
doi:10.6342/NTU202303162

國立臺灣大學電機資訊學院資訊工程學系

碩士論文

Department of Computer Science and Information Engineering

College of Electrical Engineering and Computer Science

National Taiwan University
Master Thesis

從需求到微服務：以領域驅動設計與機器學習為方法

From Requirements to Microservice: A Domain Driven
Approach with Machine Learning

林怡伶

Yi-Ling Lin

指導教授： 李允中 博士

Advisor: Dr. Jonathan Lee, Ph.D.

中華民國 112 年 7 月
July, 2023

doi:10.6342/NTU202303162

i

doi:10.6342/NTU202303162

誌誌誌謝謝謝

首先，我要衷心感謝我的指導教授李允中博士過去兩年間的提攜與指導，使

我學會系統化的切入問題並分析解決方法，且在過程中給予我寶貴的建議，讓我

在學術研究上有所成長。同時，我要感謝實驗室的夥伴：陳力聖、林辰臻、劉仁

軒、許恆、張馨尹、梁峻瑞，在修課與研究的過程中相互交流與幫助。再者，我

要感謝學弟妹與助理錢怡君，還有家人的幫助，讓我能夠順利完成此篇論文。

ii

doi:10.6342/NTU202303162

摘摘摘要要要

微服務架構已成為開發應用程式的熱門選擇，因其具有簡潔、可獨立部署和可

溝通的服務特性。然而，儘管有指導設計過程的實際範例與原則，但並沒有明確

的規則來說明如何根據需求來設計微服務。針對此議題，領域驅動設計（DDD）

因提供將領域分解的方法而變得相關，但在實際規劃微服務架構時仍會面臨許多

挑戰。這些困難包括直接從領域模型生成微服務或決定微服務的適當粒度。為了

應對這些挑戰，在此篇研究中，我們提出了一個新穎的兩階段流程。該流程不考

慮領域模型（domain model），而是利用 DDD 和 event storming 的原則來定義

子領域（subdomain）邊界。在子領域的邊界決定之後，我們利用配對機制將這

些子領域與潛在的微服務候選者進行映射，以此確保配對是多元並具有彈性的。

最後我們使用機器學習來自動化此流程，進而提升系統的效率。

關關關鍵鍵鍵詞詞詞 — 微服務、領域驅動設計、機器學習、需求工程、自然語言處理

iii

doi:10.6342/NTU202303162

Abstracts

The microservices architecture has emerged as a popular choice for develop-

ing applications as compact, independently deployable, and conversational services.

While there exist proven practices and principles that can guide the design pro-

cess, there are no definitive rules that dictate how to design microservices based on

requirements. Domain-driven design (DDD) has gained relevance as it provides a

means for the decomposition of domains into contexts, but challenges arise when

applying DDD to plan microservices architecture. Difficulties include deriving mi-

croservices directly from domain models or determining the appropriate granularity

of microservices. To cope with these challenges, in this work, we propose a novel

two-stage process that disregards domain models in the process. It leverages DDD

and event-storming principles to define subdomain boundaries. Subsequently, a

sophisticated matchmaking mechanism connects these subdomains with potential

microservice candidates, offering versatile and flexible mapping. The process is au-

tomated using machine learning, enhancing its effectiveness.

Index terms — Microservices, Domain-Driven Design, Machine Learning, Re-

quirements Engineering, Natural Language Processing

iv

doi:10.6342/NTU202303162

Contents

口口口試試試委委委員員員審審審定定定書書書 i

誌誌誌謝謝謝 ii

摘摘摘要要要 iii

Abstracts iv

List of Figures viii

List of Tables x

Chapter 1 Introduction 1

Chapter 2 Related Work 4

2.1 Background Work . 4

2.1.1 Microservices . 4

2.1.2 Domain-Driven Design (DDD) 5

v

doi:10.6342/NTU202303162

2.1.3 Event Storming . 5

2.1.4 EARS Requirements Template 7

2.1.5 ConceptNet . 7

2.2 Related Work . 8

2.2.1 Domain-Driven Microservice Design 8

2.2.2 Microservice Granularity . 10

2.2.3 Microservices Identification 10

Chapter 3 Two-Stage Process: Take An Online Bidding System as

An Example 12

3.1 System Overview . 12

3.2 Running Example: Online Bidding System 13

Chapter 4 From Requirements to Bounded Contexts 17

4.1 Write Use Case Specifications Based on EARS Requirements 18

4.2 Collect Domain Events From Use Case Specifications 19

4.3 Find Entities . 20

4.3.1 Part-of-Speech (POS) Tagging 21

4.3.2 Word Sense Disambiguation (WSD) 22

4.3.3 Construct ConceptNet Subgraphs 22

4.3.4 Distinguish Entities from Attributes 24

4.4 Bounded Context Categorization . 25

vi

doi:10.6342/NTU202303162

Chapter 5 From Bounded Contexts to Microservices 31

5.1 Generate Bounded Context Descriptions 31

5.2 Get Microservice Candidates by Matchmaking 36

Chapter 6 User Interface 38

Chapter 7 Conclusion 42

Chapter 8 Future Work 43

Bibliography 45

vii

doi:10.6342/NTU202303162

List of Figures

2.1 ConceptNet . 9

3.1 System Overview . 14

4.1 The process of finding entities. 21

4.2 Paths to the other candidates: Item 25

4.3 The process of categorizing bounded contexts. 27

5.1 From bounded contexts to microservices 32

5.2 Item bounded context - controller description JSON file 33

5.3 Item bounded context - service description JSON file 34

5.4 Item bounded context - repository description JSON file 35

5.5 Item bounded context - DB schema description JSON file 36

5.6 The microservice with the highest similarity to the Item Bounded

Context. 37

6.1 The UI for uploading requirements and use case specifications 39

viii

doi:10.6342/NTU202303162

6.2 The UI for editing entity list . 40

6.3 The UI for displaying resulting microservice candidates 41

ix

doi:10.6342/NTU202303162

List of Tables

2.1 DDD definitions relevant to this work. 6

2.2 Event storming concepts with their corresponding color and definitions. 7

2.3 Types of EARS requirements and their patterns. 8

3.1 Examples of Online Bidding System EARS Requirements 16

4.1 An example of the formatted use case specification. 28

4.2 ConceptNet relations that are ignored in this process. 29

4.3 Entity candidates and their P score - [UC-003 : List an item] 29

x

doi:10.6342/NTU202303162

Chapter 1

Introduction

With the advent of cloud computing, traditional system architectures fall short of

meeting the demands and requirements of cloud-based environments. Cloud com-

puting allows for dynamic scaling of resources to manage fluctuating workloads,

whereas traditional monolithic architectures are typically designed for fixed hard-

ware. Furthermore, cloud computing’s infrastructure promotes modularity, which

contradicts monolithic applications, in which all components are tightly coupled,

presenting challenges when updating or modifying specific functionalities. The cloud

also provides better fault tolerance and higher availability through its built-in fault

tolerance mechanism, which is often absent in traditional architectures.

On the other hand, microservices, due to their loosely coupled and independently

deployable nature, align well with cloud computing requirements and help overcome

the limitations of traditional architectures. As a result, microservices have become

the new standard for developing highly modularized software systems. While mi-

1

doi:10.6342/NTU202303162

CHAPTER 1. INTRODUCTION 2

croservices have gained popularity for their numerous benefits, their adoption can

indeed be challenging, whether one chooses to migrate a legacy monolithic applica-

tion to microservices or design them from scratch. One of the difficulties lies in how

to define appropriate boundaries for microservices.

Fortunately, domain-driven design (DDD) [6] helps in planning microservice ar-

chitecture. By defining subdomain boundaries and designing corresponding domain

models that specifically tackle problems with each domain, DDD helps streamline

the design process and facilitates the adoption of microservices. While there exist

proven practices utilizing DDD principles for successful microservices design, the

process of deriving microservices from the designed domain model and determining

the appropriate number of microservices remains unclear. To address this issue, we

propose a matchmaking mechanism to derive microservices from bounded contexts

without relying on domain models.

In addition to the above issue, the DDD design process demands continuous com-

munication and collaboration between the developers and domain experts, which can

be time-consuming. We have observed that there is limited research on planning and

generating microservices based on system requirements. Requirements, presented in

various forms such as plain text, use case diagrams, use case specifications, etc.,

offer comprehensive information about a planned software system. In this work, we

aim to leverage requirements to automate the design of microservices.

More specifically, a two-stage process is proposed in this work to offer assistance

in planning microservices based on requirements, reducing the need for human effort.

The concepts of DDD are employed to define subdomain boundaries, and a match-

2

doi:10.6342/NTU202303162

CHAPTER 1. INTRODUCTION 3

making mechanism is introduced to bridge the gap between these subdomains and

the underlying microservice(s). By leveraging machine learning, certain processes

can be automated, enhancing efficiency.

The rest of this paper is organized as follows: Chapter 2 introduces the related

works; Chapter 3 provides an overview of the proposed two-stage process; Chapter

4 describes the first stage, where bounded contexts are derived from requirements;

Chapter 5 details the second stage, where bounded contexts are mapped to their

corresponding microservices; Chapter 6 demonstrates the user interface and explains

how users can utilize the proposed method; Finally, Chapter 7 summarizes this

research’s contributions and Chapter 8 outlines the future work.

3

doi:10.6342/NTU202303162

Chapter 2

Related Work

2.1 Background Work

2.1.1 Microservices

In a separate study [3], Chen decomposes open-source monolithic applications

into reusable microservices, leading to the construction of a pool of microservice

candidates. The pool of microservice candidates resulting from this decomposition

process serves as a valuable resource for our research. Moreover, according to Chen’s

definition, microservices encompass four key elements: controller, service, repository,

and entity.

In our approach, we leverage the descriptions corresponding to these four ele-

ments to match each of the bounded contexts obtained from the requirements to

the most suitable microservices from the candidate pool. This process allows us to

4

doi:10.6342/NTU202303162

CHAPTER 2. RELATED WORK 5

successfully attain our objective of deriving microservices from the requirements.

2.1.2 Domain-Driven Design (DDD)

Domain-driven design (DDD) is a concept introduced by Eric Evans [6]. It is an

approach to software development that focuses on building a rich and meaningful

representation of the domain within the software. It encompasses two essential

phases: strategic design and tactical design. The strategic design phase involves

understanding the business domain and defining bounded contexts for the domain

models. On the other hand, during the tactical design phase, the tactical patterns

are applied to create coherent domain models that represent the business domain.

In this work, we adhere to the concepts and definitions defined in DDD to design the

overall process, ensuring that the derived microservices align with the core aspects

of the business domain. Table 2.1 includes some significant DDD definitions that

are leveraged in this work.

2.1.3 Event Storming

Event Storming is an interactive and collaborative meeting technique specifi-

cally tailored for DDD [6]. Through its visual and engaging process, it encourages

team members to collaborate and share their knowledge, thereby uncovering domain

events and identifying business rules. During an Event Storming session, team mem-

bers use sticky notes as a visual representation of various concepts. These sticky

notes are placed on a large whiteboard or wall, illustrating the flow of the business

5

doi:10.6342/NTU202303162

CHAPTER 2. RELATED WORK 6

DDD Concept Definition

Domain A sphere of knowledge, influence, or activity.

Bounded context The delimited applicability of a particular model. Bounded contexts give

team members a clear and shared understanding of what has to be con-

sistent and what can develop independently.

Model A language structured around the domain model and used by all team

members to connect all the activities of the team with the software.

Entity A representation of an object in the domain. It is fundamentally defined

not by its attributes, but by a thread of continuity and identity.

Table 2.1: DDD definitions relevant to this work.

process. The concepts gathered during an event storming session fall into several

categories, each designated with a unique color of sticky note, as shown in Table

2.2.

Event storming involves four main steps:

1. Identify domain events and place all the event sticky notes in sequence on a

timeline.

2. Add the commands and actors that caused the domain events.

3. Identify aggregates by grouping command and event pairs that are related.

4. Define bounded contexts by drawing boundaries based on business logic and

the relationships between events and aggregates.

In our research, we utilize the fundamental principles of these four steps to

derive bounded contexts. However, we introduce modifications to adapt the process

6

doi:10.6342/NTU202303162

CHAPTER 2. RELATED WORK 7

to our specific input requirements. To avoid introducing further ambiguity, we

refrain from distinguishing aggregates and entities. Instead, our approach focuses

on discerning the differences between entities and attributes, which simplifies the

derivation process.

Event Storming Concept Definition

Domain event An event that occurs in the business process. Written in the past tense.

Actor A person who executes a command through a view.

Command A command executed by a user through a view on an aggregate that results

in the creation of a domain event.

Aggregate Cluster of domain objects that can be treated as a single unit.

Table 2.2: Event storming concepts with their corresponding color and definitions.

2.1.4 EARS Requirements Template

The Easy Approach to Requirements Syntax (EARS) [9] is an effective method of

expressing requirements. The types of EARS requirements and their corresponding

format are shown in Table 2.3. To structure our input requirements, we adopt the

EARS template, which provides a clear and organized framework for capturing and

presenting the necessary information.

2.1.5 ConceptNet

ConceptNet [11] is a freely accessible large-scale commonsense knowledge base

with an integrated NLP toolkit that supports many practical textual-reasoning tasks

7

doi:10.6342/NTU202303162

CHAPTER 2. RELATED WORK 8

Type of EARS requirements Pattern

Ubiquitous requirements The <System name> SHALL <System response>.

Event-driven requirements WHEN <trigger> <optional precondition>, the <system name> SHALL

<system response>.

Unwanted behaviors requirements IF <unwanted condition or undesired events>, THEN the <system

name> SHALL <system response>.

State-driven requirements WHILE <system state>, the <system name> SHALL <system

response>.

Optional features requirements WHERE <feature is included>, the <system name> SHALL <system

response>.

Compound requirements <Multiple conditions>, the <system name> SHALL <system response>.

Table 2.3: Types of EARS requirements and their patterns.

over real-world documents. As shown in Figure 2.1, an edge, is a unit of knowledge

in ConceptNet that represents a particular relation between natural-language terms,

or concepts. Specifically, we leverage ConceptNet to gain a better understanding of

the semantic relationships between different concepts, which enables us to identify

domain entities within the domain. Due to limited hardware resources, we are

unable to download and build ConceptNet locally. Therefore, we use a Python

library, Conceptnet-lite [4], to work with ConceptNet offline.

2.2 Related Work

2.2.1 Domain-Driven Microservice Design

In the realm of domain-driven microservice design, various studies have been

conducted. Rademacher et al. [10] discussed the challenges of domain-driven design

8

doi:10.6342/NTU202303162

CHAPTER 2. RELATED WORK 9

Figure 2.1: ConceptNet

9

doi:10.6342/NTU202303162

CHAPTER 2. RELATED WORK 10

[6] and focused on addressing them based on model-driven development. However,

during our research, we identified certain ambiguities present in domain models. As

a result, we opted to design our process without relying on these models. Instead,

we adopt a matchmaking mechanism to derive microservices based on the bounded

contexts.

2.2.2 Microservice Granularity

Determining the appropriate size of a microservice is a complex task that in-

volves various factors. Vural et al. [12] examined the optimal granularity for mi-

croservices based on design examples generated in previous studies that applied

domain-driven design principles. Their findings highlighted that DDD has delivered

favorable results for identifying modular microservices, which align well with the

domain’s natural boundaries.

In this work, we aim to leverage the advantages of DDD [6] to ensure that the

derived microservices are cohesive. In addition, we address the granularity issue

through our matchmaking mechanism. This mechanism facilitates versatile and

flexible mapping between bounded context and microservices.

2.2.3 Microservices Identification

Bajaj et al. [1] proposed an approach to identifying microservices from require-

ments by clustering closely related use cases. While our approach shares a common

foundation of utilizing use cases, we further incorporate DDD [6] concepts into our

10

doi:10.6342/NTU202303162

CHAPTER 2. RELATED WORK 11

methodology By leveraging DDD principles, we aim to ensure that the resulting mi-

croservices align with the natural boundaries of the domain. Moreover, our approach

employs a graph-based matchmaking mechanism that takes advantage of additional

information, such as the controller, service, repository, and database schema of each

microservice. This extended information allows us to better handle the complexities

of microservice identification.

11

doi:10.6342/NTU202303162

Chapter 3

Two-Stage Process: Take An

Online Bidding System as

An Example

3.1 System Overview

This section provides an overview of the proposed approach that enables the

deduction of microservices from requirements. As shown in Figure 3.1, the process

consists of two stages. The first stage is from requirements to bounded contexts,

followed by the second stage from bounded contexts to microservices. The reason

behind this separation is to establish a connection between the bounded contexts and

microservices without relying on the domain models, which can introduce ambiguity

12

doi:10.6342/NTU202303162

CHAPTER 3. TWO-STAGE PROCESS: TAKE AN ONLINE BIDDING SYSTEM

AS AN EXAMPLE 13

in the DDD [6] process.

From Requirements to Bounded Contexts The concepts of DDD are lever-

aged in this stage to decompose domains into contexts, which correspond to mi-

croservices that encompass distinct business logic. The process will be described in

Chapter 4.

From Bounded Contexts to Microservices In this stage, a graph-based match-

making mechanism [3] is applied to map each bounded context to its corresponding

microservices. Chapter 5 will illustrate the process in detail.

Input Requirements To constrain textual requirements, we integrate the EARS

requirements template [9] into our method. This integration entails requesting users

to provide their input requirements specifically in the EARS format.

Output Microservices The output of the process consists of the resulting mi-

croservice candidates corresponding to each bounded context. These microservices

are selected from the pool of microservice candidates [3], which serve as reusable

components for building the system.

3.2 Running Example: Online Bidding System

To illustrate the process of deriving microservices from requirements, we take an

online bidding system as an example. The online bidding system should provide the

13

doi:10.6342/NTU202303162

CHAPTER 3. TWO-STAGE PROCESS: TAKE AN ONLINE BIDDING SYSTEM

AS AN EXAMPLE 14

Figure 3.1: System Overview

following functionalities:

• User registration: Users, both the sellers and buyers, should register accounts

to interact with the application.

• User profiles: Users can view and edit their user information.

• Item listing: Sellers can list their items for auction.

• Bidding: Buyers can place bids on the listed items.

• Notifications: The system notifies users when an auction ends, fails, or when

the highest bid is updated.

• Order handling: Once an auction is won, the system manages the transaction

process including payment and shipping.

14

doi:10.6342/NTU202303162

CHAPTER 3. TWO-STAGE PROCESS: TAKE AN ONLINE BIDDING SYSTEM

AS AN EXAMPLE 15

• Review: Buyers can provide ratings and comments for the sellers after a trans-

action is completed.

• Communication: Users can communicate with each other through messages.

The system’s requirements are composed in the EARS format, serving as the input

to the process. In this work, we further divide the requirements into five categories

to differentiate their objectives:

• Front-end Functional Requirements (FFR): These describe front-end system

services or functions.

• Back-end Functional Requirements (BFR): These describe back-end system

services or functions.

• External Interface Requirements (EIR): These define the messages passing

between subsystems and the external environment.

• Internal Interface Requirements (IIR): These define the messages passing among

subsystems.

• Non-Functional Requirements (NFR): These represent constraints or goals on

the system or on the development process.

Examples of the five types of requirements in the EARS format are presented in

Table 3.1.

15

doi:10.6342/NTU202303162

CHAPTER 3. TWO-STAGE PROCESS: TAKE AN ONLINE BIDDING SYSTEM

AS AN EXAMPLE 16

Requirement Type Example

FFR [FFR4: Show item details] WHEN the user selects an item, the system

SHALL display the selected item.

BFR [BFR4: Update bidding information] WHILE a bid is placed, the system

SHALL update the auction so that every user can see the correct infor-

mation at any time.

EIR [EIR6: User and Bidding Function Module] WHILE the user is logged in

AND WHEN the bid starts, the system SHALL provide an interface for

users to place a bid.

IIR [IIR3: Database and Bid Module] WHEN the Bid Module receives the

“place a bid” request, the Bid Module SHALL get the current price

from the Database. IF the price of the bid is lower than the current price,

THEN the Bid Module SHALL not create a new bid or update the current

price.

NFR [NFR2: Realtime updates] The system SHALL enhance the update effi-

ciency of the bidding system and increase computing resources for price

updates. IF users get outdated information, THEN the bid function mod-

ule SHALL be improved.

Table 3.1: Examples of Online Bidding System EARS Requirements

16

doi:10.6342/NTU202303162

Chapter 4

From Requirements to

Bounded Contexts

As discussed in the previous section, the first stage of the two-stage process is

to derive bounded contexts from input requirements. We refer to event storming to

design the process of this stage, which can be further broken down into the following

four steps:

1. Write use case specifications based on EARS requirements

2. Collect domain events from use case specifications

3. Find entities

4. Bounded context categorization

First, users are required to write use case specifications following the proposed for-

17

doi:10.6342/NTU202303162

CHAPTER 4. FROM REQUIREMENTS TO BOUNDED CONTEXTS 18

mat based on EARS [9] requirements. Subsequently, in line with the concepts of

event storming and DDD [6], the use case specifications are used to gather domain

events. The system will then extract entities from these domain events using ma-

chine learning. Lastly, the flows of each use case will be mapped to their related

entities, ultimately forming the bounded contexts. The following subsections will

illustrate the process involved in each of these steps.

4.1 Write Use Case Specifications Based on EARS

Requirements

As Bajaj et al. [1] mentioned, use cases are widely recognized as a popular

method of capturing business functional requirements. They serve as a descrip-

tion of the system’s high-level functions and scope. However, to enable the system

to parse and understand use case specifications, it is essential to ensure that they

are well-formatted. Properly formatted use case specifications facilitate smoother

preprocessing by providing the necessary structure and clarity for the computer

to analyze and interpret the information effectively. Furthermore, some additional

fields are included in use case specifications to enhance the comprehension of re-

quirements. These additions allow us to adopt the concepts of event storming to

derive bounded contexts without the need for a physical session.

The critical components of a use case specifications are participating actors,

corresponding requirements, preconditions, post-conditions, basic flow of events,

alternate flow, and exceptions. Additionally, we further improve the clarity of a

18

doi:10.6342/NTU202303162

CHAPTER 4. FROM REQUIREMENTS TO BOUNDED CONTEXTS 19

use case specification by adding mapping between requirements and steps in basic

flow. As depicted in Table 4.1, each step in the flow of a use case specification is

represented by its corresponding actor, relevant EARS requirement, and the actual

action performed by the actor. For example, in cases where a step is associated with

an IIR, it represents the message passing among subsystems, whether it’s between

the frontend and the backend, between the backend subsystems, or between the

backend subsystem and the database. Throughout this work, the actions related to

distinct requirements are leveraged to provide information that can be exploited in

different steps of the process.

4.2 Collect Domain Events From Use Case Spec-

ifications

In event storming, domain events are conventionally expressed in the past tense

and adhere to the ”<object> <Ved>” format. These events are organized on a

timeline, enabling participants to identify the actors and commands that trigger the

events.

In contrast, our approach exploits the use case specifications, which already

capture the significant events of the system. These use case specifications are written

in chronological order, encompassing preconditions, flows, and post-conditions. As

a result, we can gather domain events directly from the descriptions provided in the

use case specifications.

Moreover, in our approach, there is no need for additional steps to identify the

19

doi:10.6342/NTU202303162

CHAPTER 4. FROM REQUIREMENTS TO BOUNDED CONTEXTS 20

actors and commands associated with each event, as is typically required in physical

event storming sessions. The actors and commands can be readily found in the use

case specifications.

In particular, for each use case specification, we collect domain events from three

specific sources: the preconditions, the actions associated with BFRs, and the post-

conditions. We focus solely on the actions related to BFRs as they encapsulate the

business logic within the domain, excluding any details related to presentation or

infrastructure. We disregard the actions related to FFRs, which pertain to the be-

havior of the user interface and navigation. Similarly, we ignore the actions related

to IIRs, as they primarily describe database operations or communication between

modules. This selective approach ensures that the collected domain events align pre-

cisely with the core aspects of the domain, enhancing the relevance of the subsequent

derivation process.

4.3 Find Entities

According to the definitions of DDD, domain entities represent the fundamen-

tal components, concepts, or real-world objects that play a significant role in the

domain’s behavior and processes. During an event storming session, participants

closely analyze the events and their relationships, leading them to identify patterns

and clusters of events that often indicate the presence of domain entities. Recogniz-

ing these entities can aid in defining bounded contexts within the domain.

In our research, we adopt a systematic approach that leverages machine learning

20

doi:10.6342/NTU202303162

CHAPTER 4. FROM REQUIREMENTS TO BOUNDED CONTEXTS 21

Figure 4.1: The process of finding entities.

to identify entities from the domain events collected from each use case specifica-

tion in the previous step. Figure 4.1 depicts the process of finding entities, which

is executed per use case specification. Initially, we extract nouns from the domain

events that meet specific constraints, employing natural language processing (NLP)

techniques such as part-of-speech (POS) tagging and word sense disambiguation

(WSD). These extracted nouns are then treated as entity candidates, as they rep-

resent potential entities or their attributes.

Subsequently, we traverse ConceptNet [11], a semantic network that encom-

passes a wide range of commonsense concepts and relations, to comprehend each

candidate’s relationships with other concepts. During this step, a subgraph of Con-

ceptNet centered around each entity candidate is constructed, providing valuable

insights into their associations. Finally, we propose an algorithm to distinguish en-

tities from all the candidates based on the information contained in the subgraphs,

enabling us to derive bounded contexts in future steps.

4.3.1 Part-of-Speech (POS) Tagging

Part-of-Speech tagging is an NLP task that involves assigning a specific gram-

matical label or tag to each word in a given text, indicating its part of speech. We

21

doi:10.6342/NTU202303162

CHAPTER 4. FROM REQUIREMENTS TO BOUNDED CONTEXTS 22

use the SpaCy [8] en core web sm model to perform POS tagging on the collected

domain events. Specifically, we are interested in the nouns presented within sen-

tences, as our ultimate goal is to find entities. Entities typically refer to concepts or

objects, which are commonly represented by nouns.

4.3.2 Word Sense Disambiguation (WSD)

In our work, we incorporate word sense disambiguation (WSD) as a vital step in

our approach. Word sense disambiguation is a task that involves associating a word

in context with the most appropriate meaning from a finite set of choices. More

formally, given a word and a context, the objective is to predict the synset or sense

of the word. Synsets are the groupings of synonymous words that represent the

same concept.

We leverage WSD to further eliminate nouns that correspond to non-noun synsets.

This process ensures that only contextually appropriate nouns are considered for

further analysis. As for implementation, we use the checkpoint of the WSD model

proposed by Bevilacqua et al. [2], without any fine-tuning.

4.3.3 Construct ConceptNet Subgraphs

The nouns extracted from the last step are denoted as entity candidates, as they

could represent either an entity or its attributes. When users are writing descriptions

of the system’s desired behavior, they often mention entities and their corresponding

attributes in the text. Thus, the purpose of this step is to utilize ConceptNet to

22

doi:10.6342/NTU202303162

CHAPTER 4. FROM REQUIREMENTS TO BOUNDED CONTEXTS 23

gain insights into the semantic hierarchical position of a candidate. By analyzing

the relationships of these candidates within ConceptNet, we can determine whether

they represent entities or attributes.

For each candidate within a use case, we use breadth-first search (BFS) to tra-

verse ConceptNet and construct a ConceptNet subgraph that includes its ”related

concepts” within a specific distance, K hops in this case. In our experiments, we

set this distance (K) to 2. In the subsequent steps, we disregard certain relations

among the 34 defined relations in ConceptNet, as they do not contribute to dis-

tinguishing between an entity and its attributes. Table 4.2 presents a list of these

ignored relations, along with the reasons for their exclusion from our approach.

In our approach, the ”related concepts” are regarded as potential attributes, and

they must satisfy specific constraints. Firstly, the edges connecting them should not

form a self-loop. In addition, we only consider the outward edges that start from

a candidate to its related nodes, since our focus is to discover potential attributes

that the entity can be associated with. However, there are two special relations,

namely ”partOf” and ”derivedFrom”. The ”partOf” relation signifies a whole-part

relationship between a node and its holonym, while the ”derivedFrom” relation

indicates a derivation relationship. For these two relations, we consider the inward

edges that start from the related nodes and connect to the candidates. In this step,

the Python package NetworkX [7] is used to build the subgraphs.

23

doi:10.6342/NTU202303162

CHAPTER 4. FROM REQUIREMENTS TO BOUNDED CONTEXTS 24

4.3.4 Distinguish Entities from Attributes

After building the ConceptNet subgraph of each candidate, the main goal of this

step is to distinguish entities from their attributes. As illustrated in Algorithm 1,

C = {c1, c2, ...cN} denotes all the candidates within a use case, and G{g1, g2, ...gN}

represents their corresponding subgraphs, where N is the number of candidates

within a use case. For ci ∈ C and gi ∈ G, we begin by finding paths from ci to cj

in gi, where j = 1, 2, ...N and j ̸= i. We let P (ci) represent the number of such

paths corresponding to ci. For each use case, the candidate with the largest P is

regarded as the entity, and the remaining candidates are considered its attributes.

If there is no unique candidate with the maximum number of such paths, we allow

users to manually select an entity from all the candidates. The user interface of this

manual selection is shown in Figure 6.2. As for implementation details, we use the

implementation of Dijkstra’s algorithm [5] in NetworkX to find the shortest paths

from a candidate to the other candidates in the subgraph.

During this process, we intentionally ignore specific words like ”name”, ”price”,

”number”, etc. These words are related to a vast array of concepts in ConceptNet,

leading to multiple paths linking them to other candidates. Nevertheless, in most

cases, these words should be viewed as attributes. Therefore, when we encounter

such words, we treat them as attributes.

To demonstrate the process, we take the third use case, [UC-003 : List an item],

as an example. In this use case, there are nine candidates: ”item”, ”name”, ”de-

scription”, ”launch”, ”bidding”, ”photo”, ”reserve”, ”price”, and ”period”. We have

recorded the number of paths connecting each candidate to the other candidates

24

doi:10.6342/NTU202303162

CHAPTER 4. FROM REQUIREMENTS TO BOUNDED CONTEXTS 25

Figure 4.2: Paths to the other candidates: Item

(denoted as P) in Table 4.3. Among these nine candidates, ”item” has the highest

number of such paths, as depicted in Figure 4.2. As a result, it is identified as the

entity for this use case.

Furthermore, there are situations where a use case lacks corresponding candi-

dates, or when the same entity is derived from multiple use cases. In the former

scenario, we exclude those use cases from the current process. However, in the latter

situation, we include all the attributes of those use cases in the entity’s attributes.

4.4 Bounded Context Categorization

Once the entities of the domain have been identified, we proceed to categorize

the flow of use case specifications into bounded contexts. The process is described

as follows:

1. Split the flow into block(s), and for each block

25

doi:10.6342/NTU202303162

CHAPTER 4. FROM REQUIREMENTS TO BOUNDED CONTEXTS 26

2. extract the object(s) from the action(s) corresponding to BFR(s) and IIR(s)

from backend to DB

3. compute the average ConceptNet similarity between the object(s) and each

entity (from the last step)

4. categorize each block into the bounded context corresponding to the entity

with the highest similarity

We begin by splitting the flow of each use case specification into block(s), where

a block represents a complete sub-flow that starts from an action associated with

either an FFR, an EIR, or an IIR from frontend to backend and ends with an action

corresponding to an IIR from backend to frontend or an FFR. For each block, we

extract the objects from the actions corresponding to BFR(s) and IIR(s) from the

backend to the database. This enables us to capture the relevant objects associated

with the backend interactions, which indicate the underlying entities.

Next, for ok,i ∈ Ok = {ok,1, ok,2, ...ok,M}, where ok,i denotes the i-th object within

the k-th block (bk) and M denotes the number of extracted objects within bk, we

compute its similarity to the entities E = {e1, e2, ...eT } derived from the last step,

where T denotes the number of entities. The term ”similarity” refers to the related-

ness provided by the ConceptNet API. Let sk,i,j denotes the similarity between ok,i

and ej. The average similarity of the objects within bk to ej, denoted as Sk,j, can

be computed as:

Sk,j =
∑M

i=1 sk,i,j

M
(4.1)

26

doi:10.6342/NTU202303162

CHAPTER 4. FROM REQUIREMENTS TO BOUNDED CONTEXTS 27

Figure 4.3: The process of categorizing bounded contexts.

We then categorize bk into the bounded context corresponding to eh, where

h = arg max
j

Sk,j (4.2)

This process yields a homonymous bounded context for each entity. In the next

section, we will map these bounded contexts to their corresponding microservice

candidates.

27

doi:10.6342/NTU202303162

CHAPTER 4. FROM REQUIREMENTS TO BOUNDED CONTEXTS 28

Use Case ID UC-003

Use Case Name List an item

Goal Achieve ”Bid on an item”

Requirements

[FFR5: Launch an item]

[BFR3: Manage an item]

[EIR5: User and Item Function Module]

[IIR2: Database and Item Module]

[IIR6: Authentication and Item Module]

[IIR13: Item Module and Item Function Module]

Description Sellers list an item for auction.

Actor Seller

Assumptions

Constraints

Priority High

Pre-conditions [EIR5] WHILE the user is logged in

Post-conditions [FFR5] The system SHALL display the listed item.

Basic Flow

Actor Requirement Action

Frontend [FFR5] 1. The Item Function Module provides an interface for users to list an

item.

Seller [EIR5] 2. The Seller enters the item name, description (optional), photos (op-

tional), starting price, bidding period, and reserve price (optional) and

clicks the “launch” button.

Frontend [FFR5] 3. The Item Function Module checks whether any required field is blank.

Frontend [IIR13] 4. The Item Function Module sends the ⟨⟨Create⟩⟩ request with the item

information the Item Module.

Backend [IIR6] 5. The Item Module sends the ⟨⟨Authentication⟩⟩ request to the Au-

thentication Module to check if the user is authenticated.

Backend [BFR3] 6. The Item Module creates an item based on the entered information.

Backend [IIR2] 7. The Item Module saves the item to the Database.

Backend [IIR13] 8. The Item Module returns the item to the Item Function Module.

Frontend [FFR5] 9. The Item Function Module displays the launched item.

Alternative Flow

Exceptional Flow

3.1 One of the non-optional fields is blank.

Frontend [FFR5] 3.1.1 The Item Function Module displays the message ”some fields are

required”.

3.1.2 Back to basic flow 2.

6.1 The entered information is invalid.

Backend [IIR13] 6.1.1 The Item Module returns Launched Item Fail Error back to the Item

Function Module.

Frontend [FFR5] 6.1.2 The Item Function Module displays the “Failed to launch an item”

error.

6.1.3 Back to basic flow 2.

Use Use Case
[UC-005] View details of an Item

[UC-020] Authentication

Extend Use Case

Table 4.1: An example of the formatted use case specification.

28

doi:10.6342/NTU202303162

CHAPTER 4. FROM REQUIREMENTS TO BOUNDED CONTEXTS 29

Name Symmetric Reason

hasProperty no It connects a noun to an adjective. Outward edges for

adjectives usually come with trivial relations such as

synnonyms, antonyms, distinctFrom, etc., which link

an adjective to another adjective.

symbolOf no It connects an emoji to a noun.

definedAs no It connects a noun to its definition, which usually does

not have outward edges.

etymologicallyDerivedFrom no It connects two concepts from different languages. We

only focus on English words.

receivesAction no It connects a noun to a past participle verb phrase/an

adjective. A past participle usually only has inward

edges with the relation ”receivesAction”.

externalURL no It connects a concept to a URL.

antonym yes We do not care about opposites.

distinctFrom yes We do not care about distinct members of the same

set.

Table 4.2: ConceptNet relations that are ignored in this process.

candidate ci item name description launch bidding photo reserve price period

P (ci) 8 6 6 1 1 2 4 5 5

Table 4.3: Entity candidates and their P score - [UC-003 : List an item]

29

doi:10.6342/NTU202303162

CHAPTER 4. FROM REQUIREMENTS TO BOUNDED CONTEXTS 30

Algorithm 1 Distinguish entities from attributes
Input: c1 . . . cn ∈ C, g1 . . . gn ∈ G

Output: entity (ci)

1: function FindEntity(C, G) ▷ find entity from all the candidates using their subgraphs

2: entity ← []

3: max num← 0

4: Initialize P (c) = 0, for all c ∈ C

5: for i = 1, . . . , n do

6: num path← 0

7: for j = 1, . . . , n do

8: if i == j then

9: continue

10: else if findPath(gi, ci, cj) then ▷ find paths from the current candidate to the other candidates

11: num path← num path + 1

12: end if

13: end for

14: P (ci)← num path

15: max num← max(max num, num path)

16: end for

17: for i = 1, . . . , n do

18: if max num == P (ci) then ▷ find the candidates with the most paths from itself to the other candidates

19: entity.append(ci)

20: end if

21: end for

22: if len(entity) == 1 then

23: return entity[0]

24: end if

25: return C ▷ cannot find a unique one with the most such paths, return all the candidates

26: end function

27: function findPath(G, u, v)

28: if there exists a path from u to v in G then

29: return true

30: end if

31: return false

32: end function

30

doi:10.6342/NTU202303162

Chapter 5

From Bounded Contexts to

Microservices

In this chapter, we will discuss the process of deriving microservices from the

bounded contexts generated in the previous stage. As illustrated in Figure 5.1, the

process involves two main steps: the generation of bounded context descriptions and

the matchmaking between these bounded context descriptions and the microservice

candidates from the microservice candidate pool. The resulting mapping informa-

tion will be stored in the Matchmaking DB for future reference.

5.1 Generate Bounded Context Descriptions

To perform matchmaking between bounded contexts and microservice candi-

dates, we need to generate bounded context descriptions corresponding to the four

31

doi:10.6342/NTU202303162

CHAPTER 5. FROM BOUNDED CONTEXTS TO MICROSERVICES 32

Figure 5.1: From bounded contexts to microservices

components of a microservice candidate as specified by Chen [3]:

• Controller

• Service

• Repository

• DB Schema

We take the generated descriptions of the ”item” bounded contexts as examples.

Controller Description According to Chen [3], a controller description file com-

prises a list of descriptions for the controller methods, which contains two fields:

”controllerName” and ”httpMethod”. However, due to limited information available

in our bounded contexts, we use the use case name to fill in the ”controllerName”

field, as there are usually homonymous controller methods for use cases. For the

”httpMethod” field, we leverage the stereotypes defined in our actions corresponding

to IIR from the frontend to the backend: GET, POST, PUT, and DELETE, which

represent the HTTP methods used for different types of requests. An example of a

32

doi:10.6342/NTU202303162

CHAPTER 5. FROM BOUNDED CONTEXTS TO MICROSERVICES 33

Figure 5.2: Item bounded context - controller description JSON file

controller description is presented in Figure 5.2, where the use case name is used to

identify the controller, and the appropriate HTTP method is assigned based on the

stereotype associated with the corresponding IIR.

Service Description A service description file comprises a list of descriptions for

the service methods, which include a field, called ”methodName” which represents

the name of a service method. Since in the Model-View-Controller architecture,

the Service class acts as an intermediary between the Model and the Controller, we

observe that in the naming of the service methods, it is common practice to use the

33

doi:10.6342/NTU202303162

CHAPTER 5. FROM BOUNDED CONTEXTS TO MICROSERVICES 34

Figure 5.3: Item bounded context - service description JSON file

same name for the service methods as the corresponding controller methods. Given

this convention, when generating the service description file, we also use the use

case name to fill in the ”methodName” field. An example of a service description is

presented in Figure 5.3.

Repository Description A repository description file comprises a list of descrip-

tions for the repository methods, which include a field, called ”methodName”, which

represents the name of a repository method. To generate descriptions based on our

derived bounded contexts, we leverage the stereotypes defined in the actions associ-

ated with IIRs between the backend and the database. Examples of such stereotypes

may include ”find,” ”delete,” ”save,” and others. Each stereotype corresponds to a

34

doi:10.6342/NTU202303162

CHAPTER 5. FROM BOUNDED CONTEXTS TO MICROSERVICES 35

Figure 5.4: Item bounded context - repository description JSON file

specific type of operation that the system can perform when interacting with the

database. An example of a repository description is presented in Figure 5.4.

DB Schema Description A database schema description file comprises a list of

descriptions for the data models, each of which includes two fields: ”schemaName”

and ”dependent”. In our approach, we leverage the information gathered during the

entity extraction process to map to the fields in the database schema description

file. The entities we derive from the domain events serve as the data models, and

their names are used to populate the ”schemaName” field in the database schema

description. Furthermore, the attributes we identify for each entity correspond to

the related tables in the database. As a result, we populate the ”dependent” field in

the database schema description with the names of the attributes that are associated

with each data model. An example of a repository description is presented in Figure

5.5.

35

doi:10.6342/NTU202303162

CHAPTER 5. FROM BOUNDED CONTEXTS TO MICROSERVICES 36

Figure 5.5: Item bounded context - DB schema description JSON file

5.2 Get Microservice Candidates by Matchmak-

ing

Once the bounded context descriptions have been generated, we proceed to sub-

mit a request to the matchmaking server [3] for each bounded context. These re-

quests include the corresponding bounded context description files. The matchmak-

ing server then performs a graph-based matchmaking algorithm and returns a list

of microservice candidates ranked by their similarities.

In particular, when the matchmaking server receives a request containing the

bounded context descriptions, it proceeds to construct a graph for each of the four

descriptions provided in the request. Simultaneously, the server also retrieves the

microservice candidates from the microservice candidate pool. For each microservice

candidate, it constructs four graphs, corresponding to the four components of the

36

doi:10.6342/NTU202303162

CHAPTER 5. FROM BOUNDED CONTEXTS TO MICROSERVICES 37

Figure 5.6: The microservice with the highest similarity to the Item Bounded Con-

text.

microservice. Next, the server performs the alignment process, where it matches the

nodes of the request graph with the nodes of each microservice candidate graph for

each component. After the alignment, the server proceeds to compute the similarity

between the graph corresponding to the request and each microservice candidate

graph. As a result, it yields four similarities for each microservice candidate, cor-

responding to the four components. To aggregate the similarities from the four

components, the server calculates a weighted similarity score for each microservice

candidate. Finally, it returns a sorted list of microservice candidates.

To demonstrate, figure Figure 5.6 illustrates the microservice candidate with the

highest similarity to the Item Bounded Context.

37

doi:10.6342/NTU202303162

Chapter 6

User Interface

To enable seamless interaction with our system, we develop a front-end client

that controls the process flow. With this front-end interface, users can upload files

as input to the process, edit the intermediate entity results, and view the matched

microservice candidates.

Upload Requirements and Use Case Specifications To adopt our proposed

approach, users are required to upload system requirements in EARS [9] format and

the formatted use case specification. As shown in Figure 6.1, we have developed an

interface for uploading files.

Edit Entity List As described in Section 4.3, there exist scenarios where the sys-

tem faces challenges in distinguishing entities from all the candidates. To address

this, we have developed an intuitive interface that allows users to manually select

38

doi:10.6342/NTU202303162

CHAPTER 6. USER INTERFACE 39

Figure 6.1: The UI for uploading requirements and use case specifications

entities when needed. Moreover, when the system does not extract all the desired

entities successfully, users have the option to use the interface to specify their ex-

pected entities. This ensures that essential entities are not overlooked, facilitating

a more accurate process. The interface is shown in Figure 6.2.

Display Resulting Microservice Candidates As discussed in Section 5.2, the

matchmaking server [3] will return a list of microservice candidates corresponding to

each bounded context based on the received requests. These microservice candidates

are ranked according to their similarity to the corresponding bounded context. To

provide users with valuable insights, we have developed an interface that showcases

the matchmaking results. Upon accessing the interface, users can explore the list

of microservice candidates associated with each bounded context. The interface

allows users to delve deeper into individual microservice candidates to explore their

characteristics.

39

doi:10.6342/NTU202303162

CHAPTER 6. USER INTERFACE 40

Figure 6.2: The UI for editing entity list

40

doi:10.6342/NTU202303162

CHAPTER 6. USER INTERFACE 41

Figure 6.3: The UI for displaying resulting microservice candidates

41

doi:10.6342/NTU202303162

Chapter 7

Conclusion

In this paper, we propose a two-stage process that derives microservices from

requirements. The process aids in defining bounded contexts in a systematic ap-

proach. Moreover, the process guarantees that the connections between bounded

contexts and microservices are adaptable and versatile. By applying the concepts of

DDD [6], we ensure that the mapped microservices align with the business processes

of a system.

42

doi:10.6342/NTU202303162

Chapter 8

Future Work

In the future, we plan to automate the entire process without any human inter-

vention. Currently, there are certain situations where the system faces challenges in

distinguishing entities from noun candidates. For this reason, users are required to

manually select the entities. Additionally, the generated bounded context descrip-

tions provide limited information that can be used for matchmaking microservices.

We are convinced that there is still untapped potential in the existing data, and

there might be valuable information that has not been included in the current pro-

cess. Therefore, our focus will be on further exploring the requirements to enhance

the bounded context descriptions, making them more informative.

As part of our future work, we intend to explore the potential of domain models.

Despite the ambiguity in deducing microservices from them, we believe that they

remain valuable assets in deriving microservices, as they represent the abstraction

of the business domain. Consequently, we will also investigate the systematic design

43

doi:10.6342/NTU202303162

CHAPTER 8. FUTURE WORK 44

of domain models and their mapping to microservices.

44

doi:10.6342/NTU202303162

Bibliography

[1] D. Bajaj, A. Goel, and S. C. Gupta. Greenmicro: Identifying microservices from use

cases in greenfield development. IEEE Access, 10:67008–67018, 2022.

[2] M. Bevilacqua and R. Navigli. Breaking through the 80% glass ceiling: Raising

the state of the art in word sense disambiguation by incorporating knowledge graph

information. In Proceedings of the 58th Annual Meeting of the Association for Com-

putational Linguistics, pages 2854–2864, Online, July 2020. Association for Compu-

tational Linguistics.

[3] L.-S. Chen. From monolithic to microservice: A dependency decoupling approach.

Master’s thesis, National Taiwan University, 2023.

[4] Conceptnet-lite. https://github.com/ldtoolkit/conceptnet-lite.

[5] E. W. Dijkstra. A note on two problems in connexion with graphs. Numerische

mathematik, 1(1):269–271, 1959.

[6] E. Evans. Domain-Driven Design: Tackling Complexity in the Heart of Software.

Addison-Wesley, 2004.

[7] A. A. Hagberg, D. A. Schult, and P. J. Swart. Exploring network structure, dynamics,

and function using networkx. In G. Varoquaux, T. Vaught, and J. Millman, editors,

45

doi:10.6342/NTU202303162

Proceedings of the 7th Python in Science Conference, pages 11 – 15, Pasadena, CA

USA, 2008.

[8] M. Honnibal and I. Montani. spaCy 2: Natural language understanding with Bloom

embeddings, convolutional neural networks and incremental parsing. To appear, 2017.

[9] A. Mavin, P. Wilkinson, A. Harwood, and M. Novak. Easy approach to require-

ments syntax (ears). In 2009 17th IEEE International Requirements Engineering

Conference, pages 317–322, 2009.

[10] F. Rademacher, J. Sorgalla, and S. Sachweh. Challenges of domain-driven microser-

vice design: A model-driven perspective. IEEE Software, 35(3):36–43, 2018.

[11] R. Speer, J. Chin, and C. Havasi. Conceptnet 5.5: An open multilingual graph of

general knowledge, 2018.

[12] H. Vural and M. Koyuncu. Does domain-driven design lead to finding the optimal

modularity of a microservice? IEEE Access, 9:32721–32733, 2021.

46

