
doi:10.6342/NTU202303645

國立臺灣大學電機資訊學院資訊工程學系

碩士論文

Department of Computer Science & Information Engineering

College of Electrical Engineering and Computer Science

National Taiwan University
Master Thesis

從任務模型自動建構使用者介面

Auto Build User Interface from Task Model

劉仁軒

LIOU, REN-SHIUAN

指導教授： 李允中 博士

Advisor: Jonathan Lee, Ph.D.

中華民國 112 年 7 月
July, 2023

doi:10.6342/NTU202303645

i

doi:10.6342/NTU202303645

誌誌誌謝謝謝

首先我要感謝我的指導教授李允中在過去兩年間對我的仔細教導以及研究方法

的傳授：如何找到研究主題，並有系統地拆解與分析問題，進而提出解決方案。

這使我得以更準確地理解並掌握問題的切入點，不斷在研究的道路上成長進步。

除此之外，我也衷心感謝台灣大學軟體工程實驗室的所有成員，特別感謝許恆、

陳力聖、林辰臻、林怡伶、張馨尹、梁峻瑞、錢怡君與學弟妹們的悉心協助。他

們的合作與討論，以及彼此之間的互助，使這篇論文得以順利完成。

ii

doi:10.6342/NTU202303645

摘摘摘要要要

在軟體開發的過程中，將需求轉化為可運行的程式需要經歷一連串具體化的步

驟。本篇論文的目的在於設計一套自動化的機制，能夠逐步將軟體需求書中的使

用案例轉化為使用者介面，並在轉化的過程中將生成的使用者介面元件與後端的

服務元件進行綁定。

為了實現這個目標，我們引入了任務模型作為中間產物，來表達使用者在運用

軟體時所需完成的任務以達成目標。這些任務資訊被用來生成使用者介面描述語

言，從而能夠自動化地生成使用者介面。同時，我們還進一步增強了使用者介面

描述語言的表達能力，以便生成更現代化的使用者介面。

關關關鍵鍵鍵詞詞詞 — 使用者介面元件、使用者介面描述語言、服務元件、任務模型、使

用案例

iii

doi:10.6342/NTU202303645

Abstracts

In the software development process, transforming requirements into user in-

terface involves a series of steps. The main purpose of this thesis is to design

an automated process that translates the use cases from the software requirements

document(SRS) into user interfaces, and binds the UI components with service com-

ponents during the transformation.

To achieve this goal, we introduce task model to express the tasks users need to

accomplish to achieve their goals when using the software. This information is used

to generate a user interface description language, which can automatically transform

into user interfaces. Additionally, we further enhance the expressive power of the

user interface description language to create more modern user interfaces.

Index terms — UI Component, UI Description Language, Service Component,

Task Model, Use Case

iv

doi:10.6342/NTU202303645

Contents

口口口試試試委委委員員員審審審定定定書書書 i

誌誌誌謝謝謝 ii

摘摘摘要要要 iii

Abstracts iv

List of Figures viii

List of Tables xi

Chapter 1 Introduction 1

Chapter 2 Related Work 4

2.1 Cameleon Reference Framework . 4

2.2 UI Component . 5

2.3 User Interface Description Languages 6

2.4 ConcurTaskTree . 10

v

doi:10.6342/NTU202303645

2.5 Dijkstra’s Two-Stack Algorithm . 13

Chapter 3 UI Component’s Conditional Behavior 15

3.1 Categorize Angular APIs . 16

3.2 Define Variables in UI Description Language 18

3.3 Design and Implementation . 19

Chapter 4 Modeling Tasks 22

4.1 Task Type Defining . 22

4.2 ConcurTaskTrees Modeling . 25

Chapter 5 UIDL Generating Algorithm 28

5.1 Use Case to Task Model . 29

5.1.1 Use Case Diagram to Main CTT 30

5.1.2 Use Case Spec to Use Case CTT 34

5.2 CTT to UIDL Mapping . 37

5.2.1 Retrieve UI Component and Binding Information 38

5.2.2 Determine Navigation of the UI 42

5.2.3 Design on Task Converter . 49

Chapter 6 Conclusion 53

6.1 Summary . 53

6.2 Future work . 54

vi

doi:10.6342/NTU202303645

Bibliography 55

vii

doi:10.6342/NTU202303645

List of Figures

2.1 Page Description Language . 8

2.2 Navigation Description Language . 9

2.3 Service UI Mapping Description Language 9

2.4 CTT Hierarchical structure . 10

2.5 CTT Task allocation . 11

3.1 Idea of Variable . 19

3.2 Overall UI Component Decorator . 20

4.1 CTT Modeling . 26

4.2 Actor’s Hierarchical Structure . 27

4.3 Specify Actors within Tasks . 27

5.1 UI Generating System Architecture 28

5.2 Pattern of Main CTT . 31

5.3 Use Cases Enabled by tA . 33

5.4 Rule 1 for Constructing CTT . 36

viii

doi:10.6342/NTU202303645

5.5 Rule 2 for Constructing CTT . 36

5.6 Example of Constructing CTT by ID 37

5.7 Example of CTT to UI Component Mapping(1): Main Tree 40

5.8 Example of CTT to UI Component Mapping(2): Register 40

5.9 Example of CTT to UI Component Mapping(3): Back to Main Tree 40

5.10 Example of CTT to UI Component Mapping(4): View List of Item . 41

5.11 Example of CTT to UI Component Mapping(5): Back to Main Tree

Again . 41

5.12 Example of CTT to UI Component Mapping: Final Product 41

5.13 Example of Determine Navigation(1): Main Tree(1) 45

5.14 Example of Determine Navigation(2): Register 46

5.15 Example of Determine Navigation(3): Register 46

5.16 Example of Determine Navigation(4): Register(Pop Operator Stack) . 46

5.17 Example of Determine Navigation(5): Register 47

5.18 Example of Determine Navigation(6): Main Tree 47

5.19 Example of Determine Navigation(7): Main Tree 47

5.20 Example of Determine Navigation(8): Main Tree 48

5.21 Example of Determine Navigation(9): Main Tree(Pop Operator Stack)

48

5.22 Example of Determine Navigation: Final Product 48

5.23 Visitor Pattern on CTT . 49

5.24 Builder Pattern for UIDL . 51

ix

doi:10.6342/NTU202303645

5.25 Task Converter . 52

x

doi:10.6342/NTU202303645

List of Tables

2.1 Temporal Operator of CTT . 12

5.1 Information in Each Task Type . 39

5.2 Information in Temporal Operators 43

5.3 Behaviors when Pushing/Popping Operators 44

xi

doi:10.6342/NTU202303645

Chapter 1

Introduction

In the process of developing frontend, the transformation from software require-

ments to user interface usually involves multiple steps. These steps include establish-

ing requirements based on user descriptions, designers creating desired appearance

based on the requirements, and then programmer is responsible for writing the code

to give the user interface with corresponding dynamic behaviors. Numerous dis-

cussions and modifications are carried out throughout the process to complete the

development.

However, due to the hierarchical communication structure, issues related to ef-

ficiency and accuracy may arise. Every step of the development process involves

different team members, and there may be multiple factors that can make commu-

nication complex and time-consuming. This can lead to inefficiency and delays in

the development progress, and may even cause the final outcome different from the

original requirements.

1

doi:10.6342/NTU202303645

CHAPTER 1. INTRODUCTION 2

Therefore, the goal of this research is to propose a User Interface Description Lan-

guage (UIDL) that is capable of expressing multiple abstraction levels. To achieve

this, a task model will be introduced as one of these abstraction layers, and al-

gorithms for converting between different abstraction levels will be designed and

implemented.

This provides us with several advantages. Firstly, a higher level of abstraction

in the description language, compared to lower levels, is closer to natural language.

This enables project members to express themselves more clearly during commu-

nication, thereby enhancing communication efficiency and accuracy while aligning

with software requirements. With a description language written at a high abstrac-

tion level, the development team is able to comprehend and share their thoughts

on the requirements and design, reducing misunderstandings or mistakes that might

arise from communication. As a result, team collaboration efficiency is improved.

Secondly, designing and implementing transformation algorithms can reduce the

requirement of programming ability, which helps reduce the costs and shorten the

development timeline. In traditional development processes, developers is required

to have a certain level of programming expertise and invest a significant amount of

time in writing complex code to create the corresponding user interfaces. However,

the transformation algorithms provided by this research can automatically convert

highly abstract description languages into code, allowing developers to focus on

requirement design without needing to dedicate time and effort to the implementa-

tion details. This not only speed up the development process but also enhances the

efficiency and productivity of the development team.

2

doi:10.6342/NTU202303645

CHAPTER 1. INTRODUCTION 3

For more specific user interface description languages, we continue to use an ar-

chitecture that involves three documents: Page Description Language (PDL), Navi-

gation Description Language (NDL), and Service UI Mapping Description Language

(SUMDL). As for the UI components used to describe web pages, we enhance their

expressive capabilities to enable the generation of more modern user interfaces. To

achieve this, we analyze the functionality APIs used in existing frontend frameworks,

using these APIs as reference points to design and implement those functionalities

into our UI components.

Therefore, the rest of the paper is organized as follows: In Chapter Two, we

provide an introduction to the related work, including the abstraction layer defined

by the Cameleon Reference Framework, UI components, other UI description lan-

guages, the notation for task model specifications called ConcurTaskTree (CTT),

and Dijkstra’s Two-Stack Algorithm, which we will employ in our transforming pro-

cess. In Chapter Three, we will delve into the details of UI components and how

we have augmented them. In Chapter Four, the task model will be defined and

modeled. In Chapter Five, we will cover the process of transforming from use cases

to the task model, as well as the algorithms for transitioning from the task model

to the UI description language.

3

doi:10.6342/NTU202303645

Chapter 2

Related Work

2.1 Cameleon Reference Framework

The Cameleon Reference Framework [3] aims to provide a framework for analyz-

ing user interfaces that support multiple contexts of use. It divides the user interface

development lifecycle into four levels, each defining user interfaces at different levels

of abstraction. The following are the user interfaces defined at each abstraction

level:

1. Task & Concepts: The most abstract level of describing user interfaces, defin-

ing various interactive tasks that users can perform and the domain objects

affected by these tasks.

2. Abstract UI: It defines user interfaces independently from the interactors avail-

able on the targets, including graphical and voice interactions. This definition

treats the user interface as a collection of workspaces and then specifies the

4

doi:10.6342/NTU202303645

CHAPTER 2. RELATED WORK 5

interactive relationships between these workspaces.

3. Concrete UI: This level transforms the Abstract UI into concrete represen-

tations related to the interactors, describing navigation mechanisms within

the user interface. The definitions at this level are translated into actual UI

appearance that directly interact with users.

4. Final UI: This represents the executable user interface. It might be influenced

by platforms, devices, or other constraints, and thus can only run in specific

software and hardware environments.

2.2 UI Component

UI component is the fundamental interface component that users can interact

with and visualize in web applications. UI Components usually fall into one or more

of the following four categories[7]:

• Input control: UI components that allow users to enter information into the

system.

• Navigation: UI components that will enable users to navigate across content

within the application.

• Informational: UI components that display information in various ways.

• Container: UI components that consist of other UI components.

5

doi:10.6342/NTU202303645

CHAPTER 2. RELATED WORK 6

In Ming-Hsuan’s thesis [4], we have defined and categorized 30 UI components,

and modeled them using the following two design patterns.

• Composite pattern: To encapsulate the composite structure of UI components.

It allows UI components to integrate others while still being treated the same

as individual ones.

• Decorator Pattern: To add responsibilities to UI components dynamically.

This design pattern allows the extension of functionalities by placing compo-

nents within decorators without the need to modify the definition of the UI

components.

2.3 User Interface Description Languages

The goal of User Interface Description Languages (UIDL) is to define a high-

level computer language for describing characteristics of a user interfaces and may

be used to generate the code of the UI automatically. The following are some of the

UI description languages widely used.

• User Interface Markup Language (UIML): A UIML[1] is an XML-based markup

language document consisting of four major elements: Head, Interface, Peers,

and Template.

The Head element contains the metadata, which does not affect the user in-

terface. The Peers and the template part of the UIML define the relation to

other UIML documents. The Interface part describes the element that holds

6

doi:10.6342/NTU202303645

CHAPTER 2. RELATED WORK 7

the information of the user interface, including Structure, Style, Content, and

Behavior.

• User Interface Extensible Markup Language (UsiXML): UsiXML[5] allows de-

signers to specify a user interface on multiple abstractions. The framework

supports the transformation of each step or different contexts of use by defin-

ing a transformation model.

• Model-based Language for Interactive Applications (MARIA XML): MARIA

XML[6] covers the Model, abstract UI, and concrete UI levels. It describes

the functionality and which component to use but not the detailed look of

the UI. Moreover, MARIA XML provides multiple Data Models to explain its

behavior in response to a different event and declare the backend functions

used by the user interface.

Currently, we are describing our user interface using three documents: Page

Description Language (PDL), Navigation Description Language (NDL), and Service

UI Mapping Description Language (SUMDL). The following is the introduction to

these three documents:

• Page Description Language(Figure 2.1): PDL describes the composition of a

page in a web application and the interaction of UI components. It documents

the basic information of a page and the UI components that the page contains.

• Navigation Description Language(Figure 2.2): NDL describes navigation in-

formation within a page, including the information that is passed from other

7

doi:10.6342/NTU202303645

CHAPTER 2. RELATED WORK 8

Figure 2.1: Page Description Language

pages when they navigate in (called passing parameter), and it also specifies

which UI component will trigger the navigation mechanism along with the

passing parameter it carries.

• Service UI Mapping Description Language(Figure 2.3): SUMDL describes the

service components used in a web page. It contains information about the

service component and how it is triggered, as well as how the services’ return

value is used.

8

doi:10.6342/NTU202303645

CHAPTER 2. RELATED WORK 9

Figure 2.2: Navigation Description Language

Figure 2.3: Service UI Mapping Description Language

9

doi:10.6342/NTU202303645

CHAPTER 2. RELATED WORK 10

2.4 ConcurTaskTree

A task model describes how the user and system behave to achieve certain goal.

ConcurTaskTrees (CTT) is a representation of task models that supports the

design of user interface. Through ConcurTaskTrees, designers can gain a clearer

understanding and effectively express the activities required for users to achieve

their goals. This facilitates the implementation and optimization of user interfaces.

The main features of ConcurTaskTrees are:

• Hierarchical structure: The hierarchical structure (Figure 2.4) is intuitive for

human when it comes to problem-solving. It offers a mechanism to break down

tasks into smaller sub-tasks for completion, resulting in a wider granularity of

tasks within the task tree.

• Task allocation: CTT categorizes tasks into four categories(Figure 2.5)，

– System tasks: Represent tasks executed by the system, including behav-

iors related to displaying data and performing computations.

Figure 2.4: CTT Hierarchical structure

10

doi:10.6342/NTU202303645

CHAPTER 2. RELATED WORK 11

Figure 2.5: CTT Task allocation

– Interaction tasks: Represent tasks that require users to provide informa-

tion to the system.

– User tasks: Represents the decision points on the users part, no interac-

tion with the system.

– Abstraction: Split up in different kinds of tasks .

• Rich set of temporal operators: CTT introduces 8 temporal operators to define

the relationships between tasks. Defining temporal relationships between tasks

benefits us in UI design. Table 2.1 provides an overview of these temporal

operators. We list them in descending order of priority, from the operators

with the highest priority to the ones with the lowest.

11

doi:10.6342/NTU202303645

CHAPTER 2. RELATED WORK 12

Table 2.1: Temporal Operator of CTT

Name Notation Definition

Choice [] Specifies that once one of two tasks is enabled and has

started, the other task is no longer enabled.

Task Independence |=| Tasks can be performed in any order, but when one

starts, it must finish before the other one can start.

Concurrent || Tasks can be performed in any order, or at the same

time.

Concurrent Com-

municating

|[]| Tasks that can exchange information while performed

concurrently.

Disabling [> The first task is completely interrupted by the second

task.

Suspend-Resume |> The first task can be interrupted by the second one.

When the second terminates then the first one can be

reactivate from the state reached before.

Enabling >> Specifies second task cannot begin until the first task

performed.

Enabling with In-

formation Passing

[]>> Specifies second task cannot begin until the first task

performed, and that information produced in first task

is used as input for the second one.

12

doi:10.6342/NTU202303645

CHAPTER 2. RELATED WORK 13

2.5 Dijkstra’s Two-Stack Algorithm

If there are multiple binary operators in a mathematical expression, challenges

related to operator precedence can arise. In other words, interpreting operators from

left to right might lead to incorrect results. For example, consider the expression

1 + 2 * 3. If we simply evaluate from left to right, we would obtain the incorrect

result of 9.

Therefore, various methods have been proposed to address the issue of operator

precedence in calculations. One of these methods is Dijkstra’s Two-Stack Algorithm.

The concept of this algorithm lies in utilizing two stacks: one for handling operands

and the other for handling operators. Its main approach is to process each char-

acter of the mathematical expression sequentially, and then perform corresponding

operations on the two stacks.

For each character, perform operations based on the following rules:

• If it is an operand, push it onto the operand stack.

• If it is an operator, check if the operator at the top of the operator stack

has higher precedence than the operator to be pushed:

– If the result is negative, push the operator onto the stack.

– If the result is positive, pop the operator from the top of the stack along

with two operands from the operand stack, perform the operation, and

push the result back into the operand stack.

Repeat this process until the precedence of the operator at the top of the

13

doi:10.6342/NTU202303645

CHAPTER 2. RELATED WORK 14

stack is ”less than” the operator to be pushed, then push the operator.

– If it is ”(”, push it onto the operator stack.

– If it is ”)”, repeatedly perform the operation until the operator at the

top of the operator stack is ”(”. Then, pop the ”(” from the operator

stack.

14

doi:10.6342/NTU202303645

Chapter 3

UI Component’s Conditional

Behavior

As mentioned earlier, our approach of describing user interfaces involves reusing

predefined UI components. In Ming-Hsuan’s work [4], he defines 30 types of UI com-

ponents and models them using the composite pattern to represent their composite

structure.

On the other hand, the decorator pattern is also applied to extend the function-

alities of UI components. Each decorator represents its additional behavior. The

main focus of this chapter will be on utilizing decorators to describe the dynamic

behavior of UIs during runtime.

15

doi:10.6342/NTU202303645

CHAPTER 3. UI COMPONENT’S CONDITIONAL BEHAVIOR 16

3.1 Categorize Angular APIs

In order to enhance the capabilities of the UI description language to create more

modern user interfaces, we decided to draw inspiration from the tools provided by

modern frontend frameworks. Then, we analyze the commonly used functionalities

by users and abstracted these functionalities as decorators for UI components. This

approach allows us to extend the functionalities of our UI components.

We chose the frontend framework Angular for its provided API. The Angular API

[2] enables developers to easily implement certain functionalities of web applications

without starting from scratch.

The following are the three categories of Angular APIs we implemented:

Transform displayed value. When the user interface is displaying received data,

it often doesn’t directly match the desired displayed format. In such cases, program-

mers are required to write the corresponding code to transform it. Angular provides

two types of APIs, called ”Pipes” and ”Formats,” that allow users to easily convert

information to the required format for display. For example, these APIs can handle

formats such as date and time, capitalization, currency, and more. The commonly

used transformations can usually fulfill users’ requirements.

Change behavior and appearance based on certain conditions. In most

UIs, pages are not in a static state. The page adjusts dynamically over time, altering

the elements on the screen. Angular offers two types of directives for implementing

these dynamic effects:

16

doi:10.6342/NTU202303645

CHAPTER 3. UI COMPONENT’S CONDITIONAL BEHAVIOR 17

• Structural directives: These directives change the DOM layout by easily adding

and removing DOM elements.

– NgIf: Adds or removes elements conditionally.

– NgSwitch: Renders elements based on the assigned variable.

– NgFor: Renders a list of elements based on each item in the list.

• Attribute directives: These directives change the appearance or behavior of

DOM elements.

– NgStyle: Updates styles for the HTML element conditionally.

– NgClass: Adds or removes CSS classes of an element conditionally.

Change certain variable based on user’s action. In this part, we will intro-

duce Angular’s Validators.

A Validator is a function used to handle forms or a set of input fields. It deter-

mines whether the input meets the conditions and returns a validation success or

failure result. In Angular, several common Validators are available for users. These

Validators include checking whether the input is empty, verifying if the amount of

input’s characters exceeds (or is less than) certain values, and determining whether

the input fits the desired formats. These Validators effectively ensure the correctness

of user input before submission, enhancing user experience and preventing erroneous

inputs.

17

doi:10.6342/NTU202303645

CHAPTER 3. UI COMPONENT’S CONDITIONAL BEHAVIOR 18

3.2 Define Variables in UI Description Language

To enable dynamic changes in the user interface based on conditions, we have

identified common functionalities in the previous section. However, expressing these

functionalities using our UI description language is challenging. The main difficulty

is ”how to describe the conditions for UI component changes in a machine-readable

manner,” rather than relying on natural language descriptions.

Therefore, we analyze the variables within our system. Currently, our description

language defines two types of variables: Passing Parameter (the parameters from

other pages) and Service Return (the return value of a service). However, these

two types of variables might not be sufficient to cover all the conditions required

for creating the frontend. UI changes can depend on other conditions, such as

displaying an ”Input Format Error” message when the entered data is not in the

expected format.

Listing all possible conditions is impractical. Therefore, we need to design an

extensible variable system within the description language to address potential con-

ditions that might arise in the future.

We’ve decided to introduce a new variable mechanism within the description

language, separating the ”source” and ”dependents” of system conditions. We will

use decorators to bind this variable to UI components, indicating that a change in

that component will cause the variable to change. This is referred to as the variable’s

”source.” On the other hand, we will use decorators on UI components to specify

that they are ”dependents” of variables, meaning that the components’ behavior

18

doi:10.6342/NTU202303645

CHAPTER 3. UI COMPONENT’S CONDITIONAL BEHAVIOR 19

Figure 3.1: Idea of Variable

may change depending on the type of decorators.

From the example mentioned earlier, this involves two distinct components: an

Input component for user input and a Text component that shows an error message

conditionally. The Input component serves as the source for this variable, while the

Text component becomes the dependent. In Figure 3.1, we can observe that a single

variable can have multiple dependents.

3.3 Design and Implementation

Based on the design principles and analysis from the previous two sections, here

are the decorators we have defined: (The green part in Figure 3.2)

• Source of the variable:

– Validator Decorator: Records the conditions that the input component

must satisfy and the variable it affects.

– Service Return Bind Variable Decorator: This decorator is applied to

the components responsible for calling services. It declares that specific

19

doi:10.6342/NTU202303645

CHAPTER 3. UI COMPONENT’S CONDITIONAL BEHAVIOR 20

Figure 3.2: Overall UI Component Decorator

20

doi:10.6342/NTU202303645

CHAPTER 3. UI COMPONENT’S CONDITIONAL BEHAVIOR 21

return values from the service will be used as variables.

• Dependent of the variable:

– Structural Decorator: This component displays or hides based on the

variable’s conditions. We’ve drawn inspiration from the Angular APIs

ngIf and ngSwitch. The logical operation format for variables utilizes

Logical JSON operators.

– NgStyle Decorator: Dynamically sets the element’s CSS style based on

the variable’s conditions.

• Other:

– NgFor Decorator: If a service’s return value is a list, this decorator renders

a number of components equal to the length of the list.

Additionally, we will declare the variables in PDL to provide an overall picture

of the variables on this page.

21

doi:10.6342/NTU202303645

Chapter 4

Modeling Tasks

The main focus of this chapter is to integrate the task model into our system.

We have decided to use ConcurTaskTrees (CTT) as our task model. First, we need

to define and explain each task type and point out their objectives. Lastly, we will

model CTT to make it usable within our system.

4.1 Task Type Defining

CTT categorizes tasks into four categories: System, Interaction, User, and Ab-

straction. Each of these categories can be further divided into more specific types,

and each node on the task tree belongs to one of these types.

The following are introductions to the defined types. We believe that by applying

a combination of these task types, we can effectively express all scenarios a user

might encounter when interacting with an UI:

22

doi:10.6342/NTU202303645

CHAPTER 4. MODELING TASKS 23

• Abstraction tasks

– Task Group: Summarizes a task and then uses its subtasks to provide

detailed descriptions. Note that subtasks do not belong to the same

category.

– Include Task: Similarly, it summarizes a task but references other ex-

isting CTTs through links. This facilitates ”reusability” in our design.

• System tasks

– System Task Group: Summarizes a task and then uses its subtasks

to provide detailed descriptions. Note that all of its subtasks are system

tasks.

– Checking: The system confirms whether the previous tasks were per-

formed correctly by the user.

– Error Message: The system notifies the user when an error occurs.

– Feedback: The system informs the user about the progress of a task.

– Filtering Information: The system filters data for further operations.

– Input Validation: The system validates the value entered by the user.

– Visualize Fixed Value: The system displays information on the page

that remains static.

– Visualize Dynamically Acquired Value: The system displays infor-

mation on the page that’s obtained dynamically.

– Service: The system uses backend services.

23

doi:10.6342/NTU202303645

CHAPTER 4. MODELING TASKS 24

• Interaction task

– Interaction Task Group: Summarizes a task and then uses its sub-

tasks to provide detailed descriptions. Note that all of its subtasks are

interaction tasks.

– Input: The user enters data into the system.

– Select From Fixed List: The user chooses from predefined options

provided by the system.

– Select From Dynamically Acquired List: The user selects options

provided by the system, where the options are dynamically obtained.

– Select From Visualized Info: The user chooses an item from informa-

tion already displayed by the system for further actions.

– Control: The user triggers activities in the system, e.g., clicking, pressing

buttons.

– Responding Alert: Appears after alert tasks like Checking and Error

Message, indicating the user’s response to system notifications.

• User tasks

– User Task Group: Summarizes a task and then uses its subtasks to

provide detailed descriptions. Note that all of its subtasks are user tasks.

– Problem Solving: Describes tasks where the user solve issues outside

the system.

24

doi:10.6342/NTU202303645

CHAPTER 4. MODELING TASKS 25

– Comparing: Describes tasks where the user needs to make decision at

that moment.

– Planning: Describes that the user is planning or making a decision at

that time.

4.2 ConcurTaskTrees Modeling

In the previous section, we defined all the task types. In this chapter, we will

further model our CTT, as shown in Figure 4.1. We explain the design in this

section.

Composite Pattern for Task Trees Firstly, CTT is a tree structure where

all parent nodes (parent tasks) encapsulate the descriptions of all their child nodes

(subtasks). We use composite pattern to model CTT to express its part-whole

hierarchical structure, while treat all objects in the composite structure uniformly.

Association Class for Temporal Operator Additionally, in CTT, there are

temporal operators between two tasks. We use association class to represent the

relationships between these tasks.

Authentication Further, we apply authentication to our task model to design a

system with different roles. In CTT, we need to record two pieces of information.

Firstly, it’s necessary to record all actors and the hierarchical structure among

them. Different actors have different permissions for the tasks they are allowed to

25

doi:10.6342/NTU202303645

CHAPTER 4. MODELING TASKS 26

Figure 4.1: CTT Modeling

26

doi:10.6342/NTU202303645

CHAPTER 4. MODELING TASKS 27

Figure 4.2: Actor’s Hierarchical Structure

Figure 4.3: Specify Actors within Tasks

perform. These permissions and tasks will depend on the actor’s roles and identity,

and the information should be appropriately represented within the CTT. (Figure

4.2) is an example of the actor set for an online shopping site.

Secondly, we need to explicitly specify which actors have the permission to per-

form specific tasks, ensuring the security of the system and proper resource con-

trol.(Figure 4.3) is an example for the online shopping site.

27

doi:10.6342/NTU202303645

Chapter 5

UIDL Generating Algorithm

In this chapter, we will discuss the process of generating our UI description

language and utilizing the UI Composition engine improved by Hsu to generate the

corresponding code. Figure 5.1 shows the system architecture of the UI generating

system.

This chapter will be divided into two parts. Firstly, we will present a process

that allows users to transform Use Case Diagrams and Use Case Specifications into

Figure 5.1: UI Generating System Architecture

28

doi:10.6342/NTU202303645

CHAPTER 5. UIDL GENERATING ALGORITHM 29

corresponding CTTs. Since these documents are written in natural language, exe-

cuting these algorithms, while intuitive, cannot be fully automated. In this section,

we will identify the parts where natural language processing and machine learning

tools are required to transform the content of the documents.

Next, we will introduce an algorithm to automatically transform CTT into PDL,

NDL, and SUMDL. In other words, we will design algorithms to extract UI compo-

nent information and their behaviors from CTT.

After generating PDL, NDL, and SUMDL, we can utilize the other parts of the

UI Design Client to fine-tune our project. We can further adjust the UI style using

the Graph Editor, employ the UI Component Wizard to add various components,

and adjust properties as well as behaviors of individual components. Additionally,

we can use the Navigation Wizard to make adjustments to the UI’s navigation.

5.1 Use Case to Task Model

Before discussing the algorithms, we will categorize our self-defined CTT based

on usage and discuss what kind of information can be generated from ”Use Case

Diagrams” and ”Use Case Specifications,” respectively.

• Main CTT: Main CTT is the task model we’ve defined to describe the user

interface. It may include to other CTTs for use.

• Included CTT: Included CTT represents task models that have been defined

and can be referenced. These referenced CTT cannot independently form

29

doi:10.6342/NTU202303645

CHAPTER 5. UIDL GENERATING ALGORITHM 30

a complete user interface but are encapsulated to facilitate reuse of specific

functionalities.

We believe that the relationship between a use case diagram and each individual

use case is similar to the relationship between our Main CTT and Included CTTs. A

single use case cannot form a complete user interface on its own but needs to combine

multiple use cases through a use case diagram to create a complete application.

Therefore, our process will begin by transforming the use case diagram into the

Main CTT. Then, based on each use case specification, we will create corresponding

Included CTTs, also referred to as Use Case CTTs, on a one-to-one basis.

5.1.1 Use Case Diagram to Main CTT

Firstly, we will start by analyzing the information required by Main CTT and

what is provided by the use case diagram.

A CTT requires four key pieces of information, including Basic Tasks, Composite

Structures, Temporal Operators, and Authentication. For the Main CTT, we only

need the information required to link the Use Case CTTs together. Therefore, we will

use interaction tasks and IncludeTask type tasks to connect and compose Included

CTTs.

Furthermore, composite structures are essential for CTT to enhance readability

and avoid the misuse of temporal operators resulting from different precedence. Our

approach is to construct the main CTT with a specific pattern, ensuring that the

structure of tasks is clear and easily understandable. This approach will benefit us

30

doi:10.6342/NTU202303645

CHAPTER 5. UIDL GENERATING ALGORITHM 31

Figure 5.2: Pattern of Main CTT

in interpretation and the generation of UI.

Here is the information that will be provided by use case diagram:

1. Actors: This provides the authentication information for the Main CTT.

2. <<extend>>relation: This information provides the temporal relationships

between use cases, thus offering the temporal operator information within the

Main CTT.

3. <<include>>relation: This information will not be used. If UC-001 b UC-

002, the responsibilities of using UC-2 lies within the CTT of UC-1, not main

CTT.

4. The pre-condition and post-condition of each use case.

We have found that the use case diagram provides the required information to

construct the Main CTT. We propose a fixed format for creating the Main CTT to

ensure the consistency of the tree structure. For each included use case in the Main

CTT, it is divided into three parts, as shown in Figure 5.2. The first part is the

31

doi:10.6342/NTU202303645

CHAPTER 5. UIDL GENERATING ALGORITHM 32

interaction task that triggers the use case, describing the user’s action to enter this

use case. Next, the second part consists of an IncludeTask type task, used to link to

the CTT of the use case. Finally, the third part describes other use cases triggered

after the completion of this task.

Hence, we have designed an algorithm to recursively create this tree.

• Input:

1. A task tA, where tA references the CTT created for use case A.

2. A set of post conditions to describe the current state of the system.

• Output: The use cases’ task that are enabled by tA.

Step1: Collect use cases that satisfy one of the condition. Infer from the

use case diagram of which use cases can be executed when use case A is completed.

We collect use cases that satisfy one of the following conditions: first, use cases

that extend from use case A, and second, use cases whose pre-conditions are satisfied

due to use case A.

Take Figure 5.2 as an example, we obtain tB and tC .

Step2: Create the task tree for every use case tj we collected in step1

For each task tj of each use case j, we will perform three steps to complete its

sub-task tree.

1. Identify the action that triggers use case j and create the corresponding inter-

action task interactj.

32

doi:10.6342/NTU202303645

CHAPTER 5. UIDL GENERATING ALGORITHM 33

Figure 5.3: Use Cases Enabled by tA

2. Recursively create the task tree of the use cases that will be triggered when tj

is completed. We’ll refer to this tree as fj.

3. Combine interactj, tj, and fj using an abstract task.

As shown in Figure 5.3, the tasks required for Use Case B and Use Case C are

created.

Step3: Connect the task tree created in step2 with ”Choice” operator.

Every task group for use case j that we created in step 2 is part of the tasks that can

be triggered by tA. We link them together using the ”Choice” operator and then

use an abstract task to combine them and return it as the output task tree.

The generated task tree is represented in the subtree labeled ”Use Cases Enabled

By Use Case A” in Figure 5.3.

To generate the complete Main CTT, we can initiate the algorithm with the

33

doi:10.6342/NTU202303645

CHAPTER 5. UIDL GENERATING ALGORITHM 34

initial state as a post-condition, and the entire Main CTT will be recursively gen-

erated.

5.1.2 Use Case Spec to Use Case CTT

For a use case, it often relies on using natural language to describe its implemen-

tation details. Therefore, in the process of generating Use Case CTT, we first analyze

the information provided in the use case specification and map this information to

the four essential pieces of information required to construct a CTT (Basic Task,

Composite Structure, Temporal Operators, and Authentication). Then, we pay par-

ticular attention to which information needs further processing in natural language

and propose corresponding rules, serving as a foundation for training models.

Here is the information provided by our use case specification:

1. List of actions: Our tasks will end when the series of actions is completed,

providing information about the basic tasks and the temporal order between

them.

2. Related requirements: We store this information in our task model for future

use when binding services.

3. Actors of each action: Provides authentication information.

We have identified two main challenges that make automating the derivation of

the Use Case CTT from the use case specification difficult:

34

doi:10.6342/NTU202303645

CHAPTER 5. UIDL GENERATING ALGORITHM 35

• The series of actions is written in natural language, which may be intuitive for

humans, but the granularity of each action is not guaranteed. Therefore, even

though it provides information about our tasks, automating the mapping of

actions to tasks is challenging.

• Lack of detailed ”temporal operators” and ”composite structure” information.

Therefore, we have decided to start by addressing ”how to use basic tasks to

describe a user interface.” Once we define the specifications, we can then use natural

language processing or let humans map the actions in use cases to basic tasks.

Part1: Define the usage of each task type. We have already provided clear

definitions for each task type in the previous chapter and modeled them with the

required properties.

Part2: Set restriction to combination of basic tasks. Due to the various

combinations of basic tasks, while some combinations might seem reasonable to

humans, they might lack certain information for the system. To address this, we

have decided to restrict the combination of basic tasks so that they can correctly

describe an app.

• Rule 1: There must be an event after the user enters information to enable

the system to start performing the preceding system task. In short, an event

task is required before the system starts working, as shown in Figure 5.4.

35

doi:10.6342/NTU202303645

CHAPTER 5. UIDL GENERATING ALGORITHM 36

Figure 5.4: Rule 1 for Constructing CTT

Figure 5.5: Rule 2 for Constructing CTT

• Rule 2: Always get the information before displaying it (regardless of how long

ago), as shown in Figure 5.5.

Part3: The tasks should specify their temporal order. Each task has its

own ID, and we have decided to use this ID to record the temporal information.

The format of the ID is as follows:

{task num}.{branch num}{branch digits}-{concurrent num}

We analyze from right to left:

• For tasks that have the same ”task num,” ”branch num,” and ”branch digits”

(if they exist), but different ”concurrent num,” set the ”concurrent” operator

between them and group them as a composite task.

36

doi:10.6342/NTU202303645

CHAPTER 5. UIDL GENERATING ALGORITHM 37

Figure 5.6: Example of Constructing CTT by ID

• For tasks that have the same ”task num” and ”branch num” but different

”branch digits,” set a ”disabling” or ”enabling” operator between them, de-

pending on whether the right task is an event task, and group them as a

composite task.

• For tasks that has the same ”task num” but different ”branch num”, set

”choice” operators between them and group them as a composite task.

• Finally, for tasks that have different ”branch digits,” set a ”disabling” or ”en-

abling” operator between them, depending on whether the right task is an

event task, and group them as a composite task.

Figure 5.3 is an example where we can observe the results generated based on

the task names on the left side of the diagram and their corresponding IDs.

5.2 CTT to UIDL Mapping

In this section, we will discuss how to convert our CTT into PDL, NDL, and

SUMDL. The purpose of this transformation process is to extract information about

37

doi:10.6342/NTU202303645

CHAPTER 5. UIDL GENERATING ALGORITHM 38

UI components, navigation, and services from the CTT.

To achieve the goals, we divide the process into two stages, each involving travers-

ing our CTT once:

• Stage 1: Creating UI components and extract their behavioral information.

• Stage 2: Defining navigation between user pages.

At last, we will present the design of our system and display the results.

5.2.1 Retrieve UI Component and Binding Information

This is our first stage of transforming CTT. Table 5.1 is our list of tasks, along

with their corresponding UI components and the additional information it provided.

Next, we will traverse our Main CTT using Depth-First Search (DFS). This

approach gradually maps the tasks into corresponding UI components and related

information using the rules mentioned in the table. Finally, we will generate an

intermediate UI to proceed to the next stage.

The following example is provided for better understanding. Figures from Figure

5.7 to Figure 5.11 illustrate the process of creating user interface components in the

first stage. Figure 5.12 represents the outcome of this stage, where we can observe

that navigation and page information has not been included yet.

38

doi:10.6342/NTU202303645

CHAPTER 5. UIDL GENERATING ALGORITHM 39

Table 5.1: Information in Each Task Type

Type UI Components Decorator Information Other Information

Select From Visualized Info Navigation information

Select From Fixed List Dropdown, Listbox,

RadioButton, Checkbox

Argument
Provide argument information

for querying services
Select From Dynamically

Acquired List

ServiceReturn, PassingParameter,

Argument

Input
Input, DateTimePicker,

Slider, SlideToggle
Argument

Control
Button, Icon Navigation information

Responding Alert

Task Group
Form, Tabs, Dialog,

ExpansionPanel

Visualize Fixed Value Text , Tree, Table,

Card, ImageVisualize Dynamically

Acquired Value
ServiceReturn,PassingParameter

Checking
Alert, Dialog

Error Message

Feedback ProgressBar, ProgressSpinner ServiceReturn

Service ServiceComponent

Filtering Information Filtering data

Input Validation
Add Validator decorator to

input control UI component.

39

doi:10.6342/NTU202303645

CHAPTER 5. UIDL GENERATING ALGORITHM 40

Figure 5.7: Example of CTT to UI Component Mapping(1): Main Tree

Figure 5.8: Example of CTT to UI Component Mapping(2): Register

Figure 5.9: Example of CTT to UI Component Mapping(3): Back to Main Tree

40

doi:10.6342/NTU202303645

CHAPTER 5. UIDL GENERATING ALGORITHM 41

Figure 5.10: Example of CTT to UI Component Mapping(4): View List of Item

Figure 5.11: Example of CTT to UI Component Mapping(5): Back to Main Tree

Again

Figure 5.12: Example of CTT to UI Component Mapping: Final Product

41

doi:10.6342/NTU202303645

CHAPTER 5. UIDL GENERATING ALGORITHM 42

5.2.2 Determine Navigation of the UI

In this stage, we will traverse our CTT again to collect navigation information

and integrate it into the intermediate product generated in the previous stage. This

process involves defining pages and specifying the navigation between those pages.

CTT defines temporal operators between tasks, by interpreting these temporal

operators, we can extract navigation information of the UI. Therefore, we start by

analyzing the pages and navigation information provided by each temporal operator

(refer to Table5.2).

The temporal operators present another challenge that needs to be addressed,

which is the precedence between them. The meaning might be different if they are

misused. Therefore, when interpreting temporal operators, it’s important to pay

special attention to their precedence. Furthermore, we observe that the tree-like

structure of the CTT can be considered as ”parentheses” in mathematical expres-

sions, which is helpful in determining the combinations and hierarchical relationships

between tasks.

We use the following concept to interpret the navigation information in CTT:

• During the traversal process, when encountering operators, decide whether to

create a page for the previously traversed UI components.

• After the UI components on the right side of the operator are generated, define

the navigation between the two user interfaces. For example: 1 + 2 * 3 (the

+ operation will be performed only after the operation of 2 * 3 is completed).

Since we want to traverse CTT to ”calculate” a project, and the CTT’s operator

42

doi:10.6342/NTU202303645

CHAPTER 5. UIDL GENERATING ALGORITHM 43

Table 5.2: Information in Temporal Operators

Name Temporal Information Page Information

Choice The generated sub UI can be connected through“tab”

or “sidebar” component.
None

Task Independence Separate the generated UI components using tabs or cre-

ate a dedicated page responsible for navigating to each

UI. After the task is completed, it should navigate back

to the previous page.

Concurrent This implies that the generated subUI of tasks must be

in the same page.Concurrent

Communicating

Disabling The subUI that is generated by the task ”after the sec-

ond task” is not on the same page.

Create a page that includes

the right task’s UI and the

UI that is created before.Suspend-Resume The subUI that is generated by the task ”after the sec-

ond task” is not on the same page. Once the target task

is complete, the UI should navigate back to the source

task’s UI.

Enabling If both tasks can generate UI, the second task’s UI

appears after the first task’s UI.

Create a page that includes

the left task’s UI and the

UI that is created before.

Enabling with

information passing

43

doi:10.6342/NTU202303645

CHAPTER 5. UIDL GENERATING ALGORITHM 44

Table 5.3: Behaviors when Pushing/Popping Operators

Name Create Page(when pushing) Behaviors when popping operators

Choice No Pop two elements from the operand stack, combine them

using a Sidebar, and then push the resulting ”Continu-

ous Page” into the stack.

Task Independence No Pop two elements from the operand stack, combine them

using a Tab component, and then push the resulting

”Continuous Page” into the stack.

Concurrent No Pop two elements from the operand stack, place them

into a list, and then push the list into the stack.

Concurrent

Communicating
No (Same as above)

Disabling Yes, include the event task’s

UI component.

Pop two elements from the operand stack, navigate the

first element to the second element, and then push the

resulting ”Continuation Page” into the stack.

Suspend-Resume Yes, include the event task’s

UI component.

Pop two elements from the operand stack, navigate the

first element to the second element, navigate the second

element back to the first element, and finally push the

resulting ”Continuation Page” into the stack.

Enabling Yes Pop two elements from the operand stack, navigate the

first element to the second element, and then push the

resulting ”Continuation Page” into the stack.

Enabling with

information passing
Yes (Same as above)

is similar to mathematical expression, we will apply Dijkstra’s Two-Stack Algorithm

with some additional step on task tree.

In this algorithm, we decide whether to ”create a page” and establish the ”nav-

44

doi:10.6342/NTU202303645

CHAPTER 5. UIDL GENERATING ALGORITHM 45

igation between two user interfaces” when ”pushing” and ”popping” operators. It’s

important to note that the operand stack is the ”component stack,” where each

stack element holds a list of UI components.

Thus, in our system, we have two stacks: the ”temporal operator stack” and the

”UI Component Stack.” The elements in the ”UI Component Stack” not only record

a list of UI components but also contain information about components that can

perform navigation.

Here, we introduce a new term called ”consecutive page,” which refers to a series

of pages that have defined navigation between them. The largest consecutive page

is the complete UI, which is what we aim to achieve through the traversal of the

CTT.

Figures from Figure 5.13 to Figure 5.21 illustrate the process of applying the

second stage algorithm to the UI components created in the first stage. The resulting

UI shown in Figure 5.22 is generated based on the information from the main CTT.

Figure 5.13: Example of Determine Navigation(1): Main Tree(1)

45

doi:10.6342/NTU202303645

CHAPTER 5. UIDL GENERATING ALGORITHM 46

Figure 5.14: Example of Determine Navigation(2): Register

Figure 5.15: Example of Determine Navigation(3): Register

Figure 5.16: Example of Determine Navigation(4): Register(Pop Operator Stack)

46

doi:10.6342/NTU202303645

CHAPTER 5. UIDL GENERATING ALGORITHM 47

Figure 5.17: Example of Determine Navigation(5): Register

Figure 5.18: Example of Determine Navigation(6): Main Tree

Figure 5.19: Example of Determine Navigation(7): Main Tree

47

doi:10.6342/NTU202303645

CHAPTER 5. UIDL GENERATING ALGORITHM 48

Figure 5.20: Example of Determine Navigation(8): Main Tree

Figure 5.21: Example of Determine Navigation(9): Main Tree(Pop Operator Stack)

Figure 5.22: Example of Determine Navigation: Final Product

48

doi:10.6342/NTU202303645

CHAPTER 5. UIDL GENERATING ALGORITHM 49

5.2.3 Design on Task Converter

Finally, we implement the transformation algorithm that converts CTT into

PDL, NDL, and SUMDL. We explain the design in this section.

We apply two design patterns:

• Visitor pattern: In our transformation process, we traverse the CTT twice

to gather UI component information and navigation information. Since we

collect different information from the CTT depending on different tasks and

operations, we apply the visitor pattern to traverse the CTT object structure

(see Figure 5.23).

Here we have proposed three visitors.

– Task Tree Validation Visitor: This visitor is responsible for validating

Figure 5.23: Visitor Pattern on CTT

49

doi:10.6342/NTU202303645

CHAPTER 5. UIDL GENERATING ALGORITHM 50

the CTTs to ensure their correctness. Currently, it primarily focuses

on verifying the attributes of tasks, and it can be further expanded to

validate more parts of the CTT in the future.

– UI Component Mapping Visitor: This visitor is responsible for the

first stage transformation described in this chapter. As it traverses the

CTT, it maps the tasks into UI component builders along with the neces-

sary information for the builders. It’s important to note that this visitor

is also responsible for binding services to UI components.

– Navigational Visitor: This visitor is responsible for the second stage

transformation described in this chapter. It creates page related builders

and defines navigation as it traverses the CTT.

• Builder Pattern: Different properties and behaviors (defined using the de-

scription language) are added to different UI components in different stages.

To gradually add the information obtained by visitors into UI components,

we decided to use the Builder Pattern to create various UI components. This

allows us to obtain UI data at different times during the traversal by the two

visitors. At the end of the traversal, the required UI components and descrip-

tion language are generated(Figure 5.24).

We have three types of builders:

– UI Component Builder: This builder is responsible for receiving data

about UI components and we have different builders for various types

of UI components. The Page Builder, in particular, is responsible for

50

doi:10.6342/NTU202303645

CHAPTER 5. UIDL GENERATING ALGORITHM 51

Figure 5.24: Builder Pattern for UIDL

generating the PDL.

– Service Builder: This builder is responsible for handling data related

to services, which includes the utilization of service components and their

return values.

– Navigational Builder: This builder is responsible for receiving naviga-

tional information.

51

doi:10.6342/NTU202303645

CHAPTER 5. UIDL GENERATING ALGORITHM 52

Figure 5.25: Task Converter

52

doi:10.6342/NTU202303645

Chapter 6

Conclusion

6.1 Summary

We have successfully proposed a method to save time and improve intuitiveness

in frontend development by incorporating the Task Model into our UI generation

process. This involves defining the task model, proposing a method for creating the

task model, and completing the transition from the task model to the UI.

Even though the process of transforming use cases into a task model cannot be

fully mechanical (due to use cases being composed in natural language), we have

devised an intuitive approach to generate the task model from the use case.

Furthermore, by following the restrictions on constructing the task tree, the task

tree may not necessarily be created from the use case. This means that we have

greater flexibility in generating task models, allowing us to better align with require-

ments and user expectations. These methods and techniques make our development

53

doi:10.6342/NTU202303645

CHAPTER 6. CONCLUSION 54

process more efficient and flexible, thereby enhancing the quality and user experience

of the user interface.

6.2 Future work

As for future work, we will discuss two topics:

Generating CTT In the step of generating CTT, it’s not fully automated at this

point. Training natural language processing models is necessary to enable them to

convert actions from use cases into models of basic tasks.

UI Composition Currently, in the UI Composition process, we parse the neces-

sary data from PDL, NDL, and SUMDL, and then utilize predefined templates to

generate the corresponding code. In the future, our goal is to develop a process that

can transform these three UIDLs into corresponding abstract syntax trees (ASTs),

thereby creating a more generalized representation. This approach would contribute

to a more versatile and adaptable representation of user interfaces.

54

doi:10.6342/NTU202303645

Bibliography

[1] M. Abrams, C. Phanouriou, A. L. Batongbacal, S. M. Williams, and J. E. Shuster.

Uiml: an appliance-independent xml user interface language. Computer networks,

31(11-16):1695–1708, 1999.

[2] Angular api. https://angular.io/api.

[3] G. Calvary, J. Coutaz, D. Thevenin, Q. Limbourg, L. Bouillon, and J. Vanderdon-

ckt. A unifying reference framework for multi-target user interfaces. Interacting with

computers, 15(3):289–308, 2003.

[4] M.-H. Hsieh. Construct and bind user interface components. Master’s thesis, National

Taiwan University, 2021.

[5] Q. Limbourg, J. Vanderdonckt, B. Michotte, L. Bouillon, and V. López-Jaquero.

Usixml: A language supporting multi-path development of user interfaces. In En-

gineering Human Computer Interaction and Interactive Systems: Joint Working Con-

ferences EHCI-DSVIS 2004, Hamburg, Germany, July 11-13, 2004, Revised Selected

Papers, pages 200–220. Springer, 2005.

[6] F. Paterno’, C. Santoro, and L. D. Spano. Maria: A universal, declarative, multiple

abstraction-level language for service-oriented applications in ubiquitous environments.

ACM Transactions on Computer-Human Interaction (TOCHI), 16(4):1–30, 2009.

55

doi:10.6342/NTU202303645

[7] Usability.gov. https://www.usability.gov/how-to-and-tools/methods/

user-interface-elements.html.

56

