|

S EWRBERENSRANLREA

Department of Computer Science & Information Engineering

College of Electrical Engineering and Computer Science

National Taiwan University

Master Thesis

WAEHZEN | HEHEAH N D
Auto Build User Interface from Task Model

1=
LIOU, REN-SHIUAN

J/BEHEK : FAT L
Advisor: Jonathan Lee, Ph.D.

FERE 112 F 7 A
July, 2023

doi:10.6342/NTU202303645

B 312 K -
> b =2 A3 2
DRXLEBTECE
MASTER’S THESIS ACCEPTANCE CERTIFICATE
NATIONAL TAIWAN UNIVERSITY

WREEEN B EEEERH '@
Auto Build User Interface from Task Model

&=, ik

WX AAB=2FE (£33 R10922151) AR EE KL B R TRE
22 %R 2B i@%RIH2$7H27E%Tﬂ%ﬁ§f$
HiBBE IREA 0 4

The undersigned, appointed by the Department of Computer Science and Information Engineering
on 27 July 2023 have examined a Master’s thesis entitled above presented by LIOU, REN-SHIUAN

(student ID: R10922151) candidate and hereby certify that it is worthy of acceptance.

5 =
73X & B Oral examination committee:

Ak a4 GARE

(45 T3 4% Advisor)

A BB gy

% ¥ 1£/Ff & Director: Ef

—e

BARERBARNBEHRFATEBELRFHHROITFT@ELEARA T T %
B1RI% e fTRBIAR I B AR BRSA A EMREBEFZ o
AR R BRI R TR N B A R ES ERREY o
MRk Sh s RALRCRHHEBERZRB IR TRENITARE » 479 BH#FE
R T~ ARREE S I S REF - BRI BB BEREZRMG B W - 1

8 SAF L3 3R » AR L B 69 I B » 42 38 R 3R AT OBA] 7%, ©

i

doi:10.6342/NTU202303645

ZRS

LRBARGBREF > FFRECATETORATREE—2 S L8P
BRoo AR ey BB EARFT—FE A GG ER > RRAETHEBERE FHORL

#®

FZ B BAC BAL I A 0 b 12 AL 69 B AL P AF A R 6948 A A @ AU A AR 5 69
JRAS LM EATHRE

ETERBMEAAR RMIANTEFSREIAELEFTHEZY » AR EEAHZEENR
SR PT T TR A A VAE R B AR o 13 AT A AR R A AR R @ A RE
ToMmEH A HILREREAEZAD o B AMBL-FHBTEAZAD
BB TR ERT) » DB AR ERRALEE R F @

MéEss — ERAFENMEAN - AL N EREET ~ RF A - EHFER ~E
i &4

il

doi:10.6342/NTU202303645

Abstracts

In the software development process, transforming requirements into user in-
terface involves a series of steps. The main purpose of this thesis is to design
an automated process that translates the use cases from the software requirements
document(SRS) into user interfaces, and binds the UI components with service com-
ponents during the transformation.

To achieve this goal, we introduce task model to express the tasks users need to
accomplish to achieve their goals when using the software. This information is used
to generate a user interface description language, which can automatically transform
into user interfaces. Additionally, we further enhance the expressive power of the

user interface description language to create more modern user interfaces.

Index terms — Ul Component, Ul Description Language, Service Component,

Task Model, Use Case

v

doi:10.6342/NTU202303645

Contents

vXEZBRELE i
Al i
& iii
Abstracts iv

List of Figures viii
List of Tables xi
Chapter 1 Introduction 1
Chapter 2 Related Work 4
2.1 Cameleon Reference Framework 4
2.2 Ul Component 5
2.3 User Interface Description Languages 6
2.4 ConcurTaskTree 10

doi:10.6342/NTU202303645

2.5 Dijkstra’s Two-Stack Algorithm 13
Chapter 3 UI Component’s Conditional Behavior 15
3.1 Categorize Angular APIs 16
3.2 Define Variables in UI Description Language 18
3.3 Design and Implementation 19
Chapter 4 Modeling Tasks 22
4.1 Task Type Defining L 22
4.2 ConcurTaskTrees Modeling 25
Chapter 5 UIDL Generating Algorithm 28
5.1 Use Case to Task Model 29
5.1.1 Use Case Diagram to Main CTT 30

5.1.2 Use Case Spec to Use Case CTT 34

5.2 CTT to UIDL Mapping 37
5.2.1 Retrieve Ul Component and Binding Information 38

5.2.2 Determine Navigation of the UL 42

5.2.3 Design on Task Converter 49
Chapter 6 Conclusion 53
6.1 Summary 53
6.2 Futurework 54

vi

doi:10.6342/NTU202303645

Bibliography 55

vii

doi:10.6342/NTU202303645

List of Figures

2.1 Page Description Language 8
2.2 Navigation Description Language 9
2.3 Service UI Mapping Description Language 9
2.4 CTT Hierarchical structure 10
2.5 CTT Task allocation 11
3.1 Idea of Variable 19
3.2 Overall Ul Component Decorator 20
4.1 CTT Modeling 26
4.2 Actor’s Hierarchical Structure 27
4.3 Specify Actors within Tasks 27
5.1 UI Generating System Architecture 28
5.2 Pattern of Main CTT, 31
5.3 Use Cases Enabled by t4 33
5.4 Rule 1 for Constructing CTT 36
viii

doi:10.6342/NTU202303645

5.5 Rule 2 for Constructing CTT 36

5.6 Example of Constructing CTT by ID 37
5.7 Example of CTT to Ul Component Mapping(1): Main Tree 40
5.8 Example of CTT to Ul Component Mapping(2): Register 40

5.9 Example of CTT to Ul Component Mapping(3): Back to Main Tree 40
5.10 Example of CTT to Ul Component Mapping(4): View List of Item . 41

5.11 Example of CTT to Ul Component Mapping(5): Back to Main Tree

Again 41
5.12 Example of CTT to Ul Component Mapping: Final Product 41
5.13 Example of Determine Navigation(1): Main Tree(1) 45
5.14 Example of Determine Navigation(2): Register 46
5.15 Example of Determine Navigation(3): Register 46

5.16 Example of Determine Navigation(4): Register(Pop Operator Stack) . 46

5.17 Example of Determine Navigation(5): Register 47
5.18 Example of Determine Navigation(6): Main Tree. 47
5.19 Example of Determine Navigation(7): Main Tree. 47
5.20 Example of Determine Navigation(8): Main Tree. 48

5.21 Example of Determine Navigation(9): Main Tree(Pop Operator Stack)

48
5.22 Example of Determine Navigation: Final Product 48
5.23 Visitor Pattern on CTT 49
5.24 Builder Pattern for UIDL 51

ix

doi:10.6342/NTU202303645

5.25 Task Converter 52

doi:10.6342/NTU202303645

List of Tables

2.1 Temporal Operator of CTT 12

5.1 Information in Each Task Type 39

5.2 Information in Temporal Operators 43

5.3 Behaviors when Pushing/Popping Operators 44
xi

doi:10.6342/NTU202303645

Chapter 1

Introduction

In the process of developing frontend, the transformation from software require-
ments to user interface usually involves multiple steps. These steps include establish-
ing requirements based on user descriptions, designers creating desired appearance
based on the requirements, and then programmer is responsible for writing the code
to give the user interface with corresponding dynamic behaviors. Numerous dis-
cussions and modifications are carried out throughout the process to complete the
development.

However, due to the hierarchical communication structure, issues related to ef-
ficiency and accuracy may arise. Every step of the development process involves
different team members, and there may be multiple factors that can make commu-
nication complex and time-consuming. This can lead to inefficiency and delays in
the development progress, and may even cause the final outcome different from the

original requirements.

doi:10.6342/NTU202303645

CHAPTER 1. INTRODUCTION 2

Therefore, the goal of this research is to propose a User Interface Description Lan-
guage (UIDL) that is capable of expressing multiple abstraction levels. To achieve
this, a task model will be introduced as one of these abstraction layers, and al-
gorithms for converting between different abstraction levels will be designed and

implemented.

This provides us with several advantages. Firstly, a higher level of abstraction
in the description language, compared to lower levels, is closer to natural language.
This enables project members to express themselves more clearly during commu-
nication, thereby enhancing communication efficiency and accuracy while aligning
with software requirements. With a description language written at a high abstrac-
tion level, the development team is able to comprehend and share their thoughts
on the requirements and design, reducing misunderstandings or mistakes that might

arise from communication. As a result, team collaboration efficiency is improved.

Secondly, designing and implementing transformation algorithms can reduce the
requirement of programming ability, which helps reduce the costs and shorten the
development timeline. In traditional development processes, developers is required
to have a certain level of programming expertise and invest a significant amount of
time in writing complex code to create the corresponding user interfaces. However,
the transformation algorithms provided by this research can automatically convert
highly abstract description languages into code, allowing developers to focus on
requirement design without needing to dedicate time and effort to the implementa-
tion details. This not only speed up the development process but also enhances the

efficiency and productivity of the development team.

doi:10.6342/NTU202303645

CHAPTER 1. INTRODUCTION 3

For more specific user interface description languages, we continue to use an ar-
chitecture that involves three documents: Page Description Language (PDL), Navi-
gation Description Language (NDL), and Service UI Mapping Description Language
(SUMDL). As for the UI components used to describe web pages, we enhance their
expressive capabilities to enable the generation of more modern user interfaces. To
achieve this, we analyze the functionality APIs used in existing frontend frameworks,
using these APIs as reference points to design and implement those functionalities

into our UI components.

Therefore, the rest of the paper is organized as follows: In Chapter Two, we
provide an introduction to the related work, including the abstraction layer defined
by the Cameleon Reference Framework, Ul components, other Ul description lan-
guages, the notation for task model specifications called ConcurTaskTree (CTT),
and Dijkstra’s Two-Stack Algorithm, which we will employ in our transforming pro-
cess. In Chapter Three, we will delve into the details of Ul components and how
we have augmented them. In Chapter Four, the task model will be defined and
modeled. In Chapter Five, we will cover the process of transforming from use cases
to the task model, as well as the algorithms for transitioning from the task model

to the UI description language.

doi:10.6342/NTU202303645

Chapter 2

Related Work

2.1 Cameleon Reference Framework

The Cameleon Reference Framework [3] aims to provide a framework for analyz-
ing user interfaces that support multiple contexts of use. It divides the user interface
development lifecycle into four levels, each defining user interfaces at different levels
of abstraction. The following are the user interfaces defined at each abstraction

level:

1. Task & Concepts: The most abstract level of describing user interfaces, defin-
ing various interactive tasks that users can perform and the domain objects

affected by these tasks.

2. Abstract Ul It defines user interfaces independently from the interactors avail-
able on the targets, including graphical and voice interactions. This definition

treats the user interface as a collection of workspaces and then specifies the

4

doi:10.6342/NTU202303645

CHAPTER 2. RELATED WORK 5

interactive relationships between these workspaces.

3. Concrete Ul: This level transforms the Abstract Ul into concrete represen-
tations related to the interactors, describing navigation mechanisms within
the user interface. The definitions at this level are translated into actual Ul

appearance that directly interact with users.

4. Final UI: This represents the executable user interface. It might be influenced
by platforms, devices, or other constraints, and thus can only run in specific

software and hardware environments.

2.2 UI Component

UI component is the fundamental interface component that users can interact
with and visualize in web applications. Ul Components usually fall into one or more

of the following four categories|7]:

e Input control: UI components that allow users to enter information into the

system.

» Navigation: Ul components that will enable users to navigate across content

within the application.
o Informational: Ul components that display information in various ways.

o Container: Ul components that consist of other Ul components.

doi:10.6342/NTU202303645

CHAPTER 2. RELATED WORK 6

In Ming-Hsuan’s thesis [4], we have defined and categorized 30 Ul components,

and modeled them using the following two design patterns.

« Composite pattern: To encapsulate the composite structure of Ul components.
It allows Ul components to integrate others while still being treated the same

as individual ones.

e Decorator Pattern: To add responsibilities to Ul components dynamically.
This design pattern allows the extension of functionalities by placing compo-
nents within decorators without the need to modify the definition of the UI

components.

2.3 User Interface Description Languages

The goal of User Interface Description Languages (UIDL) is to define a high-
level computer language for describing characteristics of a user interfaces and may
be used to generate the code of the UI automatically. The following are some of the

UI description languages widely used.

o User Interface Markup Language (UIML): A UIML[1] is an XML-based markup
language document consisting of four major elements: Head, Interface, Peers,

and Template.

The Head element contains the metadata, which does not affect the user in-
terface. The Peers and the template part of the UIML define the relation to

other UIML documents. The Interface part describes the element that holds

doi:10.6342/NTU202303645

CHAPTER 2. RELATED WORK 7

the information of the user interface, including Structure, Style, Content, and

Behavior.

« User Interface Extensible Markup Language (UsiXML): UsiXML[5] allows de-
signers to specify a user interface on multiple abstractions. The framework
supports the transformation of each step or different contexts of use by defin-

ing a transformation model.

« Model-based Language for Interactive Applications (MARIA XML): MARIA
XMLI[6] covers the Model, abstract UI, and concrete Ul levels. It describes
the functionality and which component to use but not the detailed look of
the UI. Moreover, MARIA XML provides multiple Data Models to explain its
behavior in response to a different event and declare the backend functions

used by the user interface.

Currently, we are describing our user interface using three documents: Page
Description Language (PDL), Navigation Description Language (NDL), and Service
UI Mapping Description Language (SUMDL). The following is the introduction to

these three documents:

« Page Description Language(Figure 2.1): PDL describes the composition of a
page in a web application and the interaction of Ul components. It documents

the basic information of a page and the Ul components that the page contains.

« Navigation Description Language(Figure 2.2): NDL describes navigation in-

formation within a page, including the information that is passed from other

7

doi:10.6342/NTU202303645

CHAPTER 2. RELATED WORK

1uicomponent
PageuicOL - decoratorType: DecoratorType
~M:sking UiComponent
- selector: sring +getComponentType(): UComponent
name: s ServiceComponentDecorator
profetiame: sring " - serviceComponentLst: ServiceComponeniMode]
isMain: boolean PIITI
~id:string
- parameters: PassingParameter e
- selector: string UicomponentDecorator
- senviceComponentLis: SenviceComponent] aroument Argumentiodel
- category: sring compenentiUiComponent
~categary: sring
~pageld: sting
et sung NavigationalDecorator
- themed: i stye: Object
hemeld: g - IrefMap: Map<Sitring String>
- Omect - geometry: Object
Skt Conponert - passingParameterap: Map<string PassingParameter>
header: L type: sting
0
- propertes: Object
~body: LayoutComponent prope ect
footer: LayoutGomponent 0.0 ~name: sting
- actor: St
- asidebar: LayoutComponent SidebarThemeMode! actor: Singl
- sdebar: SidebarComponent themeName: sving
actorsetActorodel -pages: SdebarPageMlodel]
CompositeComponent BasicComponent
e
SR L - componentst: 1UiComponent
-pageName: sting
showedName: tring
fonticon: UIComponent petComponec] ETTEIIL
LayoutComponent FormComponent ype: npuype o sung

1
IconComponent
-~ fonticon: string

~color: string

- prefil: string(Optional) ~behavior: ButonType

- label: string(Optional)

Figure 2.1: Page Description Language

pages when they navigate in (called

passing parameter), and it also specifies

which UI component will trigger the navigation mechanism along with the

passing parameter it carries.

Service UI Mapping Description Language(Figure 2.3): SUMDL describes the

service components used in a web page. It contains information about the

service component and how it is triggered, as well as how the services’ return

value is used.

doi:10.6342/NTU202303645

CHAPTER 2. RELATED WORK 9

- path: String
. Edgelnformation
- component: String

S o - passingParameter: PassingParameter]]
i ——> - source: EdgelnfoElement
- isMain: Boolean

- target: EdgelnfoElement
- destination: String[] et Fdg

¥ 1Thi 1D: St
- edges: Map<String, Edgelnfo> large(ThemelD: String

- parameter: PassingParameter]

o
! !

PassingParameter EdgelnfoElement

- key: String - parentPage: String

- originalKey: String - childComponent: String

- fromService: Boolean

- value: ServiceReturnValue
ServiceReturnValue

- servicelD: String . PathElement

- serviceName: String 5 -nodeType: RetumType

- type: Stiing - childName: Stiing

- value: String

- attributePath: PathElement]]

Figure 2.2: Navigation Description Language

SuMDL
- servicePool: ServicePool

- serviceRetumnUls: Map<string ServiceReturnUIModel[}>

ServiceReturnUIModel l
ServicePool
- serviceName: Stting ServiceGomponentModel
. -init: ServiceComponentModel
- usage: String - senvicelD: String 0. oo y

- UiC i jices: UICH

- hierarchy: String - projectiD: String
ordrgpars sing - allService: Map<string, ServiceGomponenthodel>

- projectName: String

- B String
o - elassName: String
- name: String UlComponentBindService
Attributelnfo ~log: String - selector: String
. 0.."
- attributeName: String - code: String - senviceComponentList: ServiceComponenthodel]]
- attributePath: List<PathElement> ~ similarity: float
- l - defaultTrigger: boolean
- arguments: ArgumentModel[]

(Ol - returnData: ReturnModel

- nadeType: RetumIype - status: SenviceStatus

- childName: String

Figure 2.3: Service Ul Mapping Description Language

doi:10.6342/NTU202303645

CHAPTER 2. RELATED WORK 10

2.4 ConcurTaskTree

A task model describes how the user and system behave to achieve certain goal.
ConcurTaskTrees (CTT) is a representation of task models that supports the
design of user interface. Through ConcurTaskTrees, designers can gain a clearer
understanding and effectively express the activities required for users to achieve

their goals. This facilitates the implementation and optimization of user interfaces.

The main features of ConcurTaskTrees are:

 Hierarchical structure: The hierarchical structure (Figure 2.4) is intuitive for
human when it comes to problem-solving. It offers a mechanism to break down
tasks into smaller sub-tasks for completion, resulting in a wider granularity of

tasks within the task tree.
 Task allocation: CTT categorizes tasks into four categories(Figure 2.5) »

— System tasks: Represent tasks executed by the system, including behav-

iors related to displaying data and performing computations.

E > % 1l =g > I!.!

niel Click Register al User Info Register

B 1 e - 2

Enter Usemame Enter Password [Select Gender] [Enter Email] Validate Usemame Validate Password

Figure 2.4: CTT Hierarchical structure

10

doi:10.6342/NTU202303645

CHAPTER 2. RELATED WORK 11

[:’ %‘ ’ I!.E [:’ ﬁ‘ * E!'!

Check Payment Click Confirm Payment Double Check Click Confirm Seller Payment Confirmed

Figure 2.5: CTT Task allocation

— Interaction tasks: Represent tasks that require users to provide informa-

tion to the system.

— User tasks: Represents the decision points on the users part, no interac-

tion with the system.

— Abstraction: Split up in different kinds of tasks .

o Rich set of temporal operators: CTT introduces 8 temporal operators to define
the relationships between tasks. Defining temporal relationships between tasks
benefits us in Ul design. Table 2.1 provides an overview of these temporal
operators. We list them in descending order of priority, from the operators

with the highest priority to the ones with the lowest.

11

doi:10.6342/NTU202303645

CHAPTER 2. RELATED WORK 12

Table 2.1: Temporal Operator of CTT

Name Notation | Definition

Choice] Specifies that once one of two tasks is enabled and has
started, the other task is no longer enabled.

Task Independence |=| Tasks can be performed in any order, but when one
starts, it must finish before the other one can start.

Concurrent | Tasks can be performed in any order, or at the same
time.

Concurrent Com- I[]] Tasks that can exchange information while performed

municating concurrently.

Disabling [> The first task is completely interrupted by the second
task.

Suspend-Resume > The first task can be interrupted by the second one.
When the second terminates then the first one can be
reactivate from the state reached before.

Enabling >> Specifies second task cannot begin until the first task
performed.

Enabling with In- []>> Specifies second task cannot begin until the first task

formation Passing

performed, and that information produced in first task

is used as input for the second one.

12

doi:10.6342/NTU202303645

CHAPTER 2. RELATED WORK 13

2.5 Dijkstra’s Two-Stack Algorithm

If there are multiple binary operators in a mathematical expression, challenges
related to operator precedence can arise. In other words, interpreting operators from
left to right might lead to incorrect results. For example, consider the expression
1 + 2 * 3. If we simply evaluate from left to right, we would obtain the incorrect
result of 9.

Therefore, various methods have been proposed to address the issue of operator
precedence in calculations. One of these methods is Dijkstra’s Two-Stack Algorithm.
The concept of this algorithm lies in utilizing two stacks: one for handling operands
and the other for handling operators. Its main approach is to process each char-
acter of the mathematical expression sequentially, and then perform corresponding

operations on the two stacks.

For each character, perform operations based on the following rules:

o If it is an operand, push it onto the operand stack.

o If it is an operator, check if the operator at the top of the operator stack
has higher precedence than the operator to be pushed:
— If the result is negative, push the operator onto the stack.

— If the result is positive, pop the operator from the top of the stack along
with two operands from the operand stack, perform the operation, and

push the result back into the operand stack.

Repeat this process until the precedence of the operator at the top of the

13

doi:10.6342/NTU202303645

CHAPTER 2. RELATED WORK 14

stack is "less than” the operator to be pushed, then push the operator.
— If it is ”(”, push it onto the operator stack.

— If it is ”)”, repeatedly perform the operation until the operator at the
top of the operator stack is ”(”. Then, pop the ”(” from the operator

stack.

14

doi:10.6342/NTU202303645

Chapter 3

UI Component’s Conditional

Behavior

As mentioned earlier, our approach of describing user interfaces involves reusing
predefined UI components. In Ming-Hsuan’s work [4], he defines 30 types of Ul com-
ponents and models them using the composite pattern to represent their composite
structure.

On the other hand, the decorator pattern is also applied to extend the function-
alities of UI components. Each decorator represents its additional behavior. The
main focus of this chapter will be on utilizing decorators to describe the dynamic

behavior of Uls during runtime.

15

doi:10.6342/NTU202303645

CHAPTER 3. UI COMPONENT’S CONDITIONAL BEHAVIOR 16

3.1 Categorize Angular APIs

In order to enhance the capabilities of the Ul description language to create more
modern user interfaces, we decided to draw inspiration from the tools provided by
modern frontend frameworks. Then, we analyze the commonly used functionalities
by users and abstracted these functionalities as decorators for Ul components. This
approach allows us to extend the functionalities of our Ul components.

We chose the frontend framework Angular for its provided API. The Angular API
2] enables developers to easily implement certain functionalities of web applications

without starting from scratch.

The following are the three categories of Angular APIs we implemented:

Transform displayed value. When the user interface is displaying received data,
it often doesn’t directly match the desired displayed format. In such cases, program-
mers are required to write the corresponding code to transform it. Angular provides
two types of APIs, called "Pipes” and "Formats,” that allow users to easily convert
information to the required format for display. For example, these APIs can handle
formats such as date and time, capitalization, currency, and more. The commonly

used transformations can usually fulfill users’ requirements.

Change behavior and appearance based on certain conditions. In most
Uls, pages are not in a static state. The page adjusts dynamically over time, altering
the elements on the screen. Angular offers two types of directives for implementing

these dynamic effects:

16

doi:10.6342/NTU202303645

CHAPTER 3. UI COMPONENT’S CONDITIONAL BEHAVIOR {74

o Structural directives: These directives change the DOM layout by easily adding

and removing DOM elements.

— Nglf: Adds or removes elements conditionally.
— NgSwitch: Renders elements based on the assigned variable.

— NgFor: Renders a list of elements based on each item in the list.

o Attribute directives: These directives change the appearance or behavior of

DOM elements.

— NgStyle: Updates styles for the HTML element conditionally.

— NgClass: Adds or removes CSS classes of an element conditionally.

Change certain variable based on user’s action. In this part, we will intro-
duce Angular’s Validators.

A Validator is a function used to handle forms or a set of input fields. It deter-
mines whether the input meets the conditions and returns a validation success or
failure result. In Angular, several common Validators are available for users. These
Validators include checking whether the input is empty, verifying if the amount of
input’s characters exceeds (or is less than) certain values, and determining whether
the input fits the desired formats. These Validators effectively ensure the correctness
of user input before submission, enhancing user experience and preventing erroneous

inputs.

17

doi:10.6342/NTU202303645

CHAPTER 3. UI COMPONENT’S CONDITIONAL BEHAVIOR 18

3.2 Define Variables in UI Description Language

To enable dynamic changes in the user interface based on conditions, we have
identified common functionalities in the previous section. However, expressing these
functionalities using our Ul description language is challenging. The main difficulty
is "how to describe the conditions for Ul component changes in a machine-readable

manner,” rather than relying on natural language descriptions.

Therefore, we analyze the variables within our system. Currently, our description
language defines two types of variables: Passing Parameter (the parameters from
other pages) and Service Return (the return value of a service). However, these
two types of variables might not be sufficient to cover all the conditions required
for creating the frontend. UI changes can depend on other conditions, such as
displaying an ”"Input Format Error” message when the entered data is not in the
expected format.

Listing all possible conditions is impractical. Therefore, we need to design an
extensible variable system within the description language to address potential con-
ditions that might arise in the future.

We’ve decided to introduce a new variable mechanism within the description
language, separating the "source” and "dependents” of system conditions. We will
use decorators to bind this variable to Ul components, indicating that a change in
that component will cause the variable to change. This is referred to as the variable’s
"source.” On the other hand, we will use decorators on Ul components to specify

that they are ”"dependents” of variables, meaning that the components’ behavior

18

doi:10.6342/NTU202303645

CHAPTER 3. UI COMPONENT’S CONDITIONAL BEHAVIOR 19

Affect Ul
Component

appearance

affect
Directive’s state

Structural Directive A

Ul Component A

Structural Directive B Ul Component B

Attribute Directive C

set variable’s

value
Validator Variable A

e

bound with _~
_

Input Component

Ul Component C

Figure 3.1: Idea of Variable

may change depending on the type of decorators.

From the example mentioned earlier, this involves two distinct components: an
Input component for user input and a Text component that shows an error message
conditionally. The Input component serves as the source for this variable, while the
Text component becomes the dependent. In Figure 3.1, we can observe that a single

variable can have multiple dependents.

3.3 Design and Implementation

Based on the design principles and analysis from the previous two sections, here

are the decorators we have defined: (The green part in Figure 3.2)

e Source of the variable:

— Validator Decorator: Records the conditions that the input component

must satisfy and the variable it affects.

— Service Return Bind Variable Decorator: This decorator is applied to

the components responsible for calling services. It declares that specific

19

doi:10.6342/NTU202303645

CHAPTER 3. UI COMPONENT’S CONDITIONAL BEHAVIOR

20

Varisletiode!
~name: stng

ype: varatieType
il g

|

<<Enum>
VarableType
INTEGER = noger”
~FLOAT= Float
STRING="Sinng”

BOOLEAN="Booioan”

Pipettode! P

| e

PropenyTransiormitodel
< -bindngPropeny: Sing

DecoratingComponentDecorator
dacoraingGampcneniLst DecorstngConsanent)

NavigaionaiDecorator
et MapeSing Sting>
- passingParamstettas: Mapesting PassingPacameter>

Argumentoecorater
arqunent Arqumenttocel

ServiceCompanentDecorator
sonveCompanentis: SeniceComponenihiodl]

ServiceRaturmDocarator
- senvesRetums: SeceeumUbiodel]

ingParameterDecorator
BintngParamust PageLovoPassigParamBindnghodl]

TranstormationDecorstor

- GepayoaProporyTansiomList ProporyTansomiocel] ——

ingParameterBindArgumentDscorator
BingogArgUmOnLIS: PassngParamASAQumGnBIningWodol:

ServicsRetumBindArgumentDocorator
DnangArgumentUst: SeniceRetmASATgumenBIndngosel:

ConstantValugBinaArgumentDecorator
‘ngngArumentUst: ConsianVaeAsArpumentBmgngtiodel

NgStyleDocorater
ogealOperator Otfect:

<cerum>
SructiraiDisciveType

v
case= Case"
DEFAULT= Detaut

ServicsRetumAstarisbetiod

L it varanivoso:

SenveaRemint: SencsRetmit

ServcsRetuminto

e —

+ senceame: Sng

+ remAttGPalr Al

Atibuteinto

- atuteName: Sing

T —

-

Painement

~noceType: ReumTye

~cnigname: Sy

styo: bt -

arematestye Obfect

StructursiDecorator
varble: Vavtihodst
pestcuaDrceTpe:
logealOperaor Oject

‘ServceRetumBIndvariabieDecorator
DidingVarleis SeniceRetmAsVarabieModll

Valdstordecorator
—
Vadators: Valdstoodel

ot
- biningProperyLs: PoperyterationBincingodel]

roecorstor

Properyterationsindingiiode!
reumint:SenvceRetuminto

~bindingpropery: Sing

UCompanentDecorstor
- companantUCompensrt

BasicComponent

iComponent

Ucompanent
iasting
~seloctorsing

category g
pagslasiong

st 0ot

pe: sting

nams:sng

properes: Oject

ComposteComponent

companentist 1 Companent] N

Figure 3.2: Overall Ul Component Decorator

20

doi:10.6342/NTU202303645

CHAPTER 3. UI COMPONENT’S CONDITIONAL BEHAVIOR 21

return values from the service will be used as variables.
o Dependent of the variable:

— Structural Decorator: This component displays or hides based on the
variable’s conditions. We’ve drawn inspiration from the Angular APIs
nglf and ngSwitch. The logical operation format for variables utilizes

Logical JSON operators.

— NgStyle Decorator: Dynamically sets the element’s CSS style based on

the variable’s conditions.
e Other:

— NgFor Decorator: If a service’s return value is a list, this decorator renders

a number of components equal to the length of the list.

Additionally, we will declare the variables in PDL to provide an overall picture

of the variables on this page.

21

doi:10.6342/NTU202303645

Chapter 4

Modeling Tasks

The main focus of this chapter is to integrate the task model into our system.
We have decided to use ConcurTaskTrees (CTT) as our task model. First, we need
to define and explain each task type and point out their objectives. Lastly, we will

model CTT to make it usable within our system.

4.1 Task Type Defining

CTT categorizes tasks into four categories: System, Interaction, User, and Ab-
straction. Each of these categories can be further divided into more specific types,
and each node on the task tree belongs to one of these types.

The following are introductions to the defined types. We believe that by applying
a combination of these task types, we can effectively express all scenarios a user

might encounter when interacting with an Ul:

22

doi:10.6342/NTU202303645

CHAPTER 4. MODELING TASKS 23

o Abstraction tasks

— Task Group: Summarizes a task and then uses its subtasks to provide
detailed descriptions. Note that subtasks do not belong to the same

category.
— Include Task: Similarly, it summarizes a task but references other ex-
isting CTTs through links. This facilitates "reusability” in our design.

o System tasks

— System Task Group: Summarizes a task and then uses its subtasks
to provide detailed descriptions. Note that all of its subtasks are system

tasks.

— Checking: The system confirms whether the previous tasks were per-

formed correctly by the user.

Error Message: The system notifies the user when an error occurs.

Feedback: The system informs the user about the progress of a task.
— Filtering Information: The system filters data for further operations.
— Input Validation: The system validates the value entered by the user.

— Visualize Fixed Value: The system displays information on the page

that remains static.

— Visualize Dynamically Acquired Value: The system displays infor-

mation on the page that’s obtained dynamically.

— Service: The system uses backend services.

23

doi:10.6342/NTU202303645

CHAPTER 4. MODELING TASKS 24

e Interaction task

Interaction Task Group: Summarizes a task and then uses its sub-
tasks to provide detailed descriptions. Note that all of its subtasks are

interaction tasks.
— Input: The user enters data into the system.

— Select From Fixed List: The user chooses from predefined options

provided by the system.

— Select From Dynamically Acquired List: The user selects options

provided by the system, where the options are dynamically obtained.

— Select From Visualized Info: The user chooses an item from informa-

tion already displayed by the system for further actions.

— Control: The user triggers activities in the system, e.g., clicking, pressing

buttons.

— Responding Alert: Appears after alert tasks like Checking and Error

Message, indicating the user’s response to system notifications.

e User tasks

— User Task Group: Summarizes a task and then uses its subtasks to

provide detailed descriptions. Note that all of its subtasks are user tasks.
— Problem Solving: Describes tasks where the user solve issues outside

the system.

24

doi:10.6342/NTU202303645

CHAPTER 4. MODELING TASKS 25

— Comparing: Describes tasks where the user needs to make decision at

that moment.

— Planning: Describes that the user is planning or making a decision at

that time.

4.2 ConcurTaskTrees Modeling

In the previous section, we defined all the task types. In this chapter, we will
further model our CTT, as shown in Figure 4.1. We explain the design in this

section.

Composite Pattern for Task Trees Firstly, CTT is a tree structure where
all parent nodes (parent tasks) encapsulate the descriptions of all their child nodes
(subtasks). We use composite pattern to model CTT to express its part-whole

hierarchical structure, while treat all objects in the composite structure uniformly.

Association Class for Temporal Operator Additionally, in CTT, there are
temporal operators between two tasks. We use association class to represent the

relationships between these tasks.

Authentication Further, we apply authentication to our task model to design a

system with different roles. In CTT, we need to record two pieces of information.

Firstly, it’s necessary to record all actors and the hierarchical structure among

them. Different actors have different permissions for the tasks they are allowed to

25

doi:10.6342/NTU202303645

CHAPTER 4. MODELING TASKS

26

TaskTreeFactory
~reoRoots: Map<Siing, TeskTresElement>

+ croateTasKTree(XML): TaskTreeModel

+ gelTaskTreeByTreeID(vealD: Sting):Task

- createCompositeTask(parentTask: XMIL, chidTasks: TaskElement(): TaskElement
- createBasicTask(task: XML): TaskElement

- createOperalor(operator: XML, efTask: TaskElement.fightTask: TaskEement)

TaskTreeModel Actortodel
~treelD: Sting neme: Sting

~treeName: Sting derivedaciors: Actorodel]
~treeRoot Task

- actorModel: ActorModel
- requirements: Stingi]
~taskiap: Map<String, Taslc>

+ gelTaskBy TaskiD(askID'Sting)

<<Enum>>
TaskCategory

SYSTEM = “System"
USER ="User
INTERAGTION

ABSTRATION

SelectFromFixedList
- options: Stingll:

+acoept(TaskTresVistor)

SelectFrombynamicallyAcquiredLst
Selection

+ acoepi(TaskTreeVisior) mulipleSelscton: Boolean

SelectFromVisualizedinfo

- VisualizeTaskID: String:

+ accept(TaskTreeVisitor) Input
- nputtype: s
<
oty « accepTskTreviston
o e
NUMBER - umber”

Control

PASSWORD ="passworc’
+ accept(TasKTreeVisior)

DATE = "date"
Resphlert
- alrlTaskiD: String;
+ accept(TasKTreeVisior)
<cEnum>> Service
ServicelnvocationType —

AUTO_TRIGGERED = "AutoTrggered':

EVENT_TRIGGERED = "EventTriggered” + accepi(TasKTroeVisior)

IncludeTask
+TreelD: Sting

+ accept(TaskTreeVision)

iteracton”

<dintertace>>
TaskTrecElement
<coreate>>
H
it H
~taskiD: Sting e
- name: String leftOperator, rightOperator

operatord: st
- iterative: Boolean "
leiTask: Task

- optional: Boolean
HghtTask Task

- category: TaskCategory.

+accepl(TasKTreeVisior)

“Interaction” ~leftOperator: TaskOperator
- fightOperator: TaskOperator
- actors: Stringl]
+gotNamo(string
+getCategory(: TaskCategory.
BasicTask

ProblemSolving

+ accepi(TaskTreeVision)
Comparing

+ accepi(TaskTreeVision)
Planning

+ accepi(TaskTroeVisior)

Genterts
- message: Sting

Feedback

+ accepi(TaskTreeVisior)

InformationType

+ OBJECT = "object"

+LIST_OF_OBJECT

+LIST_OF_VALUES =
+ GRAPHICAL = "graphical”

+accepi(TaskTreeVisior)

Enabling

+accepl(TaskTreeVisior)

Chaice
Concurrent
I Disabling
CompositeTask
~chidren: Task(————

+ accepi(TaskTreeVision)
InteractionTaskGroup
+ accepi(TaskTreeVision)
TaskGroup
o + accept(TaskTreeVistor)
UserTaskGroup.

+ accepi(TaskTreeVision)

+ accept(TaskTreeVisior)

ErrorMessage
+ accept(TaskTreeVision)
Fittrinto

- SenviceTaskID: Sting

- description: Sting

+ accept(TaskTreeVisior)

I— Comparison
Inputvalidation
~InteractonTaskiD: Sting
-valdators: ValdatorModei]
+ accept(TaskTreeVistor)
Visuaiize VisualizeFixedvalue
informationType: InformationType ~value: Sting

+acoopt(TaskTreeVistor)

VisualizeDynamicallyAcquiredValue

+ accept(TaskTreeVisitor)

TstOOBject”
1ONValues'

Figure 4.1: CTT Modeling

26

doi:10.6342/NTU202303645

+ accepl(TaskTroeVisior)

Enablinginfo

+ accepi(TaskTreeVisior)

CHAPTER 4. MODELING TASKS 27

X

User

BUEGF Seller

VIP Member Regular Buyer

Figure 4.2: Actor’s Hierarchical Structure

o

Buyan

Select discount p

The tasks is VIP Members only

=@
Place an order

ﬁ.T—"“‘ [k..T—‘)“' e

Select Item Click "Buy"

Figure 4.3: Specify Actors within Tasks

perform. These permissions and tasks will depend on the actor’s roles and identity,
and the information should be appropriately represented within the CTT. (Figure
4.2) is an example of the actor set for an online shopping site.

Secondly, we need to explicitly specify which actors have the permission to per-
form specific tasks, ensuring the security of the system and proper resource con-

trol.(Figure 4.3) is an example for the online shopping site.

27

doi:10.6342/NTU202303645

Chapter 5

UIDL Generating Algorithm

In this chapter, we will discuss the process of generating our UI description

language and utilizing the Ul Composition engine improved by Hsu to generate the

corresponding code. Figure 5.1 shows the system architecture of the Ul generating

system.

This chapter will be divided into two parts. Firstly, we will present a process

that allows users to transform Use Case Diagrams and Use Case Specifications into

Hsu's Responsibilty e
fon
Liou's Responsibilty ign Ci

Task Converter

Ul Component Mapping
&Senvice Binding

/" Service Bindina

Service Binding
Task Model Generator

Use case specfcaton

Navigation Defining

Ul Component

A U
Camporent

A U
Companont Bohavir

Sidebar Wizard Fasii

and SUMDL.
[t

Navigation Wizard

Graph Editor

Educe

Figure 5.1: Ul Generating System Architecture

28

Composition Engine

| Angular Project

Decostor Handing

doi:10.6342/NTU202303645

CHAPTER 5. UIDL GENERATING ALGORITHM 29

corresponding CTTs. Since these documents are written in natural language, exe-
cuting these algorithms, while intuitive, cannot be fully automated. In this section,
we will identify the parts where natural language processing and machine learning
tools are required to transform the content of the documents.

Next, we will introduce an algorithm to automatically transform CTT into PDL,
NDL, and SUMDL. In other words, we will design algorithms to extract Ul compo-
nent information and their behaviors from CTT.

After generating PDL, NDL, and SUMDL, we can utilize the other parts of the
UI Design Client to fine-tune our project. We can further adjust the Ul style using
the Graph Editor, employ the Ul Component Wizard to add various components,
and adjust properties as well as behaviors of individual components. Additionally,

we can use the Navigation Wizard to make adjustments to the UI’s navigation.

5.1 Use Case to Task Model

Before discussing the algorithms, we will categorize our self-defined CTT based
on usage and discuss what kind of information can be generated from ”Use Case

Diagrams” and "Use Case Specifications,” respectively.

e Main CTT: Main CTT is the task model we’ve defined to describe the user

interface. It may include to other CTTs for use.

e Included CTT: Included CTT represents task models that have been defined

and can be referenced. These referenced CTT cannot independently form

29

doi:10.6342/NTU202303645

CHAPTER 5. UIDL GENERATING ALGORITHM 30

a complete user interface but are encapsulated to facilitate reuse of specific

functionalities.

We believe that the relationship between a use case diagram and each individual
use case is similar to the relationship between our Main CTT and Included CTTs. A
single use case cannot form a complete user interface on its own but needs to combine
multiple use cases through a use case diagram to create a complete application.

Therefore, our process will begin by transforming the use case diagram into the
Main CTT. Then, based on each use case specification, we will create corresponding

Included CTTs, also referred to as Use Case CT'Ts, on a one-to-one basis.

5.1.1 Use Case Diagram to Main CTT

Firstly, we will start by analyzing the information required by Main CTT and
what is provided by the use case diagram.

A CTT requires four key pieces of information, including Basic Tasks, Composite
Structures, Temporal Operators, and Authentication. For the Main CTT, we only
need the information required to link the Use Case CTTs together. Therefore, we will
use interaction tasks and IncludeTask type tasks to connect and compose Included
CTTs.

Furthermore, composite structures are essential for CTT to enhance readability
and avoid the misuse of temporal operators resulting from different precedence. Our
approach is to construct the main CTT with a specific pattern, ensuring that the

structure of tasks is clear and easily understandable. This approach will benefit us

30

doi:10.6342/NTU202303645

CHAPTER 5. UIDL GENERATING ALGORITHM 31

Interaction Task Use Case A Use/Cases Enabled

Use Case B's Use Case C's
task group task group

Figure 5.2: Pattern of Main CTT

in interpretation and the generation of UL

Here is the information that will be provided by use case diagram:

1. Actors: This provides the authentication information for the Main CTT.

2. <<extend>>relation: This information provides the temporal relationships
between use cases, thus offering the temporal operator information within the

Main CTT.

3. <<include>>relation: This information will not be used. If UC-001 b UC-
002, the responsibilities of using UC-2 lies within the CTT of UC-1, not main

CTT.

4. The pre-condition and post-condition of each use case.

We have found that the use case diagram provides the required information to
construct the Main CTT. We propose a fixed format for creating the Main CTT to
ensure the consistency of the tree structure. For each included use case in the Main

CTT, it is divided into three parts, as shown in Figure 5.2. The first part is the

31

doi:10.6342/NTU202303645

CHAPTER 5. UIDL GENERATING ALGORITHM 32

interaction task that triggers the use case, describing the user’s action to enter this
use case. Next, the second part consists of an IncludeTask type task, used to link to
the CTT of the use case. Finally, the third part describes other use cases triggered

after the completion of this task.

Hence, we have designed an algorithm to recursively create this tree.
e Input:

1. A task t4, where t4 references the CTT created for use case A.

2. A set of post conditions to describe the current state of the system.

o Output: The use cases’ task that are enabled by t 4.

Stepl: Collect use cases that satisfy one of the condition. Infer from the

use case diagram of which use cases can be executed when use case A is completed.

We collect use cases that satisfy one of the following conditions: first, use cases
that extend from use case A, and second, use cases whose pre-conditions are satisfied

due to use case A.

Take Figure 5.2 as an example, we obtain tp and t¢.

Step2: Create the task tree for every use case t; we collected in stepl
For each task t; of each use case j, we will perform three steps to complete its

sub-task tree.

1. Identify the action that triggers use case j and create the corresponding inter-

action task interact;.

32

doi:10.6342/NTU202303645

CHAPTER 5. UIDL GENERATING ALGORITHM 33

Use Gése Als task-group

(%> |> or >>

Interaction Task Use Case A se Cases Enabl

/ by Use Case A
J [\O
e Use C.'ass Bs ,.L-J’sle Cése C'\s\\
task group T -7 task group
interact >> G‘\| > or >> RN ()
> or >>
@ s/ | €, interact>> por>>
Interaction Task Use Case B Use Cases Enabled niaraction Task se Case G Use Cases Enabled
by Use Case B

by Use Case C

Figure 5.3: Use Cases Enabled by ¢4

2. Recursively create the task tree of the use cases that will be triggered when ¢,

is completed. We'll refer to this tree as f;.

3. Combine interact;, t;, and f; using an abstract task.

As shown in Figure 5.3, the tasks required for Use Case B and Use Case C are

created.

Step3: Connect the task tree created in step2 with ”Choice” operator.
Every task group for use case j that we created in step 2 is part of the tasks that can
be triggered by t4. We link them together using the "Choice” operator and then

use an abstract task to combine them and return it as the output task tree.

The generated task tree is represented in the subtree labeled "Use Cases Enabled
By Use Case A” in Figure 5.3.

To generate the complete Main CTT, we can initiate the algorithm with the

33

doi:10.6342/NTU202303645

CHAPTER 5. UIDL GENERATING ALGORITHM 34

initial state as a post-condition, and the entire Main CTT will be recursively gen-

erated.

5.1.2 Use Case Spec to Use Case CTT

For a use case, it often relies on using natural language to describe its implemen-
tation details. Therefore, in the process of generating Use Case CTT, we first analyze
the information provided in the use case specification and map this information to
the four essential pieces of information required to construct a CTT (Basic Task,
Composite Structure, Temporal Operators, and Authentication). Then, we pay par-
ticular attention to which information needs further processing in natural language

and propose corresponding rules, serving as a foundation for training models.

Here is the information provided by our use case specification:

1. List of actions: Our tasks will end when the series of actions is completed,
providing information about the basic tasks and the temporal order between

them.

2. Related requirements: We store this information in our task model for future

use when binding services.

3. Actors of each action: Provides authentication information.

We have identified two main challenges that make automating the derivation of

the Use Case CTT from the use case specification difficult:

34

doi:10.6342/NTU202303645

CHAPTER 5. UIDL GENERATING ALGORITHM 35

o The series of actions is written in natural language, which may be intuitive for
humans, but the granularity of each action is not guaranteed. Therefore, even
though it provides information about our tasks, automating the mapping of

actions to tasks is challenging.

o Lack of detailed "temporal operators” and “composite structure” information.

Therefore, we have decided to start by addressing "how to use basic tasks to
describe a user interface.” Once we define the specifications, we can then use natural

language processing or let humans map the actions in use cases to basic tasks.

Partl: Define the usage of each task type. We have already provided clear
definitions for each task type in the previous chapter and modeled them with the

required properties.

Part2: Set restriction to combination of basic tasks. Due to the various
combinations of basic tasks, while some combinations might seem reasonable to
humans, they might lack certain information for the system. To address this, we
have decided to restrict the combination of basic tasks so that they can correctly

describe an app.

e Rule 1: There must be an event after the user enters information to enable
the system to start performing the preceding system task. In short, an event

task is required before the system starts working, as shown in Figure 5.4.

35

doi:10.6342/NTU202303645

CHAPTER 5. UIDL GENERATING ALGORITHM 36

B —h— —h— 1 —F o |— e

Enter Usemame Enter Password [Select Gender] [Enter Emai] Vaidate Usemame Vadate Password

Figure 5.4: Rule 1 for Constructing CTT

-
e L]
iew\jst of ltems

s =

=@

et List of Items Display Items

14
ol

@

Figure 5.5: Rule 2 for Constructing CTT

o Rule 2: Always get the information before displaying it (regardless of how long

ago), as shown in Figure 5.5.

Part3: The tasks should specify their temporal order. FEach task has its
own ID, and we have decided to use this ID to record the temporal information.

The format of the ID is as follows:

{task num}.{branch num}{branch digits}-{concurrent num}

We analyze from right to left:

o For tasks that have the same "task num,” "branch num,” and ”branch digits”
(if they exist), but different “concurrent num,” set the “concurrent” operator

between them and group them as a composite task.

36

doi:10.6342/NTU202303645

CHAPTER 5. UIDL GENERATING ALGORITHM 37

1.1a-1 = “Enter Username”
1.1a-2 = “Enter Password”

1.1b = “Click Login” @

1.2a-1 = “Enter Username” <

1.2a-2 = “Enter Email” et Concur num

1.2b =“Click Register” B [

Enter Usemame Enter Password Enter Usemame Enter Email

Figure 5.6: Example of Constructing CTT by ID

e For tasks that have the same "task num” and ”branch num” but different

”

"branch digits,” set a "disabling” or "enabling” operator between them, de-

pending on whether the right task is an event task, and group them as a

composite task.

o For tasks that has the same "task num” but different "branch num”, set

“choice” operators between them and group them as a composite task.

o Finally, for tasks that have different "branch digits,” set a "disabling” or "en-
abling” operator between them, depending on whether the right task is an

event task, and group them as a composite task.

Figure 5.3 is an example where we can observe the results generated based on

the task names on the left side of the diagram and their corresponding IDs.

5.2 CTT to UIDL Mapping

In this section, we will discuss how to convert our CTT into PDL, NDL, and

SUMDL. The purpose of this transformation process is to extract information about

37

doi:10.6342/NTU202303645

CHAPTER 5. UIDL GENERATING ALGORITHM 38

UI components, navigation, and services from the CTT.

To achieve the goals, we divide the process into two stages, each involving travers-

ing our CTT once:

« Stage 1: Creating Ul components and extract their behavioral information.

o Stage 2: Defining navigation between user pages.

At last, we will present the design of our system and display the results.

5.2.1 Retrieve Ul Component and Binding Information

This is our first stage of transforming CTT. Table 5.1 is our list of tasks, along
with their corresponding Ul components and the additional information it provided.

Next, we will traverse our Main CTT using Depth-First Search (DFS). This
approach gradually maps the tasks into corresponding UI components and related
information using the rules mentioned in the table. Finally, we will generate an
intermediate Ul to proceed to the next stage.

The following example is provided for better understanding. Figures from Figure
5.7 to Figure 5.11 illustrate the process of creating user interface components in the
first stage. Figure 5.12 represents the outcome of this stage, where we can observe

that navigation and page information has not been included yet.

38

doi:10.6342/NTU202303645

CHAPTER 5. UIDL GENERATING ALGORITHM 39

Table 5.1: Information in Each Task Type

Type UI Components Decorator Information Other Information
Select From Visualized Info Navigation information
Select From Fixed List Dropdown, Listbox, Argument
Provide argument information
Select From Dynamically RadioButton, Checkbox ServiceReturn, PassingParameter,
for querying services
Acquired List Argument

Input, DateTimePicker,
Input Argument

Slider, SlideToggle

Control

Button, Icon Navigation information
Responding Alert

Form, Tabs, Dialog,
Task Group

ExpansionPanel
Visualize Fixed Value Text , Tree, Table,
Visualize Dynamically Card, Image

ServiceReturn,PassingParameter
Acquired Value

Checking

Alert, Dialog
Error Message

Feedback ProgressBar, ProgressSpinner ServiceReturn
Service ServiceComponent
Filtering Information Filtering data

Add Validator decorator to
Input Validation

input control Ul component.

39

doi:10.6342/NTU202303645

CHAPTER 5. UIDL GENERATING ALGORITHM

40

1. (TaskGroup) Create container

@

2 n o

UC-002 Register /mym\

2. (IncludeTask)
Create the included tree o

UC-001 Login

Select an Item

(name = “Bidding System”)

UC-006 Edit a Launched Item

Figure 5.7: Example of CTT to Ul Component Mapping(1): Main Tree

3. (TaskGroup) Create container

@\>

4. (InteractionTaskGroup) Ignore Cgs

M o

s 6. (Service) Bind Service

) .
bl B B
e CickRegiter akdag UserInfo
5 5 S ; " ™
|— | — | — 1
Enter Usemame Enter Password [Select Gender] [Enter Emai] Vaidate Usemame Vaidate Passmg;omponent

5. (Input& Selection) Create
corresponding Ul Component

(name = “Bidding System”)

(name = “Register”)

5. (Validate) Add validators to Ul

mail
Register

(name = “Bidding System”)

Figure 5.8: Example of CTT to Ul Component Mapping(2): Register

Register

(name = “Bidding System”)

(name = “Enter System”)

ez —
[oo]

Bidding~System
G—0—
UC-002 Register Use S 8. (TaskGroup) Create
ainer
G
UC-001 Login Enter’ tem
7. (IncludeTask)
Create the included tree P

UC-009 View List of Items

9. (IncludeTask)
Create the included tree

Select an Item UC-006 Edit a Launched ltem

Figure 5.9: Example of CTT to Ul Component Mapping(3): Back to Main Tree

40

doi:10.6342/NTU202303645

CHAPTER 5. UIDL GENERATING ALGORITHM 41

(name = “Bidding System’”)

10. (SystemTaskGroup)

(name = “Use System”)

Ignore ("Zme . (name = “Login") {neme = TEnter System’)
- e
e
Login
Register [y
- Eo. -
et el
Get List of Items Display Items
11. (Service) 12.
Bind Service (VisualizeDynamically

AcquiredValue)
Create a Table

Figure 5.10: Example of CTT to Ul Component Mapping(4): View List of Item

&

(name = “Bidding System”)

e} 0 s} (name = “Use System’) = =
(name = “Enter System”) (name = “Edit ltem”)
UC-002 Register Use S} m Milme = “Register”) (name = “Login”) name = “Edit a Launched Item”)|
avrEr—) forra—)
13. (TaskGroup)
UC-001 Login Enter lem . - -
Create container

€2 > €

UC-009 View List of Items dit hgm
4. (IncludeTask)

§’.~f—>>—@ Create the included tree

Select an Item UC-006 Edit a Launched Item

Figure 5.11: Example of CTT to Ul Component Mapping(5): Back to Main Tree

Again

(name = “Bidding System”)

(name = “Use System”)

name = “Edit Item”
(name = "Enter System”) ()

(name = “Register”)

{name = “Login”)
—

SrT—
Eral |

name = “Edit a Launched Item”)

Figure 5.12: Example of CTT to Ul Component Mapping: Final Product

41

doi:10.6342/NTU202303645

CHAPTER 5. UIDL GENERATING ALGORITHM 42

5.2.2 Determine Navigation of the UI

In this stage, we will traverse our CTT again to collect navigation information
and integrate it into the intermediate product generated in the previous stage. This
process involves defining pages and specifying the navigation between those pages.

CTT defines temporal operators between tasks, by interpreting these temporal
operators, we can extract navigation information of the UI. Therefore, we start by
analyzing the pages and navigation information provided by each temporal operator
(refer to Table5.2).

The temporal operators present another challenge that needs to be addressed,
which is the precedence between them. The meaning might be different if they are
misused. Therefore, when interpreting temporal operators, it’s important to pay
special attention to their precedence. Furthermore, we observe that the tree-like
structure of the CTT can be considered as "parentheses” in mathematical expres-
sions, which is helpful in determining the combinations and hierarchical relationships
between tasks.

We use the following concept to interpret the navigation information in CTT:

e During the traversal process, when encountering operators, decide whether to

create a page for the previously traversed Ul components.

o After the Ul components on the right side of the operator are generated, define
the navigation between the two user interfaces. For example: 1 + 2 * 3 (the

+ operation will be performed only after the operation of 2 * 3 is completed).

Since we want to traverse CTT to "calculate” a project, and the CTT " s operator

42

doi:10.6342/NTU202303645

CHAPTER 5. UIDL GENERATING ALGORITHM

43

Table 5.2: Information in Temporal Operators

Name

Temporal Information

Page Information

Choice

»

The generated sub UI can be connected through “tab

»
or sidebar component.

Task Independence

Separate the generated Ul components using tabs or cre-
ate a dedicated page responsible for navigating to each
UL After the task is completed, it should navigate back

to the previous page.

None

Concurrent This implies that the generated subUI of tasks must be
Concurrent in the same page.
Communicating
Disabling The subUI that is generated by the task "after the sec- | Create a page that includes

ond task” is not on the same page.

Suspend-Resume

The subUI that is generated by the task ”after the sec-
ond task” is not on the same page. Once the target task
is complete, the Ul should navigate back to the source

task’s UL

the right task’s UI and the

UI that is created before.

Enabling

Enabling with

information passing

If both tasks can generate UI, the second task’s Ul

appears after the first task’s Ul

Create a page that includes

the left task’s UI and the

UI that is created before.

43

doi:10.6342/NTU202303645

CHAPTER 5. UIDL GENERATING ALGORITHM

11

Table 5.3: Behaviors when Pushing/Popping Operators

Name Create Page(when pushing) | Behaviors when popping operators
Choice No Pop two elements from the operand stack, combine them
using a Sidebar, and then push the resulting ”Continu-
ous Page” into the stack.
Task Independence | No Pop two elements from the operand stack, combine them
using a Tab component, and then push the resulting
”Continuous Page” into the stack.
Concurrent No Pop two elements from the operand stack, place them
into a list, and then push the list into the stack.
Concurrent
No (Same as above)
Communicating
Disabling Yes, include the event task’s | Pop two elements from the operand stack, navigate the

UI component.

first element to the second element, and then push the

resulting ”Continuation Page” into the stack.

Suspend-Resume

Yes, include the event task’s

UI component.

Pop two elements from the operand stack, navigate the
first element to the second element, navigate the second
element back to the first element, and finally push the

resulting ”Continuation Page” into the stack.

Enabling Yes Pop two elements from the operand stack, navigate the
first element to the second element, and then push the
resulting ”Continuation Page” into the stack.

Enabling with
Yes (Same as above)

information passing

is similar to mathematical expression, we will apply Dijkstra’s Two-Stack Algorithm
with some additional step on task tree.

In this algorithm, we decide whether to "create a page” and establish the "nav-

44

doi:10.6342/NTU202303645

CHAPTER 5. UIDL GENERATING ALGORITHM 45

igation between two user interfaces” when "pushing” and "popping” operators. It’s
important to note that the operand stack is the "component stack,” where each

stack element holds a list of Ul components.

Thus, in our system, we have two stacks: the "temporal operator stack” and the
"UI Component Stack.” The elements in the "UI Component Stack” not only record
a list of Ul components but also contain information about components that can
perform navigation.

Here, we introduce a new term called ”consecutive page,” which refers to a series
of pages that have defined navigation between them. The largest consecutive page
is the complete Ul, which is what we aim to achieve through the traversal of the
CTT.

Figures from Figure 5.13 to Figure 5.21 illustrate the process of applying the
second stage algorithm to the UI components created in the first stage. The resulting

UI shown in Figure 5.22 is generated based on the information from the main CTT.

1. Push “("

Baomoysysem ———» (
8]

&2]
IC-002 Régister Use S
2. Extract
@ >)

information in

this task tree
UC001 Login /‘e\vqem\

@ ! €
UC-009 View List of Items /b\

Select an Item UC-006 Edit a Launched Item

Figure 5.13: Example of Determine Navigation(1): Main Tree(1)

45

doi:10.6342/NTU202303645

CHAPTER 5. UIDL GENERATING ALGORITHM

46

3. Push “(”

Ener Password Vaidate Usemame Vaidats Password

[Selct Gender] [Enter Emai |

4. Push the corresponding Ul
component into the stack

(

(

(
Operator Stack Component Stack

(name = “Bidding System”)

(name = “Reister”)

Register

(name = “Enter System”]

(name = “Edit Item”)

name = “Edit 2 Launched item”)
name

(Username]

Figure 5.14: Example of Determine Navigation(2): Register

B——F——F—

Enter Usemame [Select Gender]

Vaidate Usemame

el
Vakdate Password

Ener Password

5. And now we are at the
end of a group task.
Pop until “(".

Operator Stack

Component Stack

(name = “Bidding System”)

Register

(name = “Use System”)

(name = “Enter System”]

(name = “Edit Item”)

name = “Edit 2 Launched item”)

Figure 5.15: Example of Determine Navigation(3): Register

Pop until “(".

(

Operator Stack Component Stack Operator Stack

Component Stack

— Rule of Rule of
(“concurrent” (“concurrent”
—_— (=
{ (e —
((

(

Userame
Password

(

Operator Stack

Component Stack

Figure 5.16: Example of Determine Navigation(4): Register(Pop Operator Stack)

46

doi:10.6342/NTU202303645

CHAPTER 5. UIDL GENERATING ALGORITHM

47

7. No more tasks with Ul

Q

ﬂm\

ﬁ—ﬂ—g—ﬂ—ﬁ&é—l—ﬁ

Enter Usemame [Select Gender]

Enor Password [Enter Emai]

Vaidate Usemame

Vaidate Password

6. Apply rules of “Disable”
6.1 Create pages that include the event task’s Ul
Component.
6.2 Record navigation info.

ke
w1 £
Cick Rogter Regiter

(

(

Navigational component:
[Register button]

Operator Stack

Component Stack

(name = “Bidding Syste

(name = “Register”)

Register

m)

(name = “Use System”) = -
rome = Entersyster) | ("me ="Ed e}

(name = “Login")

[name = “Edit a Launched Item”)

Edit

Figure 5.17: Example of Determine Navigation(5): Register

9. Push “(”
g-Push “[”

N

UC-002 Register

UC-001 Vogin

10. Push login page into
Component Stack (after
traversing the included tree)

UC-009 Wew List of Items

11. Push item table into
Component Stack (after
traversing the included tree)

k.,—"" = :)

Select an Item uc-006

Navigational component: [Login
button]

Navigational component:
[Register button]

(-
-
(
i}
(
Operator Stack Component Stack

(name = “Register”)

Username.
Password
Gender

Register

(name = “Bidding System"”)

(name = “Use System”) (rome = Eotersysem) | e ET)
(name = “Login’)

Username

Iname = “Edit a Launched item”)|

rice

ending date

Edit a Launched Item

Figure 5.18: Example of Determine Navigation(6): Main Tree

stem

UC-002 Register

UC-009 View List of |

12. Create page when
pushing "Suspend-resume”

E—).. . @

i

(

Navigational component: [Item
List Table]

Navigational component: [Login
button]

Navigational component:
[Register button |

Operator Stack

Component Stack

(name = “Bidding System

(name = “Register”)
aETET—
S —

Coender)

Register

)

(name = “Use System")

(name = “Edit item”)

(name = “Enter System”)
{name = “Login")

Username

Iname = “Edit a Launched item”)|
Coame)

\ [
\ \

price

Select an Item UC-006 E:

dit a Launched Item

Figure 5.19: Example of Determine Navigation(7): Main Tree

47

doi:10.6342/NTU202303645

CHAPTER 5. UIDL GENERATING ALGORITHM 48

Navigational component:
[Edit Button]

o~ I>

Bidding~System
(

@ 0) >

UC-002 Register A (
UC-001 Login /m;w\ (
Operator Stack Component Stack

13. Push edit item form into
Component Stack (after
traversing the included tree)
14. Last task, pop all.

dit a Launched Item

Navigational component: [Item
List Table]

Navigational component: [Login
button]

Navigational component:
[Register button]

UC-009 View List of Items

Select an Item

Figure 5.20: Example of Determine Navigation(8): Main Tree

Pop until “(".

Pop “Suspend-Resume” Pop “Enabling”

[Edit Button]

(= Navigational component: (- i}
‘ ‘ [Item List Table]

Navigational component:
" | [Login button]

> sy i
Navigational component:
i [Login button]

Operator Stack

i | Navigational component:
: | [Register button]

Navigational component: Operator Stack
[Register button]

Component Stack

Component Stack
Operator Stack Component Stack

Figure 5.21: Example of Determine Navigation(9): Main Tree(Pop Operator Stack)

11 I
(name = “Register”) (name = “Login”) : : : : (name = “Edit an ltem”)
1

i

1

1

i (Chame)
(Username] [l [Username) |, name

: 1

1

1

i

(LPassword) || [Password) 1
(oo A
Cima) | -
Email 1 " - ending date
1
]

|

Figure 5.22: Example of Determine Navigation: Final Product

48

doi:10.6342/NTU202303645

CHAPTER 5. UIDL GENERATING ALGORITHM 49

5.2.3 Design on Task Converter

Finally, we implement the transformation algorithm that converts CTT into

PDL, NDL, and SUMDL. We explain the design in this section.

We apply two design patterns:

o Visitor pattern: In our transformation process, we traverse the CTT twice
to gather Ul component information and navigation information. Since we
collect different information from the CTT depending on different tasks and
operations, we apply the visitor pattern to traverse the CTT object structure

(see Figure 5.23).

Here we have proposed three visitors.

— Task Tree Validation Visitor: This visitor is responsible for validating

Visitor

Figure 5.23: Visitor Pattern on CTT

49

doi:10.6342/NTU202303645

CHAPTER 5. UIDL GENERATING ALGORITHM 50

the CTTs to ensure their correctness. Currently, it primarily focuses
on verifying the attributes of tasks, and it can be further expanded to

validate more parts of the CTT in the future.

— UI Component Mapping Visitor: This visitor is responsible for the
first stage transformation described in this chapter. As it traverses the
CTT, it maps the tasks into Ul component builders along with the neces-
sary information for the builders. It’s important to note that this visitor

is also responsible for binding services to Ul components.

— Navigational Visitor: This visitor is responsible for the second stage
transformation described in this chapter. It creates page related builders

and defines navigation as it traverses the CTT.

o Builder Pattern: Different properties and behaviors (defined using the de-
scription language) are added to different Ul components in different stages.
To gradually add the information obtained by visitors into Ul components,
we decided to use the Builder Pattern to create various Ul components. This
allows us to obtain Ul data at different times during the traversal by the two
visitors. At the end of the traversal, the required Ul components and descrip-

tion language are generated(Figure 5.24).

We have three types of builders:

— UI Component Builder: This builder is responsible for receiving data
about Ul components and we have different builders for various types

of Ul components. The Page Builder, in particular, is responsible for

20

doi:10.6342/NTU202303645

CHAPTER 5. UIDL GENERATING ALGORITHM 51

Figure 5.24: Builder Pattern for UIDL

generating the PDL.

— Service Builder: This builder is responsible for handling data related
to services, which includes the utilization of service components and their

return values.

— Navigational Builder: This builder is responsible for receiving naviga-

tional information.

ol

doi:10.6342/NTU202303645

CHAPTER 5. UIDL GENERATING ALGORITHM 52

Figure 5.25: Task Converter

52

doi:10.6342/NTU202303645

Chapter 6

Conclusion

6.1 Summary

We have successfully proposed a method to save time and improve intuitiveness
in frontend development by incorporating the Task Model into our UI generation
process. This involves defining the task model, proposing a method for creating the
task model, and completing the transition from the task model to the UL

Even though the process of transforming use cases into a task model cannot be
fully mechanical (due to use cases being composed in natural language), we have
devised an intuitive approach to generate the task model from the use case.

Furthermore, by following the restrictions on constructing the task tree, the task
tree may not necessarily be created from the use case. This means that we have
greater flexibility in generating task models, allowing us to better align with require-

ments and user expectations. These methods and techniques make our development

53

doi:10.6342/NTU202303645

CHAPTER 6. CONCLUSION o4

process more efficient and flexible, thereby enhancing the quality and user experience

of the user interface.

6.2 Future work

As for future work, we will discuss two topics:

Generating CTT In the step of generating CT'T, it’s not fully automated at this
point. Training natural language processing models is necessary to enable them to

convert actions from use cases into models of basic tasks.

UI Composition Currently, in the Ul Composition process, we parse the neces-
sary data from PDL, NDL, and SUMDL, and then utilize predefined templates to
generate the corresponding code. In the future, our goal is to develop a process that
can transform these three UIDLs into corresponding abstract syntax trees (ASTs),
thereby creating a more generalized representation. This approach would contribute

to a more versatile and adaptable representation of user interfaces.

54

doi:10.6342/NTU202303645

Bibliography

[1] M. Abrams, C. Phanouriou, A. L. Batongbacal, S. M. Williams, and J. E. Shuster.
Uiml: an appliance-independent xml user interface language. Computer networks,
31(11-16):1695-1708, 1999.

[2] Angular api. https://angular.io/api.

[3] G. Calvary, J. Coutaz, D. Thevenin, Q. Limbourg, L. Bouillon, and J. Vanderdon-
ckt. A unifying reference framework for multi-target user interfaces. Interacting with
computers, 15(3):289-308, 2003.

[4] M.-H. Hsieh. Construct and bind user interface components. Master’s thesis, National
Taiwan University, 2021.

[5] Q. Limbourg, J. Vanderdonckt, B. Michotte, L. Bouillon, and V. Lépez-Jaquero.
Usixml: A language supporting multi-path development of user interfaces. In En-
gineering Human Computer Interaction and Interactive Systems: Joint Working Con-
ferences EHCI-DSVIS 2004, Hamburg, Germany, July 11-13, 2004, Revised Selected
Papers, pages 200-220. Springer, 2005.

[6] F. Paterno’, C. Santoro, and L. D. Spano. Maria: A universal, declarative, multiple
abstraction-level language for service-oriented applications in ubiquitous environments.

ACM Transactions on Computer-Human Interaction (TOCHI), 16(4):1-30, 20009.

95

doi:10.6342/NTU202303645

[7] Usability.gov. https://www.usability.gov/how-to-and-tools/methods/

user—-interface—-elements.html.

56

doi:10.6342/NTU202303645

