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Abstract

Quasinormal Modes (QNMs) of black holes are from the angular and radial so-
lution of the Black Hole Perturbation Theory (BHPT). These modes tepresent the
unique transmitted frequencies and decay rates of the gravitational waves under a
background of the black hole metric, such as the emission of gravitational waves in
binary black hole system.

This thesis explores the application of the spinor-helicity formalism in using on-
shell 3pt tree-level scattering amplitudes involving graviton emissions to describe
the angular dependence of the black hole QNMs. The Lorentz invariance of the
perturbed metrics, which govern the black hole QNMs, motivate us to represent
the angular dependence of the Schwarzschild QNMs, the spin-weighted spherical
harmonics, by the unequal masses amplitudes using the spinor-helicity formalism
with different spin configurations.

Then, by combining the coherent spin state which can be used to describe a
classical spin and the on-shell elements from unequal masses scattering process,
the constructed tensors, which are called the on-shell coherent tensors with spin
configurations, can reproduce the angular dependence of the of Kerr QNMs, the
spin-weighted spheroidal harmonics.

Overall, this research provides a framework for understanding the angular de-
pendence of spherically symmetric and rotating black hole QNMs which are SO(3)
representation by using the on-shell spinor-helicity formalism with the SU(2) spin

configurations.

Keywords: Scattering amplitude, Spinor-helicity formalism, On-shell methods,
Schwarzschild black holes, Kerr black holes, Black hole perturbation theory, Quasi-

normal modes
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Chapter 1

Introduction

History

In classical gravity theory, as everyone knows, Einstein predicted the existence
of the gravitational wave by his General Relativity. In 2016, this prediction was
first confirmed experimentally by a gravitational-wave observatory at the Laser In-
terferometer Gravitational Wave Observatory (LIGO) and the Virgo interferometer
(Virgo) [1], since they directly measured the gravitational wave signal GW150914
from a binary black hole system that contains the inspiral, merger, and ring-down
phase. Again, people verified the prediction of General Relativity.

In constructing theoretical models for gravitational waves, commonly used ap-
proaches include post-Newtonian gravity, numerical relativity, and perturbation the-
ory [2]. When considering the inspiral phase of binary black hole system, people
prefer employing analytic treatments of the dynamics, rather than iterative numer-
ical methods [3].

An analytic approach involves determining the effective Hamiltonian of the sys-
tem, which describes the inspiral phase. Typically, the above effective Hamiltonian
can be obtained through calculations based on the post-Newtonian approximation
(PN approximation), an effective theory for describing slow-moving objects in weak
gravitational fields. Since objects move slowly, that is, v?/c?> < 1, expansions involv-
ing v?/c* and GM/r with the same scales are performed. This expansion method,

known as n-PN, expands the Hamiltonian up to order O(1/c¢?)", and these correc-
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tion terms are commonly employed for calculating linear classical gravity theories.
Lorentz and Dorste [1] in 1917 and Einstein, Infeld and Hoffmann [5] later obtained
the 1PN calculation. Today, the calculations have been extended up te 4PN, and the
higher PN calculations are currently being pursued to compare with gravitational
wave detectors. To this end, the on-shell method offers convenient calculations for
higher PN approximations.

In addition, there is another method to expand the Hamiltonian for binary
black hole systems, which is known as the post-Minkowskian (PM) expansion. This
method is expanded in terms of the Newtonian constant G, rather than the velocity.
It is worth noting that, this expansion, involving terms like G, G2, and so on, is
similar to the scattering amplitudes of gravity, since the Lorentz invariant scatter-
ing amplitudes are also perturbations in terms of G. One can say that scattering
amplitudes provide a useful method to describe the classical gravitational potential.

For example, in 1985, the PM calculations were carried out up to O(G)? to
describe scattering angles [0], followed by predictions of quantum corrections to the
classical gravitational potential [7,&]. Today, people employ the on-shell approach,
spinor-helicity formalism, and previous scattering amplitudes to calculate the higher
order PM Hamiltonians for binary black hole systems, where the spinor-helicity
formalism gives us easy and clean calculations of scattering amplitudes involving
momenta.

Recent years, some modern techniques just like unitarity, on-shell recursion re-
lations, and double copy relations enable the construction of one-loop amplitudes,
and through this way the classical effects can be identified. In recent years, conser-
vative potential up to 4PM for non-spinning objects [9—11] and the Hamiltonian up
to 2PM at quartic order spin for spinning objects [12] have been computed. Besides
computing higher order corrections of GG, this on-shell formalism can also be used to
describe other physical processes, such as tidal effects, radiation effects, and so on.

These successful applications of on-shell amplitudes in gravity motivate us to

utilize these amplitudes to describe the angular dependence of the Lorentz invariant

9 doi:10.6342/NTU202302187



black hole quasinormal modes.

Quasinormal Modes of Black Holes

The quasinormal modes (QNMs) of black holes [13-17] are a dissipative sys-
tem in which a black hole emits gravitational waves that perturb the surrounding
spacetime. These waves decay and disappear at spatial infinity, rather than contin-
uing to propagate indefinitely. The QNMs of a black hole consist of angular and
radial components, with their frequencies depending on the mass and spin of the
black hole. The most famous example of the QNMs in black holes is the ring-down
phases in the binary black hole system, which consists of inspiral, merger, and the
final ring-down phase. The resulting black hole will emit gravitational waves which
gradually dissipate during the ring-down phase [14].

The black hole QNMs are from the Black Hole Perturbation Theory and some
boundary conditions. In the context of the Black Hole Perturbation Theory (BHPT),
the metric of a black hole

ds® = g, dxtdz” (1.1)

is perturbed by a linearly perturbed term g,, — ¢ + hu, Where hy,, satisfies the
linearly perturbed Einstein equation and describes the gravitational waves emission.
The BHPT can describe various systems involving the field fluctuations under a black
hole background, and the QNMs is just one of applications. By BHPT, given the
boundary conditions at the horizon and spatial infinity, the waves should be only

w(t+r+) and only outgoing waves at spatial

incoming waves at the horizon ¥ ~ e~
infinity ¢ ~ e~ the boundary conditions connect the BHPT and the QNMs.

First, for spherically symmetric black holes, the Schwarzschild QNMs are derived
by Regge and Wheeler in [13], and Zerilli in [18], respectively. They take linear

perturbed metric g,,, + h,, into the Einstein equation

1
R;w - §Rg;w = 07 (12)

3 doi:10.6342/NTU202302187



by using the perturbed connection
« 1 av
6F,B'y = 59 (V,yhﬁy + Vﬁh,yy - V,,hﬁ,y) (1.3)
and the perturbed Ricci tensor condition
0Ruy = —V 0T, + V, 0T, =0 (1.4)

which is a second order differential equation of h,,. The angular dependence of the

solutions can be separated as the following form

hyw ~ Yin(0) for a perturbed scalar field;
hyw ~ £1Yi,(8)  for a perturbed photon field; (1.5)

hyw ~ 121, (8)  for a perturbed graviton field,

where the angular special functions are the spin-weighted spherical harmonics ;Y},,(0)
with the spin weight s, orbital angular momentum [/, and projection m, which we
want to reproduce by the on-shell scattering amplitudes.

Then, consider the nonspherically symmetric black holes, the gravitational waves
from Kerr black holes can be described by the Teukolsky equation using Kerr’s four
tetrads {,, n,, m,, and m, in [19,20] and the Weyl scalar with conditions. By
exploiting the symmetry and separability of the Teukolsky equation with respect to

the ¢ and ¢ directions,

Y(t,r,0,0) = e ™ R(r)S(0), (1.6)

where w is the propagating frequency and m is the eigenvalue of the z-axis orbital
angular momentum operator, and the Teukolsky equation can be separated into two

single-variable differential equations, the angular equation and radial equation. The

4 doi:10.6342/NTU202302187



angular differential equation

1 d ds 0)?
T, (sm 0@> ((aw)2 cos? ) — 2(aw)s cos ) — % + 5+ A> S=0,

(1.7)
where the spin weight s means a spin-s perturbed field and the eigenvalue A is a

separation constant, can be solved by two methods. One is the perturbation theory

in [21-24], people obtain the eigenvalue

|(sl'm|H1|slm)|?
sAm =11+ 1) — (sl l .
l ( + ) <S m|H1|S m = l l—|— 1 — l/+ 1) + - (18)

and the eigenfunction

(sl'm|H4|sl
m =Y+ 370 5"”’ V) i

" —rr+1)°
(sl'm|H1|sl""m)(sl""m|Hi|slm) sAl(iz(sl’m|’H1|slm>
’ l’zséll I+1) - l’(l’ 1) ZZ# [+ D)~/ (7+1) D@1 | =Yrm
Z slm[?—[l\slm) 2
s lm — 7 l’—|— 1) ceny

(1.9)
of the angular equation order by order with the small parameter aw, which they can
solve by perturbation around the spin-weighted spherical harmonics ,Y;,, with the
quantum number [, that is why A;,, and ,S;,, have the label [ which doesn’t appear
in the angular differential equation. The angular solutions ;Sj,,(aw, #) are known as
the spin-weighted spheroidal harmonics [25], and this is the function which we try
to reproduce in this thesis. Another way is Leaver’s method in [26] with the ansatz

of the angular solution
sSlm(X> — ean(l + X)%‘mfs\(l — X)%|m+5| Zan(l + X)n’ (110)

where X = cosf. By the ansatz, people numerically solve a continuous fraction
equation and then can obtain the unknown separation constant A(aw) for fixed s,

m.

5 doi:10.6342/NTU202302187



With the eigenvalue of the angular equation and appropriate boundary conditions
(an incoming mode at the horizon and an outgoing mode at spatial infinity), the ra-
dial solution and a series of complex, discrete mode frequencies w,, = wg,, +iw; , can
be obtained by solving the radial equation from the Teukolsky equation. The real
part of the mode frequency represents the frequency of the transmitted gravitational
wave, while the imaginary part represents its dissipation rate. Note that in BHPT,
the eigenfunction of the angular equation is always a spin-weighted spheroidal har-
monic, regardless of boundary conditions, such as the angular solutions of the QNMs
that we have mentioned and the scattering waves by a black hole in [27,28] are the

same thing.

Organization

In this thesis, we focus on the solution of the angular differential equation, namely
the spin-weighted spherical harmonics and spheroidal harmonics, since our technol-
ogy, scattering amplitudes, represent the observable of a transition process on an
asymptotically flat background, and people successfully use the 4pt scattering am-
plitudes to extract classical observable of inspiralling Kerr black holes previously.
Based on the special angular functions, ,Y},,(0) and Sy, (aw, ), of the black hole
QNMs involving the quantum numbers, spin weight h, orbital angular momentum
[, and the projection m, and the fact that BHPT satisfies Lorentz invariance, we
describe the QNMs of a black hole by using the on-shell 3pt tree-level scatter-
ing amplitude M"2(J1-J21) (two unequal massive spinors and one massless graviton

3 — 1+ 2h=72):

Figure 1.1: A hypothesis about the 3pt tree-level scattering amplitude

6 doi:10.6342/NTU202302187



A massive state 3 with mass mg and spin-/ emits a graviton with energy Fy and
helicity h = —2 and transitions to another spinless state 1 with mass my, which
carries the spin weight i and the orbital angular momentum [ in the spin-weighted
spherical harmonics. The leg 3 carries the SU(2) little group indices (Jy....Jo;) which

are fully symmetric. First, by the spinor-helicity formalism

MhQ,(Jl-..J2l) _ )\:(;’]Bll_'_)\3‘]72[;;/\/1’12»{51--ﬂ2l} (]_].1)
in [29-31], we can compute the 3pt scattering amplitude easily by the spin and

helicity counting, and use the spin configurations of the fully symmetric SU(2) little
group indices to represent the 2/ + 1 different m in the spin-weighted spherical

harmonics

2F,
my

M21eda) — 9;2 < )l ( 1 Am \/(l + 2)!([ — 2)!(l + m)'(l — m)'_2Ylm(e>

2V 20+ 1
1.12)

Moreover, we also use the on-shell amplitudes which emit a spin-h massless particle
to reproduce the spin-weighted spherical harmonics with different spin weights h,
which is an one-to-one correspondence.

Next, we describe the angular dependence of the Kerr QNMs by a scattering pro-
cess of two spinning states 1 and 3 with different masses from an on-shell perspective

(3% — 1% 4+ 2"=-2) combining the coherent spin state

]i>28

o) =0’y Y (04(28)!|3,(11...128)>. (1.13)

25=0 Iy,...,J2s=T,}

which can describe the classical spin of Kerr black holes in [32], then we establish
the on-shell coherent elements and on-shell coherent tensors to reproduce the Kerr
QNMs. The coherent tensors satisfy the helicity counting, 21 free little group indices,

and coherent spin states contraction rule for the SU(2) indices of the leg 1, leg 3.

7 doi:10.6342/NTU202302187



Therefore, such a coherent tensor

A—2,(J1...J21) _ e—ae&K(?)Kl[)aI

xg P> Y {cm,m<23J>l+2-n[23J]l—2 (ax(23%))" ((3"119a")" (ky - ps)"

n=0 i,5=0

+ € (23721237172 (A [235)) " ((3711)a”)" (ks -p3)"}

x (ax[235](211) ol ) (ax (23%)[21]a’)
(1.14)

by summing all possible on-shell elements, can reproduce the spin-weighted spheroidal

harmonics by the relationship

28,\' 1 4m
=2,(J1J2) — 42 2 (] — 2)! (1 —m)!
A g, ( o ) eV a1 V2= 2)1(1+m)!(1 —m)! oSy (aw, )

(1.15)
with the coefficients ¢, 1 ;; and ¢, 2, ; which are independent of the quantum number
m, or independent of the spin configurations. Although we find the correspondence,
there are some redundant structures when the order of expansion is large, that is to

say, the expression is not an one-to-one correspondence.

3 doi:10.6342/NTU202302187



Chapter 2

Background on Black Hole

Perturbation Theory

In this chapter, we will review the early approaches of Black Hole Perturbation
Theory (BHPT) and the form of the angular differential equation, but we espe-
cially focus on the latter. Starting with the simple spherically symmetric case,
the Schwarzschild black hole. The first quasinormal modes (QNMs) under the
Schwarzschild background were obtained by Regge, Wheeler, and Zerilli.

We then introduce the non-spherically symmetric case, Kerr black hole with
spin. If we were to use perturbed metrics and solve the Einstein field equation, as in
the Schwarzschild case, it would become highly complicated. Therefore, Teukolsky
employed a perturbed null tetrad and derived the famous Teukolsky equation, which
is a wave equation in the Kerr background. They focused on the eigenvalues of the
angular equation, and then used these eigenvalues along with boundary conditions
to solve for the radial equation’s angular frequencies which are a series of complex

numbers representing different modes of gravitational waves.

9 doi:10.6342/NTU202302187



2.1 Regge-Wheeler—Zerilli equation for Schwarzschild

Black Hole QNMs

At the begging, recall the spherically symmetric geometry, the Schwarzschild met-

ric is
ds® = —f(r)dt* + ar” + r?dQ? (2.1)
f(r)
with f(r) = 1 — 24, 1In [13,17], the linear perturbed metric g, — g +

substitute into the vacuum Einstein equation

1

RW—2

Rg, =0 (2.2)

where the Ricci tensor R, = 0 under the spherically symmetric background, and

then take the linear order of h,, from the linear perturbed Ricci tensor, such that
R, = —V 0T, + V,0I", (2.3)

where the covariant derivative is from unperturbed connection, and the linear per-

turbed connection is given by
87 1 av
05, = 59" (Vahgy + Vhy, = Vihs,) (2.4)

with the condition 0 R, = 0 for each component. That is a second order differential

equation of the metric h,,. The solutions have the following matrix forms

0 0 —ho(t,7) 550, ho(t,r) sin 60,
0 0 —ha(t,r) =0, hi(t,r)sin 69, _
hle — 1( )slne ¢ 1( ) 0 Yzm(9>61m¢
sym  sym hg(ﬁ@g&ﬁ — ;‘r’fg%(?qg) sym

sym sym %hg( L0s% + cos 00y — sin00p*)  —hy(sin 09,0, — cos 00,)

sin 0

(2.5)

10 doi:10.6342/NTU202302187



where the sym means h,, = h,,; hy is a function of ¢, r, and

)

f(?”)H()(t,T) Hl(t,’l”) ho(t,T)ag ho(t r 8¢
= Hy(t,r) ) hi(t, )0y ha(t, )0y Jeim
sym sym r?[K + G0y?| sym
sym sym  r2°G(9p0s — <280,) r?[sin? 0K + G(94° + cos Osin 989

l\D
CD

where K, G are functions of t, r.
Because of the gauge symmetry, they consider an infinitesimal coordinate trans-
formation z# — x* 4 &* where £# is a gauge parameter, therefore the metric pertur-

bation becomes

h,uzz — hw/ + Vugu + Vp,&zx- (27)

Under the Regge-Wheeler gauge, they choose the gauge parameter

g =— %hQ(tﬂ“) (0 0 —=04(Vime™?) sin00y(Y lme’m‘z’)) (2.8)

Y

for the first one, hence the hy(t, ) terms in h,,, are removed, such that the perturbed
metric has the odd-parity (—1)""! under the parity transformation (8, ¢) — (6+, ¢),

and then the new matrix form reduces to

<sin 0%) Yio(6) (2.9)

o (@) o
(@] [a) [a)
]
>
[n
—~
=
SN~—

ho(r) hi(r) 0 0

for the odd wave perturbation from Regge and Wheeler. As for the other one

perturbation, they choose the gauge parameter

1 . ‘
f# = §h2<t,7”) (MO(YEme’LmQﬁ) Ml(Yimezmd)) MQaG( lm6 d)) sm298¢( lmelm(ﬁ))
(2.10)
where Mo(t,7), Mi(t,r), and Ms(t,7) is used to cancel G(t,7), ho(t,r), and hy(t,7),

11 doi:10.6342/NTU202302187



such that the perturbed metric has the even parity (—1)! under the parity transfor-

mation, and then the even-perturbed metric reduces to

f(r)Ho(r) Hi(r) 0 0
| Hi(r)y 2D 0
By = et ) Yo (6) (2.11)
0 0 7K(r) 0
0 0 0 r?sin? K (r)

derived by Zerilli for the different partial wave number [. Due to the spherical
symmetry, there are the same radial equations that people care about for all m.
Note that the angular dependence (sin@dy) Yjo(#) in the odd-parity perturbation
is proportional to the spin-weighted spherical harmonics with spin weight s = 41
in [25].

The perturbed metric involves the frequency of gravitational waves from the
black hole. To obtain the modes w, they substitute the perturbed metric into each
component of the perturbed Ricci tensor 012, = 0. Then, they solve the radial
equation and obtain a series of modes which have the form w = wgr + iwy.

We can discover that the angular dependence of the BHPT are related to the
spherical harmonics. In general, the angular dependence of the BHPT are the spin-
weighted spherical harmonics ;Y,,,(0), where the label s means what kind of field is,
a scalar field for s = 0, a photon field for s = £1, or a graviton field s = £2. That

is what we want to explore in this thesis.

2.2 Teukolsky equation for Kerr Black Hole QNMs

The Teukolsky equation is a four variables partial differential equation which

describes the linear perturbations in the spacetime of a rotating (nonsymmetric)

12 doi:10.6342/NTU202302187



black hole. The Kerr metric is given by

A —a’sin* 0 in” 6 (2M
g2 — (B @070) o asin’ (20T) (dtde + dpdt)
% . (2.12)
X o g SIN"O o a0 aa o 2
— —dr® = 2d0® — —— ((r* + a*)* — a®Asin® ) d¢?,
A z
where ¥ = r2 4+ a?cos? 0, and A = r%2 +a? — 2Mr.
In [19], Teukolsky use the Newman-Penrose (NP) formalism to construct the

null tetrad in the Kerr background as
_ [ (r?4a?) a
l,u - (T 10 Z) )
_ T2+a2 a
n, = (( i ) _% 0 ﬁ) , (2.13)

1 .
my, = jasing 0 1 = |,
" V20r +iacos ) (za S sm9)

which satisfyllm=1,m-m=—-1,l-l=n-l=m-m=0,andl-m=n-m =0in
the convention diag(7,,) = (+, —, —, —), and they are preserved under the Lorentz
transformation. The Kerr metric that the tetrads constitute can be written as
G = —luny, — nyly, +mym, + mym,,.

In the linear perturbations of the Kerr metric, g, — ¢ + by, where

_ o7(1)_(0) 0) (1) (1)~ (0) 0) - (1)
hu = 203,/n,) + 20,0 = 2my/m,y = 2my, m, (2.14)

with the first order perturbed tetrads

1
lf}) - §hszf”
1
n) = §h,mz,§0> + hyn!Y) (2.15)

1 1
1 0 0 0 n

and hy, Ny, Rypm-.. are hy,, in the tetrad representation. Then, they use the Weyl
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scalar in [20,21]

Uy i= — Wapysl®mP1'm®

U, = — amglanﬁnm‘;

Uy = — amglamﬂﬁﬂn‘s (2.16)
Wy = — amglo‘nﬁﬁ”ﬂn‘s

Uy = — aﬁwn“mﬂrﬂm‘;

which are Lorentz invariant, and the Weyl tensor

1 1
Wiwpe = Rywpe + §(R;wgl/p — RupGve — RuoGup + RupGuo) + 6R<gﬂpgw — GupGpo)
(2.17)

under the Petrov Type D background metric, which is used to solve the problem
about the gravitational field from a source which only involves the mass and angular

momentum, that means
vl =gl =g = g0 =, (2.18)

The Type D forces the perturbed tetrads \I/((]l) and \Ilil) to satisfy some differential
equations, and then they combine the equations as a single master equation which

is valid for a spin-s field in the Kerr background, that is the Teukolsky equation

in[ ? Y ]7

{ [(r2 +a*) 2 i 9] 9% 4Mar 02

_— —— _|_2 +1 OSQ—M 2
A a2 A otog TN T A ot

.0 sy1 0 1 9 (., 0 1 a*\ o°
A E(A E) sme@(&“%) (—sm?e Z)aTsz
a(r—M) icosf] O
—28{ A +Sin29}—+s(scot29—1)}@/120.

0¢
(2.19)

where the wave function 1) means the Weyl scalars ¥, for s = 2 (incoming wave),
U, for s = —2 (outgoing wave), and &, = F),, l*m” for s = 1 (incoming wave),

¢, = F,,mtn” for s = —1 (outgoing wave) in [11] where F},, is the electromagnetic
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tensor, and the solution should be labeled by ¥ = 1 (¢,r, 0, ¢) with the spin weight s
corresponding to a spin-s perturbed field, such as scalar, photon, or graviton fields,
just like in the Schwarzschild case. This equation is a second order partial differential
equation which involves angular and radial parts. It describes the evolution of fields
with spin-s in the Kerr background. By solving the Teukolsky equation, we can
obtain information about the perturbations around a Kerr black hole. For example,
solutions of the Teukolsky equation can describe the wave function associated with
the emission of gravitational waves.

To solve this equation, they separate the variables,

U(t,r,0,0) = e ™ R(r)S(6), (2.20)

where the frequency w is the "modes” people care about; m is the eigenvalue of
the z-axis orbital angular momentum operator. Therefore, the four variables partial

differential equation become the angular equation

(m + scosf)?

sin? 6

1
4 (Sin Qﬁ) + ((aw)2 cos? 0 — 2(aw)s cos O —

Sin 6 +S+A)S:0’

(2.21)
where A = (A, (aw) is a separation constant as well as the eigenvalue which is a
function of aw and S = ;Sp,(aw, ) is the eigenfunction which is called the spin-
weighted spheroidal harmonics. The label [ is determined by the Schwarzschild case,
because the spin-weighted spheroidal harmonics can be obtained by perturbation
around the spin-weighted spherical harmonics with angular momentum [. And the

radial equation

d dR K? — 2is(r — MK
AT — (AT — diswr — B | R = 2.22
o ( dr)+( A + 4diswr )R 0, (2.22)

where K = (r? + a*)w — am and B = A + (aw)? — 2m(aw).

Note that, they usually set cos# = X, such that the angular differential equation

15 doi:10.6342/NTU202302187



becomes

[i(l - X2)i} S+ [(aw)2X2 — 9(aw)sX — %

X X +s+ Al S=0 (2.23)

Here, we focus on the angular equation. There are two most common methods
which physicists use to solve the angular equation of the Teukolsky equation. One is
perturbatively solving each order of aw, and the other is to use continuous fractions,
which is called the Leaver method to solve the eigenvalues.

The first way is in [21], Press and Teukolsky separate the angular equation into

two parts,

(Ho+H1) S = —AS (2.24)

where Hg is independent of the spin a of Kerr black hole, and H; is spin dependent,

1L od (. d (m + scosf)?
o " sinfdf (SIDQ@) * (_ sin? 6 * S)

H1 =(aw)? cos® § — 2(aw)s cos .

(2.25)

which involve the quantum number s, m, and the parameter aw. The non-perturbed

operator has the eigenvalue and eigenfunction,

HoSo = —1(1+1)S, (2.26)

where the eigenfunction is the spin-weighted spherical harmonics Sy = ¥},,,(0) for
[ > |s| and —I < m < [. Since then, the angular momentum [ has appeared.

To find the eigenvalue A of the angular equation, suppose we can expand eigen-
value around /(I + 1) which is the eigenvalue of the non-perturbed operator Ho,

therefore

A= A =11+1)+ AV + A% (2.27)

similarly, the eigenfunction can be assumed as

S = Sim = Yim + S + 555 + .., (2.28)
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where the upper indices *) mean the expansion is accurate to the i-th order of the

small parameter aw. Then, the angular equation with the first order perturbation

(Ho + H1) (sYzm + 55;2) - (z(z +1)+ SA,(;)) (YZm + sS}f,}) (2.29)

can be reduced to

HoYim + HouSh) = = Al i — 1L +1),5) (2.30)

lm$

by using the non-perturbed eigenvalue equation. The standard method in pertur-
bation theory is multiplying .Y} from the left side and integrating the equation.

Since H, is Hermitian, we will obtain

AW = —(slm|Hy|slm) (2.31)
where the sandwich is
(sl'm| My |slm) = / d0Y; (07 Hy oY (6) (2.32)

and the precise forms are

20+1
! =/ ——(.1 ! 1. — r_
(sl'm| cos@|slm) =4/ 2[’+1<l’ ,m, 0l my(l,1,—s,0|l', —s),
1 2 [21+1
(sl'm| cos® 0] slm) 235”/ + 3\ 3p n 1<l, 2,m,0|l',m)(l,2,—s,0|l', —s)

with the Clebsch-Gordan coefficients (ji, jo, m1, ma|J, M), or says the Wigner 3j-

(2.33)

symbols

(J1s Jos iy, mo|J, M) = (=1)" 2= My/2 ] +1 b ) (2.34)

my Mo —-M

Similarly, we can obtain the eigenfunction by multiplying ,Y," from the left-hand-

I'm
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side and integrating the equation, that is

U'm|Hq|slm)
49,7, (9),50 () = 2.35
/ v (0)s5im (6) = (I+1) =1 (I'+1) $isé
To explicitly construct Sl(m, let’s assume

SS[(7ln) = chl’sy’m (236)

l/

by the orthogonal and complete basis {Y;,|l € N, > s,1 > |m|}, such that the first

order eigenfunction is

(sl'm|Hq|slm) Yo
Sin =205 D) — 1 +1)° (2.37)

So far, we have finished the first order perturbation.
As with the above results, we can proceed to compute the second order pertur-

bation,

HooS' + Hy S = —1(1+1),52) — A s APy, (2.38)

IlmsS Im$

After a similar calculation, we collect the zeroth order, first order, and second order

results and show them below. The eigenvalue is

|(sl'm|H|slm)|?
zz+1 ) - +1) T (2.39)

sApm =1L+ 1) — (slm|Hy|slm) —
VAL

and the eigenfunction is

slm?—[ slm
lm+zl | 1| > }/l/m

" — Ul +1)°
(sl'm|H1|sl""m)(sl"m|Hi|slm) SAEQ(sl’mrHﬂslm)
™ Z I(1+1) l’ I'+1) Z I(I4+1)=1"(1"41) I(I4+1)=U'("+1) sYirm
Il V'#l
sl m]?—[l\slm)
s lmz ll U1 ) + ..

(2.40)

which are accurate to the second order of the small parameter aw. Therefore, we
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can perturbatively obtain the spin-weighted spheroidal harmonics ;S;,(0), and we

observe that

I+1 142
sSlm = SYEm + Z asl/msYz/m(aw) =+ Z bsl’msYE’m(aw)2 + O(CLU))?’. (241)
U'=l—1#1 I'=1-2

with coefficients agy.,, by are pure numbers.
The second way is called Leaver’s method in [26,33]. It is mainly used to solve
the eigenvalues, rather than the spin-weighted spheroidal harmonics, they suppose

this special function may be written as the following ansatz,

oSim(aw, X) = e™X (14 X)2m=l(1 — X)2m 13 " q, (1 4+ X)" (2.42)
n=0

around the regular singular point at X = cosf = +1 in (2.23) and with a nontrivial
exponential awX, where the label [ is from comparing the roots A with the eigen-
values from above perturbation theory. Usually, we expect a series expansion to
converge; otherwise, the higher order terms contribute more than lower order terms,
such that we cannot truncate it at some order to be a valid approximation of the
spin-weighted spheroidal harmonics.

To find the separation constant A in angular equation (2.23), which are unfixed
parameters in coefficients a,,, they plug the ansatz into the angular equation, which
involves the differential with respect to X at most twice. After differentiation, we
can separate each order of X, collect the corresponding coefficients of each order,
and require them to vanish. It is similar to power series, such that the coefficients
a, satisfy the recursive relation

agal + ﬁgao =0 (2 43)

0 0 0
anan+1 + /Bnan + /ynan—l :0
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forn =1,2, ..., where

ol =—2(n+1)(n+ 2k +1)
BY =n(n —1) + 2n(k; + ky + 1 — 2aw)

— [2aw(2k; + s+ 1) — (k1 + ko) (k1 + ko + 1)] — [(aw)? + s(s + 1) + A(aw)]

fyz =2aw(n + k1 + ka + )
(2.44)

containing an unknown parameter A = A(aw) which is a function of aw, and the

parameters
1
ki ==|m — s|
% (2.45)
]{?2 zélm + S|

for fixed s and m.
From the recursive relation (2.43), we can derive the ratio of the coefficients with

the continued fraction form,

0 0 0 0 0 0 0 A0
Qpy1 —Tn+1 — T+ 1 T2 Y2 Vg3 Y Vit
- 0 0 Y 0 6 0
an 59 — —O‘"+107n+29 Bn—i—l_ Bn-‘,-Q_ 571—}—3_ Bn+i+1 (2-46)
n+1 2] 7an+2’yn+3
nt2 Bl g

for ¢ — oo in related notations form. From the initial one, we combine the two

equations
0
“_ P
W ab (2.47)
a _ = o asng i '
Qo Bf_ 53_ 6:3‘:_ fm
for n — oo, such that
00 00 0.0 0.0
0=p0— @71 Q172 @273 YnVnt1 (2.48)

Bi— 85— Bs—" Bin

with the undetermined A(aw) in all 57.
Similarly, the radial differential equation from Teukolsky equation has the same
form, that is to say, the radial solution can be written as a series expansion whose co-

efficients satisfy some relation, such as (2.48). The two continued fraction equations
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from the radial equation with unknown w and the angular equation with unknown
A(aw) are coupled, so Leaver needs to numerically solve them, simultaneously:

To find the roots w and A(aw), given the parameters s, m, and a; they truncate
the continued fractions to some order n, and then use the root finding algorithm to
find the roots w and A(aw). Then, they can repeat the step at a higher order n’ > n,
such that accuracy is enough. By truncating to higher order n, this not only gives
us greater accuracy but also allows us to find more roots that correspond to larger
[. Roughly speaking, there will be infinitely many roots A(aw) corresponding to [
with the constraint [ > |m| and [ > |s| in the spin-weighted spheroidal harmonics
sSlm-

For example, given s = —2, m = 5, and fixed aw = 0.1 (but w could be complex

in general), we define a function f(A) as

adyd afng  — AP+ 117.17A2 — 4465.98A + 55100.

A) =) - ~ 9.49
J(A) = By Bgo— 8 A2 —90.384 4 2031.9 (2.49)

according to (2.48), then we can plot f(A) and solve f(A) = 0 numerically. There
exist three real roots in A = A(0.1) = 27.85424, 40.63636, and 48.67940, respectively.
The roots can correspond to the eigenvalues _9A55(0.1) = 27.86393, _3A465(0.1) =
39.90200, and _A75(0.1) =~ 53.92555 from perturbation theory. Moreover, we can
ask f(A) to include more terms
F(A) = o — 2001 0D anh a3yg 0ng a5

Pi— b= Bs Pi B5 B

. —AT4501.13A4%-104445.4541.1x107A*—7.5x108434+2.8x101°42—5.6x10'1 A4+4.5x10'2
~ A6_474.34A5491724.3A4—-9.2x 106 A34+5.0x108A42—-1.4x1010A4+1.6x 1011

(2.50)

and we will find five real roots at A =~ 27.86394, 39.90200, 53.92506, and so on,
which are closer to to the eigenvalues _5A455(0.1), _2A465(0.1), —2A75(0.1), and so
on. Let’s say, we can draw the following conclusions, the n-th root is corresponding
to the eigenvalue _3A(45)5(0.1).

So far, we do not know how the roots A depend on [. Through the Schwarzschild

QNMs whose [ is well-defined, we can figure out the relationship between A and .
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When they take spin a to zero, the roots A will reduce to

A=(n+ki+k)(n+k +k+1)—s(s+1) (2.51)

which is the Schwarzschild case, because of v = 0 for all n as a = 0, this leads to

the continued fraction equation become

0=208=n(n—1)+2n(k; + ks +1)
(2.52)

+ (k1 + ko)(b1 + ko +1)—s(s+1) — A

Hence, they identified n+ ki + ks = [, as well as the roots are exactly the eigenvalues
sAm(aw) from perturbation theory.

By the previous example, given s = —2, m = 5, but a = 0, for 8 = 0, the
first root is corresponding to the eigenvalue _5As5(0); for ¢ = 0, the second root is
corresponding to the eigenvalue _5Aq5(0); for 8§ = 0, the corresponding eigenvalue is
_9A75(0). Let’s say, the n-th root is from the condition 3 = 0 and is corresponding
to the eigenvalue _9A(,45)5(0). Note that, in some paper, people prefer to factor
out the s(s + 1) part from the non-perturbed operator H,, so their non-perturbed
eigenvalue will be [(l 4+ 1) — s(s + 1) with a different convention.

Note that, the coefficient a,, can be expanded with respect to aw as

a, = (aw)"[polynomial of (aw)] (2.53)

if aw is small enough. This patterns give us that the series expansion is exactly

convergent, since

lim |22 < 1. (2.54)
n—oo | Ay
by Ratio test for small aw.
For example, for s = —2, 1 = 2, |m| < 2, the coefficients have the patterns,
ap = Z Cn.iaw)" T (2.55)
i=0
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"+ term in a,. Note that these coefficients

with ¢, ; as the coefficient of the (aw)
are m dependent so they differ for each m. For another example, for s = =2, [ = 3,

|m| < 2, the patterns of the coefficients will become

o0
ap = Z Cni(aw)™ ™
i=0

o0

ay, = Cpi(aw)

(2.56)

n+i—1

The coefficient a,, will be shifted by (aw) when n > 1 in this case. For different [ and
|m| < [, the rules of these shifts are slightly different, but can still be found. Hence,
we can truncate the Leaver’s ansatz at a specific order of aw and then compare it
with the result from the perturbation theory.

Both the perturbation theory and Leaver’s method give us some ideas about how

to construct a new ansatz of the spin-weighted spheroidal harmonics.
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Chapter 3

Spin-weighted Spherical
Harmonics from On-shell

Kinematics (Schwarzschild)

In this chapter, we employ the spinor-helicity formalism to obtain an on-shell
expression that describes the angular dependence of Schwarzschild black hole QNMs;,
specifically the spin-weighted spherical harmonics.

To achieve this, we first introduce the spinor-helicity formalism, a powerful frame-
work extensively utilized in particle scattering studies. Drawing insights from the
physical picture of the gravitational wave emission by black holes, we conjecture a
3pt tree-level scattering amplitude which aligns with this emission process. Subse-
quently, we set the momenta of the particles involved in the scattering for both the
initial and the final states of the system. Finally, we verify that the scattering ampli-
tudes which satisfy the on-shell spinor-helicity formalism are indeed associated with
the spin-weighted spherical harmonics by relating the spin configurations and the
quantum number m which is the eigenvalue of the third component of the angular

momentum operators.
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3.1 Spinor-Helicity Formalism and Unequal Mass
3pt Amplitude

The Spinor-Helicity Formalism is a powerful technology for computing the scat-
tering amplitudes easily and efficiently. The spinor-helicity formalism obeys Lorentz
invariance and gauge invariance in the Feynman rules, hence the scattering ampli-
tude can be written in the simpler form than traditional QFT. The amplitude is
composed of the massive and massless 2-component Weyl spinors which are from
the Weyl equation being invariant under the Lorentz transformation. The Weyl
spinors are more fundamental than the 4-vectors in SO(1,3), because the spinors
form a irreducible representation of the Lorentz group. This method provides a
invariant and efficient framework for describing particle kinematics and calculating
scattering amplitudes.

Before we introduce the spinor-helicity formalism, we have to know that the
SL(2,C) momentum of a massless particle can be decomposed of two massless
Spinors

Koo = [K)alkla (3.1)

and the momentum of a massive particle can be decomposed of four massive spinors

Pac = |p[>a[p1|a (3-2)

with the SU(2) little group index I = 1,2 =1, |.
The point of the spinor-helicity formalism is base on the angle and square spinors

which satisfy the Weyl equation

Paglp’]” = +mlp")a
p*|p")s = +mlp’)®

| (3.3)
[p'| " = —m(p"|"

(P"Ppsa = —mpla

95 doi:10.6342/NTU202302187



for massive spinors, and satisfy

koslk]” =0
k¥(k)s =0
. (3:4)
[k| k% =0
(k|Pkgs =0

for massless spinors.

We will use the unequal masses 3pt amplitude in the following section to repro-
duce the angular dependence of black hole QNMs, since the gravitational waves in
a QNMs system carry energy and slowly dissipate it, so that the black hole mass

reduces.

3%
191

Figure 3.1: 3pt scattering process from spin-Ss to spin-S; and helicity hq

Mathematically, if we try to use the 3pt amplitude with equal masses m, then
momentum conservation will give us py - ky = p3 - ks = 0, and k% will be a complex
massless 4-momentum, such that some components of |2) and |2] are imaginary,
and some spin configurations of the amplitude cannot reproduce the spin-weighted
spherical harmonics, which is a real function.

Therefore, we assume an unequal masses process for the 3pt amplitude, rather
than equal masses, and then review the amplitude using the spinor-helicity formalism
in [29-31]. For the spin-Sj, spin-S; representation of the SU(2) little group indices
(Iy...Iss,), (Ji...Jas,) for two massive leg 1 and leg 3 with masses m; and ms, and
one massless leg 2 with helicity ho, the amplitude must contain the momenta of pq,

p3, and ko, and the momenta can be decomposed of the spinors, so the amplitude
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can be written as

th,([l...fgsl),(Jl...J253) — )\(Il AI251) A(Jl )\JQSS) Mh2’{a1--~a251}7{/81~~~ﬁ253} (35)

Lai " "lass) 773,817 773,8254

in terms of the spinors contractions M , = [1),, M¢ = [11]¢, \] | = [37),, M¢ =

|3J]dv )‘Q,a = |2>om and 5\3 = |2]d where

h h
MG a2, 81 fsyt = 950,85 (L B8 U arazs, } {81 Basy } (3.6)
Ny Ny

where ggisg is a coupling constant; the SL(2,C) Lorentz indices a...awg,, f1..-Pas,
are carried by the basis spinors u, = |2), with helicity —3 and v, = p;—‘f|2]5 with
helicity —i—%. Here, N, means the number of v and N, means the number of v,
similarly, the number of A{ , is 251 and the number of \{ 4 is 255

The spinor-helicity formalism give the amplitudes two constraints, one is for

helicity
N, N,
SRR R 3.7
2 + 9 2 ( )
and the other one is for spin
N, + N, = 25, + 285, (3.8)

therefore, the number of u is determined by N, = S; + S3 — hy and the number of
v is determined by N, = S7 + S5 + hs.

Here, the spin-weighted spherical harmonics _5Y},,(6) carry the quantum num-
bers, spin weight h = —2, orbital angular momentum [, and projection m, therefore
we conjecture the scattering amplitude M(1,2"=2,3!) = M~2U1-J21) which is the
overlap of the quantum numbers, namely, the amplitude has the massive scalar leg
1 and spin-/ leg 3 particles whose masses are m; and mg, respectively, and massless
leg 2 being a graviton with helicity h = —2. Such that the amplitude carries A and
[, and the projection m from —I to [ is represented by spin configurations (J;...Jy)

carried by leg 3.

97 doi:10.6342/NTU202302187



Figure 3.2: 3pt scattering process from spin-/ to spinless and helicity —2

From above spinor-helicity formalism, we have the amplitude which describes
that a spinning black hole emits a graviton with A~ = —2 and develops into a non-
spinning black hole,

./\/l{_jl_u?l} = gl_zuuuu(uv)l_z. (3.9)

for | < |h| = 2, where the indices «;...ay are carried by u and v, such that the
amplitude satisfies the spin, helicity counting, and the Lorentz invariance under

B

the Lorentz transformation of spinors, |k), = L(k;j)5|j)s and [k|s = [j]BZ(k;j)d
for massless spinors; [p’), = WIL(p;q)2|q”)s and [p;ls = [qJ|Bﬁ(p; q)g(Wfl)f for
massive spinors. Then, we will use this assumption and the setup in the next section
to reproduce the spin-weighted spherical harmonics.

Naively, the angular momentum in Fig.3.2 which we conjecture does not appear
to be conserved. Actually, we should look at the angular momentum conservation
from another point of view, since the angular momentum is coordinate dependence.
As we know, the generator is the operator associated with conserved quantity, and
the angular momentum tensor is the generator of the rotation and the Lorentz boost
for the Lorentz group; that is to say, the Lorentz invariance guarantees the angu-
lar momentum conservation, therefore the amplitude which is a Lorentz invariant

function satisfies the conservation of the angular momentum, when the angular mo-

mentum [ is larger than the helicity |h| = 2.
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3.2 Setup of On-shell Spinors

According to the physical picture of the QNMs, we assume that the gravitational
waves are emitted in the direction 1 = (sin 6 cos ¢, sin 0sin ¢, cos ). Furthermore,
we can always set a massive particle in the rest frame. If we stay in the rest frame

of particle 1, then we set the on-shell 4-momenta in SO(1, 3) as

pﬁ‘=(m1 0 0 0),
(3.10)
ky =E, (1 sinf cos ¢ sinfsin ¢ 0089)7

with real components which satisfy the on-shell conditions |p/|?> = m? for a massive
particle and |k5|> = 0 for massless one. Or, the momenta in SL(2,C) by using

Paa = P*0p a4, such that we obtain

mq 0
Plaa = )
0 ™A
(3.11)
" 2F, sin? (g) —e " F,sinf
2060 —
—€?Eysing  2E, cos? (%)

2

where Fy = w of massless particle 2 is the angular frequency (or energy) that people
care about in QNMs; the determinant det(piag) = m? and det(kgnq) = 0 are Lorentz
invariant. Next, we decompose the momenta in SL(2,C) by using pias = |17)[11],

k20s = |2)[2| and obtain the following spinor variables, the on-shell kinematics of
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the massive spinor 1

N 1
|1 >a =y My )
0
Ny 1
|1 ]a =My )
0
(3.12)
. 0
|1 >C¥ =My )
1
AL’ Ve 0
|1 ] =V )
1
and the massless spinor 2
—e sin (¢
|2>a _ /2E2 (2) :
cos (g)
(3.13)
0
: cos (2
o —vis | B )
e sin (%)

where the SU(2) little group indices I for massive leg 1 can be chosen as 1 and J;
massless one |2) has helicity —1 and |2] has helicity +1, respectively.
Then, in order to construct the 4-momentum of particle 3, the momentum con-

servation gives us

Py =pi + kY = (m1 + FEy FEjsinfcos¢ Essinfsing  FEscos 9) ) (3.14)

and by the on-shell condition m3 = [p§|? = 2m;FEy + m?, we can first identify the

rest frame momentum of leg 3 to

p’g,rest: (\/2m1E2+m% 00 0) :(mg 0 0 0) (315)

with its mass ms = \/2Eomy +m? = m;+FE,+O(E3). And then, we also decompose

the momentum [ps3 st in SL(2,C) into spinors which have a similar form with

(67
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the spinor 1, |17) and |17], but we are already in the rest frame of particle 1, so we
have to boost pf,.; along the direction 7 = (sin @ cos ¢, sin ' sin ¢, cos 0) in-order to
set up the right coordinates, in other words, we want the spin-up spinor 3 in the
rest frame to correspond to the spin-up spinor 3 in the other frame; the spin-down
in the rest frame to correspond to the spin-down in the other frame. Precisely, that

is

|3T> B cosh % — sinh % cosf  —sinh %e‘id) sin 6 /M3
o T )
—sinh $e*sinf  cosh3 + sinh 3 cos 6§ 0
|3T]o'z B cosh % + sinh % cos 6 sinh %e*m sin 0 N
- 9
sinh 2¢* sin 6 cosh 2 — sinh % cos 6 0
(3.16)
34 cosh$ —sinh§ cosff  —sinh 3¢ " sin6 0
a — )
— sinh %e“b sin 6 cosh % + sinh % cos /M3
3 cosh 2 + sinh 4 cos 6 sinh 27" sin 0 0
= b
sinh 2¢* sin 0 cosh 3 — sinh % cos 6 N

where the boost matrix in SL(2,C) has the form e*2(® = cosh 21+ sinh 3(7 - 5)
from a rest frame with the rapidity A = log (W), and the plus sign are
for angle spinors (chiral spinors); the minus sign are for square spinors (anti-chiral
spinors). We can easily verify the momentum conservation piag + k2aa = P3ad,

my + 2F5 sin? (g) —e ¥ F,sind

P3ac = . (317)

—e"®Fysin 6 my + 2F, cos® (g)

by combining the spinors psa = |37)[37] from the above.

Then, with the above settings, we can compute the spinor products (on-shell
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elements) with the angular dependence

217 =[23"] = —v/2Eym €™ sin (Q) :

2

214] =[23Y] = /2Eym, cos (g) ;

3.18
o ; (3.18)
(21") =(23") = \/2Eym; cos 5 )
(214) =(23%) = \/2Eym e sin (g) .
and
3111 (3111 = Ve sn0RE, + mi — ma)
2v2E; + my ’
[3T1¢] :<3¢1T> _ _w/ml[cos ‘9(2E2 +mq — mg) + 2E2 +mq + mg]
2v/2E5 + my ’ (3.19)
[3¢1T] (3 = vmilcos O(—2Ey — my + m3) + 2F5 + my + mg] ’
2\/ 2E2 + ma ’
3414 (3114 — _w/mle_i‘75 sinf(2E, +my — ms3)
2/2E; +m; ’

under our setup, some products are the same, since the rapidity contains the mg and
mg can be replaced by m; and F,. In the next section, we will use these brackets
which is set to ¢ = 0 with only angular dependence 6 to plug into the scattering
amplitudes, and to compare with the spin-weighted spherical harmonics, because we

observed the following relationships,

(231)(231)(231)(231) ~ cos® = ,Ys5(0),

o (£) = 0

) sin? (g) = 5Ys0(0), (3.20)

) (g) = Y 1(0),

(234)(234)(23")(23%) ~ sin? (§> = Yo o(6).

N———

(231)(231)(231)(23%) ~ cos®

7~ N7 N 7
D D D

(231)(231)(23+)(23%) ~ cos?

(231)(23%)(23%)(23%) ~ cos (

QDl\.’JIQb

In addition, the above angular dependence of the spin configuration have the same
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form as (14 X)zm=sl(1— X)zlm*sl for s = —2 in Leaver’s ansatz (2.42)7 This sparks
our interest and leads us to believe that we may be able to express Leaver’s ansatz
by using on-shell elements in the next chapter’s Kerr case.

Then, we can redefine the above spinors by dividing by a square root mass

dimension . ) ;
\/m—1|1 o =11")a
jmma 2. (3.21)
|37, = [3")a

N

such that the brackets become dimensionless. To compare with the angular equa-
tion (2.23) in BHPT, both of a and w are dimensionless, hence we redefine the

dimensionless angular frequency w in our setup,

w
— =W, (3.22)
2m1

such that the series expansion parameter aw = g—ffl in the next chapter is also

dimensionless.

3.3 Spin-weighted Spherical Harmonics

The spin-weighted spherical harmonics (or just spherical harmonics in QM) are an
analytic function describing a spherically symmetric system in SO(3) representation.
The quantum number m represents the projection value of the angular momentum
on the z-axis, and there are 2] + 1 possible projection states for m = —I, ..., 0, ...l to
fix the total angular momentum /.

On the one hand, we know that a (2] + 1)-dimension representation is corre-
sponding to a rank-/ symmetric traceless tensor in the group SO(3). On the other
hand, the irreducible representation of SU(2) is a subgroup of the rotation group
SO(3).

Because spherical harmonics are representations of the SO(3) group and their
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form depends on the quantum number of projection of angular momentum m, and
because all representations under SO(3) can be rewritten as representations under
SU(2) which is the more fundamental representation of rotation, we can consider
the SU(2) little group indices as part of the quantum number m, which constitutes
spherical harmonics.

According to the last two sections, our 3pt amplitude (3.9) need to contract with

the external leg 3, /\é‘fél...)\fg;, and without leg 1, then we have

M2UT) =291 30T\ 2 [/ 3 D)]E-2. (3.23)

with the SU(2) little group indices (.J;....Jy;) which are free and fully symmetric, and
the symmetric symbol (abc) means (abc+ acb+bac+ bea+ cab+ cba)/(3!). Actually,
the above (3.20) is exactly the amplitude for [ = 2 with different spin configurations.

Based on the above arguments, we try to figure out how the scattering amplitudes

M=) pelate to the spin-weighted spherical harmonics

M—Q,(Jl..-JQZ) ~ —QYim(Q) (324)

We have observed that they have the same angular dependence as fixing m and spin
configuration, therefore there exists an one-to-one correspondence and the ampli-
tude is proportional to the spin-weighted spherical harmonics, which is the angular
solution of black hole QNMs in the Schwarzschild case. To be explicit, the relation

is

2F,
my

M—z,<J1---Jzz>:gl—2< ) (1 U 210 = 210+ ) = ) s Yim ()

21V 20+ 1

(3.25)

with a overall factor (Ey/m;)!.

There are 2! free little group indices, that is, the
spin configuration is corresponding to 21 + 1 different m.
Given [, the range of m is from —[ to [. For m = 0 in the spherical harmonics, the

number of spin up and spin down will be equal; for m = +[, the little group indices
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are all up or down, respectively; for arbitrarily m, there are (I 4+ m)’spin up and
(I—m) spin down. In other words, the SU(2) spin configurations (Jy, Ja, ... Joi—1, Jo;)
which are carried by the leg 3, as well as fully symmetric reproduce the each m by

( Ta"')Ta\l/J"'?\L ) <~ m (326)

—— ——

l+m l—m

Especially, if we choose the helicity of gravitons as h = +2, then the amplitude
will be
M+2,(J1...ng) — gl—i-Q<2/3/(J>l—2[2/3/])]l+27 (327)

and will match the spin-weighted spherical harmonics with the spin weight s = 42,
that is oY}, (#). Moreover, if we consider a photon with helicity h = +1 or a
scalar particle with helicity h = 0, then the amplitude will match the spin-weighted
spherical harmonics 11Y,,(0), or oY, (0) = Yi,,(0), respectively. To be explicit, the

3pt scattering amplitudes
Mh,(Jl...Jzz) — glh<2/3/(J>l—h[2/3/J)]l+h (3'28)

are related to the spin-weighted spherical harmonics

MUl — gh( P (27512) (21z)! 2;11 - V(L + R =W+ m)(1 = m)Yim ()

(3.29)
for the helicity (spin weight) h = 0,41, +2, spin [ > |h|, and —] < m <.

So far, the punchline is that, by establishing a unique matching of scattering
amplitudes M"(/1+721) and the spin-weighted spherical harmonics 1Y}, (), we have
successfully connected the spin configurations and quantum number m, and re-
produced the Schwarzschild black hole QNMs which emit a massless particle with

helicity h, or says a perturbed spin-h field (spin weight h).
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Chapter 4

Spin-weighted Spheroidal
Harmonics from On-shell

Kinematics (Kerr)

In the previous chapter, we described spherically symmetric black holes QNMs by
using the spinor-helicity formalism and the spin configurations. In this chapter, we
discuss the angular dependence of Kerr black hole QNMs which involves the rotation,
or says the classical spin, that is the spin-weighted spheroidal harmonics (2.41) we
mentioned. Since the classical spin effect is not included in the on-shell spinor-
helicity formalism kinematics which involves the quantum spin, we introduce the
coherent spin state which can describe the classical behavior, then the expectation
value of spin operators by the coherent spin states can represent the classical spin
vector.

First, we introduce the coherent spin state as presented in [32] and its application
to the minimal-coupling coherent amplitude. Next, in order to construct a on-
shell basis to produce the each order of the spin-weighted spheroidal harmonics, we
expand the application of the coherent spin state to the unequal masses on-shell
elements which is a process from spin-({ @ s) to spin-s and satisfy the spinor-helicity

formalism. In the classical limit, we can use these elements to establish a on-shell
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coherent tensor and describe the spin-weighted spheroidal harmonics by truncating

them at some order of the small parameter aw.

4.1 Review of Coherent Spin State

To obtain the spin vector of the Kerr black hole, we need to introduce the coherent
spin states, since the spinor-helicity formalism does not involve the classical spin.
The coherent spin state, which is an eigenstate of the annihilation operator and is
composed of a series of quantum states, approximatively describes a dynamic state
as the classical behavior and minimizes the uncertainty.

To find a spin operator acting on the irreducible representation of SU(2), let us
review the N-dimensional harmonic oscillator with SU(N) symmetry in Appendix
A. Now, we consider the 2-dimensional harmonic oscillator, and then there are two
creation operators d;, EL; and two annihilation operators a,, G acting on SU(2)
representation in the system. The creation and annihilation operators satisfy the

algebra

a',af) = o} (4.1)

where the SU(2) indices for I,J = 1,2, or says up and down. So far, they can
construct an operator

aflo’)! a’ (4.2
acting on the SU(2) spin state in [32] by above creation, annihilation operators, and

the Pauli matrices which are defined by

ol'y = 5 (0" loulps] + W/16ulps)). (1.3

where |p;] and |p;) are decomposed from a momentum p, then we will set p at the
rest frame. It is worth noting that, the operator defined in this way satisfies the

angular momentum algebra

(57, 57] = ihek Sk, (4.4)
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or more generally

(57,57 = Ty, , (45)

in SO(1, 3) which depends on a frame p,. In SU(2) representation, wecan compare

the observable in the 2-dimensional harmonic oscillator with the spin states

A~

[a,01) = 6;; = [z,p] =ik 05 =1,2
(4.6)
!, al) =60 = [S;,S;] = iheyrSk 0,5,k =1,2,3
for I,J = 1,2. Because all of the operators z;, p;, and .S; are defined by the same
creation and annihilation operators which satisfy the same commutation relation,
we then use the same form of the coherent state to minimize the uncertainty of these
observable which are in terms of the creation and annihilation operators.

This is what we want, and we will use the angular momentum operators later.
Note that, the SU(2) operator which is Lorentz covariant is dependent on a frame
of a momentum p which we choose.

Now, let us find the coherent spin states that we will use, the coherent spin
states are the coherent states for the rotation group of the 3-dimensional space
SO(3). In [32,31], the coherent spin states are SU(2) representation, involving two
creation and two annihilation operators, and satisfies the same eigenvalue equations
of the annihilation operators as the 2-dimensional harmonic oscillator with complex
eigenvalues o for I = 1,2. But here the coherent spin states are used to minimize
the uncertainty of the expectation value of the angular momentum operator.

Here, we briefly introduce the uncertainty of the expectation value of the angular
momentum operator. Hence, first we need to know the expectation value of the
angular momentum operator

h
(s, (I1...I55)|Si|s, (J1...Ja5)) = 525[0,.]<11(J15§;. Y (4.7)

U J2s—1)
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and

2

h i1 2 3 25—2
(5, (11 2) 25, (i o)) = 28(25 = Do) " ) [00)" 5057 (48)

by an arbitrary spin state in SU(2) representation, where the spin state

1
5. () = sl 0) (49)
satisfies the normalization condition
(5, (I Iag)|8', (Jroooow)) = 05054002 (4.10)

where (af)?* = afta'2...af»-1a™:. Note that the expectation value of S; vanish as

1

i = 1,2, since the two Pauli matrices o' and o2 have no diagonal elements. After

having the expectation values, moreover, we can compute the uncertainty of the

angular momenta which satisfies

h
ASlASQ Z 5 |<S, (]1....[28)|S3|S, (11]25)>| (411>

where the standard deviation of an observable is

AO \/ [25 |O |S ( .]25)> — <S,<]1...]25>|Oi|8, (Il...[25)>2 (412>

by an arbitrary spin state |s, ({1...1s5)). Take s = 1 spin states as examples. On
the one hand, we can use the state |1, (1,7)) to compute the standard deviation of

angular momentum

where
h? NG 12
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by some properties of the Pauli matrices in [32], and then the expectation value of

the third component

(1, (1, D)IS5]L, (1,1)) = hlos)"0] = R (4.15)

where

031"y = 5 (ool + p'loslp) =1 (4.16)

by the rest frame spinors |p;), |p;], we can verify that this spin state makes the
uncertainty principle hold; on the other hand, we can also use the other spin state
|1, (1,4)) to compute

AS; =AS, =h (4.17)
where

<17 (T7¢)|S12|17 (Tvi)) = %% ([Ul]TT[Ul]ii + [Ul]Ti[Ul]Ti + [Ul]iT[al]‘LT + [0‘1]¢¢[0'1]TT> = hQ

(4.18)
and
(L, (1, 18] 1, (1, 4)) = h[og]”@(si)) —0 (4.19)
where
03] 16)) = % <[03]T¢ + [@a]ﬂ) =0 (4.20)

by some properties of Pauli matrices, the uncertainty principle still hold by this spin
state. The uncertainty of the angular momenta in SU(2) representation is the same

as in SO(3) representation, that is to say, the standard deviation

2

AS) = AS, = \/%[l(l +1) — m?] (4.21)

and the expectation value

(1, m|Ss|l, m) = hm (4.22)
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lead to the following inequality

2

DO | St

by an arbitrary state |I,m) in SO(3) representation.
Next, in order to minimize the uncertainty of the expectation value of the angular

momentum operator, we need the coherent spin states which are expressed as

~tasl jala —Ljjal? (a)*
|a> —e7 2 1|() — e 2 Z Z |8,(Il...]25)>- (424)

25=0I1,...,Ias=1,] (25)!

in terms of the spin state. Naively, we can verify the eigenvalue equations of the

annihilation operator by expanding that

a2 (@)* +p .
i) =e3lloll Z 3 & atal ..aj |0)
2s=0 I1,..., Ips=1,)
2(a’ 2
—e—éa|l2{o+(aT)|0>+0+ <O‘2a)ﬂ|0)+ (o) 0) + 0+ } (4.25)

and |a) is exactly a eigenstate.
To describe the behavior of the classical angular momentum, or says the classical
spin, they sandwich the angular momentum operator (4.2) by the coherent spin state

|a), that is the expectation value

2

(alSiSila) = (a|Sia)(alS;|a) + 1 [5@(5410/) +iegn(arlon)’ 0], (4.26)

where

fol5ila) = & [arlo 0] (4.27)

by a!|a) = of|a) and the normalization condition is the classical spin with the order

RO, since the SU(2) spinors &z, of have the order /2 for each one. Now, we can
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verify the uncertainty of the expectation value of the angular momentum operator,

72
and
h
CIFAES Pl (4.29)
when the spin a® = (0,0,a) has only 2z component, so the coherent spin states

exactly minimize the uncertainty of the expectation value of the angular momentum
operator AS1AS, = 2[(a|S;|a)|. That is to say, the coherent spin state leads the
behavior of the expectation value of the angular momentum operator to be classical.

Therefore, they can use the form in (4.24) to reproduce the classical spin a*.

Precisely, the spin vector of a Kerr black hole is defined by

1
ah = H(a|5{j|a> (4.30)

P

which is inspired by the expectation value of angular momentum operators (4.27)

T=al(p).

at the p frame, let’s say the SU(2) spinors are dependent on the frame «
Then, let’s see the application to the equal masses on-shell scattering amplitude,
which is called the classical spinning amplitudes. They start from the 3pt amplitude,

the massive leg 1 and leg 2 particles which have the same masses m but spin-si,

spin-sq, respectively, and the massless k being a graviton with helicity h = +2 emits.

Figure 4.1: 3pt scattering process from spin-Sy to spin-S; and helicity +2

Previously, we mention the 3pt amplitude with different masses. Now, the am-

plitude is with the equal masses, people cannot use the spinors u, = |k), and
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Vo = %Uﬁ]ﬁ‘ as a basis, since v*u, = 2p; - k/m = 0 by momentum ‘conservation
and the same masses m, that means they are parallel. In [29,31,32], they construct

a basis for the equal masses amplitudes,

Piag :
ol = 212 1,

. B (4.31)
ke = 2|k
R =Pk,

where the z-factor is © = ﬂf CIIL];] with a reference spinor (. Here, they start with the

minimal coupling amplitudes which is the leading order of the amplitude, denoted

as Mpin (15,25 k) = M?ﬁ%}{J}’ with equal masses and equal spin-s,

R @21y)%
2 m>2 (4.32)

1 2s
21y s B2
Moy = (=1) 2 m25-2 g2’

Next, to connecting to Kerr black holes, by combining the coherent spin states
(4.24) and the minimal coupling amplitudes, the coherent spin amplitudes is

K _1(al2 2) o 1 5 s<211J>25 s
A:_n%n _ —§x26 z (a2 +1811%) Z ®<ﬂ])2 W(QJ)2 : (4.33)
25=0

and it is obviously the series expansion of exponential, hence we can rewrite it as

2 I J
s _gm2x2€—é<|\a||2+um\2>exp {M} ‘ (4.34)

min
m

According to the definition of the spin vector, we know this is dependent on the

— P1tp2

frame. Therefore, they choose an average momentum frame, defined by p, 52,

such that the spinors |1;) and |2/) can be boosted from |a’) which is decomposed

with p, = |a’)[ay],
paPy
1r) = exp {_W%} lar)

2 =on{ oo b

with the Lorentz generators o = %0[“5”] in SL(2,C). Due to the on-shell formal-

(4.35)
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ism with equal masses, we know that p; -k = py-k = p,-k = 0. Then we can rewrite

iph k"
2m?

the boost matrix as exp {j: UW} by momentum conservation p; + k = ps, and
expand the boost up to linear in k, since the higher order vanish k? = 0, such that

the piece in the coherent spin amplitudes becomes

Brlpa) 2 () = ) (a0} = o (o'l + [@Hles)) ) ), (430)

where (ala;) = mdl, and that is exactly corresponding to the spin vector ap. as

taking BI = &y, and the coherent spin amplitudes become

AZ2 _Emzxﬂeﬂ-am’ (4.37)
which contain the exponential form. This 3pt result with the exponential spin-
multipole can be used to connect to the gravitational scattering of Kerr black holes
[32], such as 4pt amplitude gluing by 3pt amplitudes is used to connect the impulse
and the geodesic equation.

By observing the application, we find that the piece k - a is involved in their

results, which is from the contraction of SO(1,3) indices
d[(p) [kuapu]IJ&J(p) ~k-a, (4-38)

where k ~ w in our language, and this give us the spin multiplied by the angular
frequency, that is exactly the parameter aw which is needed to expand the spin-
weighted spheroidal harmonics. Consequently, we except the coherent spin states
will give our scattering amplitudes a classical spin of Kerr black hole, such that we
can solve the problem about the spinor-helicity formalism not involving the classical

spin.
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4.2 Spin-weighted Spheroidal Harmonics

After we introduce the coherent spin state and the spin vector in the 3pt equal
masses amplitudes, now we try to establish a on-shell basis for the each order of
the spin-weighted spheroidal harmonics. The basis is composed of various on-shell
elements of the 3pt process that contract with SU(2) spinors é&; and o from coherent
spin states.

First, we can find the SU(2) spinors in a specific form which satisfy the follow-
ing conditions. As we know from the previous section, the SU(2) spinors can be
combined with the spin operators to obtain the classical spin at a frame p, and now
we ask the generated spin vector a* has only the ¢t and z components, such that if
we set p at the rest frame, then the spin vector will reduce to only the z direction,
since people usually set the spin along the z direction in Kerr metric (2.12). Also,

we want the length of SU(2) spinors to be

lla||? = ar(p)al(p) = a. (4.39)

Since the SU(2) spinors depend on a reference frame, we need to make a;(p),
a’(p), and the on-shell spinors |1), |37) at the same reference frame. However, our

setup is not equal masses, so we have to rescale the momenta (3.21) by their masses

» I
/ / / /
pl#:_m = Plaa = 117)[11]
A (4.40)
/1 Ps / ZANDY
= — = . =137)3
p3 ms p3aa | >[ I’

where ms = \/2FEym; + m? and define a new momentum

p;“=<1 0 0 0) (4.41)

at the rest frame, such that they are unit length |p}| = |p| = [p)| = 1. So far, by

taking p/,” as the reference frame, we rewrite the |17} in terms of |a’’), and rewrite
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13’} in terms of the same spinor |a’") by boost

|1/I>a - |a'/]>oc

5 (4.42)
1 . v 1
13" )a = exp {iA(ph, Pl )L s o } la" ) s
with the Lorentz generators o in SL(2,C), where the rapidity in [35] is
log [# (pA pB+/(pa-pp)? — m4>}
A(pa,pp) = : (4.43)

V(pa-pp)? —m!

So far, all objects are related to p,/" at the reference frame, such that o’ (p!,) contracts
with [1%) and dg(p)) contracts with [37).
Then, we can start to find the SU(2) spinors which satisfy the above conditions.

Assume the SU(2) spinors with the form

) = (at o), »
&z<p;)=((a1>* (a2)*>,

*

where * means the complex conjugate, and then we plug SU(2) spinors and the

reference frame p/" into the definition of the spin vector

DO | St

ay, = = |ar(p,)ol,]" o (p;)] . (4.45)

where we have put m, = 1; the Pauli matrices with SU(2) indices are dependent

on the frame p/, namely,

oull, = 5 (1 oula's] + 0 5,00'5)) (4.46)

Then, we force the spin vector a;f, without the components x and y. Moreover,

since we set p// at the rest frame, the spin vector will be along the z direction.
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Therefore, we can obtain the SU(2) spinors

o (1)) =\/5(0 +ﬁ)

ar(p,) = va (0 K — zm) : 37

for some || < 1.

Note that in the following discussion we will use the dimensionless spinors, so we
rename |1'7) to [17), [3'7) to |37), \/me1|2) = |2') to |2), and so do the square brackets,
so that their dimensionless momenta p;, ps satisfy the momentum conservation
mip1 + miks = maps, which is different from the case of equal masses. And the
contractions between the reference frame SU(2) spinors and |17), [37) are valid, since
17}, |37} can be in terms of |a’") from the Lorentz boost.

With the specific form of the SU(2) spinors which are denoted a; and of at the
reference frame, we can construct the dimensionless on-shell elements as a basis of
the spin-weighted spheroidal harmonics.

According to the previous scattering diagram of Schwarzschild case, now we
consider the following process. A massive spin-(I @ s) state 3 with mass mgs emits
a graviton with helicity h = —2 and reduces to a massive spin-s state 1 with a

different mass m;.

Figure 4.2: 3pt scattering process from spin-(I @ s) to spin-s and helicity —2

Unlike the previous Schwarzschild case, leg 1 has no spin, so we only use (237)

and [237] in the scattering amplitude. In this process from Fig.4.2, we now have the
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following dimensionless on-shell elements from this 3pt diagram,

(231),[237], (21}), [214] (4.48)

where the exchanging terms [237] = —[3/2] for square and angle brackets, and they

can be linearly combined to make

(371;) :nﬁ%% (ms[237](21,) — my (237)[21,))
3 ! (4.49)
8711 =—— s (my(287)[21,] — mu[287)(211))

with some coefficients containing my, ms.
To reproduce the spin-weighted spheroidal harmonics with aw, we then build a
basis by the contraction of the SU(2) spinors and the angle, square brackets, so we

have the on-shell coherent elements and expand them to the first order of Fs

Ey(1+ X E
ax[23%](217)a’ = LB+ X) —(1+ X)22 + 0(aE?),
mayms ma <4 50)
Ey(—1+ X E. ’
G235y 21 ol = —2ELEXN) g 9B oy
mims my
and
1+ X 1-X XaFE
ar(3%1)al = ald+ X)ms + Ja] :a—i-—u—i—(?(aEzQ)a
2«/77117713 2 mq (4 51)
-1+ X —(1+ X XaFE '
ax[3%1]a’ = al(=1+ X)ms = (14 X)mi] =—a+ <o + O(aE3),
2 mims 2 mq

where the ax contract with spinor 3; the o contract with spinor 1. Roughly

speaking, we can use dax (3%1;)a! and coherent spin state to obtain e,

o llal? ganc (35100l _y T 52 (4.52)

in classical limit, which is inspired by the nontrivial exponential of Leaver’s ansatz in
(2.42), hence we can identify ‘21—“]321 as aw. So far, we obtain the objects with the pure

a, and can be used them to cancel the e ?l” in the coherent spin states, such that
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a must appear together with Fs, just like the angular differential equation (2.23)in
terms of aw.

Note that the classical spin parameter ||a||* = a is dimensionless because we set
h (angular momentum) to be dimensionless. Actually, the spin parameter has the

following h counting

a
= 4.53
a (4.53)
and the angular frequency of graviton is
E.
— 5 hw. (4.54)
le

Therefore, taking the classical limit A~ — 0, we know that a — oo and Fy — 0,
respectively, but the product aFj5 is fixed.

Next, by above on-shell coherent elements, we establish an on-shell coherent
tensor with the following form from (4.24) and with all possible combination of the

elements

A72,(J1...J21) :€7||a‘|2 Z Cn(&K)anl(gh...Jzz):Kl--.KnIlu.[n (af)" (455)

n=0

with 2[ fully symmetric free little group indices carried by leg 3, where the piece
M2 20K Ka i the sandwich is composed of (237), [237], (21;), and [21/]
and satisfies the helicity counting h = —2. We expect the on-shell coherent tensor

can reproduce the spin-weighted spheroidal harmonics

A2 J2) —2Sim(aw, 0). (4.56)

Moreover, we find undetermined coefficients by truncating the coherent tensor
A=2(1J2) gt a certain order of aw and comparing with the spin-weighted spheroidal
harmonics of perturbation theory (2.41).

For general [, there are 2[ free little group indices in each order of aw, that is, the

spin configurations correspond to 2+ 1 different m. To reproduce the spin-weighted
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spheroidal harmonics for each order, we need the coherent tensor from Fig.4.2 to
satisfy

(1) helicity h = —2,

(2) 2l free SU(2) indices in leg 3, and

(3) the number of o, a; are the same and the o, a; contraction rule for the

leg 1, leg 3 indices, respectively.

Therefore, we truncate the spin-weighted spheroidal harmonics expansion at
some order, and then construct a basis order by order to match the function. For
the zeroth order (aw)?, there is no spin parameter, so there is also no any o and

ar, that means we only have one structure at this level,

(2307)+2]230)1=2 ~, (—)lezm(e) (4.57)

which is the same as the Schwarzschild case (3.25). Note that the classical limit

h — 0 means that we keep the order

) ()

aFo

for n = 0,1,2,... with some fixed [, where the piece S

is the series expansion
parameter aw. If we turn off the spin of the black hole, then the higher order will go
to vanish, such that only the zeroth order term survives and reduces to Schwarzschild

QNMs. Take [ = 3 as an example, the zeroth order (aw)® of on-shell coherent tensor

can be written as

S(O) = 0071’07()(23(‘])5[23])] (459)

3m —

where the spin-weighted spheroidal harmonics expansion Ne= 5% _,S, (aw, ) =
9, 2 Ym0 S z(;:L) (aw, B) where n means the order of aw and N is a proportional constant
of the spin-weighted spherical harmonics and the amplitude in Schwarzschild case

in (3.25), such that co 1,00 = 1 for each m. Notice that, the notation Sz(q:? and (2.28)

are a little bit different.
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Therefore, the correspondence between the on-shell coherent tensor and the spin-

weighted spheroidal harmonics is

2F ! 1 47
72,(1]1‘..]21) 2 2 2 [ 2 | | '
A =g ( 1 ) eV 2+ \/(l + 211 = 2)1({ + m)!(l — m)! 2S5, (aw, )

(4.60)
from (3.25) in the previous section.
Next, before we construct the basis which we need for the next order, we check

that

€08 0_2Yim(0) = #-2Yi1,m(0) + #—2Yim(0) + #-2Y111,m(0) (4.61)

can give us the spin-weighted spherical harmonics which involve [ —1, [, and [+ 1 as
a basis, and that is enough to describe the first order spheroidal harmonics, because
the first order only involves oY) 1, —2Yi, and _5Yj4q , in (2.41).

Therefore, for the first order (aw)!, we can use the ”old structures” from the
zeroth order multiplied by (1 + X)aw and (1 — X)aw in (4.50) in the classical limit,
and there are two "new structures” which follow the above requirements, and the
"new structures” means that the SU(2) spinor o only contracts with the single side

of (371;) with free little group index .J,

<23J>l+1[23J]l—2 (6[[(<23K>) (<3J1[>O{I) (k2 . pS) )
(4.62
(237)*21237)7% (ak[23%]) ((3711)a) (k2 - p3)
with 2/ fully symmetric free SU(2) indices J on leg 3, where ((371;)a’) and ([371/]a’)
will give us the same contribution, so we just need one of them; the piece (ko - p3) =
(237)[372] is used to make up for the power of Fy. Therefore, at this level, there

are four possible structures as a basis for the first order spheroidal harmonics. For
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example, the first order (aw) of on-shell coherent tensor is

S8 —co 11002372237 (ak [235)(21 ) al)

+ €0,1,0,1 <23(J>5 [23J)] (dK <23K> [21[]&1)
(4.63)

+Cl717070<23(‘]>4[23ﬂ (55[(<23K>) ((3‘])11)(1]) (k’g . pg)

+e1200(23Y)° (ax[235]) ((3711)ar) (k2 - ps)

which is composed of the two old structures (black word) and two new structures

25

. . _ 1 _ 3 _
(blue WOI‘d) with the coefﬁc1ents Co,1,0,1 = 167 Co,1,1,0 = 167 C1,1,00 = 144>

and C1,2,00 =

7

— 1 for matching each m.

For the second order (aw)?, again, we use the ”old structures” from the first
order multiplied by ax[23%](21;)al and ax(23%)[21;]a’ and there are three "new

structures”,

(237)![237)'2 (ax (23))” ((3711)a?)” (ks - ps)?
(237Y171 123713 (ac (235)) (ax[23%]) ((3711)a")? (ky - ps)? (4.64)

(237)1+2[237)* (ax[23"7)* ((3"11)0’)? (ks - ps)?

Note that, if [ is not large enough, for example [ = 3 here, there will be only two,
rather than three new structures. In this order, some redundant structures start to
appear, that is to say, some of which are linearly dependent in the classical limit.

For instance, the second new term in (4.64) is related to

(237)71237)7% (axc (28%)) ((3"11)a”) (z - ps) x (ax[23%])(211)a")  (4.65)
and

(237)"72237)'7 (ax[28"]) ((3711)a") (ka - ps) x (G (23%)[217)a)  (4.66)

constructed from the previous order. In the next order, this kind of redundant

structures will be more. The | = 3 example with higher order is placed in the
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Appendix B.

For the third order (aw)?, the "new structures” include the following four

(237y1237172 (& <23K) ((371;) o/) (kg - ps)®
(237)1237)'3 (ax (235))” (G [235]) ((3"11)ar)" (kz - ps)®
(237)11 12371 (G (235)) (ax[235])" ((3"1r)ad)” (ks - ps)?

(2374212371 (G [2351)° ((3711)a!)” (ks - ps)?,

(4.67)

but there also exist the redundant structures. Here, the second and the third struc-
tures are linearly dependent on different previous structures, respectively.
Up to an arbitrary n-th order (aw)", similarly, we can construct some "new

structures”, but we only keep the first and the last new structures,

(237)42711237)72 (@ (235))" ((3711)a”) " (ko - p3)"

(237)42[237)727 (@ [235])" ((3711)a!)" (ks - p3)™,

(4.68)

since those middle new structures can always be linearly combined by the old struc-
tures which multiplied by (ax[235](217)a?)? and (ag (235)[21;]a’)?. Furthermore,
if the power is | — 2 —n < 0, then this kind of new structure will be not allowed, so
there will be only one new structure at this level.

So, the ansatz of the on-shell coherent tensor which describes the spin-weighted

spheroidal harmonics can be expressed as the following form,

A—Q,(Jl...ng) _ 6—a6dK(3K11)o¢I

Z Z{cnl” (237yH27m1237]72 (@ (235))" ((3711)a!)" (ko - ps)"

n=0 i,7=0

+ € (23721237172 (A [2350) " ((3711)a)" (ks -pg)"}

x (ax[235](211) ol ) (ax (23%)[21]a’)
(4.69)

where the point is that a series of coefficients ¢, 1 ; ; and ¢, o, j for the first and the last

new structures are independent of the spin configurations which are only reflected
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on the little group indices (J;...Jy), otherwise, the coefficients corresponding to
one spin configuration will become meaningless in another spin configuration, that
does not make sense. Here, we use our ansatz to match the spheroidal harmonics
expansion g, 2 > om0 SI(TZ)(aw, ) order by order, where n means the order of aw, and
the zeroth order coefficient ¢y 10 = 1 for all different m. Note that, when n = 0,
the two terms with ¢, 1;; and ¢, 2;; are the same, so we just use ¢y 1, ; term.

So far, by the coherent spin states sandwiching the on-shell elements with unequal
masses from the spinor-helicity formalism and our setup of the on-shell spinors,
we construct a set of bases to reproduce the Kerr black hole QNMs with spin a
in the classical limit, since the spin of a Kerr black hole that is a classical spin
can be approximatively described by the coherent spin states, as we explained in
Section 4.1. However, unlike the Schwarzschild case with unique match between
on-shell amplitudes and the angular dependence of QNMs, there are now some
redundant structures for Kerr QNMs on this basis from the on-shell coherent tensors,
when the order of aw in the _5S5),,(aw,#) expansion is large. Finally, we give an

example in Appendix B about how to specifically match the on-shell coherent tensors

A~2192) and the spin-weighted spheroidal harmonics _5S},, (aw, 6) order by order.
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Chapter 5

Discussion and Conclusion

In summary, we study the application of the 3pt unequal masses scattering process
with the on-shell spinor-helicity formalism [29-31] in describing the angular depen-
dence of the black hole quasinormal modes. Not only the Schwarzschild metric
perturbation but also the Teukolsky equation from the Kerr tetrads perturbation,
which involve the black hole QNMs, are Lorentz invariant. Therefore, the angu-
lar dependence must be able to be expressed by the on-shell amplitude with the
spinor-helicity formalism under a suitable setup of the on-shell spinors. Based on
the quantum numbers in the angular function, we conjecture a 3pt tree-level Feyn-
man diagram in Fig.1.1, which corresponds to the scattering process with unequal
masses particles and a graviton emission. We set up the on-shell momenta, where the
angular dependence corresponds to the angular coordinates in the spherically and
non-spherically symmetric black hole metric. By decomposing the 2 by 2 momenta
of SL(2,C) of the on-shell spinors, we can use the spin configurations of the SU(2)
fully symmetric little group indices associated with massive spinors to describe the
spin-weighted spherical harmonics and spin-weighted spheroidal harmonics, which
belong to the 2] + 1-dimensional SO(3) representation.

In Chapter 3, by the spinor-helicity formalism, we compute the on-shell scattering
amplitudes M*2(1720) in (3.23), (3.27) of the transition process from a spin-
black hole to a spinless black hole, accompanied by the emission of a graviton with

helicity h = +2. Then, we observe that the angular part of the amplitudes are
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exactly the same as the angular dependence of the Schwarzschild QNMs, known
as the spin-weighted spherical harmonics with the spin weight +2. By using the
spin configurations of SU(2) fully symmetric little group indices (Jj...Jy), we can
represent all different quantum numbers m from —I[ to [, and this is an ‘one-to-
one correspondence. Additionally, if the massless particle emitted in this transition
process is a photon or scalar, the scattering amplitudes M (/1-721) in (3.28) will
correspond to the spin-weighted spherical harmonics with the spin weight h = +1
or the common spherical harmonics in (3.29), respectively.

In Chapter 4, our research progresses to include two spinning black holes, and
we successfully utilize the spinor-helicity formalism to construct some possible on-
shell elements, as well as combine the coherent spin states to describe the angular
dependence of the Kerr black hole QNMs, that is, the spin-weighted spheroidal
harmonics. Initially, we employ the coherent spin state which can reproduce the
classical spin of the Kerr black holes from [32], and then contract the SU(2) spinors
with the on-shell elements. The on-shell elements are from the unequal masses 3pt
scattering process in Fig.4.2 involving a transition from a spin-(I @ s) black hole to
a spin-s black hole and a helicity h = —2 graviton emission. Then, by the on-shell
elements and the SU(2) spinors, we construct the on-shell coherent elements which
satisfy the helicity counting h = —2, furthermore, we construct an on-shell coherent
tensor A~2(/1%20) in (4.69) with 2 fully symmetric little group indices (J;...Jy).
Consequently, in the classical limit, by the 2/ + 1 spin configurations, we can use the
on-shell coherent tensors and a series of coefficients which are independent of the
spin configurations to match different m in the spin-weighted spheroidal harmonics.
But there exist some redundant structures, so it is not a unique mapping.

Our next work will be to derive the recursive relations for these coefficients and
further extend them to represent the angular differential equation by using the on-
shell formalism. This involves rewriting the differential operators with respect to
cos 6 in terms of differentials with respect to spinors, aiming to obtain a new expres-

sion in the on-shell spinor-helicity formalism. We also expect to obtain some new
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insights from this new expression which differ from the previously obtained physical
information about QNMs from General Relativity. For example, we hope to under-
stand the significance of the quantum number [ in the oblate spheroidal coordinates;
as it does not correspond to the eigenvalue of the total angular momentum operator

as it does in the spherical coordinates.
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Appendix A

Review of Coherent State

We need an operator acting on the SU(2) irreducible representation, hence, we

start from the N-dimensional harmonic oscillator in QM, the Hamiltonian is

N

. 1

H=hw)_ (a}&i + 5) (A1)
=1

where @ and @; are the creation and annihilation operators

ot — [ <x _ Lpi)
! 2h mw

. mw 1
“\om (”f " W’i)

for i = 1,2,...,N and satisfy the commutation relation [a;,a

(A.2)

1

= 0,5, since the
Hamiltonian has SU(N) symmetry, namely, the N-dimensional harmonic oscillator
Hamiltonian is invariant under SU(N) transformation. And we will use the SU(2)
representation in Section 4.1.

Based on the angular momentum operators (4.2), they try to find a coherent
spin state |) expression, such that the expectation value (a|S*|a) can represent the

classical spin. Here, before talking about the coherent spin state, let us review the

coherent state in 2-dimensional harmonic oscillator. We can see the eigenstate of
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the Hamiltonian first,

L L ahmad)mjo.0) (A3)

‘n17n2> -
TL1! TLQ!

which satisfies the eigenvalue equation
I:I|n1, ’I’LQ) = hw (n1 + %) + ]_) |7’Ll, TLQ). (A4>
Then, in general, the uncertainty between position and momentum is given by
h
Az;Ap; > 5 (A.5)

where the definition of the standard deviations is

AO; = \/<n17n2|0i2|n17n2> — (n1,n2|Oi|n1, na)? (A.6)

for i = 1,2 by an arbitrary state |n;, ns), because we can compute the expectation

values of position and momentum

(nl,n2’$i’n1,n2> =0

2 h 1
(n1, na|j|ng, no) = oo n; + 5
(A.7)
(n1,na|pilny, ng) =0
1
<n17n2|p?’nl, n2> = hmw (n’L + 5) ,
and then compute the standard deviation of them
1
A, :\/i (n+})
mw 2
(A.8)
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Therefore, the uncertainty of position and momentum is

AwiAp; =7§ (2n;+1) > (AL9)

| >

forn; =0,1,2,....
Next, in order to minimize the uncertainty, the coherent state of the 2-dimensional

harmonics oscillator is expressed as

o0

o = bloalleaty 3 (R apzgmal il gy (4 10)

\/nllvng!

ni,n2=0

which satisfies the eigenvalue equations of the annihilation operators

o0
. — 1 (a1 P+azl? ()™ (a2)™
ay|a) =e~ 2l Hlaz2l®) E ————/n1|n1 — 1,n9) = a;|a)
vnllvngl

5 L (o P+azl? (n)™ (a2)™
(o)) =e 2l Hlaz2l®) E —————\/n1|n1,ny — 1) = as|a),
\/nllvng!

ni,n2=0

(A.11)

[e.e]
n1,m2=0
in other words, that is a;|a) = a;|a) for i =1, 2.

After having this coherent state, we can verify that it minimizes the uncertainty

of position and momentum. We also start by calculating the expectation values of

position and momentum

(alila) =[50} + o)

h
<a|a:?|a) :%(oz;‘2 + oz? +2ai; + 1)

(A.12)
. [hmw ,

<a|pl‘a> =1 T(az — CYZ')

(alpla) = — " (03" 10 2070, — 1)

by the coherent state and the eigenvalue equation of the annihilation operators.
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Then, we can discover the coherent state leads to the standard deviations

A, = /lala?la) — {afrfa)? = /51
hmw (A.13)

o 20 — 1a)2 = e

Api =y/{alp?la) — (alpla)2 = /22

be some constants, and the product exactly satisfies the equation Ax;Ap; = g from

the uncertainty of position and momentum.

So far, we verify the coherent state minimizes the uncertainty of position and
momentum, which are expressed as the creation and annihilation operators acting
on SU(2) representation. Hence, in Section 4.1, we use the coherent spin state to
minimize the uncertainty of the expectation values of angular momentum operators,
which are also expressed as the creation and annihilation operators acting on SU(2)

spin states.
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Appendix B

Example of Coherent Tensors

Give a non-trivial concrete example. For [ = 3, there are 6 free and fully symmetric
little group indices which represent m from —3 to 3. The SU(2) spin configurations

(J1, Ja, Js, Ju, J5, Jg) which are symmetric reproduce the 7 different m by

(M) = m=3
(M) = m=2
(M) = m=1
(P = m=0 (B-1)
() = m=-1
() = m=-2
() = m=-3

carried by the leg 3. Then, we check the on-shell coherent tensor (4.69) can reproduce

the spin-weighted spheroidal harmonics in (2.41)

A~2U1,J2,03,J4,J5,06) — N _3S3 (aw, 0) (B.2)
where
L (2B:\' 1 A
N =g ? I+ 2)!(1—2)!(1 (I —m)! B.3
i (52) amy oI =y (B9
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by expanding both sides and truncating them at some order.
For the zeroth order (aw)?, on the one hand, the spin-weighted spheroidal har-

monics are shown as

3
59 = — (5) VIZX(1+ X2

1 ([ B\’
SO =-(=2) 1+X)*(3X -2
8= (2) e xrex -2
1(E)\°
Sil =5 (m—Q) VI— X2 (3X%+2X — 1)
1
E 3
S§0 = (_21> X (1-X2) (B.4)
1B\’
S, =3 (m—2) V91— X2(=3X"+2X +1)
1
1 (E\°
Sils =3 (—2) (1— X)*(3X +2)
1
3

n)

for different m, where Sé?,)L is from ¢, 2> _, Sém

(aw, @), and the variable X means
cosf. On the other hand, the zeroth order of the on-shell coherent tensor in (3.25)

or (4.69) is shown as

91_25?597)1 = N_oY3, = gf200,1,0,0(23‘]>5[23°’] (B.5)

in right hand side with the coefficient ¢y 100 = 1 is actually the Schwarzschild case.
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For the first order (aw)!, the spin-weighted spheroidal harmonics expansion Sgg

which contain the spin of the black hole are shown as

s -1 <@>3 VIZX(1 4 X)22X + 1)(aw)

Sis =% ( ) (1+X)? (—27X2 +9X +1) (aw)

S = ~ 108 ( ) V1= X(1+X)%?(54X? — 9X +13) (aw)
S = ( >3 (3X* —2X2 — 1) (aw) (B.6)
S, _1(1)8 ( 1) VI+ X(1 - X)*? (54X + 9X +13) (aw)
S\, =~ 5%1 (%) (1-X)%(27X% 4+ 9X — 1) (aw)

S, =~ E (@Y VI+X(1-X)P?22X —1)(aw)

my

whose aw means “E21 in our language; the 7 projection states with different m can

be obtained by our ansatz (4.69) expansion involving one dg and one o, shown as

S(l)

3Im

=co1,10(237)°[237)(ax[23"](211)a’)

+ co.1,01(237)°[237) (@ (23%) [211)at)
(B.7)

+e1,1,00(237)4[237] (@ (23%)) ((3711)a’) (ks - p3)

+0172’070<23J>5 (dK[QgKD (<3J11>OZI) (]{?2 . p3>

which is composed of the two old structures (black word) and two new structures
(blue word) with the coefficients cp101 = %, Co110 = 1%, C1100 = %, and
€1200 = —ﬁ for matching all spin configurations. If we only consider one of
the spin configurations, then there will be some free coefficients, such as we only
fixed two or three of them

€0,1,0,1 = 167 and €0,1,1,0 = fOI‘ m = 3,

€0,1,1,0 = i — €0,1,0,1, C1,1,0,0 = % — 5¢o,1,0,1, and ¢1 200 = % — €0,1,0,1 for m = 2;

_ 1 _ 95 5 _ 1 5 _ 1.
€0,1,1,0 = 3 — €0,1,0,15 €1,1,0,0 = 385 — 3€0,1,0,1, and €1,2,00 = —5€0,1,0,1 — g3 for m = 1;

64 doi:10.6342/NTU202302187



€0,1,1,0 = }1 — €0,1,0,1, C1,1,0,0 = 1% - 200,1,0,17 and ¢1200 = —%00,1,0,1 - % for m = 0;
€0,1,1,0 = % —€0,1,0,15 €1,1,00 = % - 200,1,0,1, and C1,2,00 = _%LCO,I,O,I T % forms= —1;
€0,1,1,0 = i — €0,1,0,1, C1,1,0,0 = % — 0,101, and c1 20,0 = —%00,1,0,1 - % for/m = —2;
Co,1,1,0 = ;11 — €0,1,0,1, and C1,20,0 = 36 €0,1,0,1 — €1,1,0,0 for m = -3,

and their intersection is as we mentioned above.

Next, for the second order (aw)?, the expansion Séi?b are shown as

1 (B’
53 =— 288 <i> V1= X(1+X)"? (48X? + 48X — 7) (aw)?
o 1 (B’ > 3 >
%52 =Toad U, (14 X)? (324X°% — 105X + 74) (aw)
1 (E)\°
S = (=2) VI=X(1+ X)¥? (1296 X? + 219X + 199) (aw)?
LTT76 \my
1 (B)\°
S50 =15 m—j) X (=3X1+2X% 4+ 1) (aw)? (B.8)
(2) 1 By’ 3/2 3 2
Sy’ = | — | V14 X(1—X)"?(1296X° + 219X — 199) (aw)
7776 \my
@) 1 (BN’ 2 3 2
52 = Toad \m, (1—X)*(324X° — 105X — 74) (aw)
(2) 1 (B’ 5/2 2 2
Sslg=— 258 Um: V1+X(1—X)"? (48X7 — 48X — 7) (aw)

correspond to

Sim =01,20(237)°[287) (@ [23")(21,)a )
+co,1,1,1(237)°(237] (x (23" ] (21 1) f) (ax (237) [211]a”)
+ co,1,0,2(237)°[237] (G (23%) [21 ]’ )?

+e111,0(237)1[237] (@ (23%)) ((3711)a’) (ko - ps)(ax[23%](211)a)

(B.9)
+e1,1,0,1(237)4[237] (@ (235)) (( 1)a’) (ks - p3)(ax (23%)[217)a’)
+e1010(237)° (ax[235]) ((3711)a’) (ks - ps)(ax[23%](211)al)
+c1201(237)° (ax([23%]) ((3711)a") (ks - p3)(ax (23")[217)a’)

+ea,1,00(237)2(237] (Gx (235))° (<3J1I>o/)2 (ks - ps)?.
which is composed of the seven old structures (black and blue word) and one new
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: _ 7 __ 55 _ 89 895
structure (red WOI’d) with C0,1,0,2 = ~ 1608° Co,1,1,1 = 23047 C0,1,2,0 = 1608 C1,1,0,1 = 11472
371 371 85 175 g
01727071 = 114720 01727170 = 114727 0271’070 = 10368 and 0171,170 = 2608 for matchlng all

spin configurations. Similarly, there are some undetermined coefficients in each spin
configuration, but there exists a unique solution by solving all m together.

As usual, we compare the on-shell coherent tensors with the expansion of the
spin-weighted spheroidal harmonics, so that we can determine the coefficients ¢, 1 ;
and ¢y, 9, ; for the third, fourth, and fifth order uniquely. However, up to the sixth

order (aw)®, we discover the corresponding coefficients

33074183081 13718649689 180237118483

€0,1,0,6 = 500206688796672000° 0:1,1,5 = T 83367781466112000° C0:1:2.4 = T 166735562932224000°

c _ __ 236937040931 c _ __ 486925201549 c _ __ 143690607719

0,1,3,3 1250516721991680007 ~0,1,4,2 166735562932224000° ~0,1,5,1 83367781466112000°

c _ 1266677777 c __ 7834430112683 c _ 15445406428537

0,1,6,0 4133939576832000° ~1,1,0,5 ™ T 24310045075518259200° “1,1,2,3 T 2431004507551825920

c _ __127184727812761 c _ 5726939656829 c _ __ 16928742866813

1,1,3,2 12155022537759129600 7 ~1,1,4,1 1870003467347558400° “1,1,5,0 — 24310045075518259200

c — ¢ _ 15868912353539 c ___ 12168990668251 c _ 627153474019

1,2,0,5 — 1,1,1,47 15193778172198912000° “1,2,1,4 — ™ 40516741792530432000° ~1,2,2,3 — ~ 810334835850608640

c _ ___ 627153474019 c _ ___12168990668251 c _ 2584301011559

1,2,3,2 810334835850608640° “1,2,4,1 40516741792530432000° “1,2,5,0 40516741792530432000°

c _ __ 123508268749 c — ¢ 4 49301910094957 _ . _ __ 1913966673461

2,1,0,4 = 552501024443596800° “2,1,1,3 1,1,1,47" 8103348358506086400 > “2,1,2,2 202583708962652160°

c ____ 10131370876243 c _ 4706245322851 c _ 753480953701

2,1,3,1 = 7 3038755634439782400° “2,1,4,0 T T 6077511268879564800° ~3,1,0,3 T 1012918544813260800

c —©c 1410117472721 c _ 761111503219 c _ 808667194487

3,1,1,2 — C1,1,1,4 449000819554877440° ©3:1,2,1 — 7 101201854481326080° ©3,1,3,0 — T 337639514937753600

c _ 1274532923 c — ¢ _ 54333101717617 c _ 1543858083353

4,1,0,2 = 7 281366262448128007 “4,1,1,1 — “1,1,1,47 54310045075518259200° ~41,2,0 T T 1012918544813260800°

_ 11983799185 _ 1513581786157 _

C5,101 = ~ Io5i67a1792530433 51,10 = C1114 T 3370004007r7a3s7200 AN C6.1,00 = C1114 +
23839679158727 : :

ST3100150 55250505 Start to emerge some redundant structures in this level, such as

the terms with C1,1,1,4, C1,2,0,5, €2,1,1,3; €3,1,1,25 C4,1,1,1, C5,1,1,0, and C6,1,0,0 Are related to
each other, that means the structures in the sixth order of our ansatz (4.69) are
linear dependence in the classical limit.

For higher order, there are similar redundant structures, so the expression is not
a one-to-one correspondence. In future work, we should find out what the patterns

for these redundant coefficients are.
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