0.011
7,9) -0.007(0.011)  -0.009(0.011)  -0.006(0.011 -0.006(0.011 -0.011(0.011
8,9) 0.019(0.008)* 0.017(0.008)* 0.018(0.008)* 0.018(0.008)* 0.016(0.008)*
(1,10) -0.002(0.017)  0.002(0.020)  0.003(0.019 -0.005(0.018) 0.003(0.020
(2,10) 0(0.020) 0(0.021)  0.010(0.023) -0.002(0.020) -0.001(0.021)
(3,10) 0.007(0.021)  0.010(0.022)  0.006(0.021) 0.009(0.021) 0.013(0.021)
(4,10) -0.028(0.015)  -0.020(0.016) -0.036(0.016)* -0.024(0.015) -0.018(0.017)
5,10) 0.007(0.014 0.005(0.015 0.008é0.014 0.005(0.014 0.003(0.014
6,10) -0.005(0.011)  -0.007(0.012) -0.005(0.012 -0.007(0.011 -0.008(0.012
7,10) 0.001(0.014 0.004(0.014 0(0.013 0(0.014 0.006(0.015
(8,10) -0.016(0.012) -0.018(0.012) -0.018(0.012) -0.014(0.012) -0.017(0.012)
(9,10) -0.001(0.007)  -0.001(0.007) -0.001(0.008) -0.001(0.007) -0.001(0.007)
(1,11) 0.023(0.016)  0.031(0.017) 0.03(0.016) 0.032(0.016)* 0.03(0.016)
2,11) -0.02(0.018) -0.019(0.018) -0.021(0.020) -0.019(0.018) -0.017(0.018
3,11 0.010(0.016 0.006(0.017 0.013(0.017 0.010(0.017 0.006(0.018
4,11 0.016(0.016 0.014(0.017 0.018(0.016 0.017(0.016 0.013(0.018
5,11 0.001(0.015)  0.001(0.015) -0.001(0.014 0(0.014 0.004(0.014
(6,11) 0.003(0.013)  0.006(0.013)  0.003(0.014) 0(0.012) 0.005(0.013)
(7,11) 0.012(0.016)  0.009(0.016)  0.011(0.016) 0.012(0.016) 0.008(0.016)
(8,11) -0.002(0.013)  0.004(0.013) -0.001(0.013) 0(0.013) 0.005(0.013)
9,11) 0.010(0.012)  0.007(0.011 0.010(0.012 0.009(0.012) 0.007(0.012
10,11) —0.022(0.007;** -0.021(0.007)** —0.027?0.007 ok —0.022(0.007;** -0.02(0.007)**
1,12) -0.018(0.015) -0.021(0.014) -0.021(0.015 -0.017(0.014 -0.021(0.014
2,12) -0.001(0.012)  0.002(0.012) -0.003(0.013 0.004(0.012) 0(0.012
(3,12) -0.007(0.014)  -0.004(0.014) -0.009(0.014) -0.010(0.014) -0.006(0.014)
(4,12) 0.002(0.015)  0.002(0.015)  0.005(0.015) 0.003(0.014) 0.002(0.015)
(5,12) 0.007(0.016)  0.005(0.016)  0.011(0.015) 0.006(0.016) 0.005(0.016)
6,12) -0.015(0.011)  -0.015(0.011) -0.017(0.013 -0.011(0.011 -0.014(0.011
7,12g 0.013(0.011 0.011(0.011 0.014(0.012 0.010(0.011 0.011(0.011
8,12 0.010(0.012 0.008(0.012 0.015(0.012 0.008(0.012 0.007(0.012
(9,12) -0.019(0.014) -0.016(0.014) -0.019(0.014) -0.018(0.014) -0.017(0.014
(10,12) 0.007(0.009)  0.005(0.009)  0.008(0.010) 0.008(0.009) 0.006(0.009)
(11,12) 0.011(0.007)  0.010(0.007)  0.010(0.007) 0.010(0.007) 0.010(0.007)

Note. This estimator 1s using Equation (4.2), employing the PDS method, and adjusting covariance
with the Newey-West method.
The first column MA(s, [) represents the timing parameters of MA strategy.

The numbers in brackets are standard errors.

* represents the statistical test p-value falls within the range 0.01 to 0.05.
** represents the statistical test p-value falls within the range 0.001 to 0.01.
*** represents the statistical test p-value is less than 0.001.
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Table 4.3: Empirical Results for MA Indicators (Cont’d)

SCAD MCP is
MAC(s, ) cv BIC cv BIC
(1,2) 0.004(0.005) -0.007(0.005)  -0.008(0.004) -0.006(0.005) 0.001(0.007
1.3 0.001(0.006)  0.001(0.007) 0(0.006)  0.002(0.006) 0.006(0.007
2.3) -0.001(0.005)  0.002(0.005 0.002(0.005)  0.003(0.005 -0.002(0.006
1,4) 0.004(0.008)  0.004(0.008 0.002(0.008)  0.003(0.008 0.003(0.009
2.4) 0.002(0.007) -0.002(0.007)  -0.004(0.007) -0.003(0.007 0.005(0.008
(3.4) 0.001(0.005)  0.005(0.005) 0.002(0.005)  0.003(0.005) 0.002(0.006)
(1.5) 0.013(0.010)  0.017(0.011) 0.017(0.011)  0.017(0.010) 0.013(0.012)
(2.5) -0.003(0.010) 0(0.010) 0.001(0.009) 0(0.009) -0.007(0.010)
3.5) -0.016(0.009)  -0.013(0.009 -0.013(0.009)  -0.012(0.009) -0.022(0.009
45) —0.001(0.006% 0.001(0.006 0.003(0.005g 0.003(0.0053 -0.001(0.006
1.6) -0.018(0.012)  -0.018(0.012 -0.016(0.012)  -0.017(0.012 -0.019(0.013
(2.6) -0.007(0.010)  -0.005(0.010)  -0.006(0.010) -0.007(0.010) 0.001(0.012
(3.6) 0(0.008)  0.002(0.009) 0.004(0.009)  0.002(0.009) -0.004(0.009)
(4.6) -0.006(0.009)  -0.001(0.009)  -0.002(0.008) -0.002(0.008) 0.003(0.009)
(5.6) 0.003(0.006)  0.002(0.006) 0.002(0.006)  0.002(0.006) 0.001(0.007)
1.7) -0.010(0.009)  -0.005(0.009 -0.005(0.010)  -0.006(0.009 -0.014(0.012
2.7 0.002(0.012)  0.005(0.012 0.004(0.012)  0.005(0.012 -0.009(0.013
3.7) 0.014(0.009)  0.009(0.009 0.008(0.009)  0.010(0.009 0.024(0.011)*
(4.7) -0.004(0.010)  -0.009(0.010)  -0.008(0.010) -0.008(0.010) -0.010(0.011)
(5.7) 0.005(0.008)  0.006(0.008) 0.005(0.008)  0.005(0.008) 0.011(0.008)
(6.7) -0.003(0.006)  -0.006(0.006)  -0.005(0.006) -0.006(0.006) -0.003(0.007)
1.8) -0.012(0.012) -0.007(0.012)  -0.009(0.012) -0.008(0.012) -0.005(0.014
2.8) 0.006(0.013)  0.006(0.013 0.008(0.013)  0.007(0.013 0.013(0.013
3.8) 0.011(0.011)  -0.012(0.011 -0.012(0.011)  -0.013(0.011 -0.009(0.012
48) 0.014(0.011)  0.017(0.012 0.018(0.012)  0.02(0.012 0.015(0.012
(5.8) 0.005(0.009)  0.003(0.008) 0.006(0.008)  0.006(0.009) 0.007(0.010)
(6.8) 0.006(0.009)  0.007(0.009) 0.007(0.009)  0.007(0.009) 0.002(0.011)
(7.8) -0.005(0.007)  -0.005(0.007)  -0.005(0.007) -0.004(0.007) -0.005(0.008)
1.9) 0.03(0.015)  0.027(0.016) 0.023(0.016)  0.023(0.016) 0.034(0.018
2.9) 0.001(0.016% 0.001(0.0173 0.003(0.018% o.ooz(o.omg -0.011(0.017
3.9) -0.009(0.020)  -0.005(0.021 -0.009(0.021)  -0.009(0.021 -0.015(0.022
4.9) -0.017(0.014)  -0.019(0.015)  -0.021(0.015) -0.023(0.015) -0.005(0.017
(5.9) -0.013(0.011)  -0.012(0.011) -0.013(0.011)  -0.013(0.011) -0.013(0.013)
(6.9) 0.007(0.011)  0.006(0.012) 0.006(0.011)  0.006(0.011) 0.002(0.013)
(7.9) -0.009(0.011)  -0.008(0-011) -0.009(0.011)  -0.009(0.011) -0.004(0.011)
8.9) 0.014(0.008)  0.018(0.008)*  0.014(0.008)  0.014(0.008 0.017(0.009
1,1og 0(0.018)  0.001(0.020 0.004(0.020)  0.004(0.021 0.009(0.020
2.10 -0.004(0.021 0(0.021 -0.004(0.022)  -0.004(0.022 0.011(0.025
(3.10) 0.013(0.021)  0.010(0.021) 0.013(0.021)  0.012(0.021) 0.009(0.023
(4.10)  -0.019(0.016) -0.021(0.017)  -0.019(0.017) -0.019(0.017) -0.041(0.018)
(5.10) 0.004(0.014)  0.003(0.014) 0.001(0.014)  0.003(0.014) 0.011(0.016)
(6,10)  -0.007(0.012) -0.008(0.012)  -0.007(0.012) -0.007(0.012) -0.003(0.012)
7,1o§ 0.003(0.015)  0.006(0.015 0.006(0.015)  0.006(0.015 -0.003(0.014
8.10 -0.015(0.012)  -0.015(0.012 -0.016(0.012)  -0.016(0.011 -0.013(0.013
9.10) 0(0.007)  -0.002(0.007 0(0.007)  -0.001(0.007 -0.003(0.008
(1.11) 0.028(0.016)  0.031(0.016) 0.033(0.016)*  0.033(0.016)* 0.023(0.016)
(2.11)  -0.015(0.018)  -0.02(0.018)  -0.015(0.018) -0.015(0.018) -0.021(0.023)
(3.11) 0.007(0.017)  0.008(0.017) 0.007(0.017)  0.008(0.017) 0.008(0.018)
411) 0.012(0.017)  0.015(0.017) 0.015(0.018)  0.014(0.018) 0.017(0.017
5.11 0.003(0.014)  0.003(0.014 0.005(0.013)  0.002(0.014 -0.002(0.016
611 -0.001(0.012)  0.003(0.013 0.005(0.013)  0.004(0.013 0.001(0.014
711 0.012(0.016)  0.007(0.016 0.008(0.015)  0.009(0.016 0.011(0.017
(8.11) 0.003(0.013)  0.005(0.013) 0.004(0.013)  0.004(0.013) -0.005(0.014)
(9.11) 0.008(0.012)  0.007(0.012) 0.007(0.012)  0.007(0.012) 0.012(0.013)
(10,11)  -0.022(0.007)** -0.022(0.007)**  -0.021(0.007)** -0.022(0.007)**  -0.026(0.007)
1,12)"  -0.018(0.014)  -0.02(0.014 -0.022(0.013)  -0.021(0.013) -0.018(0.016
2,12g 0(0.012§ 0.002(0.013 -o.ooz(o.oug -0.002(0.0123 -0.004(0.014
312 -0.009(0.014)  -0.006(0.014 -0.006(0.014)  -0.006(0.014 -0.006(0.015
(4.12) 0.004(0.014)  0.001(0.014) 0.001(0.014)  0.002(0.014) 0.008(0.015
(5.12) 0.005(0.016)  0.007(0.016) 0.007(0.016)  0.009(0.016) 0.007(0.016)
(6.12)  -0.012(0.011) -0.015(0.011) -0.017(0.011)  -0.018(0.011) -0.016(0.013)
(7.12) 0.009(0.011)  0.010(0.011) 0.011(0.011)  0.010(0.011) 0.016(0.013)
8.12) 0.007(0.012)  0.005(0.012 0.009(0.012)  0.008(0.012 0.017(0.013
9,12) -0.019(0.0143 -0.016(0.014 —0.016(0.014% -0.016(0.014 -0.021(0.015
10,12)  0.009(0.009)  0.006(0.009 0.004(0.009)  0.005(0.009 0.006(0.011
(11,12)  0.011(0.007)  0.010(0.007) 0.011(0.007)  0.010(0.007) 0.011(0.008)

Note. This estimator 1s using Equation (4.2), employing the PDS method, and adjusting covariance
with the Newey-West method.
The first column MA(s, [) represents the timing parameters of MA strategy.

The numbers in brackets are standard errors.

* represents the statistical test p-value falls within the range 0.01 to 0.05.
** represents the statistical test p-value falls within the range 0.001 to 0.01.
**% represents the statistical test p-value is less than 0.001.
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Table 4.4: Empirical Results for VOL Indicators

Lasso adaptive Lasso

VOL(s, 1) Ccv BIC plug-in Ccv BIC

1,2 0.005(0.007 0.003(0.006 0.004 0.009§ 0.002 0.007; 0.002(0.006
1,3) 0.004(0.006 0.001(0.006 0.003(0.007 0.005(0.006 0:001(0.006
2,3) -0.004(0.005) -0.001(0.005) -0.005(0.005) -0.002(0.005) -0.001(0.005
(1,4) -0.014(0.007) -0.018(0.008)* -0.017(0.008)* -0.015(0.008) -0.018(0.008)*
(2,4) -0.002(0.009)  0.001(0.009) -0.004(0.009) -0.002(0.009) 0.001(0.009)
(3,4) 0.007(0.006)  0.003(0.006)  0.007(0.007) 0.004(0.006) 0.004(0.006)
1,5) 0.010(0.008 0.015(0.009)  0.013(0.009) 0.014(0.009) 0.015(0.009
2,5) 0.008(0.009 0.007 0.009; 0.011(0.010) 0.004 0.010; 0.006(0.009
3,5) -0.011(0.007) -0.016(0.008)* -0.013(0.008) -0.016(0.008)*  -0.016(0.008)*
(4,5) 0.004(0.005)  0.003(0.005)  0.004(0.006) 0(0.005) 0.003(0.005
(1,6) -0.006(0.010) -0.006(0.010) -0.009(0.010) -0.005(0.010) -0.005(0.010)
(2,6) 0(0.010) -0.003(0.010) -0.002(0.010) 0(0.009) -0.003(0.010)
(3,6) 0.019(0.010)*  0.022(0.010)* 0.026(0.010)** 0.019(0.010) 0.021(0.010)*
4,6) -0.004(0.008) -0.004(0.008) -0.007(0.008) -0.002(0.008 -0.002(0.008
5,6) 0.001(0.007) -0.001(0.007 0.001(0.008 0.005(0.007 0.001(0.007
1,7) 0.007(0.012 0.012(0.011 0.011(0.011& 0.008(0.012 0.012(0.012
(2,7) -0.015(0.012)  -0.012(0.012) -0.015(0.013) -0.015(0.011) -0.012(0.011)
(3,7) -0.005(0.011)  -0.007(0.011)  -0.006(0.011) -0.004(0.011) -0.007(0.011)
4,7) 0.010(0.010)  0.011(0.011)  0.010(0.011) 0.010(0.010) 0.010(0.011)
5,7) -0.003(0.009) -0.002(0.009) -0.006(0.010) -0.006(0.008) -0.003(0.009
6,7) 0.013(0.007)* 0.010(0.007 0.011(0.007) 0.011(0.007 0.010(0.007
1,8) -0.008(0.011)  -0.004(0.012) -0.014(0.011) -0.007(0.011 -0.004(0.012
2,8) -0.010(0.012)  -0.008(0.011) -0.012(0.013) -0.010(0.011 -0.007(0.011
(3,8) 0.009(0.009)  0.007(0.009)  0.009(0.010) 0.007(0.009) 0.007(0.009)
(4,8) -0.013(0.012)  -0.015(0.012) -0.008(0.013) -0.012(0.011) -0.015(0.012)
(5,8) -0.009(0.010) -0.007(0.011)  -0.010(0.011) -0.006(0.010) -0.006(0.011)
6,8) 0(0.008)  0.002(0.009) 0(0.010) 0.001(0.008) 0.002(0.008
7,8) 0.009(0.007 0.009 0.007; 0.007 0.007§ 0.006 0.006; 0.007(0.007
1,9) -0.001(0.015 0(0.015 0.001(0.015 0.003(0.015 0(0.015
2,9) 0.004(0.013 0.002(0.013)  0.013(0.013) 0.001(0.013) 0.002(0.013
(3,9) -0.015(0.009) -0.013(0.010) -0.014(0.009) -0.012(0.010) -0.013(0.009)
(4,9) -0.004(0.012)  0.002(0.012) -0.009(0.013) 0.001(0.011) 0.004(0.012)
(5,9) 0.005(0.012)  0.002(0.013)  0.006(0.013) 0.005(0.012) 0.003(0.013)
6,9) -0.003(0.012)  -0.001(0.013) -0.002(0.012) -0.002(0.012 -0.002(0.012
7,9) -0.002(0.008)  -0.002(0.009 0(0.009) -0.003(0.008 -0.002(0.009
8,9) 0.008(0.006 0.010(0.006 0.007(0.006) 0.009(0.005 0.010(0.006
(1,10) -0.02(0.015) -0.011(0.014) -0.012(0.016) -0.019(0.015) -0.011(0.014
(2,10) -0.004(0.016) -0.009(0.015) -0.004(0.018) -0.002(0.016) -0.009(0.015)
(3,10) 0.02(0.014)  0.018(0.016)  0.021(0.015) 0.018(0.015) 0.02(0.016)
(4,10) 0.014(0.011)  0.012(0.012)  0.012(0.012) 0.009(0.011) 0.012(0.012)
5,10) -0.010(0.010) -0.010(0.011) -0.011(0.009) -0.013(0.010 -0.012(0.011
6,10) -0.018(0.010) -0.018(0.010) -0.012(0.010) -0.018(0.010 -0.018(0.010
7,10) -0.006(0.009) -0.008(0.010) -0.007(0.009) -0.009(0.009 -0.007(0.010
(8,10) 0.007(0.008)  0.006(0.008)  0.008(0.009) 0.008(0.008) 0.006(0.008)
(9,10) -0.004(0.007) -0.003(0.007) -0.005(0.008) -0.003(0.007) -0.004(0.007)
(1,11) 0.021(0.011)  0.013(0.012)  0.018(0.013) 0.017(0.011) 0.012(0.012)
2,11) 0.001(0.016)  0.013(0.017) -0.006(0.017) 0.007(0.016) 0.014(0.017
3,11 -0.002(0.013)  -0.004(0.015) -0.006(0.017 -0.005(0.014 -0.005(0.015
4,11 0(0.012 0(0.013 0.003(0.013 -0.002(0.013 -0.002(0.013
5,11 -0.001(0.015) -0.002(0.015)  0.001(0.014) 0.002(0.016 -0.002(0.016
(6,11) 0.011(0.012)  0.012(0.013)  0.010(0.014) 0.011(0.013) 0.011(0.013)
(7,11) -0.010(0.011)  -0.008(0.012) -0.015(0.011) -0.008(0.012) -0.008(0.012)
(8,11) -0.005(0.011) 0(0.011)  -0.001(0.011) -0.003(0.011) 0(0.010)
9,11) 0.017(0.009 0.013(0.010)  0.018(0.010) 0.018(0.009)* 0.014(0.009
10,11) 0.004(0.007 0.002 0.008; 0.006 0.007g 0.005 0.007; 0.002(0.008
1,12) 0.005(0.011 0.001(0.012 0.009(0.013 0.002(0.012 0.001(0.012
2,12) 0.009(0.014)  0.008(0.016)  0.011(0.016) 0.005(0.015) 0.007(0.016
(3,12) -0.001(0.011)  -0.008(0.011)  0.001(0.014) 0.001(0.011) -0.006(0.011)
(4,12) 0.001(0.012) -0.001(0.010) -0.002(0.012) 0.002(0.011) 0(0.010)
(5,12) 0.007(0.012)  0.011(0.013)  0.006(0.013) 0.010(0.012) 0.013(0.013)
6,12) -0.007(0.011)  -0.006(0.011) -0.007(0.012) -0.005(0.011 -0.006(0.011
7,12g 0.010(0.013 0.00850.013 0.011(0.014) 0.006(0.013 0.008(0.013
8,12 -0.015(0.010) -0.015(0.011) -0.019(0.012) -0.013(0.010 -0.014(0.011
(9,12) -0.009(0.011)  -0.009(0.012) -0.009(0.012) -0.012(0.011) -0.010(0.012
(10,12) -0.006(0.011)  -0.003(0.011)  -0.008(0.011) -0.001(0.011) -0.003(0.011)
(11,12) 0.009(0.007)  0.008(0.007)  0.010(0.008) 0.007(0.007) 0.008(0.008)

Note. This estimator 1s using Equation (4.2), employing the PDS method, and adjusting covariance
with the Newey-West method.
The first column VOL(s, [) represents the timing parameters of VOL strategy.
The numbers in brackets are standard errors.
* represents the statistical test p-value falls within the range 0.01 to 0.05.

** represents the statistical test p-value falls within the range 0.001 to 0.01.
*** represents the statistical test p-value is less than 0.001.
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Table 4.5: Empirical Results for VOL Indicators (Cont’d)

SCAD MCP s
VOL(s, [) cV BIC cV BIC
(1,2) 0.005(0.007)  0.002(0.007) 0.005(0.007)  0.002(0.006) 0.004(0.009)
1.3 0.003(0.006)  0.001(0.006) 0.005(0.006)  0.004(0.006 0.003(0.007
2.3) -0.004(0.005)  -0.001(0.005 -0.004(0.005)  -0.002(0.005 -0.004(0.006
1,4) -0.015(0.007)* -0.019(0.008)*  -0.015(0.007)* -0.015(0.008)*  -0.018(0.008
2.4) -0.002(0.009)  0.001(0.009)  -0.002(0.008)  0.001(0.009 -0.004(0.010
(3.4) 0.007(0.006)  0.003(0.007) 0.008(0.006)  0.004(0.006) 0.008(0.008)
(1.5) 0.011(0.008)  0.016(0.009) 0.010(0.008)  0.016(0.009) 0.012(0.009)
(2.5) 0.007(0.009)  0.006(0.010) 0.008(0.009)  0.003(0.010) 0.011(0.010)
3.5) -0.012(0.007) -0.016(0.008)*  -0.012(0.007) -0.015(0.008)*  -0.015(0.008
45) 0.002(0.005)  0.003(0.005 0.003(0.005)  0.002(0.005 0.004(0.006
1.6) -0.006(0.010)  -0.006(0.010 -0.005(0.01)  -0.004(0.010 -0.009(0.011
(2.6) 0(0.010)  -0.004(0.009) 0.001(0.01) -0.001(0.010)  -0.004(0.010
(3.6) 0.02(0.010)*  0.021(0.010)* 0.019(0.01)  0.019(0.010) 0.028(0.010)**
(4.6) -0.002(0.008)  -0.002(0.008)  -0.003(0.008) -0.004(0.008)  -0.008(0.009)
(5.6) 0.003(0.007)  0.002(0.007) 0.002(0.007)  0.003(0.007) 0.001(0.008)
1.7) 0.007(0.012)  0.008(0.012 0.005(0.012)  0.008(0.011 0.012(0.012
2.7 -0.015(0.012)  -0.013(0.012 -0.016(0.012)  -0.015(0.012 -0.014(0.014
3.7 -0.006(0.011)  -0.005(0.011 -0.005(0.011)  -0.006(0.011 -0.004(0.012
(4.7) 0.009(0.010)  0.010(0.011) 0.009(0.01)  0.014(0.010) 0.011(0.011)
(5.7) -0.004(0.009)  -0.004(0.009)  -0.003(0.008) -0.007(0.009)  -0.008(0.010)
(6.7) 0.012(0.006)  0.011(0.007) 0.014(0.007)*  0.010(0.007) 0.012(0.008)
(1.8) -0.007(0.012)  -0.003(0.012) -0.007(0.011)  -0.006(0.012)  -0.014(0.012
2.8) -0.009(0.011)  -0.007(0.011 -0.011(0.011)  -0.008(0-011 -0.017(0.013
3.8) 0.009(0.009)  0.006(0.009 0.008(0.009)  0.006(0.009 0.006(0.011
48) -0.011(0.012) -0.015(0.012 -0.011(0.012)  -0.014(0.011 -0.011(0.014
(5.8) -0.010(0.010)  -0.006(0.011) -0.008(0.01)  -0.006(0.010) -0.009(0.011)
(6.8) 0.003(0.008)  0.002(0.008) 0(0.008)  0.003(0.008) -0.001(0.011)
(7.8) 0.007(0.007)  0.006(0.007) 0.009(0.007)  0.010(0.007) 0.007(0.008)
1.9) -0.001(0.014)  0.003(0.014) 0(0.014)  0.002(0.014 -0.001(0.016
2.9) 0.005(0.013)  0.002(0.013 0.005(0.013)  0.001(0.013 0.019(0.014
3.9) -0.016(0.009) -0.012(0.010 -0.015(0.009)  -0.010(0.009 -0.012(0.010
(4.9) 0(0.012)  0.004(0.011 -0.003(0.011)  0.002(0.012)  -0.008(0.013
(5.9) 0.004(0.012)  0.002(0.012) 0.003(0.012)  0.004(0.012) 0.005(0.014)
(6.9) -0.004(0.012) -0.001(0.012)  -0.003(0.012) -0.004(0.011)  -0.002(0.013)
(7.9) 0(0.008) -0.003(0.009)  -0.003(0.008) -0.003(0.009) 0(0.010)
8.9) 0.010(0.005)  0.009(0.006 0.008(0.006)  0.012(0.006)*  0.004(0.007
1,10g -0.017(0.015)  -0.017(0.014 -0.022(0.015)  -0.019(0.014 -0.009(0.017
2.10 -0.003(0.015)  -0.010(0.015 -0.002(0.015)  -0.003(0.015 -0.003(0.018
(3.10) 0.018(0.014)  0.019(0.016) 0.021(0.014)  0.016(0.015) 0.019(0.015
(4.10) 0.012(0.010)  0.009(0.011) 0.013(0.01)  0.008(0.012) 0.015(0.013)
(5.10) -0.012(0.010)  -0.013(0.011) -0.0110.01)  -0.015(0.010) -0.010(0.011)
(6.10) -0.017(0.010)  -0.017(0.011) -0.019(0.01)  -0.017(0.010) -0.013(0.011)
7.10 -0.008(0.009)  -0.008(0.010 -0.006(0.009)  -0.008(0.010 -0.006(0.010
8.10 0.007(0.009)  0.007(0.008 0.007(0.008)  0.007(0.008 0.009(0.009
9,10 -0.004(0.007)  -0.002(0.007 -0.005(0.007)  -0.005(0.007 -0.004(0.008
(1.11) 0.018(0.012)  0.014(0.012) 0.021(0.011)  0.015(0.012) 0.018(0.013)
(2.11) 0.005(0.015)  0.013(0.016) 0.004(0.015)  0.009(0.016) -0.011(0.019)
(3.11) 0(0.014) -0.004(0.015)  -0.002(0.013) -0.003(0.015)  -0.005(0.017)
411) -0.001(0.012)  0.001(0.013) -0.001(0.011 0(0.013) 0.006(0.015
5,11; -0.002(0.015)  -0.002(0.016 -0.001(0.014 0(0.015 -0.004(0.016
6,11 0.010(0.013)  0.011(0.013 0.012(0.012)  0.010(0.013 0.009(0.016
7.11) -0.008(0.012)  -0.007(0.012 -0.010(0.011)  -0.008(0.012 -0.016(0.012
(8.11) -0.005(0.011)  -0.001(0.010) -0.005(0.011)  -0.004(0.011) -0.002(0.011)
(9.11) 0.018(0.009)  0.013(0.009) 0.018(0.009)  0.017(0.009) 0.017(0.011)
(10,11) 0.005(0.007)  0.002(0.008) 0.004(0.007) 0(0.008) 0.007(0.008)
1,12) 0.004(0.011)  0.002(0.012 0.004(0.011)  0.005(0.012 0.008(0.013
z,lzg 0.005(0.014)  0.008(0.016 0.006(0.014)  0.004(0.014 0.016(0.017
312 -0.001(0.011)  -0.007(0.011 0(0.011)  -0.003(0.011 -0.004(0.015
(4.12) 0.002(0.011)  0.001(0.011) 0.001(0.011)  0.003(0.011)  -0.001(0.013
(5.12) 0.009(0.012)  0.013(0.013) 0.009(0.012)  0.012(0.013) 0.008(0.014)
(6.12) -0.009(0.017)  -0.005(0.011)  -0.007(0.011) -0.005(0.011)  -0.006(0.013)
(7.12) 0.010(0.013)  0.007(0.013) 0.009(0.013)  0.008(0.013) 0.012(0.014)
8.12) -0.014(0.010)  -0.014(0.010 -0.014(0.01)  -0.016(0.010 -0.018(0.013
9.12) -0.011(0.011)  -0.010(0.012 -0.008(0.011)  -0.010(0.012 -0.012(0.012
10,12)  -0.006(0.011) -0.002(0.011 -0.006(0.011)  -0.001(0.011 -0.007(0.012
(11,12) 0.009(0.007)  0.008(0.008) 0.009(0.007)  0.008(0.007) 0.011(0.008)

Note. This estimator 1s using Equation (4.2), employing the PDS method, and adjusting covariance
with the Newey-West method.
The first column VOL(s, [) represents the timing parameters of VOL strategy.
The numbers in brackets are standard errors.
* represents the statistical test p-value falls within the range 0.01 to 0.05.

** represents the statistical test p-value falls within the range 0.001 to 0.01.
**% represents the statistical test p-value is less than 0.001.
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Table 4.6: Empirical Results for MOM Indicators

Lasso adaptive Lasso
MOM(m) CcvV BIC plug-in Cv BIC
(D) 0.006(0.005)  0.004(0.004) 0.005(0.005) 0.006(0.005)  0.004(0.004)
) -0.018(0.006)** -0.016(0.006)**  -0.021(0.006)*** -0.018(0.006)** -0.017(0.006)**
3) 0(0.006)  0.002(0.004) 0.001(0.006) 0.001(0.006)  0.002(0.005)
4 0.007(0.006)  0.003(0.005) 0.010(0.006) 0.008(0.005)  0.003(0.005)
5) 0.02(0.007)** 0.017(0.006)** 0.027(0.008)*** 0.02(0.006)** 0.017(0.006)**
(6) -0.011(0.008) -0.009(0.007) -0.014(0.008) -0.011(0.008)  -0.009(0.007)
@) -0.007(0.009)  0.003(0.007) -0.007(0.009) -0.006(0.009)  0.003(0.007)
(8) -0.002(0.009)  0.004(0.008) -0.003(0.009) -0.003(0.009)  0.006(0.008)
Q) -0.006(0.009)  -0.006(0.008) -0.005(0.010) -0.005(0.009) -0.007(0.009)
(10) 0.007(0.009)  0.013(0.009) 0.008(0.009) 0.008(0.009)  0.013(0.009)
(11) 0.002(0.008)  -0.007(0.007) 0.003(0.008) 0.001(0.008) -0.007(0.007)
(12) -0.001(0.008) 0(0.007) -0.002(0.007) 0(0.008) -0.001(0.007)
SCAD MCP
OLS
MOM(m) cv BIC cv BIC
(1) 0.006(0.004)  0.005(0.004) 0.006(0.004) 0.006(0.004)  0.007(0.006)
2) -0.015(0.006)** -0.018(0.006)**  -0.014(0.006)* -0.017(0.006)** -0.023(0.007)
3) -0.001(0.005)  0.001(0.005) 0.001(0.005) 0.001(0.005) -0.001(0.007)
4 0.002(0.005)  0.004(0.005) 0(0.005) 0.004(0.005)  0.008(0.007)
%) 0.015(0.006)* 0.017(0.006)** 0.012(0.006)* 0.017(0.006)** 0.025(0.009)**
(6) -0.013(0.007)  -0.009(0.008) -0.013(0.007) -0.009(0.007)  -0.010(0.009)
@) -0.004(0.008)  0.003(0.007) -0.004(0.008) 0.003(0.007) -0.003(0.011)
(8) -0.002(0.008)  0.006(0.008) 0(0.008) 0.005(0.008) -0.009(0.010)
9 -0.008(0.009) -0.007(0.009) -0.007(0.008) -0.005(0.008) -0.003(0.010)
(10) 0.011(0.009)  0.013(0.009) 0.012(0.008) 0.015(0.009)  0.011(0.011)
(11) -0.005(0.007)  -0.005(0.007) -0.004(0.007) -0.007(0.007)  0.006(0.009)
(12) 0.002(0.008) 0(0.007) -0.001(0.007) 0(0.007)  -0.006(0.008)

Note. This estimator is using Equation (4.2), employing the PDS method, and adjusting

covariance with the Newey-West method.

The first column MOM(m) represents the timing parameter of MOM strategy.

The numbers in brackets are standard errors.

* represents the statistical test p-value falls within the range 0.01 to 0.05.

** represents the statistical test p-value falls within the range 0.001 to 0.01.

*** represents the statistical test p-value is less than 0.001.
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5 Conclusions

This study conducted a Monte Carlo simulation and an empirical application to as-
sess the finite-sample performance of the PDS methods with different choices of statistical
learning methods for the double selection. The simulation shows that the finite-sample
performance of the PDS method may vary with different choices of statistical learning
methods in general. In particular, the simulation shows that the plug-in Lasso and the
adaptive Lasso, utilizing the tuning parameter selected by the BIC, have proper perfor-
mance for the double selection. Moreover, the latter tends to choose the control variables
in a sparser way than the former. The empirical application also shows that, compared to
the least squares method, the PDS method is useful for finding more significant techni-
cal indicators signal for predicting the equity premium based on the in-sample analysis.
This might be related to the fact that the truly useful technical indicators are indeed highly
sparse, it is therefore essential to improve the estimation efficiency by exploiting this spar-

sity using the PDS method.

However, it is worth noting that this study is not fully comprehensive, and there is still
room for further research. An important direction of future research is to assess the finite-
sample performance of the PDS method in different modeling frameworks, such as time
series models (Hecq et al., 2023)(16), penal models (Belloni et al., 2016)(3), or neural

network models (Calvo-Pardoe et al., 2021)(5). Additionally, more statistical learning
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methods and other types of selection methods could also be considered. In addition, the
PDS method considered in this study relies on the assumption of sparsity. However, it may
be worth considering relaxing this assumption and using the principal components method
instead (Galbraith and Walsh, 2020)(12). In the empirical scenario, this study focuses
on assessing whether technical indicators are useful for explaining the equity premiums.
Future research may also consider more control variables, such as the macroeconomic

indicators, in evaluating the performance of the technical indicators.
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