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摘摘摘要要要

黑洞的準正規模式來自於黑洞微擾理論的角度方向和徑向的解。這些模式代

表了重力波在黑洞背景下傳遞的獨特頻率和衰減速率，例如雙黑洞系統中的重力

波發射。

本論文探討了在使用自旋-螺旋形式時，利用涉及重力子發射的在殼三點樹級

散射振幅，來描述黑洞準正規模式的角度向特殊函數。受到主導黑洞準正規模式

的微擾度量的洛倫茲不變性的啟發，我們利用自旋-螺旋形式來表示史瓦西黑洞準

正規模式的角度向特殊函數，即自旋加權球諧函數，並以不同自旋配置的不等質

量振幅來表示。

接著，通過結合可用於描述古典自旋的自旋相干態和來自不等質量散射過程的

在殼方法，這個被建構的張量，即具有自旋配置的在殼相干張量，可以重現克爾

黑洞準正規模式的角度向特殊函數，即自旋加權橢球諧函數。

總體而言，本研究提供了一個框架，利用具有SU(2)自旋配置的在殼自旋-螺旋

形式，來理解SO(3)表示的球對稱和旋轉黑洞準正規模式的角度向特殊函數。

關鍵字：散射振幅、自旋螺旋形式、在殼方法、史瓦西黑洞、克爾黑洞、黑洞

微擾理論、準正規模式
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Abstract

Quasinormal Modes (QNMs) of black holes are from the angular and radial so-

lution of the Black Hole Perturbation Theory (BHPT). These modes represent the

unique transmitted frequencies and decay rates of the gravitational waves under a

background of the black hole metric, such as the emission of gravitational waves in

binary black hole system.

This thesis explores the application of the spinor-helicity formalism in using on-

shell 3pt tree-level scattering amplitudes involving graviton emissions to describe

the angular dependence of the black hole QNMs. The Lorentz invariance of the

perturbed metrics, which govern the black hole QNMs, motivate us to represent

the angular dependence of the Schwarzschild QNMs, the spin-weighted spherical

harmonics, by the unequal masses amplitudes using the spinor-helicity formalism

with different spin configurations.

Then, by combining the coherent spin state which can be used to describe a

classical spin and the on-shell elements from unequal masses scattering process,

the constructed tensors, which are called the on-shell coherent tensors with spin

configurations, can reproduce the angular dependence of the of Kerr QNMs, the

spin-weighted spheroidal harmonics.

Overall, this research provides a framework for understanding the angular de-

pendence of spherically symmetric and rotating black hole QNMs which are SO(3)

representation by using the on-shell spinor-helicity formalism with the SU(2) spin

configurations.

Keywords: Scattering amplitude, Spinor-helicity formalism, On-shell methods,

Schwarzschild black holes, Kerr black holes, Black hole perturbation theory, Quasi-

normal modes
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Chapter 1

Introduction

History

In classical gravity theory, as everyone knows, Einstein predicted the existence

of the gravitational wave by his General Relativity. In 2016, this prediction was

first confirmed experimentally by a gravitational-wave observatory at the Laser In-

terferometer Gravitational Wave Observatory (LIGO) and the Virgo interferometer

(Virgo) [1], since they directly measured the gravitational wave signal GW150914

from a binary black hole system that contains the inspiral, merger, and ring-down

phase. Again, people verified the prediction of General Relativity.

In constructing theoretical models for gravitational waves, commonly used ap-

proaches include post-Newtonian gravity, numerical relativity, and perturbation the-

ory [2]. When considering the inspiral phase of binary black hole system, people

prefer employing analytic treatments of the dynamics, rather than iterative numer-

ical methods [3].

An analytic approach involves determining the effective Hamiltonian of the sys-

tem, which describes the inspiral phase. Typically, the above effective Hamiltonian

can be obtained through calculations based on the post-Newtonian approximation

(PN approximation), an effective theory for describing slow-moving objects in weak

gravitational fields. Since objects move slowly, that is, v2/c2 ≪ 1, expansions involv-

ing v2/c2 and GM/r with the same scales are performed. This expansion method,

known as n-PN, expands the Hamiltonian up to order O(1/c2)n, and these correc-

1
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tion terms are commonly employed for calculating linear classical gravity theories.

Lorentz and Dorste [4] in 1917 and Einstein, Infeld and Hoffmann [5] later obtained

the 1PN calculation. Today, the calculations have been extended up to 4PN, and the

higher PN calculations are currently being pursued to compare with gravitational

wave detectors. To this end, the on-shell method offers convenient calculations for

higher PN approximations.

In addition, there is another method to expand the Hamiltonian for binary

black hole systems, which is known as the post-Minkowskian (PM) expansion. This

method is expanded in terms of the Newtonian constant G, rather than the velocity.

It is worth noting that, this expansion, involving terms like G, G2, and so on, is

similar to the scattering amplitudes of gravity, since the Lorentz invariant scatter-

ing amplitudes are also perturbations in terms of G. One can say that scattering

amplitudes provide a useful method to describe the classical gravitational potential.

For example, in 1985, the PM calculations were carried out up to O(G)2 to

describe scattering angles [6], followed by predictions of quantum corrections to the

classical gravitational potential [7, 8]. Today, people employ the on-shell approach,

spinor-helicity formalism, and previous scattering amplitudes to calculate the higher

order PM Hamiltonians for binary black hole systems, where the spinor-helicity

formalism gives us easy and clean calculations of scattering amplitudes involving

momenta.

Recent years, some modern techniques just like unitarity, on-shell recursion re-

lations, and double copy relations enable the construction of one-loop amplitudes,

and through this way the classical effects can be identified. In recent years, conser-

vative potential up to 4PM for non-spinning objects [9–11] and the Hamiltonian up

to 2PM at quartic order spin for spinning objects [12] have been computed. Besides

computing higher order corrections of G, this on-shell formalism can also be used to

describe other physical processes, such as tidal effects, radiation effects, and so on.

These successful applications of on-shell amplitudes in gravity motivate us to

utilize these amplitudes to describe the angular dependence of the Lorentz invariant

2
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black hole quasinormal modes.

Quasinormal Modes of Black Holes

The quasinormal modes (QNMs) of black holes [13–17] are a dissipative sys-

tem in which a black hole emits gravitational waves that perturb the surrounding

spacetime. These waves decay and disappear at spatial infinity, rather than contin-

uing to propagate indefinitely. The QNMs of a black hole consist of angular and

radial components, with their frequencies depending on the mass and spin of the

black hole. The most famous example of the QNMs in black holes is the ring-down

phases in the binary black hole system, which consists of inspiral, merger, and the

final ring-down phase. The resulting black hole will emit gravitational waves which

gradually dissipate during the ring-down phase [14].

The black hole QNMs are from the Black Hole Perturbation Theory and some

boundary conditions. In the context of the Black Hole Perturbation Theory (BHPT),

the metric of a black hole

ds2 = gµνdx
µdxν (1.1)

is perturbed by a linearly perturbed term gµν → gµν + hµν , where hµν satisfies the

linearly perturbed Einstein equation and describes the gravitational waves emission.

The BHPT can describe various systems involving the field fluctuations under a black

hole background, and the QNMs is just one of applications. By BHPT, given the

boundary conditions at the horizon and spatial infinity, the waves should be only

incoming waves at the horizon ψ ∼ e−iω(t+r∗) and only outgoing waves at spatial

infinity ψ ∼ e−iω(t−r∗), the boundary conditions connect the BHPT and the QNMs.

First, for spherically symmetric black holes, the Schwarzschild QNMs are derived

by Regge and Wheeler in [13], and Zerilli in [18], respectively. They take linear

perturbed metric gµν + hµν into the Einstein equation

Rµν −
1

2
Rgµν = 0, (1.2)

3
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by using the perturbed connection

δΓα
βγ =

1

2
gαν(∇γhβν +∇βhγν −∇νhβγ) (1.3)

and the perturbed Ricci tensor condition

δRµν = −∇βδΓ
β
µν +∇νδΓ

β
µβ = 0 (1.4)

which is a second order differential equation of hµν . The angular dependence of the

solutions can be separated as the following form

hµν ∼ Ylm(θ) for a perturbed scalar field;

hµν ∼ ±1Ylm(θ) for a perturbed photon field;

hµν ∼ ±2Ylm(θ) for a perturbed graviton field,

(1.5)

where the angular special functions are the spin-weighted spherical harmonics sYlm(θ)

with the spin weight s, orbital angular momentum l, and projection m, which we

want to reproduce by the on-shell scattering amplitudes.

Then, consider the nonspherically symmetric black holes, the gravitational waves

from Kerr black holes can be described by the Teukolsky equation using Kerr’s four

tetrads lµ, nµ, mµ, and m̄µ in [19, 20] and the Weyl scalar with conditions. By

exploiting the symmetry and separability of the Teukolsky equation with respect to

the t and ϕ directions,

ψ(t, r, θ, ϕ) = e−iωteimϕR(r)S(θ), (1.6)

where ω is the propagating frequency and m is the eigenvalue of the z-axis orbital

angular momentum operator, and the Teukolsky equation can be separated into two

single-variable differential equations, the angular equation and radial equation. The

4
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angular differential equation

1

sin θ

d

dθ

(
sin θ

dS

dθ

)
+

(
(aω)2 cos2 θ − 2(aω)s cos θ − (m+ s cos θ)2

sin2 θ
+ s+ A

)
S = 0,

(1.7)

where the spin weight s means a spin-s perturbed field and the eigenvalue A is a

separation constant, can be solved by two methods. One is the perturbation theory

in [21–24], people obtain the eigenvalue

sAlm = l(l + 1)− ⟨slm|H1|slm⟩ −
∑
l′ ̸=l

|⟨sl′m|H1|slm⟩|2

l(l + 1)− l′(l′ + 1)
+ ... (1.8)

and the eigenfunction

sSlm =sYlm +
∑
l′ ̸=l

⟨sl′m|H1|slm⟩
l(l + 1)− l′(l′ + 1)

sYl′m

+
∑
l′ ̸=l

1

l(l + 1)− l′(l′ + 1)

[∑
l′′ ̸=l

⟨sl′m|H1|sl′′m⟩⟨sl′′m|H1|slm⟩
l(l+1)−l′′(l′′+1)

− sA
(1)
lm⟨sl′m|H1|slm⟩
l(l+1)−l′(l′+1)

]
sYl′m

− 1

2
sYlm

∑
l′ ̸=l

∣∣∣∣ ⟨sl′m|H1|slm⟩
l(l + 1)− l′(l′ + 1)

∣∣∣∣2 + ...,

(1.9)

of the angular equation order by order with the small parameter aω, which they can

solve by perturbation around the spin-weighted spherical harmonics sYlm with the

quantum number l, that is why sAlm and sSlm have the label l which doesn’t appear

in the angular differential equation. The angular solutions sSlm(aω, θ) are known as

the spin-weighted spheroidal harmonics [25], and this is the function which we try

to reproduce in this thesis. Another way is Leaver’s method in [26] with the ansatz

of the angular solution

sSlm(X) = eaωX(1 +X)
1
2
|m−s|(1−X)

1
2
|m+s|

∞∑
n=0

an(1 +X)n, (1.10)

where X = cos θ. By the ansatz, people numerically solve a continuous fraction

equation and then can obtain the unknown separation constant A(aω) for fixed s,

m.

5
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With the eigenvalue of the angular equation and appropriate boundary conditions

(an incoming mode at the horizon and an outgoing mode at spatial infinity), the ra-

dial solution and a series of complex, discrete mode frequencies ωn = ωR,n+iωI,n can

be obtained by solving the radial equation from the Teukolsky equation. The real

part of the mode frequency represents the frequency of the transmitted gravitational

wave, while the imaginary part represents its dissipation rate. Note that in BHPT,

the eigenfunction of the angular equation is always a spin-weighted spheroidal har-

monic, regardless of boundary conditions, such as the angular solutions of the QNMs

that we have mentioned and the scattering waves by a black hole in [27,28] are the

same thing.

Organization

In this thesis, we focus on the solution of the angular differential equation, namely

the spin-weighted spherical harmonics and spheroidal harmonics, since our technol-

ogy, scattering amplitudes, represent the observable of a transition process on an

asymptotically flat background, and people successfully use the 4pt scattering am-

plitudes to extract classical observable of inspiralling Kerr black holes previously.

Based on the special angular functions, hYlm(θ) and hSlm(aω, θ), of the black hole

QNMs involving the quantum numbers, spin weight h, orbital angular momentum

l, and the projection m, and the fact that BHPT satisfies Lorentz invariance, we

describe the QNMs of a black hole by using the on-shell 3pt tree-level scatter-

ing amplitude Mh2,(J1...J2l) (two unequal massive spinors and one massless graviton

3l → 1+ 2h=−2 ):

�3l

1

2h=−2

Figure 1.1: A hypothesis about the 3pt tree-level scattering amplitude

6
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A massive state 3 with mass m3 and spin-l emits a graviton with energy E2 and

helicity h = −2 and transitions to another spinless state 1 with mass m1, which

carries the spin weight h and the orbital angular momentum l in the spin-weighted

spherical harmonics. The leg 3 carries the SU(2) little group indices (J1...J2l) which

are fully symmetric. First, by the spinor-helicity formalism

Mh2,(J1...J2l) = λ
(J1
3,β1

...λ
J2l)
3,β2l

Mh2,{β1...β2l} (1.11)

in [29–31], we can compute the 3pt scattering amplitude easily by the spin and

helicity counting, and use the spin configurations of the fully symmetric SU(2) little

group indices to represent the 2l + 1 different m in the spin-weighted spherical

harmonics

M−2,(J1...J2l) = g−2
l

(
2E2

m1

)l
1

(2l)!

√
4π

2l + 1

√
(l + 2)!(l − 2)!(l +m)!(l −m)!−2Ylm(θ).

(1.12)

Moreover, we also use the on-shell amplitudes which emit a spin-h massless particle

to reproduce the spin-weighted spherical harmonics with different spin weights h,

which is an one-to-one correspondence.

Next, we describe the angular dependence of the Kerr QNMs by a scattering pro-

cess of two spinning states 1 and 3 with different masses from an on-shell perspective

( 3l⊕s → 1s + 2h=−2 ), combining the coherent spin state

|α⟩ =e−α̃Jα
J/2

∞∑
2s=0

∑
I1,...,I2s=↑,↓

(αIi)2s√
(2s)!

|s, (I1...I2s)⟩. (1.13)

which can describe the classical spin of Kerr black holes in [32], then we establish

the on-shell coherent elements and on-shell coherent tensors to reproduce the Kerr

QNMs. The coherent tensors satisfy the helicity counting, 2l free little group indices,

and coherent spin states contraction rule for the SU(2) indices of the leg 1, leg 3.

7
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Therefore, such a coherent tensor

A−2,(J1...J2l) = e−aeα̃K⟨3K1I⟩αI

×g−2
l

l∑
n=0

∞∑
i,j=0

{
cn,1,i,j⟨23J⟩l+2−n[23J ]l−2

(
α̃K⟨23K⟩

)n (⟨3J1I⟩αI
)n

(k2 · p3)n

+ cn,2,i,j⟨23J⟩l+2[23J ]l−2−n
(
α̃K [23

K ]
)n (⟨3J1I⟩αI

)n
(k2 · p3)n

}
× (α̃K [23

K ]⟨21I⟩αI)i(α̃K⟨23K⟩[21I ]αI)j

(1.14)

by summing all possible on-shell elements, can reproduce the spin-weighted spheroidal

harmonics by the relationship

A−2,(J1...J2l) = g−2
l

(
2E2

m1

)l
1

(2l)!

√
4π

2l + 1

√
(l + 2)!(l − 2)!(l +m)!(l −m)!−2Slm(aω, θ)

(1.15)

with the coefficients cn,1,i,j and cn,2,i,j which are independent of the quantum number

m, or independent of the spin configurations. Although we find the correspondence,

there are some redundant structures when the order of expansion is large, that is to

say, the expression is not an one-to-one correspondence.

8
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Chapter 2

Background on Black Hole

Perturbation Theory

In this chapter, we will review the early approaches of Black Hole Perturbation

Theory (BHPT) and the form of the angular differential equation, but we espe-

cially focus on the latter. Starting with the simple spherically symmetric case,

the Schwarzschild black hole. The first quasinormal modes (QNMs) under the

Schwarzschild background were obtained by Regge, Wheeler, and Zerilli.

We then introduce the non-spherically symmetric case, Kerr black hole with

spin. If we were to use perturbed metrics and solve the Einstein field equation, as in

the Schwarzschild case, it would become highly complicated. Therefore, Teukolsky

employed a perturbed null tetrad and derived the famous Teukolsky equation, which

is a wave equation in the Kerr background. They focused on the eigenvalues of the

angular equation, and then used these eigenvalues along with boundary conditions

to solve for the radial equation’s angular frequencies which are a series of complex

numbers representing different modes of gravitational waves.

9
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2.1 Regge-Wheeler–Zerilli equation for Schwarzschild

Black Hole QNMs

At the begging, recall the spherically symmetric geometry, the Schwarzschild met-

ric is

ds2 = −f(r)dt2 + dr2

f(r)
+ r2dΩ2 (2.1)

with f(r) = 1 − 2M
r
. In [13, 17], the linear perturbed metric gµν → gµν + hµν

substitute into the vacuum Einstein equation

Rµν −
1

2
Rgµν = 0 (2.2)

where the Ricci tensor Rµν = 0 under the spherically symmetric background, and

then take the linear order of hµν from the linear perturbed Ricci tensor, such that

δRµν = −∇βδΓ
β
µν +∇νδΓ

β
µβ (2.3)

where the covariant derivative is from unperturbed connection, and the linear per-

turbed connection is given by

δΓα
βγ =

1

2
gαν(∇γhβν +∇βhγν −∇νhβγ) (2.4)

with the condition δRµν = 0 for each component. That is a second order differential

equation of the metric hµν . The solutions have the following matrix forms

hµν =



0 0 −h0(t, r) 1
sin θ

∂ϕ h0(t, r) sin θ∂θ

0 0 −h1(t, r) 1
sin θ

∂ϕ h1(t, r) sin θ∂θ

sym sym h2(
1

sin θ
∂θ∂ϕ − cos θ

sin2 θ
∂ϕ) sym

sym sym 1
2
h2(

1
sin θ

∂ϕ
2 + cos θ∂θ − sin θ∂θ

2) −h2(sin θ∂θ∂ϕ − cos θ∂ϕ)


Ylm(θ)e

imϕ

(2.5)

10
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where the sym means hµν = hνµ; h2 is a function of t, r, and

hµν =



f(r)H0(t, r) H1(t, r) h0(t, r)∂θ h0(t, r)∂ϕ

H1(t, r)
H2(t,r)
f(r)

h1(t, r)∂θ h1(t, r)∂ϕ

sym sym r2[K +G∂θ
2] sym

sym sym r2G(∂θ∂ϕ − cos θ
sin θ

∂ϕ) r2[sin2 θK +G(∂ϕ
2 + cos θ sin θ∂θ)]


Ylm(θ)e

imϕ

(2.6)

where K, G are functions of t, r.

Because of the gauge symmetry, they consider an infinitesimal coordinate trans-

formation xµ → xµ+ ξµ where ξµ is a gauge parameter, therefore the metric pertur-

bation becomes

hµν → hµν +∇νξµ +∇µξν . (2.7)

Under the Regge-Wheeler gauge, they choose the gauge parameter

ξµ =− 1

2
h2(t, r)

(
0 0 − 1

sin θ
∂ϕ(Ylme

imϕ) sin θ∂θ(Ylme
imϕ)

)
(2.8)

for the first one, hence the h2(t, r) terms in hµν are removed, such that the perturbed

metric has the odd-parity (−1)l+1 under the parity transformation (θ, ϕ) → (θ+π, ϕ),

and then the new matrix form reduces to

hµν = e−iωt



0 0 0 h0(r)

0 0 0 h1(r)

0 0 0 0

h0(r) h1(r) 0 0


(
sin θ

∂

∂θ

)
Yl0(θ) (2.9)

for the odd wave perturbation from Regge and Wheeler. As for the other one

perturbation, they choose the gauge parameter

ξµ =− 1

2
h2(t, r)

(
M0(Ylme

imϕ) M1(Ylme
imϕ) M2∂θ(Ylme

imϕ) M2
1

sin2 θ
∂ϕ(Ylme

imϕ)

)
(2.10)

where M0(t, r), M1(t, r), and M2(t, r) is used to cancel G(t, r), h0(t, r), and h1(t, r),

11
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such that the perturbed metric has the even parity (−1)l under the parity transfor-

mation, and then the even-perturbed metric reduces to

hµν = e−iωt



f(r)H0(r) H1(r) 0 0

H1(r)
H2(r)
f(r)

0 0

0 0 r2K(r) 0

0 0 0 r2 sin2 θK(r)


Yl0(θ) (2.11)

derived by Zerilli for the different partial wave number l. Due to the spherical

symmetry, there are the same radial equations that people care about for all m.

Note that the angular dependence (sin θ∂θ)Yl0(θ) in the odd-parity perturbation

is proportional to the spin-weighted spherical harmonics with spin weight s = ±1

in [25].

The perturbed metric involves the frequency of gravitational waves from the

black hole. To obtain the modes ω, they substitute the perturbed metric into each

component of the perturbed Ricci tensor δRµν = 0. Then, they solve the radial

equation and obtain a series of modes which have the form ω = ωR + iωI .

We can discover that the angular dependence of the BHPT are related to the

spherical harmonics. In general, the angular dependence of the BHPT are the spin-

weighted spherical harmonics sYlm(θ), where the label s means what kind of field is,

a scalar field for s = 0, a photon field for s = ±1, or a graviton field s = ±2. That

is what we want to explore in this thesis.

2.2 Teukolsky equation for Kerr Black Hole QNMs

The Teukolsky equation is a four variables partial differential equation which

describes the linear perturbations in the spacetime of a rotating (nonsymmetric)

12
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black hole. The Kerr metric is given by

ds2 =

(
∆− a2 sin2 θ

)
Σ

dt2 +
a sin2 θ (2Mr)

Σ
(dtdϕ+ dϕdt)

− Σ

∆
dr2 − Σdθ2 − sin2 θ

Σ

(
(r2 + a2)2 − a2∆sin2 θ

)
dϕ2,

(2.12)

where Σ = r2 + a2 cos2 θ, and ∆ = r2 + a2 − 2Mr.

In [19], Teukolsky use the Newman–Penrose (NP) formalism to construct the

null tetrad in the Kerr background as

lµ =

(
(r2+a2)

∆
1 0 a

∆

)
,

nµ =

(
(r2+a2)

2Σ
− ∆

2Σ
0 a

2Σ

)
,

mµ =
1√

2(r + ia cos θ)

(
ia sin θ 0 1 i

sin θ

)
,

(2.13)

which satisfy l ·n = 1, m ·m̄ = −1, l ·l = n ·l = m ·m = 0, and l ·m = n ·m = 0 in

the convention diag(ηµν) = (+,−,−,−), and they are preserved under the Lorentz

transformation. The Kerr metric that the tetrads constitute can be written as

gµν = −lµnν − nµlν +mµm̄ν + m̄µmν .

In the linear perturbations of the Kerr metric, gµν → gµν + hµν , where

hµν = 2l
(1)
(µ n

(0)
ν) + 2l

(0)
(µ n

(1)
ν) − 2m

(1)
(µ m̄

(0)
ν) − 2m

(0)
(µ m̄

(1)
ν)

(2.14)

with the first order perturbed tetrads

l(1)µ =
1

2
hlln

(0)
µ

n(1)
µ =

1

2
hnnl

(0)
µ + hlnn

(0)
µ

m(1)
µ = hnml

(0)
µ + hlmn

(0)
µ − 1

2
hmm̄m

(0)
µ − 1

2
hmmm̄

(0)
µ ,

(2.15)

and hll, hnn, hmm̄... are hµν in the tetrad representation. Then, they use the Weyl

13
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scalar in [20,21]

Ψ0 :=−Wαβγδl
αmβlγmδ

Ψ1 :=−Wαβγδl
αnβlγmδ

Ψ2 :=−Wαβγδl
αmβm̄γnδ

Ψ3 :=−Wαβγδl
αnβm̄γnδ

Ψ4 :=−Wαβγδn
αm̄βnγm̄δ

(2.16)

which are Lorentz invariant, and the Weyl tensor

Wµνρσ = Rµνρσ +
1

2
(Rµσgνρ −Rµρgνσ −Rνσgµρ +Rνρgµσ) +

1

6
R(gµρgνσ − gνρgµσ)

(2.17)

under the Petrov Type D background metric, which is used to solve the problem

about the gravitational field from a source which only involves the mass and angular

momentum, that means

Ψ
(0)
0 = Ψ

(0)
1 = Ψ

(0)
3 = Ψ

(0)
4 = 0. (2.18)

The Type D forces the perturbed tetrads Ψ
(1)
0 and Ψ

(1)
4 to satisfy some differential

equations, and then they combine the equations as a single master equation which

is valid for a spin-s field in the Kerr background, that is the Teukolsky equation

in [20,21,24],

{[
(r2 + a2)

∆
− a2 sin2 θ

]
∂2

∂t2
+

4Mar

∆

∂2

∂t∂ϕ
+ 2s

[
r + ia cos θ − M(r2 + a2)

∆

]
∂

∂t

−∆−s ∂

∂r

(
∆s+1 ∂

∂r

)
− 1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
−
(

1

sin2 θ
− a2

∆

)
∂2

∂ϕ2

− 2s

[
a(r −M)

∆
+
i cos θ

sin2 θ

]
∂

∂ϕ
+ s

(
s cot2 θ − 1

)}
ψ = 0 .

(2.19)

where the wave function ψ means the Weyl scalars Ψ0 for s = 2 (incoming wave),

Ψ4 for s = −2 (outgoing wave), and Φ0 = Fµνl
µmν for s = 1 (incoming wave),

Φ2 = Fµνm̄
µnν for s = −1 (outgoing wave) in [14] where Fµν is the electromagnetic

14
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tensor, and the solution should be labeled by ψ = sψ(t, r, θ, ϕ) with the spin weight s

corresponding to a spin-s perturbed field, such as scalar, photon, or graviton fields,

just like in the Schwarzschild case. This equation is a second order partial differential

equation which involves angular and radial parts. It describes the evolution of fields

with spin-s in the Kerr background. By solving the Teukolsky equation, we can

obtain information about the perturbations around a Kerr black hole. For example,

solutions of the Teukolsky equation can describe the wave function associated with

the emission of gravitational waves.

To solve this equation, they separate the variables,

ψ(t, r, θ, ϕ) = e−iωteimϕR(r)S(θ), (2.20)

where the frequency ω is the ”modes” people care about; m is the eigenvalue of

the z-axis orbital angular momentum operator. Therefore, the four variables partial

differential equation become the angular equation

1

sin θ

d

dθ

(
sin θ

dS

dθ

)
+

(
(aω)2 cos2 θ − 2(aω)s cos θ − (m+ s cos θ)2

sin2 θ
+ s+ A

)
S = 0,

(2.21)

where A = sAlm(aω) is a separation constant as well as the eigenvalue which is a

function of aω and S = sSlm(aω, θ) is the eigenfunction which is called the spin-

weighted spheroidal harmonics. The label l is determined by the Schwarzschild case,

because the spin-weighted spheroidal harmonics can be obtained by perturbation

around the spin-weighted spherical harmonics with angular momentum l. And the

radial equation

∆−s d

dr

(
∆s+1dR

dr

)
+

(
K2 − 2is(r −M)K

∆
+ 4isωr −B

)
R = 0, (2.22)

where K = (r2 + a2)ω − am and B = A+ (aω)2 − 2m(aω).

Note that, they usually set cos θ = X, such that the angular differential equation

15
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becomes

[
∂

∂X
(1−X2)

∂

∂X

]
S +

[
(aω)2X2 − 2(aω)sX − (m+ sX)2

1−X2
+ s+ A

]
S = 0 (2.23)

Here, we focus on the angular equation. There are two most common methods

which physicists use to solve the angular equation of the Teukolsky equation. One is

perturbatively solving each order of aω, and the other is to use continuous fractions,

which is called the Leaver method to solve the eigenvalues.

The first way is in [21], Press and Teukolsky separate the angular equation into

two parts,

(H0 +H1)S = −AS (2.24)

where H0 is independent of the spin a of Kerr black hole, and H1 is spin dependent,

H0 =
1

sin θ

d

dθ

(
sin θ

d

dθ

)
+

(
−(m+ s cos θ)2

sin2 θ
+ s

)
H1 =(aω)2 cos2 θ − 2(aω)s cos θ.

(2.25)

which involve the quantum number s, m, and the parameter aω. The non-perturbed

operator has the eigenvalue and eigenfunction,

H0S0 = −l(l + 1)S0 (2.26)

where the eigenfunction is the spin-weighted spherical harmonics S0 = sYlm(θ) for

l ≥ |s| and −l ≤ m ≤ l. Since then, the angular momentum l has appeared.

To find the eigenvalue A of the angular equation, suppose we can expand eigen-

value around l(l + 1) which is the eigenvalue of the non-perturbed operator H0,

therefore

A = sAlm = l(l + 1) + sA
(1)
lm + sA

(2)
lm + ..., (2.27)

similarly, the eigenfunction can be assumed as

S = sSlm = sYlm + sS
(1)
lm + sS

(2)
lm + ..., (2.28)

16
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where the upper indices (i) mean the expansion is accurate to the i-th order of the

small parameter aω. Then, the angular equation with the first order perturbation

(H0 +H1)
(
sYlm + sS

(1)
lm

)
= −

(
l(l + 1) + sA

(1)
lm

)(
sYlm + sS

(1)
lm

)
(2.29)

can be reduced to

H1sYlm +H0sS
(1)
lm = −sA

(1)
lmsYlm − l(l + 1)sS

(1)
lm

(2.30)

by using the non-perturbed eigenvalue equation. The standard method in pertur-

bation theory is multiplying sY
∗
lm from the left side and integrating the equation.

Since H0 is Hermitian, we will obtain

sA
(1)
lm = −⟨slm|H1|slm⟩ (2.31)

where the sandwich is

⟨sl′m|H1|slm⟩ =
∫
dΩsY

∗
l′m(θ)H1sYlm(θ) (2.32)

and the precise forms are

⟨sl′m| cos θ|slm⟩ =
√

2l + 1

2l′ + 1
⟨l, 1,m, 0|l′,m⟩⟨l, 1,−s, 0|l′,−s⟩,

⟨sl′m| cos2 θ|slm⟩ =1

3
δll′ +

2

3

√
2l + 1

2l′ + 1
⟨l, 2,m, 0|l′,m⟩⟨l, 2,−s, 0|l′,−s⟩

(2.33)

with the Clebsch-Gordan coefficients ⟨j1, j2,m1,m2|J,M⟩, or says the Wigner 3j-

symbols

⟨j1, j2,m1,m2|J,M⟩ = (−1)−j1+j2−M
√
2J + 1

 j1 j2 J

m1 m2 −M

 . (2.34)

Similarly, we can obtain the eigenfunction by multiplying sY
∗
l′m from the left-hand-

17
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side and integrating the equation, that is

∫
dΩsY

∗
l′m(θ)sS

(1)
lm (θ) =

⟨sl′m|H1|slm⟩
l(l + 1)− l′(l′ + 1)

(2.35)

To explicitly construct sS
(1)
lm , let’s assume

sS
(1)
lm =

∑
l′

cll′sYl′m (2.36)

by the orthogonal and complete basis {sYlm|l ∈ N, l ≥ s, l ≥ |m|}, such that the first

order eigenfunction is

sS
(1)
lm =

∑
l′ ̸=l

⟨sl′m|H1|slm⟩
l(l + 1)− l′(l′ + 1)

sYl′m. (2.37)

So far, we have finished the first order perturbation.

As with the above results, we can proceed to compute the second order pertur-

bation,

H0sS
(2)
lm +H1sS

(1)
lm = −l(l + 1)sS

(2)
lm − sA

(1)
lmsS

(1)
lm − sA

(2)
lmsYlm. (2.38)

After a similar calculation, we collect the zeroth order, first order, and second order

results and show them below. The eigenvalue is

sAlm = l(l + 1)− ⟨slm|H1|slm⟩ −
∑
l′ ̸=l

|⟨sl′m|H1|slm⟩|2

l(l + 1)− l′(l′ + 1)
+ ... (2.39)

and the eigenfunction is

sSlm =sYlm +
∑
l′ ̸=l

⟨sl′m|H1|slm⟩
l(l + 1)− l′(l′ + 1)

sYl′m

+
∑
l′ ̸=l

1

l(l + 1)− l′(l′ + 1)

[∑
l′′ ̸=l

⟨sl′m|H1|sl′′m⟩⟨sl′′m|H1|slm⟩
l(l+1)−l′′(l′′+1)

− sA
(1)
lm⟨sl′m|H1|slm⟩
l(l+1)−l′(l′+1)

]
sYl′m

− 1

2
sYlm

∑
l′ ̸=l

∣∣∣∣ ⟨sl′m|H1|slm⟩
l(l + 1)− l′(l′ + 1)

∣∣∣∣2 + ...,

(2.40)

which are accurate to the second order of the small parameter aω. Therefore, we
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can perturbatively obtain the spin-weighted spheroidal harmonics sSlm(θ), and we

observe that

sSlm = sYlm +
l+1∑

l′=l−1̸=l

asl′msYl′m(aω) +
l+2∑

l′=l−2

bsl′msYl′m(aω)
2 +O(aω)3. (2.41)

with coefficients asl′m, bsl′m are pure numbers.

The second way is called Leaver’s method in [26, 33]. It is mainly used to solve

the eigenvalues, rather than the spin-weighted spheroidal harmonics, they suppose

this special function may be written as the following ansatz,

sSlm(aω,X) = eaωX(1 +X)
1
2
|m−s|(1−X)

1
2
|m+s|

∞∑
n=0

an(1 +X)n (2.42)

around the regular singular point at X = cos θ = ±1 in (2.23) and with a nontrivial

exponential aωX, where the label l is from comparing the roots A with the eigen-

values from above perturbation theory. Usually, we expect a series expansion to

converge; otherwise, the higher order terms contribute more than lower order terms,

such that we cannot truncate it at some order to be a valid approximation of the

spin-weighted spheroidal harmonics.

To find the separation constant A in angular equation (2.23), which are unfixed

parameters in coefficients an, they plug the ansatz into the angular equation, which

involves the differential with respect to X at most twice. After differentiation, we

can separate each order of X, collect the corresponding coefficients of each order,

and require them to vanish. It is similar to power series, such that the coefficients

an satisfy the recursive relation

αθ
0a1 + βθ

0a0 =0

αθ
nan+1 + βθ

nan + γθnan−1 =0

(2.43)
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for n = 1, 2, ..., where

αθ
n =− 2(n+ 1)(n+ 2k1 + 1)

βθ
n =n(n− 1) + 2n(k1 + k2 + 1− 2aω)

− [2aω(2k1 + s+ 1)− (k1 + k2)(k1 + k2 + 1)]− [(aω)2 + s(s+ 1) + A(aω)]

γθn =2aω(n+ k1 + k2 + s)

(2.44)

containing an unknown parameter A = A(aω) which is a function of aω, and the

parameters

k1 =
1

2
|m− s|

k2 =
1

2
|m+ s|

(2.45)

for fixed s and m.

From the recursive relation (2.43), we can derive the ratio of the coefficients with

the continued fraction form,

an+1

an
=

−γθn+1

βθ
n+1 −

αθ
n+1γ

θ
n+2

βθ
n+2−

αθ
n+2γ

θ
n+3

βθn+3−...

=
−γθn+1

βθ
n+1−

αθ
n+1γ

θ
n+2

βθ
n+2−

αθ
n+2γ

θ
n+3

βθ
n+3−

...
αθ
n+iγ

θ
n+i+1

βθ
n+i+1 (2.46)

for i → ∞ in related notations form. From the initial one, we combine the two

equations
a1
a0

= −β
θ
0

αθ
0

a1
a0

=
−γθ1
βθ
1−

αθ
1γ

θ
2

βθ
2−

αθ
2γ

θ
3

βθ
3−

...
αθ
nγ

θ
n+1

βθ
n+1

(2.47)

for n→ ∞, such that

0 = βθ
0 −

αθ
0γ

θ
1

βθ
1−

αθ
1γ

θ
2

βθ
2−

αθ
2γ

θ
3

βθ
3−

...
αθ
nγ

θ
n+1

βθ
n+1

(2.48)

with the undetermined A(aω) in all βθ
n.

Similarly, the radial differential equation from Teukolsky equation has the same

form, that is to say, the radial solution can be written as a series expansion whose co-

efficients satisfy some relation, such as (2.48). The two continued fraction equations
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from the radial equation with unknown ω and the angular equation with unknown

A(aω) are coupled, so Leaver needs to numerically solve them, simultaneously.

To find the roots ω and A(aω), given the parameters s, m, and a, they truncate

the continued fractions to some order n, and then use the root finding algorithm to

find the roots ω and A(aω). Then, they can repeat the step at a higher order n′ > n,

such that accuracy is enough. By truncating to higher order n, this not only gives

us greater accuracy but also allows us to find more roots that correspond to larger

l. Roughly speaking, there will be infinitely many roots A(aω) corresponding to l

with the constraint l ≥ |m| and l ≥ |s| in the spin-weighted spheroidal harmonics

sSlm.

For example, given s = −2, m = 5, and fixed aω = 0.1 (but ω could be complex

in general), we define a function f(A) as

f(A) = βθ
0 −

αθ
0γ

θ
1

βθ
1−

αθ
1γ

θ
2

βθ
2

≈
−A3 + 117.17A2 − 4465.98A+ 55100.

A2 − 90.38A+ 2031.9
(2.49)

according to (2.48), then we can plot f(A) and solve f(A) = 0 numerically. There

exist three real roots inA = A(0.1) ≈ 27.85424, 40.63636, and 48.67940, respectively.

The roots can correspond to the eigenvalues −2A5,5(0.1) ≈ 27.86393, −2A6,5(0.1) ≈

39.90200, and −2A7,5(0.1) ≈ 53.92555 from perturbation theory. Moreover, we can

ask f(A) to include more terms

f(A) = βθ
0 −

αθ
0γ

θ
1

βθ
1−

αθ
1γ

θ
2

βθ
2−

αθ
2γ

θ
3

βθ
3

αθ
3γ

θ
4

βθ
4

αθ
4γ

θ
5

βθ
5

αθ
5γ

θ
6

βθ
6

≈ −A7+501.13A6−104445.A5+1.1×107A4−7.5×108A3+2.8×1010A2−5.6×1011A+4.5×1012

A6−474.34A5+91724.3A4−9.2×106A3+5.0×108A2−1.4×1010A+1.6×1011

(2.50)

and we will find five real roots at A ≈ 27.86394, 39.90200, 53.92506, and so on,

which are closer to to the eigenvalues −2A5,5(0.1), −2A6,5(0.1), −2A7,5(0.1), and so

on. Let’s say, we can draw the following conclusions, the n-th root is corresponding

to the eigenvalue −2A(n+5),5(0.1).

So far, we do not know how the roots A depend on l. Through the Schwarzschild

QNMs whose l is well-defined, we can figure out the relationship between A and l.
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When they take spin a to zero, the roots A will reduce to

A = (n+ k1 + k2)(n+ k1 + k2 + 1)− s(s+ 1) (2.51)

which is the Schwarzschild case, because of γθn = 0 for all n as a = 0, this leads to

the continued fraction equation become

0 = βθ
n =n(n− 1) + 2n(k1 + k2 + 1)

+ (k1 + k2)(k1 + k2 + 1)− s(s+ 1)− A.

(2.52)

Hence, they identified n+k1+k2 = l, as well as the roots are exactly the eigenvalues

sAlm(aω) from perturbation theory.

By the previous example, given s = −2, m = 5, but a = 0, for βθ
0 = 0, the

first root is corresponding to the eigenvalue −2A5,5(0); for β
θ
1 = 0, the second root is

corresponding to the eigenvalue −2A6,5(0); for β
θ
2 = 0, the corresponding eigenvalue is

−2A7,5(0). Let’s say, the n-th root is from the condition βθ
n = 0 and is corresponding

to the eigenvalue −2A(n+5),5(0). Note that, in some paper, people prefer to factor

out the s(s + 1) part from the non-perturbed operator H0, so their non-perturbed

eigenvalue will be l(l + 1)− s(s+ 1) with a different convention.

Note that, the coefficient an can be expanded with respect to aω as

an = (aω)n[polynomial of (aω)] (2.53)

if aω is small enough. This patterns give us that the series expansion is exactly

convergent, since

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ < 1. (2.54)

by Ratio test for small aω.

For example, for s = −2, l = 2, |m| ≤ 2, the coefficients have the patterns,

an =
∞∑
i=0

cn,i(aω)
n+i. (2.55)
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with cn,i as the coefficient of the (aω)n+i term in an. Note that these coefficients

are m dependent so they differ for each m. For another example, for s = −2, l = 3,

|m| ≤ 2, the patterns of the coefficients will become

a0 =
∞∑
i=0

cn,i(aω)
n+i

an =
∞∑
i=0

cn,i(aω)
n+i−1.

(2.56)

The coefficient an will be shifted by (aω) when n ≥ 1 in this case. For different l and

|m| < l, the rules of these shifts are slightly different, but can still be found. Hence,

we can truncate the Leaver’s ansatz at a specific order of aω and then compare it

with the result from the perturbation theory.

Both the perturbation theory and Leaver’s method give us some ideas about how

to construct a new ansatz of the spin-weighted spheroidal harmonics.
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Chapter 3

Spin-weighted Spherical

Harmonics from On-shell

Kinematics (Schwarzschild)

In this chapter, we employ the spinor-helicity formalism to obtain an on-shell

expression that describes the angular dependence of Schwarzschild black hole QNMs,

specifically the spin-weighted spherical harmonics.

To achieve this, we first introduce the spinor-helicity formalism, a powerful frame-

work extensively utilized in particle scattering studies. Drawing insights from the

physical picture of the gravitational wave emission by black holes, we conjecture a

3pt tree-level scattering amplitude which aligns with this emission process. Subse-

quently, we set the momenta of the particles involved in the scattering for both the

initial and the final states of the system. Finally, we verify that the scattering ampli-

tudes which satisfy the on-shell spinor-helicity formalism are indeed associated with

the spin-weighted spherical harmonics by relating the spin configurations and the

quantum number m which is the eigenvalue of the third component of the angular

momentum operators.
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3.1 Spinor-Helicity Formalism and Unequal Mass

3pt Amplitude

The Spinor-Helicity Formalism is a powerful technology for computing the scat-

tering amplitudes easily and efficiently. The spinor-helicity formalism obeys Lorentz

invariance and gauge invariance in the Feynman rules, hence the scattering ampli-

tude can be written in the simpler form than traditional QFT. The amplitude is

composed of the massive and massless 2-component Weyl spinors which are from

the Weyl equation being invariant under the Lorentz transformation. The Weyl

spinors are more fundamental than the 4-vectors in SO(1, 3), because the spinors

form a irreducible representation of the Lorentz group. This method provides a

invariant and efficient framework for describing particle kinematics and calculating

scattering amplitudes.

Before we introduce the spinor-helicity formalism, we have to know that the

SL(2,C) momentum of a massless particle can be decomposed of two massless

spinors

kαα̇ = |k⟩α[k|α̇ (3.1)

and the momentum of a massive particle can be decomposed of four massive spinors

pαα̇ = |pI⟩α[pI |α̇ (3.2)

with the SU(2) little group index I = 1, 2 =↑, ↓.

The point of the spinor-helicity formalism is base on the angle and square spinors

which satisfy the Weyl equation

pαβ̇|p
I ]β̇ = +m|pI⟩α

pα̇β|pI⟩β = +m|pI ]α̇

[pI |β̇p
β̇α = −m⟨pI |α

⟨pI |βpβα̇ = −m[pI |α̇

(3.3)

25



doi:10.6342/NTU202302187

for massive spinors, and satisfy

kαβ̇|k]
β̇ = 0

kα̇β|k⟩β = 0

[k|β̇k
β̇α = 0

⟨k|βkβα̇ = 0

(3.4)

for massless spinors.

We will use the unequal masses 3pt amplitude in the following section to repro-

duce the angular dependence of black hole QNMs, since the gravitational waves in

a QNMs system carry energy and slowly dissipate it, so that the black hole mass

reduces.

�3S3

1S1

2h2

Figure 3.1: 3pt scattering process from spin-S3 to spin-S1 and helicity h2

Mathematically, if we try to use the 3pt amplitude with equal masses m, then

momentum conservation will give us p1 · k2 = p3 · k2 = 0, and kµ2 will be a complex

massless 4-momentum, such that some components of |2⟩ and |2] are imaginary,

and some spin configurations of the amplitude cannot reproduce the spin-weighted

spherical harmonics, which is a real function.

Therefore, we assume an unequal masses process for the 3pt amplitude, rather

than equal masses, and then review the amplitude using the spinor-helicity formalism

in [29–31]. For the spin-S1, spin-S3 representation of the SU(2) little group indices

(I1...I2S1), (J1...J2S3) for two massive leg 1 and leg 3 with masses m1 and m3, and

one massless leg 2 with helicity h2, the amplitude must contain the momenta of p1,

p3, and k2, and the momenta can be decomposed of the spinors, so the amplitude
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can be written as

Mh2,(I1...I2S1
),(J1...J2S3

) = λ
(I1
1,α1

...λ
I2S1

)

1,α2S1
λ
(J1
3,β1

...λ
J2S3

)

3,β2S3
Mh2,{α1...α2S1

},{β1...β2S3
} (3.5)

in terms of the spinors contractions λI1,α = |1I⟩α, λ̃Iα̇1 = |1I ]α̇, λJ3,α = |3J⟩α, λ̃Jα̇3 =

|3J ]α̇, λ2,α = |2⟩α, and λ̃α̇2 = |2]α̇ where

Mh2

{α1...α2S1
},{β1...β2S3

} = gh2
S1,S3

(u...u︸︷︷︸
Nu

v...v︸︷︷︸
Nv

){α1...α2S1
},{β1...β2S3

} (3.6)

where gh2
S1,S3

is a coupling constant; the SL(2,C) Lorentz indices α1...α2S1 , β1...β2S3

are carried by the basis spinors uα = |2⟩α with helicity −1
2
and vα =

p1αβ̇

m1
|2]β̇ with

helicity +1
2
. Here, Nu means the number of u and Nv means the number of v,

similarly, the number of λI1,α is 2S1 and the number of λJ3,β is 2S3.

The spinor-helicity formalism give the amplitudes two constraints, one is for

helicity

−Nu

2
+
Nv

2
= h2, (3.7)

and the other one is for spin

Nu +Nv = 2S1 + 2S3, (3.8)

therefore, the number of u is determined by Nu = S1 + S3 − h2 and the number of

v is determined by Nv = S1 + S3 + h2.

Here, the spin-weighted spherical harmonics −2Ylm(θ) carry the quantum num-

bers, spin weight h = −2, orbital angular momentum l, and projection m, therefore

we conjecture the scattering amplitude M(1, 2h=−2,3l) = M−2,(J1...J2l) which is the

overlap of the quantum numbers, namely, the amplitude has the massive scalar leg

1 and spin-l leg 3 particles whose masses are m1 and m3, respectively, and massless

leg 2 being a graviton with helicity h = −2. Such that the amplitude carries h and

l, and the projection m from −l to l is represented by spin configurations (J1...J2l)

carried by leg 3.
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�3l

1

2h=−2

Figure 3.2: 3pt scattering process from spin-l to spinless and helicity −2

From above spinor-helicity formalism, we have the amplitude which describes

that a spinning black hole emits a graviton with h = −2 and develops into a non-

spinning black hole,

M−2
{α1...α2l} = g−2

l uuuu(uv)l−2. (3.9)

for l ≤ |h| = 2, where the indices α1...α2l are carried by u and v, such that the

amplitude satisfies the spin, helicity counting, and the Lorentz invariance under

the Lorentz transformation of spinors, |k⟩α = L(k; j)βα|j⟩β and [k|α̇ = [j|β̇L̃(k; j)
β̇
α̇

for massless spinors; |pI⟩α = W I
JL(p; q)βα|qJ⟩β and [pI |α̇ = [qJ |β̇L̃(p; q)

β̇
α̇(W

−1)JI for

massive spinors. Then, we will use this assumption and the setup in the next section

to reproduce the spin-weighted spherical harmonics.

Naively, the angular momentum in Fig.3.2 which we conjecture does not appear

to be conserved. Actually, we should look at the angular momentum conservation

from another point of view, since the angular momentum is coordinate dependence.

As we know, the generator is the operator associated with conserved quantity, and

the angular momentum tensor is the generator of the rotation and the Lorentz boost

for the Lorentz group; that is to say, the Lorentz invariance guarantees the angu-

lar momentum conservation, therefore the amplitude which is a Lorentz invariant

function satisfies the conservation of the angular momentum, when the angular mo-

mentum l is larger than the helicity |h| = 2.
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3.2 Setup of On-shell Spinors

According to the physical picture of the QNMs, we assume that the gravitational

waves are emitted in the direction n̂ = (sin θ cosϕ, sin θ sinϕ, cos θ). Furthermore,

we can always set a massive particle in the rest frame. If we stay in the rest frame

of particle 1, then we set the on-shell 4-momenta in SO(1, 3) as

pµ1 =

(
m1 0 0 0

)
,

kµ2 =E2

(
1 sin θ cosϕ sin θ sinϕ cos θ

)
,

(3.10)

with real components which satisfy the on-shell conditions |pµ1 |2 = m2
1 for a massive

particle and |kµ2 |2 = 0 for massless one. Or, the momenta in SL(2,C) by using

pαα̇ = pµσµ,αα̇, such that we obtain

p1αα̇ =

m1 0

0 m1

 ,

k2αα̇ =

2E2 sin
2
(
θ
2

)
−e−iϕE2 sin θ

−eiϕE2 sin θ 2E2 cos
2
(
θ
2

)
 ,

(3.11)

where E2 = ω of massless particle 2 is the angular frequency (or energy) that people

care about in QNMs; the determinant det(p1αα̇) = m2
1 and det(k2αα̇) = 0 are Lorentz

invariant. Next, we decompose the momenta in SL(2,C) by using p1αα̇ = |1I⟩[1I |,

k2αα̇ = |2⟩[2| and obtain the following spinor variables, the on-shell kinematics of
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the massive spinor 1

|1↑⟩α =
√
m1

1

0

 ,

|1↑]α̇ =
√
m1

1

0

 ,

|1↓⟩α =
√
m1

0

1

 ,

|1↓]α̇ =
√
m1

0

1

 ,

(3.12)

and the massless spinor 2

|2⟩α =
√
2E2

−e−iϕ sin
(
θ
2

)
cos

(
θ
2

)
 ,

|2]α̇ =
√

2E2

 cos
(
θ
2

)
eiϕ sin

(
θ
2

)
 ,

(3.13)

where the SU(2) little group indices I for massive leg 1 can be chosen as ↑ and ↓;

massless one |2⟩ has helicity −1
2
and |2] has helicity +1

2
, respectively.

Then, in order to construct the 4-momentum of particle 3, the momentum con-

servation gives us

pµ3 = pµ1 + kµ2 =

(
m1 + E2 E2 sin θ cosϕ E2 sin θ sinϕ E2 cos θ

)
, (3.14)

and by the on-shell condition m2
3 = |pµ3 |2 = 2m1E2 +m2

1, we can first identify the

rest frame momentum of leg 3 to

pµ3,rest =

(√
2m1E2 +m2

1 0 0 0

)
=

(
m3 0 0 0

)
(3.15)

with its massm3 =
√

2E2m1 +m2
1 = m1+E2+O(E2

2). And then, we also decompose

the momentum [p3,rest]αα̇ in SL(2,C) into spinors which have a similar form with
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the spinor 1, |1I⟩ and |1I ], but we are already in the rest frame of particle 1, so we

have to boost pµ3,rest along the direction n̂ = (sin θ cosϕ, sin θ sinϕ, cos θ) in order to

set up the right coordinates, in other words, we want the spin-up spinor 3 in the

rest frame to correspond to the spin-up spinor 3 in the other frame; the spin-down

in the rest frame to correspond to the spin-down in the other frame. Precisely, that

is

|3↑⟩α =

cosh λ
2
− sinh λ

2
cos θ − sinh λ

2
e−iϕ sin θ

− sinh λ
2
eiϕ sin θ cosh λ

2
+ sinh λ

2
cos θ


√

m3

0

 ,

|3↑]α̇ =

cosh λ
2
+ sinh λ

2
cos θ sinh λ

2
e−iϕ sin θ

sinh λ
2
eiϕ sin θ cosh λ

2
− sinh λ

2
cos θ


√

m3

0

 ,

|3↓⟩α =

cosh λ
2
− sinh λ

2
cos θ − sinh λ

2
e−iϕ sin θ

− sinh λ
2
eiϕ sin θ cosh λ

2
+ sinh λ

2
cos θ


 0

√
m3

 ,

|3↓]α̇ =

cosh λ
2
+ sinh λ

2
cos θ sinh λ

2
e−iϕ sin θ

sinh λ
2
eiϕ sin θ cosh λ

2
− sinh λ

2
cos θ


 0

√
m3

 ,

(3.16)

where the boost matrix in SL(2,C) has the form e±
λ
2
(n̂·σ⃗) = cosh λ

2
I ± sinh λ

2
(n̂ · σ⃗)

from a rest frame with the rapidity λ = log
(

(E2+m1)+E2

m3

)
, and the plus sign are

for angle spinors (chiral spinors); the minus sign are for square spinors (anti-chiral

spinors). We can easily verify the momentum conservation p1αα̇ + k2αα̇ = p3αα̇,

p3αα̇ =

m1 + 2E2 sin
2
(
θ
2

)
−e−iϕE2 sin θ

−eiϕE2 sin θ m1 + 2E2 cos
2
(
θ
2

)
 . (3.17)

by combining the spinors p3αα̇ = |3I⟩[3I | from the above.

Then, with the above settings, we can compute the spinor products (on-shell
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elements) with the angular dependence

[21↑] =[23↑] = −
√

2E2m1e
iϕ sin

(
θ

2

)
,

[21↓] =[23↓] =
√

2E2m1 cos

(
θ

2

)
,

⟨21↑⟩ =⟨23↑⟩ =
√

2E2m1 cos

(
θ

2

)
,

⟨21↓⟩ =⟨23↓⟩ =
√

2E2m1e
−iϕ sin

(
θ

2

)
.

(3.18)

and

[3↑1↑] =⟨3↑1↑⟩ =
√
m1e

iϕ sin θ(2E2 +m1 −m3)

2
√
2E2 +m1

,

[3↑1↓] =⟨3↓1↑⟩ = −
√
m1[cos θ(2E2 +m1 −m3) + 2E2 +m1 +m3]

2
√
2E2 +m1

,

[3↓1↑] =⟨3↑1↓⟩ =
√
m1[cos θ(−2E2 −m1 +m3) + 2E2 +m1 +m3]

2
√
2E2 +m1

,

[3↓1↓] =⟨3↓1↓⟩ = −
√
m1e

−iϕ sin θ(2E2 +m1 −m3)

2
√
2E2 +m1

,

(3.19)

under our setup, some products are the same, since the rapidity contains the m3 and

m3 can be replaced by m1 and E2. In the next section, we will use these brackets

which is set to ϕ = 0 with only angular dependence θ to plug into the scattering

amplitudes, and to compare with the spin-weighted spherical harmonics, because we

observed the following relationships,

⟨23↑⟩⟨23↑⟩⟨23↑⟩⟨23↑⟩ ∼ cos4
(
θ

2

)
⇒ −2Y2,2(θ),

⟨23↑⟩⟨23↑⟩⟨23↑⟩⟨23↓⟩ ∼ cos3
(
θ

2

)
sin

(
θ

2

)
⇒ −2Y2,1(θ),

⟨23↑⟩⟨23↑⟩⟨23↓⟩⟨23↓⟩ ∼ cos2
(
θ

2

)
sin2

(
θ

2

)
⇒ −2Y2,0(θ),

⟨23↑⟩⟨23↓⟩⟨23↓⟩⟨23↓⟩ ∼ cos

(
θ

2

)
sin3

(
θ

2

)
⇒ −2Y2,−1(θ),

⟨23↓⟩⟨23↓⟩⟨23↓⟩⟨23↓⟩ ∼ sin4

(
θ

2

)
⇒ −2Y2,−2(θ).

(3.20)

In addition, the above angular dependence of the spin configuration have the same
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form as (1+X)
1
2
|m−s|(1−X)

1
2
|m+s| for s = −2 in Leaver’s ansatz (2.42). This sparks

our interest and leads us to believe that we may be able to express Leaver’s ansatz

by using on-shell elements in the next chapter’s Kerr case.

Then, we can redefine the above spinors by dividing by a square root mass

dimension
1

√
m1

|1I⟩α = |1′I⟩α

1
√
m1

|2⟩α = |2′⟩α

1
√
m3

|3I⟩α = |3′I⟩α

(3.21)

such that the brackets become dimensionless. To compare with the angular equa-

tion (2.23) in BHPT, both of a and ω are dimensionless, hence we redefine the

dimensionless angular frequency ω in our setup,

ω

2m1

→ ω, (3.22)

such that the series expansion parameter aω = aE2

2m1
in the next chapter is also

dimensionless.

3.3 Spin-weighted Spherical Harmonics

The spin-weighted spherical harmonics (or just spherical harmonics in QM) are an

analytic function describing a spherically symmetric system in SO(3) representation.

The quantum number m represents the projection value of the angular momentum

on the z-axis, and there are 2l+ 1 possible projection states for m = −l, ..., 0, ...l to

fix the total angular momentum l.

On the one hand, we know that a (2l + 1)-dimension representation is corre-

sponding to a rank-l symmetric traceless tensor in the group SO(3). On the other

hand, the irreducible representation of SU(2) is a subgroup of the rotation group

SO(3).

Because spherical harmonics are representations of the SO(3) group and their
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form depends on the quantum number of projection of angular momentum m, and

because all representations under SO(3) can be rewritten as representations under

SU(2) which is the more fundamental representation of rotation, we can consider

the SU(2) little group indices as part of the quantum number m, which constitutes

spherical harmonics.

According to the last two sections, our 3pt amplitude (3.9) need to contract with

the external leg 3, λ
(J1
3,β1

...λ
J2l)
3,β2l

, and without leg 1, then we have

M−2,(J1...J2l) = g−2
l ⟨2′3′(J⟩l+2[2′3′J)]l−2, (3.23)

with the SU(2) little group indices (J1...J2l) which are free and fully symmetric, and

the symmetric symbol (abc) means (abc+acb+ bac+ bca+ cab+ cba)/(3!). Actually,

the above (3.20) is exactly the amplitude for l = 2 with different spin configurations.

Based on the above arguments, we try to figure out how the scattering amplitudes

M−2,(J1...J2l) relate to the spin-weighted spherical harmonics

M−2,(J1...J2l) ∼ −2Ylm(θ). (3.24)

We have observed that they have the same angular dependence as fixing m and spin

configuration, therefore there exists an one-to-one correspondence and the ampli-

tude is proportional to the spin-weighted spherical harmonics, which is the angular

solution of black hole QNMs in the Schwarzschild case. To be explicit, the relation

is

M−2,(J1...J2l) = g−2
l

(
2E2

m1

)l
1

(2l)!

√
4π

2l + 1

√
(l + 2)!(l − 2)!(l +m)!(l −m)!−2Ylm(θ)

(3.25)

with a overall factor (E2/m1)
l. There are 2l free little group indices, that is, the

spin configuration is corresponding to 2l + 1 different m.

Given l, the range ofm is from −l to l. Form = 0 in the spherical harmonics, the

number of spin up and spin down will be equal; for m = ±l, the little group indices
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are all up or down, respectively; for arbitrarily m, there are (l + m) spin up and

(l−m) spin down. In other words, the SU(2) spin configurations (J1, J2, ...J2l−1, J2l)

which are carried by the leg 3, as well as fully symmetric reproduce the each m by

( ↑, ..., ↑︸ ︷︷ ︸
l+m

, ↓, ..., ↓︸ ︷︷ ︸
l−m

) ⇐⇒ m (3.26)

Especially, if we choose the helicity of gravitons as h = +2, then the amplitude

will be

M+2,(J1...J2l) = g+2
l ⟨2′3′(J⟩l−2[2′3′J)]l+2, (3.27)

and will match the spin-weighted spherical harmonics with the spin weight s = +2,

that is 2Ylm(θ). Moreover, if we consider a photon with helicity h = ±1 or a

scalar particle with helicity h = 0, then the amplitude will match the spin-weighted

spherical harmonics ±1Ylm(θ), or 0Ylm(θ) = Ylm(θ), respectively. To be explicit, the

3pt scattering amplitudes

Mh,(J1...J2l) = ghl ⟨2′3′(J⟩l−h[2′3′J)]l+h (3.28)

are related to the spin-weighted spherical harmonics

Mh,(J1...J2l) = ghl (−1)h
(
2E2

m1

)l
1

(2l)!

√
4π

2l + 1

√
(l + h)!(l − h)!(l +m)!(l −m)!hYlm(θ)

(3.29)

for the helicity (spin weight) h = 0,±1,±2, spin l ≥ |h|, and −l ≤ m ≤ l.

So far, the punchline is that, by establishing a unique matching of scattering

amplitudes Mh,(J1...J2l) and the spin-weighted spherical harmonics hYlm(θ), we have

successfully connected the spin configurations and quantum number m, and re-

produced the Schwarzschild black hole QNMs which emit a massless particle with

helicity h, or says a perturbed spin-h field (spin weight h).
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Chapter 4

Spin-weighted Spheroidal

Harmonics from On-shell

Kinematics (Kerr)

In the previous chapter, we described spherically symmetric black holes QNMs by

using the spinor-helicity formalism and the spin configurations. In this chapter, we

discuss the angular dependence of Kerr black hole QNMs which involves the rotation,

or says the classical spin, that is the spin-weighted spheroidal harmonics (2.41) we

mentioned. Since the classical spin effect is not included in the on-shell spinor-

helicity formalism kinematics which involves the quantum spin, we introduce the

coherent spin state which can describe the classical behavior, then the expectation

value of spin operators by the coherent spin states can represent the classical spin

vector.

First, we introduce the coherent spin state as presented in [32] and its application

to the minimal-coupling coherent amplitude. Next, in order to construct a on-

shell basis to produce the each order of the spin-weighted spheroidal harmonics, we

expand the application of the coherent spin state to the unequal masses on-shell

elements which is a process from spin-(l⊕s) to spin-s and satisfy the spinor-helicity

formalism. In the classical limit, we can use these elements to establish a on-shell

36



doi:10.6342/NTU202302187

coherent tensor and describe the spin-weighted spheroidal harmonics by truncating

them at some order of the small parameter aω.

4.1 Review of Coherent Spin State

To obtain the spin vector of the Kerr black hole, we need to introduce the coherent

spin states, since the spinor-helicity formalism does not involve the classical spin.

The coherent spin state, which is an eigenstate of the annihilation operator and is

composed of a series of quantum states, approximatively describes a dynamic state

as the classical behavior and minimizes the uncertainty.

To find a spin operator acting on the irreducible representation of SU(2), let us

review the N -dimensional harmonic oscillator with SU(N) symmetry in Appendix

A. Now, we consider the 2-dimensional harmonic oscillator, and then there are two

creation operators â†1, â
†
2 and two annihilation operators â1, â2 acting on SU(2)

representation in the system. The creation and annihilation operators satisfy the

algebra

[âI , â†J ] = δIJ (4.1)

where the SU(2) indices for I, J = 1, 2, or says up and down. So far, they can

construct an operator

Si =
ℏ
2
â†I [σ

i]IJ â
J (4.2)

acting on the SU(2) spin state in [32] by above creation, annihilation operators, and

the Pauli matrices which are defined by

[σpµ]
I
J =

1

2m

(
⟨pI |σµ|pJ ] + [pI |σ̄µ|pJ⟩

)
, (4.3)

where |pJ ] and |pJ⟩ are decomposed from a momentum p, then we will set p at the

rest frame. It is worth noting that, the operator defined in this way satisfies the

angular momentum algebra

[Si, Sj] = iℏϵijkSk, (4.4)
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or more generally

[Sµ, Sν ] =
iℏ
m
ϵµνρσpρSσ (4.5)

in SO(1, 3) which depends on a frame pρ. In SU(2) representation, we can compare

the observable in the 2-dimensional harmonic oscillator with the spin states

[âi, â
†
j] = δij =⇒ [xi, pj] = iℏδij i, j = 1, 2

[âI , â†J ] = δIJ =⇒ [Si, Sj] = iℏϵijkSk i, j, k = 1, 2, 3

(4.6)

for I, J = 1, 2. Because all of the operators xi, pi, and Si are defined by the same

creation and annihilation operators which satisfy the same commutation relation,

we then use the same form of the coherent state to minimize the uncertainty of these

observable which are in terms of the creation and annihilation operators.

This is what we want, and we will use the angular momentum operators later.

Note that, the SU(2) operator which is Lorentz covariant is dependent on a frame

of a momentum p which we choose.

Now, let us find the coherent spin states that we will use, the coherent spin

states are the coherent states for the rotation group of the 3-dimensional space

SO(3). In [32,34], the coherent spin states are SU(2) representation, involving two

creation and two annihilation operators, and satisfies the same eigenvalue equations

of the annihilation operators as the 2-dimensional harmonic oscillator with complex

eigenvalues αI for I = 1, 2. But here the coherent spin states are used to minimize

the uncertainty of the expectation value of the angular momentum operator.

Here, we briefly introduce the uncertainty of the expectation value of the angular

momentum operator. Hence, first we need to know the expectation value of the

angular momentum operator

⟨s, (I1...I2s)|Si|s, (J1...J2s)⟩ =
ℏ
2
2s[σi]

(I1
(J1
δI2J2 ...δ

I2s−1)
J2s−1)

(4.7)
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and

⟨s, (I1...I2s)|Si
2|s, (J1...J2s)⟩ =

ℏ2

4
2s(2s− 1)[σi]

(I1
(J1

[σi]
I2

J2
δI3J3 ...δ

I2s−2)
J2s−2)

. (4.8)

by an arbitrary spin state in SU(2) representation, where the spin state

|s, (I1...I2s)⟩ =
1√
(2s)!

â†I1 ...â
†
I2s
|0⟩ (4.9)

satisfies the normalization condition

⟨s, (I1...I2s)|s′, (J1...J2s′)⟩ = δss′δ
(I1
(J1
...δ

I2s)
J2s)

(4.10)

where (αIi)2s = αI1αI2 ...αI2s−1αI2s . Note that the expectation value of Si vanish as

i = 1, 2, since the two Pauli matrices σ1 and σ2 have no diagonal elements. After

having the expectation values, moreover, we can compute the uncertainty of the

angular momenta which satisfies

∆S1∆S2 ≥
ℏ
2
|⟨s, (I1...I2s)|S3|s, (I1...I2s)⟩| (4.11)

where the standard deviation of an observable is

∆Oi =
√
⟨s, (I1...I2s)|O2

i |s, (I1...I2s)⟩ − ⟨s, (I1...I2s)|Oi|s, (I1...I2s)⟩2 (4.12)

by an arbitrary spin state |s, (I1...I2s)⟩. Take s = 1 spin states as examples. On

the one hand, we can use the state |1, (↑, ↑)⟩ to compute the standard deviation of

angular momentum

∆S1 = ∆S2 =

√
ℏ2
2

(4.13)

where

⟨1, (↑, ↑)|S1
2|1, (↑, ↑)⟩ = ℏ2

2
[σ1]

↑
↑[σ1]

↑
↑ =

ℏ2

2

(
δ↑↑δ

↑
↑ + ϵ↑↑ϵ

↑↑
)
=

ℏ2

2
(4.14)
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by some properties of the Pauli matrices in [32], and then the expectation value of

the third component

⟨1, (↑, ↑)|S3|1, (↑, ↑)⟩ = ℏ[σ3]↑↑δ
↑
↑ = ℏ (4.15)

where

[σ3]
↑
↑ =

1

2m

(
⟨p↑|σ3|p↑] + [p↑|σ̄3|p↑⟩

)
= 1 (4.16)

by the rest frame spinors |pI⟩, |pI ], we can verify that this spin state makes the

uncertainty principle hold; on the other hand, we can also use the other spin state

|1, (↑, ↓)⟩ to compute

∆S1 = ∆S2 = ℏ (4.17)

where

⟨1, (↑, ↓)|S1
2|1, (↑, ↓)⟩ = ℏ2

2

1

2

(
[σ1]

↑
↑[σ1]

↓
↓ + [σ1]

↑
↓[σ1]

↑
↓ + [σ1]

↓
↑[σ1]

↓
↑ + [σ1]

↓
↓[σ1]

↑
↑

)
= ℏ2

(4.18)

and

⟨1, (↑, ↓)|S3|1, (↑, ↓)⟩ = ℏ[σ3](↑(↑δ
↓)
↓) = 0 (4.19)

where

[σ3]
(↑

(↑δ
↓)
↓) =

1

2

(
[σ3]

↑
↑ + [σ3]

↓
↓

)
= 0 (4.20)

by some properties of Pauli matrices, the uncertainty principle still hold by this spin

state. The uncertainty of the angular momenta in SU(2) representation is the same

as in SO(3) representation, that is to say, the standard deviation

∆S1 = ∆S2 =

√
ℏ2
2
[l(l + 1)−m2] (4.21)

and the expectation value

⟨l,m|S3|l,m⟩ = ℏm (4.22)
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lead to the following inequality

∆S1∆S2 =
ℏ2

2
[l(l + 1)−m2] ≥ ℏ

2
⟨l,m|S3|l,m⟩ (4.23)

by an arbitrary state |l,m⟩ in SO(3) representation.

Next, in order to minimize the uncertainty of the expectation value of the angular

momentum operator, we need the coherent spin states which are expressed as

|α⟩ =e−
1
2
α̃Jα

J

eα
I â†I |0⟩ = e−

1
2
||α||2

∞∑
2s=0

∑
I1,...,I2s=↑,↓

(αI)2s√
(2s)!

|s, (I1...I2s)⟩. (4.24)

in terms of the spin state. Naively, we can verify the eigenvalue equations of the

annihilation operator by expanding that

â↑|α⟩ =e−
1
2
||α||2

∞∑
2s=0

∑
I1,...,I2s=↑,↓

(αI)2s

(2s)!
â↑â†I1 ...â

†
I2s
|0⟩

=e−
1
2
||α||2

{
0 + (α↑)|0⟩+ 0 +

2(α↑α↑)

2
â†↑|0⟩+

2(α↑α↓)

2
â†↓|0⟩+ 0 + ...

}

=α↑|α⟩,

(4.25)

and |α⟩ is exactly a eigenstate.

To describe the behavior of the classical angular momentum, or says the classical

spin, they sandwich the angular momentum operator (4.2) by the coherent spin state

|α⟩, that is the expectation value

⟨α|SiSj|α⟩ = ⟨α|Si|α⟩⟨α|Sj|α⟩+
ℏ2

4

[
δij(α̃Iα

I) + iϵijk(α̃I [σk]
I
Jα

J)
]
, (4.26)

where

⟨α|Si|α⟩ =
ℏ
2

[
α̃I [σi]

I
Jα

J
]
. (4.27)

by âI |α⟩ = αI |α⟩ and the normalization condition is the classical spin with the order

ℏ0, since the SU(2) spinors α̃I , α
I have the order ℏ−1/2 for each one. Now, we can
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verify the uncertainty of the expectation value of the angular momentum operator,

∆S1 = ∆S2 =

√
ℏ2
4
a (4.28)

and

⟨α|S3|α⟩ =
ℏ
2
a (4.29)

when the spin ai = (0, 0, a) has only z component, so the coherent spin states

exactly minimize the uncertainty of the expectation value of the angular momentum

operator ∆S1∆S2 = ℏ
2
|⟨α|S3|α⟩|. That is to say, the coherent spin state leads the

behavior of the expectation value of the angular momentum operator to be classical.

Therefore, they can use the form in (4.24) to reproduce the classical spin aµ.

Precisely, the spin vector of a Kerr black hole is defined by

aµp =
1

mp

⟨α|Sµ
p |α⟩ (4.30)

which is inspired by the expectation value of angular momentum operators (4.27)

at the p frame, let’s say the SU(2) spinors are dependent on the frame αI = αI(p).

Then, let’s see the application to the equal masses on-shell scattering amplitude,

which is called the classical spinning amplitudes. They start from the 3pt amplitude,

the massive leg 1 and leg 2 particles which have the same masses m but spin-s1,

spin-s2, respectively, and the massless k being a graviton with helicity h = ±2 emits.

�2s2

1s1

kh=±2

Figure 4.1: 3pt scattering process from spin-S2 to spin-S1 and helicity ±2

Previously, we mention the 3pt amplitude with different masses. Now, the am-

plitude is with the equal masses, people cannot use the spinors uα = |k⟩α and
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vα =
p1αβ̇

m
|k]β̇ as a basis, since vαuα = 2p1 · k/m = 0 by momentum conservation

and the same masses m, that means they are parallel. In [29,31,32], they construct

a basis for the equal masses amplitudes,

x|k⟩α =
p1αβ̇
m

|k]β̇,

1

x
|k]α̇ =

pα̇β1
m

|k⟩β
(4.31)

where the x-factor is x = ⟨ζ|p1|k]
m⟨ζk⟩ with a reference spinor ζ. Here, they start with the

minimal coupling amplitudes which is the leading order of the amplitude, denoted

as Mmin(1
s,2s, kh) = Mh,{I}

min {J}, with equal masses and equal spin-s,

M+2,{I}
min {J} = −κ

2

⟨2I1J⟩2s

m2s−2
x2,

M−2,{I}
min {J} = (−1)2s+1κ

2

[2I1J ]
2s

m2s−2

1

x2
.

(4.32)

Next, to connecting to Kerr black holes, by combining the coherent spin states

(4.24) and the minimal coupling amplitudes, the coherent spin amplitudes is

A+2
min = −κ

2
x2e−

1
2
(||α||2+||β||2)

∞∑
2s=0

1

(2s)!
(β̃I)

2s ⟨2I1J⟩2S

m2S−2
(αJ)2s, (4.33)

and it is obviously the series expansion of exponential, hence we can rewrite it as

A+2
min = −κ

2
m2x2e−

1
2
(||α||2+||β||2)exp

{
β̃I⟨2I1J⟩αJ

m

}
. (4.34)

According to the definition of the spin vector, we know this is dependent on the

frame. Therefore, they choose an average momentum frame, defined by pa =
p1+p2

2
,

such that the spinors |1I⟩ and |2I⟩ can be boosted from |aI⟩ which is decomposed

with pa = |aI⟩[aI |,

|1I⟩ = exp

{
−ip

µ
ap

ν
1

m2
σµν

}
|aI⟩

|2I⟩ = exp

{
ipµap

ν
2

m2
σµν

}
|aI⟩

(4.35)

with the Lorentz generators σµν = i
2
σ[µσ̄ν] in SL(2,C). Due to the on-shell formal-
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ism with equal masses, we know that p1 ·k = p2 ·k = pa ·k = 0. Then we can rewrite

the boost matrix as exp
{
± ipµak

ν

2m2 σµν

}
by momentum conservation p1 + k = p2, and

expand the boost up to linear in k, since the higher order vanish k2 = 0, such that

the piece in the coherent spin amplitudes becomes

β̃I(p2)⟨2I1J⟩αJ(p1) = β̃I(pa)

(
⟨aIaJ⟩ −

1

4m

(
⟨aI |k|aJ ] + [aI |k|aJ⟩

))
αJ(pa), (4.36)

where ⟨aIaJ⟩ = mδIJ , and that is exactly corresponding to the spin vector aµpa as

taking β̃I = α̃I , and the coherent spin amplitudes become

A±2
min = −κ

2
m2x±2e∓k̄·apa , (4.37)

which contain the exponential form. This 3pt result with the exponential spin-

multipole can be used to connect to the gravitational scattering of Kerr black holes

[32], such as 4pt amplitude gluing by 3pt amplitudes is used to connect the impulse

and the geodesic equation.

By observing the application, we find that the piece k · a is involved in their

results, which is from the contraction of SO(1, 3) indices

α̃I(p)[k
µσpµ]

I
Jα

J(p) ∼ k · a, (4.38)

where k ∼ ω in our language, and this give us the spin multiplied by the angular

frequency, that is exactly the parameter aω which is needed to expand the spin-

weighted spheroidal harmonics. Consequently, we except the coherent spin states

will give our scattering amplitudes a classical spin of Kerr black hole, such that we

can solve the problem about the spinor-helicity formalism not involving the classical

spin.
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4.2 Spin-weighted Spheroidal Harmonics

After we introduce the coherent spin state and the spin vector in the 3pt equal

masses amplitudes, now we try to establish a on-shell basis for the each order of

the spin-weighted spheroidal harmonics. The basis is composed of various on-shell

elements of the 3pt process that contract with SU(2) spinors α̃I and α
I from coherent

spin states.

First, we can find the SU(2) spinors in a specific form which satisfy the follow-

ing conditions. As we know from the previous section, the SU(2) spinors can be

combined with the spin operators to obtain the classical spin at a frame p, and now

we ask the generated spin vector aµ has only the t and z components, such that if

we set p at the rest frame, then the spin vector will reduce to only the z direction,

since people usually set the spin along the z direction in Kerr metric (2.12). Also,

we want the length of SU(2) spinors to be

||α||2 = α̃I(p)α
I(p) = a. (4.39)

Since the SU(2) spinors depend on a reference frame, we need to make α̃I(p),

αI(p), and the on-shell spinors |1I⟩, |3I⟩ at the same reference frame. However, our

setup is not equal masses, so we have to rescale the momenta (3.21) by their masses

p′1
µ
=

pµ1
m1

⇒ p′1αα̇ = |1′I⟩[1′I |

p′3
µ
=

pµ3
m3

⇒ p′3αα̇ = |3′I⟩[3′I |
(4.40)

where m3 =
√

2E2m1 +m2
1 and define a new momentum

p′a
µ
=

(
1 0 0 0

)
(4.41)

at the rest frame, such that they are unit length |p′1| = |p′3| = |p′a| = 1. So far, by

taking p′a
µ as the reference frame, we rewrite the |1′I⟩ in terms of |a′I⟩, and rewrite
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|3′I⟩ in terms of the same spinor |a′I⟩ by boost

|1′I⟩α = |a′I⟩α

|3′I⟩α = exp
{
iλ(p′3, p

′
a)p

′
a
µ
p′3

ν
σµν

}
α

β|a′I⟩β
(4.42)

with the Lorentz generators σµν in SL(2,C), where the rapidity in [35] is

λ(pA, pB) =
log

[
1
m2

(
pA · pB +

√
(pA · pB)2 −m4

)]
√

(pA · pB)2 −m4
. (4.43)

So far, all objects are related to p′a
µ at the reference frame, such that αI(p′a) contracts

with |1′I⟩ and α̃K(p
′
a) contracts with |3′K⟩.

Then, we can start to find the SU(2) spinors which satisfy the above conditions.

Assume the SU(2) spinors with the form

αI(p′a) =

(
α1 α2

)
,

α̃I(p
′
a) =

(
(α1)

∗
(α2)

∗
)
,

(4.44)

where ∗ means the complex conjugate, and then we plug SU(2) spinors and the

reference frame p′a
µ into the definition of the spin vector

aµp′a =
ℏ
2

[
α̃I(p

′
a)[σ

µ
p′a
]I

J
αJ(p′a)

]
. (4.45)

where we have put ma′ = 1; the Pauli matrices with SU(2) indices are dependent

on the frame p′a, namely,

[σp′aµ]
I
J
=

1

2

(
⟨a′I |σµ|a′J ] + [a′

I |σ̄µ|a′J⟩
)
. (4.46)

Then, we force the spin vector aµp′a without the components x and y. Moreover,

since we set p′a
µ at the rest frame, the spin vector will be along the z direction.
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Therefore, we can obtain the SU(2) spinors

αI(p′a) =
√
a

(
0 κ+ i

√
1− κ2

)
,

α̃I(p
′
a) =

√
a

(
0 κ− i

√
1− κ2

)
,

(4.47)

for some |κ| ≤ 1.

Note that in the following discussion we will use the dimensionless spinors, so we

rename |1′I⟩ to |1I⟩, |3′I⟩ to |3I⟩, 1√
m1

|2⟩ = |2′⟩ to |2⟩, and so do the square brackets,

so that their dimensionless momenta p1, p3 satisfy the momentum conservation

m1p1 + m1k2 = m3p3, which is different from the case of equal masses. And the

contractions between the reference frame SU(2) spinors and |1I⟩, |3I⟩ are valid, since

|1I⟩, |3I⟩ can be in terms of |a′I⟩ from the Lorentz boost.

With the specific form of the SU(2) spinors which are denoted α̃I and αI at the

reference frame, we can construct the dimensionless on-shell elements as a basis of

the spin-weighted spheroidal harmonics.

According to the previous scattering diagram of Schwarzschild case, now we

consider the following process. A massive spin-(l ⊕ s) state 3 with mass m3 emits

a graviton with helicity h = −2 and reduces to a massive spin-s state 1 with a

different mass m1.

�3l⊕s

1s

2h=−2

Figure 4.2: 3pt scattering process from spin-(l ⊕ s) to spin-s and helicity −2

Unlike the previous Schwarzschild case, leg 1 has no spin, so we only use ⟨23I⟩

and [23I ] in the scattering amplitude. In this process from Fig.4.2, we now have the
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following dimensionless on-shell elements from this 3pt diagram,

⟨23I⟩, [23I ], ⟨21I⟩, [21I ] (4.48)

where the exchanging terms [23J ] = −[3J2] for square and angle brackets, and they

can be linearly combined to make

⟨3J1I⟩ =
−m1

m2
3 −m2

1

(
m3[23

J ]⟨21I⟩ −m1⟨23J⟩[21I ]
)

[3J1I ] =
−m1

m2
3 −m2

1

(
m3⟨23J⟩[21I ]−m1[23

J ]⟨21I⟩
) (4.49)

with some coefficients containing m1, m3.

To reproduce the spin-weighted spheroidal harmonics with aω, we then build a

basis by the contraction of the SU(2) spinors and the angle, square brackets, so we

have the on-shell coherent elements and expand them to the first order of E2

α̃K [23
K ]⟨21I⟩αI = −aE2(1 +X)

√
m1m3

= −(1 +X)
aE2

m1

+O(aE2
2),

α̃K⟨23K⟩[21I ]αI = −aE2(−1 +X)
√
m1m3

= (1−X)
aE2

m1

+O(aE2
2).

(4.50)

and

α̃K⟨3K1I⟩αI =
a [(1 +X)m3 + (1−X)m1]

2
√
m1m3

= a+
X

2

aE2

m1

+O(aE2
2),

α̃K [3
K1I ]α

I =
a [(−1 +X)m3 − (1 +X)m1]

2
√
m1m3

= −a+ X

2

aE2

m1

+O(aE2
2),

(4.51)

where the α̃K contract with spinor 3; the αI contract with spinor 1. Roughly

speaking, we can use α̃K⟨3K1I⟩αI and coherent spin state to obtain eaωX ,

e−||α||2eα̃K⟨3K1I⟩αI → e
X
2

aE2
m1 (4.52)

in classical limit, which is inspired by the nontrivial exponential of Leaver’s ansatz in

(2.42), hence we can identify aE2

2m1
as aω. So far, we obtain the objects with the pure

a, and can be used them to cancel the e−||α||2 in the coherent spin states, such that
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a must appear together with E2, just like the angular differential equation (2.23) in

terms of aω.

Note that the classical spin parameter ||α||2 = a is dimensionless because we set

ℏ (angular momentum) to be dimensionless. Actually, the spin parameter has the

following ℏ counting

a→ a

ℏ
(4.53)

and the angular frequency of graviton is

E2

2m1

→ ℏω. (4.54)

Therefore, taking the classical limit ℏ → 0, we know that a → ∞ and E2 → 0,

respectively, but the product aE2 is fixed.

Next, by above on-shell coherent elements, we establish an on-shell coherent

tensor with the following form from (4.24) and with all possible combination of the

elements

A−2,(J1...J2l) =e−||α||2
∞∑
n=0

cn(α̃K)
nM−2,(J1...J2l),K1...Kn

I1...In(α
I)n (4.55)

with 2l fully symmetric free little group indices carried by leg 3, where the piece

M−2,(J1...J2l),K1...Kn
I1...In in the sandwich is composed of ⟨23I⟩, [23I ], ⟨21I⟩, and [21I ]

and satisfies the helicity counting h = −2. We expect the on-shell coherent tensor

can reproduce the spin-weighted spheroidal harmonics

A−2,(J1...J2l) ∼ −2Slm(aω, θ). (4.56)

Moreover, we find undetermined coefficients by truncating the coherent tensor

A−2,(J1...J2l) at a certain order of aω and comparing with the spin-weighted spheroidal

harmonics of perturbation theory (2.41).

For general l, there are 2l free little group indices in each order of aω, that is, the

spin configurations correspond to 2l+1 different m. To reproduce the spin-weighted
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spheroidal harmonics for each order, we need the coherent tensor from Fig.4.2 to

satisfy

(1) helicity h = −2,

(2) 2l free SU(2) indices in leg 3, and

(3) the number of αI , α̃I are the same and the αI , α̃I contraction rule for the

leg 1, leg 3 indices, respectively.

Therefore, we truncate the spin-weighted spheroidal harmonics expansion at

some order, and then construct a basis order by order to match the function. For

the zeroth order (aω)0, there is no spin parameter, so there is also no any αI and

α̃I , that means we only have one structure at this level,

⟨23(J⟩l+2[23J)]l−2 ∼
(
E2

m1

)l

−2Ylm(θ) (4.57)

which is the same as the Schwarzschild case (3.25). Note that the classical limit

ℏ → 0 means that we keep the order

(
E2

m1

)l (
aE2

2m1

)n

(4.58)

for n = 0, 1, 2, ... with some fixed l, where the piece aE2

2m1
is the series expansion

parameter aω. If we turn off the spin of the black hole, then the higher order will go

to vanish, such that only the zeroth order term survives and reduces to Schwarzschild

QNMs. Take l = 3 as an example, the zeroth order (aω)0 of on-shell coherent tensor

can be written as

S
(0)
3m = c0,1,0,0⟨23(J⟩5[23J)] (4.59)

where the spin-weighted spheroidal harmonics expansion Ne−aω cos θ
−2Slm(aω, θ) =

g−2
l

∑
n=0 S

(n)
lm (aω, θ) where nmeans the order of aω andN is a proportional constant

of the spin-weighted spherical harmonics and the amplitude in Schwarzschild case

in (3.25), such that c0,1,0,0 = 1 for each m. Notice that, the notation S
(n)
lm and (2.28)

are a little bit different.
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Therefore, the correspondence between the on-shell coherent tensor and the spin-

weighted spheroidal harmonics is

A−2,(J1...J2l) = g−2
l

(
2E2

m1

)l
1

(2l)!

√
4π

2l + 1

√
(l + 2)!(l − 2)!(l +m)!(l −m)!−2Slm(aω, θ)

(4.60)

from (3.25) in the previous section.

Next, before we construct the basis which we need for the next order, we check

that

cos θ−2Ylm(θ) = #−2Yl−1,m(θ) + #−2Ylm(θ) + #−2Yl+1,m(θ) (4.61)

can give us the spin-weighted spherical harmonics which involve l−1, l, and l+1 as

a basis, and that is enough to describe the first order spheroidal harmonics, because

the first order only involves −2Yl−1,m, −2Ylm, and −2Yl+1,m in (2.41).

Therefore, for the first order (aω)1, we can use the ”old structures” from the

zeroth order multiplied by (1+X)aω and (1−X)aω in (4.50) in the classical limit,

and there are two ”new structures” which follow the above requirements, and the

”new structures” means that the SU(2) spinor αI only contracts with the single side

of ⟨3J1I⟩ with free little group index J ,

⟨23J⟩l+1[23J ]l−2
(
α̃K⟨23K⟩

) (
⟨3J1I⟩αI

)
(k2 · p3)

⟨23J⟩l+2[23J ]l−3
(
α̃K [23

K ]
) (

⟨3J1I⟩αI
)
(k2 · p3)

(4.62)

with 2l fully symmetric free SU(2) indices J on leg 3, where
(
⟨3J1I⟩αI

)
and

(
[3J1I ]α

I
)

will give us the same contribution, so we just need one of them; the piece (k2 · p3) =

⟨23J⟩[3J2] is used to make up for the power of E2. Therefore, at this level, there

are four possible structures as a basis for the first order spheroidal harmonics. For
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example, the first order (aω) of on-shell coherent tensor is

S
(1)
3m =c0,1,1,0⟨23(J⟩5[23J)](α̃K [23

K ]⟨21I⟩αI)

+ c0,1,0,1⟨23(J⟩5[23J)](α̃K⟨23K⟩[21I ]αI)

+c1,1,0,0⟨23(J⟩4[23J ]
(
α̃K⟨23K⟩

) (
⟨3J)1I⟩αI

)
(k2 · p3)

+c1,2,0,0⟨23(J⟩5
(
α̃K [23

K ]
) (

⟨3J)1I⟩αI
)
(k2 · p3)

(4.63)

which is composed of the two old structures (black word) and two new structures

(blue word) with the coefficients c0,1,0,1 =
1
16
, c0,1,1,0 =

3
16
, c1,1,0,0 =

25
144

, and c1,2,0,0 =

− 7
144

for matching each m.

For the second order (aω)2, again, we use the ”old structures” from the first

order multiplied by α̃K [23
K ]⟨21I⟩αI and α̃K⟨23K⟩[21I ]αI and there are three ”new

structures”,

⟨23J⟩l[23J ]l−2
(
α̃K⟨23K⟩

)2 (⟨3J1I⟩αI
)2

(k2 · p3)2

⟨23J⟩l+1[23J ]l−3
(
α̃K⟨23K⟩

) (
α̃K [23

K ]
) (

⟨3J1I⟩αI
)2

(k2 · p3)2

⟨23J⟩l+2[23J ]l−4
(
α̃K [23

K ]
)2 (⟨3J1I⟩αI

)2
(k2 · p3)2

(4.64)

Note that, if l is not large enough, for example l = 3 here, there will be only two,

rather than three new structures. In this order, some redundant structures start to

appear, that is to say, some of which are linearly dependent in the classical limit.

For instance, the second new term in (4.64) is related to

⟨23J⟩l+1[23J ]l−2
(
α̃K⟨23K⟩

) (
⟨3J1I⟩αI

)
(k2 · p3)× (α̃K [23

K ]⟨21I⟩αI) (4.65)

and

⟨23J⟩l+2[23J ]l−3
(
α̃K [23

K ]
) (

⟨3J1I⟩αI
)
(k2 · p3)× (α̃K⟨23K⟩[21I ]αI) (4.66)

constructed from the previous order. In the next order, this kind of redundant

structures will be more. The l = 3 example with higher order is placed in the
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Appendix B.

For the third order (aω)3, the ”new structures” include the following four

⟨23J⟩l−1[23J ]l−2
(
α̃K⟨23K⟩

)3 (⟨3J1I⟩αI
)3

(k2 · p3)3

⟨23J⟩l[23J ]l−3
(
α̃K⟨23K⟩

)2 (
α̃K [23

K ]
) (

⟨3J1I⟩αI
)3

(k2 · p3)3

⟨23J⟩l+1[23J ]l−4
(
α̃K⟨23K⟩

) (
α̃K [23

K ]
)2 (⟨3J1I⟩αI

)3
(k2 · p3)3

⟨23J⟩l+2[23J ]l−5
(
α̃K [23

K ]
)3 (⟨3J1I⟩αI

)3
(k2 · p3)3,

(4.67)

but there also exist the redundant structures. Here, the second and the third struc-

tures are linearly dependent on different previous structures, respectively.

Up to an arbitrary n-th order (aω)n, similarly, we can construct some ”new

structures”, but we only keep the first and the last new structures,

⟨23J⟩l+2−n[23J ]l−2
(
α̃K⟨23K⟩

)n (⟨3J1I⟩αI
)n

(k2 · p3)n

⟨23J⟩l+2[23J ]l−2−n
(
α̃K [23

K ]
)n (⟨3J1I⟩αI

)n
(k2 · p3)n,

(4.68)

since those middle new structures can always be linearly combined by the old struc-

tures which multiplied by (α̃K [23
K ]⟨21I⟩αI)i and (α̃K⟨23K⟩[21I ]αI)j. Furthermore,

if the power is l− 2− n < 0, then this kind of new structure will be not allowed, so

there will be only one new structure at this level.

So, the ansatz of the on-shell coherent tensor which describes the spin-weighted

spheroidal harmonics can be expressed as the following form,

A−2,(J1...J2l) = e−aeα̃K⟨3K1I⟩αI

×g−2
l

∞∑
n=0

∞∑
i,j=0

{
cn,1,i,j⟨23J⟩l+2−n[23J ]l−2

(
α̃K⟨23K⟩

)n (⟨3J1I⟩αI
)n

(k2 · p3)n

+ cn,2,i,j⟨23J⟩l+2[23J ]l−2−n
(
α̃K [23

K ]
)n (⟨3J1I⟩αI

)n
(k2 · p3)n

}
× (α̃K [23

K ]⟨21I⟩αI)i(α̃K⟨23K⟩[21I ]αI)j

(4.69)

where the point is that a series of coefficients cn,1,i,j and cn,2,i,j for the first and the last

new structures are independent of the spin configurations which are only reflected
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on the little group indices (J1...J2l), otherwise, the coefficients corresponding to

one spin configuration will become meaningless in another spin configuration, that

does not make sense. Here, we use our ansatz to match the spheroidal harmonics

expansion g−2
l

∑
n=0 S

(n)
lm (aω, θ) order by order, where n means the order of aω, and

the zeroth order coefficient c0,1,0,0 = 1 for all different m. Note that, when n = 0,

the two terms with cn,1,i,j and cn,2,i,j are the same, so we just use c0,1,i,j term.

So far, by the coherent spin states sandwiching the on-shell elements with unequal

masses from the spinor-helicity formalism and our setup of the on-shell spinors,

we construct a set of bases to reproduce the Kerr black hole QNMs with spin a

in the classical limit, since the spin of a Kerr black hole that is a classical spin

can be approximatively described by the coherent spin states, as we explained in

Section 4.1. However, unlike the Schwarzschild case with unique match between

on-shell amplitudes and the angular dependence of QNMs, there are now some

redundant structures for Kerr QNMs on this basis from the on-shell coherent tensors,

when the order of aω in the −2Slm(aω, θ) expansion is large. Finally, we give an

example in Appendix B about how to specifically match the on-shell coherent tensors

A−2,(J1...J2l) and the spin-weighted spheroidal harmonics −2Slm(aω, θ) order by order.
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Chapter 5

Discussion and Conclusion

In summary, we study the application of the 3pt unequal masses scattering process

with the on-shell spinor-helicity formalism [29–31] in describing the angular depen-

dence of the black hole quasinormal modes. Not only the Schwarzschild metric

perturbation but also the Teukolsky equation from the Kerr tetrads perturbation,

which involve the black hole QNMs, are Lorentz invariant. Therefore, the angu-

lar dependence must be able to be expressed by the on-shell amplitude with the

spinor-helicity formalism under a suitable setup of the on-shell spinors. Based on

the quantum numbers in the angular function, we conjecture a 3pt tree-level Feyn-

man diagram in Fig.1.1, which corresponds to the scattering process with unequal

masses particles and a graviton emission. We set up the on-shell momenta, where the

angular dependence corresponds to the angular coordinates in the spherically and

non-spherically symmetric black hole metric. By decomposing the 2 by 2 momenta

of SL(2,C) of the on-shell spinors, we can use the spin configurations of the SU(2)

fully symmetric little group indices associated with massive spinors to describe the

spin-weighted spherical harmonics and spin-weighted spheroidal harmonics, which

belong to the 2l + 1-dimensional SO(3) representation.

In Chapter 3, by the spinor-helicity formalism, we compute the on-shell scattering

amplitudes M±2,(J1...J2l) in (3.23), (3.27) of the transition process from a spin-l

black hole to a spinless black hole, accompanied by the emission of a graviton with

helicity h = ±2. Then, we observe that the angular part of the amplitudes are
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exactly the same as the angular dependence of the Schwarzschild QNMs, known

as the spin-weighted spherical harmonics with the spin weight ±2. By using the

spin configurations of SU(2) fully symmetric little group indices (J1...J2l), we can

represent all different quantum numbers m from −l to l, and this is an one-to-

one correspondence. Additionally, if the massless particle emitted in this transition

process is a photon or scalar, the scattering amplitudes Mh,(J1...J2l) in (3.28) will

correspond to the spin-weighted spherical harmonics with the spin weight h = ±1

or the common spherical harmonics in (3.29), respectively.

In Chapter 4, our research progresses to include two spinning black holes, and

we successfully utilize the spinor-helicity formalism to construct some possible on-

shell elements, as well as combine the coherent spin states to describe the angular

dependence of the Kerr black hole QNMs, that is, the spin-weighted spheroidal

harmonics. Initially, we employ the coherent spin state which can reproduce the

classical spin of the Kerr black holes from [32], and then contract the SU(2) spinors

with the on-shell elements. The on-shell elements are from the unequal masses 3pt

scattering process in Fig.4.2 involving a transition from a spin-(l ⊕ s) black hole to

a spin-s black hole and a helicity h = −2 graviton emission. Then, by the on-shell

elements and the SU(2) spinors, we construct the on-shell coherent elements which

satisfy the helicity counting h = −2, furthermore, we construct an on-shell coherent

tensor A−2,(J1...J2l) in (4.69) with 2l fully symmetric little group indices (J1...J2l).

Consequently, in the classical limit, by the 2l+1 spin configurations, we can use the

on-shell coherent tensors and a series of coefficients which are independent of the

spin configurations to match different m in the spin-weighted spheroidal harmonics.

But there exist some redundant structures, so it is not a unique mapping.

Our next work will be to derive the recursive relations for these coefficients and

further extend them to represent the angular differential equation by using the on-

shell formalism. This involves rewriting the differential operators with respect to

cos θ in terms of differentials with respect to spinors, aiming to obtain a new expres-

sion in the on-shell spinor-helicity formalism. We also expect to obtain some new

56



doi:10.6342/NTU202302187

insights from this new expression which differ from the previously obtained physical

information about QNMs from General Relativity. For example, we hope to under-

stand the significance of the quantum number l in the oblate spheroidal coordinates,

as it does not correspond to the eigenvalue of the total angular momentum operator

as it does in the spherical coordinates.
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Appendix A

Review of Coherent State

We need an operator acting on the SU(2) irreducible representation, hence, we

start from the N -dimensional harmonic oscillator in QM, the Hamiltonian is

Ĥ = ℏω
N∑
i=1

(
â†i âi +

1

2

)
(A.1)

where â†i and âi are the creation and annihilation operators

â†i =

√
mω

2ℏ

(
xi −

i

mω
pi

)
âi =

√
mω

2ℏ

(
xi +

i

mω
pi

) (A.2)

for i = 1, 2, ..., N and satisfy the commutation relation [âi, â
†
j] = δij, since the

Hamiltonian has SU(N) symmetry, namely, the N -dimensional harmonic oscillator

Hamiltonian is invariant under SU(N) transformation. And we will use the SU(2)

representation in Section 4.1.

Based on the angular momentum operators (4.2), they try to find a coherent

spin state |α⟩ expression, such that the expectation value ⟨α|Si|α⟩ can represent the

classical spin. Here, before talking about the coherent spin state, let us review the

coherent state in 2-dimensional harmonic oscillator. We can see the eigenstate of
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the Hamiltonian first,

|n1, n2⟩ =
1√
n1!

1√
n2!

(â†1)
n1(â†2)

n2|0, 0⟩ (A.3)

which satisfies the eigenvalue equation

Ĥ|n1, n2⟩ = ℏω (n1 + n2 + 1) |n1, n2⟩. (A.4)

Then, in general, the uncertainty between position and momentum is given by

∆xi∆pi ≥
ℏ
2

(A.5)

where the definition of the standard deviations is

∆Oi =
√

⟨n1, n2|O2
i |n1, n2⟩ − ⟨n1, n2|Oi|n1, n2⟩2 (A.6)

for i = 1, 2 by an arbitrary state |n1, n2⟩, because we can compute the expectation

values of position and momentum

⟨n1, n2|xi|n1, n2⟩ = 0

⟨n1, n2|x2i |n1, n2⟩ =
ℏ
mω

(
ni +

1

2

)
⟨n1, n2|pi|n1, n2⟩ = 0

⟨n1, n2|p2i |n1, n2⟩ = ℏmω
(
ni +

1

2

)
,

(A.7)

and then compute the standard deviation of them

∆xi =

√
ℏ
mω

(
ni +

1

2

)

∆pi =

√
ℏmω

(
ni +

1

2

) (A.8)
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Therefore, the uncertainty of position and momentum is

∆xi∆pi =
ℏ
2
(2ni + 1) ≥ ℏ

2
(A.9)

for ni = 0, 1, 2, ....

Next, in order to minimize the uncertainty, the coherent state of the 2-dimensional

harmonics oscillator is expressed as

|α⟩ =e−
1
2
(|α1|2+|α2|2)

∞∑
n1,n2=0

(α1)
n1(α2)

n2

√
n1!

√
n2!

|n1, n2⟩ = e−|α|2/2eα1â
†
1eα2â

†
2 |0, 0⟩ (A.10)

which satisfies the eigenvalue equations of the annihilation operators

â1|α⟩ =e−
1
2
(|α1|2+|α2|2)

∞∑
n1,n2=0

(α1)
n1(α2)

n2

√
n1!

√
n2!

√
n1|n1 − 1, n2⟩ = α1|α⟩

â2|α⟩ =e−
1
2
(|α1|2+|α2|2)

∞∑
n1,n2=0

(α1)
n1(α2)

n2

√
n1!

√
n2!

√
n1|n1, n2 − 1⟩ = α2|α⟩,

(A.11)

in other words, that is âi|α⟩ = αi|α⟩ for i = 1, 2.

After having this coherent state, we can verify that it minimizes the uncertainty

of position and momentum. We also start by calculating the expectation values of

position and momentum

⟨α|xi|α⟩ =
√

ℏ
2mω

(α∗
i + αi)

⟨α|x2i |α⟩ =
ℏ

2mω
(α∗

i
2 + α2

i + 2α∗
iαi + 1)

⟨α|pi|α⟩ =i
√

ℏmω
2

(α∗
i − αi)

⟨α|p2i |α⟩ =− ℏmω
2

(α∗
i
2 + α2

i − 2α∗
iαi − 1)

(A.12)

by the coherent state and the eigenvalue equation of the annihilation operators.
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Then, we can discover the coherent state leads to the standard deviations

∆xi =
√

⟨α|x2i |α⟩ − ⟨α|xi|α⟩2 =
√

ℏ
2mω

∆pi =
√

⟨α|p2i |α⟩ − ⟨α|pi|α⟩2 =
√

ℏmω
2

(A.13)

be some constants, and the product exactly satisfies the equation ∆xi∆pi =
ℏ
2
from

the uncertainty of position and momentum.

So far, we verify the coherent state minimizes the uncertainty of position and

momentum, which are expressed as the creation and annihilation operators acting

on SU(2) representation. Hence, in Section 4.1, we use the coherent spin state to

minimize the uncertainty of the expectation values of angular momentum operators,

which are also expressed as the creation and annihilation operators acting on SU(2)

spin states.
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Appendix B

Example of Coherent Tensors

Give a non-trivial concrete example. For l = 3, there are 6 free and fully symmetric

little group indices which represent m from −3 to 3. The SU(2) spin configurations

(J1, J2, J3, J4, J5, J6) which are symmetric reproduce the 7 different m by

(↑↑↑↑↑↑) ⇒ m = 3

(↑↑↑↑↑↓) ⇒ m = 2

(↑↑↑↑↓↓) ⇒ m = 1

(↑↑↑↓↓↓) ⇒ m = 0

(↑↑↓↓↓↓) ⇒ m = −1

(↑↓↓↓↓↓) ⇒ m = −2

(↓↓↓↓↓↓) ⇒ m = −3

(B.1)

carried by the leg 3. Then, we check the on-shell coherent tensor (4.69) can reproduce

the spin-weighted spheroidal harmonics in (2.41)

A−2,(J1,J2,J3,J4,J5,J6) = N−2S3m(aω, θ) (B.2)

where

N = g−2
l

(
2E2

m1

)l
1

(2l)!

√
4π

2l + 1

√
(l + 2)!(l − 2)!(l +m)!(l −m)!

∣∣∣∣
l=3

(B.3)
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by expanding both sides and truncating them at some order.

For the zeroth order (aω)0, on the one hand, the spin-weighted spheroidal har-

monics are shown as

S
(0)
3,3 =−

(
E2

m1

)3√
1−X(1 +X)5/2

S
(0)
3,2 =

1

3

(
E2

m1

)3

(1 +X)2(3X − 2)

S
(0)
3,1 =

1

3

(
E2

m1

)3√
1−X2

(
3X2 + 2X − 1

)
S
(0)
3,0 =

(
E2

m1

)3

X
(
1−X2

)
S
(0)
3,−1 =

1

3

(
E2

m1

)3√
1−X2

(
−3X2 + 2X + 1

)
S
(0)
3,−2 =

1

3

(
E2

m1

)3

(1−X)2(3X + 2)

S
(0)
3,−3 =

(
E2

m1

)3√
1 +X(1−X)5/2,

(B.4)

for different m, where S
(0)
3m is from g−2

l

∑
n=0 S

(n)
3m(aω, θ), and the variable X means

cos θ. On the other hand, the zeroth order of the on-shell coherent tensor in (3.25)

or (4.69) is shown as

g−2
l S

(0)
3m = N−2Y3m = g−2

l c0,1,0,0⟨23J⟩5[23J ] (B.5)

in right hand side with the coefficient c0,1,0,0 = 1 is actually the Schwarzschild case.
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For the first order (aω)1, the spin-weighted spheroidal harmonics expansion S
(1)
3m

which contain the spin of the black hole are shown as

S
(1)
3,3 =

1

4

(
E2

m1

)3√
1−X(1 +X)5/2(2X + 1)(aω)

S
(1)
3,2 =

1

54

(
E2

m1

)3

(1 +X)2
(
−27X2 + 9X + 1

)
(aω)

S
(1)
3,1 =− 1

108

(
E2

m1

)3√
1−X(1 +X)3/2

(
54X2 − 9X + 13

)
(aω)

S
(1)
3,0 =

1

6

(
E2

m1

)3 (
3X4 − 2X2 − 1

)
(aω)

S
(1)
3,−1 =

1

108

(
E2

m1

)3√
1 +X(1−X)3/2

(
54X2 + 9X + 13

)
(aω)

S
(1)
3,−2 =− 1

54

(
E2

m1

)3

(1−X)2
(
27X2 + 9X − 1

)
(aω)

S
(1)
3,−3 =− 1

4

(
E2

m1

)3√
1 +X(1−X)5/2(2X − 1)(aω)

(B.6)

whose aω means aE2

2m1
in our language; the 7 projection states with different m can

be obtained by our ansatz (4.69) expansion involving one α̃K and one αI , shown as

S
(1)
3m =c0,1,1,0⟨23J⟩5[23J ](α̃K [23

K ]⟨21I⟩αI)

+ c0,1,0,1⟨23J⟩5[23J ](α̃K⟨23K⟩[21I ]αI)

+c1,1,0,0⟨23J⟩4[23J ]
(
α̃K⟨23K⟩

) (
⟨3J1I⟩αI

)
(k2 · p3)

+c1,2,0,0⟨23J⟩5
(
α̃K [23

K ]
) (

⟨3J1I⟩αI
)
(k2 · p3).

(B.7)

which is composed of the two old structures (black word) and two new structures

(blue word) with the coefficients c0,1,0,1 = 1
16
, c0,1,1,0 = 3

16
, c1,1,0,0 = 25

144
, and

c1,2,0,0 = − 7
144

for matching all spin configurations. If we only consider one of

the spin configurations, then there will be some free coefficients, such as we only

fixed two or three of them

c0,1,0,1 =
1
16
, and c0,1,1,0 =

3
16

for m = 3;

c0,1,1,0 =
1
4
− c0,1,0,1, c1,1,0,0 =

35
72

− 5c0,1,0,1, and c1,2,0,0 =
1
72

− c0,1,0,1 for m = 2;

c0,1,1,0 =
1
4
− c0,1,0,1, c1,1,0,0 =

95
288

− 5
2
c0,1,0,1, and c1,2,0,0 = −1

2
c0,1,0,1 − 5

288
for m = 1;
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c0,1,1,0 =
1
4
− c0,1,0,1, c1,1,0,0 =

5
18

− 5
3
c0,1,0,1, and c1,2,0,0 = −1

3
c0,1,0,1 − 1

36
for m = 0;

c0,1,1,0 =
1
4
− c0,1,0,1, c1,1,0,0 =

145
576

− 5
4
c0,1,0,1, and c1,2,0,0 = −1

4
c0,1,0,1− 19

576
for m = −1;

c0,1,1,0 =
1
4
− c0,1,0,1, c1,1,0,0 =

17
72

− c0,1,0,1, and c1,2,0,0 = −1
5
c0,1,0,1 − 13

360
for m = −2;

c0,1,1,0 =
1
4
− c0,1,0,1, and c1,2,0,0 =

3
16

− c0,1,0,1 − c1,1,0,0 for m = −3,

and their intersection is as we mentioned above.

Next, for the second order (aω)2, the expansion S
(2)
3m are shown as

S
(2)
3,3 =− 1

288

(
E2

m1

)3√
1−X(1 +X)5/2

(
48X2 + 48X − 7

)
(aω)2

S
(2)
3,2 =

1

1944

(
E2

m1

)3

(1 +X)2
(
324X3 − 105X + 74

)
(aω)2

S
(2)
3,1 =

1

7776

(
E2

m1

)3√
1−X(1 +X)3/2

(
1296X3 + 219X + 199

)
(aω)2

S
(2)
3,0 =

1

18

(
E2

m1

)3

X
(
−3X4 + 2X2 + 1

)
(aω)2

S
(2)
3,−1 =

1

7776

(
E2

m1

)3√
1 +X(1−X)3/2

(
1296X3 + 219X − 199

)
(aω)2

S
(2)
3,−2 =

1

1944

(
E2

m1

)3

(1−X)2
(
324X3 − 105X − 74

)
(aω)2

S
(2)
3,−3 =− 1

288

(
E2

m1

)3√
1 +X(1−X)5/2

(
48X2 − 48X − 7

)
(aω)2

(B.8)

correspond to

S
(2)
3m =c0,1,2,0⟨23J⟩5[23J ](α̃K [23

K ]⟨21I⟩αI)2

+ c0,1,1,1⟨23J⟩5[23J ](α̃K [23
K ]⟨21I⟩αI)(α̃K⟨23K⟩[21I ]αI)

+ c0,1,0,2⟨23J⟩5[23J ](α̃K⟨23K⟩[21I ]αI)2

+c1,1,1,0⟨23J⟩4[23J ]
(
α̃K⟨23K⟩

) (
⟨3J1I⟩αI

)
(k2 · p3)(α̃K [23

K ]⟨21I⟩αI)

+c1,1,0,1⟨23J⟩4[23J ]
(
α̃K⟨23K⟩

) (
⟨3J1I⟩αI

)
(k2 · p3)(α̃K⟨23K⟩[21I ]αI)

+c1,2,1,0⟨23J⟩5
(
α̃K [23

K ]
) (

⟨3J1I⟩αI
)
(k2 · p3)(α̃K [23

K ]⟨21I⟩αI)

+c1,2,0,1⟨23J⟩5
(
α̃K [23

K ]
) (

⟨3J1I⟩αI
)
(k2 · p3)(α̃K⟨23K⟩[21I ]αI)

+c2,1,0,0⟨23J⟩3[23J ]
(
α̃K⟨23K⟩

)2 (⟨3J1I⟩αI
)2

(k2 · p3)2.

(B.9)

which is composed of the seven old structures (black and blue word) and one new
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structure (red word) with c0,1,0,2 = − 7
4608

, c0,1,1,1 =
55

2304
, c0,1,2,0 =

89
1608

, c1,1,0,1 =
895

41472
,

c1,2,0,1 = − 371
41472

, c1,2,1,0 = − 371
41472

, c2,1,0,0 = 85
10368

, and c1,1,1,0 = 175
4608

for matching all

spin configurations. Similarly, there are some undetermined coefficients in each spin

configuration, but there exists a unique solution by solving all m together.

As usual, we compare the on-shell coherent tensors with the expansion of the

spin-weighted spheroidal harmonics, so that we can determine the coefficients cn,1,i,j

and cn,2,i,j for the third, fourth, and fifth order uniquely. However, up to the sixth

order (aω)6, we discover the corresponding coefficients

c0,1,0,6 =
33074183081

500206688796672000
, c0,1,1,5 = − 13718649689

83367781466112000
, c0,1,2,4 = − 180237118483

166735562932224000
,

c0,1,3,3 =
236937040931

125051672199168000
, c0,1,4,2 =

486925201549
166735562932224000

, c0,1,5,1 =
143690607719

83367781466112000
,

c0,1,6,0 =
1266677777

4133939576832000
, c1,1,0,5 = − 7834430112683

24310045075518259200
, c1,1,2,3 =

15445406428537
2431004507551825920

,

c1,1,3,2 =
127184727812761

12155022537759129600
, c1,1,4,1 =

5726939656829
1870003467347558400

, c1,1,5,0 =
16928742866813

24310045075518259200
,

c1,2,0,5 = −c1,1,1,4− 15868912353539
15193778172198912000

, c1,2,1,4 = − 12168990668251
40516741792530432000

, c1,2,2,3 = − 627153474019
810334835850608640

,

c1,2,3,2 = − 627153474019
810334835850608640

, c1,2,4,1 = − 12168990668251
40516741792530432000

, c1,2,5,0 = − 2584301011559
40516741792530432000

,

c2,1,0,4 =
123508268749

552501024443596800
, c2,1,1,3 = c1,1,1,4+

49301910994957
8103348358506086400

, c2,1,2,2 =
1913966673461

202583708962652160
,

c2,1,3,1 = − 10131370876243
3038755634439782400

, c2,1,4,0 = − 4706245322851
6077511268879564800

, c3,1,0,3 =
753480953701

1012918544813260800
,

c3,1,1,2 = c1,1,1,4+
1410117472721

442000819554877440
, c3,1,2,1 = − 761111503219

101291854481326080
, c3,1,3,0 = − 808667194487

337639514937753600
,

c4,1,0,2 = − 1274532923
28136626244812800

, c4,1,1,1 = c1,1,1,4− 54333101717617
24310045075518259200

, c4,1,2,0 = − 1543858083353
1012918544813260800

,

c5,1,0,1 = − 11983799185
40516741792530432

c5,1,1,0 = c1,1,1,4 +
1513581786157

2210004097774387200
and c6,1,0,0 = c1,1,1,4 +

23839679158727
24310045075518259200

start to emerge some redundant structures in this level, such as

the terms with c1,1,1,4, c1,2,0,5, c2,1,1,3, c3,1,1,2, c4,1,1,1, c5,1,1,0, and c6,1,0,0 are related to

each other, that means the structures in the sixth order of our ansatz (4.69) are

linear dependence in the classical limit.

For higher order, there are similar redundant structures, so the expression is not

a one-to-one correspondence. In future work, we should find out what the patterns

for these redundant coefficients are.
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