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摘要

為了實現兩步電弱相變，此碩論探討了將標準模型擴增一個實數

單態粒子。我們利用許多不同方策 (scheme)去探討且量化模型中的方

策以及規範依賴。在考慮第一階圈圖計算時，on-shell (OS)-like方策

中的 Nambu-Goldstone波色子需要被重求和以避免紅外發散，而我們

量化其重求和後對電弱相變的影響。在 OS-like以及 MS方策中,兩者

所計算的電弱相變之臨界溫度相當一致。在規範依賴的探討中，採用

High-temperature以及 Patel-Ramsey-Musolf方策來做比較。在某些方策

中，分析出的結果對重整化能量尺度有依賴性，此顯示了高階修正是

必須的。但無論是對規範有依賴或無依賴的方策，最終資料分析顯示，

兩者都在理論誤差以內。

關鍵字： 有效場論，微擾理論，規範依賴，規範場論，重整化，重求

和，電弱作用，臨界現象，數值計算，數值方法
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Abstract

In this thesis, the standard model is extended with a real singlet scalar

S to achieve a two-step electroweak phase transition (EWPT). The model

is investigated with several schemes to quantify the scheme dependence and

the gauge dependence issue. In on-shell(OS)-like scheme, at the one-loop

order, Nambu-Goldstone boson contributions are needed to be resummed to

circumvent the IR divergence; their effects in the EWPT are studied and quan-

tified. The critical temperatures and critical vacuum expectation values of the

EWPT in the OS-like and theMS schemes are highly consistent to each other;

we also compare the results with two gauge-independent schemes (the high

temperature and the Patel-Ramsey-Musolf schemes). Even though higher or-

der corrections are needed for scale-dependent schemes, the general trend

of the results are consistent and the analyses show the differences of gauge-

dependent and -independent schemes are within theoretical uncertainties.

Keywords: effective potential, perturbation theory, gauge dependence, gauge

field theory, renormalization,resummation, electroweak interaction, critical

phenomena, numerical calculations, numerical methods

v



doi:10.6342/NTU201900064

Contents

口試委員審定書

誌謝 ii

Acknowledgements iii

摘要 iv

Abstract v

1 Introduction 1

2 Model: SM + Real Singlet Scalar 8

2.1 On-shell-like Scheme (OS-like) . . . . . . . . . . . . . . . . . . . . . . 10

2.2 MS Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Thermal History and Thermal Potential . . . . . . . . . . . . . . . . . . 13

2.3.1 Standard method of searching TC and critical VEVs . . . . . . . 14

2.4 High Temperature (HT) . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.5 Patel-Ramsey-Musolf (PRM) Scheme . . . . . . . . . . . . . . . . . . . 15

2.5.1 Gauge-independent TC and VEVs . . . . . . . . . . . . . . . . . 16

3 Numerical Analysis 18

3.1 Critical Temperature and Critical VEV . . . . . . . . . . . . . . . . . . . 19

3.2 (non)Thermal Gauge and NG Boson Contribution . . . . . . . . . . . . . 20

3.3 Scheme Dependence Comparison . . . . . . . . . . . . . . . . . . . . . 22

3.4 Scale Dependence of TC . . . . . . . . . . . . . . . . . . . . . . . . . . 24

vi



doi:10.6342/NTU201900064

4 Discussion and Conclusion 26

4.1 Discussion: Dark Matter, Vacuum Stability and Perturbativity . . . . . . 26

4.2 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

A Generating Functional of 1(not 1)-PI 28

B Effective Potential in One-Loop 31

C Approximate Thermal Function 36

C.1 Boson . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

C.1.1 HTEB (a < 0.35) . . . . . . . . . . . . . . . . . . . . . . . . . . 37

C.1.2 PFFB (0.35 ≤ a ≤ 9.0) . . . . . . . . . . . . . . . . . . . . . . . 37

C.1.3 LTEB (a > 9.0) . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

C.1.4 Bessel Approximation for a ∈ iℜ . . . . . . . . . . . . . . . . . 38

C.2 Fermion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

C.2.1 HTEF (a < 0.32) . . . . . . . . . . . . . . . . . . . . . . . . . . 39

C.2.2 PFFF (0.32 ≤ a ≤ 9.0) . . . . . . . . . . . . . . . . . . . . . . . 39

C.2.3 LTEF (a > 9.0) . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

C.2.4 a ∈ iℜ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

D Field-Dependent Mass 41

D.1 Higgs Bosons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

D.2 NG Bosons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

D.3 Gauge Boson . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

D.4 Top Quark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

E An Illustrative Application PRM 45

E.1 Gauge-invariant TC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Bibliography 54

vii



doi:10.6342/NTU201900064

List of Figures

3.1 The contour plots of the HT effective potential in the plane of ⟨ϕ⟩ and

⟨ϕS⟩ at T = 300 GeV (Upper Left), T = TC + 10 GeV (Upper Right),

T = TC = 75.1GeV (Middle Left), T = TC−10GeV (Middle Right) and

T = 0 GeV (Lower). The parameters are, mS = mH/2 and λHS = 0.4.

Note that all the plot legends are in the unit of 107 GeV. . . . . . . . . . . 21

3.2 The effect of thermal (TGB off, red dot-dashed), non-thermal gauge (GB

off, green dashed) and NG bosons (NG off, yellow dotted) contributions

on TC (Left panel) and vC/TC (Right panel) in the OS-like scheme. The

blue solid line includes all the contributions. . . . . . . . . . . . . . . . . 22

3.3 Comparison of scheme-depended results and investigation of scale depen-

dence. Left: Critical temperature as the function of λHS . Right: vC/TC

as the function of λHS . The OS-like scheme with NG resummation and

the HT scheme are depicted as the blue solid and black dotted lines, re-

spectively. For the MS and the PRM schemes, the style of lines are green

and red, respectively. In the legend, “MS2mt (MS05mt)” represents that

the MS scheme’s renormalization scale is at 2mt(mt/2). Same notation is

also applied to the PRM scheme. . . . . . . . . . . . . . . . . . . . . . . 23

3.4 Critical temperature as the function of renomalization scale in the MS

scheme. The parameter settings are λHS = 0.2 and mS = mH/2. The

spike around 109 GeV is expected to be an accidental cancellation among

contributions of different particle contents, not any physical or theoretical

interest. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

viii



doi:10.6342/NTU201900064

List of Tables

3.1 The input parameters in all schemes. Note that, besides the MS scheme

(see Sec. 2.2), µH , µS, and λH satisfy the tree-level relations: µ2
H =

m2
H/2, µ

2
S = −m2

S + λHS/2v
2
0 and λH = m2

H/2v
2
0. . . . . . . . . . . . . 18

3.2 Summary of the scheme settings. . . . . . . . . . . . . . . . . . . . . . . 19

3.3 The percentage of the effects on the EWPT by turning off specific channel. 22

ix



doi:10.6342/NTU201900064

Chapter 1

Introduction

Cosmic baryon asymmetry (BA) problem [1, 2] is a long-standing and ongoing topic in

particle physics and cosmology. Electroweak baryogenesis (EWBG), one of the most

promising mechanisms to solve BA, requires a strong first-order electroweak phase tran-

sition (EWPT) which creates electroweak(EW)-symmetry-breaking bubble. CP-violating

interactions occur at the bubble wall and induce a net density of left-handed fermions. This

process makes EW sphalerons produce unequal amounts of baryons and anti-baryons. For

a successful EWBG theory, the baryon-number-changing processes have to sufficiently

suppress inside the expanding EW-breaking bubbles in order to prevent the wash out. The

criterion for above is*

critial vacuum expectation value, vc
critical temperature, TC

> ζsph(TC), (1.1)

where ζsph(TC) depends on the sphaleron configuration (or topology) [3] and the fluctu-

ation determinant [4], etc. The current model [5] has showed that ζsph(TC) ≃ 1.1 − 1.2,

where the one-loop effective potential with thermal resummation is used to evaluate the

sphaleron energy. However, EWBG cannot be achieved by the standard model (SM)

alone, since the discovered Higgs boson with 125 GeV [6] is incompatible to the mech-

anism required. To be more specifically, in the SM, the first-order EWPT cannot take

*The critical phenomenology occurs when the potential energy of minima are degenerated and the tun-
nelling process happens, i.e. ,the first-order phase transition from EW-symmetry vacuum to EW-breaking
vacuum takes place.
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place; instead, the EWPT is a smooth crossover [7]. Further, baryon number will be

erasured due to the sphaleron processes. By extending the scalar sector with an SU(2)L

singlet scalar(S), this simplest extension can provide a viable parameter space that makes

the first-order EWPT possible. Furthermore, S can also be a dark matter (DM) candidate

by imposing a Z2 symmetry [8, 9].

In principle, every physical observable should be independent of any artificial effect.

For exanple, the full Higgs potential should be a gauge-independent quantity. Neverthe-

less, in pratice, one has to truncate the calculation at a certian level since the full exact an-

alytical form of potential cannot be obtained (in other words, full-loop calculation cannot

be achieved). Perturbative effective potential is widely used to analyse EWPT; especially,

one- or two-loop expansions are often adopted for various analyses. However, it is well

known that any result from this method is depended on the gauge fixing parameter (ξ)

[10]. For instance, the Higgs vacuum expectation value (VEV) is varying as one changes

ξ. Furthermore, this gauge-dependent issue will contaminate the calculation of baryon-

number preservation criterion, Eq. (1.1). As a result, any phenomenological claim and

consequence is inherited this ξ dependence. Therefore, the gauge effect should be regu-

larized. To be note that one of the exceptions is when the EWPT is driven by the scalar

thermal loops or the tree-level barrier where the ξ dependence can be neglected. How-

ever, in the singlet extended Abelian-Higgs model, as [11] found that the ξ dependence

cannot be ignore even when the presence of the tree-level barrier. This issue is seldom

investigated deeply in the context of studying EWPT by SM plus real singlet model.

Apart from the artifical gauge problem, another issue in the effective potential calcula-

tions is the occurrence of infrared (IR) divergences. The Higgs mass is obtained from the

second derivative of the effective potential. If one adopts a renormalization scheme that

one-loop level potentials do not affect the tree-level mass relation, the second derivatives

of the Nambu-Goldstone (NG) bosons one-loop potential are ill-defined when ξ in the Rξ

gauge is set as zero. Thus, the Higgs mass is IR divergent in this case. One prescription to

resolve is to inculde higher order terms into the NG bosonmasses [12, 13], i.e., resumming

the NG boson masses. In the later, we will show that after the NG masses are resummed,

2
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their contributions to the Higgs mass are relatively minor compared with other effects.

Nevertheless, their numerical effects on vC/TC are unexplored.

In this thesis, the EWPT is revisited in the context of the SM with a real singlet scalar.

To unfold the gauge problem aforementioned, we first analyse the degree of effect on

vC/TC by subtracting both thermal and non-thermal gauge boson contributions from the

effective potential. Even though the exact ξ dependence in the potential cannot be shown

in this simple analysis, one can demonstrate numerically the importance of gauge channels

in the successful first-order EWPT (vC/TC ≥ 1), as the ξ dependence mainly comes from

the gauge contributions. This method stands as a criterion for whether the investigation

of ξ dependence is necessary. Meanwhile, the numerical impact on the NG resummation

in the on-shell(OS)-like scheme† is also analysed.

To avoid the scheme dependence issue, three commonly adopted schemes in the lit-

erature are also investigated: (1) the MS scheme, (2) the high-temperature (HT) scheme

and (3) the Patel-Ramsey-Musolf (PRM) scheme [4]. In the first scheme, unlike the OS-

like scheme, the tree-level NG boson masses are non-zero, since the tree-level relations

have been modified because of different tadpole conditions; thus, the aforementioned NG

resummations are not required. The potential of the second scheme is defined as: the

tree-level potential plus the scalar thermal mass terms only. Obviously, the potential is

gauge-independent, because the thermal masses are free of the ξ dependence. In the last

scheme, the Nielsen-Fukuda-Kugo (NFK) identity [15, 16] is adopted to obtain the gauge-

invariant TC ; vC is evaluated at the HT potential at TC in order to keep gauge-invariant.

In the last scheme, taking different potentials to obtain TC and vC may seem inconsistent.

However, this treatment grantees the results are strictly gauge-invariant. Note that the

numerical comparison between the PRM scheme and the other gauge-dependent schemes

has not performed yet, this is one of our goals to complement this work.

The effective potential is the major ingredient of analyzing EWPT and spontaneous

symmetry breaking. For completeness, we briefly introduce the derivation of the effec-

tive potential from the partition functional (see [17]) by using the Feynman path integral

†In [14], this scheme is called the on-shell scheme. Because this is not the genuine on-shell renormal-
ization, we call this scheme the on-shell-like scheme instead.

3
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method [18]. The effective potential in a more specific terminology should be called the

generating functional for zero-momentum one-particle irreducible (1PI) Green function.

To begin with, we first recallW [J ],

Z[J ] = eiW [J ] (1.2)

which is the generating functional for connectedGreen’s functions (the detail of generating

functional of connecting Green function is shown in Appendix A). Expressing the partition

functional, Z[J ], with an external source field, J(x), in the path integral representation,

we have

Z[J ] =N

∫
Dϕ ei

∫
d4x[L(ϕ)+J(x)ϕ(x)] = ⟨0+|0−⟩, (1.3)

where N−1 =

∫
Dϕ ei

∫
d4x[L(ϕ)]. (1.4)

The second equality of Eq. (1.3) is a reminder that the partition function represents a state

starts with a no particle state at +∞ position and end with a no particle state at −∞

position. The VEV of ϕ in the presence of J can be defined by

ϕc(y) =
δW [J ]

δJ(y)
=

∫
Dϕ ϕ(y) exp

(
i
∫
d4x [L(ϕ) + J(x)ϕ(x)]

)∫
Dϕ exp

(
i
∫
d4x [L(ϕ) + J(x)ϕ(x)]

) ,

= ⟨0+|ϕ(y)|0−⟩J ,
(1.5)

the last equality shows that ϕc is actually a classical field. The physical VEV is

φ(y) =
δW [J ]

δJ(y)

∣∣∣
J=0

= N

∫
Dϕ ϕ(y)ei

∫
d4x[L(ϕ)] = ⟨0+|ϕ(y)|0−⟩. (1.6)

Furthermore, if we assume that the vacuum has a translational symmetry, the VEV does

not depend on the spacetime position any more, i.e.,

ϕ = ⟨0|ϕ(x)|0⟩ = ⟨0|eiPx1ϕ(0)e−iPx2|0⟩ = ⟨0|ϕ(0)|0⟩ = constant field. (1.7)

Motivated by the idea that finding a generating functional provides 1PI connect Green

4
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function, the effective action provides the exact role. The effective action is defined as a

Legendre transformation ofW [J ],

Γ[ϕc] = W [J ]−
∫
d4x ϕc(x)J(x),

= −i
{
lnN

∫
Dϕ exp

[
i

∫
d4x (L(ϕ) + J(x)ϕ(x))

]}
− i

{
ln exp

[
(−i)

∫
d4x J(x)ϕc(x)

]}
,

= −i
{
lnN

∫
Dϕ exp

[
i

∫
d4x (L(ϕ) + J(x) (ϕ(x)− ϕc(x)))

]}
.

(1.8)

In addition,
δΓ[ϕc]

δϕc(x)
= J [x], (1.9)

which can be proved straight forward. The advantage of effective function can be under-

stood from the following: while the source field is turning off, ϕc that satisfies Eq. (1.9) is

the lowest energy configuration of the theory. This solution has particularly interest in the

spontaneous symmetry breaking analysis. The same idea is also applied to the effective

potential which will be demonstrated in the later. By shifting the field, ϕ′ = ϕ−ϕc (the po-

sition index is omitted hereafter), and using the definition of action: S(ϕ) =
∫
d4xL(ϕ),

Eq. (1.8) becomes

Γ[ϕc] = −ilnN
∫
Dϕ′ exp

{
i

[
S(ϕc + ϕ′) +

∫
d4xJϕ′

]}
. (1.10)

The small shifting of the field can be approximated by expanding the action around the

classical field (ϕc),

S[ϕc + ϕ′] = S[ϕc] +

∫
d4x

δS[ϕc + ϕ′]

δϕ

∣∣∣
ϕ′=0

ϕ′

+
1

2

∫
d4xd4y ϕ′(x)

δ2S[ϕc + ϕ′]

δϕ(x)ϕ(y)

∣∣∣
ϕ′=0

ϕ′(y) + · · · .
(1.11)

5
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The action satisfies the variational principle; hence

δS[ϕc + ϕ′]

δϕ

∣∣∣
ϕ′=0

=
δS[ϕc]

δϕc

= 0,
δ2S[ϕc + ϕ′]

δϕ(x)δϕ(y)

∣∣∣
ϕ′=0

=
δ2S[ϕc]

δϕc(x)δϕc(y)
,

= iG−1(x, y;ϕc),

(1.12)

where G is the two-point Green function. Then Eq. (1.11) can be arranged into

S[ϕc + ϕ′] = S[ϕc] + 0 +
1

2

∫
d4xd4y ϕ(x)iG−1(x, y;ϕc)ϕ(y) + · · · . (1.13)

Because S[ϕc] is independent of ϕ, one can bring it out of the integral; then the effective

action becomes

Γ[ϕc] = S[ϕc]− ilnN
∫
Dϕ′ exp

{
1

2

∫
d4d4y ϕ(x)G−1(x, y;ϕc)ϕ(y)

}
+ · · · . (1.14)

The second term can be evaluated by utilizing the equality,

∫ ∞

−∞
dp⃗ e−

1
2
p⃗†Ap⃗+I⃗†p⃗ =

√
(2π)n

detA
e

1
2
I⃗†AI⃗ , (1.15)

where n is the d.o.f. of p. In our case, I⃗ = 0 and A = iG−1. After absorbing
√

(2π)n and

N into Dϕ′, the effective action is

Γ[ϕc] = S[ϕc] +
i

2
lnDet iG−1(x, y;ϕc) + · · · , (1.16)

= S[ϕc] +
i

2
T̂rln iG−1(x, y;ϕc) + · · · , (1.17)

= S[ϕc] +
i

2
Trln

∫
d4xd4y δ(x− y)iG−1(x, y;ϕc) + · · · , (1.18)

where the operator Det acts on the spacetime, (x, y) and also any internal space, e.g.,

color space or spinor space, etc. An identity is used: DetA = exp(T̂rlnA), where T̂r acts

on the same space(s) as Det. Additionally, if the operator A is a function of spacetime,

the functional trace has the property: TrA =
∫
d4xA(x, x) which is adopted in Eq. (1.18).

We can simplify the above further by performing the integral and expressing the Green

6
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function in the momentum space, which is convenient for the later use,

Γ[ϕc] = S[ϕc] +
i

2
Trln

∫
d4x iG−1(x, x;ϕc) + · · · , (1.19)

=

∫
d4xL(ϕc) +

i

2

∫
d4p

(2π)4
Trln iG−1(p;ϕc)

∫
d4x+ · · · , (1.20)

= −V0(ϕc)

∫
d4x+

i

2

∫
d4p

(2π)4
Trln iG−1(p;ϕc)

∫
d4x+ · · · , (1.21)

where we have assumed that ϕc is a constant field, so that kinetic term is absent. Since

the tree-level potential is independent of spacetime, it can be brought out of the integral.

Finally, the effective potential is defined as the following:

Γ[ϕc] ≡ −Veff(ϕc)

∫
d4x, (1.22)

Veff(ϕc) = V0(ϕc)−
i

2

∫
d4p

(2π)4
Trln iG−1(p;ϕc) + · · · , (1.23)

V1(ϕc) = − i

2

∫
d4p

(2π)4
Trln iG−1(p;ϕc), (1.24)

where V1 stands for the general one-loop potential of different particle contents. We can

now easily understand what the name of effective potential represents: besides the dom-

inant tree-level potential, the effective potential represents the potential that includes all

the higher order corrections. In our analysis, we require the level of correction is O(h̄)

which corresponds to the one-loop level. The detail of derivation of the one-loop level

potential for each particle species can be seen in the Appendix B.

The thesis is organized as the following: In Chap. 2, we introduce our model, renorm-

lization schemes and tadpole conditions in each scheme. In addition, the pattern of the

EWPT and the method of searching TC and vC is outlined. Chap. 3 demonstrates our nu-

merical analyses and we discuss the renormalization-scale dependence on TC . In the end,

we discuss the DM issue in the Sec. 4.1; our results are summarized in the Sec. 4.2.

7
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Chapter 2

Model: SM + Real Singlet Scalar

We consider a model in which SU(2)L real singlet scalar S is added to the SM. S can be

the dark matter candidate by imposing the Z2 symmetry on the Lagrangian [9] (i.e., it is

invariant under S → −S). We require S can only couple to the Higgs sector (the higgs

portal). The tree-level Higgs potential of the theory is the following:

V0(H,S) = −µ2
HH

†H + λH(H
†H)4 − µ2

S

2
S2 +

λS
4
S4 +

λHS

2
H†HS2, (2.1)

where H is the usual complex Higgs doublet. It is written in terms of the components as

H(x) =

 G+(x)

1√
2
[ϕ+ h(x) + iG0(x)]

 , (2.2)

where ϕ which will eventually develop the non-zero VEV at ≃ 246 GeV represents the

constant background field (translational symmetry) of H . The real part of the neutral

component of H is h(x), the 125 GeV Higgs boson. G0,±(x) stand for the NG bosons.

The superscripts refer to the electric charge of the fields. Presenting the potential in terms

8
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of components, we have

V0 =
−µ2

H

2

{
(ϕ+ h)2 +

[
2G+G− + (G0)2

]}
+
λH
4

{
(ϕ+ h)4 + 2(ϕ+ h)2

[
2G−G+ + (G0)2

]
+
[
2G−G+ + (G0)2

]2}
− µ2

H

2
S2 +

λS
4
S4 +

λHS

2
S2
{
(ϕ+ h)2 +

[
2G+G− + (G0)2

]}
.

(2.3)

The tree-level effective potential can also be represented by using only the constant

background fields (denoting background field of S as ϕS), by turning off quantum fields

(h and G0,±),

V0(ϕ, ϕS) = −µ
2
H

2
ϕ2 +

λH
4
ϕ4 − µ2

S

2
ϕ2
S +

λS
4
ϕ4
S +

λHS

4
ϕ2ϕ2

S. (2.4)

In order to bound the potential from below, λH and λS must be greater than zero. In

addition, another condition is necessary if λHS < 0. In the region that both ϕ and ϕS are

large, we can denote ϕS = ϕδ, where δ is a number. The relevant terms in the potential

become

V0 ∼
1

4
(λH + λSδ

4 + λHSδ
2)ϕ4. (2.5)

To keep the bracket always greater than zero for arbitrary δ, we require

λ2HS < 4λHλS, if λHS < 0. (2.6)

Note that a local minimum in the S direction will appear as µ2
S > 0. The EW-broken

vacuum should be the global minimum in the present universe: V0(v, 0) < V0(0, v
sym
S ),

where the superscript means that the singlets VEV is in a EW-symmetry phase. This

condition requires that

−µ2
H

2
v2 +

λH
4
v4 <

−µ2
S

2
(vsymS )2 +

λS
4
(vsymS )4. (2.7)

By the minimum conditions at the tree level, vsymS =
√
µ2
S/λS and µ2

H = λHv
2, we can

9
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rearrange above into

λS > λH
µ4
S

µ4
H

≡ λminS . (2.8)

In the numerical analyses, we took λS = λminS + 0.1. This choice makes first-order

phase transition possible and it is also adopted in [14]. Tadpole conditions are scheme-

dependent. The general form is

Th(S) ≡
⟨
∂Veff
∂ϕ(S)

⟩
= 0, (2.9)

where ⟨· · ·⟩ denotes that the term inside the bracket is evaluated in a vacuum and all quan-

tum fields are taken as zero. The order of level of the effective potential (tree or loop, etc.)

is evaluated depends on the corresponding scheme. The Landau gauge (ξ = 0) is taken

when evaluating the gauge contributions, except the PRM scheme.

2.1 On-shell-like Scheme (OS-like)

The OS-like scheme requires that the loop corrections hold the tree-level relations when

the one-loop corrections are added. Therefore, the renormalization conditions are*

⟨
∂(VCW + VCT)

∂ϕ

⟩
= 0,

⟨
∂2(VCW + VCT)

∂ϕ2

⟩
= 0,

⟨
∂2(VCW + VCT)

∂ϕ2
S

⟩
= 0, (2.10)

where VCT are the counter terms, and VCW is the Coleman-Weinberg potential [19]:

VCT = −δµ
2
H

2
ϕ2 − δµ2

S

2
ϕ2
S, (2.11)

VCW(m
2
i ) =

∑
i

ni
m4

i

4(16π2)

(
log

m2
i

µ2 − ci

)
, (2.12)

which is regularized in theMS scheme (seeAppendixB).mi represents different background-

field-dependent masses (see the Appendix D for detail); its subscript stands for a particle’s

species. We include the Higgs bosons (H1,2 , eigenstates of the scalar sector), NG bosons

*Note that checking the first derivative of the one-loop potential with respect ϕS is trivial, since the Z2

symmetry guarantees it is zero.

10
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(G±, G0), the gauge bosons (W,Z) and top quark (t). The degree of freedom (d.o.f.) and

its statistic of the particle is denoted as ni: nH1,2,G0 = 1, nG± = 2, nZ = 3, nW = 6 and

nt = −12. For the scalars and the top quark, c = 3/2, and for the gauge bosons, c = 5/6.

µ represents the renormalization scale.

The tadpole conditions for the OS-like scheme at the tree level are

Th ≡
⟨
∂V0
∂ϕ

⟩
= v

(
−µ2

H + λHv
2 +

λHS

2
v2S

)
= 0, (2.13)

TS ≡
⟨
∂V0
∂ϕS

⟩
= vS

(
−µ2

S + λSv
2
S +

λHS

2
v2
)

= 0, (2.14)

where v and vS are theVEVs of the doublet Higgs andS, respectively. For theZ2-invariant

EW-broken vacuum (ϕ = v0, ϕS = 0), µ2
H = λHv

2
0 and vBrS = 0. Therefore, the Higgs

boson masses in the vacuum are

m2
H =

⟨
∂2V0
∂ϕ2

⟩
= −µ2

H + 3λHv
2
0, (2.15)

m2
S =

⟨
∂2V0
∂ϕ2

S

⟩
= −µ2

S +
λHS

2
v20. (2.16)

NG Resummation

If we use Eq. (2.12) to evaluate the second condition of Eq. (2.10), one can notice that

whilemi equals to zero, which is the case for the NG bosons at the electroweak vacuum,

a IR divergent term appears: λ2Hϕ2(logm2
G/µ

2)|ϕ→v0; regardless of what the value of µ is.

However, the existence of a IR problem often indicates that a theory is incomplete. In this

case, it shows that the necessity of including the higher order correction to the NG boson

masses, i.e., we need to resum the NG boson contributions. We adapt the same procedure

as [12, 13], mG → MG = mG + ΣG, where ΣG is the one-loop self-energy of the NG

11
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boson with the vanishing external momenta:

ΣG =
1

16π2

[
3λHm

2
H1

(
log

m2
H1

µ2 − 1

)
+

1

2
λHSm

2
H2

(
log

m2
H2

µ2 − 1

)
+

3g22
2
m2

W

(
log

m2
W

µ2 − 1

3

)
+

3(g22 + g21)

4
m2

Z

(
log

m2
Z

µ2 − 1

3

)
− 6y2tm

2
t

(
log

m2
t

µ2 − 1
)]
,

(2.17)

where g1 and g2 are the gauge couplings of U(1) and SU(2)L, respectively, and yt is the

top Yukawa coupling. To solve δµ2
H , δµ

2
S and µ numerically, we need to mG → MG in

the NG boson channels of Eq. (2.12), and combine the CT terms (Eq. 2.11); finally, solve

the renormlization conditions Eq (2.10), simultaneously.

2.2 MS Scheme

In the MS scheme, the tree-level relations are modified when the higher-order corrections

are added in. In the other words, Eq. (2.15) and Eq. (2.16) will be modified by one-loop

level contributions. We impose the tadpole conditions on the one-loop level,

Th ≡
⟨
∂(V0 + V1)

∂ϕ

⟩
= v

(
−µ2

H + λHv
2 +

λHS

2
v2S

)
+

⟨
∂VCW
∂ϕ

⟩
= 0, (2.18)

TS ≡
⟨
∂(V0 + V1)

∂ϕS

⟩
= vS

(
−µ2

S + λSv
2
S +

λHS

2
v2
)
+

⟨
∂VCW
∂ϕS

⟩
= 0, (2.19)

by using the same solution like above (ϕ = v0, ϕS = 0); as a result, we have relations

µ2
H = λHv

2
0 +

1

v0

⟨
∂VCW
∂ϕ

⟩
, (2.20)

⟨
∂VCW
∂ϕS

⟩
= 0. (2.21)

12
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The Higgs masses are

m2
H =

⟨
∂2(V0 + V1)

∂ϕ2

⟩
=

(
−µ2

H + 3λHv
2 +

λHS

2
v2S

)
+

⟨
∂2VCW
∂ϕ2

⟩
, (2.22)

m2
S =

⟨
∂2(V0 + V1)

∂ϕ2
S

⟩
=

(
−µ2

S + 3λSv
2
S +

λHS

2
v2
)
+

⟨
∂2VCW
∂ϕ2

S

⟩
. (2.23)

Rearranging above by inputting the solution (ϕ = v0, ϕS = 0) and using Eq. (2.20), we

have

m2
H = 2λHv

2
0 −

1

v0

⟨
∂VCW
∂ϕ

⟩
+

⟨
∂2VCW
∂ϕ2

⟩
, (2.24)

m2
S = −µ2

S +
λHS

2
v20 +

⟨
∂2VCW
∂ϕ2

S

⟩
. (2.25)

We can solve µS , µH and λH through Eq. (2.24), Eq. (2.25) and Eq. (2.18), numerically.†

Note that we set the renormalization scale of Eq. (2.12) at the range from 2mt ∼ 0.5mt.

Since the NG boson masses are non-zero at the electroweak-broken vacuum, we do not

need resummation as the OS-like scheme.

2.3 Thermal History and Thermal Potential

Like [20] pointed out that a two-step phase transition pattern increases the accessibility

of EWBG. The pattern of two-step phase transition we are interested in is the following:

the global vacuum of the early hot universe was (ϕ, ϕS) = (0, 0). While the universe

was cooling down, a primary phase transition (PT) occurred, the global minimum are

transited to singlet direction (S) at (0, vSC), an EW-symmetry-preserving minimum. As

the universe approached a critical temperature (TC) where the potential energy of doublet

(H) and singlet minima are degenerate, the global vacuum tunnelled (required to be a

first-order PT) to an EW symmetry-breaking minimum (vC , 0). At the present universe

whose temperature is approximately zero, the vacuum arrived at (v0 ≃ 246GeV, 0).

To investigate above scenario, the dynamic of thermal potential is essential for study-
†In Eq. (2.24), actually, the basis of the scalar sector for calculating VCW does not limit to the mass

eigenstates; h, S basis is also available, due to the absence of hhS coupling. On the other hand, in Eq. (2.25),
one must use mass eigenstates because of the existence SSh coupling.

13
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ing the evolution of the universe. In the OS-like, the MS and the PRM (Sec. 2.5) schemes,

we use the finite-temperature one-loop effective potential given by [21]:

V T
1 (ϕ, ϕS, T ) =

∑
i

ni
T 4

2π2
IB,F

(
m2

i

T 2

)
,

where IB,F (a
2) =

∫ ∞

0

dx x2 ln
(
1∓ e−

√
x2+a2

)
.

(2.26)

In the numerical computation, we use the approximated functions (see Appendix C) for

computational efficiency. In addition, since the perturbative expansion is invalid when

temperature is high, the thermal potential needs to be resummed. We replace m2
i with

thermally corrected masses,

m2
i −→ m2

i + Σi(ϕ, ϕS, T ), (2.27)

where Σi(ϕ, ϕS, T ) are the thermal masses (a more refined resummation method can be

refered to, e.g., [22]), the exact forms can be found in the AppendixD. Notice that although

thermal resummation is performed in the OS-like and the MS schemes, it is not performed

in the PRM scheme; since we consider only O(h̄) = 1 in the PRM scheme (see Sec. 2.5

for detail) and the thermal resummation is O(h̄) = 2 effect.

2.3.1 Standard method of searching TC and critical VEVs

For a successful two-step EWPT, vC , TC , vBrSC and vsymSC are found numerically through the

following equations and satisfying the inequalities:

Veff(ϕ = vC , ϕS = vBrSC , TC) = Veff(ϕ = 0, ϕS = vsymSC , TC), (2.28)

∂Veff
∂ϕ

∣∣∣
vC , vBrSC , TC

=
∂Veff
∂ϕS

∣∣∣
0, v

sym
SC , TC

= 0, (2.29)

∂2Veff
∂ϕ2

(S)

∣∣∣
vC , vBrSC , TC (0, v

sym
SC , TC)

> 0, (2.30)

14
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det

∣∣∣∣∣∣∣
∂2Veff/∂ϕ

2 ∂2Veff/∂ϕ∂ϕS

∂2Veff/∂ϕS∂ϕ ∂2Veff/∂ϕ
2
S

∣∣∣∣∣∣∣
vC , vBrSC , TC (0, v

sym
SC , TC)

> 0, (2.31)

where the last two inequalities assure that the minima are not saddle points. In Sec.2.5,

we will discuss that why the standard method of determining TC and VEVs depends on

the choice of gauge.

2.4 High Temperature (HT)

Both the OS-like and the MS schemes have gauge-dependent potential at the one-loop

level. The high temperature approximation scheme provides a gauge-free and efficient

method to investigate EWPT. This scheme simply includes the tree-level potential and the

Higgs thermal mass terms which are taken from high temperature approximation at the

O(2) of Eq. (C.1.1):

V HT(ϕ, ϕS, T ) = V0(ϕ, ϕS) +
1

2
ΣH(T )ϕ

2 +
1

2
ΣS(T )ϕ

2
S, (2.32)

where ΣH and ΣS are the Higgs thermal masses which are gauge-independent [23], see

Eq. (D.5, D.6) for detail. Because this scheme is gauge-free and ignores all the other

loop contributions, we can obtain the gauge-invariant TC and VEVs from this potential in

relatively efficient way compared with previous schemes. In the PRM scheme (Sec. 2.5),

we also use this potential to evaluate VEVs.

2.5 Patel-Ramsey-Musolf (PRM) Scheme

The main goal of the PRM scheme is to get gauge-free results. Unlike the HT scheme, the

PRM scheme takes the one-loop order corrections and the thermal effects into account. As

the tadpole conditions are set at the tree level, the tree-level conditions are preserved. The

renormalization scale is set same as the MS scheme which is varied from 2mt ∼ 0.5mt.

In the next subsection, we elaborate how the PRM scheme utilizes NFK identity to get

gauge-free results.
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2.5.1 Gauge-independent TC and VEVs

The NFK identity [15, 16] tells us that‡

∂Veff(ϕ, ξ)

∂ξ
= −C(ϕ, ξ)∂Veff(ϕ, ξ)

∂ϕ
, (2.33)

whereC(ϕ, ξ) is a functional. In fact, TC can be proved formally to be gauge-independent

with the identity and Eq. (2.28)[4] as long as we are working on the full order of the effec-

tive potential. However, in the practical calculation for TC , one could only calculate the

potential up to some order. For example, like in our previous standard method of deter-

mining TC includes only the one-loop order effect; thus, this causes an artificial violation

of the NFK identify, even though the full order formalism is gauge-invariant. In order to

regulate this issue, we have to keep tracking whether the identity is valid in each order of

h̄. In the perturbation theory, in principle, we can expand Veff and C in the power of h̄:

Veff(ϕ) = V0(ϕ) + h̄V1(ϕ, ξ) + h̄2V2(ϕ, ξ) + · · · , (2.34)

C(ϕ, ξ) = c0 + h̄c1(ϕ, ξ) + h̄2c2(ϕ, ξ) + · · · . (2.35)

By inserting them into Eq. (2.33), we get

h̄
∂V1(ϕ, ξ)

∂ξ
+ h̄2

∂2V2(ϕ, ξ)

∂ξ2
+ · · · =− c0

∂V0
∂ϕ

− h̄

(
c1(ϕ, ξ)

∂V0(ϕ)

∂ϕ

+ c0
∂V1(ϕ, ξ)

∂ϕ

)
+O(h̄2) + · · · ,

(2.36)

where we had expressed Eq. (2.33) in h̄ order. Since the tree-level potential is free of

ξ-dependence, c0 = 0. At O(h̄),

∂V1(ϕ, ξ)

∂ξ
= c1(ϕ, ξ)

∂V0(ϕ)

∂ϕ
. (2.37)

‡Even though our potential is a two dimensional (ϕ, ϕS) function, the procedure is straight forward: by
taking the other dimensions as zero, one can get a pair of Eq. (2.33). Using the same method described in
above, one can get similar results.
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Eq. (2.37) shows that as long as we are working onO(h̄), the gauge dependence of V1(ϕ, ξ)

is vanished at stationary point(s) of the tree-level potential. On the contrary, TC and VEVs

determined by the standard method are evaluated in the tree-level plus one-loop potential

minima; as a result, those results are gauge-dependent. Extending above to our model, the

ξ dependence of V1(ϕ, ϕS, ξ) disappears while we evaluate TC at the tree-level minima:

(ϕ = vtree = 246GeV, ϕS = 0) and (ϕ = 0, ϕS = vtreeS =
√
µ2
S/λS). For the two-step

EWPT, the gauge-independent TC can be obtained from the following:

V0(v
tree, 0) + VCW(v

tree, 0) + V T
1 (vtree, 0, TC)

= V0(0, v
tree
S ) + VCW(0, v

tree
S ) + V T

1 (0, vtreeS , TC).

(2.38)

Note that as we are working on O(h̄), the thermal resummation, a two-loop order O(h̄2)

effect, is not performed. Going beyond O(h̄) requires two-loop contributions which is

out of scope of our current analysis. In the Appendix E, we give an example to explicitly

show how the gauge dependence disappears when the potential is evaluated at the tree-

level minima.

The minima, vC and vSC , are inherited gauge dependence which can easily be un-

derstood from the NFK identity: in Eq. (2.33), the field value minimizing the effective

potential is gauge-dependent. To get gauge invariant VEVs in the PRM scheme, we have

to utilize the HT potential, Eq. (2.32), by finding the minima at TC , i.e., find the minima

of V HT(ϕ, ϕS, TC).
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Chapter 3

Numerical Analysis

In our model, mS , λS and λHS are the free parameters. We take mS = mH/2 which is

within DM experiment bound and phenomenology (see Sec. ?? for the discussion), and

choose λS = λminS + 0.1, see Eq. (2.8); thus only λHS is varied in the analyses. Aiming

to investigate the gauge dependence, a range of λHS is selected where the tree-level po-

tential is relatively minor compared with gauge loop contributions to the potential barrier.

Furthermore, this particular range meets the conditions of the two-step strong first-order

EWPT (vC/TC ≃ 1 and several inequalities in Sec. 2.3.1). For clarity, our input param-

eters are listed in Table 3.1, and we summarize the settings of the each scheme in Table

3.2.

In Sec. 3.1, we list a detail procedure of finding TC and vC ; in addition, their precisions

in the analyses are also shown. Our analyses can be divided into two parts: Sec. 3.2

focuses on the effect of gauge and the NG boson channels in the OS-like scheme, Sec. 3.3

demonstrates how the scheme dependence influences the results.

Parameter
mH v0 mW mZ mt

Value [GeV] 125 246 80.4 91.1 173.2

Table 3.1: The input parameters in all schemes. Note that, besides the MS scheme (see
Sec. 2.2), µH , µS, and λH satisfy the tree-level relations: µ2

H = m2
H/2, µ

2
S = −m2

S +
λHS/2v

2
0 and λH = m2

H/2v
2
0.
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Scheme
OS-like MS HT PRM

Tadpole Condition Tree 1-loop Tree Tree
NG resummed

√
- - -

Thermal resummed
√ √

- -
ξ dependence

√ √
- -

Table 3.2: Summary of the scheme settings.

3.1 Critical Temperature and Critical VEV

Two s of method of finding TC are used; For the PRM scheme, TC is found by Eq. 2.38.

For the OS-like, the HT and the PRM schemes, TC is searched by the bisection method

whose details of procedure are listed in the following*:

1. choose two initialized temperatures, Tmax (e.g., 200 GeV) and Tmin (100 GeV). To

use the bisection method, one also needs a middle value, Tmid = (Tmax + Tmin)/2

(150 GeV),

2. calculate the energy difference, ∆E, between the potential energy of minima in

singlet’s, E(ϕmin), and doublet’s, E(ϕminS ), directions† at Tmid, i.e.,

∆E(Tmid) = E(ϕmin, Tmid)− E(ϕminS , Tmid), (3.1)

3. calculate ∆E at Tmin, that is

∆E(Tmin) = E(ϕmin, Tmin)− E(ϕminS , Tmin), (3.2)

4. if ∆E(Tmid) × ∆E(Tmin) < 0, we can redefine Tmin → Tmin, and Tmax → Tmid,

otherwise Tmin → Tmid and Tmax → Tmax,

5. take the new Tmid and Tmin back to the step 2. and go though the procedure again.

The above is calculated iteratively until
*We use Mathematica to analyse our model.
†We use the Findminimum, the optional methods InteriorPoint and PrincipleAxis are chose.
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• ∆E(Tmid) is less than 103 GeV,

• and the absolute temperature difference (|Tmid − Tmin|) is < 5× 10−3 GeV,

• or the maximum calculation count (20) is reached.

Then we regard Tmid as TC ; vC are searched in this temperature. For the PRM scheme, the

gauge-invariant vC is found by using Eq. (2.32) at TC which is obtained from Eq. (2.38).

In the Fig. 3.1, we show an example of the contour plots of the HT potential in the plane

of ⟨ϕ⟩ and ⟨ϕS⟩ for temperatures are high, above, equal and below TC ; zero temperature

one is also included. All the parameters are chose to bemS = mH/2 and λHS = 0.4.

3.2 (non)Thermal Gauge and NG Boson Contribution

To numerically quantify the effect of gauge and NG boson contributions, we use several

approximations by turning off specific channel to study the EWPT, see Fig. 3.2. “(T)GB

off”, depict by the (red) green (dot-dashed) dashed line, is denoted the computationwithout

(thermal) non-thermal gauge boson contributions; “NG off”, depicted by the yellow dotted

line, stands for NG boson contributions is omitted. “full”, depicted by the blue solid line,

includes all the contributions. The left and right panels show TC and vC/TC as functions

of λHS , respectively.

Our results indicate that, in the range of 0.2 < λHS < 0.4, the thermal gauge loop

have a ∼ 11% effect on TC and ∼ 13% on vC/TC . As mentioned before, the result is

not precisely equivalent to the effect of ξ dependence. However, it demonstrates how

gauge boson contributions affect the EWPT; thus, the gauge artifact shoud have large

impact on the EWPT as well. Furthermore, [24] found that even though the percentage of

difference is small in TC as changing different ξ, it cannot guarantee that the dependence

on gravitational waves generated from the first-order of EWPT is insignificant. In fact,

by varying ξ from 0 to 5, the gravitational wave spectrum in a U(1)B−L model can change

by one order of magnitude [24]. Above result indicates the necessity of quantification of

the ξ dependence by using general Rξ gauge which should be studied and noticed in the

future.
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Figure 3.1: The contour plots of the HT effective potential in the plane of ⟨ϕ⟩ and ⟨ϕS⟩
at T = 300 GeV (Upper Left), T = TC + 10 GeV (Upper Right), T = TC = 75.1
GeV (Middle Left), T = TC − 10 GeV (Middle Right) and T = 0 GeV (Lower). The
parameters are,mS = mH/2 and λHS = 0.4. Note that all the plot legends are in the unit
of 107 GeV.
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In the NG off case, their effects are expected to be minor because that they are the

two-loop level effects. However, when λHS . 0.21 where the thermal gauge loop dom-

inates over the barrier compared with the tree-level contributions, NG boson effects are

pronounced. To be noted that, in this region, the global minimum at TC is no longer located

on the doublet Higgs; instead, it is mixed with the doublet and the singlet contributions;

this causes the downward curve of vC/TC . The (0.03− 2.3)% difference is found in TC ,

and (3.0− 16.7)% in vC/TC . See the Table. 3.3 for the summary.

Channel TC vC/TC

GB off 0.16− 0.18 0.29− 0.47

TGB off 11.4− 11.8 11.7− 16.8
NG off 0.03− 2.3 3.0− 16.7

Table 3.3: The percentage of the effects on the EWPT by turning off specific channel.
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Figure 3.2: The effect of thermal (TGB off, red dot-dashed), non-thermal gauge (GB off,
green dashed) and NG bosons (NG off, yellow dotted) contributions on TC (Left panel)
and vC/TC (Right panel) in the OS-like scheme. The blue solid line includes all the con-
tributions.

3.3 Scheme Dependence Comparison

The scheme dependence, see Fig. 3.3, is studied by comparison between the MS (green),

the HT (black dotted) and the PRM (red) schemes. Since in the PRM and the MS schemes
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their zero-temperature one-loop potentials are scale-dependent, we vary the renormlaiza-

tion scale from 2mt (solid) tomt/2 (dashed), see Sec. 3.4 for more discussion.
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Figure 3.3: Comparison of scheme-depended results and investigation of scale depen-
dence. Left: Critical temperature as the function of λHS . Right: vC/TC as the function of
λHS . The OS-like scheme with NG resummation and the HT scheme are depicted as the
blue solid and black dotted lines, respectively. For theMS and the PRM schemes, the style
of lines are green and red, respectively. In the legend, “MS2mt (MS05mt)” represents that
the MS scheme’s renormalization scale is at 2mt(mt/2). Same notation is also applied to
the PRM scheme.

We have the following results:

• The OS-like and theMS schemes have a nice agreement on each other as varying the

renomalization scale. For TC and vC/TC , (0.4−3.4)% and (0.03−15)% differences

are found, respectively. When the MS scheme’s renomalization scale is taken as

mt/2, their results are closer. However, the large scale dependence demonstrates

the necessity of the high-order corrections.

• The critical temperature in the HT scheme are observed to be smaller than the OS-

like and the MS schemes by 10 ∼ 30 GeV. Furthermore, we find that when λHS /

0.26, the EWPT is not the first order: detail examination reveals that the energy

degenerated minima on the doublet and singlet directions are saddle points; the

global minimum is between the two axes. In addition, in the region where the first

order PT is achieved, vC/TC is overestimated compared with the two other schemes.
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• The PRM scheme shows a qualitatively consistency to the OS-like and the MS

schemes in the behavior of TC against λHS; namely, as λHS decreases, TC increases.

Notice that one of the universal features of this scheme is that TC is lower than the

results from the stand method (Sec. 2.3.1); this is mainly because that the potential

energy at the tree-level minimum is usually greater than the potential energy at the

tree-level plus one-loop minimum. Therefore, TC in Eq. (2.38) is lower than TC in

Eq. (2.28). Because TC is relatively small, vC/TC is enhanced compared with the

OS-like and the MS schemes. The reason of the downward curve in µ = mt/2 at

λHS ' 0.25 is because vC in the PRM scheme is determined by the HT potential:

When TC is determined by Eq. 2.38 is higher than TC in the HT scheme, it means

that vC must be zero at the HT potential; since the global minimum is moved to the

singlet direction.

In general, no significant inconsistency between the results of the PRM scheme and

other schemes are found. Their differences are within the theoretical uncertainty.

For the quantitative analysis, higher-order correction such as O(h̄2) and the daisy

improved calculations are needed in the future for the complete comparison.

3.4 Scale Dependence of TC

The reason of appearing scale dependence of critical temperature is due to the method of

determining TC is at the one-loop level. In the PRM scheme, the tree-level tadpole condi-

tions are used in the one-loop level in order to satisfy the NFK identity; thus, large µ de-

pendences appear in those schemes. This issue is relatively alleviated in the MS scheme:

The reason is because the tadpole conditions of the MS scheme are set at the one-loop

level. Hence, the µ dependences of VCW are partially cancelled. In the Fig. 3.4, we show

the µ dependence of TC explicitly in the range of 2mt ∼ mt/2 while the λHS = 0.2. We

find a spike at µ ∼ 109 GeV and suspect this is purely caused by the accidental cancella-

tion in VCW among different particle contributions. Because the value of renomalization

scale in denominator of logarithm can be larger or smaller than field-dependent masses in
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numerator, this decreases the overall potential and needs larger thermal contributions to

satisfy the degenerated condition.

Like shown in [25], one is possible to make TC to be µ-independent by replacing the

parameters in the tree-level potential with running ones, i.e., using renormalization group

equations to evaluate the parameters. However, the starting scale of the running is still a

input parameter. The fundamental solution of µ dependences is to include the higher order

correction which is beyond our current goal.

λHS = 0.2

MS Scheme

100 150 200 250 300 350
140

142

144

146

148

150

μ [GeV]

T
C
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Figure 3.4: Critical temperature as the function of renomalization scale in theMS scheme.
The parameter settings are λHS = 0.2 andmS = mH/2. The spike around 109 GeV is ex-
pected to be an accidental cancellation among contributions of different particle contents,
not any physical or theoretical interest.
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Chapter 4

Discussion and Conclusion

4.1 Discussion: Dark Matter, Vacuum Stability and Per-

turbativity

By imposing Z2 symmetry, S can be one of the components of the dark matter [8, 9].

The parameters (λHS = 0.2 - 0.4,mS = mH/2) we chose is capable of escaping both

the direct [26] and indirect detections [27]. It has been showed that, in the singlet DM

model while DM mass is half of the Higgs mass, to achieve the relic denisity observed

today (Ωh2 = 0.1186 ± 0.0020) [28], λHS has to below 2 × 10−4 [29]. In our parameter

region, the singlet DM contributes very little to the relic density (3.29× 10−7- 8.4× 10−8

calculated by MicrOMEGAs 5.0.6. [30]). However, ifmS is around 0.4 TeV, it is possible

to generate the observed relic density.

Another issue in the resonance region (mS = mH/2) is that the small mS is not able

to keep the stability of the absolute vacuum when running the coupling to high energy

scale (in the other words, the EW vacuum in this case is metastable) [31]; though in such

scenario the life time of tunnelling to global minimum is still longer than the age of the

universe. IfmS is 0.1 - 1 TeVwith λHS & 0.2, the Higgs quartic couplingwill stay positive

and it guarantees the stability. Even though highmass region can solve previous two issues

(vacuum stability and insignificant contribution to relic density), λHS in those parameter

space easily violates perturbativity calculation before the scale reaches the Planck scale
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(∼ 1019 GeV). In contrast, the energy scale of perturbativity violation for our parameter

settings can be very high [31]. In the most EWBG scenarios, they encounter the Landau

pole before the scale reaches to the Planck scale while requiring the baryon preservation

criterion vC/TC & 1. In our case, for λHS . 0.33, all the couplings are below the 4π all

the way to the Planck scale by using the one-loop renormalization group equations.

4.2 Conclusion

EWPT is revisitedwith the scalar singlet-extended SMby using several calculation schemes.

The effect of thermal, non-thermal gauge channels and NG resummation are studied. The

parameters space we investigate ismS = mH/2 and 0.2 ≤ λHS ≤ 0.4.

In the OS-like scheme, the occurrence of the IR divergent in the NG boson channels

demonstrates that the NG resummation is necessary; even though the NG resmmmation is

the two-loop effect which is expected to be minor. We find that the NG resummation has

a (0.03− 2.3)% effect on TC and (3.0− 16.7)% on vC/TC . When the non-thermal gauge

channels are turned off, small numerical impacts on TC (0.16−0.18%) and vC/TC (0.29−

0.47%) are observed. The effect of thermal gauge channels is relatively significant even

when the tree barrier is present, (11.4− 11.8)% on TC and (11.7− 16.8)% on vC/TC are

detected. The above results havemotivated us to investigate and quantify the ξ dependence

by using the general Rξ in a future work.

We find that both TC and vC/TC in the OS-like and the MS schemes have nice agree-

ment on each other; the differences are within the scale uncertainty. For TC , their dif-

ference is (0.4 − 3.2)% and for vC/TC is (0.03 − 15)%. In the analysis between gauge-

dependent and -independent schemes, we find that i) the HT scheme is over-simplified and

TC is largely underestimated, and ii) we find that the PRM scheme is qualitatively con-

sistent to the OS-like and the MS schemes. However, the large theoretical uncertainties

caused by renormalization scale demonstrates the higher order corrections are needed.
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Appendix A

Generating Functional of 1(not 1)-PI

The effective action can generate 1PI correlation functions. To see this, we first begin

by the second derivative of the generating functional for the connected Green’s functions

(W [J ]):

δ2W [J ]

δJ(y)δJ(z)
= N̂

∫
Dϕ ϕ(y) exp

(
i

∫
L+ Jϕ

)
ϕ(z)

− N̂

∫
Dϕ ϕ(y) exp

(
i

∫
L+ Jϕ

)
× N̂

∫
Dϕ ϕ(z) exp

(
i

∫
L+ Jϕ

)
,

where N̂−1 =

∫
Dϕ exp

(
i

∫
L+ Jϕ

)
,

(A.1)

where we have omitted the position variable in the parentheses. Above can be simplified

by using Eq. (1.5) notation (the subscript, J , is omitted for simplicity),

δ2W [J ]

δJ(y)δJ(z)
= ⟨0|ϕ(y)ϕ(z)|0⟩ − ⟨0|ϕ(y)|0⟩⟨0|ϕ(z)|0⟩. (A.2)

The physical meaning of the above can be shown diagrammatically, the first term in the

right hand side includes both*

x y
, (A.3)

*Diagrams are generated by [32].
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x
+

y
, (A.4)

where every blob contains sum of connect diagrams. For the second term of Eq. (A.2),

it contains only diagrams like Eq. (A.4). Thus, W [J ] generates diagrams like Eq. (A.3)

alone; furthermore, the higher derivatives ofW [J ]will still generate the connect diagrams

as desired. The effective action generates the inverse of the same two-point diagrams as

W [J ]. To see this, from Eq. (1.9), we know that

−δ(x− y) =
δ

δJ(y)

δΓ[J ]

δϕc(x)
=

∫
d4z

δϕc(z)

δJ(y)

δ2Γ[J ]

δϕc(x)δϕc(z)
. (A.5)

Furthermore, substituting ϕc with Eq. (1.5), we have

− δ(x− y) =

∫
d4z

δ2W [J ]

δJ(y)δJ [z]

δ2Γ[J ]

δϕc(x)δϕc(z)
, (A.6)

one can easily observe that the second derivative of the effective action is actually the

inverse of the two point function. At this point, one can already notice that the generating

function of the effective action; however, to demonstrate the ability of generating 1PI, one

has to go to the 3rd or higher derivative of the effective action. Before showing the main

difference of Γ[ϕc] andW [J ], we first consider

δ

δJ [Z]
=

∫
d4w

δϕc(w)

δJ(z)

δ

δϕc(w)
= −i

∫
d4w D(z, w)

δ

δϕc(w)
,

where− iD(z, w) =
δ2W [j]

δJ [z]δJ [w]
=

(
δ2Γ[ϕc]

δϕc(z)δϕc(W )

)−1

.

(A.7)

The 3rd derivative ofW [J ] is then

δ3W [z]

δJ(x)δJ(y)δJ(z)
= i

∫
d4w D(z, w)

δ

δϕc(w)

(
δ2Γ[ϕc]

δϕc(x)δϕc(y)

)−1

, (A.8)

to evaluate the derivative of the parentheses we use

∂

∂α
M−1(α) = −M−1∂M(α)

∂α
M−1. (A.9)
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Consequently, we have

δ3W [z]

δJ(x)δJ(y)δJ(z)
= −i

∫
d4w D(z, w)∫

d4ud4v

(
δ2Γ

δϕc(x)ϕc(u)

)−1
δ3Γ

δϕc(u)δϕc(v)δϕc(w)

(
δ2Γ

δϕc(v)ϕc(y)

)−1

,

= i

∫
d4wd4ud4v D(z, w)D(x, u)

δ3Γ

δϕc(u)δϕc(v)δϕc(w)
D(v, y),

(A.10)

where in the last step, Eq. (A.7) is used. The equation can be understood by the digram

again:

z x

y

= z
w yv

x
u

, (A.11)

where the left hand side digram equals to the 3rd derivative ofW [J ]; the two-point func-

tions connect the internal positions u, v and w, which will be integrated out later, to the

external points (x, y and z). In the right hand side, the crossed dot which connects the

the internal positions represents the 3rd derivative of the effective action; since the exter-

nal lines are amputated, one can observe that the crossed dot is actually a 1PI three-point

function which is generated by the effective action. Additionally, one can show that for

n ≥ 3, the effective action is the generating functional for 1PI n-point Green’s function.
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Appendix B

Effective Potential in One-Loop

To calculate the one-loop effective potential, recall the general form, Eq. (1.24), for con-

venience,

V1(ϕc) = − i

2

∫
d4p

(2π)4
Trln iG−1(p;ϕc). (B.1)

We first consider a simple theory with a scalar field, where its Lagrangian is given by

L =
1

2
(∂µϕ(x))

2 − 1

2
m2ϕ2(x)− λ

4!
ϕ4(x),

and V0 =
1

2
m2ϕ2(x) +

λ

4!
ϕ4(x).

(B.2)

The propagator of this theory is then

G(p;ϕc) =
i

p2 −m2(ϕc) + iϵ
, (B.3)

where the definition ofm(ϕc) can be found in Appendix D while λHS is turned off. Since

the scalar field is absent of internal d.o.f., the trace in Eq. (B.1) is equal to 1; so that it

becomes

V1(ϕc) = − i

2

∫
d4p

(2π)4
ln (p2 −m2(ϕc) + iϵ). (B.4)
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In order to evaluate the integral, a Wick rotation is performed:

V1(ϕc) =
1

2

∫
d4pE
(2π)4

ln (p2E +m2(ϕc)),

µεV1(ϕc) =
1

2
µε

∫
dDpE
(2π)D

ln (p2E +m2(ϕc)),

(B.5)

where we have suppressed the iϵ term and subtracted a constant coefficient, ln(−1). In the

second equality, we have used the dimension regularization. In theD-dimension, λ has the

dimension of 4 −D ≡ ε; however, instead of using a non-integral dimensional coupling

constant, we introduce a parameter (µ), which later is recognized as a renormalization

scale and it has mass dimension, and trade λ → λµε. To unfold the logarithm, one has to

calculate the derivative with respect tom2,

µε ∂V1(ϕc)

∂m2(ϕc)
=

1

2
µε

∫
dDpE
(2π)D

1

p2E +m2(ϕc)
,

=
1

2
µε 1

(4π)D/2

1

(m2(ϕc))
1−D/2

Γ

(
1− D

2

)
,

(B.6)

where the identity [33],

∫
dDk

(2π)D
k2a

(k2 −∆)b
= i(−1)a−b 1

(4π)d/2
1

∆b−a−d/2

Γ
(
a+ b

2

)
Γ
(
b− a− d

2

)
Γ(b)Γ(d

2
)

, (B.7)

has been used. Integrating with respect tom2,

µεV1(ϕc) =
1

2
µε 1

(4π)D/2
Γ

(
1− D

2

)
2

D

(
m2
)D/2

,

=
1

32π2

(
m2

4πµ2

)D/2−2

Γ

(
1− D

2

)
2m4

D
,

= − m4

32π2

1
D
2

(
D
2
− 1
) ( m2

4πµ2

)D/2−2

Γ

(
2− D

2

)
,

= − m4

64π2

(
1 +

3

4
ε+O(ε2) + · · ·

)(
1− ε

2
ln

m2

4πµ2
+O(ε2) + · · ·

)
×
(
2

ε
− γE +O(ε) + · · ·

)
,

=
m4

64π2

(
−2

ε
− ln 4π + γE + ln

m2

µ2
− 3

2
+O(ε2) + · · ·

)
,

(B.8)
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where we have used the Γ function’s property: Γ(1+z) = zΓ(z). Taylor expansions have

also been performed; thus after utilizing the MS renormalization scheme (we also present

DR scheme for the completeness. In this case, these two schemes give the same results.)

and taking ε→ 0, we have

V scalar
1 (ϕc) =

m4(ϕc)

64π2

(
ln
m2(ϕc)

µ̄2
− 3

2

)
, (MS-scheme = DR-scheme), (B.9)

where µ̄2 = 4πe−γEµ2. Notice that in the following, we adopt procedures that i) the

dimensional regularization scheme is followed by the MS renormlization scheme; ii) the

dimensional reduction is renormlized by the DR scheme. In the thesis, we use the former

method.

For fermion, the relevant part of Lagrangian is

L(ϕ, ψ) ∼ ψ̄
(
/∂ −mf (ϕc)

)
ψ, (B.10)

and its propagator is

Gf =
i

p2 −m2
f (ϕc) + iϵ

. (B.11)

Note that only diagrams with even number of vertexes have contributions, since the trace

of odd number gamma matrix(s) is zero. The internal d.o.f. of fermion is the spinor space

whose trace actually is depended on the regularization schemes,

Tr(1) =


2D/2 = 2ε/2−2, dimensional regularization,

4, dimensional reduction.
(B.12)

Accordingly, the one-loop potential for fermion case is then

V1(ϕc) =
i

2

∫
d4p

(2π)4
Tr(1)Trln(p2 −m2

f (ϕc)), (B.13)
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where the addition minus comes from the fermionic loop; the second trace is for the dif-

ferent fermion species. By performing the similar procedure like above, we have

V fermion
1 (ϕc) =


−4× m4

f (ϕc)

64π2

(
lnm2

f (ϕc)

µ̄2 − 3
2
+ ln 2

)
, (MS-scheme),

−4× m4
f (ϕc)

64π2

(
lnm2

f (ϕc)

µ̄2 − 3
2

)
, (DR-scheme).

(B.14)

Note that the factor, ln 2, is often omitted in the convention, as it is absorbed in µ̄. If the

perturbation is good enough, the small difference of µ̄ will not change the result signifi-

cantly; we also mention how this issue affect TC in the Sec. 3.4.

Above is also applied to the boson channels. For boson case, gauge bosons related parts

in Lagrangian are

L(ϕc, Aµ) ∼
−1

2
(F µνFµν) +

1

2
(∂µϕc)

†∂µϕc +
1

2

(
M2

g

)
ab
Aa

µA
bµ + · · · . (B.15)

For
(
M2

g

)
ab
, one can check Eq. (E.18). After taking the Landau gauge, the propagator is

Gg =
i

p2 −M2
g (ϕc)

∆µν , (B.16)

where ∆µν = gµν − pµpν/p2. The trace of the inverse propagator is

Tr
(
iG−1

g

)
= Tr

(
p2 −M2

g (ϕc)
)
Tr (∆µν) , (B.17)

where the first trace is for the different channels of the gauge bosons; the second trace is

depended on regularization scheme:

Tr (∆µν) = gµν∆
µν


= D − 1 = 3− ε, dimension regularization,

= 3, dimension reduction.
(B.18)
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Finally, the one-loop potential for gauge bosons are given by

V boson
1 (ϕc) =


3× M4

g (ϕc)

64π2

(
ln M2

g

µ̄2 − 5
6

)
, (MS-scheme),

3× M4
g (ϕc)

64π2

(
ln M2

g

µ̄2 − 3
2

)
, (DR-scheme).

(B.19)
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Appendix C

Approximate Thermal Function

The thermal functions are infinite sums of modified Bessel functions of the second kind

(K2) [22]:

IB,F (a
2) = −a2

∞∑
n=1

(±1)2

n2
ℜK2(na), (C.1)

where the plus andminus signs are for the boson and fermion, respectively. We set the goal

of the difference between approximate functions and the numerical integrations should be

less than 10−6. To achieve this, we investigate the following:

C.1 Boson

In the region of a = m/T < 0.35, we approximate the thermal function (IB) with a

high temperature expansion for boson (HTEB); in 0.35 ≤ a ≤ 9.0, a polynomial fitting

function for boson (PFFB) is used; a low temperature approximation for boson (LTEB) is

adopted for a > 9.0; when a ∈ iℜ, we replace ℜK2 with the second kind of unmodified

Bessel function (Y2) by an identity.
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C.1.1 HTEB (a < 0.35)

The HTEB we adopt is [34]

− π4

45
+
π2

12
a2− π

6
(a2)3/2− a4

32

(
log(a2)− 3.91− 3

2

)
+

ζ(3)

96(2π)2
a6− ζ(5)

256(2π)4
a8+

π4

45
,

(C.2)

where ζ is the Riemann zeta function and the last term is for the normalization. Note that

we truncate the expansion at O(a) = 8, since the difference between the HTEB and the

numerical integration, which is performed by the routine NIntegrate in Mathematica,

is less than 1.2× 10−6.

C.1.2 PFFB (0.35 ≤ a ≤ 9.0)

Though the above HTEB is sufficient at a < 0.35, above this threshold, the HTEB needs to

include more higher order terms. Instead, we adopt the PFFB for the middle temperature

region, its detail form is the following:

− 1.3399397387595× 10−4 + 1.6469900315759× 10−3a+ 8.1272859398439× 10−1a2

− 4.7992824417603× 10−1a3 + 1.7878967977712× 10−1a4 − 6.0632418036213× 10−2a5

+ 2.0900675811146× 10−2a6 − 6.5865607755012× 10−3a7 + 1.6413560386569× 10−3a8

− 2.7585765349357× 10−4a9 + 1.6331229085345× 10−5a10 + 6.3995356651085× 10−6a11

− 2.4477725951995× 10−6a12 + 4.7496664471527× 10−7a13 − 6.1710744609837× 10−8a14

+ 5.6506277097478× 10−9a15 − 3.6262488646246× 10−10a16 + 1.5599595264175× 10−11a17

− 4.0517259606745× 10−13a18 + 4.8112110679805× 10−15a19.

The difference between the PFFB and the numerical integration is less than 1.5× 10−7 as

desired.
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C.1.3 LTEB (a > 9.0)

We find that when a > 9.0, the deviation of the PFFB from the numerical integration is

increasing as a is increasing, although the higher order terms are included. At this low

temperature region, the LTEB is particular good compared with the PFFB. We truncated

the LTEB at O(a) = 1/2:

−
√
π

2
a3/2

(
105

128a2
+

15

8a
+ 1

)
e−a +

π4

45
. (C.3)

The desired small difference (1.4×10−6) between the LTEB and the numerical integration

is achieved.

C.1.4 Bessel Approximation for a ∈ iℜ

The real part of the modified Bessel function of the second kind with the pure imaginary

argument is proportional to the unmodified Bessel function of the second kind (Y2), see

[35, Eq. 9],

ℜK2(bi) =
π

2
Y2(b). (C.4)

A built-in function of Mathematica, BesselY, is used to evaluate Y2. The Bessel approx-

imation we take is the following:

− a2
π

2

m∑
1

1n

n2
Y2(n× Im(a)) +

π4

45
. (C.5)

To save the computational time, we first create a table of a v.s. Eq. (C.5). The step of a in

the table is 0.01, the range of a is from 0.01 to 100, and m is 1200. Since the BesselY

cannot be well evaluated while a = 0, we set the function equals to zero while argument

is zero. Finally, the table is fitted by the function, Interpolation. We use the resulting

fitting function hereafter.

38



doi:10.6342/NTU201900064

C.2 Fermion

Similar to the boson case, the high temperature expansion for fermion (HTEF) is used.

Note that the threshold (a < 0.32) is different from the boson case; a polynomial fitting

function for fermion (PFFF) is adopted in the range of 0.32 ≤ a ≤ 9.0; the low temper-

ature expansion for fermion (LTEF) is adopted when a > 9.0; when a ∈ iℜ, a Bessel

approximation is same as the boson case except a factor, (−1)n, and a normalization fac-

tor, −7π4/360.

C.2.1 HTEF (a < 0.32)

The HTEF we utilize is

7π4

360
− π2

24
a4
(
log(a2)− 1.14− 3

2

)
+

7ζ(3)

96(2π)2
a6 − 31ζ(5)

256(2π)4
a8 +

127ζ(7)

512(2π)6
a10 − 7π4

360
,

(C.6)

where again ζ is the Riemann zeta function and the normalization is also added. The

difference between the HTEF and the numerical integration is less than 1.5 × 10−6. We

find out that when a > 0.32, the difference is bigger than our precision goal.

C.2.2 PFFF (0.32 ≤ a ≤ 9.0)

Similar to the boson case, as a is greater than the threshold, the HTEF is insufficient. To

be noted that the order of PFFF is different from PFFB (O(a) = 19), we need less terms

to achieve the precision goal:

− 1.8606350459538× 10−4 + 2.1643938728080× 10−3a− 4.2311984215163× 10−1a2

+ 4.8651379062231× 10−2a3 + 8.4866222329381× 10−2a4 − 5.3476197518025× 10−2a5

+ 1.7903012239488× 10−2a6 − 4.2239918118272× 10−3a7 + 7.8257512405354× 10−4a8

− 1.2116831287896× 10−4a9 + 1.6079151201184× 10−5a10 − 1.7979838681990× 10−6a11

+ 1.6136414363595× 10−7a12 − 1.0897600155288× 10−8a13 + 5.1115038418446× 10−10a14

− 1.4699419052289× 10−11a15 + 1.9415262439880× 10−13a16.
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The difference between the PFFF and the numerical integration is less than 3 × 10−6 as

desired.

C.2.3 LTEF (a > 9.0)

Again, the PFFF is merely sufficient when a ∼ 9.0. In the low temperature region, the

LTEF is relatively easy and precision-wise good:

√
π

2
a3/2e−a

(
1 +

15

8a
+

105

128a2

)
− 7π4

360
. (C.7)

The difference between the LTEF and the numerical integration is less than 1.4× 10−6.

C.2.4 a ∈ iℜ

Similarly, when a ∈ iℜ, we use the identity Eq. (C.4),

− a2
π

2

m∑
1

(−1)n

n2
Y2(n× Im(a))− 7π4

360
, (C.8)

wherem = 1200 and the procedure for creating fitting function is same as the boson case.
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Appendix D

Field-Dependent Mass

D.1 Higgs Bosons

For the scalar sector, the mass matrix is

 ∂V 2
0 /∂ϕ

2 ∂V 2
0 /∂ϕ∂ϕS

∂V 2
0 /∂ϕS∂ϕ ∂V 2

0 /∂ϕ
2
S

 =

−µ2
H + 3λHϕ

2 + λHSϕ
2
S/2 λHSϕϕS

λHSϕϕS −µ2
S + 3λSϕ

2
S + λHSϕ

2/2

 ,

(D.1)

≡

m2
hh m2

hS

m2
Sh m2

SS

 . (D.2)

Changing to the physical-mass basis, the eigenvalues are,

when m2
hh > m2

SS,


m2

H1
(ϕ, ϕS) = 1

2

(
m2

hh +m2
SS +

√
(m2

hh −m2
SS)

2 + 4m4
hS

)
,

m2
H2
(ϕ, ϕS) = 1

2

(
m2

hh +m2
SS −

√
(m2

hh −m2
SS)

2 + 4m4
hS

)
,

when m2
hh < m2

SS,


m2

H2
(ϕ, ϕS) = 1

2

(
m2

hh +m2
SS +

√
(m2

hh −m2
SS)

2 + 4m4
hS

)
,

m2
H1
(ϕ, ϕS) = 1

2

(
m2

hh +m2
SS −

√
(m2

hh −m2
SS)

2 + 4m4
hS

)
.

(D.3)

Note that the above conventionsmakeH1 always be doublet-like andH2 always be singlet-

like. In the potential, the overall contributions ofH1 andH2 should not be affected by the
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conventions; however, in the NG resummation, the conventions are important for the first

two terms in Eq. (2.17), as mH1 and mH2 are for doublet-like and singlet-like particles,

specifically.

While considering the thermal corrected field-dependent masses, the mass matrix be-

comes m2
hh + ΣH(T ) m2

hS

m2
Sh m2

SS + ΣS(T ),

 , (D.4)

where

ΣH(T ) =

(
λH
2

+
λHS

24
+

3g22 + g21
16

+
y2t
4

)
T 2, (D.5)

ΣS(T ) =

(
λS
4

+
λHS

6

)
T 2. (D.6)

The eigenvalues are then

M
2

H1,H2
(ϕ, ϕS, T ) =

1

2

(
m2

hh +m2
SS+ΣH(T ) + ΣS(T )

±
√

(m2
hh −m2

SS + ΣH(T )− ΣS(T ))
2
+ 4m4

hS

)
.

(D.7)

The total effect ofH1 andH2 to the thermal contributions will be summed up. Therefore,

the role (the plus-minus sign) of H1 and H2 are relatively trivial.

D.2 NG Bosons

The field-dependent NG bosons take the form of

m2
G0(ϕ, ϕS) = m2

G±(ϕ, ϕS) =
∂2V0
∂G2

= −µ2
H + λHϕ

2 +
λHS

2
ϕ2
S. (D.8)

The thermally corrected field-dependent masses will be

M
2

G0(ϕ, ϕS, T ) =M
2

G±(ϕ, ϕS, T ) = −µ2
H + λHϕ

2 +
λHS

2
ϕ2
S + ΣH(T ). (D.9)
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D.3 Gauge Boson

For gauge bosons,

m2
W (ϕ) =

g22
4
ϕ2, m2

Z(ϕ) =
g22 + g21

4
ϕ2. (D.10)

For thermally corrected gauge bosons, in the transverse part, no static thermal mass is in

the perturbation theory:

M
2

WT
(ϕ) = m2

W (ϕ), M
2

ZT
(ϕ) = m2

Z(ϕ). (D.11)

Only the longitudinal part of gauge bosons require the thermal correction. The thermally

corrected mass matrix in the basis (A1
µ, A

2
µ, A

3
µ, Bµ) is



g22/4 + ΠW (T ) 0 0 0

0 g22/4 + ΠW (T ) 0 0

0 0 g22/4 + ΠW (T ) −g2g1ϕ2/4

0 0 −g2g1ϕ2/4 g21/4 + ΠB(T )


. (D.12)

Eigenvalues of longitudinal parts are

M
2

ZL,γL
(ϕ, T ) =

1

2

(
1

4
(g22 + g21)ϕ

2 +ΠW (T ) + ΠB(T )

±

√(
1

4
(g22 − g21)ϕ

2 +ΠW (T )− ΠB(T )

)2

+
g22g

2
1

4
ϕ4

)
,

(D.13)

M
2

WL
(ϕ, T ) = m2

W (ϕ) + ΠW (T ), (D.14)

where

ΠW (T ) =

(
5

6
+
Ng(NC + 1)

12

)
g22T

2 =
Ng=NC=3

11

6
g22T

2, (D.15)

ΠB(T ) =

[
1

6
+
Ng

12

(
11

9
NC + 3

)]
g21T

2 =
Ng=NC=3

11

6
g21T

2, (D.16)
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where Ng represents number of generations and NC is a number of colors.

D.4 Top Quark

As only the top quark contribution is significant for our analyses, its field-dependent mass

is

m2
t (ϕ) =

y2t
2
ϕ2. (D.17)
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Appendix E

An Illustrative Application PRM

Here we present an explicit example to demonstrate how the gauge dependence disappears

in the PRM scheme. Consider a SUL(2) × U(1) theory, the field is written as

H =
1√
2

Φ1 + iΦ2

Φ3 + iΦ4

 . (E.1)

The generators* of those groups are

T 1 =
1

2



−1

1

−1

1


, T 2 =

1

2



1

1

−1

−1


,

T 3 =
1

2



−1

1

1

−1


, T 4 =

1

2



−1

1

−1

1


.

*We use the real representation, i.e., −i is factored out. That is, T = −iT , where T is what we adopt.
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Note that {T 1, T 2, T 3} are generators of isospin, and T 4 is for hypercharge. The Euclidean

Lagrangian is

LE =
1

2
(DµΦ)

†
i (D

µΦ)i + V0(Φ) +
1

4
W a

µνW
aµν , (E.2)

with V0(Φ) = −1

2
µ2Φ†Φ +

1

4
λ(Φ†Φ)2, (E.3)

whereΦi represents a vector (Φ1,Φ2,Φ3,Φ4),Dµ ≡ ∂µ+g
aT aW a

µ ,W a
µ = {W 1

µ ,W
2
µ ,W

3
µ , Bµ}

and ga = {g2, g2, g2, g1}.

The field can be separated by the classical fields (ϕc) and quantum fields, h(x):†

Φi(x) = ϕc i + hi(x), (E.4)

where ϕc = (0, 0, ϕ, 0), and h = (h1, h2, h3, h4). The Higgs field is the third component

of h. The location of extrema of the Higgs potential at the tree level are

ϕ
(1)
0 = 0, ϕ

(2)
0 = ±

√
µ2/λ = ± 246 GeV. (E.5)

Let’s expand Eq. (E.2) in terms of ϕ, arranging it in the power of the quantum field

(hi) and the gauge fields (Wµ). Then the Euclidean Lagrangian will be

LE =

(
−1

2
µ2ϕ2 +

λ

4
ϕ4

)
+
(
−µ2ϕh3 + λϕ3h3 + ∂µhig

aT aW a
µϕc i

)
+

[
−1

2
hi∂

2hi −
1

2
µ2h2i +

λ

4

(
6ϕ2h23 + 2ϕ2h21 + 2ϕ2h22 + 2ϕ2h24

)
+ ∂µhig

aT aW a
µhi

]
+ · · ·

+
[1
2
W a

µ (∂
2gµν − ∂µ∂ν)δabW b

ν

]
+
[
(gaT aW a

µϕc)
T (gaT aW a

µϕc)
]
+ · · · .

(E.6)

Note that (1) since ϕc is independent of spacetime, its derivative is zero; (2) those terms

with cubic and quadratic in ϕc and W a
µ are omitted here; (3) the gauge field strength is

†This is called the background field method, a classical field are defined by: Euclidean action is mini-
mized when the field value equals to the classical field. A quantum field is the field that fluctuates around
the minimum.
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cast by the following,

−1

4
(∂µW

a
ν − ∂νW

a
µ )(∂

µW a ν − ∂νW aµ), gfabcW b
µW

c
µ are omitted

= −1

4
(∂µW

a
ν ∂

µW a ν − ∂µW
a
ν ∂

νW aµ − ∂νW
a
µ∂

µW a ν + ∂νW
a
µ∂

νW aµ),

= −1

2
W a

ν (−∂2W a ν + ∂µ∂
νW aµ),

=
1

2
W a

ν (∂
2gµν − ∂ν∂ν)δabW b

µ,

where we have integrated by parts and redefined µ and ν due to their symmetry. Eq. (E.6)

is equivalent to a more compact form:

V0(ϕc) + ϕi
∂V0(Φ)

∂Φi

∣∣∣
ϕc

+
1

2
ϕi

(
− ∂2 +M2

ij(ϕc)
)
ϕj + ∂µϕiW

a
µ (gT

aϕc)i

+
1

2
W a

µ

(
(∂2gµν − ∂µ∂ν)δab +m2

A(ϕc)
abgµν

)
W b

ν + · · · ,
(E.7)

where

M2
ij(ϕc) =

∂2V

∂ϕi∂ϕj

∣∣∣
ϕc
, m2

A(ϕc)
ab = (gbT a(ϕc)

T
i (g

aT b(ϕc)i. (E.8)

The explicit form of above can be understood by expanding the component in the potential:

V0(Φ) = −1

2
µ2ΦiΦi +

1

4
λ(ΦiΦi)

2,

= −1

2
µ2(h21 + h22 + (h3 + ϕ)2 + h24) +

λ

4
(h21 + h22 + (h3 + ϕ)2 + h24)

2,

(E.9)

and thus the derivative can be understood by the following: if i ̸= 3,

∂V0
∂hi

= −µ2hi +
λ

4
(4hih

2
j + 4h3i + 4hi(h3 + ϕ)2), (E.10)

∂2V0
∂hi∂hj

= −µ2δij + λδij(h3 + ϕ)2 (E.11)

+ purely quantum field terms, (E.12)

∂2V0
∂hi∂hj

∣∣∣
hc

= (−µ2 + λϕ2)δij, (E.13)
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and if i = 3,

∂V0
∂hi

= −µ2(h3 + ϕ) + λ(h3 + ϕ)3, (E.14)

∂2V0
∂h2i

= −µ2 + 3λ(h3 + ϕ)2, (E.15)

∂2V0
∂h2i

∣∣∣
hc

= −µ2 + 3λϕ2. (E.16)

As a result, the scalar mass matrix,M2
ij(ϕc), is

M2
ij(ϕc) =



−µ2 + λϕ2

−µ2 + λϕ2

−µ2 + 3λϕ2

−µ2 + λϕ2


. (E.17)

The gauge bosons’ mass matrix,m2
A(ϕ)

ab, is

m2
A(ϕc)

ab = (gbT a(ϕc)
T
i (g

aT b(ϕc)i,

=



(g2T
1ϕc)

Tg2T
1ϕc (g2T

1ϕc)
Tg2T

2ϕc . . .

... (g2T
2ϕc)

Tg2T
2ϕc . . .

(g2T
3ϕc)

Tg2T
3ϕc (g2T

3ϕc)
Tg1T

4ϕc

(g1T
4ϕc)

Tg2T
3ϕc (g2T

4ϕc)
Tg2T

4ϕc


,

=
1

4



g22

g22

g22 −g2g1

−g2g1 g22


ϕ2.

(E.18)

Notice that ab indices of the bracket represent the gauge fields’ indices. The mixing term,

∂µϕiW
a
µ (gT

aϕc)i, in Eq. (E.7) can be removed by imposing the gauge fixing condition,

Fa = ∂µW a
µ − ξϕi(gT

aϕc)i = 0, (E.19)
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with the gauge fixing term

Lgf =
−(Fa)2

2ξ
,

=
−1

2ξ

[
(∂µW a

µ )
2 − 2ξ∂µW a

µϕi(gT
aϕc)i + ξϕi(gT

aϕc)iξϕj(gT
aϕc)j

]
,

= −
(∂µW a

µ )
2

2ξ
+ ∂µW a

µϕi(gT
aϕc)i −

1

2ξ
ξϕi(gT

aϕc)iξϕj(gT
aϕc)j,

= −
(∂µW a

µ )
2

2ξ
−W a

µ∂
µϕi(gT

aϕc)i −
1

2
ξϕim

2
A(ϕc)ijϕj,

(E.20)

where the last term is called gauge-fixing scalar boson mass matrix:

m2
A(ϕc)ij = (gT aϕc)

T
i × (ϕi(gT

aϕc)j

=



(gaT aϕc)
T
1 (g

aT aϕc)1 (gaT aϕc)
T
1 (g

aT aϕc)2 . . .

... (gaT aϕc)
T
2 (g

aT aϕc)2

(gaT aϕc)
T
3 (g

aT aϕc)3

(gaT aϕc)
T
4 (g

aT aϕc)4


,

=
1

4



g22

g22

0

g22 + g21


ϕ2,

(E.21)

note that the ij indices of the bracket represent the scalar fields’ indices. We also add in

the ghost compensating terms:

Lgh = η†a
(
−∂2δab − ξm2

A(ϕc)
ab
)
ηb + gfabc(∂µη†a)− ξ(gT aϕc)iη

†aηb(gT bϕc)j.

(E.22)
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The full Lagrangian is then

LE + Lgf + Lgh =V0(ϕc) + ϕi
∂V0
∂Φi

∣∣∣
ϕc

+
1

2
ϕi

(
− ∂2 +M2

ij(ϕc)− ξm2
A(ϕc)ij

)
ϕj

+
1

2
W a

µ

{[
∂2gµν −

(
1− 1

ξ

)
∂µ∂ν

]
δab +m2

A(ϕc)
abgµν

}
W b

ν

+ η†a
(
−∂2δab − ξm2

A(ϕc)
ab
)
ηb + · · · ,

(E.23)

where high order terms are omitted for simplicity. The results of loop-level potential

calculation give us that

Veff(ϕ) = V0(ϕ) (E.24)

− i

2
µ2ϵ

∫
ddp

(2π)d

[
Tr ln(p2 −M2

ij − ξm2
A(ϕ)ij) (E.25)

+ (d− 1)Tr ln(p2 −m2
A(ϕ)

ab) + Tr ln(p2 − ξm2
A(ϕ)

ab) (E.26)

− 2Tr ln(p2 − ξm2
A(ϕ)

ab) + · · ·
]
, (E.27)

where · · · are field independent terms. A pre-factor, d− 1, is from the dimension regular-

ization (the conventional choice is d = 4 − 2ϵ). This result shows that Eq. (E.25) comes

from the scalar loop, Eq. (E.26) comes form the gauge loop; (E.27) is originated from the

ghost loop. Note that the gauge dependence is cancelled out, if the scalar loop contribution

is arranged into

Tr ln(p2 −M2
ij − ξm2

A(ϕ)ij) −→ Tr ln(p2 −M2
ij) + Tr ln(p2 − ξm2

A(ϕ)ij); (E.28)

As a consequence, the gauge dependence will be eliminated at the one-loop level. The

main idea of the PRM scheme is to achieve the above arrangement. Let’s first consider a

matrixM whose matrix elements A,B, etc., are also matrices:

M =

A B

C D

 .
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SinceM can be arranged into

M =

A 0

C I


I A−1B

0 D − CA−1B

 , (E.29)

and the property of the determinant shows that detG = det(TF ) = det(T ) det(F ), its

determinant is then

detM = detA det(D − CA−1B). (E.30)

If B,C are zeros, detM = detA detD. As we know that ln detM = Tr lnM ,

ln detM = ln detA+ ln detD,

Tr lnM = Tr lnA+ Tr lnD.
(E.31)

Back to our case, the matrix in Eq. (E.28) logarithm is

Sij = p2ij −M2(ϕ)ij − ξm2
A(ϕ)ij. (E.32)

If Sij is a block-diagonalized matrix which is crucial since in the most of the cases it is

not; then M2
ab and m2

Acd are simultaneously diagonalizable but their eigenvalues live in

distinct subspaces (i.e., their eigenvalues are not mixed), then we have‡

p2Iab −M2
ab 0

0 p2cd − ξm2
Acd

 . (E.33)

As a result, combining Eq. (E.31), we finally have the separation:

Tr lnS = Tr ln(p2 −M2
ab) + Tr ln(p2 − ξm2

Acd). (E.34)

In this particular circumstance, we can eliminate the gauge dependence at the one-loop

level. In the next section, we see how the gauge-invariant TC can be got from the above

formalism.

‡In the Sec. E.1, the upper left matrix is 1× 1, and the lower right matrix is 3× 3
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E.1 Gauge-invariant TC

In this theory, similar to the condition in our model Eq. (2.38), the PRM scheme finds TC

when the condition,

V0(ϕ
(1)
0 ) + h̄V1(ϕ

(1)
0 , TC , ξ) = V0(ϕ

(2)
0 ) + h̄V1(ϕ

(2)
0 , TC , ξ), (E.35)

is satisfied; theminima are defined at Eq. (E.5). If ξ termswhichmentioned in the previous

section is cancelled, this particular TC is gauge independent. In Eq. (E.35), the left hand

side is gauge invariant which can be easily recognized: all the gauge dependent terms

Eq. (E.18) and Eq. (E.21) in Eq. (E.25), Eq. (E.26) and Eq. (E.27) are all proportional to

the classical background whose ϕ(1)
0 = 0. The right hand side takes the EW-breaking

minimum (ϕ(2)
0 =

√
µ2/λ = 246 GeV). Therefore, the NG boson masses are equal to

zero in this scheme, the scalar mass matrix Eq. (E.17) then becomes

M2(ϕ
(2)
0 )ij = diag(0, 0, 2µ2, 0). (E.36)

The gauge-fixing scalar boson mass matrix is then

m2
A(ϕ

(2)
0 )ij =

µ2

4λ
diag(g22, g22, 0, g21 + g22). (E.37)

These twomatrices actually can be arranged into the block-diagonalized form like Eq. (E.33),

i.e., M2(ϕ
(2)
0 )ij and m2

A(ϕ
(2)
0 )ij are simultaneously diagonalizable; their eigenvalues live

in different subspace.§ Therefore, the separation like Eq. (E.34) can be achieve. To see

explicitly how Tr ln(p2 − ξm2
A(h

(2)
0 )ij) eliminates Tr ln(p2 − ξm2

A(h
(2)
0 )ab), we need to

§Note that this is not always valid, only when one evaluates the minima at the tree level.
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diagonalizem2
A(ϕc)

ab, Eq. (E.18), through the rotation matrix

Rab =



1

1

cos θW sin θW

− sin θW cos θW


, tan θW =

g2
g1
. (E.38)

After rotation, we have

Rabm2
A(ϕc)

bc(RT )cd =
1

4



g22

g22

0

g21 + g22


ϕ2. (E.39)

This is exactly the same as the gauge-fixing scalar boson mass matrix. Therefore, these

two terms are cancelled out eventually. Finally, we show that TC obtained from Eq. (E.35)

is a gauge-independent result.
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