
doi:10.6342/NTU202303287

國立臺灣大學電機資訊學院資訊工程學系

碩士論文

Department of Computer Science & Information Engineering
College of Electrical Engineering and Computer Science

National Taiwan University
Master Thesis

從單體服務到微服務： 基於解構耦合的方法

From Monolithic to Microservice: A Dependency Decoupling
Approach

陳力聖

Li-Sheng Chen

指導教授： 李允中 博士

Advisor: Jonathan Lee, Ph.D.

中華民國 112 年 7 月
July, 2023

doi:10.6342/NTU202303287

i

doi:10.6342/NTU202303287

誌誌誌謝謝謝

首先，我要感謝我的指導教授李允中教授，這兩年以來的教導我許多知識以

及做研究的方法：尋找研究的主題、相關研究的探討、問題的發掘、以及解決問

題的方法。再來，我要感謝臺灣大學軟體工程實驗室的同屆成員，林怡伶、林辰

臻、許恆、梁峻瑞、黎光晏、張馨尹、劉仁軒，以及學弟妹、助理等，在一些共

同的專案中一同努力、互相合作。由於許多人的幫助，讓我得以完成此篇論文。

ii

doi:10.6342/NTU202303287

摘摘摘要要要

近年來，微服務架構漸趨流行，其有效改善大型系統的可擴展性和可維護性之

特性，使得許多企業與機關將其資訊系統從單體式架構重構成微服務架構。

然而，如何將單體式架構進行切分才能獲得最好的切割結果爭論已久，由於其

牽扯的層面廣且複雜因此目前尚未有定論，究其根本原因，皆是沒有清楚定義微

服務。因此，本篇論文對微服務的架構進行了定義，根據此定義我們提出以解構

耦合的方式，藉由分析開源程式中元素的依賴相關性對單體式架構進行切割，自

動化地產出微服務。

另外我們也依據此架構產出了描述微服務的文件，藉由此文件我們將使用者的

需求來做到微服務的需求匹配。

關關關鍵鍵鍵詞詞詞 — 服務元件、網路服務、網路應用程式重組、微服務、自動化程式碼

生成、圖匹配

iii

doi:10.6342/NTU202303287

Abstracts

In recent years, microservice architecture has gained popularity due to its ability

to significantly improve the extensibility and maintainability of large-scale systems.

This has led many enterprises and departments to refactor their information systems

from monolithic architecture to microservice architecture.

However, achieving the best decomposition of monolithic architecture remains a

topic of debate, as it involves various complex aspects. One of the root causes is

the lack of a clear definition of Microservice and its internal structure. In this re-

search, we aim to address this gap by defining the Microservice structure. Building

upon this definition, we propose a decoupling methodology to separate the mono-

lithic architecture into microservices based on the dependencies between program

elements in open-source projects, and we automate the process of generating the

microservices.

Furthermore, we introduce the Microservice description based on the proposed

architecture. This description allows us to perform matchmaking between the mi-

croservices and the user’s requirements, facilitating a more efficient and precise

service integration process.

iv

doi:10.6342/NTU202303287

Index terms — Service Component, Web Service, Repack Web Application,

Microservice, Automatic code generation, Graph-based Matchmaking

v

doi:10.6342/NTU202303287

Contents

口口口試試試委委委員員員審審審定定定書書書 i

誌誌誌謝謝謝 ii

摘摘摘要要要 iii

Abstracts iv

List of Figures x

List of Tables xiii

Chapter 1 Introduction 1

Chapter 2 Related Work 5

2.1 Related Work . 5

2.2 Background Work . 7

2.2.1 JavaParser . 7

2.2.2 Soot . 7

vi

doi:10.6342/NTU202303287

2.2.3 Reflection API . 8

2.2.4 JDK Compiler module . 8

2.2.5 Spring Cloud . 8

2.2.6 Hungarian Algorithm . 9

2.2.7 WSDL . 9

2.2.8 HDBSCAN . 9

Chapter 3 Microservice Definition 10

3.1 Microservice Structure . 11

3.2 APIs in a Microservice . 12

3.3 Example of a Microservice . 12

Chapter 4 Service Decomposition 14

4.1 Service Component Generation . 15

4.1.1 Source code parsing . 15

4.1.2 Dependency extraction . 15

4.1.3 Service Type Parsing . 25

4.1.4 DB Object Creation . 28

4.2 WSDL generation . 28

Chapter 5 Service Composition 32

5.1 Dependency Repack . 32

5.2 API Clustering . 34

vii

doi:10.6342/NTU202303287

5.2.1 distance between APIs . 34

5.2.2 cluster APIs . 35

5.3 Service Component Composition . 36

5.3.1 Query Dependency & dependency Modeling 36

5.3.2 Configure JavaParser & attach AST to model 39

5.3.3 Clone the element & remove the unnecessary node 39

5.3.4 Plugin Handler Chain . 40

5.3.5 Write Project and Post Processing 40

5.3.6 Build project and zip . 41

5.4 Deployment . 42

5.4.1 Microservice Extractor . 43

5.4.2 Service Invocation . 44

Chapter 6 Microservice Matchmaking 48

6.1 Microservice Description Generation 48

6.2 Bounded Context to Microservice Description 50

6.3 Graph-based Microservice Matchmaking 53

6.3.1 Distance of keyword node . 53

6.3.2 Distance of connector node . 55

6.3.3 Graph Similarity calculation 55

Chapter 7 Conclusion 57

viii

doi:10.6342/NTU202303287

Chapter 8 Future Work 59

Bibliography 61

ix

doi:10.6342/NTU202303287

List of Figures

3.1 Microservice Structure . 11

3.2 Microservice Example . 13

4.1 Source Code Parsing System Architecture 16

4.2 Source Code Parsing . 17

4.3 Dependency Extraction . 17

4.4 Program Relation Summary . 18

4.5 Dependency Graph Example . 19

4.6 example of the class level element presented in the bytecode 20

4.7 concate the dependency between the class level elements with the class 20

4.8 final field invocation present in Jimple IR produced by Soot 21

4.9 concate the dependency between the program elements with the final

field . 21

4.10 concate the dependency between the program elements with lambda

expression dependent elements . 22

x

doi:10.6342/NTU202303287

4.11 concate the dependency between the program elements with method

reference dependent elements . 23

4.12 concate the dependency between the program elements with anony-

mous class dependent elements . 23

4.13 example of the type erasure and its corresponding bridge method . . 24

4.14 concate the dependency between the program elements with the tar-

get method . 25

4.15 Map Information Evaluation . 26

4.16 Map Information Evaluation System Design 27

4.17 Model Creation . 29

4.18 Service Component Database Schema 30

4.19 Example of the generated WSDL . 31

5.1 Service Composition . 33

5.2 dependency repack visualization . 34

5.3 db query response format . 37

5.4 repack model . 38

5.5 AST attaching . 39

5.6 Plugin Handler Design . 41

5.7 Build Strategy . 42

5.8 Service-Component-Based Microservice Architecture 43

5.9 Microservice extraction process . 44

xi

doi:10.6342/NTU202303287

5.10 Microservice Database Schema . 45

5.11 API Gateway URL transform . 46

5.12 Sequence diagram of request URL transform in API Gateway 46

5.13 Sequence diagram of service invocation from UI Frontend server to

service component . 47

6.1 Microservice Matchmaking in SBmS 49

6.2 Microservice Description . 50

6.3 Mapping between Bounded Context, Use Case Specification and Mi-

croservice Description . 51

6.4 Bounded Context to Microservice Description 52

6.5 Graph Structure for Each part of description 53

6.6 example of matchmaking response . 56

8.1 UI Component Service Binding . 60

xii

doi:10.6342/NTU202303287

List of Tables

6.1 keyword segment distance matrix . 54

6.2 keyword segment matching . 55

xiii

doi:10.6342/NTU202303287

Chapter 1

Introduction

SOA (Service Oriented Architecture) is a commonly used software development

pattern by enterprises, enabling the integration of service components through the

reuse of services and loose coupling between them, achieved by unified interfaces

and common communication standards. Microservice Architecture, as an extension

of SOA, places greater emphasis on size and independence. In this research, we

design a practical, automatic process for generating microservices. We start with

open-source Java projects on Github and transform them into service components,

considering each Java method. We then repack these service components into mi-

croservices based on their dependencies, ensuring the resulting microservices exhibit

high cohesion and modularity.

In previous research [23], Huang utilized the Java Reflection API [5] to execute

the generated service components by loading them into the Java ClassLoader. How-

ever, in many cases of open-source projects, they utilize software frameworks such

1

doi:10.6342/NTU202303287

CHAPTER 1. INTRODUCTION 2

as the Spring framework [13], making them incompatible with Huang’s proposed

process. To address this issue, Yu [32] proposed a new service component gener-

ation process that maintains compatibility with the Spring framework during the

execution of service components. This was achieved by transforming the controller

methods used in the Spring framework into service components and combining them

with the frontend design process proposed by Hsieh [22], which stores the service

binding information in the database for use by the frontend design system. However,

it should be noted that this process has limitations and may not be applicable to

projects written exclusively with the Spring Framework.

Therefore, in the research conducted by Shih [31] and Lu [29], they repack the

service components into a microservice and utilize Spring Cloud for the deploy-

ment of microservice execution. However, their microservice generation process is

associated with two implied issues:

1. In Shih’s research, there is no clear definition provided for microservices, and

the decision of which APIs belong to the same microservice is based solely

on whether they are in the same class in the original project. This approach

to decomposition may result in a reduction of cohesion within the generated

microservices.

2. In Lu’s research, there exist some high coupling repack logic in its repack

process, which may result in the failure when it try to parse the project written

with other framework.

To address the first issue, we propose a definition of the microservice. According

2

doi:10.6342/NTU202303287

CHAPTER 1. INTRODUCTION 3

to this definition, we extract the which APIs are suitable to be placed in the same

microservice with the degree of the cohesion between each of them.

To address the second issue, we have made improvements by adopting a pure

object-oriented approach in the repack process. We now handle plugins and depen-

dencies individually using handlers, which can be easily added using the Chain of

Responsibility pattern. With these enhancements, our aim is to achieve the decom-

position of all Java projects into microservices successfully.

In the matchmaking process, previous research transformed the matchmaking

request generated from the frontend into WSDL to perform method-level match-

making with the service components. However, due to the large number of service

components, this mechanism led to low matchmaking efficiency. To address this

issue, we have made improvements to our matchmaking process:

1. Transform the requirement to the description of a microservice, perform the

microservice-level matchmaking to filter out the candidate microservices

2. Using the result of the first step as the search scope, we gather the APIs

belonging to the candidate microservices to create the matchmaking set for

the method-level matchmaking process.

Due to this improvement, we can significantly decrease the input size of the match-

making algorithm, leading to a notable enhancement in the efficiency of searching

for appropriate services for frontend components.

This paper is organized as follows: Chapter 2 introduces the related work; Chap-

ter 3 introduce a clear definition of microservices. Chapter 4 describe the genera-

3

doi:10.6342/NTU202303287

CHAPTER 1. INTRODUCTION 4

tion process of service components; Chapter 5 the process of composing service

components to microservices. Chapter 6 explains the generation of microservice

descriptions and the subsequent matchmaking process. Chapter 7 and Chapter 8

respectively summarizes the contribution of this work and the future work.

4

doi:10.6342/NTU202303287

Chapter 2

Related Work

In the domain of microservice research, notable findings have emerged. In this

chapter, we will provide a comprehensive list of typical definitions and extraction

methodologies.

2.1 Related Work

Nicola et al. [19] defines Microservices as ”cohesive, independent processes in-

teracting via messages” and Microservice Architecture as ”a distributed application

where all its modules are microservices.”. They also highlight the differences between

microservices and SOA, which include: 1. Bounded Context （first introduced by

Domain-driven design [20]） 2. size 3. independency, numerous studies are built

upon the extension of this concept; however, they do not specifically define the

internal structure of microservices.

5

doi:10.6342/NTU202303287

CHAPTER 2. RELATED WORK 6

Baresi et al. [17] utilized the Open API Specification [9] for microservice extrac-

tion. They conducted matchmakig between operation name defined in the speci-

fication and the concept defined in Schema.org [10]. The similarity between word

segments was determined using the co-occurrence matrix provided by DISCO [25].

After computing the similarity matrix between the word segments, they applied

the Hungarian algorithm to find the best match between the operation name and

the concept. Finally, they used the type hierarchy to determine whether the APIs

should be placed in the same microservice.

Chen et al. [18] utilized business requirements and data flow as input in their

methodology, which effectively clusters APIs with similar output data or those han-

dling the same type of data as the microservice. Gysel et al. [21] proposed a service

decomposition method based on 16 coupling criteria extracted from literature and

industry experience. This approach employs clustering algorithms to decompose an

undirected, weighted graph transformed from SSA (Software System Artifacts, such

as ER models, Use Case Specifications), and others.

The above-mentioned studies did not take into consideration the actual structure

of the source code; instead, they relied solely on specifications and documents as

the basis for analysis. This approach may result in microservices with low internal

cohesion in their structure.

6

doi:10.6342/NTU202303287

CHAPTER 2. RELATED WORK 7

2.2 Background Work

In our research, we decouple the open-source projects generate service compo-

nents. We then extracted dependencies between these components and repackaged

them into microservices. Additionally, we generated descriptions for the resulting

microservices and deployed them to Spring Cloud. Throughout the entire process,

we made use of various open-source tools and algorithms to facilitate our research.

In the following sections, we will introduce these tools and algorithms one by one.

2.2.1 JavaParser

JavaParser [6] is an open-source project designed to analyze Java code. It has

the capability to compile Java code into an abstract syntax tree (AST) and provides

various APIs that allow users to operate on the AST.

In our research, both the Service Composition (see Chapter5)and Service De-

composition (see Chapter4) utilize JavaParser to extract relevant information from

the code.

2.2.2 Soot

Soot is a static analysis tool for Java. In Service Decomposition (see Chapter4),

we extract dependencies between program elements by analyzing the Jimple IR

(Intermediate Representation) compiled by Soot.

7

doi:10.6342/NTU202303287

CHAPTER 2. RELATED WORK 8

2.2.3 Reflection API

Java Reflection API [5] is a built-in tool in Java that allows loading Java classes

using ClassLoader and examining the runtime behavior of program elements.

In Service Decomposition (see Chapter4), we utilize the Reflection API to obtain

runtime information from open-source code.

2.2.4 JDK Compiler module

The JDK Compiler module includes Java Compiler API [2] and Java Compiler

Tree API [3]. The Java Compiler API allows users to compile Java programs with

code, while the Java Compiler Tree API offers the abstract syntax tree (AST) rep-

resentation of the open-source code, from which we can extract Java classes. By

iterating through the AST, we can access information that Java Reflection API

cannot provide, such as method bodies.

In Service Decomposition (see Chapter4), we leverage the JDK Compiler module

to analyze the AST of the open-source code.

2.2.5 Spring Cloud

Spring Cloud [11] is an open-source project that facilitates the construction of

the microservice architecture and provides various implementations of common mi-

croservice patterns, including the API Gateway [12].

In Service Composition (see Chapter5), we utilize Spring Cloud to deploy the

generated microservices and API Gateway.

8

doi:10.6342/NTU202303287

CHAPTER 2. RELATED WORK 9

2.2.6 Hungarian Algorithm

Hungarian Algorithm [26] is a combinatorial optimization algorithm proposed

by Harold William Kuhn in 1955. It efficiently solves the assignment problem in

polynomial time by finding the maximum weighted match (or minimum weighted

match) in a bipartite graph.

In Microservice Matchmaking (see Chapter6), we utilize the Hungarian Algo-

rithm to compute the distance between microservices.

2.2.7 WSDL

WSDL (Web Service Description Language) [14] is a standard recommendation

from W3C. It is based on XML and provides detailed descriptions of message formats

and binding protocols used to invoke web services.

In Service Decomposition (see Chapter4), we utilize WSDL to describe the gen-

erated service components.

2.2.8 HDBSCAN

HDBSCAN（Hierarchical Density-Based Spatial Clustering of Applications with

Noise） [30] is a density-based clustering algorithm. Unlike other density-based

clustering algorithms that use an epsilon parameter to define the scope, HDBSCAN

employs a hierarchy to replace epsilon, requiring only one parameter (minimum

cluster size). This allows it to discover clusters with varying densities.

In Service Composition (see Chapter5), we use HDBSCAN to cluster APIs.

9

doi:10.6342/NTU202303287

Chapter 3

Microservice Definition

The microservices architecture is the decomposition of a system into a set of

services, such that all services will have minimal public interfaces.

The threshold upon which the system can be decomposed is defined by the use

cases of the system that the microservices are a part of.

This definition supports the known fact that each microservice should have its

own database. That’s because in other the case, one of the services would have

to expose its database as its public interface. And this huge public interface would

make it a macro-service.

In our research, we have defined the internal structure of microservices. Building

upon these definitions, we propose the description of microservices and an API

clustering mechanism.

10

doi:10.6342/NTU202303287

CHAPTER 3. MICROSERVICE DEFINITION 11

Figure 3.1: Microservice Structure

3.1 Microservice Structure

We define Microservice can be composed by four elements：

1. Controller: public interfaces

2. Service: business logic.

3. Repository: persistence logic.

4. Entity: database storage object.

Based on this structure, we can describe a microservice by combining the description

of each part.

11

doi:10.6342/NTU202303287

CHAPTER 3. MICROSERVICE DEFINITION 12

3.2 APIs in a Microservice

We assume that APIs within the same microservice should exhibit high cohesion,

implying the existence of dependencies between APIs. These dependencies can be

seen as the following relationships between APIs:

1. APIs have the execution order

2. APIs have the invocation relationship

3. Composite API

Based on this definition, we can conduct cohesion analysis on the APIs in the project

and cluster them based on the computed values. Each cluster formed would represent

a microservice.

3.3 Example of a Microservice

Taking a user service Microservice as an example (see Figure 3.2), as shown

in the diagram , this Microservice provides two API services (controllers), namely

”login” and ”register”. Within these two APIs, there are various business logics, such

as checking user existence and generating login credentials. Additionally, to store

and modify information, the Microservice must have an instance of the database to

store data and access the database with persistent layer logic. Thus, the Microservice

exhibits the four essential elements: controller, service, repository, and entity.

12

doi:10.6342/NTU202303287

CHAPTER 3. MICROSERVICE DEFINITION 13

Figure 3.2: Microservice Example

13

doi:10.6342/NTU202303287

Chapter 4

Service Decomposition

Service Decomposition is the process of decomposing the Java program and gen-

erating service components with Java methods as units. A service component in-

cludes:

• Data Model: store the information of program elements

• Dependency Model: store the dependencies between program elements

• Web Service Description Language: used to describe the service compo-

nent

The generation process of a service component includes following steps:

1. Service Decomposition

(a) Source Code Parsing

(b) Dependency Extraction

14

doi:10.6342/NTU202303287

CHAPTER 4. SERVICE DECOMPOSITION 15

(c) Service Type Parsing

(d) Database Object Creation

2. WSDL Generation

In this chapter, we will illustrate the implementation of each step and present the

final output.

4.1 Service Component Generation

4.1.1 Source code parsing

To acquire both compile-time and runtime information, we utilize the JDK com-

piler and the Reflection API to disassemble the source code (see Figure 4.2). We

then convert the information provided by these APIs into the required models and

merge the two sources. The model comprises two parts:

• Data Model: for program element information (e.g., class, field, method).

• Input/Output Model: for method parameters and return types.

4.1.2 Dependency extraction

Dependency Extraction involves extracting the dependencies between program

elements and associating these relationships with the Data Model extracted in the

previous step (see Figure 4.3). The process of Dependency Extraction consists of

three main steps:

15

doi:10.6342/NTU202303287

CHAPTER 4. SERVICE DECOMPOSITION 16

Figure 4.1: Source Code Parsing System Architecture

16

doi:10.6342/NTU202303287

CHAPTER 4. SERVICE DECOMPOSITION 17

Figure 4.2: Source Code Parsing

Figure 4.3: Dependency Extraction

17

doi:10.6342/NTU202303287

CHAPTER 4. SERVICE DECOMPOSITION 18

Figure 4.4: Program Relation Summary

1. Relation Evaluation

2. Dependency Concatenate

3. Generic Type Dependency

Relation evaluator

The Relation Evaluator is built upon previous research [24]. It analyzes Java

bytecode using Soot and extracts 10 types of program elements and 56 types of

dependencies (see Figure 4.4). Subsequently, it generates a dependency graph (see

Figure 4.5) that describes the relationships between these program elements.

18

doi:10.6342/NTU202303287

CHAPTER 4. SERVICE DECOMPOSITION 19

Figure 4.5: Dependency Graph Example

Dependency concatenate

To bridge the gap between the model based on source code and the extracted

dependencies based on bytecode, we need to establish connections for methods whose

dependencies are linked by synthetic elements.

class level The <clinit>method is responsible for the static initialization of the

Java class. Static elements, such as static blocks and static fields, are placed within

this method to perform uniform initializations (see Figure 4.6).

When the class is loaded by the ClassLoader, the <clinit>method is invoked

immediately. Consequently, class-level methods and variables should have a class-

level dependency with the class itself(see Figure 4.7).

final field During the optimizing compilation, the JDK compiler extracts the

value of the final string field to the Constant Pool. As a result, there is no direct

relationship between the original field and the program element that uses it in the

19

doi:10.6342/NTU202303287

CHAPTER 4. SERVICE DECOMPOSITION 20

Figure 4.6: example of the class level element presented in the bytecode

Figure 4.7: concate the dependency between the class level elements with the class

20

doi:10.6342/NTU202303287

CHAPTER 4. SERVICE DECOMPOSITION 21

Figure 4.8: final field invocation present in Jimple IR produced by Soot

Figure 4.9: concate the dependency between the program elements with the final

field

bytecode.

To address this, we use the SymbolSolver in JavaParser to obtain this type of

dependency.

lambda expression, method reference and anonymous class After version

8, Java introduced support for lambda expressions and method references to replace

the original anonymous class style. Java supports four basic function forms, which

are:

1. Consumer : with parameters and without return value。

(a) Its functional method is accept

21

doi:10.6342/NTU202303287

CHAPTER 4. SERVICE DECOMPOSITION 22

Figure 4.10: concate the dependency between the program elements with lambda

expression dependent elements

2. Function : with parameters and with return value。

(a) Its functional method is apply

3. Supplier : without parameters and with return value。

(a) Its functional method is get

4. Predicate : with parameters and with the boolean type return value。

(a) Its functional method is test

The JDK compiler generates inner classes for lambda expressions, method references,

and anonymous classes that are not present in the original open-source code. These

inner classes are used to invoke their internal logic through their functional method

(or anonymous class method). Consequently, we have to concatenate the dependency

between the invoker and the program elements dependent with the internal logic (see

Figure 4.10、Figure 4.11、Figure 4.12).

22

doi:10.6342/NTU202303287

CHAPTER 4. SERVICE DECOMPOSITION 23

Figure 4.11: concate the dependency between the program elements with method

reference dependent elements

Figure 4.12: concate the dependency between the program elements with anonymous

class dependent elements

23

doi:10.6342/NTU202303287

CHAPTER 4. SERVICE DECOMPOSITION 24

Figure 4.13: example of the type erasure and its corresponding bridge method

type erasure and bridge method Sometimes JDK compiler will automatically

create some method that are no in the original source code, which were called ”Syn-

thetic method”. When compiling a class or interface that extends a parameterized

class or implements a parameterized interface, the compiler will create the synthetic

method to cast the type of the parameterized type to avoid error occur in the JVM

execution (see Figure 4.13). When the above situation occurs, we need to connect

the dependency between the methods at both ends of the synthetic method.

Generic Type Dependency

Due to Type Erasure, there is a lack of information about generic types in

bytecode, which prevents Soot from extracting dependencies with generic types.

To address this issue, we use JavaParser to analyze the source code and obtain

dependencies that involve generic types.

24

doi:10.6342/NTU202303287

CHAPTER 4. SERVICE DECOMPOSITION 25

Figure 4.14: concate the dependency between the program elements with the target

method

Map information evaluation

Map Information use Jimple IR compiled by Soot to evaluate the dynamic data

stored in the Java Map (see Figure 4.15). From the register in the return statement,

we use Chain of responsibility pattern to track the Map operation invocation in the

method body. There are three chains: Map, Collection and Object creation, which

can ensure that the dynamic data can be extracted under any kind of data structure.

4.1.3 Service Type Parsing

In this step, we determine the role of each program element in the project using

the annotations provided by the Spring framework and JPA [4]. This information

will be used for further matchmaking purposes.

The annotations used in this research are listed below, along with their descrip-

25

doi:10.6342/NTU202303287

CHAPTER 4. SERVICE DECOMPOSITION 26

Figure 4.15: Map Information Evaluation

26

doi:10.6342/NTU202303287

CHAPTER 4. SERVICE DECOMPOSITION 27

Figure 4.16: Map Information Evaluation System Design

tions from the Javadoc:

1. @Controller : “Indicates that as annotated class is a ‘Controller’ (e.g a

web controller)”

2. @Service : “Indicates that an annotated class is a ‘Service’, originally

defined by Domain-Driven Design(Evans, 2003) as ‘an operation offered as

an interface that stands alone in the model, with no encapsulated state.”

3. @Repository : “indicated that an annotated class is a‘Repository’, orig-

inally defined by Domain-Driven Design(Evans, 2003) as ‘a mechanism for

encapsulating storage, retrieval, and search behavior which emulated a collec-

tion of objects’”

27

doi:10.6342/NTU202303287

CHAPTER 4. SERVICE DECOMPOSITION 28

4. @Entity : “Specifies that the class is an entity. This annotation is applied

to the entity class”

These annotations play a crucial role in defining the roles and functionalities of

various program elements within the project.

4.1.4 DB Object Creation

For further usage, we transform the model into the database entity and store

it in the database (see Figure 4.17). To handle the creation of different types of

database entities, we employ the factory pattern, allowing for a flexible and organized

approach to entity creation. We use MySQL to store the data.

service component DB （see Figure 4.18）store the service components. There

are four kind of information in the storage:

1. core element (ex. class, method)

2. dependency between core elements

3. semantic annotation

4. other elements (ex. parameters, return value)

4.2 WSDL generation

To describe the services offered by each service component and enable require-

ment matchmaking, we generate a WSDL file for each service component.

28

doi:10.6342/NTU202303287

CHAPTER 4. SERVICE DECOMPOSITION 29

Figure 4.17: Model Creation

29

doi:10.6342/NTU202303287

CHAPTER 4. SERVICE DECOMPOSITION 30

Figure 4.18: Service Component Database Schema

30

doi:10.6342/NTU202303287

CHAPTER 4. SERVICE DECOMPOSITION 31

Figure 4.19: Example of the generated WSDL

31

doi:10.6342/NTU202303287

Chapter 5

Service Composition

Service Composition is the process of composing service components to microser-

vices (see Figure 5.1).

First of all, we evaluate which APIs are suitable to be placed in the same mi-

croservice based on the extracted dependencies.

Second, we compose the microservices with the service components those depen-

dent with the APIs belong to them.

Finally, we deploy the generated microservices to the Spring Cloud.

5.1 Dependency Repack

We apply an object-oriented approach, beginning with the service component,

which serves as the API in the original project. Through recursive repackaging along

the dependency flow, a tree structure is formed (see Figure 5.2).

32

doi:10.6342/NTU202303287

CHAPTER 5. SERVICE COMPOSITION 33

Figure 5.1: Service Composition

The nodes in this structure can be categorized into three types: class, field, and

service.

The edge (Dependencies) in this structure can be further classified into three

categories:

1. Service-to-class, service-to-service, and service-to-field dependencies extended

from service nodes.

2. Field initialization dependency extended from field nodes.

3. Class-level dependency extended from class nodes.

33

doi:10.6342/NTU202303287

CHAPTER 5. SERVICE COMPOSITION 34

Figure 5.2: dependency repack visualization

5.2 API Clustering

Based on the definition of microservice, it encapsulates the business logic and

exposes minimal public interfaces, which should exhibit high cohesion. Therefore, we

need to determine which APIs should be placed in the same microservice according

to this definition.

5.2.1 distance between APIs

To ensure high cohesion, we calculate the distance between APIs using an encap-

sulation metric. We begin by considering the service components, which represent

the APIs in the original project, and then repack these service components based on

their dependency flow, forming multiple dependency trees. We calculate the method

usage overlap between pairs of APIs. This overlap serves as the clustering distance

34

doi:10.6342/NTU202303287

CHAPTER 5. SERVICE COMPOSITION 35

metric.

Next, we determine the distance relationship between two APIs based on the

overlap of their dependency trees. The calculation method involves computing the

intersection divided by the union.（see Equation5.1）。

Dij = 1 − #(Mi ∩ Mj)
#(Mi ∪ Mj)

(5.1)

where:

Mi = method set under the API i dependency scope

Mj = method set under the API j dependency scope

Dij = distance between API i and API j

5.2.2 cluster APIs

By calculating distances for all API pairs and transforming them into a distance

matrix, we apply the density-based clustering algorithm, HDBSCAN (Hierarchical

Density-Based Spatial Clustering of Applications with Noise), for clustering. We

chose this clustering algorithm because, unlike other density-based algorithms that

use an epsilon parameter to determine scope, HDBSCAN uses hierarchy to replace

the parameter, which improves the robustness of the clustering result and allows

for the identification of clusters with various densities. The resulting clusters are

then stored in the Service Component DB, with each API cluster representing a

microservice.

35

doi:10.6342/NTU202303287

CHAPTER 5. SERVICE COMPOSITION 36

5.3 Service Component Composition

The service component repack mechanism is based on previous research [29] and

involves rewriting the original project. Once the decomposition of the Monolithic

system is determined, we begin with the service components, which were the APIs

in the original project, and repack all the program elements in the dependency tree.

Next, we will provide a detailed explanation of the following processes:

1. Query dependencies

2. Model dependencies

3. Configure JavaParser

4. Attach model with AST

5. Clone the tree and remove the unnecessary node in the tree based on the

information stored in model

6. Plugin Handler COR to collect the needed configuration AST

7. Write Project and Post Processing

8. Build project and zip

5.3.1 Query Dependency & dependency Modeling

Retrieve the microservice internal structure (see Figure 5.3) based on the API

dependency tree from the database query server, and store this information in our

self-defined model on the repack server (see Figure 5.4).

36

doi:10.6342/NTU202303287

CHAPTER 5. SERVICE COMPOSITION 37

Figure 5.3: db query response format

37

doi:10.6342/NTU202303287

CHAPTER 5. SERVICE COMPOSITION 38

Figure 5.4: repack model

38

doi:10.6342/NTU202303287

CHAPTER 5. SERVICE COMPOSITION 39

Figure 5.5: AST attaching

5.3.2 Configure JavaParser & attach AST to model

We use the visitors provided by JavaParser, overriding its logic to collect the

AST nodes we need, and attach them to the model (see Figure 5.5).

5.3.3 Clone the element & remove the unnecessary node

The original AST tree is attached to the model, which retains all the information

about the AST. Next, we identify the Java files required, clone them, and store them

in a separate map. We then make modifications to this cloned AST node.

Using the model information, we perform subtraction on the cloned node, remov-

ing unnecessary elements such as methods, fields, inner classes, or import statements.

39

doi:10.6342/NTU202303287

CHAPTER 5. SERVICE COMPOSITION 40

5.3.4 Plugin Handler Chain

In the aforementioned repack process, we repack the service components with the

dependency flow based on the object-oriented concept. However, many projects use

frameworks and plugins that encapsulate the dependency flow into their libraries.

As a result, the dependency flow starting from the API may not be able to repack

some necessary configurations (e.g., Beans in Spring Framework).

To address this issue, we propose the Plugin Handler Chain (see Figure 5.6),

which utilizes the Chain of Responsibility pattern. The input to this chain is the

dependency tree compiled from the build tool, and the detailed execution process is

as follows:

1. Model the dependencies as the PluginService.Dependency classes.

2. Create the Plugin Handler COR chain.

3. Iterate through each dependency using the COR chain.

4. Create the corresponding post-processor if needed (something that needs to

be modified but is not in the AST, e.g., build script files).

5.3.5 Write Project and Post Processing

The construction of the microservice project is performed in the following de-

tailed process:

1. Copying the original project and removing the source code directory.

40

doi:10.6342/NTU202303287

CHAPTER 5. SERVICE COMPOSITION 41

Figure 5.6: Plugin Handler Design

2. Writing AST into Java files one by one, according to the structure stored in

the modification map.

3. Executing the post-processors to perform some rewrites that are not in the

source code.

5.3.6 Build project and zip

After generating the microservice project, it is built using the build tool, and the

resulting jar file is compressed for further usage.

41

doi:10.6342/NTU202303287

CHAPTER 5. SERVICE COMPOSITION 42

Figure 5.7: Build Strategy

Build Strategy

During the repack process, we require the functionality of the build tool. How-

ever, due to variations in the implementation of different build tools, we utilize the

strategy pattern to abstract the functionalities of the build tool (see Figure 5.7),

making the entire system extensible. The functionality of the build tool:

1. build project

2. extract dependency tree

Currently supported build tools include gradle [1] and maven [8].

5.4 Deployment

Currently, we have repackaged the microservice projects to JAR files. Next, we

will deploy them on Spring Cloud [12] and configure the API Gateway to handle

access to the microservices uniformly.

42

doi:10.6342/NTU202303287

CHAPTER 5. SERVICE COMPOSITION 43

Figure 5.8: Service-Component-Based Microservice Architecture

5.4.1 Microservice Extractor

This step sets the necessary parameters of Spring Cloud for the jar file, mainly

including the following steps（Figure 5.9）：

Allocate Port

Look for an idle port that can be used as the server port of the microservice.

Generate Startup Script

Generate a script that runs Microservice for subsequent Jenkins pipeline execu-

tion. In this script, three flags are mainly set for execution instructions:

1. server port: idle port allocate from the last step

2. application name

43

doi:10.6342/NTU202303287

CHAPTER 5. SERVICE COMPOSITION 44

Figure 5.9: Microservice extraction process

3. eureka server URL

Example output of this step:

java -jar /Jar/File/Path/JarFileName.jar

--server.port=8764

--spring.application.name=microservice-application-name

--eureka.client.serviceUrl.defaultZone=http://{eureka-server-ip:port}/eureka

Save to database

Finally, we store the microservice information and the mapping relationship be-

tween the microservice and service components in the microservice database (see

Figure 5.10), providing the necessary information for URL rewriting in the API

Gateway.

5.4.2 Service Invocation

In Service Invocation (see Figure 5.13), the frontend communicates with the

Application Server using WebSocket, while the Application Service communicates

with the API Gateway using the HTTP protocol. When the frontend needs to

44

doi:10.6342/NTU202303287

CHAPTER 5. SERVICE COMPOSITION 45

Figure 5.10: Microservice Database Schema

invoke backend services, it sends the target service ID and the parameters to the

Application Server. The Application Server then transforms the request into an

HTTP Request and sends it to the API Gateway. The API Gateway retrieves the

URL rewrite information from the microservice database based on the target service

ID for further processing. For more details on the URL rewriting process, please

refer to Figure 5.11.

Based on the service invocation process described above, the API Gateway en-

capsulates microservices, so the Frontend server only needs to know the service’s ID

instead of the microservice it belongs to.

45

doi:10.6342/NTU202303287

CHAPTER 5. SERVICE COMPOSITION 46

Figure 5.11: API Gateway URL transform

Figure 5.12: Sequence diagram of request URL transform in API Gateway

46

doi:10.6342/NTU202303287

CHAPTER 5. SERVICE COMPOSITION 47

Fi
gu

re
5.

13
:

Se
qu

en
ce

di
ag

ra
m

of
se

rv
ic

e
in

vo
ca

tio
n

fro
m

U
IF

ro
nt

en
d

se
rv

er
to

se
rv

ic
e

co
m

po
ne

nt

47

doi:10.6342/NTU202303287

Chapter 6

Microservice Matchmaking

To enable the system to identify candidate microservices based on user require-

ments [28], we need to describe the microservices and perform matchmaking with

the requirements based on this description. This process allows the system to search

for and select the most suitable microservices to fulfill the specific user needs.

6.1 Microservice Description Generation

In Microservice Definition (see Chapter 3), we define a microservice as composed

of the following four elements: Controller, Service, Repository, and DB Model (see

Figure 3.1). In Service Decomposition (see Chapter 4), we utilize the semantic

annotations provided by Spring Framework and JPA to determine the roles of the

program elements and store this information into the service component database.

To facilitate the matchmaking, we extract information that can be compared

48

doi:10.6342/NTU202303287

CHAPTER 6. MICROSERVICE MATCHMAKING 49

Figure 6.1: Microservice Matchmaking in SBmS

49

doi:10.6342/NTU202303287

CHAPTER 6. MICROSERVICE MATCHMAKING 50

Figure 6.2: Microservice Description

from both sides (source code side and requirement side). These information then

be arranged to the JSON [7] file for each part description. By combining the JSON

file that describe each part of the microservice, we propose a integral microservice

description (Figure 6.2).

6.2 Bounded Context to Microservice Description

In a separate study, Lin [28] proposed a method to derive bounded contexts from

requirements. To facilitate matchmaking between bounded contexts and microser-

vices, we let their descriptions share the same fields. This shared information enables

us to align bounded contexts with the corresponding microservices. As described

in Lin’s work, relevant information is then extracted from the descriptions in the

bounded contexts to fill in the fields in the description files.

50

doi:10.6342/NTU202303287

CHAPTER 6. MICROSERVICE MATCHMAKING 51

Figure 6.3: Mapping between Bounded Context, Use Case Specification and Mi-

croservice Description

51

doi:10.6342/NTU202303287

CHAPTER 6. MICROSERVICE MATCHMAKING 52

Figure 6.4: Bounded Context to Microservice Description

52

doi:10.6342/NTU202303287

CHAPTER 6. MICROSERVICE MATCHMAKING 53

Figure 6.5: Graph Structure for Each part of description

6.3 Graph-based Microservice Matchmaking

The matchmaking algorithm is based on previous research [27], but we have

expanded its matchmaking level from method to microservice.

After transforming the microservice description into a graph, we proceed to calcu-

late the distances between the keyword segments, keyword nodes, connector nodes,

and the entire graph. The details of the distance calculation method will be de-

scribed below.

6.3.1 Distance of keyword node

The distance calculation between two keyword segments involves the following

steps:

53

doi:10.6342/NTU202303287

CHAPTER 6. MICROSERVICE MATCHMAKING 54

Table 6.1: keyword segment distance matrix

1. Utilizing a Python wordsegmentation [16] to segment the keyword into a list

of individual keywords.

• ex. getItem → [get, item]

2. Utilizing WordToVec [15] to convert each keyword segment into a correspond-

ing vector representation.

• Here we employ the pre-trained model ”GoogleNews-vectors-negative300”

provided by Google

3. Calculating the distance between keyword segment with the inner product of

the two vectors (see Table 6.1)

After calculating the distance between each keyword segment, we use Hungarian

algorithm to find best match, and define the distance between keyword nodes as the

sum matched keyword segments distances and the average of unmatched distances.

Take the Table6.2 as example, assume KWi1 has best match with KWj1, KWi2

has best match with KWj2, and KWj3 does not matched with and keyword segment,

then the distance between keyword node i and j would be: D11+D22+(D13+D23)/2

.

54

doi:10.6342/NTU202303287

CHAPTER 6. MICROSERVICE MATCHMAKING 55

Table 6.2: keyword segment matching

6.3.2 Distance of connector node

After calculating the distance between keyword nodes, we apply the same con-

cept again to calculate the distance between connector nodes, using a second-pass

Hungarian algorithm.

Among them, the DB Schema graph is composed of the schema part and the

dependent fields part. By calculating the distance of each part, we can compute the

distance between the graphs with a weighted average of both parts.

6.3.3 Graph Similarity calculation

Afterwards, we calculate the similarity for each element using the elastic-based

distance transformation equation proposed in [27]. Finally, we determine the sim-

ilarity between microservices by computing the weighted average of the similarity

scores for the four elements.

55

doi:10.6342/NTU202303287

CHAPTER 6. MICROSERVICE MATCHMAKING 56

Figure 6.6: example of matchmaking response

56

doi:10.6342/NTU202303287

Chapter 7

Conclusion

In this work, we proposed a service generation process involving the following

steps：

1. Parsing the source code to create a data model.

2. Extracting dependencies between project elements.

3. Determining the role of the program element in the project based on semantic

annotation.

4. Generating WSDL for the service components’ description.

5. Using the encapsulation-based metric to perform API clustering

6. Repacking the service components to a microservice based on Object Oriented

concept

57

doi:10.6342/NTU202303287

CHAPTER 7. CONCLUSION 58

7. Deploying the project, registering it on the Eureka server and exposing the

server with the API gateway

Furthermore, we proposed the microservice matchmaking process involving the

following steps:

1. Generating the microservice description

2. Transforming the microservice description into a graph representation.

3. Performing the matchmaking algorithm to calculate the similarity between the

bounded context-extracted microservice and the microservices we have parsed.

58

doi:10.6342/NTU202303287

Chapter 8

Future Work

Currently, our approach has successfully accomplished microservice matchmak-

ing, which narrows the search space when a UI component needs to bind to a service.

We can compare the WSDL generated in the Service Decomposition (see Chapter

4) with the required service description generated by the UI component. By cal-

culating the similarity between them, we can determine which service is the most

suitable for the description and return the corresponding service ID to the frontend.

The frontend component utilizes the service ID information to send HTTP requests

to our API gateway, enabling it to invoke the corresponding microservice.

59

doi:10.6342/NTU202303287

CHAPTER 8. FUTURE WORK 60

Figure 8.1: UI Component Service Binding

60

doi:10.6342/NTU202303287

Bibliography

[1] Gradle build tool. https://gradle.org/.

[2] Java compiler api. https://docs.oracle.com/javase/8/docs/api/javax/

tools/JavaCompiler.html.

[3] Java compiler tree api. https://docs.oracle.com/javase/8/docs/jdk/api/

javac/tree/.

[4] Java persistence api. https://docs.oracle.com/javaee/7/tutorial/

persistence-intro.htm.

[5] Java reflection api. https://docs.oracle.com/javase/8/docs/technotes/

guides/reflection/index.html.

[6] Javaparser. https://javaparser.org/.

[7] Json. https://www.json.org/.

[8] Maven build tool. https://maven.apache.org/.

[9] Open api specification. https://swagger.io/specification/.

[10] schema.org. https://schema.org/.

[11] Spring cloud. https://spring.io/projects/spring-cloud.

[12] Spring cloud gateway.

[13] Spring framework. https://spring.io/.

[14] Web service description language. https://www.w3.org/TR/wsdl.html.

61

doi:10.6342/NTU202303287

BIBLIOGRAPHY 62

[15] word2vec. https://code.google.com/archive/p/word2vec/.

[16] wordsegmentation. https://pypi.org/project/wordsegmentation/.

[17] L. Baresi, M. Garriga, and A. De Renzis. Microservices identification through inter-

face analysis. In Service-Oriented and Cloud Computing: 6th IFIP WG 2.14 Euro-

pean Conference, ESOCC 2017, Oslo, Norway, September 27-29, 2017, Proceedings

6, pages 19–33. Springer, 2017.

[18] R. Chen, S. Li, and Z. Li. From monolith to microservices: A dataflow-driven ap-

proach. In 2017 24th Asia-Pacific Software Engineering Conference (APSEC), pages

466–475. IEEE, 2017.

[19] N. Dragoni, S. Giallorenzo, A. L. Lafuente, M. Mazzara, F. Montesi, R. Mustafin,

and L. Safina. Microservices: yesterday, today, and tomorrow. Present and ulterior

software engineering, pages 195–216, 2017.

[20] E. Evans. Domain-driven design: tackling complexity in the heart of software.

Addison-Wesley Professional, 2004.

[21] M. Gysel, L. Kölbener, W. Giersche, and O. Zimmermann. Service cutter: A system-

atic approach to service decomposition. In Service-Oriented and Cloud Computing:

5th IFIP WG 2.14 European Conference, ESOCC 2016, Vienna, Austria, September

5-7, 2016, Proceedings 5, pages 185–200. Springer, 2016.

[22] M.-H. Hsieh. Construct service components from java-based open source projects.

Master’s thesis, National Taiwan University, 2021.

[23] J.-W. Huang. Generate web application servers with bpel processes. Master’s thesis,

National Taiwan University, 2022.

[24] S.-W. Huang. Towards a solution to iot interoperability through reverse engineering.

Master’s thesis, National Taiwan University, 2017.

[25] P. Kolb. Disco: A multilingual database of distributionally similar words. 2008.

62

doi:10.6342/NTU202303287

BIBLIOGRAPHY 63

[26] H. W. Kuhn. The hungarian method for the assignment problem. Naval research

logistics quarterly, 2(1-2):83–97, 1955.

[27] J. Lee, K.-H. Hsu, S.-P. Ma, and C.-A. Lee. Service discovery through elasticity-based

graph matching. 2018.

[28] Y.-L. Lin. From requirements to microservice: A domain driven approach with

machine learning. Master’s thesis, National Taiwan University, 2023.

[29] T.-C. Lu. Develop web applications through service components repacking. Master’s

thesis, National Taiwan University, 2022.

[30] C. Malzer and M. Baum. A hybrid approach to hierarchical density-based cluster

selection. In 2020 IEEE International Conference on Multisensor Fusion and Inte-

gration for Intelligent Systems (MFI). IEEE, sep 2020.

[31] W.-L. Shih. Construct service components from java-based open source projects.

Master’s thesis, National Taiwan University, 2022.

[32] J.-J. Yu. Construct service components from open source java projects. Master’s

thesis, National Taiwan University, 2021.

63

