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ABSTRACT

In this thesis, we try to stitch one clear image with a blurred image relative to a
geometric transformation, and then recover the blurred image in the meantime. Image
deblurring has long been a challenging work since it is an ill-posed inverse problem.
Deblurring methods using multiple or single image are both discussed in recent years.
The deblurring is called blind if the kernel is unknown or non-blind if the kernel is
known a priori. In order to estimate the blur kernel, we try to take the information from
the non-blurred patch for help. By stitching a blurred image with a non-blurred image
using Speeded-Up Robust Features (SURF),.we:can obtain the aligned overlapped
patches. Idedly, we can estimate theblur kernelibased on blurred/non-blurred patches.
However, directly stitching qurred/non—b\!y:'rr_éd. images leads to poor aligned patches.
As aresult, the kernel is misestimated andihe image is:incorrectly recovered. To solve
this issue, a pre-deblurring as a p}é-pfoc hg-step:of the blurred image is considered.
We dtitch the pre-deblurred image With. the non-blurred image and record the
transformation parameters for temporary. After that we stitch the original blurred image
with the non-blurred image using the recorded parameters to get better-aligned patches.
Now the two patches are much better-aligned than before so that the kernel can be
correctly estimated. Finally, promising result using progressive inter-scae and

intra-scale deconvolution is presented.

Index Terms — Image deblurring, image stitching, panorama.
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Chapter 1 Introduction

1.1 Motivation

Conventional handheld digital cameras have made an exploration recent years.
People are used to take pictures around and share with others on the Internet. The most
common issue is image blur due to camera shake. Shake could occur when taking
pictures on a moving vehicle or under long exposure time. Unfortunately, many
photographer capture ephemeral mements that_ cannot be recapture again. Panoramas
are popular in recent years thanks to the development of reliable distinctive image
features. In such case image blur is highly?i')_?()he to occur due to the camera shake since
one needs to take a series of phétbgraphs with moving camera. Image deblurring has
long been a challenging work as it is an ill-posed inverse problem and deblurring using
one single image is more challenging. In panorama, we observed that there are
overlapped regions in two stitched images. If one image is blurred by camera shake, we
can take the information from non-blurred overlapped region to help deblur the blurry
image. As a result, directly stitching of blurred/non-blurred images to get overlapped
information is our first try. Nonetheless, directly stitching blurred/non-blurred imagesis

not a good idea.



1.2 Problem Statement

A naive solution is to simply stitch two images with one blurred and one
non-blurred, and then extract the overlapped information to help deblur the blurred one.
However, there is afundamental problem that causes the following deblurring work fail.
Direct stitching of blurred/non-blurred images actually produces poor stitching result.
Once there is a large error in stitching step, the overlapped regions are misaligned.
Incorrect aligned regions induce terrible results. Hence, a pre-deblurring step is required
for a better stitching to get better. aigned regions The pre-processing step adopts a
single image kernel estimation méthod \to calculate-the blur kernel for the use of
deblurring. After the image is deblurr-eaf\'/v'e again _stitch pre-deblurred/non-blurred
images together. Remember, the 'g'oa! of pre-deblurring is to get better-aligned patches
of blurred/non-blurred pair, not pre-deblurred/non-blurred pair. Therefore, we extract
the transformation parameters in the pre-deblurred/non-blurred images stitching step
first. Then we stitch blurred/non-blurred images by the recorded parameters so that the
following deblurring steps work well.

Finally, blurred image is recovered by use of overlapped patches in image stitching

and stitching is again performed using the final output image.



1.3 ThesisOrganization

The organization of the thesis is as follows. Chapter 2 introduces how interest
points are detected and what the blurring model is. Then we review the related work
about image deblurring; both blind and non-blind image deconvolution. Chapter 3
briefly explains the methods we adopted for image stitching and image deblurring.
Chapter 4 first gives an overview of our system then describes our work on two cases
for comparison. Chapter 5 presents some experiments results which tested on 4 types of
geometric transformations with twa different I_<erne|s. Finally, we conclude our thesis

and have adiscussion in chapter:6.



Chapter 2 Related Work

In this chapter, we discuss the related work of two categories, interest point
detection and image deblurring. For the former, we introduce what interest points are
and different approaches to detect them. For the latter, we discuss the degrading model
of image blur and the most common artifacts in digital photography caused by camera
shake. Then we give an overview about how to recover an non-blurred image from one

or more blurred images.

2.1 Interest Points DetectlorT

Interest point detection can be t.réced Pack’to corner detection in computer vision
which were obtained with robustness and stableness for the purpose of object tracking
or recognition. Traditional corner detection such as Moravec corner detection and Harris
corner detection [5] were proposed. Recently a more popular and robust interest point

detection is proposed such as SIFT [7].

2.1.1 Moravec Corner Detection
The main idea of Moravec corner detector is based on the sum of squared

difference (SSD) in alocal shifting window in four directions (horizontal, vertical and
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on the two diagonals). If the SSD varies largely in al directions then this points can be
seen as a good feature. Hence, the minimum of SSDs in the window is selected among
four directions as its strength. The interest point is detected if it is a local maximum.
This approach contains several drawbacks:

1. The response map is noisy because of box filter (a binary window function).
Since response map is not a smoothed image, there may be many local
maxima.

2. Only four directions are considered. .

3. Strong response to edge because only minimum of SSDs among directions is

srel '-:HE I;

considered.

Thus, Harris made some improvements of Meravec corner detection.

2.1.2 Harris Corner Detection
Focused on the three drawbacks, some improvements are reached:
1. Use Gaussian mask rather than box filter to eliminate noise.
2. Consider all small shifts by Taylor’s expansion rather than only 4 directions.
3. A new measurement using eigenvalue analysis with an éllipse instead of
minimum of SSDs.

The new measurement of corner response requires the computation of eigenvalue

5



of a matrix M described in [5]. Therefore, a more efficient way to measure the

corner response is to calculate the difference of det(M) and (trace(M))?.

2.1.3 Scdelnvariant Feature Transform (SIFT)

Although the Harris corner is invariant to rotation and intensity change, it is not
invariant to scale change which limits its applications. In recent years scale invariant
feature transform (SIFT) was proposed by Lowe et al. [7] which further improves the
Harris corner detector. In order to be invariant ._to scale change, SIFT is implemented in

scale space. SIFT transformsan:image to a set of feature points. There are four stepsin

.

SIFT:

1. Extremadetection in sC'a]e.s'pace using Difference of Gaussian (DoG), where
DoG is actualy an approximation of Laplacian of Gaussian (L0G).

2. Accurate keypoints localization by removing low contrast points and edge
responses.

3. For each interest point, SIFT uses the information around it to generate a
reproducible orientation which is assigned against rotation deformation.

4. Local image description based on the location, scale and orientation extracted
above.

Once the description is constructed, a 128-dimension vector is formed for every interest

6



point. This high dimensional vector is highly distinctive for applications such as image
stitching, object recognition, etc. On the contrary, the speed of matching features is

dropped due to high dimensional vectors.

2.2 Image Deblurring

Motion blur from camera shake is a common artifact in digital photography. In
many situations it is hard to hold the camera still when taking pictures around. In
panorama, we need to take series of pictures fpr a big view which is prone to camera
shake. Recovering a non-blurred imagefr(?m a single image or multiple images has been
discussed recent years. Most research fogﬁson shift-_invariant kernel which reduces
image deblurring to image deddnydlution. The. observed blurred image B is the
convolution of an unknown latent image | with an unknown kernel K:

B=1®K+n,
where & is the convolution operator and n is the additive noise. Usualy n is ignored.

The deblurring methods can be categorized into two types: blind deconvolution and

non-blind deconvolution.

2.2.1 Blind Image Deconvolution

It is obviously a more challenging work when both the blur kernel and latent

7



images are unknown. Basically blind deconvolution works only for low frequency blur
kernels, e.g., smooth shape of motion. Recent work like Fergus et al. [4] used natural
image statistics as a prior together with a sophisticated variational Bayes inference
algorithm to estimate the kernel. This approach is not robust enough, however, it
requires only one single image for kernel estimation. We adopted it as a pre-processing
step in our system. Some techniques make the problem more tractable with additional
inputs. Methods taking multiple images as inputs to perform blur kernel estimation have
been proposed in [10]. The correlation among. blurred images is utilized based on the
assumption that all blurred images (;ame from the same | atent image. Even though good
results are achieved using multiple |mag&cufhey are Iimi_ted to simple directional motion.
Another method using a pair of bI'Urrgd/noiw images proposed by Yuan et al. [14] takes
the information from noisy image to help recover the blurred image. An iterative

residual deconvolution is developed to significantly reduce deconvolution artifacts.

2.2.2 Non-blind Image Deconvolution

The blur kernel is assumed known a priori so the main task becomes recovering the
latent image. A common method is Richardson-Lucy (RL) deconvolution [8][11], which
recovers the latent image iteratively based on the modeling of image noise using

Poisson distribution. Deconvolution artifacts, such as ringing effects or color speckles,

8



are inevitable because of high frequency loss in the blurred image. Regularization on
deblurring tries to suppress the artifacts, however, edges are meanwhile suppressed. A
total variation regularized Richardson-Lucy [2] is proposed to suppress ringing while
preserving edges, but only gray-level images with ssmple geometric figures are shown
in their results. Yuan et al. [15] proposed a progressive deconvolution in scale space
successively suppress the ringing effects while preserving large-scale edges. A further

refinement to add detail layer produce promising result.

srel '-:HE I;



Chapter 3 Background Knowledge

We need to stitch images to get a panorama and also deblur the blurry image to
recover it. Therefore there are two essential steps in our system, image stitching and
image deblurring. For more self contained, we introduce the methods we adopted as
background knowledge of our work. In image stitching, we adopted Speeded-Up Robust
Feature (SURF) [1] for feature based image stitching. The estimation of transformation
parameters utilizes a weighted |east square ._With Expectation Maximization (EM)
algorithm. Two approaches are adopteq in image -deblurring step, one for kernel
estimation and one for image deconval utl (;ﬁ Alleast square estimation using Tikhonov
regul arization proposed by Yuan et al [14] provides a good estimated kernel for image
deblurring. Progressive inter-scale and intra-scale image deconvolution proposed by
Yuan et al. [15] works well in suppressing ringing artifacts while preserving large scale
edges. It is applied as non-blind image deconvolution based on the estimated blur kernel.
Two components for image stitching are described in 4.1 and 4.2, other two components

of image deblurring are introduced in 4.3 and 4.4.

3.1 Speeded-Up Robust Feature (SURF)

To stitch images, feature points detection in images is required. We estimate the

10



transformation between images based on the detected feature points. After that one
image is transformed using the estimated parameters to stitch with the other. Each
feature point is actually a description described by the descriptor. Before that, we need
to find the candidate of the feature point first. Conceptualy, there are two steps,
detection and description, for extracting feature points. Matching is applied on two sets
of feature points for further application. In total, these are detection, description, and
matching steps. The figures we presented in this section are directly taken from [1] for

the ease of referencing if the readersineed,more details.

3.1.1 Interest Point Detection

The approach for detecting i.n'terest points. is'a very basic Hessian-matrix
approximation which adopts integral images for reducing computation time drastically.
We first briefly introduce the concept of integral image and Hessian-matrix based

interest points then describe how scale space is presented.

A. Integral Images
Integral images allow fast computation of box type convolution filters. Every pixel
of an integral image I; constructed from image I isthe sum of all pixel values within

the rectangle formed by the origin and x at alocation x = (x, y).

11
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Once the integral image is computed, it takes only three additions to compute the sum

of arectangle areaas shownin Fig. 3.1.

0]

D B
iz
A
Y=A-B-C+D

Fig. 3.1 It takes only three-additions to.calculate the sum of values within a
rectangular regi on\.gsi hg integral images.
B. Hessian Matrix Based Interest Points -
The interest point detector is based on the Hessian matrix. Given a point

x = (x,y), the Hessian matrix H (x,0) atlocation x inscale o isdefined as:

Lx(x,0) ny (x,0)

HE&I=1r o) L&)

2
where L, (x,0) is the convolution of the Gaussian second order derivative % g(o)
and image I at location x, similarly for L, (x,0) and L, (x,0). Here a box filter is
constructed to approximate the Gaussian second order derivative, as shown in Fig. 3.2.

Thus, computation time is largely reduced by using integral images and the

12



approximated Gaussian second order derivative.

]

l

il

1

[
I
|
[ 1]
[T

Fig. 3.2 Left to right: the Gaussian second order partia derivativeinyy- (£,,) and

xy-direction (£, ); the approximated version of £,,, and L,,. Thegray areaare zero.

C. Scale Space Representation

The interest points need to be detéc"ted at di]{ferewt scales against the variance of
scale change. All interest poi nts.;/.vlll be|¢o?lzq:d in tf;-e image and over scales. Usually,
scale spaces are implemented as an m‘ng pyranlllld S fie SURF utilizes box filters and

integral images, filters of any sze on' the orlglnal image are applied instead of

iteratively scaling down the input image.

Scale

Fig. 3.3 Left: Iteratively reducing the image size in traditional image pyramid.

Right: Increasing the filter size while keep the original image unchanged.

13



In fact, the scale space consists of several octaves. An octave is a series of Hessian
response maps obtained by convolving the same input image with filters of increasing
size. In total, the scaling factor increases to a number of 2 when an octave is complete.

Finally, an interest point is detected if it isaloca maximum.

3.1.2 Interest Point Description

The interest point descriptor describes the distribution of gradients around the
interest point neighborhood. The description.is built on the distribution of first order
Haar wavelet responses in x and:y directi on. First, areproducible orientation is assigned
to an interest point according to the inform%i' on/from a_ci rcular region around it. Then a

square region is constructed to as a SURE.déscriptor.

Fig. 3.4 Haar wavelet masks used to compute the response in x and y directions.

Dark arearepresents -1 while white area represents +1.

A. Orientation Assignment
In order to be invariant to image rotation, a reproducible orientation needs to be

calculated for the interest points. Haar wavelet responses in x and y directions are

14



calculated in a circular neighborhood around the interest point. As shown in Fig. 3.4,
integral images are again utilized for efficient computing. After the wavelet responses
are obtained and weighted by a Gaussian, the responses of directions x and y are
combined as 2D vectors (i.e., points). A dominant orientation is selected as follows. As
shown in Fig. 3.5, we calculate the sum of all responses within a sliding orientation
window. Horizontal and vertical responses are summed in the window to form an
orientation vector. The orientation of the interest point is selected by the longest vector

over all windows.

Fig. 3.6 Left: an oriented window formed of 4 x 4 sub-regions. Right: for each

sub-region we compute Y d,, X d,,, X |d,|, X |d,]| of it.

B. Descriptor bases on the sum of Haar Wavel et Responses

15



The first step of making a description is to construct a square region centered at the
interest point and oriented along the assigned orientation. The square region is divided
into smaller 4 x 4 sub-regions in which we compute the Haar wavelet responses. The
Haar wavelet response in horizontal and vertical direction are denoted as d, and d,,.
which are weighted by a Gaussian centered at the interest point for the robustness of
geometric deformations and localizations errors. We sum up the wavelet responses d,
and d,, for each sub-regions to get the first part of the feature vector. Also, we sum up
the absolute values of the responses'|d, | anc_i |d;| to get the rest part of a feature
vector. Hence, a four-dimension vector\ v, v=(2dy, Xdy,, Xldy|, X |dy]) , is
generated for every sub-region. ConcatmgtThQ v for a_II 4 x 4 sub-regions produces a

64-dimension descriptor vector, i.e., featureiector.

3.1.3 Matching

For any two images, we need to match the extracted feature vectors for the purpose
of estimating transformation parameters. The approach is actually quite smple. A
nearest neighbor method in feature space matching is adopted. However, not every
feature point is correctly detected in the other image or even not detected at all. In such
case assigning every feature points a nearest neighbor would fail the following work. So

instead of assigning a nearest neighbor to each detected feature point, we assign a

16



nearest neighbor to afeature point only if the Euclidian distance is 0.7 times closer than
the second nearest neighbor.
3.2 Weighted Least Square Estimation of Transformation
Parameter s Using Expectation M aximization Algorithm
In the previous section we extract the features of images and we also found the
matches between two sets of features. In this section, we estimate the transformation
between two images using the matches we found by least square estimation. In our
experiments, results of transformation paramet.grs estimation using smple least square
method are unacceptable. Thus a moQified version, called weighted least square
estimation is adopted for better results. é;ﬂdes expe_ctaIion maximization algorithm

(EM) is used in our implementation. .

3.2.1 Least Square Estimation of Transformation Parameters

For the stitching of any two different images sharing partial overlapped scene from
different angles of view we take perspective transformation as our default
transformation model. Perspective transformation contains 8 degrees of freedom which
is sufficiently enough to encompass traditional transformations such as trandation,
rotation and scaling. In 2D planar system, the coordinates of atransformed pixel located

at x = (x,y)T canbe expressed as:

17



_ax+by+c
T gx+hy+1
Y_dx+ey+f
gx+hy+1

where X and Y arethetransformed x and y, a to h isthe 8 degrees of perspective

transform which are the parameters we want to estimate. By rearranging the above

equations, we obtain a clearer version for the convenience of |east square estimation.
X=xa+yb+c+0d+0e+0f —Xxg— Xyh
Y=0a+0b+0c+xd+ye+f—Yxg—Yyh

Denote x’ = (X,Y)T asavector then'we arrive a system of product of amatrix A and

avector p:
— a
.'.:: b
[xleOO B XX —Xyd_[X]
0 0 0 x 91 "=Yx =Yyl|e Y
: f
g
h

Aswe know the approximated solution of p by least square estimation is derived by
ATAp = ATX'.

However, simple least square estimation produces poor results, so a weighted least

square estimation is adopted for better results and it is introduced in the following

section.
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3.2.2 Weighted Least Square Estimation using EM Algorithm

As discussed above, simply least sguare estimation of parameters gives poor
results, therefore, the weighted least square estimation of parameters using EM
algorithm performs as follows. We denote every matched points as (x;,X;), where i is
the index in the matched points. Also, we extend matrix multiplication of the above

transformation to n points.

oy 10 0 0 =X —Xonq[p] X
0 00 x yvv 1 —Yixq —Yim c Y
X2 Y2 1.0 0 0 =Xox, —Xo¥2 |4 X,
00 0 xp Yl =Yy =10y, [[,]|= Y,
Xn Yn 1 40 0 48 —X, O X 9% f Xn

0 0 0 Ba@ys 1L~V N “Z LY,

1. Initial step: least square esti matigg .'(")f paramet_ers p.

2. E-step: transform x; o x.i" using, the_estimated parameters, calculate the
weights w; for each point by a éaussian centered at X; using the distance
obtained from the error |X; — x;'|.

3. M-step: estimate parameters with weighted least square.

In E-step, we first calculate the weights for weighted least square estimation. The

weighting matrix should be aform like:

W1 0 see O 0
0 wy 0 0
O 0 see Wn 0
00 0 Wn 2nx2n

Every point x; is transformed using the estimated parameters so that we can get the
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weights based on a Gaussian distribution. At M-step, weighted least square estimation is
performed to get better and more accurate parameters based on

ATWAp = ATwx/,
where W is a weighting diagonal matrix of w;, i =1 ... n. We iteratively perform
E-step and M-step until convergence. Finally, one image is transformed using the final

estimated parameters to stitch with the other.

3.3 Kernel Estimation

According Yuan et al. [14],a gopd kernel,, can be obtained using a simple
constrained least-squares optimization -if. ;'\z/;'e"have twp images of the same scene, a
blurred one (P;) and a clear one ('P'z).. In.oursystem, two overlapped image patches can

be attained in the previous chapter when stitching.

3.3.1 Kernel Estimation using Tikhonov Regularization

The goal of kernel estimation is to find the blur kernel K from B =1 &® K with
the initialization I = P,. The above blurring equation can be rewritten in vector-matrix
form as b = Ak, where b and k are the vector forms of blurred image B and blur
kernedl K, and A is the matrix form of I. To obtained optimal K, Tikhonov

regularization is used with a positive scaar A by solving miny||Ak — b||? + A?||k]|?.
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Here A isthe regularization strength. An explicit solution is given by (ATA + 22Dk =
ATb. However, in fact, a blur kernel needs to be non-negative and preserve energy, so
some additional constraints is added and we can get optimal K by the following
optimization system:

min||Ak — b||* + A?||k]|?, subject to k; = 0,and Zki = 1.
i

After the kernel is estimated, image deconvolution is applied.

3.4 Image Deconvolution

The deblurring method we adobted hfere can beitraced back to a classical non-blind
image deblurring algorithm called \Ri charégbh-Lucy de_convol ution, which is proposed
by Lucy [8] and Richardson [11]. .The main.'and the most common artifact is the
appearance of ringings arisen with iterative method. We first review Richardson-Lucy
(RL) deconvolution algorithm. Then we describe how progressive inter-scale and

intra-scale image deconvolution works [15].

3.4.1 Richardson-Lucy (RL) Algorithm
Richardson-Lucy (RL) is an algorithm for deblurring if the kernel is known apriori,
i.e., it is a non-blind image deconvolution method. The image noise is modeled as a

Poisson noise distribution and the likelihood probability of theimage | is expressed as:
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I®RK B(x) o —(U®K)(x))
peein = [ [ LR

where x indicates the position of each pixel, and p(B|I) = Poisson((I ® K)(x)) isa
Poisson process for each pixel x. For simplicity, x is omitted in the following article.
In order to obtain the optimal | that satisfied maximum likelihood p(B|I), we take log
and negative operationson p(B|I) to get the following energy function:
(=) (U ®K)—B - logll ® )1}
So our goal becomes minimizing the above energy function E(I):
I = arg mIiﬁ E(L)

A common artifact in RL algorithm is-ri-ﬁgj_r_ig .artifacts, dark and light ripples around
strong edges in the reconstructed}i mage. I\/IIFE'o're iterations produce not only more image
details but more ringings.
3.4.2 Bilateral Richardson-Lucy (BRL) Algorithm

The ringing artifacts are usually proportional to the strength of edge jump at
discontinuous points and the amplitude of ringing will decrease away from the edge.
Human eyes are sensitive to abrupt difference, for example, edges. As a result, the
ringing effects are most conspicuous in smooth areas. Besides, human perception can

tolerate small scale ringing in high frequency regions. Based on this observation, an

energy function Egz(I) is added as a regularization term to reduce ringing while
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preserving large-scale edges:
I"=arg mIin[E(I) + AEg(1)],
where 1 istheregularization factor. The added term Eg(I) isdefined as:

Es(D =) > fx=yDp(IG) — 1D,

x YEQ

where Q) is a spatia support controls the size of filters, function f(-) is the spatial

filter and function p(-) isapenalty function. Both filters are defined as follows:

lx—y|?

flx—yh=e 2o .

1) -1()|?
p(l1(x) =IO P= 1=T 20

Function p(-) gives a large but;limited penalty on the image difference I(x) — I(y)
and function f(-) puts weightson thé pgalty using a Gaussian distribution centered
at x. In fact, the penalty oceurs vyhen the current processing pixel contains large
difference, i.e., edge.

3.4.3 Progressive Inter-scale Scheme

The main idea of progressive deconvolution is to take the output of previous
iteration as a guide to help the next deconvolution. In inter-scale scheme, the recovered
image in one scale can be used as a guide image for next scale because the recovered
image in coarser scale provides more useful edge information. Continue this process

from coarse to fine, better result at the finest scale is obtained.

First, a pyramid {B'}}_, of a full resolution blurred image B and a pyramid
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{K'}E_, of ablur kernel K are built using bicubic downsampling. For iteration [ = r,
we upsample the recovered image I'=! from the previous scale. Take this upsampled
image and B! as inputs to generate a deblurred image I' using the Joint Bilateral
Richardson-Lucy (JBRL) which is modified based on BRL. We will introduce how

JBRL works in the next section.

3.4.4 Joint Bilateral Richardson-Lucy (JBRL) Algorithm
The upsampled recovered image 1= is.denoted as 19, the guide image. Now the

regularization term E(I) inBRL ismodified by:

Bp(319) = . D0 18— yDGEHB () 47 6ADp(l1 ) 10D,

x YEN

where g'(|19(x) — 19(y)|) isarangefiltefapplied onthe guide image 19. Here g'(+)

is also a Gaussian filter:

-9
g 19D =e 2o

The function g’(-) will decrease the regularization if there is alarge image gradient in
guide image I9. Since the guide image contains more accurate information, the

additional range filter could help obtain better result.

3.4.5 Progressive Intra-scale Scheme

Large regularization (A1) suppresses not only noticeable ringings but also details.
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Therefore, a progressive intra-scale deconvolution is needed to recover image details
step-by-step with decreasing regularization strength using an iterative residual
deconvolution. Assume there is a difference Al between 19 and I, we can get a
blurring equation as:
B=I®K=U9+AD®K=I9QK+Al ®K,
or we can rewrite it as:
AB=B-19Q® K =Al ®K.
Simply recovering Al from AB rather than directly recovering I from B is a better
way because magnitudes in AB are srr]alle_r than, B.thus Al contains less ringing
artifact than 1. Now the optimal residual 7&:1 we Want_can be obtained by minimizing
the following energy with the decféa;i ng.regularization strength A during iterations:
Al* = arg rrkl;n[E(AI) + AE].B (AL; 19)], with 251 = y 2t
where y is a decay factor. Below we show a flow chart of progressive inter-scale and

intra-scale deconvolution in Fig. 3.7. For more details we refer to [15].
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Chapter 4 Proposed System

In 4.1 we take a look of our work for two cases as an overview. More details and

comparisons of both cases are discussed in 4.2 and 4.3.

4.1 System Overview

To get a panorama, images are stitched to generate a larger view. Usually, a series
of pictures are taken to generate a panorama, but somehow camera shake inevitably
happened. A direct method is to simply. stitch._the blurred image with the non-blurred
image, extract overlapped regions, estimgte the blur kernel and recover a non-blurred
image using the estimated kernel. ' Fhis is tuhré most na'l'v_e and straightest approach yet in
our experiments we found that this approach is.not stable. As aresult, another approach
has to be derived to improve the naive approach and make our system more robust.

Fig. 4.2 is an overview of our system and Fig. 4.1 is the naive approach for
comparison. As introduced previously, the inputs of the naive approach are a pair of
blurred/non-blurred images (B; and I,) relative to a geometric transform. We first
stitch the inputs to get the overlapped patches. The blur kernel is estimated once these
two aligned blurred/non-blurred patches are obtained. Finally we perform deblurring
using the estimated kernel.

The naive approach leads to poor result for the reason of misaligned patches. We
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decide to deblur the input B, first to get a better stitching result. As shown in Fig. 4.2,

we take the transformation parameters from dB; and I, as the inputs of stitching of

B; and I, to get better-aligned overlapped patches. Based on these patches a better

estimation of blur kernel is reached. Satisfying result is attained in the final deblurring

step using the estimated blur kernel.

Overlapped Kernel Kernel peblurred )
patdIIt ,
I

8. L I=5)) ) .
. k S Fd e
Fig. 4.1 Flow chart of the naive approach

dBl Bl ‘

¥ 3 ¥

Parameters | Parameters | Overlapped Kernel Kemnel Deblurred
Estimation SHtdng patches Estimation Deblarming result

Fig. 4.2 Flow char of our system
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4.2 Naive approach (casel)

e I — A
{ Ry fd AR WE EINE
Parameters 1 Parameters Overlapped Kernel Kernel ; peblurred
Estimation SHtehing | patches Estimation Cebl Carirg result

Fig. 4.3 Flow chart of naive approach (casel).

In casel we try to stitch a blurred image .yvith a non-blurred image directly while
recovering the blurred image inthe me_ant\i me. |n'tmage stitching, we observed that two
overlapped patches, a blurred Qne an_c! :.Ia:%q;"r-f-bllurred one, of the same scene can be
obtained. Based on these blurred/'hoh—biurred OVer.I apped regions, a good kernel can be
estimated using the method we adopted Which is described in Chapter 3. In such
situation, both the latent image and observed blurred images are available. The kernel
estimation therefore becomes more constrained to be solved. Once the blur kernel is
attained, we adopted a progressive inter-scale and intra-scale image deconvolution to
recover blurred image using the estimated kernel from coarse to fine. We denote the
blurred image as B; and the non-blurred image as I,. Here 5 steps are taken in the

naive approach (casel):

1. Calculate SURF feature pointsof B; and I, and then match them.
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2. Edtimate the transformation parameters between B; and I, by weighted
lease square estimation using EM algorithm.
3. Stitch B; and I, using the estimated parameters and extract the overlapped
regions P, and P,.
4. Estimate the blur kernel using P; and P, with the method proposed by Yuan
et al. [14]
5. Recover the blurred image with the estimated kernel using the non-blind
image deconvolution method propose_d Yuan et al. [15].
Unfortunately, the recovered image1s fqr away from what we expect. The image is
usually poorly reconstructed as the kernazls incorre_ctly estimated. The incorrectly
estimated kernel can be imputed t’dthfé misaligned overlapped regions. In short, al these
errors come from afundamental problem, thé images areill-stitched, i.e., transformation
parameters are inaccurately estimated since we directly stitch B; and I, together. To
solve this issue, better-aligned patches are essential for kernel estimation which means
that we have to figure out a way to stitch images more accurately. We decided to deblur
the blurred image first as a pre-processing step for better stitching. Our experiments
show that stitching pre-deblurred image with the non-blurred image vyields

better-aligned overlapped patches, thus, leads to better kernel estimation. Finally,

satisfying deblurring result is obtained. An example of blurred/non-blurred images
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related to a scaling change using the naive approach (casel) is shown in Fig. 4.4.

(@) blurred image (b) non-blurred image

(d) blurred overlapped patch 31 (e) non-blurred overlapped patch



(f) true kernel (g) estimated kernel

\

()| deblurred result ..
Fig. 4.4 An examplelo sca‘ring_il(,:ase using naive approach.
s Al | ) S 4
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4.3 Pre-deblur approach (case?)

dBl = 1 BI

Parameters | Parameters | UVETIBDDC‘d_l Kernel kernel : Deblurred
Estimation SHtdng patches ~ I Estimation Debiouriog result

Fig. 4.5 Flow chart of our system (case2).

As described above, in order to pre-deblur the blurred image before stitching, the

blur kernel has to be estimated;without the help-of -non-blurred overlapped patch. In

\
=
-

such condition, we adopted a single Iirﬁagé"'kernel estimation method proposed by

Fergus et al. [4] which utilizes the statlstlcs of.nature images. Once the blur kernel is
estimated using Fergus' method, we apply progressive inter-scale and intra-scale image
deconvolution [15] to recover the image. Even though the deblurred result is not good
enough using single image kernel estimation, our stitching result is much improved than
the naive approach (casel). Hence, the overlapped regions are better-aligned. Now we
can get a more correct kernel so the recovering process gives a more satisfying
recovered image. Here we denote the pre-deblurred image as dB; and our

pre-deblurred approach (case2) is composed of 10 steps as follows:

1. Single image kernel estimation using the method proposed by Fergus et al.
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[4].

2. Pre-deblur the blurred image using the progressive inter-scale and intra-scale
image deconvolution method proposed by Yuan et al. [15].

6. Calculate SURF feature pointsof dB; and I, and match them.

7. Edtimate the transformation parameters between dB; and I, by weighted
lease square estimation using EM algorithm.

8. Stitch B; and I, using the recorded parameters and extract the overlapped
regions P, and P,.

9. Estimate the blur kernel using_P; and" P, with the method proposed by Yuan

.

et al. [14]

10. Deblur the blurred image ugi'ng theestimated kernel.

Different from casel, this time we stitch pre-deblurred/non-blurred images to get
better stitching result. One thing should be noticed that the purpose of pre-deblurring is
to get better transformation parameters. After pre-blurred/non-blurred images are
stitched, the parameters are recorded for the stitching of blurred/non-blurred images. An
example is presented using pre-deblur approach (case2) in Fig. 4.6. In the next chapter
we will show more experiments results both using naive approach (casel) and

pre-deblur approach (case2) for comparison.



(a) Fergus kernel

(e) blurred overlapped patch (f) non-blurred overlapped patch
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(9) true kernel (h) estimated kernel

‘ Ll‘d
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Chapter 5 Experiment and Results

In this section we will show some experiments results. We first show the results of
directly stitch blurry/non-blurred together in our system (the naive approach). Better
stitching results after a roughly pre-deblurring step are presented later. Four geometric
transformations are considered in our experiments: Translation, Rotation, Scaling and

Perspective. We test on two kernels of size 15 x 15 in our experiments.

(a) kernell ] (b) kernel2
Fig. 5.1 Two kernelswetest on.

-

5.1 Deblur with DirectlyStitching Blurred/Non-blurred
images
Here we show outputs of trandation and rotation case for kernell, scaling and

perspective case for kernel2.
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(c) blurred/non-blurred stitching result
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(d) blurred overlapped patch (e) non-blurred overlapped patch

B2 == B

(f) true kernel _‘f-l-'-':‘** *e‘r gr q"‘? (g) estimated kernel

" (h) deblurred resiit
Fig. 5.2 Casel: trandation/kernel 1
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(c) blurred/non-blurred stitching result



(e non

o)
~

;blurred ovérlapped patch

(d) blurred‘overiapped patch

2 .
(f) true kernel (g) estimated kernel

.. ..- .
aa . Y e—
(h) deblurred result

Fig. 5.3 Casel.: rotation/kernel 1
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(&) blurred image (b) non-blurred image

(d) blurred overlapped patch (e) non-blurred overlapped patch
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(f) true kernel (g) estimated kernel

|

-
¥

— ——

urrqd result
asel: scalmg/kernelz
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(@) blurred image (b) non-bl urr image

(c) blurred/non-blurred stitching result

(d) blurred overlapped patch (e) non-blurred ovapped patch

(f) true kernel (g) estimated kernel



(h) deblurred result
Fig.5.5 Casel perspective/kernel2

52 Deblur  with

images | 4
..-"\?\(;’ . . ’
As we know, the debl urred rejults are ﬁ@t @tr;}yl ng due to the poor estimated
f s :I1

kernel. The main reason of incorrect kernel estimation is caused by a fundamental

problem; we directly stitch blurred/non-blurred images together. To solve this issue, we

decide to roughly deblur the blurry image before stitching. This roughly deblurring step

is based on Fergus work [4], which takes only one single image as input to estimate the

blur kerndl.



(a) Fergus kernel

(d) pre-blurred/non-blurred stitching result
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(e) blurred overlapped patch (f) non-blurred overlapped patch

2 .. B

(g) true kernel f@"-’lﬂﬁ i ?‘5’*% (h) estimated kernel
- <.

(1) deblurred result
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(K) re-stitching result
Fig. 5.6 Case2: trandation/kernel 1
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(a) Fergus kernel

ed image

i, W W

(b) preBl urr

(d) pre-blurred/non-blurred stitching result
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A

(f)'- non-bl urréd overl apped patch

(9) true kernel (h) estimated kernel

(e) blurred :)verl}alped patch

50



A

(J) original, i?nage

(k) re-stitching result
Fig. 5.7 Case2: rotation/kernel 1
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(a) Fergus kernel

(e) blurred overlapped patch (f) non-blurred overlapped patch
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(9) true kernel (h) estimated kernel

(j) original image
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(K).re"stitching, result

- Fig. 5.8{,Qqhse2: scaling/kernel 2
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(a) Fergus kernel

(b) pre-blurred image (c) non-hl urr image

(d) pre-blurred/non-blurred stitching result

(e) blurred overled patch (f) non-blurred ovlped patch

(9) true kernel (h) estimated kernel
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(j) original image

56



57



Chapter 6 Conclusion and Discussion

6.1 Conclusion

In this thesis we try to stitch two images under the occurrence of camera shake at
the same time to deblur the blurry image. However, our experiments show that directly
stitching of blurred/non-blurred images yields unsatisfying stitching result so as the
kernel estimation. With no surprise, the final deblurring result fails. We found that the
major problem causing this failure of deblurring isour misaligned patches. Due to these

bad output patches, deblurring using an incorrect kernel results in an incorrect deblurred

.

image.

To solve this problem, we deci dé to.pre-deblur. the blurred image before stitching,
so we adopt a single image kernel estimation method as a pre-processing step. In this
pre-processing step, we deblur the image using the progressive deconvolution approach
with the kernel estimated from Fergus approach. After the image is pre-deblurred,
stitching of pre-deblurred/non-blurred images leads to well aligned patches. Since
overlapped patches are well aligned, the transformation parameters between two images
can be accurately calculated. Now we can stitch blurred/non-blurred images using the
estimated parameters to get another pair of better-aligned patches, which are used in

kernel estimation step. At last, satisfying deblurring result is achieved and re-stitching
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of deblurred/non-blurred is performed.

6.2 Discussion

Some ringings more or less occurred in the deblurred image, for example, the up
right corner in Fig. 5.9 (i). We impute this artifact to that our kernel is not perfect as true
kernel. Another observation is that in some cases the naive approach (casel) does work
well. Nevertheless, we decided to take pre-deblur approach (case2) as our system flow
for the concern of system robustness. An e>_<amp|e of such case both using naive
approach (casel) and pre-deblur approach\(caseZ) are shown in Fig. 6.1 and Fig. 6.2.

In our system we have alimitation |n aéneratl ng'a panorama. We should notice that
the deblurring model we discusseti'sq far.is assumed shift-invariant. This shift-invariant
property means that the observed blurred image is a product of convolution with alatent
image and a blur kernel. In other words, the image is blurred by the same kernel for all
image pixels. However in perspective case, if we transform the blurred image to stitch
with the non-blurred image, the blurred image will no longer fit the shift-invariant
blurring model even though trandation, rotation or scaling transformation holds this
property. Therefore, in our system we can only transform the non-blurred image to
stitch with the blurred image which limits our application. In the future, we will need a

deblurring method derived from the assumption of shift-variant property. Also, blur
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kernd estimation should be modified.

(c) blurred/non-blurred stitching result
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gd ovérlapped patch

(e non-blurr

(d) blurred overlapped patch

(f) true kernel (g) estimated kernel

e L

(h) deblurred result
Fig. 6.1 A successful example of the naive approach (casel).
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(a) Fergus kernel

- - - A "“.‘L‘,-' L.: < - ' —_— > = _‘-.- Tﬂ.g\ .
(b) pre-blurred image (c) non-blurred image

(d) pre-blurred/non-blurred stitching result
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(9) true kernel (h) estimated kernel
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(i) deblurred result
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(J) eriginal _i-mage

(K) re-stitching result
Fig. 6.2 Taking pre-deblur approach as our system flow is more robust.
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