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中文摘要  

 

在這篇論文中，我們針對兩張影像來探討，一張模糊以及一張清楚且經過幾

何轉換的影像。我們試著拼接兩張影像並試著去模糊化。長久以來，由於去模糊

是個在不適定的情況下求逆轉換的問題，所以對影像去模糊一直是個極具挑戰性

的任務。近年來不論是利用多張或是單張影像的去模糊法都被廣泛的提出討論，

其中這些方法又可被分為兩類：盲去模糊法及非盲去模糊法。如果模糊核在去模

糊的過程中為未知，則被稱為盲去模糊；反之，若模糊核在去模糊過程中被假設

為已知前提，則稱之為非盲去模糊。為了算出模糊核，我們打算利用兩張影像中

清楚的那張來幫助計算。理論上，直接將這兩張影像接在一起便可得到重疊的兩

塊區域，一塊為模糊而一塊為清楚。藉由這重疊且被對在一起的兩塊區域，我們

能夠算出影像的模糊核。但是實際上由於模糊的影像有些資訊已經被破壞，直接

將兩張影像接在一起無法得到準確的重疊，因此我們決定先將模糊影像在拼接前

先經過一次去模糊，將去模糊後的影像與清楚影像相接，並記其錄轉換參數，再

將模糊影像和清楚影像以方才紀錄的參數相接，便可得到準確的重疊區塊。也因

此模糊核能夠被準確的計算出來。最後便可以利用被計算出來的模糊核以非盲去

模糊法來回復。 

 

關鍵字：影像去模糊、影像拼接、全景畫。 
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ABSTRACT 

 

In this thesis, we try to stitch one clear image with a blurred image relative to a 

geometric transformation, and then recover the blurred image in the meantime. Image 

deblurring has long been a challenging work since it is an ill-posed inverse problem. 

Deblurring methods using multiple or single image are both discussed in recent years. 

The deblurring is called blind if the kernel is unknown or non-blind if the kernel is 

known a priori. In order to estimate the blur kernel, we try to take the information from 

the non-blurred patch for help. By stitching a blurred image with a non-blurred image 

using Speeded-Up Robust Features (SURF), we can obtain the aligned overlapped 

patches. Ideally, we can estimate the blur kernel based on blurred/non-blurred patches. 

However, directly stitching blurred/non-blurred images leads to poor aligned patches. 

As a result, the kernel is misestimated and the image is incorrectly recovered. To solve 

this issue, a pre-deblurring as a pre-processing step of the blurred image is considered. 

We stitch the pre-deblurred image with the non-blurred image and record the 

transformation parameters for temporary. After that we stitch the original blurred image 

with the non-blurred image using the recorded parameters to get better-aligned patches. 

Now the two patches are much better-aligned than before so that the kernel can be 

correctly estimated. Finally, promising result using progressive inter-scale and 

intra-scale deconvolution is presented. 

 

 Index Terms — Image deblurring, image stitching, panorama.  
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Chapter 1 Introduction 

 

1.1  Motivation 

Conventional handheld digital cameras have made an exploration recent years. 

People are used to take pictures around and share with others on the Internet. The most 

common issue is image blur due to camera shake. Shake could occur when taking 

pictures on a moving vehicle or under long exposure time. Unfortunately, many 

photographer capture ephemeral moments that cannot be recapture again. Panoramas 

are popular in recent years thanks to the development of reliable distinctive image 

features. In such case image blur is highly prone to occur due to the camera shake since 

one needs to take a series of photographs with moving camera. Image deblurring has 

long been a challenging work as it is an ill-posed inverse problem and deblurring using 

one single image is more challenging. In panorama, we observed that there are 

overlapped regions in two stitched images. If one image is blurred by camera shake, we 

can take the information from non-blurred overlapped region to help deblur the blurry 

image. As a result, directly stitching of blurred/non-blurred images to get overlapped 

information is our first try. Nonetheless, directly stitching blurred/non-blurred images is 

not a good idea. 
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1.2  Problem Statement 

A naïve solution is to simply stitch two images with one blurred and one 

non-blurred, and then extract the overlapped information to help deblur the blurred one. 

However, there is a fundamental problem that causes the following deblurring work fail. 

Direct stitching of blurred/non-blurred images actually produces poor stitching result. 

Once there is a large error in stitching step, the overlapped regions are misaligned. 

Incorrect aligned regions induce terrible results. Hence, a pre-deblurring step is required 

for a better stitching to get better aligned regions. The pre-processing step adopts a 

single image kernel estimation method to calculate the blur kernel for the use of 

deblurring. After the image is deblurred, we again stitch pre-deblurred/non-blurred 

images together. Remember, the goal of pre-deblurring is to get better-aligned patches 

of blurred/non-blurred pair, not pre-deblurred/non-blurred pair. Therefore, we extract 

the transformation parameters in the pre-deblurred/non-blurred images stitching step 

first. Then we stitch blurred/non-blurred images by the recorded parameters so that the 

following deblurring steps work well.  

Finally, blurred image is recovered by use of overlapped patches in image stitching 

and stitching is again performed using the final output image.  
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1.3  Thesis Organization 

The organization of the thesis is as follows. Chapter 2 introduces how interest 

points are detected and what the blurring model is. Then we review the related work 

about image deblurring; both blind and non-blind image deconvolution. Chapter 3 

briefly explains the methods we adopted for image stitching and image deblurring. 

Chapter 4 first gives an overview of our system then describes our work on two cases 

for comparison. Chapter 5 presents some experiments results which tested on 4 types of 

geometric transformations with two different kernels. Finally, we conclude our thesis 

and have a discussion in chapter 6. 
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Chapter 2 Related Work 

 

 In this chapter, we discuss the related work of two categories, interest point 

detection and image deblurring. For the former, we introduce what interest points are 

and different approaches to detect them. For the latter, we discuss the degrading model 

of image blur and the most common artifacts in digital photography caused by camera 

shake. Then we give an overview about how to recover an non-blurred image from one 

or more blurred images. 

 

2.1  Interest Points Detection 

Interest point detection can be traced back to corner detection in computer vision 

which were obtained with robustness and stableness for the purpose of object tracking 

or recognition. Traditional corner detection such as Moravec corner detection and Harris 

corner detection [5] were proposed. Recently a more popular and robust interest point 

detection is proposed such as SIFT [7].  

 

2.1.1 Moravec Corner Detection 

The main idea of Moravec corner detector is based on the sum of squared 

difference (SSD) in a local shifting window in four directions (horizontal, vertical and 
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on the two diagonals). If the SSD varies largely in all directions then this points can be 

seen as a good feature. Hence, the minimum of SSDs in the window is selected among 

four directions as its strength. The interest point is detected if it is a local maximum. 

This approach contains several drawbacks: 

1. The response map is noisy because of box filter (a binary window function). 

Since response map is not a smoothed image, there may be many local 

maxima. 

2. Only four directions are considered. 

3. Strong response to edge because only minimum of SSDs among directions is 

considered. 

Thus, Harris made some improvements of Moravec corner detection. 

 

2.1.2 Harris Corner Detection 

Focused on the three drawbacks, some improvements are reached: 

1. Use Gaussian mask rather than box filter to eliminate noise. 

2. Consider all small shifts by Taylor’s expansion rather than only 4 directions. 

3. A new measurement using eigenvalue analysis with an ellipse instead of 

minimum of SSDs. 

The new measurement of corner response requires the computation of eigenvalue 
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of a matrix M described in [5]. Therefore, a more efficient way to measure the 

corner response is to calculate the difference of ݀݁ݐሺܯሻ and ሺ݁ܿܽݎݐሺܯሻሻଶ. 

 

2.1.3 Scale Invariant Feature Transform (SIFT) 

Although the Harris corner is invariant to rotation and intensity change, it is not 

invariant to scale change which limits its applications. In recent years scale invariant 

feature transform (SIFT) was proposed by Lowe et al. [7] which further improves the 

Harris corner detector. In order to be invariant to scale change, SIFT is implemented in 

scale space. SIFT transforms an image to a set of feature points. There are four steps in 

SIFT: 

1. Extrema detection in scale space using Difference of Gaussian (DoG), where 

DoG is actually an approximation of Laplacian of Gaussian (LoG). 

2. Accurate keypoints localization by removing low contrast points and edge 

responses. 

3. For each interest point, SIFT uses the information around it to generate a 

reproducible orientation which is assigned against rotation deformation. 

4. Local image description based on the location, scale and orientation extracted 

above. 

Once the description is constructed, a 128-dimension vector is formed for every interest 
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point. This high dimensional vector is highly distinctive for applications such as image 

stitching, object recognition, etc. On the contrary, the speed of matching features is 

dropped due to high dimensional vectors.   

 

2.2  Image Deblurring 

Motion blur from camera shake is a common artifact in digital photography. In 

many situations it is hard to hold the camera still when taking pictures around. In 

panorama, we need to take series of pictures for a big view which is prone to camera 

shake. Recovering a non-blurred image from a single image or multiple images has been 

discussed recent years. Most research focus on shift-invariant kernel which reduces 

image deblurring to image deconvolution. The observed blurred image B is the 

convolution of an unknown latent image I with an unknown kernel K: 

ܤ ൌ ܫ ٔ ܭ ൅ ݊, 
where ٔ is the convolution operator and n is the additive noise. Usually n is ignored. 

The deblurring methods can be categorized into two types: blind deconvolution and 

non-blind deconvolution. 

 

2.2.1 Blind Image Deconvolution 

It is obviously a more challenging work when both the blur kernel and latent 
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images are unknown. Basically blind deconvolution works only for low frequency blur 

kernels, e.g., smooth shape of motion. Recent work like Fergus et al. [4] used natural 

image statistics as a prior together with a sophisticated variational Bayes inference 

algorithm to estimate the kernel. This approach is not robust enough, however, it 

requires only one single image for kernel estimation. We adopted it as a pre-processing 

step in our system. Some techniques make the problem more tractable with additional 

inputs. Methods taking multiple images as inputs to perform blur kernel estimation have 

been proposed in [10]. The correlation among blurred images is utilized based on the 

assumption that all blurred images came from the same latent image. Even though good 

results are achieved using multiple images, they are limited to simple directional motion. 

Another method using a pair of blurred/noisy images proposed by Yuan et al. [14] takes 

the information from noisy image to help recover the blurred image. An iterative 

residual deconvolution is developed to significantly reduce deconvolution artifacts. 

 

2.2.2 Non-blind Image Deconvolution 

The blur kernel is assumed known a priori so the main task becomes recovering the 

latent image. A common method is Richardson-Lucy (RL) deconvolution [8][11], which 

recovers the latent image iteratively based on the modeling of image noise using 

Poisson distribution. Deconvolution artifacts, such as ringing effects or color speckles, 
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are inevitable because of high frequency loss in the blurred image. Regularization on 

deblurring tries to suppress the artifacts, however, edges are meanwhile suppressed. A 

total variation regularized Richardson-Lucy [2] is proposed to suppress ringing while 

preserving edges, but only gray-level images with simple geometric figures are shown 

in their results. Yuan et al. [15] proposed a progressive deconvolution in scale space 

successively suppress the ringing effects while preserving large-scale edges. A further 

refinement to add detail layer produce promising result.  



 

10 

Chapter 3 Background Knowledge 

 

We need to stitch images to get a panorama and also deblur the blurry image to 

recover it. Therefore there are two essential steps in our system, image stitching and 

image deblurring. For more self contained, we introduce the methods we adopted as 

background knowledge of our work. In image stitching, we adopted Speeded-Up Robust 

Feature (SURF) [1] for feature based image stitching. The estimation of transformation 

parameters utilizes a weighted least square with Expectation Maximization (EM) 

algorithm. Two approaches are adopted in image deblurring step, one for kernel 

estimation and one for image deconvolution. A least square estimation using Tikhonov 

regularization proposed by Yuan et al. [14] provides a good estimated kernel for image 

deblurring. Progressive inter-scale and intra-scale image deconvolution proposed by 

Yuan et al. [15] works well in suppressing ringing artifacts while preserving large scale 

edges. It is applied as non-blind image deconvolution based on the estimated blur kernel. 

Two components for image stitching are described in 4.1 and 4.2, other two components 

of image deblurring are introduced in 4.3 and 4.4. 

 

3.1  Speeded-Up Robust Feature (SURF) 

To stitch images, feature points detection in images is required. We estimate the 
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transformation between images based on the detected feature points. After that one 

image is transformed using the estimated parameters to stitch with the other. Each 

feature point is actually a description described by the descriptor. Before that, we need 

to find the candidate of the feature point first. Conceptually, there are two steps, 

detection and description, for extracting feature points. Matching is applied on two sets 

of feature points for further application. In total, these are detection, description, and 

matching steps. The figures we presented in this section are directly taken from [1] for 

the ease of referencing if the readers need more details. 

 

3.1.1 Interest Point Detection 

The approach for detecting interest points is a very basic Hessian-matrix 

approximation which adopts integral images for reducing computation time drastically. 

We first briefly introduce the concept of integral image and Hessian-matrix based 

interest points then describe how scale space is presented.  

 

A. Integral Images 

Integral images allow fast computation of box type convolution filters. Every pixel 

of an integral image ఀܫ  constructed from image ܫ is the sum of all pixel values within 

the rectangle formed by the origin and ܠ at a location ܠ ൌ ሺݔ,  .ሻݕ
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ܫఀ ሺܠሻ ൌ ෍ ෍ ,ሺ݅ܫ ݆ሻ௝ஸ௬
௝ୀ଴

௜ஸ௫
௜ୀ଴  

Once the integral image is computed, it takes only three additions to compute the sum 

of a rectangle area as shown in Fig. 3.1. 

 

Fig. 3.1 It takes only three additions to calculate the sum of values within a 

rectangular region using integral images. 

 

B. Hessian Matrix Based Interest Points 

The interest point detector is based on the Hessian matrix. Given a point 

ܠ ൌ ሺݔ, ,ܠ࣢ሺ ሻ, the Hessian matrixݕ  :is defined as ߪ in scale ܠ ሻ at locationߪ

࣢ሺܠ, ሻߪ ൌ ቈࣦ௫௫ሺܠ, ሻߪ ࣦ௫௬ሺܠ, ,ܠሻࣦ௬௫ሺߪ ሻߪ ࣦ௬௬ሺܠ,  ,ሻ቉ߪ
where ࣦ௫௫ሺܠ, ሻ is the convolution of the Gaussian second order derivative డమడ௫మߪ ݃ሺߪሻ 

and image ܫ at location ܠ, similarly for ࣦ௫௬ሺܠ, ,ܠሻ and ࣦ௬௬ሺߪ  ሻ. Here a box filter isߪ

constructed to approximate the Gaussian second order derivative, as shown in Fig. 3.2. 

Thus, computation time is largely reduced by using integral images and the 



 

13 

approximated Gaussian second order derivative.  

 

Fig. 3.2 Left to right: the Gaussian second order partial derivative in yy- (ࣦ௬௬) and 

xy-direction (ࣦ௫௬); the approximated version of ࣦ௬௬ and ࣦ௫௬. The gray area are zero. 

 

C. Scale Space Representation 

The interest points need to be detected at different scales against the variance of 

scale change. All interest points will be localized in the image and over scales. Usually, 

scale spaces are implemented as an image pyramid. Since SURF utilizes box filters and 

integral images, filters of any size on the original image are applied instead of 

iteratively scaling down the input image.  

 

Fig. 3.3 Left: Iteratively reducing the image size in traditional image pyramid. 

Right: Increasing the filter size while keep the original image unchanged. 
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In fact, the scale space consists of several octaves. An octave is a series of Hessian 

response maps obtained by convolving the same input image with filters of increasing 

size. In total, the scaling factor increases to a number of 2 when an octave is complete. 

Finally, an interest point is detected if it is a local maximum. 

 

3.1.2 Interest Point Description 

The interest point descriptor describes the distribution of gradients around the 

interest point neighborhood. The description is built on the distribution of first order 

Haar wavelet responses in x and y direction. First, a reproducible orientation is assigned 

to an interest point according to the information from a circular region around it. Then a 

square region is constructed to as a SURF descriptor. 

 

Fig. 3.4 Haar wavelet masks used to compute the response in x and y directions. 

Dark area represents -1 while white area represents +1. 

 

A. Orientation Assignment 

In order to be invariant to image rotation, a reproducible orientation needs to be 

calculated for the interest points. Haar wavelet responses in x and y directions are 
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calculated in a circular neighborhood around the interest point. As shown in Fig. 3.4, 

integral images are again utilized for efficient computing. After the wavelet responses 

are obtained and weighted by a Gaussian, the responses of directions x and y are 

combined as 2D vectors (i.e., points). A dominant orientation is selected as follows. As 

shown in Fig. 3.5, we calculate the sum of all responses within a sliding orientation 

window. Horizontal and vertical responses are summed in the window to form an 

orientation vector. The orientation of the interest point is selected by the longest vector 

over all windows. 

 

Fig. 3.5 A sliding orientation window detects the dominant orientation. 

 

Fig. 3.6 Left: an oriented window formed of 4 x 4 sub-regions. Right: for each 

sub-region we compute ∑ ݀௫ ,  ∑ ݀௬ ,  ∑ |݀௫| , ∑ |݀௬| of it. 

 

B. Descriptor bases on the sum of Haar Wavelet Responses 
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The first step of making a description is to construct a square region centered at the 

interest point and oriented along the assigned orientation. The square region is divided 

into smaller 4 x 4 sub-regions in which we compute the Haar wavelet responses. The 

Haar wavelet response in horizontal and vertical direction are denoted as ݀௫ and ݀௬. 

which are weighted by a Gaussian centered at the interest point for the robustness of 

geometric deformations and localizations errors. We sum up the wavelet responses ݀௫ 

and ݀௬ for each sub-regions to get the first part of the feature vector. Also, we sum up 

the absolute values of the responses |݀௫| and |݀௬| to get the rest part of a feature 

vector. Hence, a four-dimension vector ࢜ , ࢜ ൌ ሺ ∑ ݀௫ ,  ∑ ݀௬ ,  ∑ |݀௫| , ∑ |݀௬| ሻ  , is 

generated for every sub-region. Concatenating ࢜ for all 4 x 4 sub-regions produces a 

64-dimension descriptor vector, i.e., feature vector. 

 

3.1.3 Matching 

For any two images, we need to match the extracted feature vectors for the purpose 

of estimating transformation parameters. The approach is actually quite simple. A 

nearest neighbor method in feature space matching is adopted. However, not every 

feature point is correctly detected in the other image or even not detected at all. In such 

case assigning every feature points a nearest neighbor would fail the following work. So 

instead of assigning a nearest neighbor to each detected feature point, we assign a 
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nearest neighbor to a feature point only if the Euclidian distance is 0.7 times closer than 

the second nearest neighbor. 

3.2  Weighted Least Square Estimation of Transformation 

Parameters Using Expectation Maximization Algorithm 

In the previous section we extract the features of images and we also found the 

matches between two sets of features. In this section, we estimate the transformation 

between two images using the matches we found by least square estimation. In our 

experiments, results of transformation parameters estimation using simple least square 

method are unacceptable. Thus a modified version called weighted least square 

estimation is adopted for better results. Besides, expectation maximization algorithm 

(EM) is used in our implementation.  

 

3.2.1 Least Square Estimation of Transformation Parameters 

For the stitching of any two different images sharing partial overlapped scene from 

different angles of view we take perspective transformation as our default 

transformation model. Perspective transformation contains 8 degrees of freedom which 

is sufficiently enough to encompass traditional transformations such as translation, 

rotation and scaling. In 2D planar system, the coordinates of a transformed pixel located 

at ܠ ൌ ሺݔ,  :ሻ் can be expressed asݕ
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ܺ ൌ ݔܽ ൅ ݕܾ ൅ ݔ݃ܿ ൅ ݕ݄ ൅ 1 

ܻ ൌ ݔ݀ ൅ ݕ݁ ൅ ݔ݂݃ ൅ ݕ݄ ൅ 1, 
where ܺ and ܻ are the transformed ݔ and ݕ, ܽ to ݄ is the 8 degrees of perspective 

transform which are the parameters we want to estimate. By rearranging the above 

equations, we obtain a clearer version for the convenience of least square estimation. 

ܺ ൌ ܽݔ ൅ ܾݕ ൅ ܿ ൅ 0݀ ൅ 0݁ ൅ 0݂ െ ݃ݔܺ െ  ݄ݕܺ

ܻ ൌ 0ܽ ൅ 0ܾ ൅ 0ܿ ൅ ݀ݔ ൅ ݁ݕ ൅ ݂ െ ݃ݔܻ െ  ݄ݕܻ

Denote ܠᇱ ൌ ሺܺ, ܻሻT as a vector then we arrive a system of product of a matrix ܣ and 

a vector ݌: 

൤0    0    0    1    ݕ    ݔ െܺݔ   െ 1    ݕ    ݔ    0    0    0ݕܺ െܻݔ   െ ൨ݕܻ
ێێۏ
ێێێ
ܾܿܽۍێ
݂݀݁
ۑۑے݄݃

ۑۑۑ
ېۑ ൌ ቂܻܺቃ 

As we know the approximated solution of ݌ by least square estimation is derived by 

݌ܣ்ܣ ൌ  .ᇱܠ்ܣ
However, simple least square estimation produces poor results, so a weighted least 

square estimation is adopted for better results and it is introduced in the following 

section. 
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3.2.2 Weighted Least Square Estimation using EM Algorithm 

As discussed above, simply least square estimation of parameters gives poor 

results, therefore, the weighted least square estimation of parameters using EM 

algorithm performs as follows. We denote every matched points as ሺܠ௜,  ො௜ሻ, where ݅ isܠ

the index in the matched points. Also, we extend matrix multiplication of the above 

transformation to n points. 

ێێۏ
ێێێ
ۍ ଵ    1    0    0    0ݕ    ଵݔ െ ଵܺݔଵ    െ ଵܺݕଵ0    0    0    ݔଵ    ݕଵ    1 െ ଵܻݔଵ    െ ଵܻݕଵݔଶ    ݕଶ    1    0    0    0 െܺଶݔଶ    െ ܺଶݕଶ0    0    0    ݔଶ    ݕଶ    1 െ ଵܻݔଵ    െ ଶܻݕଶݔڭ௡    ݕ௡    1    0    0    0 െܺ௡ݔ௡    െ ܺ௡ݕ௡0    0    0    ݔ௡    ݕ௡    1 െ ଵܻݔଵ    െ ௡ܻݕ௡ ۑۑے

ۑۑۑ
ې

ێێۏ
ێێێ
ܾܿܽۍێ
݂݀݁
ۑۑے݄݃

ۑۑۑ
ېۑ ൌ

ێێۏ
ێێێ
ۍ ଵܻܺଵܺଶܻଶܺڭ௡ܻ௡ ۑۑے

ۑۑۑ
ې
 

1. Initial step: least square estimation of parameters ݌.  

2. E-step: transform ܠ௜  to ܠ௜ᇱ using the estimated parameters, calculate the 

weights ݓ௜ for each point by a Gaussian centered at ܠො௜ using the distance 

obtained from the error |ܠො௜ െ  .|௜ᇱܠ
3. M-step: estimate parameters with weighted least square. 

In E-step, we first calculate the weights for weighted least square estimation. The 

weighting matrix should be a form like: 

ێێۏ
ଵݓۍێ 00 ଵݓ ڮ 0 00 ڭ0 ڰ 0ڭ 00 0 ڮ ௡ݓ 00 ۑۑے௡ݓ

ېۑ
ଶ௡ ୶ ଶ௡

 

Every point ܠ௜ is transformed using the estimated parameters so that we can get the 
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weights based on a Gaussian distribution. At M-step, weighted least square estimation is 

performed to get better and more accurate parameters based on 

݌ܣ்ܹܣ ൌ  ,ᇱܠ்ܹܣ
where ܹ is a weighting diagonal matrix of ݓ௜, ݅ ൌ 1 …  ݊. We iteratively perform 

E-step and M-step until convergence. Finally, one image is transformed using the final 

estimated parameters to stitch with the other.  

 

3.3  Kernel Estimation 

According Yuan et al. [14], a good kernel can be obtained using a simple 

constrained least-squares optimization if we have two images of the same scene, a 

blurred one ( ଵܲ) and a clear one ( ଶܲ). In our system, two overlapped image patches can 

be attained in the previous chapter when stitching. 

 

3.3.1  Kernel Estimation using Tikhonov Regularization 

The goal of kernel estimation is to find the blur kernel ܭ from ܤ ൌ ܫ ٔ  with ܭ

the initialization ܫ ൌ ଶܲ. The above blurring equation can be rewritten in vector-matrix 

form as ܾ ൌ  and blur ܤ where b and k are the vector forms of blurred image ,݇ܣ

kernel ܭ , and ܣ  is the matrix form of ܫ . To obtained optimal ܭ , Tikhonov 

regularization is used with a positive scalar ߣ by solving ݉݅݊௞||݇ܣ െ ܾ||ଶ ൅  .ଶ||݇||ଶߣ
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Here ߣ is the regularization strength. An explicit solution is given by ሺܣ்ܣ ൅ ሻ݇ܫଶߣ ൌ
 However, in fact, a blur kernel needs to be non-negative and preserve energy, so .்ܾܣ

some additional constraints is added and we can get optimal ܭ by the following 

optimization system: ݉݅݊௞||݇ܣ െ ܾ||ଶ ൅ ,ଶ||݇||ଶߣ subject to k୧ ൒ 0, and ෍ k୧୧ ൌ 1. 
After the kernel is estimated, image deconvolution is applied. 

 

3.4  Image Deconvolution 

The deblurring method we adopted here can be traced back to a classical non-blind 

image deblurring algorithm called Richardson-Lucy deconvolution, which is proposed 

by Lucy [8] and Richardson [11]. The main and the most common artifact is the 

appearance of ringings arisen with iterative method. We first review Richardson-Lucy 

(RL) deconvolution algorithm. Then we describe how progressive inter-scale and 

intra-scale image deconvolution works [15]. 

 

3.4.1 Richardson-Lucy (RL) Algorithm 

Richardson-Lucy (RL) is an algorithm for deblurring if the kernel is known a priori, 

i.e., it is a non-blind image deconvolution method. The image noise is modeled as a 

Poisson noise distribution and the likelihood probability of the image I is expressed as: 
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ሻܫ|ܤሺ݌ ൌ ෑ ሺܫ ٔ ሻ!௫ݔሺܤሻ஻ሺ௫ሻ݁ିሺሺூٔ௄ሻሺ௫ሻሻݔሻሺܭ , 
where ݔ indicates the position of each pixel, and ݌ሺܫ|ܤሻ ൌ Poissonሺሺܫ ٔ  ሻሻ is aݔሻሺܭ

Poisson process for each pixel ݔ. For simplicity, ݔ is omitted in the following article. 

In order to obtain the optimal I that satisfied maximum likelihood ݌ሺܫ|ܤሻ, we take log 

and negative operations on ݌ሺܫ|ܤሻ to get the following energy function: 

ሻܫሺܧ ൌ ෍ሼሺܫ ٔ ሻܭ െ ܤ · ܫሾሺ݃݋݈ ٔ  .ሻሿሽܭ
So our goal becomes minimizing the above energy function ܧሺܫሻ: 

כܫ ൌ ݃ݎܽ ݉݅݊ூ  ሻܫሺܧ

A common artifact in RL algorithm is ringing artifacts, dark and light ripples around 

strong edges in the reconstructed image. More iterations produce not only more image 

details but more ringings. 

3.4.2 Bilateral Richardson-Lucy (BRL) Algorithm 

The ringing artifacts are usually proportional to the strength of edge jump at 

discontinuous points and the amplitude of ringing will decrease away from the edge. 

Human eyes are sensitive to abrupt difference, for example, edges. As a result, the 

ringing effects are most conspicuous in smooth areas. Besides, human perception can 

tolerate small scale ringing in high frequency regions. Based on this observation, an 

energy function ܧ஻ሺܫሻ is added as a regularization term to reduce ringing while 
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preserving large-scale edges: 

כܫ ൌ ݃ݎܽ ݉݅݊ூ ሾܧሺܫሻ ൅  ,ሻሿܫ஻ሺܧߣ
where ߣ is the regularization factor. The added term ܧ஻ሺܫሻ is defined as: ܧ஻ሺܫሻ ൌ ෍ ෍ ݂ሺ|ݔ െ ሻݔሺܫ|ሺߩሻ|ݕ െ Ω௫אሻ|ሻ,௬ݕሺܫ  

where Ω is a spatial support controls the size of filters, function ݂ሺ·ሻ is the spatial 

filter and function ߩሺ·ሻ is a penalty function. Both filters are defined as follows: 

݂ሺ|ݔ െ ሻ|ݕ ൌ ݁ି|௫ି௬|మଶఙೞ . 
ሻݔሺܫ|ሺߩ െ ሻ|ሻݕሺܫ ൌ 1 െ ݁ሺି|ூሺ௫ሻିூሺ௬ሻ|మଶఙೝ ሻ. 

Function ߩሺ·ሻ gives a large but limited penalty on the image difference ܫሺݔሻ െ  ሻݕሺܫ

and function ݂ሺ·ሻ puts weights on the penalty using a Gaussian distribution centered 

at x. In fact, the penalty occurs when the current processing pixel contains large 

difference, i.e., edge. 

3.4.3 Progressive Inter-scale Scheme 

The main idea of progressive deconvolution is to take the output of previous 

iteration as a guide to help the next deconvolution. In inter-scale scheme, the recovered 

image in one scale can be used as a guide image for next scale because the recovered 

image in coarser scale provides more useful edge information. Continue this process 

from coarse to fine, better result at the finest scale is obtained. 

First, a pyramid ሼܤ௟ሽ௟ୀଵ௅  of a full resolution blurred image ܤ and a pyramid 
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ሼܭ௟ሽ௟ୀଵ௅  of a blur kernel ܭ are built using bicubic downsampling. For iteration ݈ ൌ  ,ݎ

we upsample the recovered image ܫ௟ିଵ from the previous scale. Take this upsampled 

image and ܤ௟ as inputs to generate a deblurred image ܫ௟ using the Joint Bilateral 

Richardson-Lucy (JBRL) which is modified based on BRL. We will introduce how 

JBRL works in the next section. 

 

3.4.4 Joint Bilateral Richardson-Lucy (JBRL) Algorithm 

The upsampled recovered image ܫ௟ିଵ is denoted as ܫ௚, the guide image. Now the 

regularization term ܧ஻ሺܫሻ in BRL is modified by: ܧ௃஻ሺܫ; ௚ሻܫ ൌ ෍ ෍ ݂ሺ|ݔ െ ሻݔ௚ሺܫ|ሻ݃ᇱሺ|ݕ െ ሻݔሺܫ|ሺߩሻ|ሻݕ௚ሺܫ െ ఆ௫אሻ|ሻ,௬ݕሺܫ  

where ݃ᇱሺ|ܫ௚ሺݔሻ െ  ௚. Here ݃ᇱሺ·ሻܫ ሻ|ሻ is a range filter applied on the guide imageݕ௚ሺܫ

is also a Gaussian filter: 

݃ᇱሺ|ܫ௚ሺݔሻ െ ሻ|ሻݕ௚ሺܫ ൌ ݁ሺି|ூ೒ሺ௫ሻିூ೒ሺ௬ሻ|మଶఙೝ೒ ሻ
 

The function ݃ᇱሺ·ሻ will decrease the regularization if there is a large image gradient in 

guide image ܫ௚ . Since the guide image contains more accurate information, the 

additional range filter could help obtain better result.  

 

3.4.5 Progressive Intra-scale Scheme 

Large regularization (ߣ) suppresses not only noticeable ringings but also details. 
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Therefore, a progressive intra-scale deconvolution is needed to recover image details 

step-by-step with decreasing regularization strength using an iterative residual 

deconvolution. Assume there is a difference ∆ܫ between ܫ௚  and ܫ, we can get a 

blurring equation as: 

ܤ ൌ ܫ ٔ ܭ ൌ ሺܫ௚ ൅ ሻܫ∆ ٔ ܭ ൌ ௚ܫ ٔ ܭ ൅ ܫ∆ ٔ  ,ܭ
or we can rewrite it as: 

ܤ∆ ൌ ܤ െ ௚ܫ ٔ ܭ ൌ ܫ∆ ٔ  .ܭ
Simply recovering ∆ܫ from ∆ܤ rather than directly recovering ܫ from ܤ is a better 

way because magnitudes in ∆ܤ are smaller than ܤ thus ∆ܫ contains less ringing 

artifact than ܫ. Now the optimal residual ∆ܫ we want can be obtained by minimizing 

the following energy with the decreasing regularization strength ߣ during iterations: 

כܫ∆ ൌ ݃ݎܽ ݉݅݊∆ூ ሻܫ∆ሺܧൣ ൅ ;ܫ∆௃஻ሺܧߣ ,௚ሻ൧ܫ with ߣ௧ାଵ ൌ  ,௧ߣߛ
where ߛ is a decay factor. Below we show a flow chart of progressive inter-scale and 

intra-scale deconvolution in Fig. 3.7. For more details we refer to [15]. 
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Fig. 3.7 Flow chart of the progressive deconvolution. 



 

27 

Chapter 4 Proposed System 

In 4.1 we take a look of our work for two cases as an overview. More details and 

comparisons of both cases are discussed in 4.2 and 4.3. 

 

4.1  System Overview 

To get a panorama, images are stitched to generate a larger view. Usually, a series 

of pictures are taken to generate a panorama, but somehow camera shake inevitably 

happened. A direct method is to simply stitch the blurred image with the non-blurred 

image, extract overlapped regions, estimate the blur kernel and recover a non-blurred 

image using the estimated kernel. This is the most naïve and straightest approach yet in 

our experiments we found that this approach is not stable. As a result, another approach 

has to be derived to improve the naïve approach and make our system more robust. 

Fig. 4.2 is an overview of our system and Fig. 4.1 is the naïve approach for 

comparison. As introduced previously, the inputs of the naïve approach are a pair of 

blurred/non-blurred images (ܤଵ and ܫଶ) relative to a geometric transform. We first 

stitch the inputs to get the overlapped patches. The blur kernel is estimated once these 

two aligned blurred/non-blurred patches are obtained. Finally we perform deblurring 

using the estimated kernel.  

The naïve approach leads to poor result for the reason of misaligned patches. We 
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decide to deblur the input ܤଵ first to get a better stitching result. As shown in Fig. 4.2, 

we take the transformation parameters from ݀ܤଵ and ܫଶ as the inputs of stitching of 

 ଶ to get better-aligned overlapped patches. Based on these patches a betterܫ ଵ andܤ

estimation of blur kernel is reached. Satisfying result is attained in the final deblurring 

step using the estimated blur kernel. 

 

 

Fig. 4.1 Flow chart of the naïve approach 

 

 

Fig. 4.2 Flow char of our system 
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4.2  Naïve approach (case1) 

 

 

Fig. 4.3 Flow chart of naïve approach (case1). 

 

In case1 we try to stitch a blurred image with a non-blurred image directly while 

recovering the blurred image in the meantime. In image stitching, we observed that two 

overlapped patches, a blurred one and a non-blurred one, of the same scene can be 

obtained. Based on these blurred/non-blurred overlapped regions, a good kernel can be 

estimated using the method we adopted which is described in Chapter 3. In such 

situation, both the latent image and observed blurred images are available. The kernel 

estimation therefore becomes more constrained to be solved. Once the blur kernel is 

attained, we adopted a progressive inter-scale and intra-scale image deconvolution to 

recover blurred image using the estimated kernel from coarse to fine. We denote the 

blurred image as ܤଵ and the non-blurred image as ܫଶ. Here 5 steps are taken in the 

naïve approach (case1): 

1. Calculate SURF feature points of ܤଵ and ܫଶ and then match them. 
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2. Estimate the transformation parameters between ܤଵ  and ܫଶ  by weighted 

lease square estimation using EM algorithm. 

3. Stitch ܤଵ and ܫଶ using the estimated parameters and extract the overlapped 

regions ଵܲ and ଶܲ. 

4. Estimate the blur kernel using ଵܲ and ଶܲ with the method proposed by Yuan 

et al. [14] 

5. Recover the blurred image with the estimated kernel using the non-blind 

image deconvolution method proposed Yuan et al. [15]. 

Unfortunately, the recovered image is far away from what we expect. The image is 

usually poorly reconstructed as the kernel is incorrectly estimated. The incorrectly 

estimated kernel can be imputed to the misaligned overlapped regions. In short, all these 

errors come from a fundamental problem; the images are ill-stitched, i.e., transformation 

parameters are inaccurately estimated since we directly stitch ܤଵ and ܫଶ together. To 

solve this issue, better-aligned patches are essential for kernel estimation which means 

that we have to figure out a way to stitch images more accurately. We decided to deblur 

the blurred image first as a pre-processing step for better stitching. Our experiments 

show that stitching pre-deblurred image with the non-blurred image yields 

better-aligned overlapped patches, thus, leads to better kernel estimation. Finally, 

satisfying deblurring result is obtained. An example of blurred/non-blurred images 
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related to a scaling change using the naïve approach (case1) is shown in Fig. 4.4. 

 

 

 

 

 

 

(a) blurred image (b) non-blurred image 

(c) blurred/non-blurred stitching result 

(d) blurred overlapped patch (e) non-blurred overlapped patch 
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Fig. 4.4 An example of scaling case using naïve approach. 

 

 

 

 

 

 

 

 

(f) true kernel (g) estimated kernel 

(h) deblurred result
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4.3  Pre-deblur approach (case2) 

 

 

Fig. 4.5 Flow chart of our system (case2). 

 

As described above, in order to pre-deblur the blurred image before stitching, the 

blur kernel has to be estimated without the help of non-blurred overlapped patch. In 

such condition, we adopted a single image kernel estimation method proposed by 

Fergus et al. [4] which utilizes the statistics of nature images. Once the blur kernel is 

estimated using Fergus’ method, we apply progressive inter-scale and intra-scale image 

deconvolution [15] to recover the image. Even though the deblurred result is not good 

enough using single image kernel estimation, our stitching result is much improved than 

the naïve approach (case1). Hence, the overlapped regions are better-aligned. Now we 

can get a more correct kernel so the recovering process gives a more satisfying 

recovered image. Here we denote the pre-deblurred image as ݀ܤଵ  and our 

pre-deblurred approach (case2) is composed of 10 steps as follows: 

1. Single image kernel estimation using the method proposed by Fergus et al. 
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[4]. 

2. Pre-deblur the blurred image using the progressive inter-scale and intra-scale 

image deconvolution method proposed by Yuan et al. [15]. 

6. Calculate SURF feature points of ݀ܤଵ and ܫଶ and match them. 

7. Estimate the transformation parameters between ݀ܤଵ and ܫଶ by weighted 

lease square estimation using EM algorithm. 

8. Stitch ܤଵ and ܫଶ using the recorded parameters and extract the overlapped 

regions ଵܲ and ଶܲ. 

9. Estimate the blur kernel using ଵܲ and ଶܲ with the method proposed by Yuan 

et al. [14] 

10. Deblur the blurred image using the estimated kernel. 

Different from case1, this time we stitch pre-deblurred/non-blurred images to get 

better stitching result. One thing should be noticed that the purpose of pre-deblurring is 

to get better transformation parameters. After pre-blurred/non-blurred images are 

stitched, the parameters are recorded for the stitching of blurred/non-blurred images. An 

example is presented using pre-deblur approach (case2) in Fig. 4.6. In the next chapter 

we will show more experiments results both using naïve approach (case1) and 

pre-deblur approach (case2) for comparison. 
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(b) pre-blurred image (c) non-blurred image 

(d) pre-blurred/non-blurred stitching result 

(e) blurred overlapped patch (f) non-blurred overlapped patch 

(a) Fergus’ kernel 
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Fig. 4.6 An example of scaling transformation using pre-deblur approach. 

(g) true kernel (h) estimated kernel 

(i) deblurred result 
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Chapter 5 Experiment and Results 

 

In this section we will show some experiments results. We first show the results of 

directly stitch blurry/non-blurred together in our system (the naïve approach). Better 

stitching results after a roughly pre-deblurring step are presented later. Four geometric 

transformations are considered in our experiments: Translation, Rotation, Scaling and 

Perspective. We test on two kernels of size 15 x 15 in our experiments.  

           

Fig. 5.1 Two kernels we test on. 

 

5.1  Deblur with Directly Stitching Blurred/Non-blurred 

images 

Here we show outputs of translation and rotation case for kernel1, scaling and 

perspective case for kernel2. 

(a) kernel1 (b) kernel2 
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(a) blurred image (b) non-blurred image 

(c) blurred/non-blurred stitching result 
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Fig. 5.2 Case1: translation/kernel1 

(d) blurred overlapped patch (e) non-blurred overlapped patch 

(f) true kernel (g) estimated kernel 

(h) deblurred result



 

40 

 

 

 
 

(a) blurred image (b) non-blurred image 

(c) blurred/non-blurred stitching result 
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Fig. 5.3 Case1: rotation/kernel1 

 

(g) estimated kernel (f) true kernel 

(d) blurred overlapped patch (e) non-blurred overlapped patch 

(h) deblurred result
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(a) blurred image (b) non-blurred image 

(c) blurred/non-blurred stitching result 

(d) blurred overlapped patch (e) non-blurred overlapped patch 
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Fig. 5.4 Case1: scaling/kernel2 

 

 

 

 

 

 

 

(f) true kernel (g) estimated kernel 

(h) deblurred result
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(a) blurred image (b) non-blurred image 

(c) blurred/non-blurred stitching result 

(d) blurred overlapped patch (e) non-blurred overlapped patch 

(f) true kernel (g) estimated kernel 
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Fig. 5.5 Case1: perspective/kernel2 

 

5.2  Deblur with Stitching Pre-deblurred/Non-blurred 

images 

As we know, the deblurred results are not satisfying due to the poor estimated 

kernel. The main reason of incorrect kernel estimation is caused by a fundamental 

problem; we directly stitch blurred/non-blurred images together. To solve this issue, we 

decide to roughly deblur the blurry image before stitching. This roughly deblurring step 

is based on Fergus’ work [4], which takes only one single image as input to estimate the 

blur kernel. 

 

 

(h) deblurred result
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(a) Fergus’ kernel 

(b) pre-blurred image (c) non-blurred image 

(d) pre-blurred/non-blurred stitching result 
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(e) blurred overlapped patch (f) non-blurred overlapped patch 

(g) true kernel (h) estimated kernel 

(i) deblurred result 
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Fig. 5.6 Case2: translation/kernel1 

(k) re-stitching result 

(j) original image 
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(a) Fergus’ kernel 

(b) pre-blurred image (c) non-blurred image 

(d) pre-blurred/non-blurred stitching result 
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(e) blurred overlapped patch (f) non-blurred overlapped patch 

(g) true kernel (h) estimated kernel 

(i) deblurred result 
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Fig. 5.7 Case2: rotation/kernel1 

(j) original image 

(k) re-stitching result 
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(a) Fergus’ kernel 

(b) pre-blurred image (c) non-blurred image 

(d) pre-blurred/non-blurred stitching result 

(e) blurred overlapped patch (f) non-blurred overlapped patch 
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(g) true kernel (h) estimated kernel 

(i) deblurred result 

(j) original image 
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Fig. 5.8 Case2: scaling/kernel2 

 

 

 

 

 

 

 

 

 

 

(k) re-stitching result 
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(a) Fergus’ kernel 

(b) pre-blurred image (c) non-blurred image 

(d) pre-blurred/non-blurred stitching result 

(e) blurred overlapped patch (f) non-blurred overlapped patch 

(g) true kernel (h) estimated kernel 
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 (j) original image 

(i) deblurred result 
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Fig. 5.9 Case2: perspective/kernel2 

 

(k) re-stitching result 
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Chapter 6 Conclusion and Discussion 

 

6.1  Conclusion 

In this thesis we try to stitch two images under the occurrence of camera shake at 

the same time to deblur the blurry image. However, our experiments show that directly 

stitching of blurred/non-blurred images yields unsatisfying stitching result so as the 

kernel estimation. With no surprise, the final deblurring result fails. We found that the 

major problem causing this failure of deblurring is our misaligned patches. Due to these 

bad output patches, deblurring using an incorrect kernel results in an incorrect deblurred 

image.  

To solve this problem, we decide to pre-deblur the blurred image before stitching, 

so we adopt a single image kernel estimation method as a pre-processing step. In this 

pre-processing step, we deblur the image using the progressive deconvolution approach 

with the kernel estimated from Fergus’ approach. After the image is pre-deblurred, 

stitching of pre-deblurred/non-blurred images leads to well aligned patches. Since 

overlapped patches are well aligned, the transformation parameters between two images 

can be accurately calculated. Now we can stitch blurred/non-blurred images using the 

estimated parameters to get another pair of better-aligned patches, which are used in 

kernel estimation step. At last, satisfying deblurring result is achieved and re-stitching 
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of deblurred/non-blurred is performed. 

 

6.2  Discussion 

Some ringings more or less occurred in the deblurred image, for example, the up 

right corner in Fig. 5.9 (i). We impute this artifact to that our kernel is not perfect as true 

kernel. Another observation is that in some cases the naïve approach (case1) does work 

well. Nevertheless, we decided to take pre-deblur approach (case2) as our system flow 

for the concern of system robustness. An example of such case both using naïve 

approach (case1) and pre-deblur approach (case2) are shown in Fig. 6.1 and Fig. 6.2. 

In our system we have a limitation in generating a panorama. We should notice that 

the deblurring model we discussed so far is assumed shift-invariant. This shift-invariant 

property means that the observed blurred image is a product of convolution with a latent 

image and a blur kernel. In other words, the image is blurred by the same kernel for all 

image pixels. However in perspective case, if we transform the blurred image to stitch 

with the non-blurred image, the blurred image will no longer fit the shift-invariant 

blurring model even though translation, rotation or scaling transformation holds this 

property. Therefore, in our system we can only transform the non-blurred image to 

stitch with the blurred image which limits our application. In the future, we will need a 

deblurring method derived from the assumption of shift-variant property. Also, blur 
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kernel estimation should be modified. 

 

 

 

 

 

(a) blurred image (b) non-blurred image 

(c) blurred/non-blurred stitching result 
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Fig. 6.1 A successful example of the naïve approach (case1). 

 

 

(f) true kernel (g) estimated kernel 

(d) blurred overlapped patch (e) non-blurred overlapped patch 

(h) deblurred result 
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(b) pre-blurred image (c) non-blurred image 

(d) pre-blurred/non-blurred stitching result 

(a) Fergus’ kernel 
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(e) blurred overlapped patch (f) non-blurred overlapped patch 

(g) true kernel (h) estimated kernel 

(i) deblurred result 
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Fig. 6.2 Taking pre-deblur approach as our system flow is more robust. 

(j) original image 

(k) re-stitching result
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