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摘摘摘要要要

現今軟體專案的開發通常都是從需求開始，先利用需求來產生使用案例規格書

以及使用案例圖，接著再使用這兩種文件作為基礎，進行後續軟體的設計、實作

以及測試等一系列開發工作，最終得以將軟體產出。

而在這個過程中，除了最一開始的需求可以由一般使用者提出以外，其餘的環

節往往都需要大量專業的軟體工程師參與才得以進行，這不但耗費大量的金錢與

時間，也讓一般使用者難以自行開發軟體。

我們的研究專注於網路應用程式的開發，並提出了一種方法能讓一般使用者只

需提供使用案例規格書以及使用案例圖作為輸入，即可自動產生網路應用程式。

這個方法可以被分成兩個部分，前半部分是將輸入轉換成任務模型，後半部分則

是利用任務模型自動產生網路應用程式，本研究主要專注於前半段，因此稱我們

開發的系統為Task Model Generator。

使用者輸入使用案例規格書以及使用案例圖後，Task Model Generator會利用

機器學習模型以及特定的演算法自動產生出一系列的任務模型，後續則可以利用

這些任務模型自動構建出使用者介面，並產生網路應用程式。如此一來不僅能降

低網路應用程式的開發門檻，也能大幅減少開發所需的金錢與時間。

關關關鍵鍵鍵詞詞詞— 任務模型、機器學習、設計模式、使用者介面元件合成
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Abstracts

A software development process usually begins with the requirements, which are

used to generate use case specifications and use case diagrams. These documents

then serve as the foundation for designing, implementing, and testing the software.

Eventually the software is produced.

Typically, in this process, only the requirements can be provided by common

users, while other parts require the participation of skilled software engineers. This

not only consumes a significant amount of time and money, but also makes it hard

for common users to develop software on their own.

Our research focuses specifically on the development of web applications. We

propose an approach that enables users to generate web applications by only pro-

viding use case specifications and use case diagram as input. The process can be

divided into two parts: task model generation and web application generation. This

research mainly focuses on the first part and introduces a system called “Task

Model Generator.”

Task Model Generator uses machine learning models and specific algorithms to

generate a series of task models, which can be used to design and build the user
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interface later. This research not only simplifies the web application development

for common users but also reduces the amount of time and money required for the

development process.

Index terms — Task Model, Machine Learning, Design Pattern, UI Compo-

nent Composition
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Chapter 1

Introduction

How to reduce the threshold and resources required for software development has

always been an important issue in software engineering. In the research field of web

application development, with the contributions of a series of researches [6] [7] [10],

we have enabled users to create web applications without the need of writing code

by using our system. In our system, they only need to focus on designing the

user interface and binding relevant services, and then our system can automatically

generate the corresponding web application. Building upon this foundation, we aim

to further minimize the user’s manual operations and design efforts, allowing them to

only provide the most essential information and the corresponding web application

is generated automatically.

The essential information here refers to the requirements and their derived use

case specifications along with a use case diagram. These documents provide the

information about the user-system interactions and the relationships between inter-

1
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actions. In a software development process, software engineers use this information

to design, implement and test the software. However, in the proposed approach

of our research, once obtaining the essential information, we can use Task Model

Generator to generate task models, which can be used in later steps to build the

user interface and generate the web application. For more details about how to use

task models to build a user interface and generate a web application can be referred

to the research conducted by Liou [8]. The process of Task Model Generator can be

divided into four steps:

1. Task Generation

2. Task Attribute Generation

3. Use Case CTT Generation

4. Main CTT Generation

This paper will focus on discussing the design and implementation details of

the aforementioned steps. Since the process of implementation involves the use of

Transformer-based machine learning models, we will also discuss how to use de-

sign patterns to interpret and analyze machine learning models. Additionally, our

research will cover how to make Composition Engine support the generation of fron-

tend code that uses Angular API and incorporates authentication mechanism.

The paper is structured as follows: Chapter 2 describes related research; Chap-

ter 3 describes the design and implementation details of the steps executed in Task

Model Generator; Chapter 4 describes the process of organizing machine learning

2
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design pattern and discusses its architecture; Chapter 5 describes how Composition

Engine is modified to generate frontend code that supports Angular API and incor-

porates authentication mechanism; Chapter 6 summarizes the contributions of our

research and discusses the problems we have encountered, as well as future work.

3
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Chapter 2

Related Work

In this chapter, we present the related work and highlight the characteristics of

these works:

2.1 Figma

Figma [3] is an online drawing tool used for web application design on both

computer and mobile platforms. Its main features include support for dynamic

interactions between web pages, such as navigation and pop-up windows, as well as

real-time collaboration.

Designers can use Figma to create UI components, plan the layout of web ap-

plications for different browsers and use their own designed UI components for web

page design. Additionally, it provides a mechanism for setting navigation relation-

ships between web pages, allowing designers to design the application’s workflow

4
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and relationships between different web pages in a graphical manner.

Figma only requires simple actions such as dragging, clicking and entering basic

parameters, making it accessible to users without programming skill. This user-

friendly aspect makes it easy for common users to get started with this tool.

2.2 FreeMarker

FreeMarker [4] is a Java-based template engine that allows the combination of

data models and templates to generate corresponding textual content. Templates

here refer to textual content containing data binding positions. By binding data to

these positions, specific content from the data models can be displayed in the output

text.

With FreeMarker, users can focus on writing templates to present different

data and FreeMarker will generate the corresponding textual content. Addition-

ally, FreeMarker supports various advanced template features, such as conditional

blocks, iterations, assignments and string operations. These features enable users to

display data in different ways and support binding to more complex data structures.

2.3 Task Model

Task Model [5] is primarily used to represent how activities are performed to

achieve user goals. It is commonly used in user interface design, where designers

use it to represent and manipulate abstracted activities, thereby designing processes

5
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that achieve user goals.

The use of Task Model is typically driven by the need for supporting the imple-

mentation of corresponding systems. If we only provide developers with user stories

or simple design prototypes, developers would have to make many design decisions

on their own. However, developers often lack the relevant background to construct

a complete interactive system. Using Task Model enables designers to represent de-

signs in a more systematic way, providing a basis for implementation and ensuring

that design details are not lost during the implementation process.

2.4 Concur Task Tree

Concur Task Tree (CTT) [2] is a meta-model used to visually represent task

models while also supporting display in XML format. Using Concur Task Tree

allows the interchange of task models between different design tools.

Its main features include focus on activities, hierarchical structure, graphical

syntax, rich temporal operators, task allocation, objects and task attributes, etc.

Additionally, with the emergence of collaborative applications due to the develop-

ment of the internet, Concur Task Tree can also be used to represent the design of

such applications and support applications where users have multiple actors.

6
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2.5 BertSum

BertSum [1] is an open-source, autoencoding, Transformer-based machine learn-

ing model, specifically designed for executing summarization tasks. It is derived from

the BERT model. Apart from revising the original BERT’s architecture, it also mod-

ifies the training schedule by separately optimizing the encoder and decoder. The

encoder is fine-tuned twice for extractive summarization tasks and abstractive sum-

marization tasks, enabling BertSum to adapt to different types of summarization

tasks.

In terms of performance, BertSum achieved nearly the best results in summariza-

tion tasks at the time of its publication. Even though other new language models

have surpassed BertSum’s performance later, its open-source feature and lower sys-

tem requirements still make it widely used for executing summarization tasks.

7
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Chapter 3

Task Model Generator

Task Model Generator utilizes use case specifications and a use case diagram

to generate task models. The generated task models include Concur Task Trees

(CTTs) for each use case as well as the whole project. Through these CTTs, we

can analyze the relationships between different tasks to automatically build the user

interface and generate the corresponding web application.

The process of Task Model Generator can be divided into four steps: Task Gener-

ation, Task Attribute Generation, Use Case Generation, and Main CTT Generation

(See Figure 3.1). In this chapter, we will first introduce the definition and the format

of the Task Model, followed by introductions to the design and the implementation

details of each of the four steps.

8
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Figure 3.1: Process of Task Model Generator

3.1 Task Model Definition

In Task Model Generator, task models are represented in the form of CTT, and

the generated CTTs are represented in XML format. The XML representation of a

CTT can be divided into two parts: the header and the body. The header contains

the information about the whole CTT, while the body contains the information

about the tasks in the CTT and the links between the tasks in the CTT.

In the header, there is only one section: description. The description section

contains the following information:

id: CTT’s ID.

name: CTT’s name.

overview: CTT’s overview, typically the introduction of corresponding use case or

9



doi:10.6342/NTU202303644

CHAPTER 3. TASK MODEL GENERATOR 10

project based on the type of the CTT.

useCase: CTT’s corresponding use case.

requirements: CTT’s corresponding requirements.

If a CTT is a use case CTT, its header will contain all the information mentioned

above (See Figure 3.2). If it is a main CTT, its header will only contain id, name,

and overview.

Figure 3.2: Example of CTT’s header

In the body, there are two sections: nodes and links. The nodes section contains

information about all the tasks in the CTT, while the links section contains infor-

mation about the relationships between tasks in the CTT. All tasks in the nodes

section contain the following information:

id: task’s ID.

10
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name: task’s name and content.

iterative: whether this task can be executed repeatedly or not.

optional: whether this task can be executed optionally or not.

category: task’s category.

task type: task’s task type based on its category.

childrenIds: the IDs of this task’s child tasks.

Based on our definition, task’s category can be divided into the following four

types:

Interaction: tasks involving user-system interactions and executed by the user.

System: tasks executed by the system.

Abstraction: tasks related to abstraction.

User: tasks executed by the user, and are unrelated to the system, with only one

relevant task type: “User.”

The corresponding task types for task’s categories (excluding “User”) are

shown in Table 3.1, Table 3.2 and Table 3.3. There is also an example of the

nodes section in the body of a use case CTT (See Figure 3.3).

In the body, apart from the nodes section, there’s also the links section. The

links section contains operators, where each operator represents a link connecting

two tasks. An operator contains the following information:

11
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Category Task Type Description

Interaction

InteractionTaskGroup Task that contains subtasks all from

“Interaction”category.

Input User enters data.

SelectFromFixedList User chooses data from a list of prede-

fined data.

SelectFromDynamicallyAcquiredList User selects data from a list of dynamic

data.

Control User triggers activities in the system,

such as clicking a button.

SelectFromVisualizedInfo User selects data from information dis-

played on the screen.

RespAlert User responds to system alerts.

Table 3.1: Task Types of “Interaction”Category

id: link’s ID.

type: the temporal operator type of the link, representing the relationship between

the source task and the target task.

sourceId: the source task’s ID of the link.

targetId: the target task’s ID of the link.

Temporal operator can be further divided into eight types, as shown in Table

3.4.

12
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Category Task Type Description

System

SystemTaskGroup Task that contains subtasks all from

“System”category.

Checking System displays messages for user con-

firmation.

ErrorMessage System displays error or warning mes-

sages.

Feedback System displays the progress of a task.

FilterInfo System filters data.

InputValidation System validates user input.

VisualizeFixedValue System displays fixed data.

VisualizeDynamicallyAcquiredValue System displays dynamic data.

Service System triggers backend services.

Table 3.2: Task Types of “System”Category

For use case CTTs, there’s an example of the links section in the body (See

Figure 3.4). There’s also a visualized representation of the CTT displayed in Figure

3.4 (See Figure 3.5).

Task Model Generator has two inputs: use case specifications and a use case

diagram. The reason for not directly using requirements as input is that the infor-

mation contained solely in requirements is not sufficient to build a user interface.

The requirements need to be further expanded into use case specifications and a use

case diagram for more comprehensive amount of information. We currently have

13
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Category Task Type Description

Abstraction
TaskGroup Task that contains subtasks from dif-

ferent categories.

IncludeTask Task that refers to another CTT.

Table 3.3: Task Types of “Abstraction”Category

set some standards for use case specification, for example: the use case specification

must include fields such as Use Case ID, Use Case Name, Action ID, Actor Type,

Actor, and Action. Additionally, there are specific guidelines for describing an ac-

tion, so the content of a use case specification is formalized (See Figure 3.7). There’s

an example input for use case diagram (See Figure 3.8). Note that when inputting

a use case diagram into our system, it needs to be converted into a format that our

system can interpret.

3.2 Actor Type Detection

Through the process of Task Model Generator, we first generate tasks, where

tasks here refer to what the actor does to achieve the goal without including the

information required to construct the task model. Following the order of actions in

the use case specifications, we use machine learning models to generate tasks from

the actions. The process can be divided into three steps:

1. Detect the actor type of the current action in the use case.

14
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Figure 3.3: Example of CTT body’s nodes section

2. Retrieve the corresponding few-shot learning examples based on the actor type,

and then combine these examples with information about the actions executed

prior to the current action to generate input for the machine learning model.

3. Use the machine learning model input to generate tasks for the current action.

This may result in one or multiple tasks being generated.

The step of detecting the actor type of the current action in the use case primarily

15
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Figure 3.4: Example of CTT body’s links section

addresses the input length limitation of the GPT machine learning models. Since

GPT models use few-shot learning technique, they only require task descriptions

and a small number of examples as inputs. The model can learn to execute the

task based on these inputs, without the need for extensive training data and doing

gradient descent as in traditional machine learning models.

Using the few-shot learning technique makes GPT models highly dependent on

16
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Figure 3.5: Example of Visualized CTT

Figure 3.6: Example of Input Use Case Specification (Left Part)

the task descriptions and the examples in the input. Due to the input length limi-

tation (for instance, 2048 tokens in GPT-NeoX), the number of examples per input

cannot exceed around twenty. Achieving good learning performance with this small

number of examples is very challenging.

Hence, we have generated dedicated few-shot learning examples for different

actor types and the execution order of the current action in the use case (See Table

3.5). This approach indirectly increases the total number of examples we can input,

17
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Figure 3.7: Example of Input Use Case Specification (Right Part)

enhancing the model’s performance. The example input and output for this step

are shown as follows:

Input: ActorType: User

ActionID: 1

Output: few-shot learning examples corresponding to ActorType: User and

ActionID: 1

3.3 Task Generation

After detecting the actor type and the execution order of the current action, the

next step is to generate corresponding machine learning model input and use the

machine learning model to generate tasks. In this step, we have experimented with

18
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two different machine learning models: GPT-NeoX and BertSum. The inputs for

these two models are essentially the same, with the difference being that GPT-NeoX

requires additional few-shot learning examples. The information contained in the

model input is as follows:

Few-shot Learning Examples: the task examples provided to the model for

few-shot learning.

Actor Type: the actor’s type, which can be “User”or “Frontend.”As the

actor type determines the task types that the actor can execute, providing this

information enhances the model’s accuracy.

Previous Action: the actions executed before the current action. Since the

content of later actions may simplify details already mentioned in previous ac-

tions, incorporating information from previous actions helps the model capture

the precise semantics of the current action.

Current Action: the action for which tasks are being generated.

When generating tasks, we first used GPT-NeoX. GPT-NeoX is a Transformer-

based GPT model, where the Transformer architecture is designed for NLP tasks.

The GPT models are good at text generation tasks such as generating articles or

answering questions. Popular models like Chat-GPT and GPT-4 also belong to

GPT models. A distinguishing feature of GPT-NeoX is that both its model and

training data are open-source, and it has performance comparable to GPT-3, with

a massive parameter count of up to 20 billion, making it one of the most parameter-

rich open-source GPT models available.

19
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Before using GPT-NeoX for task generation, we execute the actor type detection

as mentioned in the previous section to retrieve corresponding few-shot learning

examples, which are necessary to generate a complete model input.

The model’s hyper parameter setting is as follows:

• temperature: 0.95

• max length: 2048

• do sample: true

We used a test dataset containing 467 actions for our testing. Based on the test

results (See Table 3.6) and the analysis of the generated tasks, the performance is

not bad; however, we have encountered some issues. The most significant concern

is the model’s lack of strong generalization ability, causing it to heavily rely on

the few-shot examples we provided, resulting in overfitting. When the tasks differ

significantly from the provided examples, the accuracy of the output drops dramat-

ically. One technically feasible approach to improve this situation is by adjusting

the few-shot learning examples. However, due to the limitation of a maximum input

length of 2048 tokens, adding new examples would require the removal of old ones.

Nevertheless, this approach does not really solve this issue. Since we were unable

to find a more powerful open-source GPT model, we attempted to use BertSum, a

model specifically designed for summarization tasks.

Although our goal is to generate tasks, from the perspective of task types in the

field of NLP, this is a kind of summarization task. We summarize the task from
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the current action and a series of information. BertSum is a model designed for

summarization tasks. It is a Transformer-based BERT model. However, unlike the

original BERT model, its training schedule and architecture are adjusted to optimize

the model for executing summarization tasks.

Among the actions in our dataset, 70% are used for training, totaling 3259

actions; 20% are used for validation, totaling 926 actions; and 10% are used for

testing, totaling 467 actions. This testing subset is also used as the test dataset for

evaluating GPT-NeoX. The model’s hyper parameter setting is configured according

to the optimal configuration mentioned in the original paper [9], as shown as follows:

• batch size: 300

• accum count: 5

• dec dropout: 0.1

• learning rate: 0.05

• seed: 777

• sep optim: false

• train steps: 200000

• use bert emb: true

• use interval: true

• warnup steps: 8000
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• max pos: 512

• enc hidden size: 512

• enc layers: 6

• enc ff size: 2048

• enc dropout: 0.1

• dec layer: 6

• dec hidden size: 512

• dec ff size: 2048

• encoder: baseline

• task: abs

The test results are presented below (See Table 3.6). Considering both the test

results and the analysis of the generated tasks, BertSum’s performance is worse

than that of GPT-NeoX. The proportion of incomplete sentence outputs is higher

in BertSum than in GPT-NeoX. We believe there are three potential causes for this

phenomenon: first, the training dataset is insufficient; second, the hyper parameter

setting could be incorrect; and third, the model may have limited abilities.

After comparing with the original paper, we believe that the dataset size is the

most significant factor. Because the dataset size used in the original paper is around

200,000, whereas our dataset size is only around 5,000, which is only 1/40 of the
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original paper’s dataset size. This results in insufficient model training. Our hyper

parameter setting is based on the optimal configuration in the original paper, but

the models trained in the original paper performed much better in summarization

tasks compared to ours. This indicates that we have not reached the model’s upper

bound of performance. If we can continue to increase the dataset size in the future,

the model’s performance can be improved more. The example input and output for

this step are shown as follows:

Input: ActorType: User

ActionID: 1

Actions with an ActionID less than 1: None

Action: The User enters his/her username and password and presses the

“Login”button.

Output: 1. Enter username.

2. Enter password.

3. Press Login.

3.4 Task Attribute Generation

After generating the tasks, we proceed to generate task attributes to construct

complete task models that can be combined into a CTT. The attributes to be gener-

ated can be categorized into two types: first, the common attributes that are shared

by every type of task; and second, extra attributes that are specific to certain types
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of tasks. After generating these two types of attributes, we will also generate link

attributes. Among the link attributes, the most crucial one is the temporal operator,

which represents the relationship between two tasks.

The following are the common attributes and the order in which they are gener-

ated:

1. name

2. id

3. childrenIds

4. category

5. task type

6. iterative

7. optional

These attributes have already been explained in 3.1. Here, we are focusing on

how to generate them:

name: has already been generated in task generation step using a machine learn-

ing model.

id: can be generated using a simple algorithm.

childrenIds: can be generated using a simple algorithm.
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category: can be generated using a machine learning model.

task type: can be generated using a machine learning model.

iterative: can be generated using a machine learning model.

optional: can be generated using a machine learning model.

The example input and output for each of these attributes, which use a machine

learning model to generate, are shown as follows:

Generate “category”:

Input: Task: Enter username.

Actor Type: User

Output: Category: Interaction

Generate “task type”:

Input: Task: Enter username.

Actor Type: User

Category: Interaction

Output: Task Type: Input

Generate “optional”:

Input: Task: Enter username.

Output: Optional: False
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Input: Task: Enter description (optional).

Output: Optional: True

Generate “iterative”:

Input: Task: Enter username.

Output: Iterative: False

Input: Task: Click Update (iterative).

Output: Iterative: True

After generating common attributes, the next step is to generate extra attributes.

Not all task types require the generation of extra attributes. The task types that

require extra attributes can be referred to Table 3.7. These extra attributes are also

generated using different machine learning models. The example input and output

for each of these extra attributes, which use a machine learning model to generate,

are shown as follows:

Generate “inputType”:

Input: Task: Enter username.

Output: Input Type: text

Generate “options”:
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Input: Task: Select gender.

Action: Select a gender from male and female.

Output: Options: male, female

Generate “visualizedTaskID”:

Input: Previous Task:

1. Get item list.

2. Display item list.

Current Task: Select item.

Output: Visualized Task ID: 2

Generate “alertTaskID”:

Input: Previous Task:

1. Click Update.

2. Display Are you sure to update? message.

Current Task: Click Confirm.

Output: Alert Task ID: 2

Generate “message”:

Input: Previous Task:

1. Click Login.

2. Display Login success message.

Current Task: Confirm Login info.
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Output: Message: Login success.

Input: Previous Task:

1. Click Login.

2. Display Username or password is wrong message.

Current Task: Show Login error.

Output: Message: Username or password is wrong.

Generate “serviceTaskID”:

Input: Previous Task:

1. Get launched item list.

2. Display launched item list.

3. Click Filter.

Current Task: Filter out Ongoing item from get launched item list.

Output: Service Task ID: 1

Generate “validatorType”:

Input: Task: Validate username is blank.

Output: Validator Type: Required

Generate “value”:

Input: Task: Display lab’s name Selab.
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Output: Value: Selab

After generating both common attributes and extra attributes, the next step is

to generate link attributes. The following are the link attributes and the order in

which they are generated:

1. id

2. sourceId

3. targetId

4. type (temporal operator)

These attributes have already been explained in 3.1. In this section, we will focus

on the process of generating them. Besides the“type”(temporal operator), all the

other attributes can be generated using algorithms. However, the temporal operator

requires a machine learning model to generate, as it is a kind of classification task.

The types of temporal operators can be found in 3.1. Once we have the task name,

the actor type, and the task type information of the linked tasks, we can input

this information into the model to generate corresponding temporal operator. The

example input and output for temporal operator are shown as follows:

Input: Left Task: Click Login.

Left Actor Type: User

Left Task Type: Control

Right Task: Login.
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Right Actor Type: Frontend

Right Task Type: Service

Output: Temporal Operator: Enabling

After generating the link attributes, all the required task attributes have been

generated. The next step is to generate use case CTTs.

3.5 Use Case CTT Generation

In this step, we combine the tasks and task attributes generated in the previous

steps, which belong to the same use case, to generate the corresponding use case

CTT. The steps for generating use case CTT are as follows:

1. Follow the order of actions in the use case specification to sequentially read

and process the task models (including tasks and task attributes) generated

from each action.

2. Generate tasks of“InteractionTaskGroup”task type and“SystemTaskGroup”

task type, and then assign their respective child tasks.

3. If there are task models included from other use cases, generate corresponding

abstraction category tasks and create the links between the original task and

the newly generated abstraction category tasks, based on the “include”

relationship.
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4. After processing all actions’ task models, generate the header’s information

for the CTT based on the use case specification.

5. Output the use case CTT in XML format.

In the second step, there are two scenarios where the generation of tasks of

“InteractionTaskGroup”task type or “SystemTaskGroup”task type is needed.

The first scenario is when multiple task models are from the same action and share

the same task type. In this case, a task of either“InteractionTaskGroup”task type

or “SystemTaskGroup”task type is generated, and the task models are assigned

as child tasks of this task.

The second scenario is when all actions’ task models are processed for a use case,

a task of “TaskGroup”task type representing the entire use case is created, and

all actions’ task models are assigned as child tasks of this task.

The example input and output for this step are shown as follows. There’s also

an example of generated use case CTT in XML format (See Figure 3.9).

Input: use case specifications, previously generated task models

Output: use case CTTs in XML format

3.6 Main CTT Generation

After generating the use case CTTs, the final step is to generate the main CTT.

The data source for the main CTT is the use case diagram, which provides the
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relationships between use cases that are used to generate the corresponding main

CTT. The steps for generating the main CTT are as follows:

1. Based on the use case diagram, identify a use case that does not extend from

another use case.

2. Collect use cases that satisfy one of the following conditions: use cases that

extend from the use case identified in step 1, or use cases whose pre-conditions

are fulfilled after the completion of the use case identified in step 1.

3. Establish the corresponding relationships of the use cases collected in step 2

in the main CTT based on their connections to other use cases.

4. Repeat step 2 and step 3 until all use cases have been processed.

5. Output the main CTT in XML format.

The example input and output for this step are shown as follows. There’s also

an example of generated main CTT in XML format (See Figure 3.10).

Input: use case diagram

Output: main CTT in XML format

After completing this step, we have successfully generated all the CTTs. We

can now continue to use these CTTs to generate corresponding web application.

Detailed information about how to use CTTs to build user interface and generate

web application automatically is provided in Liou’s research [8].
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Temporal Operator Description

Enabling The task on the right (target) needs the task on the

left (source) to complete before it can start.

Choice Either task on both sides can start, but not both.

Enabling with information passing The task on the right (target) needs the task on the

left (source) to complete before it can start, and the

output of the left (source) task is used as input for

the right (target) task.

Concurrent tasks Tasks on both sides can be executed in any order.

Concurrent communicating tasks Tasks on both sides can exchange messages while

executing simultaneously.

Task independence Tasks on both sides can be executed in any order,

but once one starts, the other must wait for it to

complete.

Disabling The task on the right (target) disables the task on

the left (source) when it starts.

Suspend-Resume The task on the left (source) is suspended by the

task on the right (target). After the right task fin-

ishes, the left (source) task can resume.

Table 3.4: Types of Temporal Operator
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Figure 3.8: Example of Input Use Case Diagram
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Actor Type Action Number (ID) First Action Number of Examples

User 1 No 15

User 2 or more No 3

User Don’t care Yes 14

Frontend 1 No 16

Frontend Don’t care Yes 4

Table 3.5: Types of Few-Shot Learning Example

Test Type GPT-NeoX BertSum

ROUGE-1 Average R 0.44833 0.83267

ROUGE-1 Average P 0.39268 0.19385

ROUGE-1 Average F 0.40270 0.30395

ROUGE-2 Average R 0.15443 0.64208

ROUGE-2 Average P 0.14296 0.11508

ROUGE-2 Average F 0.14202 0.18578

ROUGE-L Average R 0.15923 0.81963

ROUGE-L Average P 0.386918 0.18981

ROUGE-L Average F 0.39813 0.29805

ROUGE-F(1/2/3/l) 41.87/14.85/22.56 30.39/18.58/29.80

Table 3.6: Test Results of GPT-NeoX and BertSum for Task Generation
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Category Task Type Extra Attributes

InteractionTaskGroup

Input inputType

SelectFromFixedList options

SelectFromDynamicallyAcquiredList

Control

SelectFromVisualizedInfo visualizedTaskID

Interaction

RespAlert alertTaskID

SystemTaskGroup

Checking message

ErrorMessage message

Feedback

FilterInfo serviceTaskID

InputValidation validatorType

VisualizeFixedValue value

VisualizeDynamicallyAcquiredValue

System

Service

Table 3.7: Extra Attributes of Task
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Figure 3.9: Example of Use Case CTT in XML format
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Figure 3.10: Example of Main CTT in XML format
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Machine Learning Design Pattern

The purpose of Machine Learning Design Patterns is to offer a new perspective for

understanding and analyzing machine learning models, enabling us to enhance and

develop these models in the future. This perspective is from the concept of design

patterns in software engineering, which involves proposing solutions to recurring

problems. By employing these solutions, we can solve similar problems without

needing to reinvent the wheel.

We propose the solutions for Transformer-based machine learning models, which

we refer to as Machine Learning Design Patterns. The process contains the following

steps:

1. Analyze the functionalities of the modules in the machine learning models.

2. Group modules with similar functionalities.

3. Abstract each group for generalization.
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The details of each step are explained in 4.1, 4.2, and 4.3. The abstracted groups

form what we refer to as Machine Learning Design Patterns.

4.1 Module Analysis

We focus on analyzing two types of machine learning models: GPT-3 and BERT.

We chose these models because they are currently among the most widely used

Transformer-based machine learning models. Their architectures are similar, but

with slight differences, making them suitable for us to derive design patterns for

this type of machine learning model.

First, we analyze the architectures of these two models. For BERT, its architec-

ture can be divided into the following modules based on their order of execution:

1. Tokenizer

2. Encoder

3. Fully Connected Layer

4. Activation Function

For GPT-3, its architecture can also be divided into the following modules based

on their order of execution:

1. Tokenizer

2. Decoder
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3. Layer Normalization

4. Linear Layer

5. Activation Function

Tokenizer, in both BERT and GPT-3, is responsible for converting the model’s

input into a format that the model can understand. Thus, we categorize the tok-

enizer’s function as data preprocessing.

The Encoder in BERT and the Decoder in GPT-3 share similar architectures.

The only difference lies in how they generate attention. Regardless of the method

used to generate attention, their function is to capture the relationships between

tokens in a sentence and the contextual meaning of tokens in different contexts.

The multi-layer architecture of Encoders and Decoders generates token meanings in

different ways for each layer, enhancing the model’s language capabilities. Thus, we

categorize the function of multi-layer Encoders and Decoders as language represen-

tation learning.

The Fully Connected Layer and Activation Function in BERT are responsible for

converting the output of BERT into results relevant to our target task. Therefore,

we categorize the functions of these two modules as fine-tuning.

In GPT-3, Layer Normalization, Linear Layer, and Activation Function are re-

sponsible for using the model’s output to predict the next token to be generated.

Thus, we categorize the functions of these three modules as prediction making. We

present the final result of our analysis in Figure 4.1.

After analyzing the architectures of both models, we continue to analyze the key

41



doi:10.6342/NTU202303644

CHAPTER 4. MACHINE LEARNING DESIGN PATTERN 42

Figure 4.1: Analysis of GPT-3’s Architecture and BERT’s Architecture
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modules of the two models: the Encoder and the Decoder. The architectures of

the Decoder and BERT’s Encoder are very similar, differing mainly in the method

used to generating Self-Attention. The term “Attention”refers to the degree of

correlation. The term “Self-Attention”refers a special case of Attention where all

the necessary data for calculating attention comes from the same input sequence.

Similar to the language usage in real life, a word’s meaning can vary in different

contexts, and its correlation with other words in the same sentence is not fixed.

The purpose of generating Self-Attention is to enable the model to comprehend

the overall meaning of a sentence based on the correlation between tokens. The

Multi-Head Self-Attention mechanism calculates Self-Attention in multiple ways si-

multaneously, synthesizing the results of these different approaches. In difficult NLP

tasks, this can yield better results compared to using only one way (head) to calcu-

late Self-Attention. The difference between Masked and Non-Masked Self-Attention

lies in the mechanism. Masked Self-Attention generates Attention only from words

in the previous positions, whereas Non-Masked Self-Attention has no such limita-

tion. This difference causes BERT and GPT-3 to excel at different tasks. The

analysis results are shown below (See Figure 4.2).

After categorizing the modules of both models based on their functionalities, we

continue to create class diagrams for these two models and mapped our analysis

results onto these diagrams. First, each module of the models are represented as

distinct classes. Then, we further decomposed the key modules, i.e., the Encoder

and the Decoder, and represent the mechanism of generating Self-Attention using

the pipeline design pattern.
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Figure 4.2: Analysis of GPT-3 Decoder and BERT Encoder
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Figure 4.3 illustrates the mapping of our analysis results onto the Class Diagram

for BERT, while Figure 4.4 does the same for GPT-3.

Figure 4.5 and Figure 4.6 represent the Sequence Diagrams for the BERT Pipeline

and Encoder Pipeline, respectively in the BERT’s Class Diagram.

Similarly, Figure 4.7 and Figure 4.8 represent the Sequence Diagrams for the

GPT-3 Pipeline and Decoder Pipeline, respectively in the GPT-3’s Class Diagram.

4.2 Grouping

After analyzing the functionalities of the modules in both BERT and GPT-3,

the results can be summarized as follows:

Input Preprocessing of BERT：

Purpose: process the input text so the next stages can use it properly.

Mechanism: use a tokenizer.

Output: a sequence of integer values representing the indices of the correspond-

ing tokens in the vocabulary.

Language Representaion Learning of BERT：

Purpose: learn to capture each token’s meaning and relations to all the tokens

in the input sequence.

Mechanism: use Multi-Head Self-Attention mechanism.
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Figure 4.3: Analysis of BERT’s Class Diagram
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Figure 4.4: Analysis of GPT-3’s Class Diagram
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Figure 4.5: Sequence Diagram of BERT Pipeline

48



doi:10.6342/NTU202303644

CHAPTER 4. MACHINE LEARNING DESIGN PATTERN 49

Figure 4.6: Sequence Diagram of Encoder Pipeline
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Figure 4.7: Sequence Diagram of GPT-3 Pipeline
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Figure 4.8: Sequence Diagram of Decoder Pipeline
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Output: a sequence of contextualized representations for each token in the input

sequence.

Fine-Tuning of BERT：

Purpose: make the BERT model generate the specific output based on the

target task we give.

Mechanism: adding extra task-specific output layers like a fully connected layer

followed by an activation function layer and using specific labeled

data for training.

Output: the target task’s output.

Input Preprocessing of GPT-3：

Purpose: process the input text so the next stages can use it properly.

Mechanism: use a tokenizer.

Output: a sequence of integer values representing the indices of the correspond-

ing tokens in the vocabulary.

Language Representaion Learning of GPT-3：

Purpose: learn to capture each token’s meaning and relations to previous token

in the input sequence.

Mechanism: use Masked Multi-Head Self-Attention mechanism.
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Output: a sequence of contextualized representations for each token in the input

sequence.

Prediction Making of GPT-3：

Purpose: predict the next token to be generated.

Mechanism: use a linear layer followed by a activation function layer.

Output: next token to be generated.

Fine-Tuning of GPT-3 (Optional)：

Purpose: make the GPT model work better on target tasks.

Mechanism: add extra task-specific output layers like a fully connected layer

followed by an activation function layer and use specific labeled

data for training.

Output: the target task’s output.

The correspondence between the results of Grouping and the modules in the

original model architectures can be referred to in Table 4.1.

4.3 Abstraction

Lastly, based on the results of Grouping, we can perform Abstraction. “Input

Preprocessing”can be abstracted as“Preprocessing,”indicating that in this stage,
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BERT GPT-3 Grouping of BERT Grouping of GPT-3

Tokenization Input Preprocessing Input Preprocessing

Multi-Head Self-Attention Masked Multi-Head Self-Attention

Language Representation Learning Language Representation LearningAdd and Norm

Feed Forward

Linear Layer
Prediction Making

Activation Function

Fully Connected Layer Fully Connected Layer (Optional)
Fine-Tuning Fine-Tuning (Optional)

Activation Function Activation Function (Optional)

Table 4.1: Grouping of BERT and GPT-3 by Functionality

Figure 4.9: Process of Machine Learning Design Pattern

the model focuses on preprocessing tasks;“Language Representation Learning”can

be abstracted as “Learning,”indicating that in this stage, the model focuses on

learning various types of self-attention; “Prediction Making”can be abstracted as

“Prediction,”indicating that in this stage, the model focuses on predicting the

next output token; “Fine-Tuning”remains unchanged as it cannot be further ab-

stracted, the model is trained to focus on generating the target task’s output in this

stage. The relationship between Grouping and Abstraction is shown in Table 4.2.

Thus, we can have the process of the resulting Machine Learning Design Pattern

(See Figure 4.9).
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Grouping of BERT Grouping of GPT-3 Abstraction

Input Preprocessing Input Preprocessing Preprocessing

Language Representaion Learning Language Representaion Learning Learning

Prediction Making Prediction

Fine-Tuning Fine-Tuning (Optional) Fine-Tuning

Table 4.2: Abstraction for BERT and GPT-3
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Composition Engine

Composition Engine is responsible for generating frontend code. After previous

works (See [7] and [10]), Composition Engine can now use templates and a template

engine to integrate the information from three types of description languages: PDL,

SUMDL, and NDL of a web page to generate corresponding Angular code. These

three description languages are all in JSON format, and their descriptions are as

follows:

PDL (PageUICDL): describes the composition of UI components and their

information in a web page, including the properties and functionalities of the UI

components.

SUMDL: describes the service information in a web page, including the ser-

vice’s content, the binding relationships of services and UI components and the

service return information.
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Figure 5.1: Process of Composition Engine

NDL: describes the navigation information in a web page, including the nav-

igation destinations, navigation types and parameters received from other web

pages by navigation.

5.1 Angular API

“Angular API”refers to the functions provided by Angular which enable An-

gular users to construct or organize the structure and functionalities of web appli-

cations. In order to enable our system’s users to construct more complex features

using these functions, it is necessary to implement the Angular APIs in both UI

Design Client and Composition Engine.

We chose to implement the most frequently used Angular APIs, which can be

categorized into three types:
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Transform value: allows data or values to be transformed into different for-

mats or units, such as changing the format of dates and times.

Change behavior and appearance based on certain variables: allows UI

components on the web page to have different behaviors under specific condi-

tions. For example, displaying a success or failure message based on the success

of triggering login service.

Change certain variables based on user’s action: allows user actions to

change the value of specific variable on the web page, influencing the behavior

of the web application. For example, the web page can check if the user input

for the username field is empty, determining whether the user can click the

“Login”button.

The process of implementing Angular APIs in Composition Engine can be di-

vided into three steps:

Add decorator: we use a decorator design pattern to extend the functionalities

of UI components. Therefore, we need to add corresponding decorators first.

Add pipeline handler: we use a pipeline design pattern to handle decorators.

Therefore, we need to add corresponding handlers to the pipeline after adding

decorators. Moreover, we use a chain of responsibility design pattern to optimize

the number of handlers in the pipeline.

Add render strategy: UI components are rendered to corresponding frontend

code in the pipeline. Each decorator’s render strategy determines how to map the
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decorator’s information to corresponding frontend code and is different for each

UI component. Hence, we add the new added decorator’s corresponding render

strategies to each UI Component’s render strategies. This process enables the

decorators of Angular APIs to be converted into frontend code.

The implemented Angular API types are shown in Table 5.1. The corresponding

class diagram is shown below (See Figure 5.2).

Category Angular API Type Angular APIs

Transform value

Pipe CurrencyPipe, DatePipe, DecimalPipe,

JsonPipe, KeyValuePipe, Lower-

CasePipe, UpperCasePipe, PercentPipe,

SlicePipe, TitleCasePipe

Format

The functionality is similar to that of

pipes, so there is no need for

implementation.

Change behavior and

appearance based on

certain variables

Structural Directive NgFor, NgIf, NgSwitch

Attribute Directive NgStyle

Change certain vari-

ables based on user’s

action

Validator EmailValidator, MaxLengthValidator,

MinLengthValidator, RequiredValida-

tor, PatternValidator

Table 5.1: Implementation Status of Angular API
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Figure 5.2: Class Diagram of Angular API in Composition Engine

60



doi:10.6342/NTU202303644

CHAPTER 5. COMPOSITION ENGINE 61

5.2 Authentication

The authentication mechanism is responsible for enabling different actors in a

CTT to execute different use cases. It allows the UI components on our web page

to exhibit different behaviors based on the current user’s actor. For example, a

“Buy”button is displayed only when the current user’s actor is“Buyer,”otherwise

it remains hidden. This mechanism is implemented using the Angular APIs intro-

duced in 5.1.

To implement this mechanism, we revise Composition Engine to make the gen-

erated frontend code have the following functionalities:

Get actor information: we use a singleton design pattern to make UI compo-

nents are able to fetch the current actor’s information and update corresponding

permissions.

Update actor information: actor information is updated only when the user

navigates to other web pages.

Change UI component’s behavior: once the current actor’s information is

updated, the UI components on the web page will change their behavior based

on the new actor’s permissions, determining whether to show or not.

The corresponding class diagram is shown below (See Figure 5.3).

Next, we illustrate how the authentication mechanism operates in a real-world

web application. First, after entering the web application’s homepage, which is the
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Figure 5.3: Class Diagram of Authentication Mechanism in Web Application
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“Login”page, the current actor is automatically updated to the lowest permission

level of “User,”as we have not yet navigated to any web page. (See Figure 5.4).

At this point, if we navigate to another web page, such as the“ViewLaunchedItem”

page, we will see nothing because of the limited permissions of“User”(See Figure

5.5).

We return to the“Login”page, then enter the user name and password to login.

After successfully logging in by clicking the “Login”button, the system navigates

us to the “ViewLaunchedItem”page displaying the user’s listed launched items

(See Figure 5.6).

Simultaneously, our actor is updated to “Seller,”allowing us to view the listed

items. We click the “Go”button under the “Fulfill Order”column of one of

the items to check the current order status. Later, the system navigates us to the

“OrderStatus”page (See Figure 5.7).

Because our permissions are updated to that of“Seller,”we can see the“Payment

Received”button, enabling us to confirm receipt of payment (See Figure 5.8). Thus,

we have shown how the authentication mechanism works and its features in the web

application.
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Figure 5.4: Scenario of Authentication, Step 1

Figure 5.5: Scenario of Authentication, Step 2
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Figure 5.6: Scenario of Authentication, Step 3

Figure 5.7: Scenario of Authentication, Step 4
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Figure 5.8: Scenario of Authentication, Step 5
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Chapter 6

Conclusion and Future Work

The contribution of our research is the proposal of an approach to generate

task models represented in CTT form from use case specifications and a use case

diagram. Then we can use these CTTs to automatically generate a user interface

and a corresponding web application.

In the process of CTT generation, almost every step involves using machine

learning models. This drives us to explore new methods to analyze machine learning

models in a more intuitive and comprehensible way. So that we can enhance model

performance more easily in the future.

Although the current outputs of our trained machine learning models do not

meet our expectations and have various issues, the overall process design has been

completed. Once we enhance our models’ performance, the task model generation

process will continue smoothly. Here, we list the problems encountered during the

research process:
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Lack of use case data: our model’s inputs are use case specifications and a

use case diagram, which require our model to have a large amount of such data

for training. However, much of this kind of data is often restricted to clients or

staff, making it hard to access and resulting in the lack of training data.

Inconsistent data formats for use cases: use case specifications and use case

diagrams lack a rigorous standard of formats. This causes missing data fields,

making it hard to preprocess data.

Various ways to narrate use cases: use cases are usually represented in tex-

tual form, so different author will have different narrative structure, level of detail

and completeness of the use cases, making it more likely to have misinterpreta-

tions.

High system requirements for large language models: with the emergence

of new large language models, the demand on hardware resources has grown sig-

nificantly. For example, GPT-NeoX requires 30GB of VRAM just for execution.

Finding suitable machines for running these models has become a challenge.

Limitations of machine learning models: GPT-NeoX has input length lim-

itation of 2048 tokens, making it hard to learn from more examples. Additionally,

BertSum requires a large number of training data to achieve better results than

GPT-NeoX.
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Future Works

• Find more training data for use case specifications and use case diagrams to

train our models for better performance.

• Automatically adjust the content and format of the data to match the stan-

dards we have set.

• Experiment with different hyper parameter settings for the models we are

using to enhance the models’ performance.

• Use other machine learning models to avoid the limitations of the models we

are using.

• Complete the remaining parts of Task Model Generator to enable generating

task models automatically.
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