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ABSTRACT

 

 This paper devises a transformation scheme to protect data privacy in the case that 

data has to be sent to the third party for analysis purpose. Most conventional 

transformation schemes suffer from two limits, i.e. algorithm dependency and 

information loss. In this paper, we propose a novel privacy preserving scheme without 

these two limitations. This transformation algorithm is referred to as FISIP: FIrst and 

Second order sum and Inner product Preservation. Explicitly, as will be proved, by 

preserving three basic properties, (i.e. first order sum, second sum, and inner products) 

of private data, algorithms whose measures can be derived from the three properties can 

still be applied to public data transformed by FISIP. Specifically, distance and 

correlation can be derived from the three properties. Hence, distance-based algorithms 

and correlation-based algorithms can be applied. Evaluation of FISIP is done in two 

parts. The first part is data usefulness. The second part is data robustness. The two goals 

are intrinsically difficult to achieve at the same time. However, FISIP attains these two 

goals shown by our experimental results later. In all, FISIP is able to provide a 

transformation that preserves the distance and the correlation for the original private 

data after their transformation to the public data. As a result, while the privacy is 

protected, the mining quality from the transformed (public) data can be obtained to be 

the same as that from the original (private) data. 

 

Index Terms — data mining, privacy preserving, distance-based, correlation-based  
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Chapter 1

Introduction

Privacy infringement is an important issue in data mining. People or organizations usually tend not to

provide their data or locations because of the privacy concern [14] [20]. Hence, to conduct effective

data mining, privacy preservation has become an research issue to address.

Note that there are two major limitations in most privacy preserving approaches. The first limitation

is due to the algorithm dependency in that the protection schemes are intrinsically incorporated into

certain mining algorithms. Such protection schemes are hard to be generalized for other algorithms.

The second limitation is information loss. Most algorithms add some controlled noise in their private

data or truncate part of private data to make them unrecoverable to the original one. Though privacy

is thus protected, it usually has side effects: the mining results are somewhat altered due to these

changes. In this paper, we propose a novel privacy preserving scheme without these two limitations.

This transformation algorithm is referred to as FISIP: FIrst and Second order sum and Inner product

Preservation.

Explicitly, as will be proved, by preserving three basic properties, (i.e. first order sum, second sum,

and inner products) of private data, algorithms whose measures can be derived from the three properties

can still be applied to public data transformed by FISIP. Specifically, distance and correlation can be

derived from the three properties. Hence, distance-based algorithms and correlation-based algorithms

can be applied. To be more concrete, we list part of practical and applicable algorithms below.

• The most well-known clustering algorithm, k-means [16] is applicable since it only deals with
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distance. K-medoids and fuzzy c-means are also the same case. Another clustering algorithm, for

example, DBSCAN [7] is also applicable since the preserved distances can keep the relative den-

sity of transformed data. Correlation clustering [1] [5] is also one of the applications. The most

well-known classification algorithm, kNN can still be applied because it is neighbor-based, or to

be more concisely, distance-based. Another well known classification, support vector machine

is also applicable, because inner products between vectors are also the same and then suitable

kernel functions can be used.

• Feature selection is an important task in pattern recognition and machine learning. It can re-

duce redundant information and enhance program performance. There are many types of feature

selection and here we focus on correlation-based feature selection (CFS) [8]. Note that the prop-

erties we preserved here are horizontally-partitioned based where correlations between records

(instead of between attributes) are kept to be the same. Note that when we want to preserve

vertically-partitioned properties, and we can simply transpose private data before transformation.

• Sometimes, input data are not suitable for algorithm’s needs and require to be normalized or

standardize before feeding into algorithms. However, the existence of outliers will make process

of normalization or standardization biased and lead to inferior results. Outliers can be detected

by checking the distances between records [4] [11], which can be carried out faithfully if FISIP is

employed since the corresponding distance is preserved. When distances are preserved, outliers

remain.

Moreover, if some ingenious algorithms are invented in the future and their measurement only

depends on the properties we already preserved, that algorithm can still be applied and does not need

any special privacy-preserving procedures.

Evaluation of FISIP is done in two parts. The first part is data usefulness. Does the transformed

public data preserve the relations of original private data? The second part is data robustness. Is the

transformed data robust enough against reconstruction attack? The two goals are intrinsically difficult
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to achieve at the same time. However, FISIP attains these two goals shown by our experimental results

later.

In all, by preserving some mathematical properties, FISIP is able to provide a transformation that

preserves the distance and the correlation for the original private data after their transformation to the

public data. As a result, while the privacy is protected, the mining quality from the transformed (public)

data can be obtained to be the same as that from the original (private) data.

The rest of this paper is organized as follows. Preliminaries are given in Chapter 2 where related

work is reviewed and the problem description is given. Theoretical properties of FISIP are derived in

Chapter 3, and systematic procedures to construct FISIP transformations are presented in Chapter 4

and Chapter 5. Experimental studies are conducted in Chapter 7 and this paper concludes with Chapter

8.
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Chapter 2

Preliminaries

2.1 Related Work

Most privacy preservation schemes can be roughly categorized into two fields. The first field targets on

hiding the data entities of published database. This field of research becomes popular in recent years

because of the threat of quasi-identifiers.

It was reported that 87% of US citizen can be uniquely identified by only their zip code, date of

birth and gender [19]. Even though their names or social security numbers are truncated from published

database, identities of citizen may still be found via easily obtainable fields by linking attacks.

Typical solutions to this concern are based on the k-anonymity model. The published data set is

generalized such that there are at least k records in each group of quasi-identifiers. Other well-known

models for protecting data entities include �-diversity [10] and �-closeness [12], etc.

The second field of privacy preservation focuses on hiding data values, instead of entities. Most

well-known schemes in this field are based on data perturbation [3] [20]. Consider we draw n values

�1� �2� � � � � �� from original, private data distribution �� and perturb them by adding � independent

values 	1� 	2� � � � � 	� drawn by a random variable 
 . As long as the probability distribution function of


 is known, the distribution of X can be reconstructed by �1 + 	1� �2 + 	2� � � � � �� + 	�.

However, even the distribution can be reconstructed; it cannot guarantee to have the same mining

result from the private database and the reconstructed public database. It also cannot hold analytical

properties, such as having the first order sum and the second order sum be the same under privacy
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preservation transformation. Anonymity-based preservation also suffers from this drawback, since the

process of anonymization generalized the original data values into ambiguous data intervals. Some

information is lost, thus making the mining result from the transformed data be different from that

from the original private database.

In most cases, we want to preserve basic properties that are only critical to algorithms. Recon-

struction based preservation is not able to preserve such properties. For example, the most well-known

data mining algorithms, such as k-means and kNN, use distance as basic metric function for clustering

and classification. The above reconstruction approach will result in distance error depending on the

variance of random variable 
 .

Some studies have been reported on preserving such basic properties. For instance, condensation

approach [2] condenses the data into multiple groups, which have at least k records, say, {�1� ������}
and a record �� contains d dimensions as (�1� � ���� ��� ). Within each condensed group, the vertically

partitioned first order sum
P�

�=1 �
�
� and second order sum

P�
�=1

¡
���
¢2 are preserved.

There is another work on [17] that preserves distances by Fourier transform. It horizontally trans-

forms each record into frequency domain and vertically truncates small coefficients to strike on a trade-

off between mining quality and privacy preservation. Note, however, that from the point of view of

mining quality, it cannot produce exact mining result between private and public database. From the

point of view of mining versatility, it preserves only distances, which is more limited and less satisfac-

tory than our works.

The problem we want to solve is to find a transformation that is both distance preserving and

correlation preserving. The works in [2] [17] cannot preserve inner products, and thus cannot preserve

correlation. The work in [15] can preserve inner products and correlation, but the private data publisher

needs to horizontally normalize his private data to zero mean. The first order sums of private records

are lost! Relations between vertically-partitioned attributes are lost, too. Our work needs no such

normalization and we do not lost the information of first order sum and relations between attributes.

This is due to the attracting property of our spreading matrix, as will be introduced later, the sum of

each column is equal to one. As will be proved in Chapter 3, FISIP can preserve inner products, and is
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thus able to preserve correlation. To the best of our knowledge, our work in this paper is the first work

that can preserve correlation without normalization.

Studies in privacy preservation can be classified into two fields as stated above. This paper focuses

on the first type of problem and targets at numerical data.

2.2 Problem Description

In this thesis, we want to devise a transformation that preserves the distance and the correlation for the

original private data after their transformation to the public data. Moreover, protection against possible

attacks via matrix perturbation is also considered. To facilitate our presentation, we here introduce the

following definitions.

Definition 1: Distance Preserving Transformation: In k-dimensional vector space, given � points

{�1� �2� ���� ��}, a transformation �� that can produce � points {1� 2� ���� �}, such that ����(�� �) =

����(��� ��), � = ��(��), 1 � �� � � � is defined as distance preserving transformation.

The distance metric used in this paper is Euclidean distance. However, the results are of general

usefulness since it has been shown that most distance metrics can be reduced to Euclidean form [13].

Definition 2: Correlation Preserving Transformation: In k-dimension vector space, given �

points {�1� �2� ���� ��}, a transformation �� that can produce � points {1� 2� ���� �}, such that ����(�� �)

= ����(��� ��), � = ��(��), 1 � �� � � � is defined as correlation preserving transformation, where

����(�� 	) denotes the correlation of � and 	.

For vectors x = [��] � y = [	�], 1 � � � �� the definition of the correlation is formulated as below,

which is commonly adopted in the literature [18],

�
P�

�=1 ��	� �
P�

�=1 ��
P�

�=1 	�q
�
P�

�=1 �� � (
P�

�=1 ��)
2

q
�
P�

�=1 	� � (
P�

�=1 	�)
2

�

Example 1: Suppose we have four 4-dimensional private column vectors, �1 to �4, and we want to

transform them into public vectors via distance and correlation preserving transformation � , then � can

produce four corresponding public column vectors, 1 �� 4. The construction of A will be described
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in Chapter 4.

£
�1 �2 �3 �4

¤
=

�
���
0 3 1 7
3 5 1 6
2 6 6 7
4 0 2 8

�
���

£
1 2 3 4

¤
= �

£
�1 �2 �3 �4

¤
=

�
���
4�5 4�0 4�0 7�0
1�5 2�0 4�0 8�0
2�5 1�0 �1�0 7�0
0�5 7�0 3�0 6�0

�
���

� =

�
���
�0�5 0�5 0�5 0�5
0�5 �0�5 0�5 0�5
0�5 0�5 �0�5 0�5
0�5 0�5 0�5 �0�5

�
���

The distance of each pair is preserved. ����(�1� �2) = ����(1� 2) = 6�7082� For example, in the case

of kNN, the nearest three neighbors of �2 are, in order, �3, �1, and �4. In transformed domain, the

nearest three neighbors of 2 are, in order, 3, 1, and 4. For correlation preserving, ����(�1� �2) =

����(1� 2) = �0�3320� ¥

7



Chapter 3

Theoretical Properties of FISIP

We first consider the distance preserving. For private vectors �� and public vectors �, the distance

between public vectors can be written as (� � �)
| (� � �) = (��� ��)|�|�(��� ��)� ��� � � ��×1.

If A is orthogonal, then the distance is preserved. However, it can not guarantee the preservation of

correlation between vectors. Before we explore the preservation of correlation, we define the FISIP

transformation as follows.

Definition 3: FISIP Transformation: A linear transformation with its matrix representation � is

called a FISIP transformation if A has the following three properties: � = ���� � � ��×�� � =£
�1 �2 ��� ��

¤
� �� ��� �� � ��×1� �� = [��	] � 1 � � � �� ��	 � ��

1.
�X

	=1

��	 = 1

2.
�X

	=1

�2�	 = 1

3.
�X

	=1

��	��	 = 0� ��� � 6= ��

We then have the following three lemmas for a FISIP transformation.

Lemma 1 (First Order Sum Preservation): For a FISIP transformation � = ��� , it follows that
�X

	=1

�	 =
�X

	=1

��	�
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Proof. We expand the expression of
�X

	=1

�	 and checks if it can be reduced to
�X

	=1

��	�

�X
	=1

�	 =
�X

	=1

(�)	

=
�X

	=1

�
			
£ �1 �2 · · · ��

¤
�
����
��1
��2
...
���

�
����
�
���

	

=
�X

	=1

[��1�1	 + ��2�2	 + � � �+ �����	]

=

"
��1

�X
	=1

�1	 + � � �+ ���

�X
	=1

��	

#

= ��1 + ��2 + · · ·+ ��� =
�X

	=1

��	�

Lemma 2 (Second Order Sum Preservation): For a FISIP transformation � = ���, it follows

that
�X

	=1

2�	 =
�X

	=1

�2�	�

Proof. We expand the expression of
�X

	=1

2�	 and checks if it can be reduced to
�X

	=1

�2�	�

�X
	=1

2�	 =
�X

	=1

(�)
2
	

=
�X

	=1

�
			
£ �1 �2 · · · ��

¤
�
����
��1
��2
...
���

�
����
�
���
2

	

=
�X

	=1

[��1�1	 + ��2�2	 + � � �+ �����	]
2

=

"
�2�1

�X
	=1

�21	 + � � �+ �2��

�X
	=1

�2�	

#

= �2�1 + �2�2 + · · ·+ �2�� =
�X

	=1

�2�	�
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Lemma 3 (Inner Product Preservation): For a FISIP transformation � = ���, it follows that
�X

	=1

�	�	 =
�X

	=1

��	��	�

Proof. We expand the expression of
�X

	=1

�	�	 and checks if it can be reduced to
�X

	=1

��	��	�

�X
	=1

�	�	 = � · � = |�� = �|��
|���

= �|�

�
����
�|1
�|2
...
�|�

�
����£ �1 �2 · · · ��

¤
��

= �|� �� = �� · �� =
�X

	=1

��	��	�

These three lemmas lead to Theorem 1, which states the property of distance and correlation pre-

serving for a FISIP transformation.

Theorem 1 (Property of FISIP transformation): FISIP transformation is both distance and cor-

relation preserving transformation.

Proof. For distance preserving, we can show that (� � �)
| (� � �) = (�� � ��)

|�|�(�� � ��) =

(�� � ��)
| (�� � ��) � therefore, distance is preserved.

For correlation preserving, it follows from Lemma 1, Lemma 2, and Lemma 3 that
�X

	=1

�	 =

�X
	=1

��	�
�X

	=1

2�	 =
�X

	=1

�2�	�
�X

	=1

�	�	 =
�X

	=1

��	��	� for a FISIP transformation. The correlation

preservation thus follows.
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Chapter 4

Perfect FISIP Transformation

Note that an orthogonal matrix � =
£
�1 �2 ��� ��

¤
� �� � ��×1 has the properties of

�X
	=1

�2�	 =

1�
�X

	=1

��	��	 = 0� � 6= �, However, an orthogonal matrix A may not have the property of
�X

	=1

��	 =

1� Finding a FISIP matrix which corresponds to a FISIP transformation was not solved before. In

Section 4.1, we devise a general procedure to construct FISIP matrices and fast computation in Section

4.2. Transformation proposed in this chapter can perfectly preserve the distance and correlation of data,

and therefore, we name the transformation introduced in this chapter as Perfect FISIP Transformation,

or simply Perfect FISIP. We will introduce another type of transformation, Strong FISIP in Chapter 5.

4.1 General Form Realization

We firstly define a form of base matrix, which is referred to as spreading matrix, and prove that it is a

form of FISIP matrices.

Definition 4: Spreading matrix: A k-dimensional spreading matrix, denoted by �[�], is defined as

a k by k matrix as constructed by the following formula. Any row permutations of spreading matrices

are also spreading matrices.

1. Basic type �[�] =

�
������

2��
�

2
�

2
�

· · · 2
�

2
�

2��
�

2
�

· · · 2
�

2
�

2
�

2��
�

· · · 2
�...

...
... . . . ...

2
�

2
�

2
�

· · · 2��
�

�
������ �
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2. Composition type: �[�]� =

�
������

�[�1] 0 0 · · · 0
0 �[�2] 0 · · · 0
0 0 �[�3] · · · 0
...

...
... . . . ...

0 0 0 · · · �[��]

�
������

3. Derived type: any permutation of the basic type or composition type.

For �[�] = [���]� 1 � �� � � �� ��� =
2��
�
� ��� =

2
�

for � 6= �� For example, FISIP matrices

constructed this way are

�[2] =

�
0 1
1 0

¸
� �[3] =

�
� �1

3
2
3

2
3

2
3

�1
3

2
3

2
3

2
3

�1
3

�
� �

�[4] =

�
���

�2
4

2
4

2
4

2
4

2
4

�2
4

2
4

2
4

2
4

2
4

�2
4

2
4

2
4

2
4

2
4

�2
4

�
���

Theorem 2 states that spreading matrices are FISIP matrices.

Theorem 2 (Property of �[�]): A linear transformation with a spreading matrix representation �[�]

is a FISIP transformation.

Proof. For a k by k spreading matrix �[�], the first order sum of each column is 2��
�
+ 2

�
+ · · ·+ 2

�
=

2��
�
+ 2

�
× (� � 1) = 1� The second order sum of each column is

¡
2��
�

¢2
+
¡
2
�

¢2
+ · · · + ¡ 2

�

¢2
=¡

2��
�

¢2
+
¡
2
�

¢2× (�� 1) = 4�4�+�2+4��4
�2

= 1� Each pair of inner product is 2��
�
× 2

�
+ 2

�
× 2��

�
+ 2

�
×

2
�
+· · ·+ 2

�
× 2

�
= 8�4�

�2
+ 4

�2
×(��2) = 0. Since spreading matrices satisfies the three properties of FISIP

transformation, a linear transformation with its matrix representation �[�] is FISIP transformation.

4.2 FISIP Matrices for Fast Computation

Note that there are other methods conceivable to do the transformation. One can construct an high

dimensional FISIP matrix directly or use low dimensional spreading matrix as a building block to

construct a high dimensional FISIP matrix. The advantage of using low dimensional spreading matrix

as base matrix is that the constructed matrix has more zeros, which can reduce the calculation time of
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public vectors. Hence we next propose a procedure to construct FISIP matrix for fast computation and

introduce the method by Example 2.

Example 2: Suppose we have two private 8-dimensional vectors, say, �1 =[ 12 32 48 4 -4 6 58 74

]|and �2 =[ 26 18 16 2 11 72 -31 20 ]| and we want to transform them to public vectors �1, �2.

The method is as follows. We use the 4-dimensional spreading matrix, �[4]� to build the 8-dimensional

FISIP matrix, ��
�.

�1 = ��
��1 = ��

�
������

�[�] 0 0 · · · 0
0 �[�] 0 · · · 0

0 0 �[�]
...

...
...

... 0
. . . 0

0 0 · · · 0 �[�]

�
���������1

= ��

�
�����������

�1
2

1
2

1
2

1
2

0 0 0 0
1
2

�1
2

1
2

1
2

0 0 0 0
1
2

1
2

�1
2

1
2

0 0 0 0
1
2

1
2

1
2

�1
2

0 0 0 0
0 0 0 0 �1

2
1
2

1
2

1
2

0 0 0 0 1
2

�1
2

1
2

1
2

0 0 0 0 1
2

1
2

�1
2

1
2

0 0 0 0 1
2

1
2

1
2

�1
2

�
�����������
���1

=

�
�����������

�1
2

1
2

1
2

1
2

0 0 0 0
0 0 0 0 1

2
�1
2

1
2

1
2

1
2

1
2

�1
2

1
2

0 0 0 0
0 0 0 0 1

2
1
2

�1
2

1
2

0 0 0 0 �1
2

1
2

1
2

1
2

1
2

�1
2

1
2

1
2

0 0 0 0
1
2

1
2

1
2

�1
2

0 0 0 0
0 0 0 0 1

2
1
2

1
2

�1
2

�
�����������
���1

=

�
�����������

0 1
2

0 1
2

0 �1
2

0 1
2�1

2
0 1

2
0 1

2
0 1

2
0

0 1
2

0 1
2

0 1
2

0 �1
2

1
2

0 1
2

0 1
2

0 �1
2

0
1
2

0 1
2

0 �1
2

0 1
2

0
0 �1

2
0 1

2
0 1

2
0 1

2

0 1
2

0 �1
2

0 1
2

0 1
2

1
2

0 �1
2

0 1
2

0 1
2

0

�
�����������
�1

= [ 52 45 �16 �1 61 26 54 9 ]|

13



�� =

�
�����������

1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1

�
�����������

�� =

�
�����������

0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0

�
�����������

�2 = ��
��2

= [ �16 �15 36 42 0 38 54 �5 ]|

�� and �� are the row and column permutation matrices choosed randomly by private data publisher.

For example, it can permute row 2 to 6, row 4 to 7, column1 to 6 and column 3 to 8 to break the block

structure. After calculation, we get �1=[ 52 45 -16 -1 61 26 54 9 ]| and �2 =[ -16 -15 36 42 0 38 54 -5

]|. For 8-dimensional case, it will preserve properties listed below

TABLE 4.1
Preserved properties of private, public pairs

�1�2

μ
8P
�=1

�1��
8P
�=1

�2�

¶ μ
8P
�=1

�21��
8P
�=1

�22�

¶
8P
�=1

�1�2 �1�2 �12

�1�2 (230� 104) (12380� 7926) 1734 129�7613 �0�3701
�1�2 (230� 104) (12380� 7926) 1734 129�7613 �0�3701

The computation of transforming one 8-dimensional private vector by using�[8] directly needs 8×8
multiplications and 8× 7 additions, but it can be reduced to 8× 4 multiplications and 8× 3 additions

14



by using ��
�� as stated above. For a database with ten thousand records, we save 10� 000 × 8 × 4
multiplications and 10� 000× 8× 4 additions. ¥

In general, for  = �[�]� and � � � ��×1, each element of  needs � multiplications and � � 1
additions, i.e. �(� ×���� + (� � 1) × ���). Here we denote the computation of multiplication as

���� and computation of addition as ���. To obtain the vector of , the computation needs �(�2 ×
����+ � × (� � 1)× ���). However, each element of  does not necessarily need � multiplications

and � � 1 additions. The computation for each element of  can be reduced to � multiplications

and � � 1 additions, where � is a constant. Thus, the computation of obtaining  can be reduced to

�(�× �×����+ �× (�� 1)× ���) = �(�×����+ �× ���). If the database contains � private

records, the computation is �(�× �×����+�× �× ���)� not �(�× �2×����+�× �2× ���)�

4.3 Variation of Transformations

We have already shown how to generate public vectors from private vectors with distance and correla-

tion preservation, and now we are going to evaluate how well the privacy is protected. How to quantify

the protection of privacy? Here we define it as the number of possible variations of private vectors

when public vectors are given.

[�] = ������	���� [��]

[��] = ��1� ��1���	���
�1
� [�]

= ���
|
���	����[�]

We can calculate it by observing the possible variations of transformation matrix ������	���� and find

the number of transformation increases factorially as � increases with a lower bound of �!, which means

finding real private vectors from possible private vectors is very infeasible.
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Chapter 5

Strong FISIP Transformation

5.1 Privacy Enhancement via Matrix Perturbation

Special protections can be implemented to prevent attackers from doing reverse transform. Given pub-

lic data, what can attackers do to get the correct private counterpart? At first, independent component

analysis (ICA) [9] seems to be an effective attack in this situation, however, it is not practical. The re-

quirement of ICA is that the input data needs to be not correlated, for example, audio signal, but records

in databases typically have some correlations between attributes and thus make ICA an inefficient attack

[6].

Let us consider a more effective attack: the attacker has a few samples of private data and its

corresponding public data. This kind of attack is referred to as known private data attack, or simply

known data attack. Known data attack is more threatening, and we will propose a counter measure to

prevent the public data being inverse-transformed.

Consider an �-dimensional vector space and the attacker has already acquired �, � � �, lin-

early independent private vectors and their transformed versions. Typically, the attacker can calculate

remaining private vectors by linear combination. Consider the following example.

Example 4: Suppose the attacker knows the following transforming pair�
���
�1
�2
�3
�4

�
��� =

�
���
1 9 8 2
8 7 9 1
1 0 1 5
9 1 2 0

�
���
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�
���
1
2
3
4

�
��� =

�
���
9 1 2 8
4�5 5�5 3�5 11�5
2�5 3�5 2�5 1�5
�3 5 4 6

�
���

and now he gets the public vector u=[ 10 -3 21 4]. He doesn’t know what the private vector is, but he

can do the following and and find that

�
			

�
			

�
���
9 1 2 8
4�5 5�5 3�5 11�5
2�5 3�5 2�5 1�5
�3 5 4 6

�
���
>����

�1�
���
�
���
10
�3
21
4

�
���

=
£
10�48 �12�24 0�65 10�31

¤|
�

 = 10�481 � 12�242 + 0�653 + 10�314
= 10�48��1 � 12�24��2 + 0�65��3 + 10�31��4
= �(10�48�1 � 12�24�2 + 0�65�3 + 10�31�4)�

� = (10�48�1 � 12�24�2 + 0�65�3 + 10�31�4)

=
£
6 19 �5 12

¤>
¥

Defensive manipulations to avoid such kind of attack can be done if we are willing to give up some

mining accuracy. If each record is originally multiplied by different A, then corresponding records

will not be calculated easily. Methods for making different transformation matrix � is quite easy and

efficient. The method that we produce different A is to use data perturbation. Special perturbation can

be done on A to preserve first order sum by making the sum of each column’s perturbation equal to

zero. For example, we denote the perturbed � as �0. for each column � of �, we randomly select row

� and set element of �0 as �0�� = ��� � 2�
��, �0�� = ��� +
2����

��1 � ���� � 1 for � 6= � and � is the number

17



of rows. The sum of each column of �0 is

�0�� +
X
� 6=�

�0�� =
¡
��� � 2�
��

¢
+
X
� 6=�

μ
��� +

2�
��

�� 1
¶

= ��� +
X
� 6=�

��� � 2�
�� + (�� 1)× 2�
��

�� 1 = 1�

Therefore, the sums of transformed vectors are still equal to private vectors. We can formulate the

estimation error analytically as follows. For k-dimensional vectors, the attack has k linearly indepen-

dent vectors, �1 �� ��, at hand and he want to find the corresponding unknown private vector � by the

known public vector . We assume that  = ��� 1 = �1�1� · · · � � = ����� Therefore, the error

of the estimated private vector �
��, is

|�
�� � �| =
¯̄̄
¯̄ �X
�=1

 ��� ���1 

¯̄̄
¯̄

=

¯̄̄
¯̄ �X
�=1

 ��� ���1 (
�X
�=1

 ��)

¯̄̄
¯̄

=

¯̄̄
¯̄ �X
�=1

 ��� ���1 (
�X
�=1

 �����)

¯̄̄
¯̄

=

¯̄̄
¯̄ �X
�=1

 �(!� ���1 ��)��

¯̄̄
¯̄

If each record is transformed by the same �, i.e., � = ��, then the error is zero. Otherwise, the error

will increase as the dimension k increases. We can see from Fig. 7.8 that the perturbation method can

effectively produce different � and make the estimation error large.
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Chapter 6

Dimension Adaptation

It is desired that data owner can adjust the dimension of its published data since the dimension itself

may sometimes be sensitive, too. Moreover, suppose attackers know the permutation matrices used in

transformation, they cannot do reverse transformation because the dimension of private data must be

known for perfect reconstruction. Here we propose a new modification of our solution to this concern.

6.1 Up Dimension: from � to � + �

For private vectors with dimension �, it can be easily transform to � + � dimensions (� � "+) by

concatenating c-dimensional zero vector. The permutation matrix, �� and ��, are both k+c dimensions.

�
����

1
2
...

�+�

�
���� = ���

[�+�]��

�
������������

�1
�2
...
��
0
0
...
0

�
������������

For the case of dimension expansion, distances are still perfectly preserved, but the change of

dimension varies a coefficient in correlation’s formula, and thus correlation is no longer preserved.
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6.2 Down Dimension: from � to � � �

We can lower the dimension of public data by the following.�
����

1
2
...

���

�
���� = ����
���

�
����
�1
�2
...
��

�
���� �

where��
� is
£
�[���]| �1 �2 · · · ��

¤
� �� � ����� �� � �(���)(���)� �� � ���� If��

�
���
� =

!�, then distances are still preserved from our previous proof. However, we can not find such matrix

��
� since in �� � dimensional vector space, we can only find �� � orthogonal bases. In other words,

for the criterion
���X
	=1

��	��	 = 0� � 6= �, we can only find � � �, not �, different column vectors if the

number of rows of ��	 are � � �.

Approximations can be made here. We select � different columns from the first � � � columns of

�[���]. Thus, two constraints of FISIP criterion
���X
	=1

��	 = 1 and
���X
	=1

�2�	 = 1 can still be satisfied and

���X
	=1

��	��	 = 0� � 6= � can be partially satisfied.

Example 3: Suppose we have 6-dimensional private data pairs �1 = [ 1 3 7 5 6 2 ]| and r2 =

[ 8 3 1 5 9 7 ]|, and we can transform it to 8-dimensional public vectors, 1, 2 and 4-dimensional

public vectors, �1, �2 as follows.

1 = �[8] × [ 1 3 7 5 6 2 0 0 ]| = [ 5 3 �1 1 0 4 6 6 ]|

2 = �[8] × [ 8 3 1 5 9 7 0 0 ]| = [ 0�25 5�25 7�25 3�25 �0�75 1�25 8�25 8�25 ]|

�1 =
h
�[4] �

[4]
1 �

[4]
2

i
× [ 1 3 7 5 6 2 ]| = [ 5 7 5 7 ]|

�2 =
h
�[4] �

[4]
1 �

[4]
2

i
× [ 8 3 1 5 9 7 ]| = [ �0�5 6�5 15�5 11�5 ]|

TABLE 6.1
Preserved properties of private, public pairs

�1�2

³X
�1��

X
�2�

´ ³X
�21��

X
�22�

´ X
�1�2 �1�2 �12

�1�2 (24� 23) (124� 229) 117 10�9087 �0�4113
12 (24� 23) (124� 229) 117 10�9087 0�2590
�1�2 (24� 23) (148� 415) 201 12�6886 0�1255
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The advantage of dimension adjustability is that it can hide the dimensionality of private data to

public, but the price it takes is that distance and correlation is no longer exactly preserved. From

formula, variation of dimension makes the preservation of correlation not easily achievable. However,

from the experiment shown in later sections, this method still has good mining quality.
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Chapter 7

Experimental Results

We firstly evaluate data usefulness after transformation. Section 7.1 measures the preservation of the

basic properties of FISIP under perturbation and Section 7.2 shows the preservation of neighbors, which

is served as distance preservation measurement. Correlation preservation is showed in Section 7.3. Data

robustness against known data attack is evaluated in Section 7.4. We conclude this section with a real

case example in Section 7.5. We use three real datasets which can be obtained from UCI Machine

Learning Repository.

TABLE 7.1
Test Databases

Databases iris pendigits satlog
Number of attributes 4 16 36
Number of records 150 7,494 4,435

7.1 FISIP Preservation

Let us see how the data changes by using the first two records in iris as an example. The first two

private records are

�
5�1 3�5 1�4 0�2
4�9 3�0 1�4 0�2

¸
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and their transformed records with no perturbation are
�
0�00 1�60 3�70 4�90
�0�15 1�75 3�35 4�55

¸
�

With perturbation ���� = �4, they change to
�
0�20 1�81 3�80 4�40
�0�38 1�83 3�55 4�50

¸
�

The distances of above three pairs are 0.5385, 0.5385, and 0.6398. The correlation of above three

pairs are 0.9960, 0.9960, and 0.9946. Note that the transformed records with perturbation and without

perturbation looks similar, but it is not a big deal as long as they are not close to private counterparts.

Let us first examine the three properties in FISIP. The first is first order sum, which is theoretically

preserved and needs no experiment. The second and third properties are second order sum and inner

products. For each property, we calculate the difference between private records and public records.

Normalization is done by dividing the value of private records, i.e., difference of second order sums =

¯̄̄
¯̄ �X
�=1

�2� �
�X
�=1

2�

¯̄̄
¯̄

�X
�=1

�2�

�

and difference of innper products =
|r� · r� � u� · u�|

|r� · r�| �

where r = [��] and u = [�], 1 � �� # � number of total records.

As Fig. 7.1-7.3 show, we can confirm that perturbation does not deteriorate our preservation of

FISIP very much.

7.2 Neighborhood Preservation

Neighbors of vectors are important in many data mining algorithms, e.g. clustering, classification,

outlier detection. Once the far-near relationships are maintained, we get the same mining result even
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Fig. 7.1: Preservation of FISIP: iris

Fig. 7.2: Preservation of FISIP: pendigits
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Fig. 7.3: Preservation of FISIP: satlog

though the data is changed and differently distributed. The first experiment we want to do is to check

how well the neighbors of vectors can be kept the same. The first variant is the number of neighbors

and the second variant is the level of perturbation ���� against known public data attack as stated above.

We define the performance metric as numbers of intersections normalized by k:

1

�

�X
�=1

|$��� � $���|
�

�

where $���represents the set of neighbors of private vector j and $��� represents the set of neighbors of

public record j. Smaller value of 2�
��, or smaller value of ���� means smaller perturbation and should

have higher accuracies as results show. Accuracies here are evaluated by neighbor’s change.

Consider a record A that has four nearest neighbors, record B, C, D, E. If the transformation makes

A’s four nearest neighbor to B, C, D, F, then the accuracy is 3/4. From Fig. 7.4-7.6, they confirm that

when the number of nearest neighbors increases, the error margin in data space also increases and thus

make the accuracies higher.
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Fig. 7.4: Preservation of Neighbors: iris

Fig. 7.5: Preservation of Neighbors: pendigits
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Fig. 7.6: Preservation of Neighbors: satlog

7.3 Correlation Preservation

We randomly select 10,000 pairs of vectors in database and measure the differences between private

pairs and public pairs, i.e.,

|$����������(r�� r�)� $����������(u��u�)| �

For pairs p, q in private record r and public record u. Average and standard deviation of this differences

are plotted on Fig. 7. When the perturbation level decreases, the differences, i.e., errors, are also

decreased as expected. Maximum difference is 2 and minimum is zero. From Fig. 7.7, we know that

FISIP can maintain the relations of correlations very well under perturbation.
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Fig. 7.7: Preservation of Correlation

7.4 Protection against Known Data Attack

The next experiment illustrates how well the protection scheme behaves if different perturbed transfor-

mation matrix are adopted. For k-dimensional database, we assume the attacker has k private-public

pairs at hand and he uses the techniques we described in previous section to estimate the remaining un-

known private records. As stated in previous section, the estimation error is
¯̄̄P�

�=1  �(!� ���1 ��)��

¯̄̄
and we can do normalization by asumming  � = 1 and �� =

¡
1
�
� · · · � 1

�

¢
. We take the norm of es-

timation error and plot the result as Fig. 8. The fact that orthogonal matrix can preserve distance is

not a news. Commonly believed drawback is that all records are transformed in the same way, and

thus, reverse transformation seems possible. However, in our work, we can transform each record in

difference way (by using differently perturbed FISIP matrices). Therefore, our work has no such issue,

as illustrated in Fig. 7.8.
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Fig. 7.8: Error of Attacker’s Estimation

7.5 A Real Case Example: k-means

We use precision rate to measure the result of clustering. Let $1� $2� � � � � $� be correct clusters gener-

ated by private vectors and $ 01� $ 02� � � � � $ 0� be new clusters generated by public vectors. The clustering

performance metrics are defined as follows:

��������� =
|$� � $ 0�|
|$ 0�|

We use pendigits as our testing data and cluster it into 10 clusters by k means. Pendigits originally

has 16 dimensions, and we transform it into 12 dimensional public vectors. Transforming without

truncating dimensions yields exactly the same result but once we transform it into fewer dimensions,

the result will be partially different from original clustering since some information is lost. Table 2 is

the precision rate of the public database, horizontal axis denotes the ten clusters and vertical axis shows
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the corresponding precision rate. Though the results are not equal to 1, they are very close to 1.

TABLE 7.2
Precision rate after dimension adaptation

cluster 1 2 3 4 5 6 7 8 9 10
precision 0.97 0.98 0.95 0.97 0.97 0.97 0.95 0.95 0.96 0.95
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Chapter 8

Conclusion

Most privacy preservation schemes focus on specific algorithms but we target at more general applica-

tions. Given k-dimensional database, we propose a scheme that can transform it to published database

without breaking the relation of distances and correlations between vectors. The mining quality from

the transformed (public) data can be obtained to be the same as that from the original (private) data.

Security of private data can be further enhanced at the expense of slight mining quality. We perturb the

transformation matrix and make each record be transformed by different matrix. Though the protection

slightly affects the mining quality, it greatly enhance the security of private data and make the inverse

transformation of public data infeasible. The number of different transformation grows in a factorial

way as the dimension of data increases, and thus makes attackers hard to recover them back to private

counterparts. Possible attacks are studied, solved and shown via experimental results.
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