|

S EWRBERENSRANLREA

Department of Computer Science & Information Engineering

College of Electrical Engineering and Computer Science
National Taiwan University

Master Thesis
HEIRFE B MIRF © RAREELSYF k.

From Monolithic to Microservice: A Dependency Decoupling

Approach

BRI &
Li-Sheng Chen

B¥EI : FAT L
Advisor: Jonathan Lee, Ph.D.

FERE 112 F 7 A
July, 2023

doi:10.6342/NTU202303287

B i1 £ M K SR 3 X
DREZBEGgELE

MASTER’S THESIS ACCEPTANCE CERTIFICATE
NATIONAL TAIWAN UNIVERSITY

e ARFS BRS¢ AN AR A0 ok

From Monolithic to Microservices: A Dependency
Decoupling Approach

AHXARAEE (23 R10922120) AR EH AL EFRNTE
ZAHAARZBLEMHIONRE 1257 A2 BATHEAREER
L@@ R IR RA 0 4F IR o

The undersigned, appointed by the Department of Computer Science and Information Engineering
on 27 July 2023 have examined a Master’s thesis entitled above presented by CHEN, LI-SHENG
(student ID: R10922120) candidate and hereby certify that it is worthy of acceptance.

~ =z
23X % B Oral examination committee:

At Pl on 4L GAE

(45 i‘?’%@%’: Advisor)

AR® (r Dy

?f: FAE/ Frr ‘F{ Director:

B RERHMENB I HRFAFHK > ERFARGHERFF FohA
B R 6 77 % 0 AR R A~ A BB R AR ~ RO - AR AR R B
M7k o AR RERAZERERBIBLTRENFA LR E » W45~ Rk
e~ FRIE S ORI BAR SREF B AR FE B4k BEF > -
Rt 2T —R%5 N ~ ZAEME o b F S ANH Y » RERFAZRILBE R ©

i

doi:10.6342/NTU202303287

ZRS

A BB RAIAAIT » A AR R R TR Ao TR
B AT 5 O SR DS S SR A S B X R AR E AR AR AR -

K s ol B AR 2 A AR B R FRE L vt
Ak b @ BLAL AR B L B AT M A Rk RARARE 0 F R RA R AM
WA o Bot A SO RS 6 R AT T R+ AL R KR AR
mow i X BEsHHAREXFAEHREAMELERXERETWE > A
itz B BRFF o

B I BATOARIE S TRAR T 403 BOIRAS 0 STAE » 3 o sl SR APV T 2 9
F R RAME PR FS 0 F R IR B

MI4&3 — A A WIS A% RAARXEE BRF - HIuA X
CN)1

1ii

doi:10.6342/NTU202303287

Abstracts

In recent years, microservice architecture has gained popularity due to its ability
to significantly improve the extensibility and maintainability of large-scale systems.
This has led many enterprises and departments to refactor their information systems

from monolithic architecture to microservice architecture.

However, achieving the best decomposition of monolithic architecture remains a
topic of debate, as it involves various complex aspects. One of the root causes is
the lack of a clear definition of Microservice and its internal structure. In this re-
search, we aim to address this gap by defining the Microservice structure. Building
upon this definition, we propose a decoupling methodology to separate the mono-
lithic architecture into microservices based on the dependencies between program
elements in open-source projects, and we automate the process of generating the

microservices.

Furthermore, we introduce the Microservice description based on the proposed
architecture. This description allows us to perform matchmaking between the mi-
croservices and the user’s requirements, facilitating a more efficient and precise

service integration process.

v

doi:10.6342/NTU202303287

Index terms — Service Component, Web Service, Repack Web Application,

Microservice, Automatic code generation, Graph-based Matchmaking

doi:10.6342/NTU202303287

Contents

B ii
W& iii
Abstracts iv
List of Figures X
List of Tables xiii
Chapter 1 Introduction 1
Chapter 2 Related Work 5
2.1 Related Work 5
2.2 Background Worko oo 7
2.2.1 JavaParser 7

2.2.2 Soot 7

vi

doi:10.6342/NTU202303287

2.2.3 Reflection API

2.2.4 JDK Compiler module
2.2.5 Spring Cloud
2.2.6 Hungarian Algorithm
227 WSDL
228 HDBSCAN

Chapter 3 Microservice Definition

3.1 Microservice Structure
3.2 APIs in a Microservice
3.3 Example of a Microservice

Chapter 4 Service Decomposition

4.1 Service Component Generation
4.1.1 Source code parsing
4.1.2 Dependency extraction
4.1.3 Service Type Parsing
4.1.4 DB Object Creation

4.2 WSDL generation

Chapter 5 Service Composition

5.1 Dependency Repack

5.2 API Clustering

vii

doi:10.6342/NTU202303287

5.2.1 distance between APIs 34

5.2.2 cluster APIs 35

5.3 Service Component Composition 36
5.3.1 Query Dependency & dependency Modeling 36

5.3.2 Configure JavaParser & attach AST to model 39

5.3.3 Clone the element & remove the unnecessary node 39

5.3.4 Plugin Handler Chain 40

5.3.5 Write Project and Post Processing 40

5.3.6 Build project and zip 41

5.4 Deployment 42
5.4.1 Microservice Extractor o000 43

5.4.2 Service Invocation oL 44
Chapter 6 Microservice Matchmaking 48
6.1 Microservice Description Generation 48
6.2 Bounded Context to Microservice Description 50
6.3 Graph-based Microservice Matchmaking 53
6.3.1 Distance of keyword node 53

6.3.2 Distance of connectornodeo 55

6.3.3 Graph Similarity calculation 95
Chapter 7 Conclusion 57

viii

doi:10.6342/NTU202303287

Chapter 8 Future Work 59

Bibliography 61

ix

doi:10.6342/NTU202303287

List of Figures

3.1 Microservice Structure 11
3.2 Microservice Example00 13
4.1 Source Code Parsing System Architecture 16
4.2 Source Code Parsing 17
4.3 Dependency Extraction 0oL 17
4.4 Program Relation Summary 18
4.5 Dependency Graph Example 19
4.6 example of the class level element presented in the bytecode 20

4.7 concate the dependency between the class level elements with the class 20
4.8 final field invocation present in Jimple IR produced by Soot 21

4.9 concate the dependency between the program elements with the final

4.10 concate the dependency between the program elements with lambda

expression dependent elements 22

doi:10.6342/NTU202303287

4.11 concate the dependency between the program elements with method

reference dependent elementso 23

4.12 concate the dependency between the program elements with anony-

mous class dependent elements L. 23
4.13 example of the type erasure and its corresponding bridge method . . 24

4.14 concate the dependency between the program elements with the tar-

get method oo 25
4.15 Map Information Evaluation 26
4.16 Map Information Evaluation System Design 27
4.17 Model Creation 29
4.18 Service Component Database Schema 30
4.19 Example of the generated WSDL 31
5.1 Service Compositiono o 33
5.2 dependency repack visualizationo 34
5.3 db query response format 37
54 repack model 38
5.5 AST attaching 39
5.6 Plugin Handler Design 41
5.7 Build Strategy 42
5.8 Service-Component-Based Microservice Architecture 43
5.9 Microservice extraction process 44

xi

doi:10.6342/NTU202303287

5.10 Microservice Database Schema 45
5.11 API Gateway URL transform 46
5.12 Sequence diagram of request URL transform in API Gateway 46

5.13 Sequence diagram of service invocation from UI Frontend server to

service component oo 47
6.1 Microservice Matchmaking in SBmS. 49
6.2 Microservice Description oL 50

6.3 Mapping between Bounded Context, Use Case Specification and Mi-

croservice Descriptiono oL 51

6.4 Bounded Context to Microservice Description 52

6.5 Graph Structure for Each part of description 53

6.6 example of matchmaking response 56

8.1 UI Component Service Binding 60
xii

doi:10.6342/NTU202303287

List of Tables

6.1 keyword segment distance matrixo 54

6.2 keyword segment matching L. 55

xiil

doi:10.6342/NTU202303287

Chapter 1

Introduction

SOA (Service Oriented Architecture) is a commonly used software development
pattern by enterprises, enabling the integration of service components through the
reuse of services and loose coupling between them, achieved by unified interfaces
and common communication standards. Microservice Architecture, as an extension
of SOA, places greater emphasis on size and independence. In this research, we
design a practical, automatic process for generating microservices. We start with
open-source Java projects on Github and transform them into service components,
considering each Java method. We then repack these service components into mi-
croservices based on their dependencies, ensuring the resulting microservices exhibit

high cohesion and modularity.

In previous research [23], Huang utilized the Java Reflection API [5] to execute
the generated service components by loading them into the Java ClassLoader. How-

ever, in many cases of open-source projects, they utilize software frameworks such

doi:10.6342/NTU202303287

CHAPTER 1. INTRODUCTION 2

as the Spring framework [13], making them incompatible with Huang’s proposed
process. To address this issue, Yu [32] proposed a new service component gener-
ation process that maintains compatibility with the Spring framework during the
execution of service components. This was achieved by transforming the controller
methods used in the Spring framework into service components and combining them
with the frontend design process proposed by Hsieh [22], which stores the service
binding information in the database for use by the frontend design system. However,
it should be noted that this process has limitations and may not be applicable to
projects written exclusively with the Spring Framework.

Therefore, in the research conducted by Shih [31] and Lu [29], they repack the
service components into a microservice and utilize Spring Cloud for the deploy-
ment of microservice execution. However, their microservice generation process is

associated with two implied issues:

1. In Shih’s research, there is no clear definition provided for microservices, and
the decision of which APIs belong to the same microservice is based solely
on whether they are in the same class in the original project. This approach
to decomposition may result in a reduction of cohesion within the generated

microservices.

2. In Lu’s research, there exist some high coupling repack logic in its repack
process, which may result in the failure when it try to parse the project written

with other framework.

To address the first issue, we propose a definition of the microservice. According

doi:10.6342/NTU202303287

CHAPTER 1. INTRODUCTION 3

to this definition, we extract the which APIs are suitable to be placed in the same

microservice with the degree of the cohesion between each of them.

To address the second issue, we have made improvements by adopting a pure
object-oriented approach in the repack process. We now handle plugins and depen-
dencies individually using handlers, which can be easily added using the Chain of
Responsibility pattern. With these enhancements, our aim is to achieve the decom-

position of all Java projects into microservices successfully.

In the matchmaking process, previous research transformed the matchmaking
request generated from the frontend into WSDL to perform method-level match-
making with the service components. However, due to the large number of service
components, this mechanism led to low matchmaking efficiency. To address this

issue, we have made improvements to our matchmaking process:

1. Transform the requirement to the description of a microservice, perform the

microservice-level matchmaking to filter out the candidate microservices

2. Using the result of the first step as the search scope, we gather the APIs
belonging to the candidate microservices to create the matchmaking set for

the method-level matchmaking process.

Due to this improvement, we can significantly decrease the input size of the match-
making algorithm, leading to a notable enhancement in the efficiency of searching
for appropriate services for frontend components.

This paper is organized as follows: Chapter 2 introduces the related work; Chap-

ter 3 introduce a clear definition of microservices. Chapter 4 describe the genera-

doi:10.6342/NTU202303287

CHAPTER 1. INTRODUCTION 1

tion process of service components; Chapter 5 the process of composing service
components to microservices. Chapter 6 explains the generation of microservice
descriptions and the subsequent matchmaking process. Chapter 7 and Chapter 8

respectively summarizes the contribution of this work and the future work.

doi:10.6342/NTU202303287

Chapter 2

Related Work

In the domain of microservice research, notable findings have emerged. In this
chapter, we will provide a comprehensive list of typical definitions and extraction

methodologies.

2.1 Related Work

Nicola et al. [19] defines Microservices as “cohesive, independent processes in-
teracting via messages” and Microservice Architecture as “a distributed application
where all its modules are microservices.”. They also highlight the differences between
microservices and SOA, which include: 1. Bounded Context (first introduced by
Domain-driven design [20]) 2. size 3. independency, numerous studies are built
upon the extension of this concept; however, they do not specifically define the

internal structure of microservices.

doi:10.6342/NTU202303287

CHAPTER 2. RELATED WORK 6

Baresi et al. [17] utilized the Open API Specification [9] for microservice extrac-
tion. They conducted matchmakig between operation name defined in the speci-
fication and the concept defined in Schema.org [10]. The similarity between word
segments was determined using the co-occurrence matrix provided by DISCO [25].
After computing the similarity matrix between the word segments, they applied
the Hungarian algorithm to find the best match between the operation name and
the concept. Finally, they used the type hierarchy to determine whether the APIs

should be placed in the same microservice.

Chen et al. [18] utilized business requirements and data flow as input in their
methodology, which effectively clusters APIs with similar output data or those han-
dling the same type of data as the microservice. Gysel et al. [21] proposed a service
decomposition method based on 16 coupling criteria extracted from literature and
industry experience. This approach employs clustering algorithms to decompose an
undirected, weighted graph transformed from SSA (Software System Artifacts, such
as ER models, Use Case Specifications), and others.

The above-mentioned studies did not take into consideration the actual structure
of the source code; instead, they relied solely on specifications and documents as
the basis for analysis. This approach may result in microservices with low internal

cohesion in their structure.

doi:10.6342/NTU202303287

CHAPTER 2. RELATED WORK 7

2.2 Background Work

In our research, we decouple the open-source projects generate service compo-
nents. We then extracted dependencies between these components and repackaged
them into microservices. Additionally, we generated descriptions for the resulting
microservices and deployed them to Spring Cloud. Throughout the entire process,
we made use of various open-source tools and algorithms to facilitate our research.

In the following sections, we will introduce these tools and algorithms one by one.

2.2.1 JavaParser

JavaParser [6] is an open-source project designed to analyze Java code. It has
the capability to compile Java code into an abstract syntax tree (AST) and provides
various APIs that allow users to operate on the AST.

In our research, both the Service Composition (see Chapter5)and Service De-
composition (see Chapter4) utilize JavaParser to extract relevant information from

the code.

2.2.2 Soot

Soot is a static analysis tool for Java. In Service Decomposition (see Chapter4),
we extract dependencies between program elements by analyzing the Jimple IR

(Intermediate Representation) compiled by Soot.

doi:10.6342/NTU202303287

CHAPTER 2. RELATED WORK 8

2.2.3 Reflection API

Java Reflection API [5] is a built-in tool in Java that allows loading Java classes
using ClassLoader and examining the runtime behavior of program elements.
In Service Decomposition (see Chapterd), we utilize the Reflection API to obtain

runtime information from open-source code.

2.2.4 JDK Compiler module

The JDK Compiler module includes Java Compiler API [2] and Java Compiler
Tree API [3]. The Java Compiler APT allows users to compile Java programs with
code, while the Java Compiler Tree API offers the abstract syntax tree (AST) rep-
resentation of the open-source code, from which we can extract Java classes. By
iterating through the AST, we can access information that Java Reflection API
cannot provide, such as method bodies.

In Service Decomposition (see Chapter4), we leverage the JDK Compiler module

to analyze the AST of the open-source code.

2.2.5 Spring Cloud

Spring Cloud [11] is an open-source project that facilitates the construction of
the microservice architecture and provides various implementations of common mi-
croservice patterns, including the API Gateway [12].

In Service Composition (see Chapterb), we utilize Spring Cloud to deploy the

generated microservices and API Gateway.

doi:10.6342/NTU202303287

CHAPTER 2. RELATED WORK 9

2.2.6 Hungarian Algorithm

Hungarian Algorithm [26] is a combinatorial optimization algorithm proposed
by Harold William Kuhn in 1955. It efficiently solves the assignment problem in
polynomial time by finding the maximum weighted match (or minimum weighted
match) in a bipartite graph.

In Microservice Matchmaking (see Chapter6), we utilize the Hungarian Algo-

rithm to compute the distance between microservices.

2.2.7 WSDL

WSDL (Web Service Description Language) [14] is a standard recommendation
from W3C. It is based on XML and provides detailed descriptions of message formats
and binding protocols used to invoke web services.

In Service Decomposition (see Chapterd), we utilize WSDL to describe the gen-

erated service components.

2.2.8 HDBSCAN

HDBSCAN (Hierarchical Density-Based Spatial Clustering of Applications with
Noise) [30] is a density-based clustering algorithm. Unlike other density-based
clustering algorithms that use an epsilon parameter to define the scope, HDBSCAN
employs a hierarchy to replace epsilon, requiring only one parameter (minimum

cluster size). This allows it to discover clusters with varying densities.

In Service Composition (see Chapter5), we use HDBSCAN to cluster APIs.

doi:10.6342/NTU202303287

Chapter 3

Microservice Definition

The microservices architecture is the decomposition of a system into a set of
services, such that all services will have minimal public interfaces.

The threshold upon which the system can be decomposed is defined by the use
cases of the system that the microservices are a part of.

This definition supports the known fact that each microservice should have its
own database. That s because in other the case, one of the services would have
to expose its database as its public interface. And this huge public interface would
make it a macro-service.

In our research, we have defined the internal structure of microservices. Building
upon these definitions, we propose the description of microservices and an API

clustering mechanism.

10

doi:10.6342/NTU202303287

CHAPTER 3. MICROSERVICE DEFINITION 11

Controller Service

Figure 3.1: Microservice Structure

3.1 Microservice Structure

We define Microservice can be composed by four elements :

1. Controller: public interfaces
2. Service: business logic.
3. Repository: persistence logic.

4. Entity: database storage object.

Based on this structure, we can describe a microservice by combining the description

of each part.

11

doi:10.6342/NTU202303287

CHAPTER 3. MICROSERVICE DEFINITION 12

3.2 APIs in a Microservice

We assume that APIs within the same microservice should exhibit high cohesion,
implying the existence of dependencies between APIs. These dependencies can be

seen as the following relationships between APIs:

1. APIs have the execution order
2. APIs have the invocation relationship

3. Composite API

Based on this definition, we can conduct cohesion analysis on the APIs in the project
and cluster them based on the computed values. Each cluster formed would represent

a microservice.

3.3 Example of a Microservice

Taking a user service Microservice as an example (see Figure 3.2), as shown
in the diagram , this Microservice provides two API services (controllers), namely
"login” and "register”. Within these two APIs, there are various business logics, such
as checking user existence and generating login credentials. Additionally, to store
and modify information, the Microservice must have an instance of the database to
store data and access the database with persistent layer logic. Thus, the Microservice

exhibits the four essential elements: controller, service, repository, and entity.

12

doi:10.6342/NTU202303287

CHAPTER 3. MICROSERVICE DEFINITION 13

User Repository (classID 4) User Data Model (classiD 10)

login lasExi
(ServicelD 18) (ServicelD 10)
findByUsernamels

(ServicelD 12)

—>

- id: Integer
e .) -
(SenvicelD 6) (SenvicelD 5) ‘=
n
(eger
- description: String
checkUserType - bithday: LocalDate
(ServicelD 15) [J

a
generateToken
| (ServicelD 16)

Figure 3.2: Microservice Example

13

doi:10.6342/NTU202303287

Chapter 4

Service Decomposition

Service Decomposition is the process of decomposing the Java program and gen-
erating service components with Java methods as units. A service component in-

cludes:
o Data Model: store the information of program elements
 Dependency Model: store the dependencies between program elements

« Web Service Description Language: used to describe the service compo-

nent
The generation process of a service component includes following steps:

1. Service Decomposition

(a) Source Code Parsing
(b) Dependency Extraction

14

doi:10.6342/NTU202303287

CHAPTER 4. SERVICE DECOMPOSITION 15

(c) Service Type Parsing

(d) Database Object Creation
2. WSDL Generation

In this chapter, we will illustrate the implementation of each step and present the

final output.

4.1 Service Component Generation

4.1.1 Source code parsing

To acquire both compile-time and runtime information, we utilize the JDK com-
piler and the Reflection API to disassemble the source code (see Figure 4.2). We
then convert the information provided by these APIs into the required models and

merge the two sources. The model comprises two parts:
« Data Model: for program element information (e.g., class, field, method).

e Input/Output Model: for method parameters and return types.

4.1.2 Dependency extraction

Dependency Extraction involves extracting the dependencies between program
elements and associating these relationships with the Data Model extracted in the
previous step (see Figure 4.3). The process of Dependency Extraction consists of

three main steps:

15

doi:10.6342/NTU202303287

CHAPTER 4. SERVICE DECOMPOSITION 16

Figure 4.1: Source Code Parsing System Architecture

16

doi:10.6342/NTU202303287

CHAPTER 4. SERVICE DECOMPOSITION

17

/
[o«m.m. } [- }

Cantain

Create

\ Source Code Parsing

/

Figure 4.2: Source Code Parsing

Data Model

a Model
Service Dependency Model
Constructor

Service Dependency Model

Figure 4.3: Dependency Extraction

17

doi:10.6342/NTU202303287

CHAPTER 4. SERVICE DECOMPOSITION

18

Encapsulation Abstraction Delegation

Encapsulation Abstraction Delegation

contained-in-package [performs-op 0
kags direct-subpackage-of o performs-cast o -
subpackage-of [instance-of 0 -
ficld-in [returns o
method-in a uses o - o
Class n - ko3
innerClass-of [P wriles [- [
inner-type [flow-into o - 0
access-modifier] loop-read o o
Modifier - ~0op-reac
non-access-modifier) - loop-write o o
initialized-by o - return-type o -
geis o 0 argtype-N o -
Field read-before o - - e g implements - 0
write-before o - extends - 0 o
field-type [overrides - 0 0
Data clement-type o Override overrid-Concreate- 0 o
expression-type Qa - override-Abstract- - 0 -
overloads 1] o invoke-method - o
~ Invoke -
Overload overload-nonStatic- 0 o - invoke-nonStatic-method 0
overload-static-method a o invoke-static-method o
Invoke abstract
read-classfield - o invoke-abstract-method - 0 o
Access class method
calls-classfield o delepation o
access-attribute 0 self-delegation o
access-nonStatic- .
Access nonConstant-attribute o Delegation recursive-delegation 0 o
attribute —
access-static-constant- .
} o receiver o
attribute
creation 0 indirect-invocation o
cager-creation a o 1 intent [\)
rder-N filt
order- - [ilter - o
Invoke method -
use-known - 0 register-receiver - o

Figure 4.4: Program Relation Summary

1. Relation Evaluation

2. Dependency Concatenate

3. Generic Type Dependency

Relation evaluator

The Relation Evaluator is built upon previous research [24]. It analyzes Java

bytecode using Soot and extracts 10 types of program elements and 56 types of

dependencies (see Figure 4.4). Subsequently, it generates a dependency graph (see

Figure 4.5) that describes the relationships between these program elements.

18

doi:10.6342/NTU202303287

CHAPTER 4. SERVICE DECOMPOSITION 19

Program element — Program relation
\\ /
package p; L ’;
class ClassA gV
int attri t{)uteA; l p.ClassA.attributeA }f field-in JI p.ClassA |

void methodA() {

} Y l p.ClassA.methodA() I method-in =|] p.ClassA |

Source Code Dependency Graph

Figure 4.5: Dependency Graph Example

Dependency concatenate

To bridge the gap between the model based on source code and the extracted
dependencies based on bytecode, we need to establish connections for methods whose

dependencies are linked by synthetic elements.

class level The <clinit>method is responsible for the static initialization of the
Java class. Static elements, such as static blocks and static fields, are placed within
this method to perform uniform initializations (see Figure 4.6).

When the class is loaded by the ClassLoader, the <clinit>method is invoked
immediately. Consequently, class-level methods and variables should have a class-

level dependency with the class itself(see Figure 4.7).

final field During the optimizing compilation, the JDK compiler extracts the
value of the final string field to the Constant Pool. As a result, there is no direct

relationship between the original field and the program element that uses it in the

19

doi:10.6342/NTU202303287

CHAPTER 4. SERVICE DECOMPOSITION 20

class X {
static Log log = LogFactory.getLog(); // <clinit>
private int x = 1; // <init>

X() {

// <init>
static {

// <clinit>
3

} |

Figure 4.6: example of the class level element presented in the bytecode

dependent element -

\ J

dependent element

i <clinit> method

dependent element -~ !

Figure 4.7: concate the dependency between the class level elements with the class

20

doi:10.6342/NTU202303287

CHAPTER 4. SERVICE DECOMPOSITION 21

Final field string value

Code in Soot

sendWithContext (java.lang) String, java.lang:String, java.lang.String,java.lang.String,java.lang.String,java.u
til.Map)>("info@codedsocialgbod.org", $r80, $r8i»"Code for Social Good: You received an application",
"project-application-organization", $r72)

Figure 4.8: final field invocation present in Jimple IR produced by Soot

Service @ F----- > Final Field

Field F----- »> Final Field

(initailized by)
Figure 4.9: concate the dependency between the program elements with the final

field

bytecode.

To address this, we use the SymbolSolver in JavaParser to obtain this type of

dependency.

lambda expression, method reference and anonymous class After version
8, Java introduced support for lambda expressions and method references to replace
the original anonymous class style. Java supports four basic function forms, which

are:
1. Consumer : with parameters and without return value °

(a) Its functional method is accept

21

doi:10.6342/NTU202303287

CHAPTER 4. SERVICE DECOMPOSITION 22

|
. invoke !
invoker -
Ik
SSa
<

-—oL

------- dependent
element
dependent
element

dependent
element

Figure 4.10: concate the dependency between the program elements with lambda

expression dependent elements

2. Function : with parameters and with return value °
(a) Its functional method is apply
3. Supplier : without parameters and with return value °
(a) Its functional method is get
4. Predicate : with parameters and with the boolean type return value °

(a) Its functional method is test

The JDK compiler generates inner classes for lambda expressions, method references,
and anonymous classes that are not present in the original open-source code. These
inner classes are used to invoke their internal logic through their functional method
(or anonymous class method). Consequently, we have to concatenate the dependency
between the invoker and the program elements dependent with the internal logic (see

Figure 4.10 ~ Figure 4.11 ~ Figure 4.12).

22

doi:10.6342/NTU202303287

CHAPTER 4. SERVICE DECOMPOSITION

23

invoker

inner class

create

|
|
{ bootstrap$
S~ i
AN
NS
SOoaL U<
< ~
~ h\\
~
<
N
~ \\

dependent element

dependent element

dependent element

Figure 4.11: concate the dependency between the program elements with method

reference dependent elements

invoker

inner class

dependent element

dependent element

dependent element

Figure 4.12: concate the dependency between the program elements with anonymous

class dependent elements

23

doi:10.6342/NTU202303287

CHAPTER 4. SERVICE DECOMPOSITION 24

Type erasure public MyNode(Integer data) { super(data); }

System.out.printin("MyNode.setData");

public class Node { super.setData(data);

i
! |
! |
! |
! |
! i
3 E
E public void setData(Integer data) { |
! i
! |
i ! i
i ! 1
H by :
public Object data; i ! E

i
public Node(Object data) { this.data = data; } R N

. .

i

.

i

i

i

public void setData(Object data) {

i
| |
= E
System.out.printin("Node.setData"); i . . !
this.data = data; ! ! x Bridge method generated by the compiler |
' 1 '
) ! overtide) public void setData(Object data) { '
! setData((Integer) data); |
) 7 use

public void setData(Integer data) {

|
|

|

|

E

H System.out.printin("MyNode.setData");
| super.setData(data);
|

I

|

|

|

|

|

|

|

Figure 4.13: example of the type erasure and its corresponding bridge method

type erasure and bridge method Sometimes JDK compiler will automatically
create some method that are no in the original source code, which were called "Syn-
thetic method”. When compiling a class or interface that extends a parameterized
class or implements a parameterized interface, the compiler will create the synthetic
method to cast the type of the parameterized type to avoid error occur in the JVM
execution (see Figure 4.13). When the above situation occurs, we need to connect

the dependency between the methods at both ends of the synthetic method.

Generic Type Dependency

Due to Type Erasure, there is a lack of information about generic types in
bytecode, which prevents Soot from extracting dependencies with generic types.
To address this issue, we use JavaParser to analyze the source code and obtain

dependencies that involve generic types.

24

doi:10.6342/NTU202303287

CHAPTER 4. SERVICE DECOMPOSITION 25

inner class

invoke

invoker > bridge method

Y

target method

Figure 4.14: concate the dependency between the program elements with the target

method

Map information evaluation

Map Information use Jimple IR compiled by Soot to evaluate the dynamic data
stored in the Java Map (see Figure 4.15). From the register in the return statement,
we use Chain of responsibility pattern to track the Map operation invocation in the
method body. There are three chains: Map, Collection and Object creation, which

can ensure that the dynamic data can be extracted under any kind of data structure.

4.1.3 Service Type Parsing

In this step, we determine the role of each program element in the project using
the annotations provided by the Spring framework and JPA [4]. This information

will be used for further matchmaking purposes.

The annotations used in this research are listed below, along with their descrip-

25

doi:10.6342/NTU202303287

CHAPTER 4. SERVICE DECOMPOSITION 26

Source code &
Built Jar Files

Jimple IR———

o

Model

-

Map Information

Data Model

Map Attribute Constructor

Map Attribute Mode|

p Infomation
Model

Figure 4.15: Map Information Evaluation

26

doi:10.6342/NTU202303287

CHAPTER 4. SERVICE DECOMPOSITION 27

Figure 4.16: Map Information Evaluation System Design

tions from the Javadoc:

1. @Controller : “Indicates that as annotated class is a * Controller’ (e.g a

web controller)”

2. @Service : “Indicates that an annotated class is a *Service , originally
defined by Domain-Driven Design(Evans, 2003) as " an operation offered as

an interface that stands alone in the model, with no encapsulated state.”

3. @Repository : “indicated that an annotated class is a * Repository’ , orig-
inally defined by Domain-Driven Design(Evans, 2003) as *a mechanism for
encapsulating storage, retrieval, and search behavior which emulated a collec-

tion of objects’ ”

27

doi:10.6342/NTU202303287

CHAPTER 4. SERVICE DECOMPOSITION 28

4. @QEntity : “Specifies that the class is an entity. This annotation is applied

to the entity class”

These annotations play a crucial role in defining the roles and functionalities of

various program elements within the project.

4.1.4 DB Object Creation

For further usage, we transform the model into the database entity and store
it in the database (see Figure 4.17). To handle the creation of different types of
database entities, we employ the factory pattern, allowing for a flexible and organized

approach to entity creation. We use MySQL to store the data.

service component DB (see Figure 4.18) store the service components. There

are four kind of information in the storage:

1. core element (ex. class, method)
2. dependency between core elements
3. semantic annotation

4. other elements (ex. parameters, return value)

4.2 WSDL generation

To describe the services offered by each service component and enable require-

ment matchmaking, we generate a WSDL file for each service component.

28

doi:10.6342/NTU202303287

CHAPTER 4. SERVICE DECOMPOSITION -’

D8 Object Faciory DB Entiy Obsocts

(Method - Dependency and
Map Information)

Figure 4.17: Model Creation

29

doi:10.6342/NTU202303287

CHAPTER 4. SERVICE DECOMPOSITION 30

Micrsanics
Pk | micossnised —
[P o

F | wioPan

prern

oot ot
P | .o ServiceComponen DepencenClass s2c_relation
s " i Jacrrd

P | el cloes)

Fiok_inklokzocsy_Servor

e e - B =
e 1 =T
o core element
e e dependencies between core element
semantic annotation
other element (input/output/...)
L -

Figure 4.18: Service Component Database Schema

30

doi:10.6342/NTU202303287

CHAPTER 4. SERVICE DECOMPOSITION

31

nl
d1 :definitions x
140.112. 4

types>
<xisd:schema elementFormDefoul t=

lement
<xsd: complexTypes
<xsd: sequencs

<«xsd:element name="i

Tement name="p
sd: complexType>
<xsd: sequence>
d:element name:
equence>

<wsd] :message name-
L:part name="
</wsd] :message>

portType name=
-wsdl :operation

fwsdl :services
dl:import 1
sdl : definitio

type="x

Lrestful

xmlns:nt

001/ XMLS

Figure 4.19: Example of the generated WSDL

31

doi:10.6342/NTU202303287

Chapter 5

Service Composition

Service Composition is the process of composing service components to microser-
vices (see Figure 5.1).

First of all, we evaluate which APIs are suitable to be placed in the same mi-
croservice based on the extracted dependencies.

Second, we compose the microservices with the service components those depen-
dent with the APIs belong to them.

Finally, we deploy the generated microservices to the Spring Cloud.

5.1 Dependency Repack

We apply an object-oriented approach, beginning with the service component,
which serves as the API in the original project. Through recursive repackaging along

the dependency flow, a tree structure is formed (see Figure 5.2).

32

doi:10.6342/NTU202303287

CHAPTER 5. SERVICE COMPOSITION 33

Battom-up

l— —— —3— - M;T:Cr‘zm | Repack ‘“;::ﬁ__| DB query sorver ‘
1 ' | >
' 2
! s
I E—
] ‘.Eewlcecomponenll:\a
1 T -
1
1
1
1 =) Soing cloud
I) Eireka s
1
1
1
Store Mmoser:‘ice-SetviceCnmmnent mapping Depl =" Microsenvices 2 ”:_mm’ = '\:\m:t‘a‘;
1
e e e - >

|_ MicroserviceDB |

Figure 5.1: Service Composition

The nodes in this structure can be categorized into three types: class, field, and
service.
The edge (Dependencies) in this structure can be further classified into three

categories:

1. Service-to-class, service-to-service, and service-to-field dependencies extended

from service nodes.
2. Field initialization dependency extended from field nodes.

3. Class-level dependency extended from class nodes.

33

doi:10.6342/NTU202303287

CHAPTER 5. SERVICE COMPOSITION 34

Api Sennce
Servu:e fo Service Dependency Service to Field Dependencv

Service to Class Dependency

Service to Service Dependency

Service \ Class ‘] (Field) Service
\ / /

Field Initialization

Class level service Class level field) L
Field Initialization Field Initialization

Service ‘ Field Service Field Class)
.) < ' N ,/

/U’ /

Figure 5.2: dependency repack visualization
5.2 API Clustering

Based on the definition of microservice, it encapsulates the business logic and
exposes minimal public interfaces, which should exhibit high cohesion. Therefore, we
need to determine which APIs should be placed in the same microservice according

to this definition.

5.2.1 distance between APIs

To ensure high cohesion, we calculate the distance between APIs using an encap-
sulation metric. We begin by considering the service components, which represent
the APIs in the original project, and then repack these service components based on
their dependency flow, forming multiple dependency trees. We calculate the method

usage overlap between pairs of APIs. This overlap serves as the clustering distance

34

doi:10.6342/NTU202303287

CHAPTER 5. SERVICE COMPOSITION 35

metric.
Next, we determine the distance relationship between two APIs based on the
overlap of their dependency trees. The calculation method involves computing the

intersection divided by the union. (see Equation5.1) °

where:

M; = method set under the API ¢ dependency scope
M; = method set under the API j dependency scope

D,; = distance between API 7 and API j

5.2.2 cluster APIs

By calculating distances for all API pairs and transforming them into a distance
matrix, we apply the density-based clustering algorithm, HDBSCAN (Hierarchical
Density-Based Spatial Clustering of Applications with Noise), for clustering. We
chose this clustering algorithm because, unlike other density-based algorithms that
use an epsilon parameter to determine scope, HDBSCAN uses hierarchy to replace
the parameter, which improves the robustness of the clustering result and allows
for the identification of clusters with various densities. The resulting clusters are
then stored in the Service Component DB, with each API cluster representing a

microservice.

35

doi:10.6342/NTU202303287

CHAPTER 5. SERVICE COMPOSITION 36

5.3 Service Component Composition

The service component repack mechanism is based on previous research [29] and
involves rewriting the original project. Once the decomposition of the Monolithic
system is determined, we begin with the service components, which were the APIs

in the original project, and repack all the program elements in the dependency tree.

Next, we will provide a detailed explanation of the following processes:

1. Query dependencies

2. Model dependencies

3. Configure JavaParser

4. Attach model with AST

5. Clone the tree and remove the unnecessary node in the tree based on the

information stored in model
6. Plugin Handler COR to collect the needed configuration AST
7. Write Project and Post Processing

8. Build project and zip

5.3.1 Query Dependency & dependency Modeling

Retrieve the microservice internal structure (see Figure 5.3) based on the API
dependency tree from the database query server, and store this information in our

self-defined model on the repack server (see Figure 5.4).

36

doi:10.6342/NTU202303287

CHAPTER 5. SERVICE COMPOSITION 37

i
"dddsample-core-master": [
i
"se.citerus.dddsample.domain.model.handling.HandlingEvent": [
{
“implements": [«
1,
"useParametexType": [],
"extends": [],
"method": [
1,
"field": [
1.
"extendBy": [],
"implementedBy": []
¥
]

b,

o

b

{e

b,

Figure 5.3: db query response format

37

doi:10.6342/NTU202303287

CHAPTER 5. SERVICE COMPOSITION

38

Model

ProjectObject

- projuctUri: String

- controllerServices: Map

- targetClasses: List<TargelClass>

- requiredServices: Set<TargetMethoct=
- springBootApplication: TargelClass

- projectiName: String

- generatedProjectName: String

- classDeclarationMap: Map

- enumDeciarationMap: Map

TargetClass

- projectName: String
- classMame: String

- packageName: String

- tasgetMethods: Map

- largetFields: Map

- extendGlasses: List

- extendByClasses: List

- implomoniClasses: List

- implementBy: List

- parameterTypes: List

- classNode: ClassOrinterfaceDaclaration
- anumMode: EnumDeclaration

classBelongTa: TargetClass
signature: String

p——————»{ # methodClassName: String

method: CallableDeclaration
isConstructor: bookean

\ - getFullSignaturel): String

+getFulClassName(): String

TargetField

Use

TargetClass

- fieldName: String
- fieldDeclaration: FlskiDecaration

Figure 5.4: repack model

38

doi:10.6342/NTU202303287

CHAPTER 5. SERVICE COMPOSITION 39

JavaParser

Source code Jar - = e

Figure 5.5: AST attaching

5.3.2 Configure JavaParser & attach AST to model

We use the visitors provided by JavaParser, overriding its logic to collect the

AST nodes we need, and attach them to the model (see Figure 5.5).

5.3.3 Clone the element & remove the unnecessary node

The original AST tree is attached to the model, which retains all the information
about the AST. Next, we identify the Java files required, clone them, and store them

in a separate map. We then make modifications to this cloned AST node.

Using the model information, we perform subtraction on the cloned node, remov-

ing unnecessary elements such as methods, fields, inner classes, or import statements.

39

doi:10.6342/NTU202303287

CHAPTER 5. SERVICE COMPOSITION 40

5.3.4 Plugin Handler Chain

In the aforementioned repack process, we repack the service components with the
dependency flow based on the object-oriented concept. However, many projects use
frameworks and plugins that encapsulate the dependency flow into their libraries.
As a result, the dependency flow starting from the API may not be able to repack

some necessary configurations (e.g., Beans in Spring Framework).

To address this issue, we propose the Plugin Handler Chain (see Figure 5.6),
which utilizes the Chain of Responsibility pattern. The input to this chain is the
dependency tree compiled from the build tool, and the detailed execution process is

as follows:

1. Model the dependencies as the PluginService.Dependency classes.
2. Create the Plugin Handler COR chain.
3. Iterate through each dependency using the COR chain.

4. Create the corresponding post-processor if needed (something that needs to

be modified but is not in the AST, e.g., build script files).

5.3.5 Write Project and Post Processing

The construction of the microservice project is performed in the following de-

tailed process:

1. Copying the original project and removing the source code directory.

40

doi:10.6342/NTU202303287

CHAPTER 5. SERVICE COMPOSITION 41

Figure 5.6: Plugin Handler Design

2. Writing AST into Java files one by one, according to the structure stored in

the modification map.

3. Executing the post-processors to perform some rewrites that are not in the

source code.

5.3.6 Build project and zip

After generating the microservice project, it is built using the build tool, and the

resulting jar file is compressed for further usage.

41

doi:10.6342/NTU202303287

CHAPTER 5. SERVICE COMPOSITION 42

BuildStrategy

- buildStrategy: BuildStrategy

buildProductPath: String

teDe ilder: P i : void

buildProj iider: P : String): String
+ getBuildProductPath(): String

jectObject: ProjectObject): BuildStrategy,

executeD cy’ i ilder: P): void

ildProjectProcess(pr o ilder): void

Figure 5.7: Build Strategy

Build Strategy

During the repack process, we require the functionality of the build tool. How-
ever, due to variations in the implementation of different build tools, we utilize the
strategy pattern to abstract the functionalities of the build tool (see Figure 5.7),

making the entire system extensible. The functionality of the build tool:
1. build project

2. extract dependency tree

Currently supported build tools include gradle [1] and maven [§].

5.4 Deployment

Currently, we have repackaged the microservice projects to JAR files. Next, we
will deploy them on Spring Cloud [12] and configure the API Gateway to handle

access to the microservices uniformly.

42

doi:10.6342/NTU202303287

CHAPTER 5. SERVICE COMPOSITION 43

@ Spring cloud

@ Service registry
(Eureka service)

Frontend (/ =) Appserver (/-_93 API Gateway d _~
p - 4
— Microservice (=Y Microservices
dynamic routing
information deploy
. i Microservice @Jenklns
Microservice DB Extractor

Repack Server

Figure 5.8: Service-Component-Based Microservice Architecture

5.4.1 Microservice Extractor

This step sets the necessary parameters of Spring Cloud for the jar file, mainly

including the following steps (Figure 5.9)

Allocate Port

Look for an idle port that can be used as the server port of the microservice.

Generate Startup Script

Generate a script that runs Microservice for subsequent Jenkins pipeline execu-

tion. In this script, three flags are mainly set for execution instructions:

1. server port: idle port allocate from the last step

2. application name

43

doi:10.6342/NTU202303287

CHAPTER 5. SERVICE COMPOSITION 44

Allocate port Generate Save to
P Startup Script database

Figure 5.9: Microservice extraction process

3. eureka server URL

Example output of this step:

java -jar /Jar/File/Path/JarFileName. jar
--server.port=8764
--spring.application.name=microservice-application-name

—-—eureka.client.serviceUrl.defaultZone=http://{eureka-server-ip:port}/eureka

Save to database

Finally, we store the microservice information and the mapping relationship be-
tween the microservice and service components in the microservice database (see
Figure 5.10), providing the necessary information for URL rewriting in the API

Gateway.

5.4.2 Service Invocation

In Service Invocation (see Figure 5.13), the frontend communicates with the
Application Server using WebSocket, while the Application Service communicates

with the API Gateway using the HTTP protocol. When the frontend needs to

44

doi:10.6342/NTU202303287

CHAPTER 5. SERVICE COMPOSITION 45

service_component microservice_service_component micraservice
PK serviceid PK next val PK microsarviceid
class_name _|7 microserviceld I ‘ jar_path
signature serviceid name
port
base_url_path
FK projectid

Figure 5.10: Microservice Database Schema

invoke backend services, it sends the target service ID and the parameters to the
Application Server. The Application Server then transforms the request into an
HTTP Request and sends it to the API Gateway. The API Gateway retrieves the
URL rewrite information from the microservice database based on the target service
ID for further processing. For more details on the URL rewriting process, please
refer to Figure 5.11.

Based on the service invocation process described above, the API Gateway en-
capsulates microservices, so the Frontend server only needs to know the service’s ID

instead of the microservice it belongs to.

45

doi:10.6342/NTU202303287

CHAPTER 5. SERVICE COMPOSITION 46

gateway-service host request path matching prefix /selab/**

'http://140.112.90.144:8888/selab/original/request/path

{
w 1 — rr .
Service-ID” : 123, ‘\ The request header should contain “Service-ID”
e of the service component which the Frontend
} Server wants to access

rewrite l

1b://${microservice-unique-name}/original/request/path

Figure 5.11: API Gateway URL transform

:AppServerMicroservice :RoutePredicateHandlerMapping ‘ ‘ :ServicelDFilter | |: MicroserviceRepaository| ‘ :ServiceMappingCache :Microservice ‘
HTTP request R ; M
T H
Alt [if request path match /selab/**]
chain filter(exchange)
Alt [if servicelD not exists in cache]
query(servicelD)
microserviceName
put(servicelD, cacheEntry)
get(servicelD)
P microserviceName .
transform(request)
transformedRequest
e TEORONS s
. chain fiter(exchange)
e HTTP response

Figure 5.12: Sequence diagram of request URL transform in API Gateway

46

doi:10.6342/NTU202303287

47

CHAPTER 5. SERVICE COMPOSITION

JTIOUOdWO0D 9ITAISS 0} IOAIDS PUIUOL] (] WO UOIJRIOAUL 9IIAIDS JO WIRISRIP 90uanbog :¢1°¢ 2IndIg

[Ginser saniesiuinie]

(ynses eowuas)uinies

(sse1ewe.ed ‘un;

801185+ 801ABS0.IIL)BIND)

{HOJ83IAIBS 0. ‘|SOHBIAIBS0IDIL)UIN]B)

* (pooasosoiw)uanb

(preamaes)luont

" {pieoinssomou)uinel

>

s s T insad sanssmis |

(sssewesed 'Pnaojuss 'ploiues)in L Say
i rm (s 185 8YOAU|

(sisjewesed)ssanoid 1349 8qoaul,

{sweu vonesedo}s{edfi Lod}gaweu abed)s (pn
(s1epewesed)uoyariaul In

wauodwonaones:

_ Q0IAIBSOIOIN: 7 7

I8MIBS BYAINT:

90 20IAIASOITI:

7 Kemaeb |dy:

smsenbai gy
lanses uoned) ddy:

§88001d 38 BAET|
lanses uones) ddy:

igljoquod
Jansas uonea) ddy:

juauodwoo |n: 7

47

doi:10.6342/NTU202303287

Chapter 6

Microservice Matchmaking

To enable the system to identify candidate microservices based on user require-
ments [28], we need to describe the microservices and perform matchmaking with
the requirements based on this description. This process allows the system to search

for and select the most suitable microservices to fulfill the specific user needs.

6.1 Microservice Description Generation

In Microservice Definition (see Chapter 3), we define a microservice as composed
of the following four elements: Controller, Service, Repository, and DB Model (see
Figure 3.1). In Service Decomposition (see Chapter 4), we utilize the semantic
annotations provided by Spring Framework and JPA to determine the roles of the

program elements and store this information into the service component database.

To facilitate the matchmaking, we extract information that can be compared

48

doi:10.6342/NTU202303287

CHAPTER 6. MICROSERVICE MATCHMAKING 49

/ Top-down I\

Controller.json

Match- |
making bourlded context description Json Oulaut

N
Gr.aph-bas_ﬂd Bounded Context
Microservice Extractor

Matchmaking

|

I %

|

1 e ——
Output candidaie microservices

MatchMaking DB

|

|

|

|

|

|

|

microservige description

Bottom-up

(5

Service Cluster
1 I
———————

Figure 6.1: Microservice Matchmaking in SBmS

49

doi:10.6342/NTU202303287

CHAPTER 6. MICROSERVICE MATCHMAKING

50

[{"httpMethod","c
ontrollerName"}]

Controlle |'.j50|]7

["methodName”]

Service.json 7

["methodName"]

Repos1tory.j5037

Microservice Description

[{'schemaName”,
["dependent"]}]

DBSchema.jsoV

Figure 6.2: Microservice Description

from both sides (source code side and requirement side). These information then

be arranged to the JSON [7] file for each part description. By combining the JSON

file that describe each part of the microservice, we propose a integral microservice

description (Figure 6.2).

6.2 Bounded Context to Microservice Description

In a separate study, Lin [28] proposed a method to derive bounded contexts from

requirements. To facilitate matchmaking between bounded contexts and microser-

vices, we let their descriptions share the same fields. This shared information enables

us to align bounded contexts with the corresponding microservices. As described

in Lin~ s work, relevant information is then extracted from the descriptions in the

bounded contexts to fill in the fields in the description files.

20

doi:10.6342/NTU202303287

CHAPTER 6. MICROSERVICE MATCHMAKING

51

1| Basic Flow

Bounded
Context

Message

Actor

Requirement

Action

Frontend

[FFR8: Bidding interface]

1. The Bid Function
Module provides an
interface for users to
enter their prices.

User

2.The User enters a bid
price.

Frontend

[1IR14: Bid Module and
Bid Function Module]

3.The Bid Function
Module sends a request
to the Bid Module to
<<Create>> a new bid
record.

Backend

-
~

Figure 6.3: Mapping between Bounded Context, Use

croservice Description

[IIR9: Authentication and
Bidding Module]

[IIR14: Bid Module and
Bid Function Module]

4.The Bid Module
sends an
<<Authentication>>
request to the
Authentication Module
to checkiif the user is
authenticated.
<<include{[UC-020:
Authentication]>>

Backend | [IIR22: Bid Module and
Communication Module] | sends a request to the
Communication
Module to notify the
previous bidders.
Bockend | [BFR6: Notify users] 11. The Communication

Module notifies
previous bidders that
the current price has
been updated.

ol

Microservice

Service

Repository

Entity

P ———

Case Specification and Mi-

doi:10.6342/NTU202303287

CHAPTER 6. MICROSERVICE MATCHMAKING

92

+ altribute2
+ atfribute3
+ attribute4

Collect requirements
from every use case
spec, and group by
Bounded Contexts

(BtoDB)IIR9

o

(BtoDB)IIR10

+ attribute2

Message /
+ attribute1 /

Microservice

Controller

Service

Repository

Entity

e ——

Figure 6.4: Bounded Context to Microservice Description

o2

doi:10.6342/NTU202303287

CHAPTER 6. MICROSERVICE MATCHMAKING 93

Controller DB Schema
@ =
- &-’,’_f-} T /.»-"" =) v . KCOT,,
KM, 4 KW < HTTPMethod {OP > KW <= > KM SCN > KW Z
SRy, ~_ e I
R kAM, \\\ 1
________________ ‘_H.i______________.
””””” T
POT) \ PDT |
- —-—
Service / Repository “] .
KW Kw
PN 1\ \
[SN e -« L
KPDTg, KPOTga KPDT, | KPDTg,

KOP,
(op > Kw < K0P,

KOPy

Q& :root node

ww o keyword node

% : connector node

: keyword segment node

Figure 6.5: Graph Structure for Each part of description

6.3 Graph-based Microservice Matchmaking

The matchmaking algorithm is based on previous research [27], but we have

expanded its matchmaking level from method to microservice.

After transforming the microservice description into a graph, we proceed to calcu-

late the distances between the keyword segments, keyword nodes, connector nodes,

and the entire graph. The details of the distance calculation method will be de-

scribed below.

6.3.1 Distance of keyword node

The distance calculation between two keyword segments involves the following

steps:

23

doi:10.6342/NTU202303287

CHAPTER 6. MICROSERVICE MATCHMAKING o4

keyword node j .
j_ inner product of the
f \ word vectors of the
two word segments
KOP KOP, KOP,
KOP D D D
keyword node i ! " 2 E
KOPz Dzw Dzz Dza

Table 6.1: keyword segment distance matrix

1. Utilizing a Python wordsegmentation [16] to segment the keyword into a list

of individual keywords.
o ex. getltem — [get, item]

2. Utilizing WordToVec [15] to convert each keyword segment into a correspond-

ing vector representation.

o Here we employ the pre-trained model "GoogleNews-vectors-negative300”

provided by Google

3. Calculating the distance between keyword segment with the inner product of

the two vectors (see Table 6.1)

After calculating the distance between each keyword segment, we use Hungarian
algorithm to find best match, and define the distance between keyword nodes as the
sum matched keyword segments distances and the average of unmatched distances.

Take the Table6.2 as example, assume KW;; has best match with KW, KW;,
has best match with KWj,, and KW;3 does not matched with and keyword segment,

then the distance between keyword node ¢ and j would be: Dyy+ Dos+(D13+ Do) /2

o4

doi:10.6342/NTU202303287

CHAPTER 6. MICROSERVICE MATCHMAKING 95

keyword node j
AN

KW

i3

2N

Dzz \
4/’/ \

matched unmatched

Table 6.2: keyword segment matching

f Kwi1

keyword node i
1 0,

6.3.2 Distance of connector node

After calculating the distance between keyword nodes, we apply the same con-
cept again to calculate the distance between connector nodes, using a second-pass
Hungarian algorithm.

Among them, the DB Schema graph is composed of the schema part and the
dependent fields part. By calculating the distance of each part, we can compute the

distance between the graphs with a weighted average of both parts.

6.3.3 Graph Similarity calculation

Afterwards, we calculate the similarity for each element using the elastic-based
distance transformation equation proposed in [27]. Finally, we determine the sim-
ilarity between microservices by computing the weighted average of the similarity

scores for the four elements.

95

doi:10.6342/NTU202303287

CHAPTER 6. MICROSERVICE MATCHMAKING 56

i
"controllerSimilarity": ©.669548705858584,
"serviceSimilarity": 0.6114490083697397,
"repositorySimilarity": ©.3912745318391674,
"dbSchemaSimilarity": 0.3700183505633606,
"weightedSimilarity": ©.5877490071847207,
"microserviceID": 54.0

1,

i
"controllerSimilarity": 8.6617930334768557,
"serviceSimilarity": 0.5908376739242102,
"repositorySimilarity": 0.44892479310280364,
"dbSchemaSimilarity": ©.3630397186490025,
"weightedSimilarity": 0.5872894736033547,
"microserviceID": 16.0

b,

i
"controllerSimilarity": 0.6552326227795273,
"serviceSimilarity": 0.5929835373842679,
"repositorySimilarity": 0.44892479310280364,
"dbSchemaSimilarity": 0.3630397186490025,
"weightedSimilarity": 0.5859589684163158,
"microserviceID": 73.0

.

Figure 6.6: example of matchmaking response

o6

doi:10.6342/NTU202303287

Chapter 7

Conclusion

In this work, we proposed a service generation process involving the following

steps -
1. Parsing the source code to create a data model.
2. Extracting dependencies between project elements.

3. Determining the role of the program element in the project based on semantic

annotation.
4. Generating WSDL for the service components’ description.
5. Using the encapsulation-based metric to perform API clustering

6. Repacking the service components to a microservice based on Object Oriented

concept

57

doi:10.6342/NTU202303287

CHAPTER 7. CONCLUSION o8

7. Deploying the project, registering it on the Fureka server and exposing the

server with the API gateway

Furthermore, we proposed the microservice matchmaking process involving the

following steps:

1. Generating the microservice description
2. Transforming the microservice description into a graph representation.

3. Performing the matchmaking algorithm to calculate the similarity between the

bounded context-extracted microservice and the microservices we have parsed.

o8

doi:10.6342/NTU202303287

Chapter 8

Future Work

Currently, our approach has successfully accomplished microservice matchmak-
ing, which narrows the search space when a Ul component needs to bind to a service.
We can compare the WSDL generated in the Service Decomposition (see Chapter
4) with the required service description generated by the UI component. By cal-
culating the similarity between them, we can determine which service is the most
suitable for the description and return the corresponding service ID to the frontend.
The frontend component utilizes the service ID information to send HTTP requests

to our API gateway, enabling it to invoke the corresponding microservice.

59

doi:10.6342/NTU202303287

CHAPTER 8. FUTURE WORK

)

microservice
description

v 7

controller
WSDL

I

microservice
description

I

retrieve the searching scope

A

service binding

Figure 8.1: Ul Component Service Binding

60

Matchmaking DB

- 60

EARS
requirement

L7

Use Case
Specification

I

doi:10.6342/NTU202303287

Bibliography

[1] Gradle build tool. https://gradle.org/.
[2] Java compiler api. https://docs.oracle.com/javase/8/docs/api/javax/
tools/JavaCompiler.html.
[3] Java compiler tree api. https://docs.oracle.com/javase/8/docs/jdk/api/
javac/tree/.
[4] Java persistence api. https://docs.oracle.com/javaee/7/tutorial/
persistence-intro.htm.
[5] Java reflection api. https://docs.oracle.com/javase/8/docs/technotes/
guides/reflection/index.html.
[6] Javaparser. https://javaparser.org/.
[7] Json. https://www.json.org/.
[8] Maven build tool. https://maven.apache.org/.
[9] Open api specification. https://swagger.io/specification/.
[10] schema.org. https://schema.org/.
[11] Spring cloud. https://spring.io/projects/spring-cloud.
[12] Spring cloud gateway.
[13] Spring framework. https://spring.io/.

[14] Web service description language. https://www.w3.org/TR/wsdl.html.

61

doi:10.6342/NTU202303287

BIBLIOGRAPHY 62

[15] word2vec. https://code.google.com/archive/p/word2vec/.

[16] wordsegmentation. https://pypi.org/project/wordsegmentation/.

[17] L. Baresi, M. Garriga, and A. De Renzis. Microservices identification through inter-
face analysis. In Service-Oriented and Cloud Computing: 6th IFIP WG 2.14 Furo-
pean Conference, ESOCC 2017, Oslo, Norway, September 27-29, 2017, Proceedings
6, pages 19-33. Springer, 2017.

[18] R. Chen, S. Li, and Z. Li. From monolith to microservices: A dataflow-driven ap-
proach. In 2017 24th Asia-Pacific Software Engineering Conference (APSEC), pages
466—475. IEEE, 2017.

[19] N. Dragoni, S. Giallorenzo, A. L. Lafuente, M. Mazzara, F. Montesi, R. Mustafin,
and L. Safina. Microservices: yesterday, today, and tomorrow. Present and ulterior
software engineering, pages 195-216, 2017.

[20] E. Evans. Domain-driven design: tackling complexity in the heart of software.
Addison-Wesley Professional, 2004.

[21] M. Gysel, L. Kolbener, W. Giersche, and O. Zimmermann. Service cutter: A system-
atic approach to service decomposition. In Service-Oriented and Cloud Computing:
5th IFIP WG 2.14 European Conference, ESOCC 2016, Vienna, Austria, September
5-7, 2016, Proceedings 5, pages 185-200. Springer, 2016.

[22] M.-H. Hsieh. Construct service components from java-based open source projects.
Master’s thesis, National Taiwan University, 2021.

[23] J.-W. Huang. Generate web application servers with bpel processes. Master’s thesis,
National Taiwan University, 2022.

[24] S.-W. Huang. Towards a solution to iot interoperability through reverse engineering.
Master’s thesis, National Taiwan University, 2017.

[25] P. Kolb. Disco: A multilingual database of distributionally similar words. 2008.

62

doi:10.6342/NTU202303287

BIBLIOGRAPHY 63

[26] H. W. Kuhn. The hungarian method for the assignment problem. Nawval research
logistics quarterly, 2(1-2):83-97, 1955.

[27] J. Lee, K.-H. Hsu, S.-P. Ma, and C.-A. Lee. Service discovery through elasticity-based
graph matching. 2018.

[28] Y.-L. Lin. From requirements to microservice: A domain driven approach with
machine learning. Master’s thesis, National Taiwan University, 2023.

[29] T.-C. Lu. Develop web applications through service components repacking. Master’s
thesis, National Taiwan University, 2022.

[30] C. Malzer and M. Baum. A hybrid approach to hierarchical density-based cluster
selection. In 2020 IEEFE International Conference on Multisensor Fusion and Inte-
gration for Intelligent Systems (MFI). IEEE, sep 2020.

[31] W.-L. Shih. Construct service components from java-based open source projects.
Master’s thesis, National Taiwan University, 2022.

[32] J.-J. Yu. Construct service components from open source java projects. Master’s

thesis, National Taiwan University, 2021.

63

doi:10.6342/NTU202303287

