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Abstract

In this thesis, the standard model is extended with a real singlet scalar
S to achieve a two-step electroweak phase transition (EWPT). The model
is investigated with several schemes to quantify the scheme dependence and
the gauge dependence issue. In on-shell(OS)-like scheme, at the one-loop
order, Nambu-Goldstone boson contributions are needed to be resummed to
circumvent the IR divergence; their effects in the EWPT are studied and quan-
tified. The critical temperatures and critical vacuum expectation values of the
EWPT in the OS-like and the MS schemes are highly consistent to each other;
we also compare the results with two gauge-independent schemes (the high
temperature and the Patel-Ramsey-Musolf schemes). Even though higher or-
der corrections are needed for scale-dependent schemes, the general trend
of the results are consistent and the analyses show the differences of gauge-

dependent and -independent schemes are within theoretical uncertainties.

Keywords: effective potential, perturbation theory, gauge dependence, gauge
field theory, renormalization,resummation, electroweak interaction, critical

phenomena, numerical calculations, numerical methods
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Chapter 1

Introduction

Cosmic baryon asymmetry (BA) problem []I, 2] is a long-standing and ongoing topic in
particle physics and cosmology. Electroweak baryogenesis (EWBG), one of the most
promising mechanisms to solve BA, requires a strong first-order electroweak phase tran-
sition (EWPT) which creates electroweak(EW)-symmetry-breaking bubble. CP-violating
interactions occur at the bubble wall and induce a net density of left-handed fermions. This
process makes EW sphalerons produce unequal amounts of baryons and anti-baryons. For
a successful EWBG theory, the baryon-number-changing processes have to sufficiently
suppress inside the expanding EW-breaking bubbles in order to prevent the wash out. The

criterion for above isfl

critial vacuum expectation value, v,

> Gopn(T0); 1.1
critical temperature, T Gspn(Te) (1.1)

where (spn(7¢) depends on the sphaleron configuration (or topology) [3] and the fluctu-
ation determinant [4], etc. The current model [5] has showed that (on(7¢) ~ 1.1 — 1.2,
where the one-loop effective potential with thermal resummation is used to evaluate the
sphaleron energy. However, EWBG cannot be achieved by the standard model (SM)
alone, since the discovered Higgs boson with 125 GeV [6] is incompatible to the mech-

anism required. To be more specifically, in the SM, the first-order EWPT cannot take

*The critical phenomenology occurs when the potential energy of minima are degenerated and the tun-
nelling process happens, i.e. ,the first-order phase transition from EW-symmetry vacuum to EW-breaking
vacuum takes place.
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place; instead, the EWPT is a smooth crossover [7]. Further, baryon number will be
erasured due to the sphaleron processes. By extending the scalar sector with an SU(2),,
singlet scalar(S), this simplest extension can provide a viable parameter space that makes
the first-order EWPT possible. Furthermore, S can also be a dark matter (DM) candidate

by imposing a Z, symmetry [8, 9].

In principle, every physical observable should be independent of any artificial effect.
For exanple, the full Higgs potential should be a gauge-independent quantity. Neverthe-
less, in pratice, one has to truncate the calculation at a certian level since the full exact an-
alytical form of potential cannot be obtained (in other words, full-loop calculation cannot
be achieved). Perturbative effective potential is widely used to analyse EWPT; especially,
one- or two-loop expansions are often adopted for various analyses. However, it is well
known that any result from this method is depended on the gauge fixing parameter (&)
[[10]. For instance, the Higgs vacuum expectation value (VEV) is varying as one changes
&. Furthermore, this gauge-dependent issue will contaminate the calculation of baryon-
number preservation criterion, Eq. ([L.1). As a result, any phenomenological claim and
consequence is inherited this £ dependence. Therefore, the gauge effect should be regu-
larized. To be note that one of the exceptions is when the EWPT is driven by the scalar
thermal loops or the tree-level barrier where the £ dependence can be neglected. How-
ever, in the singlet extended Abelian-Higgs model, as [|]11]] found that the ¢ dependence
cannot be ignore even when the presence of the tree-level barrier. This issue is seldom

investigated deeply in the context of studying EWPT by SM plus real singlet model.

Apart from the artifical gauge problem, another issue in the effective potential calcula-
tions is the occurrence of infrared (IR) divergences. The Higgs mass is obtained from the
second derivative of the effective potential. If one adopts a renormalization scheme that
one-loop level potentials do not affect the tree-level mass relation, the second derivatives
of the Nambu-Goldstone (NG) bosons one-loop potential are ill-defined when ¢ in the R
gauge is set as zero. Thus, the Higgs mass is IR divergent in this case. One prescription to
resolve is to inculde higher order terms into the NG boson masses [[12, 13], i.e., resumming

the NG boson masses. In the later, we will show that after the NG masses are resummed,

2
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their contributions to the Higgs mass are relatively minor compared with other effects.
Nevertheless, their numerical effects on v /T¢ are unexplored.

In this thesis, the EWPT is revisited in the context of the SM with a real singlet scalar.
To unfold the gauge problem aforementioned, we first analyse the degree of effect on
ve /Te by subtracting both thermal and non-thermal gauge boson contributions from the
effective potential. Even though the exact ¢ dependence in the potential cannot be shown
in this simple analysis, one can demonstrate numerically the importance of gauge channels
in the successful first-order EWPT (vo /T > 1), as the £ dependence mainly comes from
the gauge contributions. This method stands as a criterion for whether the investigation
of ¢ dependence is necessary. Meanwhile, the numerical impact on the NG resummation
in the on-shell(OS)-like schemell is also analysed.

To avoid the scheme dependence issue, three commonly adopted schemes in the lit-
erature are also investigated: (1) the MS scheme, (2) the high-temperature (HT) scheme
and (3) the Patel-Ramsey-Musolf (PRM) scheme [4]. In the first scheme, unlike the OS-
like scheme, the tree-level NG boson masses are non-zero, since the tree-level relations
have been modified because of different tadpole conditions; thus, the aforementioned NG
resummations are not required. The potential of the second scheme is defined as: the
tree-level potential plus the scalar thermal mass terms only. Obviously, the potential is
gauge-independent, because the thermal masses are free of the £ dependence. In the last
scheme, the Nielsen-Fukuda-Kugo (NFK) identity [[15, [16] is adopted to obtain the gauge-
invariant T¢; ve is evaluated at the HT potential at 7> in order to keep gauge-invariant.
In the last scheme, taking different potentials to obtain 7 and v may seem inconsistent.
However, this treatment grantees the results are strictly gauge-invariant. Note that the
numerical comparison between the PRM scheme and the other gauge-dependent schemes
has not performed yet, this is one of our goals to complement this work.

The effective potential is the major ingredient of analyzing EWPT and spontaneous
symmetry breaking. For completeness, we briefly introduce the derivation of the effec-

tive potential from the partition functional (see [L7]) by using the Feynman path integral

TIn [[14], this scheme is called the on-shell scheme. Because this is not the genuine on-shell renormal-
ization, we call this scheme the on-shell-like scheme instead.
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method [[L8]. The effective potential in a more specific terminology should be called the
generating functional for zero-momentum one-particle irreducible (1PI) Green function.

To begin with, we first recall W [.J],
Z[J] = WV (1.2)

which is the generating functional for connected Green’s functions (the detail of generating
functional of connecting Green function is shown in Appendix [Al). Expressing the partition
functional, Z[J], with an external source field, J(x), in the path integral representation,

we have

Z[J] —N/D¢ ot [ d*alL(®)+T (2)6(2)] _ (O*\O*% (1.3)

where N~ ! = / D ¢t 4*#1L@)] (1.4)

The second equality of Eq. ([.3) is a reminder that the partition function represents a state
starts with a no particle state at +oo position and end with a no particle state at —oo

position. The VEV of ¢ in the presence of J can be defined by

W] _ [ Do b(y)exp (i [ dw [£(9) + I (x)¢(x)))
0J(y) [ Do exp (i [dix[L(9) + T(@)d(a)]) T (15

= (0" |e()|07)

be(y)

the last equality shows that ¢, is actually a classical field. The physical VEV is

o) = S5 = [ Do o O~ o). (e

Furthermore, if we assume that the vacuum has a translational symmetry, the VEV does

not depend on the spacetime position any more, i.e.,
¢ = (0|p()|0) = (0] ¢(0)e"F*2|0) = (0|$(0)|0) = constant field. (1.7)

Motivated by the idea that finding a generating functional provides 1PI connect Green
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function, the effective action provides the exact role. The effective action is defined as a

Legendre transformation of W[J],

Ilg] = / 0 () (2),

{mN [0 e i [t eo) + g0t |

{lnexp { d4:c J(z )¢C($)] } ’ (1.8)

=i {mv [ Do exp i [ 200 + I(0) 010) - 0]}

In addition,
oL'[¢c]
6¢pe()

which can be proved straight forward. The advantage of effective function can be under-

= J[a], (1.9)

stood from the following: while the source field is turning off, ¢, that satisfies Eq. ([1.9) is
the lowest energy configuration of the theory. This solution has particularly interest in the
spontaneous symmetry breaking analysis. The same idea is also applied to the effective
potential which will be demonstrated in the later. By shifting the field, ¢’ = ¢— ¢, (the po-

sition index is omitted hereafter), and using the definition of action: S(¢) = [ d*zL(¢)

Eq. ([1.8) becomes
[[¢] = —ilnN / D¢’ exp {z [S(¢c+¢’) + / d%ng’] } (1.10)

The small shifting of the field can be approximated by expanding the action around the

classical field (¢.),

/

0S[pe + &
Sige+ 9 = slod + [ate 0L
2Slge + 4]

1 4 4 / 5
*5/ Ty S ) S oty oo

(1.11)
¢'(y) + -+
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The action satisfies the variational principle; hence

05[p + ¢ _05l¢d _ OSlee+ o) 8S[ed
0¢p  lo=0 O C 0p(x)od(y) le=o oe(x)dde(y)’
(1.12)
=iG7 (2, 4: 90),
where G is the two-point Green function. Then Eq. ([.11)) can be arranged into
/ 1 4., 74 s v—1
Ston+ o) = Slod +0+ 5 [ dlad'y oG @ ool) + . (L1

Because S[¢.] is independent of ¢, one can bring it out of the integral; then the effective

action becomes

rlo] = 8lod - i [ D exp{ [ dyo0)6 wamodotn ) +-. (114)

The second term can be evaluated by utilizing the equality,

L lstApiltp 27)" 1pAT
di e~ 3P APHTE _ (2m)" s 1Al 1.15
/ e S AT (1.15)

[e.o]

where n is the d.o.f. of p. In our case, I = 0 and A = iG~!. After absorbing +/(27)" and

N into D¢/, the effective action is

Clg.] = S[oe] + %lnDet iGN w, y; de) + - (1.16)
= 5[5 + S Trin iG ™z, 60) -+ (1.17)
= S[o.] + %Trln/d‘*xd‘{y §(x —y)iG N, y; ¢e) + - -, (1.18)

where the operator Det acts on the spacetime, (z,y) and also any internal space, e.g.,
color space or spinor space, efc. An identity is used: DetA = exp(frlnA), where Tr acts
on the same space(s) as Det. Additionally, if the operator A is a function of spacetime,
the functional trace has the property: TrA = [ d*zA(x, z) which is adopted in Eq. (1.18).

We can simplify the above further by performing the integral and expressing the Green
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function in the momentum space, which is convenient for the later use,

[[¢e] = S[de] + %Trln/d% iG (2,25 00) + - - (1.19)
: 4
- / d4x£(gz5c)+% / (;ZW];LTrln G (p: 6c) / diz+ -, (1.20)
' d* o
= —VO(QSC)/dA‘:ch%/#Tﬂn iG (p; ¢C)/d4x+---, (1.21)

where we have assumed that ¢. is a constant field, so that kinetic term is absent. Since
the tree-level potential is independent of spacetime, it can be brought out of the integral.

Finally, the effective potential is defined as the following:

L[¢c] = —Verr(de) / d'z, (1.22)
. 4
Virr(e) = Vilobe) — %/%Tﬂn G (pr ) + - (1.23)
o
Vi) = =5 [ gt TniG 100, (1.24)

where V) stands for the general one-loop potential of different particle contents. We can
now easily understand what the name of effective potential represents: besides the dom-
inant tree-level potential, the effective potential represents the potential that includes all
the higher order corrections. In our analysis, we require the level of correction is O(h)
which corresponds to the one-loop level. The detail of derivation of the one-loop level
potential for each particle species can be seen in the Appendix B.

The thesis is organized as the following: In Chap. [, we introduce our model, renorm-
lization schemes and tadpole conditions in each scheme. In addition, the pattern of the
EWPT and the method of searching 7 and v is outlined. Chap. B demonstrates our nu-
merical analyses and we discuss the renormalization-scale dependence on 7. In the end,

we discuss the DM issue in the Sec. §.1; our results are summarized in the Sec. 4.2.
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Chapter 2

Model: SM + Real Singlet Scalar

We consider a model in which SU(2),; real singlet scalar S is added to the SM. S can be
the dark matter candidate by imposing the Z; symmetry on the Lagrangian [9] (i.e., it is
invariant under S — —S5). We require S can only couple to the Higgs sector (the higgs

portal). The tree-level Higgs potential of the theory is the following:

A ga | @HTHSQ, 2.1)

2
Vo(H, S) = —p2 H'H + g (H'H)* — %SQ +7 ;

where H is the usual complex Higgs doublet. It is written in terms of the components as

G (x
H(z) = (@) , 2.2)

\/% [ + h(z) +iG°(z)]
where ¢ which will eventually develop the non-zero VEV at ~ 246 GeV represents the
constant background field (translational symmetry) of . The real part of the neutral
component of H is h(xz), the 125 GeV Higgs boson. G**(x) stand for the NG bosons.

The superscripts refer to the electric charge of the fields. Presenting the potential in terms

8
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of components, we have

Vo = _TM% {(p+ )+ 267G~ + (G*)?]}

" %H {0+ +20+0)?[267G* + (6] + 26-G* + (G} @3)

The tree-level effective potential can also be represented by using only the constant
background fields (denoting background field of S as ¢g), by turning off quantum fields
(h and G%),

Moo, An

Vol@,és) =~ + 5

2 A A
: o' = B3+ ok + 20k (24)

4
In order to bound the potential from below, Ay and Ag must be greater than zero. In
addition, another condition is necessary if Ay < 0. In the region that both ¢ and ¢g are
large, we can denote ¢ = ¢d, where d is a number. The relevant terms in the potential

become

1
Vi ~ Z()\H + As6* + Aprg0?) ot (2.5)

To keep the bracket always greater than zero for arbitrary J, we require
/\?—IS < 4)\H)\5, if A\gs < 0. (26)

Note that a local minimum in the S direction will appear as p% > 0. The EW-broken

vacuum should be the global minimum in the present universe: Vy(v,0) < V5(0,v2™),
where the superscript means that the singlets VEV is in a EW-symmetry phase. This

condition requires that

2 2
—H )‘H —H sym AS sym
THU2 + IU4 < 9 S (Usy )2 + Z(U‘g )4. (27)

By the minimum conditions at the tree level, v = /u%/A\s and p% = Agv?, we can

9
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rearrange above into

1 i
As > A= = AT (2.8)
K
In the numerical analyses, we took \g = Agﬂn + 0.1. This choice makes first-order

phase transition possible and it is also adopted in [14]. Tadpole conditions are scheme-

dependent. The general form is

)78
Ths) = < 5 ¢(;> =0, (2.9)

where (- - -) denotes that the term inside the bracket is evaluated in a vacuum and all quan-
tum fields are taken as zero. The order of level of the effective potential (tree or loop, etc.)
is evaluated depends on the corresponding scheme. The Landau gauge (¢ = 0) is taken

when evaluating the gauge contributions, except the PRM scheme.

2.1 On-shell-like Scheme (OS-like)

The OS-like scheme requires that the loop corrections hold the tree-level relations when

the one-loop corrections are added. Therefore, the renormalization conditions arefi

<a<vcw + VCT)> _o. <a?<vcw + VCT>> o, <82<Vcw + Ver)

89 05 )0 e

where Vit are the counter terms, and Viw is the Coleman-Weinberg potential [[19]:

Sp2 Sy
Ver = =L — 2567, @11
—4 —2
—2\ _ m; m;
Vew(m;) = ;nzm <log = Cz’) ; (2.12)

which is regularized in the MS scheme (see Appendix B). 777, represents different background-
field-dependent masses (see the Appendix [D for detail); its subscript stands for a particle’s

species. We include the Higgs bosons (/1 » , eigenstates of the scalar sector), NG bosons

*Note that checking the first derivative of the one-loop potential with respect ¢ is trivial, since the Z
symmetry guarantees it is zero.

10
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(G*, GY), the gauge bosons (W, Z) and top quark (¢). The degree of freedom (d.o.f.) and
its statistic of the particle is denoted as n;: ny, , g0 = 1, ng= =2, ngz =3, ny = 6 and
ny = —12. For the scalars and the top quark, ¢ = 3/2, and for the gauge bosons, ¢ = 5/6.

1 represents the renormalization scale.

The tadpole conditions for the OS-like scheme at the tree level are

oV, A
oV, A

Ts={ =2 =vg [ —p2 + Agv? + 2250%) =0, (2.14)
Do 2

where v and vg are the VEVs of the doublet Higgs and .5, respectively. For the Z-invariant
EW-broken vacuum (¢ = vy, s = 0), u? = Agvi and v5" = 0. Therefore, the Higgs

boson masses in the vacuum are

0%V,
my = < 8¢20> = —uy + 3\yvg, (2.15)
0V A
2 0 2 HS o
I’l = = — _— . 2.16
S <a¢2§> Hs + 2 Yo ( )

NG Resummation

If we use Eq. (2.12) to evaluate the second condition of Eq. (2.10), one can notice that
while m; equals to zero, which is the case for the NG bosons at the electroweak vacuum,
a IR divergent term appears: \%,¢?(log Mg /1i%)|s—u,; regardless of what the value of 7 is.
However, the existence of a IR problem often indicates that a theory is incomplete. In this
case, it shows that the necessity of including the higher order correction to the NG boson
masses, i.e., we need to resum the NG boson contributions. We adapt the same procedure

as [[12, 13], mg — Mg = g + 2g, where Y is the one-loop self-energy of the NG

11
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boson with the vanishing external momenta:

1672

392_2 < My 1 3(95+97) my 1

392 -2 (1 _ _) 2+ 91) (1 Mz _ _> 2.17
2

— 6y <log7 1)}

where ¢g; and go are the gauge couplings of U(1) and SU(2), respectively, and y; is the

_ 1 L, _1%1 1. Ty
Yo = 3Agmy, | log L—1)+ §>\HSmH2 log —* — 1
w i

top Yukawa coupling. To solve §u2;, 6u% and i numerically, we need to g — Mg in
the NG boson channels of Eq. (2.12), and combine the CT terms (Eq.2.11)); finally, solve

the renormlization conditions Eq (2.10), simultaneously.

2.2 MS Scheme

In the MS scheme, the tree-level relations are modified when the higher-order corrections
are added in. In the other words, Eq. (2.13) and Eq. (2.16) will be modified by one-loop

level contributions. We impose the tadpole conditions on the one-loop level,

ThE<—8(VO+V1)>— ( W A + 288, ) +<5VCW>=0, 2.18)

O 2 99
(Vo + V; A v,
Ty = <%> e ( o Asi 25 z) +< a¢f§> —0, (219

by using the same solution like above (¢ = vy, ¢s = 0); as a result, we have relations

MVew
1 = Agvg + — ” < 36 > ; (2.20)
3Vcw>
=0. 2.21
< Oos (221)
12
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The Higgs masses are

0*(Vo + 1) AHs *Vew
mi = <T¢2> = (—;ﬁl + 3\ gv* + TU§> + < 062 > ; (2.22)
0*(Vo + V1) Ams 9 Vew
2 _ _(_,2 2 2
mg = < 963 > ( e + 3Asvg + 5 Y ) + < 962 ) (2.23)

Rearranging above by inputting the solution (¢ = v, ¢s = 0) and using Eq. (2.20), we

have

1 /v 02V,
m2 = 2\pvd — . < a;W> + < 8¢C2W> : (2.24)
A 02V,
m = —p2 + %%g + <W§W> . (2.25)
S

We can solve jug, /17 and Ay through Eq. (2.24), Eq. (2.29) and Eq. (2.18), nurnerically.m

Note that we set the renormalization scale of Eq. (2.12) at the range from 2m; ~ 0.5m,.

Since the NG boson masses are non-zero at the electroweak-broken vacuum, we do not

need resummation as the OS-like scheme.

2.3 Thermal History and Thermal Potential

Like [20] pointed out that a two-step phase transition pattern increases the accessibility
of EWBG. The pattern of two-step phase transition we are interested in is the following:
the global vacuum of the early hot universe was (¢, ¢s) = (0,0). While the universe
was cooling down, a primary phase transition (PT) occurred, the global minimum are
transited to singlet direction (S) at (0, vs¢), an EW-symmetry-preserving minimum. As
the universe approached a critical temperature (7(~) where the potential energy of doublet
(H) and singlet minima are degenerate, the global vacuum tunnelled (required to be a
first-order PT) to an EW symmetry-breaking minimum (v¢,0). At the present universe
whose temperature is approximately zero, the vacuum arrived at (vy ~ 246 GeV, 0).

To investigate above scenario, the dynamic of thermal potential is essential for study-

"In Eq. (R.24), actually, the basis of the scalar sector for calculating Vew does not limit to the mass
eigenstates; h, S basis is also available, due to the absence of k1S coupling. On the other hand, in Eq. (2.23),
one must use mass eigenstates because of the existence S.Sh coupling.

13
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ing the evolution of the universe. In the OS-like, the MS and the PRM (Sec. 2.5) schemes,

we use the finite-temperature one-loop effective potential given by [21]:

=2
¢¢57 an [BF(Z};‘)7

. (2.26)
where IB7F(a2) s / dx 2% In <1 Fe Vv ‘”2“‘2) .
0

In the numerical computation, we use the approximated functions (see Appendix [d) for
computational efficiency. In addition, since the perturbative expansion is invalid when
temperature is high, the thermal potential needs to be resummed. We replace m? with

thermally corrected masses,
m; — m; + (¢, ¢s,T), (2.27)

where ¥;(¢, ¢s,T) are the thermal masses (a more refined resummation method can be
refered to, e.g., [22]), the exact forms can be found in the Appendix [D. Notice that although
thermal resummation is performed in the OS-like and the MS schemes, it is not performed
in the PRM scheme; since we consider only O(%) = 1 in the PRM scheme (see Sec. 2.3

for detail) and the thermal resummation is O(h) = 2 effect.

2.3.1 Standard method of searching 7~ and critical VEVs

For a successful two-step EWPT, ve, T, vBL and vy are found numerically through the

following equations and satisfying the inequalities:

V;ff(¢ =g, s = Ugrc, TC) = Veff(¢ =0,¢s5 = vssyél, Tc), (2.28)
OVert _ OVer om . =0, (2.29)
8¢ vc,vgg,TC a¢5 0 ’US}; TC
0%V,
il > 0, (2.30)
8(;5(5 ve, USC Tc (0, v Tc)
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O2Vir/ 08 Ve 9p0
det w/0¢ /0905 >0, 231)

0?Vegr/ 05O 0?Vegr/ O
‘ / ¢ ¢ ) / ¢S 'UC7UEEV7TC (Ovvz}lc‘mvTC)
where the last two inequalities assure that the minima are not saddle points. In Sec.2.3,

we will discuss that why the standard method of determining 7> and VEVs depends on

the choice of gauge.

2.4 High Temperature (HT)

Both the OS-like and the MS schemes have gauge-dependent potential at the one-loop
level. The high temperature approximation scheme provides a gauge-free and efficient
method to investigate EWPT. This scheme simply includes the tree-level potential and the

Higgs thermal mass terms which are taken from high temperature approximation at the

O@) of Eq. (LI
V(6,65 T) = Vo(,65) + 5 0u(T) + 5 5s(T)6k, (2.32)

where > and X g are the Higgs thermal masses which are gauge-independent [23], see
Eq.(D.5, D.6) for detail. Because this scheme is gauge-free and ignores all the other
loop contributions, we can obtain the gauge-invariant 7 and VEVs from this potential in
relatively efficient way compared with previous schemes. In the PRM scheme (Sec. R.9),

we also use this potential to evaluate VEVs.

2.5 Patel-Ramsey-Musolf (PRM) Scheme

The main goal of the PRM scheme is to get gauge-free results. Unlike the HT scheme, the
PRM scheme takes the one-loop order corrections and the thermal effects into account. As
the tadpole conditions are set at the tree level, the tree-level conditions are preserved. The
renormalization scale is set same as the MS scheme which is varied from 2m, ~ 0.5m;.
In the next subsection, we elaborate how the PRM scheme utilizes NFK identity to get

gauge-free results.
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2.5.1 Gauge-independent 7~ and VEVs

The NFK identity [[15, [16] tells us thatl

OVerr(9,§)
73

8‘/;:ff<¢7 é)

= ~C(6,0 =5 (2.33)

where C(¢, £) is a functional. In fact, ¢ can be proved formally to be gauge-independent
with the identity and Eq. (2.28)[4] as long as we are working on the fi/l order of the effec-
tive potential. However, in the practical calculation for 7¢, one could only calculate the
potential up to some order. For example, like in our previous standard method of deter-
mining 7 includes only the one-loop order effect; thus, this causes an artificial violation
of the NFK identify, even though the full order formalism is gauge-invariant. In order to
regulate this issue, we have to keep tracking whether the identity is valid in each order of

h. In the perturbation theory, in principle, we can expand V. and C' in the power of 7:

Ver(9) = Vo(9) + AV (0, &) + hPVa(, &) + -+, (2.34)

O(¢7 5) = Cp + h01(¢7 5) + h202(¢7 5) o (235)

By inserting them into Eq. (.33)), we get

h8—€+ha—é_2+“'—_008_¢_h<cl<¢7§) a¢
(2.36)
+co%z’£)> + O + -,

where we had expressed Eq. (2.33) in 7 order. Since the tree-level potential is free of
¢-dependence, ¢y = 0. At O(h),
Vi(9,§)

3—§ = 01<¢7 5)

OVo(0)

3 (2.37)

'Even though our potential is a two dimensional (¢, ¢5) function, the procedure is straight forward: by
taking the other dimensions as zero, one can get a pair of Eq. (2.33). Using the same method described in
above, one can get similar results.
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Eq. (2.37) shows that as long as we are working on (1), the gauge dependence of V; (¢, )
is vanished at stationary point(s) of the tree-level potential. On the contrary, 7> and VEVs
determined by the standard method are evaluated in the tree-level plus one-loop potential
minima; as a result, those results are gauge-dependent. Extending above to our model, the
¢ dependence of Vi (¢, s, &) disappears while we evaluate T at the tree-level minima:
(¢ = V™ = 246 GeV, ¢g = 0) and (¢ = 0, g = v% = /u2/\s). For the two-step

EWPT, the gauge-independent 7~ can be obtained from the following:

Vb(vtree, 0) + Vcw(Utree, 0) + ‘/IT(Utree7 07 TC)
(2.38)
= %(07 vgee) + VCW(O’ Ugee) + ‘/1T(07 Ugee7 TC)'

Note that as we are working on O(#), the thermal resummation, a two-loop order O(h?)
effect, is not performed. Going beyond O(h) requires two-loop contributions which is
out of scope of our current analysis. In the Appendix [, we give an example to explicitly
show how the gauge dependence disappears when the potential is evaluated at the tree-
level minima.

The minima, vo and vge, are inherited gauge dependence which can easily be un-
derstood from the NFK identity: in Eq. (2.33)), the field value minimizing the effective
potential is gauge-dependent. To get gauge invariant VEVs in the PRM scheme, we have
to utilize the HT potential, Eq. (2.32)), by finding the minima at T, i.e., find the minima

of VHT(¢a ¢S7 TC)
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Chapter 3

Numerical Analysis

In our model, mg, As and Ayg are the free parameters. We take mg = my /2 which is
within DM experiment bound and phenomenology (see Sec. ?? for the discussion), and
choose \g = Agﬁn + 0.1, see Eq. (); thus only Ayg is varied in the analyses. Aiming
to investigate the gauge dependence, a range of Ay is selected where the tree-level po-
tential is relatively minor compared with gauge loop contributions to the potential barrier.
Furthermore, this particular range meets the conditions of the two-step strong first-order
EWPT (v¢/Te ~ 1 and several inequalities in Sec. R.3.1)). For clarity, our input param-
eters are listed in Table B.1|, and we summarize the settings of the each scheme in Table
3.2,

In Sec. , we list a detail procedure of finding 7~ and v¢; in addition, their precisions
in the analyses are also shown. Our analyses can be divided into two parts: Sec.
focuses on the effect of gauge and the NG boson channels in the OS-like scheme, Sec. 3.3

demonstrates how the scheme dependence influences the results.

Parameter
mpyg Vo mw Mg my

Value [GeV] 125 246 80.4 91.1 173.2

Table 3.1: The input parameters in all schemes. Note that, besides the MS scheme (see
Sec. R.2)), jtm, p1s, and A satisfy the tree-level relations: p2, = m?/2, pE = —m% +
s /208 and Ay = m?%; /203,
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Scheme
OS-like MS HT PRM

Tadpole Condition Tree  1-loop Tree Tree

NG resummed Vv -

Thermal resummed Vi Vv - -
Vv v

¢ dependence

Table 3.2: Summary of the scheme settings.
3.1 Ciritical Temperature and Critical VEV

Two s of method of finding 7 are used; For the PRM scheme, 7 is found by Eq. .
For the OS-like, the HT and the PRM schemes, Tt is searched by the bisection method

whose details of procedure are listed in the followingfi:

1. choose two initialized temperatures, Ty« (e.g., 200 GeV) and T,,;, (100 GeV). To
use the bisection method, one also needs a middle value, Tiiq = (Tiax + Tinin)/2

(150 GeV),

2. calculate the energy difference, AFE, between the potential energy of minima in

singlet’s, £(¢™"), and doublet’s, £ (¢, directionst at T)q, i.e.,

AE(Twia) = E(¢™, Tria) — E(¢%™, Trmia), (3.1)

3. calculate AFE at T,,;,, that is

AE(Thin) = E(¢™, Tin) — E(¢5™, Thnin), (3.2)

4. if AE(Thia) X AE(Tyin) < 0, we can redefine Ty — Tinin, and Tinax — Thnids

otherwise Tiin — Tmig and Trax — Tmaxs
5. take the new T,,q and T},;, back to the step . and go though the procedure again.

The above is calculated iteratively until

*We use Mathematica to analyse our model.
TWe use the Findminimum, the optional methods InteriorPoint and PrincipleAxis are chose.
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o AE(Tpiq) is less than 10° GeV,
« and the absolute temperature difference (|Tig — Thin|) is < 5 x 1073 GeV,

* or the maximum calculation count (20) is reached.

Then we regard 11,4 as T¢; v are searched in this temperature. For the PRM scheme, the
gauge-invariant v¢ is found by using Eq. (2.32)) at 7> which is obtained from Eq. (2.38).
In the Fig.B.1l, we show an example of the contour plots of the HT potential in the plane
of (¢) and (¢g) for temperatures are high, above, equal and below 7¢; zero temperature

one is also included. All the parameters are chose to be mg = my /2 and Ays = 0.4.

3.2 (non)Thermal Gauge and NG Boson Contribution

To numerically quantify the effect of gauge and NG boson contributions, we use several
approximations by turning off specific channel to study the EWPT, see Fig. B.2. “(T)GB
off”, depict by the (red) green (dot-dashed) dashed line, is denoted the computation without
(thermal) non-thermal gauge boson contributions; “NG off”, depicted by the yellow dotted
line, stands for NG boson contributions is omitted. “full”, depicted by the blue solid line,
includes all the contributions. The left and right panels show 7 and vo /T as functions
of Ayg, respectively.

Our results indicate that, in the range of 0.2 < A\yg < 0.4, the thermal gauge loop
have a ~ 11% effect on T and ~ 13% on vo/Te. As mentioned before, the result is
not precisely equivalent to the effect of & dependence. However, it demonstrates how
gauge boson contributions affect the EWPT;, thus, the gauge artifact shoud have large
impact on the EWPT as well. Furthermore, [24] found that even though the percentage of
difference is small in 7> as changing different &, it cannot guarantee that the dependence
on gravitational waves generated from the first-order of EWPT is insignificant. In fact,
by varying & from 0 to 5, the gravitational wave spectrum in a U(1)z_;, model can change
by one order of magnitude [24]. Above result indicates the necessity of quantification of
the £ dependence by using general 17 gauge which should be studied and noticed in the

future.
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Figure 3.1: The contour plots of the HT effective potential in the plane of (¢) and (¢g)
at T' = 300 GeV (Upper Left), T' = T + 10 GeV (Upper Right), T' = T = 75.1
GeV (Middle Left), ' = T — 10 GeV (Middle Right) and 7" = 0 GeV (Lower). The
parameters are, mg = my /2 and Ags = 0.4. Note that all the plot legends are in the unit

of 107 GeV.
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In the NG off case, their effects are expected to be minor because that they are the
two-loop level effects. However, when Ays < 0.21 where the thermal gauge loop dom-
inates over the barrier compared with the tree-level contributions, NG boson effects are
pronounced. To be noted that, in this region, the global minimum at 7t is no longer located
on the doublet Higgs; instead, it is mixed with the doublet and the singlet contributions;
this causes the downward curve of v /7. The (0.03 — 2.3)% difference is found in 7¢,

and (3.0 — 16.7)% in vo/T¢. See the Table. B.3 for the summary.

Channel Tc ve/Te

GBoff 0.16—-0.18 0.29 —0.47

TGBoff 11.4—-11.8 11.7—-16.8
NG off 0.03-23 3.0-16.7

Table 3.3: The percentage of the effects on the EWPT by turning off specific channel.

180 . . : 30
full
160~ ] 25f —==m- GB off
B - TGB off
Ko NG off
= 10F . 1 200
R R ot e
O 120f 0 T Tl & T LT
..... - . é) ”’4 .-
0 ~—— e
& wl T it
full WP
----- GB off e
80f ------ TGB off g 0.5k
NG off
60 . . . 00 . . .
0.20 0.25 0.30 0.35 0.40 0.20 0.25 0.30 0.35 0.40
AHS )LHS

Figure 3.2: The effect of thermal (TGB off, red dot-dashed), non-thermal gauge (GB off,
green dashed) and NG bosons (NG off, yellow dotted) contributions on 7T (Left panel)
and v /T (Right panel) in the OS-like scheme. The blue solid line includes all the con-
tributions.

3.3 Scheme Dependence Comparison

The scheme dependence, see Fig. B.3, is studied by comparison between the MS (green),
the HT (black dotted) and the PRM (red) schemes. Since in the PRM and the MS schemes
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their zero-temperature one-loop potentials are scale-dependent, we vary the renormlaiza-

tion scale from 2m;, (solid) to m, /2 (dashed), see Sec. B.4 for more discussion.

>
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~ 0s
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] MS05mt
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ve/Tc

3.0

251
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0.5F

-

-
-
P
-

-
-
-

oS
— MS2mt
————— MS05mt
——— PRM2mt
————— PRMO5mt ]

0.40

Figure 3.3: Comparison of scheme-depended results and investigation of scale depen-
dence. Lefi: Critical temperature as the function of Ay g. Right: ve/T¢ as the function of
Ags. The OS-like scheme with NG resummation and the HT scheme are depicted as the
blue solid and black dotted lines, respectively. For the MS and the PRM schemes, the style
of lines are green and red, respectively. In the legend, “MS2mt (MS05mt)” represents that
the MS scheme’s renormalization scale is at 2m,(m;/2). Same notation is also applied to

the PRM scheme.

We have the following results:

+ The OS-like and the MS schemes have a nice agreement on each other as varying the

renomalization scale. For T and v /T, (0.4—3.4)% and (0.03 — 15)% differences

are found, respectively. When the MS scheme’s renomalization scale is taken as

my /2, their results are closer. However, the large scale dependence demonstrates

the necessity of the high-order corrections.

* The critical temperature in the HT scheme are observed to be smaller than the OS-

like and the MS schemes by 10 ~ 30 GeV. Furthermore, we find that when Ags <

0.26, the EWPT is not the first order: detail examination reveals that the energy

degenerated minima on the doublet and singlet directions are saddle points; the

global minimum is between the two axes. In addition, in the region where the first

order PT is achieved, v /T is overestimated compared with the two other schemes.
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+ The PRM scheme shows a qualitatively consistency to the OS-like and the MS
schemes in the behavior of T against Ay g; namely, as Ay g decreases, 1 increases.
Notice that one of the universal features of this scheme is that T is lower than the
results from the stand method (Sec. R.3.1)); this is mainly because that the potential
energy at the tree-level minimum is usually greater than the potential energy at the
tree-level plus one-loop minimum. Therefore, T in Eq. (2.38) is lower than T in
Eq. (2.28). Because T is relatively small, v /T, is enhanced compared with the
OS-like and the MS schemes. The reason of the downward curve in i = m;/2 at
Ans Z 0.25 is because v in the PRM scheme is determined by the HT potential:
When T¢ is determined by Eq. is higher than 7 in the HT scheme, it means
that v must be zero at the HT potential; since the global minimum is moved to the

singlet direction.

In general, no significant inconsistency between the results of the PRM scheme and
other schemes are found. Their differences are within the theoretical uncertainty.
For the quantitative analysis, higher-order correction such as O(h?) and the daisy

improved calculations are needed in the future for the complete comparison.

3.4 Scale Dependence of 7

The reason of appearing scale dependence of critical temperature is due to the method of
determining 7 is at the one-loop level. In the PRM scheme, the tree-level tadpole condi-
tions are used in the one-loop level in order to satisfy the NFK identity; thus, large 7z de-
pendences appear in those schemes. This issue is relatively alleviated in the MS scheme:
The reason is because the tadpole conditions of the MS scheme are set at the one-loop
level. Hence, the 7 dependences of Vi are partially cancelled. In the Fig. B.4, we show
the 7z dependence of T explicitly in the range of 2m, ~ m;/2 while the Ay = 0.2. We
find a spike at 7z ~ 109 GeV and suspect this is purely caused by the accidental cancella-
tion in Vew among different particle contributions. Because the value of renomalization

scale in denominator of logarithm can be larger or smaller than field-dependent masses in
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numerator, this decreases the overall potential and needs larger thermal contributions to
satisfy the degenerated condition.

Like shown in [25], one is possible to make 7 to be ji-independent by replacing the
parameters in the tree-level potential with running ones, i.e., using renormalization group
equations to evaluate the parameters. However, the starting scale of the running is still a
input parameter. The fundamental solution of 7z dependences is to include the higher order

correction which is beyond our current goal.

"7

148

142 MS Scheme

Aus = 0.2

100 150 200 250 300 350

f[GeV]

Figure 3.4: Critical temperature as the function of renomalization scale in the MS scheme.
The parameter settings are Ayg = 0.2 and mg = my /2. The spike around 109 GeV is ex-
pected to be an accidental cancellation among contributions of different particle contents,
not any physical or theoretical interest.

140

25
doi:10.6342/N'TU201900064



Chapter 4

Discussion and Conclusion

4.1 Discussion: Dark Matter, Vacuum Stability and Per-

turbativity

By imposing Z; symmetry, S can be one of the components of the dark matter [8, 9].
The parameters (Ays = 0.2 - 0.4, mg = my/2) we chose is capable of escaping both
the direct [26] and indirect detections [27]. It has been showed that, in the singlet DM
model while DM mass is half of the Higgs mass, to achieve the relic denisity observed
today (2h? = 0.1186 4 0.0020) [28], Airg has to below 2 x 10~% [29]. In our parameter
region, the singlet DM contributes very little to the relic density (3.29 x 1077- 8.4 x 108
calculated by MicrOMEGAs 5.0.6. [30]). However, if mg is around 0.4 TeV, it is possible

to generate the observed relic density.

Another issue in the resonance region (mg = my/2) is that the small mg is not able
to keep the stability of the absolute vacuum when running the coupling to high energy
scale (in the other words, the EW vacuum in this case is metastable) [3 1]; though in such
scenario the life time of tunnelling to global minimum is still longer than the age of the
universe. [fmgis0.1-1TeV with \ys = 0.2, the Higgs quartic coupling will stay positive
and it guarantees the stability. Even though high mass region can solve previous two issues
(vacuum stability and insignificant contribution to relic density), Ay g in those parameter

space easily violates perturbativity calculation before the scale reaches the Planck scale
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(~ 10! GeV). In contrast, the energy scale of perturbativity violation for our parameter
settings can be very high [31]. In the most EWBG scenarios, they encounter the Landau
pole before the scale reaches to the Planck scale while requiring the baryon preservation
criterion ve/T¢ 2 1. In our case, for Ays < 0.33, all the couplings are below the 47 all

the way to the Planck scale by using the one-loop renormalization group equations.

4.2 Conclusion

EWPT is revisited with the scalar singlet-extended SM by using several calculation schemes.
The effect of thermal, non-thermal gauge channels and NG resummation are studied. The
parameters space we investigate is mg = my /2 and 0.2 < Agg < 0.4.

In the OS-like scheme, the occurrence of the IR divergent in the NG boson channels
demonstrates that the NG resummation is necessary; even though the NG resmmmation is
the two-loop effect which is expected to be minor. We find that the NG resummation has
a (0.03 — 2.3)% effect on T¢> and (3.0 — 16.7)% on ve /Tx. When the non-thermal gauge
channels are turned off, small numerical impacts on T (0.16 —0.18%) and ve /T (0.29 —
0.47%) are observed. The effect of thermal gauge channels is relatively significant even
when the tree barrier is present, (11.4 — 11.8)% on T and (11.7 — 16.8)% on v¢ /T are
detected. The above results have motivated us to investigate and quantify the £ dependence
by using the general R in a future work.

We find that both 7 and v /T in the OS-like and the MS schemes have nice agree-
ment on each other; the differences are within the scale uncertainty. For T, their dif-
ference is (0.4 — 3.2)% and for v /T is (0.03 — 15)%. In the analysis between gauge-
dependent and -independent schemes, we find that 1) the HT scheme is over-simplified and
T¢ 1s largely underestimated, and i1) we find that the PRM scheme is qualitatively con-
sistent to the OS-like and the MS schemes. However, the large theoretical uncertainties

caused by renormalization scale demonstrates the higher order corrections are needed.
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Appendix A

Generating Functional of 1(not 1)-PI

The effective action can generate 1PI correlation functions. To see this, we first begin

by the second derivative of the generating functional for the connected Green’s functions

(WLJD:

SPW[J
37 (y )5J

(A.1)

where we have omitted the position variable in the parentheses. Above can be simplified

by using Eq. ([1.5) notation (the subscript, .J, is omitted for simplicity),

32 W[J]

510007 = Olew)s(:)10) — 0low)I0)0lo() o). (A2)

The physical meaning of the above can be shown diagrammatically, the first term in the

right hand side includes bothf

v v (A3)

*Diagrams are generated by [32].
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$+y, (A4)

where every blob contains sum of connect diagrams. For the second term of Eq. (A.2),
it contains only diagrams like Eq. (A.4). Thus, 1/ [.J] generates diagrams like Eq. (A.3)
alone; furthermore, the higher derivatives of W [.J] will still generate the connect diagrams
as desired. The effective action generates the inverse of the same two-point diagrams as

W [J]. To see this, from Eq. ([.9), we know that

5 ST [ 002) ]
= [ 57(y) 50u(2)00.(2) (89)

Furthermore, substituting ¢. with Eq. ([.3), we have

e [ P BT
o -y) / 510517 5ou(w)ou(2) (4.6)

one can easily observe that the second derivative of the effective action is actually the
inverse of the two point function. At this point, one can already notice that the generating
function of the effective action; however, to demonstrate the ability of generating 1PI, one
has to go to the 3rd or higher derivative of the effective action. Before showing the main
difference of I'[¢.] and W[J], we first consider

A7
whre — D) = e = (wcigﬁvv))_l' -
The 3rd derivative of W[J] is then
SW 2] o 5 0Tl \ ™'

ST = 4 PE G <6¢c<x>5¢c<y>> - B

to evaluate the derivative of the parentheses we use
(%M—l(a) = —M—lalg—((f‘)M—l. (A.9)
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Consequently, we have

SWle] =—1 “w D(z,w
55 ()T (2) / d'w D(z,w)

/ P’ (6@(22(@))_1 5¢c(u)5gj(rv)5¢c(w) (MC(T)ZC(Z/))_I’

o T 0°T
= z/d wd ud v D(z,w)D(x,u)5¢c(u)5¢c(v)5¢c(w)D(v,y),
(A.10)

where in the last step, Eq. (A.7) is used. The equation can be understood by the digram
again:

(A.11)

where the left hand side digram equals to the 3rd derivative of WW[J]; the two-point func-
tions connect the internal positions u, v and w, which will be integrated out later, to the
external points (z, y and 2). In the right hand side, the crossed dot which connects the
the internal positions represents the 3rd derivative of the effective action; since the exter-
nal lines are amputated, one can observe that the crossed dot is actually a 1PI three-point
function which is generated by the effective action. Additionally, one can show that for

n > 3, the effective action is the generating functional for 1PI n-point Green’s function.
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Appendix B

Effective Potential in One-Loop

To calculate the one-loop effective potential, recall the general form, Eq. (1.24), for con-

venience,

o
Viler) = 5 [ gteTniG :00), ®.1)

We first consider a simple theory with a scalar field, where its Lagrangian is given by

1 2 1 22 A 4
£ =3 (0u(a))? = 5 (@) - So'(@),

1 A\ (B.2)
and V= §m2¢2(x) + $¢4(x).
The propagator of this theory is then
?
G (p; c) — ) B.3
(0i60) = (B.3)

where the definition of (¢, ) can be found in Appendix D while ) g is turned off. Since
the scalar field is absent of internal d.o.f., the trace in Eq. (B.1)) is equal to 1; so that it

becomes

Viten) = =5 [ skl 7 = m(o) +ic). (B.4)
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In order to evaluate the integral, a Wick rotation is performed:

1 [ d*
Viten) = 5 | Gometn (0 + m(0) Y

1 dP
Wi = 5o [ B W +mn)

where we have suppressed the ie term and subtracted a constant coefficient, In(—1). In the
second equality, we have used the dimension regularization. In the D-dimension, A has the
dimension of 4 — D = ¢; however, instead of using a non-integral dimensional coupling
constant, we introduce a parameter (1), which later is recognized as a renormalization
scale and it has mass dimension, and trade A — Au®. To unfold the logarithm, one has to

calculate the derivative with respect to m?,

JOVi(ge) 1 g/deE 1

Y om(o) 2" ) @m)P ph () Be
1.1 1 r(1 D (B.6)
— 2 PR (o)) P\ 2)
where the identity [33],
/ A T i1y 1 1 T(a+3)r(b—a-19) B
2m)P (k2 — A (47)d/2 Ab-a—d/2 T(b)T'(2) ’ '
has been used. Integrating with respect to m?,
1 1 D\ 2 D/2
€ — a—r 1—-=1= 2
V() = i (4m)D/? ( 2) p (M)
1 2 \ D/2-2 4
_ m r(i-2)2zm
32712 \ dmp? 2) D
4 1 2 \ D/2-2 D
B () 6-9),
3271 D(L—1) \4drmu 2 2 (B.8)
m 3 e, m
— 14+ = 2 .. 1— 21 2 .
647r2( +45+O(5)+ )( 2n47m2+(9(6)+ )

X (§—7E+(9(5)+--->,

m? 2 m?* 3 5
= 6471'2 (—g—ln47r—|—'yE+lnF—§+O(6 )+),
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where we have used the I" function’s property: I'(1+ z) = zI'(z). Taylor expansions have
also been performed; thus after utilizing the MS renormalization scheme (we also present
DR scheme for the completeness. In this case, these two schemes give the same results.)

and taking ¢ — 0, we have

scalar m4 ¢c m2 ¢c 3 R __
ysealar () = 64(7r2) (ln M(2 ) — 5) . (MS-scheme = DR-scheme), (B.9)

where i = 4me 7. Notice that in the following, we adopt procedures that i) the
dimensional regularization scheme is followed by the MS renormlization scheme; ii) the
dimensional reduction is renormlized by the DR scheme. In the thesis, we use the former
method.

For fermion, the relevant part of Lagrangian is

L(p,p) ~ P (D —my(oc)) ¥, (B.10)

and its propagator is
i

G = .
T pr—mi (o) + ic

(B.11)

Note that only diagrams with even number of vertexes have contributions, since the trace
of odd number gamma matrix(s) is zero. The internal d.o.f. of fermion is the spinor space

whose trace actually is depended on the regularization schemes,

2D/2 — 95/2=2 " dimensional regularization,
Tr(1) = (B.12)

4, dimensional reduction.

Accordingly, the one-loop potential for fermion case is then

Vi(ge) = 5/ %Tra)ﬂln(p? — m2(6.)), (B.13)
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where the addition minus comes from the fermionic loop; the second trace is for the dif-

ferent fermion species. By performing the similar procedure like above, we have

m4 c m2 c NQ
—4 x 6@5?;) <1n f(f) — % +1In 2) , (MS-scheme),

‘/lfermion (¢C) — A (B 14)

m4 c m2 c < —_—
—4 X 6121(7?2) <ln ’;—fj) — %) ,  (DR-scheme).

Note that the factor, In 2, is often omitted in the convention, as it is absorbed in . If the
perturbation is good enough, the small difference of i will not change the result signifi-
cantly; we also mention how this issue affect T in the Sec.3.4.

Above is also applied to the boson channels. For boson case, gauge bosons related parts

in Lagrangian are
—1 1 1
L(¢e, Ap) ~ — (F" F) + §(a,u¢c>TaH¢c +3 (M), ARA™ + - (B.IS)

For (M j)ab, one can check Eq. (E.L§). After taking the Landau gauge, the propagator is

[
G =— AW B.16
! p2 - M3<¢c> ( )

where A* = g — ptp” /p*. The trace of the inverse propagator is
Tr (iG,') = Tr (p* — M2(¢)) Tr (A), (B.17)

where the first trace is for the different channels of the gauge bosons; the second trace is

depended on regularization scheme:

=D —1=3—¢, dimension regularization,
Tr (A") = g, A" (B.18)

=3, dimension reduction.
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Finally, the one-loop potential for gauge bosons are given by

3 ¢ M3(¢e) <ln J _ %) ., (MS-scheme),

6472

V'lboson<¢c) — p (B19)
3 x Moo (m - g) . (DR-scheme).
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Appendix C

Approximate Thermal Function

The thermal functions are infinite sums of modified Bessel functions of the second kind

(K>) [22]:

[e.e]

Ipp(a aQZ n2 éRKQ (na), (C.1)

n=1

where the plus and minus signs are for the boson and fermion, respectively. We set the goal
of the difference between approximate functions and the numerical integrations should be

less than 1075, To achieve this, we investigate the following:

C.1 Boson

In the region of a = m/T < 0.35, we approximate the thermal function (I5) with a
high temperature expansion for boson (HTEB); in 0.35 < a < 9.0, a polynomial fitting
function for boson (PFFB) is used; a low temperature approximation for boson (LTEB) is
adopted for a > 9.0; when a € i, we replace RK, with the second kind of unmodified

Bessel function (Y3) by an identity.
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C.1.1 HTEB (a < 0.35)

The HTEB we adopt is [34]

T T, Toag a' 3 ¢(3) ¢(5) '
ST T2 T2 =L (log(a?) — 3.91 — 2 6_ o 2
5T @) 5 (Og(a ) 2) "6t T wen) 45

(C.2)
where ( is the Riemann zeta function and the last term is for the normalization. Note that
we truncate the expansion at O(a) = 8, since the difference between the HTEB and the
numerical integration, which is performed by the routine NIntegrate in Mathematica,

is less than 1.2 x 1079,

C.1.2 PFFB (0.35 <a <9.0)

Though the above HTEB is sufficient at a < (.35, above this threshold, the HTEB needs to
include more higher order terms. Instead, we adopt the PFFB for the middle temperature

region, its detail form is the following:

— 1.3399397387595 x 10~* + 1.6469900315759 x 10 3a + 8.1272859398439 x 10~ 'a?

— 4.7992824417603 x 10~ 'a® + 1.7878967977712 x 10~ a* — 6.0632418036213 x 10 %a®
+2.0900675811146 x 10~%a’ — 6.5865607755012 x 10~ *a’ + 1.6413560386569 x 10 *a®

— 2.7585765349357 x 10~ *a” + 1.6331229085345 x 10~°a'® + 6.3995356651085 x 10 %a!!

— 2.4477725951995 x 10~ %a'? + 4.7496664471527 x 10~ "a'® — 6.1710744609837 x 10 ¥a'
+ 5.6506277097478 x 10™%a® — 3.6262488646246 x 10~'%'% + 1.5599595264175 x 10~ a'”

— 4.0517259606745 x 107 13a'® + 4.8112110679805 x 10~ *%a!?.

The difference between the PFFB and the numerical integration is less than 1.5 x 1077 as

desired.
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C.1.3 LTEB (a > 9.0)

We find that when a > 9.0, the deviation of the PFFB from the numerical integration is
increasing as a is increasing, although the higher order terms are included. At this low
temperature region, the LTEB is particular good compared with the PFFB. We truncated
the LTEB at O(a) = 1/2:

T g ( 105 15 I
S R TE (e | T C3
\/;L (128a2 TR T E (©3)

The desired small difference (1.4 x 10~%) between the LTEB and the numerical integration

1s achieved.

C.1.4 Bessel Approximation for a € R

The real part of the modified Bessel function of the second kind with the pure imaginary
argument is proportional to the unmodified Bessel function of the second kind (Y5), see
(35, Eq.9],

RI(bi) = gYQ(b). (C.4)

A built-in function of Mathematica, BesselY, is used to evaluate Y5. The Bessel approx-

imation we take is the following:

m qn 4

1 s
—a”—= —Ys(n x 1 —. C.5

@5 3 el x Im(a)) + (©5)
To save the computational time, we first create a table of a v.s. Eq. (C.5). The step of a in
the table is 0.01, the range of a is from 0.01 to 100, and m is 1200. Since the BesselY
cannot be well evaluated while a = 0, we set the function equals to zero while argument
is zero. Finally, the table is fitted by the function, Interpolation. We use the resulting

fitting function hereafter.
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C.2 Fermion

Similar to the boson case, the high temperature expansion for fermion (HTEF) is used.
Note that the threshold (a < 0.32) is different from the boson case; a polynomial fitting
function for fermion (PFFF) is adopted in the range of 0.32 < a < 9.0; the low temper-
ature expansion for fermion (LTEF) is adopted when a > 9.0; when a € R, a Bessel
approximation is same as the boson case except a factor, (—1)", and a normalization fac-

tor, — 77 /360.

C.2.1 HTEF (a < 0.32)

The HTEF we utilize is

4 2 1 12 4
Tt (tog(a?) — 114 — 3 ) 4 oB) o 3160) o 120600 1 TT
360 24 2 96(27)? 256(2m)* 512(27)6 360

(C.6)
where again ( is the Riemann zeta function and the normalization is also added. The
difference between the HTEF and the numerical integration is less than 1.5 x 1076, We

find out that when a > 0.32, the difference is bigger than our precision goal.

C.2.2 PFFF (0.32 < a < 9.0)

Similar to the boson case, as a is greater than the threshold, the HTEF is insufficient. To
be noted that the order of PFFF is different from PFFB (O(a) = 19), we need less terms

to achieve the precision goal:

— 1.8606350459538 x 10~* 4 2.1643938728080 x 10 3a — 4.2311984215163 x 104>

+ 4.8651379062231 x 10 2a® + 8.4866222329381 x 10~%a* — 5.3476197518025 x 10~ 2a°
+1.7903012239488 x 102a% — 4.2239918118272 x 10~ 3a” + 7.8257512405354 x 10~ *a®
—1.2116831287896 x 10~ a® + 1.6079151201184 x 107 9a'® — 1.7979838681990 x 10 %a!!
+1.6136414363595 x 10~ "a'? — 1.0897600155288 x 10 %a'® 4 5.1115038418446 x 10~V
— 1.4699419052289 x 10~'a'® 4 1.9415262439880 x 10~ '3a"°.
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The difference between the PFFF and the numerical integration is less than 3 x 107 as

desired.

C.2.3 LTEF (a > 9.0)

Again, the PFFF is merely sufficient when a ~ 9.0. In the low temperature region, the

LTEF is relatively easy and precision-wise good:

Ta3l2e—a (1 15 105 _7_7T4 C.7
\/;l ¢ (+8a+128a2 360° €9

The difference between the LTEF and the numerical integration is less than 1.4 x 1076,

C24 aciR

Similarly, when a € i, we use the identity Eq. (C.4),

-3 S U0 x tma)) — 5 (C.8)
1

where m = 1200 and the procedure for creating fitting function is same as the boson case.
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Appendix D

Field-Dependent Mass

D.1 Higgs Bosons

For the scalar sector, the mass matrix is

OV /94*  OV§/0d0ds B —p3 4 3Agd? + Apsgh /2 AHSPDs
OV /0ps0p OV /0d% AHsPPs — %+ 3AsP% + Ausd?/2
(D.1)
m2, me
_ hh Mg D2)
Mg, Mg

Changing to the physical-mass basis, the eigenvalues are,

(

N—

my, (0, 0s) =3 (Mh, + Mg + /(Mh), —Mgg)? +4mpg ) |

mH2(¢ bs) = %

when s, > Mzg,

n + Mg — /(M) — Mig)? + 4myg )

when T}, < Mg,

my, (¢, 0s) =3 <mhh + Mg + / (M), — Mig)? + 4y )

km%h(¢’ ¢S) = %

N———

—2
My, + Mag — v/ (M), — Mag)? + 4mpg ) -

O

(D.3)

Note that the above conventions make H; always be doublet-like and H, always be singlet-
like. In the potential, the overall contributions of H; and H; should not be affected by the
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conventions; however, in the NG resummation, the conventions are important for the first
two terms in Eq. (R.17), as 7y, and 7y, are for doublet-like and singlet-like particles,

specifically.

While considering the thermal corrected field-dependent masses, the mass matrix be-

comes
My, + 2u(T) T (D4)
gy, mgs + Xs(T),
where
A A 392 + ¢? 2
Su(T) = (%’ + oAy %) T, (D.5)
A A
2s(T) = (ZS + %S) T2, (D.6)

The eigenvalues are then

——2 1/ .
MHl,HQ (¢7 nga T) = 5 (mhh + m%vS‘FZH(T) + Zs(T)

+ \/(mih — s+ Su(T) — Ss(T)) + 4m;§s>.

(D.7)

The total effect of H; and H, to the thermal contributions will be summed up. Therefore,

the role (the plus-minus sign) of H, and H; are relatively trivial.

D.2 NG Bosons

The field-dependent NG bosons take the form of

0*Vy
0G?

A
Tign(0, 05) =g (6, 65) = 53 =~y + And® + =705 (D)

The thermally corrected field-dependent masses will be

L, . A
Moo(9, 05, T) = M= (9,65, T) = —pfs + Aud” + %d)g +34(T). (D.9)
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D.3 Gauge Boson

For gauge bosons,

2 2 2
(o) = 26, mye) = 20 (D.10)

For thermally corrected gauge bosons, in the transverse part, no static thermal mass is in

the perturbation theory:

My, (¢) =y (0), My, (¢) =my(0). (D.11)

Only the longitudinal part of gauge bosons require the thermal correction. The thermally

corrected mass matrix in the basis (4), A%, A% B,) is

W

G2/4 + Ty (T) 0 0 0
0 2/4 + 1w (T 0 0
92/ W( ) (D.12)
0 0 G/A+TIw(T)  —gog19?/4
0 0 —g210°/4  gi/4+1p(T)

Eigenvalues of longitudinal parts are

. 1(1
M2ZL77L (¢a T) = 5 <Z(gg + g%)ng + HW(T) + HB(T)

+ \/G(gg — 91)0? + T (T) — HB(T)) + 927:01@54) !

(D.13)
—9 .
My, (6,T) = My (¢) + T (T), (D.14)

where
_ (> Ng(Ne +1)\ 50 _ 1 o

Hw (T) = (6 t—1 95T NN gng , (D.15)
1 N, /11 11

Iz(T)= |-+ =2 | =N, £ IS — D.1

5(T) {6+ T (9 c+3>]91 Mooy 60T (D.16)
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where IV, represents number of generations and N¢ is a number of colors.

D.4 Top Quark

As only the top quark contribution is significant for our analyses, its field-dependent mass
is

m(0) = L. (D.17)
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Appendix E

An Illustrative Application PRM

Here we present an explicit example to demonstrate how the gauge dependence disappears

in the PRM scheme. Consider a SU(2) x U(1) theory, the field is written as

1 [P +iD
H=—| """77|. (E.1)
V2 | o, i,
The generatorsf] of those groups are
-1 1
Tl — 1 1 T2 — 1 1
21 21 1
1 —1
-1 -1
T3 = 1 L T4 — 1 1
1 —1
—1 1
*We use the real representation, i.e., —i is factored out. That is, T = —iT", where T is what we adopt.
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Note that {T", T2, T3} are generators of isospin, and 7" is for hypercharge. The Euclidean

Lagrangian is

1

4
1 1

with V(@) = —§u2qﬂq> + ZA(@T@)Q, (E.3)

1 a a uv
Lp= Q(D@)}(D#cb)i + Vo (@) + Wi, Wwer, (E.2)

where ®; represents a vector (1, ®y, @3, ®y), D, = 0, +g¢*T*Ws, Wi = {W,;, W2, W2 B,}

and g = {92, 92, 92, 91}
The field can be separated by the classical fields (¢.) and quantum fields, h(:c):ﬂ

Qi(x) = pei + E(m), (E-4)

where ¢, = (0,0, ¢,0), and h = (hy, h, hs, hy). The Higgs field is the third component

of h. The location of extrema of the Higgs potential at the tree level are
oM =0, P = £\/p2/X = £ 246 GeV. (E.5)

Let’s expand Eq. (E.2) in terms of ¢, arranging it in the power of the quantum field

(h;) and the gauge fields (1¥/,,). Then the Euclidean Lagrangian will be

1 A
,CE = (_§M2¢2 + Z¢4) + (—M2¢h3 + )\¢3h3 + a,uhigaTaWS(bci)
1 1 A
+ [—§hi82hi — §u2h? +1 (66°h3 + 26°h3 + 26°h3 + 26°h3) + O,hig T Wihi| + -+
1
+ [§W5(a2guu — 8/‘81/)(511le£’} + [(gaTaWS¢C)T<gaTaW5¢C)] 4o,

(E.6)

Note that (1) since ¢, is independent of spacetime, its derivative is zero; (2) those terms

with cubic and quadratic in ¢. and W are omitted here; (3) the gauge field strength is

TThis is called the background field method, a classical field are defined by: Euclidean action is mini-
mized when the field value equals to the classical field. A quantum field is the field that fluctuates around
the minimum.
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cast by the following,

1 .
—Z(GHWLI = O,WH ("W — "W*H), gf“bCijWlf are omitted

1

—Z(auwgaﬂww — QWS W e — J,W LW + 0, W W H),
1 a av 14 a

= —§Wy(—62W + 0, 0" W),

1

= SWI(Sg — 09" )5 W,

where we have integrated by parts and redefined  and v due to their symmetry. Eq. (E.6)

is equivalent to a more compact form:

OV, (@) 1 o
Vole) +di—pq =], + 5@( — 02 ME(0)) 6 + DO (9T 00 .
b W@ — 05016 1w (0 )WL+ -+,
where
M) = V| (6™ = (T (60T (6T 00) E3)
T 0600, 160 AT TGS R g -

The explicit form of above can be understood by expanding the component in the potential:

1 1
W(®) = __MQCI)iq)i + _)\(q)iq)i)ga

% 4 \ (E.9)
= =5 (Wt + Ry + (hs +0)° + 1) + 7 (A1 + by + (hs + 6)° + 1),

and thus the derivative can be understood by the following: if 7 # 3,

g‘ff = —phi+ %<4hih3~ +4h} + dhi(hs + 9)%), (E.10)
A )
=~ 10 + A%y (hs + 0)° E.11
Shih, 10+ Adulha +9) (E.11)
+ purely quantum field terms, (E.12)
9%V, ) )
AT i E.1
Dty ne ~ (TH AP (E.13)
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and if ¢ = 3,

Vo

o = 1 (hs + ) + Ay + ), (E.14)
0*V
T = i+ B + ) (E.15)
0%V
ah; = — 1% 4 3\°. (E.16)

As a result, the scalar mass matrix, ij (¢e), is

_,u2 +)\¢2
2 2
—p+ g
M (¢c) = . (E.17)
—pu? + 3Ag?

_u2 + )\¢2

The gauge bosons’ mass matrix, m?% (), is

m?ﬁl(QbC)ab = (nga(¢C)?<9aTb(¢C)ia

(92T 0 ) 2T b (92T )" g2 T2 e
. (92T2¢C)T92T2¢c
(92T3¢C)T92T3¢c <92T3¢C)T91T4¢c
(1T )T g2 T30 (92T )T goaT b,
93
2
:l 92 e
4 9 '
g5 —3g201
—g291 95

(E.18)

Notice that ab indices of the bracket represent the gauge fields’ indices. The mixing term,

oo, Wl‘j(gT%c)i, in Eq. (E.7) can be removed by imposing the gauge fixing condition,
F=0"Wy —£i(gT ¢ )i = 0, (E.19)
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with the gauge fixing term

B _(]:'a)2
Lgf — 25 )
=% [(3”W“) — 260"Widi(gT" b )i + Edi (9T be)il D (9T e )5 ]
( oY ) (E.20)
T + Wi oi(gT " ¢c)i — §€¢¢(9T“¢c)¢§¢j (91" ¢c);
oWy 1
= % W0 gi(gT e )i — §£¢im,24(¢c)ij¢ja
where the last term is called gauge-fixing scalar boson mass matrix:
m,24(¢c)z] = (gT“QSC);TF X (¢i(gTa¢c)j
(9°T )1 (9°T Pe)1 (9T de)i (9°T de):
_ (gaTa¢C)2T(gaTa¢C)2
(9°T¢e)5 (9T be)s
(9"T¢e)i (9°T " dc)a
9
1 %
= = ¢27
4 0
9 + gt
(E.21)

note that the 7 indices of the bracket represent the scalar fields’ indices. We also add in

the ghost compensating terms:

‘Cgh = nTa (_825ab - fmi(gbc)ab) nb + gfabc(aunm) - §(gTa¢c) fe b(QTb¢C)

(E.22)
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The full Lagrangian is then

oV,
Lg + Lop+ Lon = V(o) + %7;

gl (1= D o] ot T

1
+ 50i( = 0% + ME(60) — Emi(@e)ss ) 0

oc
+ 0l (=070 — EmZ(¢e)) " + -,
(E.23)

where high order terms are omitted for simplicity. The results of loop-level potential

calculation give us that

Ver(9) = Vo(9) (E.24)
g | (;if;’d [Trin(p? — M2 — e (0),) (E25)
+(d = DTrin(p® — m%(4)*) + Trin(p* — Em’ (¢)*) (E.26)
= 2Trln(p? — Em(9)™) + -+ |, (E27)

where - - - are field independent terms. A pre-factor, d — 1, is from the dimension regular-
ization (the conventional choice is d = 4 — 2¢). This result shows that Eq. (E.29) comes
from the scalar loop, Eq. (E.26) comes form the gauge loop; (E.27) is originated from the
ghost loop. Note that the gauge dependence is cancelled out, if the scalar loop contribution

is arranged into
Trln(p* — ij —&m%(9)i;) — Trin(p® — ij) + Trin(p® — Em%(4)i;);  (E.28)

As a consequence, the gauge dependence will be eliminated at the one-loop level. The
main idea of the PRM scheme is to achieve the above arrangement. Let’s first consider a

matrix M whose matrix elements A, B, efc., are also matrices:
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Since M can be arranged into

A0 I A7'B

M= : (E.29)

C I 0 D-CA'B

and the property of the determinant shows that det G = det(T'F) = det(T") det(£), its
determinant is then

det M = det Adet(D — CA™'B). (E.30)

If B, C are zeros, det M = det Adet D. As we know that Indet M = Trln M,

Indet M =Indet A + Indet D,

(E.31)
Trin M =Trln A+ Trln D.
Back to our case, the matrix in Eq. (E.28) logarithm is
Sij = P?j - M2(¢)z’j - fm,%x(¢)ij- (E.32)

If S;; is a block-diagonalized matrix which is crucial since in the most of the cases it is
not; then M? and m? ., are simultaneously diagonalizable but their eigenvalues live in

distinct subspaces (i.e., their eigenvalues are not mixed), then we havel

2 2
Pl — M; 0
b (E.33)
0 Pig — £ g
As a result, combining Eq. (E.31]), we finally have the separation:
Trln S = Trin(p® — M32) + Trln(p® — Em? ). (E.34)

In this particular circumstance, we can eliminate the gauge dependence at the one-loop
level. In the next section, we see how the gauge-invariant 7> can be got from the above

formalism.

HIn the Sec. [E.1|, the upper left matrix is 1 x 1, and the lower right matrix is 3 x 3
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E.1 Gauge-invariant 7

In this theory, similar to the condition in our model Eq. (2.38), the PRM scheme finds 7

when the condition,
Vo(5!) + hVi(a), Te, €) = Vo (o) + BV (6., Te, €), (E.35)

is satisfied; the minima are defined at Eq. (E.5). If ¢ terms which mentioned in the previous
section is cancelled, this particular T is gauge independent. In Eq. (E.33), the left hand
side is gauge invariant which can be easily recognized: all the gauge dependent terms
Eq. (E.18) and Eq. (E.21)) in Eq. (E.29), Eq. (E.26) and Eq. (E.27) are all proportional to
the classical background whose qﬁ(()l) = 0. The right hand side takes the EW-breaking
minimum (gbéQ) = \/m = 246 GeV). Therefore, the NG boson masses are equal to

zero in this scheme, the scalar mass matrix Eq. (E.17) then becomes
M*(6));; = diag(0,0,242,0). (E.36)

The gauge-fixing scalar boson mass matrix is then

2
2 H
ma(66")s = 45

These two matrices actually can be arranged into the block-diagonalized form like Eq. (E.33)),
ie., M?( 82))@' and mi(gb((f))ij are simultaneously diagonalizable; their eigenvalues live
in different subspace.E Therefore, the separation like Eq. (E.34) can be achieve. To see

explicitly how Trin(p? — &m2(hY);;) eliminates Trin(p? — &m2 (hS))%), we need to

$Note that this is not always valid, only when one evaluates the minima at the tree level.
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diagonalize m? (¢.)®, Eq. (E.18), through the rotation matrix

1
1
Rt —  tanfy = 2. (E.38)
cosfBy  sin Oy il
—sinfy cosOy
After rotation, we have
9
1 9
Rmi (6e)"(RY)* = o (E.39)
0

9t + 95

This is exactly the same as the gauge-fixing scalar boson mass matrix. Therefore, these
two terms are cancelled out eventually. Finally, we show that T, obtained from Eq. (E.35)

is a gauge-independent result.
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