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Abstract 
 

Traditionally, the diffraction of a scalar wave satisfying Helmholtz equation 

through an aperture on an otherwise black screen can be solved approximately by 

Kirchhoff's integral over the aperture. Rubinowicz, on the other hand, was able to split 

the solution into two parts: one is the geometrical optics wave that appears only in the 

geometrical illuminated region, and the other representing the reflected wave is a line 

integral along the edge of the aperture. Though providing us with an alternative 

perspective on the diffraction phenomena, this decomposition theory is not entirely 

satisfactory in the sense that the two separated fields are discontinuous at the 

boundary of the illuminated region. Also, the functional form of the line integral is not 

what one would expect an ordinary reflection wave should be due to some confusing 

factors in the integrand. Finally, the boundary conditions on the screen imposed by 

Kirchhoff's approximation are mathematically inconsistent, and therefore to be more 

rigorous this decomposition formulation must be slightly modified by taking into  

account the correct boundary conditions. 

In this thesis, we derive a slightly different decomposition formulation that 

avoids the discontinuity, and also we deform the functional form of the line integral 

into another one that mimics the ordinary reflection behavior of waves, and finally, all 
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these works are done based on the mathematically consistent boundary conditions. 

In the appendix, we digress a little to see how to solve diffraction problems 

subject to "physical" boundary conditions, which best describe the diffraction 

phenomena in the real world. 
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Chapter 1

Introduction

The diffraction phenomenon is quite universal. A propagating wave, once encoun-

tered with an obstacle object with its size comparable to the wave length, will be

distorted from its original pattern predicted by geometrical optics. This phenomenon

could happen to any kind of waves, including scalar waves (such as acoustic waves or

Schrödinger’s wave functions) or vectorial waves (such as electromagnetic waves); al-

though these waves may possess totally different characters in nature, they all "suffer"

from diffraction. This suggests that the diffraction phenomenon is a general property

of waves, and therefore we may analyze the diffraction problem by considering the

simplest example—the diffraction of scalar waves.
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Figure (1.1): The typical diffraction problem

So the question we focus on is quite simple: Given a source distribution and an

opaque screen with a hole on it (see Fig.(1.1)), we are asked to find the diffraction

wave at the observation point ~rF (or called the field point) behind the screen. We

also assume the wave ψ itself satisfies the Helmholtz equation

(
∇2 + k2

)
ψ = 0

behind the screen, where the constant k represents the wave number. So ψ actually

describes a monotonic wave with definite frequency, and thus there is no need to

wonder if the media is dispersive. All we have to care is the behavior of ψ due to the

presence of the screen and the shape of the hole.

Traditionally this problem is solved by using Kirchhoff’s integral formula, which

is based on the well-known Huygens’principle that predicts the future shape of a

given wave is the "superposition" of the spherical waves constructed at each point on

the original wave front. (If the readers are not familiar with the Kirchhoff’s integral
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formula, Appendix A provides a quick review of this powerful theory.) But actually

even before Fresnel, Thomas Young had another totally different interpretation of the

diffraction phenomenon when he observed the behavior of water wave. Young pro-

posed that part of the incident wave undergoes a kind of reflection at the edges of the

hole (aperture), and the rest just goes through the aperture without any perturbation,

and the final diffraction wave is the sum (interference) of the two waves. However,

Fresnel had pointed out that Young’s interpretation had failed to describe the dif-

fraction phenomena quantitatively and as result Young’s theory has been forgotten

for a long time [1].

About 100 years later, however, Rubinowicz proved mathematically that Kirch-

hoff’s diffraction formula could be exactly decomposed into two parts: one is the

direct wave through the aperture and appears only in the ordinary geometrical illu-

minated region; the other one is a line integral along the edge of the aperture [2, 3].

This big surprise not only represented the triumph of Young’s interpretation, but also

provided us a new perspective on the diffraction phenomena.

However, this theory is not entirely satisfactory in the sense that the two sepa-

rated fields are discontinuous at the boundary of the illuminated region. Also, the

functional form of the line integral is not what one would expect an ordinary reflection

wave should be due to some confusing factors in the integrand. Finally, the boundary

conditions on the screen imposed by Kirchhoff’s formula are mathematically incon-

sistent, and therefore to be more rigorous this decomposition formulation must be
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slightly modified by taking into account the correct boundary conditions.

In this thesis, we solve the problem of inconsistent boundary condition (B.C.) by

imposing a new B.C., which guarantees the uniqueness and self-consistency of the

solution, and then exploit this modified formulation to derive a neater representation

of the line integral along the edge of the aperture, correlating the functional form

of the integrand with the ordinary reflection in geometric optics. We also derive a

slightly different decomposition formulation which avoids the discontinuity across the

geometrical illuminated region, and give a line integral representation in terms of the

solid angle subtended by the edge of the aperture, which is also derived by Asvestas

by a different approach.

In Appendix B we digress a little discussing on how to solve the diffraction problem

subject to a more rigorous boundary condition (called physical boundary condition)

for an arbitrary shape of aperture.
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Chapter 2

Maggi-Rubinowicz’Formulation

Kirchhoff’s diffraction formula has been used widely both theoretically and ex-

perimentally with triumphant success. For example, the far-field diffraction pattern

predicted by Kirchhoff’s formula is accurate, at least for the ordinary experimental

equipment. Based on the Kirchhoff’s formula, Rubinowicz could also decompose the

representation of diffraction wave into geometrical and reflected parts. However, as

shown in Appendix A, the mathematically inconsistent boundary condition, which

assumes both the value of ψ and the gradient ∂ψ/∂n to vanish on the screen, makes

the whole theory a little unsatisfactory—the solution to the Kirchhoff’s formula does

not take the boundary values imposed at the very beginning. However, as suggested

by Arnold Sommerfeld [4], this problem can be settled down by using proper Green’s

function for specific geometric shape of screen, and Sommerfeld also derived the mod-

ified Kirchhoff’s formula for plane screen by using the Green’s function for an infinite
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plane. However, in his book the Rubinowicz’decomposition trick is still treated based

on the original mathematically inconsistent B.C.s.

In this chapter we first present Rubinowicz’ original formulation based on the

original boundary conditions, and then in the following section we reformulate it by

using the Green’s function for an infinite plane with the mathematically consistent

B.C.s.

2.1 Rubinowicz’Original Work

The time-independent scalar wave ψ behind the plane screen z > 0 (in the opposite

side of the source) satisfies the Helmholtz equation

(
∇2 + k2

)
ψ = 0.

Assume that on the aperture, the wave ψ and ∂ψ/∂n have exactly the same values

as the unperturbed source wave ψs :
ψ = ψs

∂ψ

∂n
=
∂ψs
∂n

on the aperture, (2.1)

where n̂ is the outward normal of the plane screen pointing to the −z direction.

We also require the screen to be "opaque" in the sense that it does not permit any

variations of ψ : 
ψ = 0

∂ψ

∂n
= 0

on the screen. (2.2)
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From Green’s second identity, the wave ψ at the field point ~rF behind the screen

can be expressed by the boundary values

ψ (~rF ) = − 1

4π

∫
plane

(
ψ
∂GK

∂n
−GK

∂ψ

∂n

)
da

= − 1

4π

∫
aperture

(
ψs
∂GK

∂n
−GK

∂ψs
∂n

)
da (2.3)

where

GK =
eik‖~r−~rF ‖

‖~r − ~rF‖
≡ eikr

r
(2.4)

is the Green’s function for an infinite plane. The subscript K reminds us that it is

the Kirchhoff’s type. To simplify the notation, let

~F = −ψs~∇GK +GK
~∇ψs

and Eq.(2.3) reduces to

ψ (~rF ) =
1

4π

∫
aperture

~F · d~a,

d~a ≡ n̂da.

Now we make an auxiliary surface that shares the boundary of the aperture and

encloses the "illuminated region" of geometrical optics. For example, if ψs is a plane

wave, then the auxiliary surface is a cylinder parallel to the direction of propagation,

as shown in Fig.(2.1); if ψs is a point source, then the surface is a cone whose vertex

coincides the source point, as shown in Fig.(2.2).
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Figure (2.1): Plane Wave Figure (2.2): Point Source

Now, since

~∇ · ~F = GK∇2ψs − ψs∇2GK

=
eikr

r

(
−k2ψs

)
− ψs

(
−k2 e

ikr

r
− 4πδ3 (~r − ~rF )

)
= 4πψsδ

3 (~r − ~rF ) ,

we apply the divergence theorem to the illuminated region V enclosed by the auxiliary

surface and the aperture:

∫
aperture

~F · d~a+

∫
surface

~F · d~a =

∫
V
~∇ · ~Fdτ,

then we have

ψ (~rF ) = − 1

4π

∫
surface

~F · d~a+


ψs (~rF ) , ~rF in the illuminated region

0 , otherwise

.
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The calculations of the integral over the auxiliary surface follows what Rubinowicz

did in 1917: on the boundary ~∇ψs = ~0, and therefore

−
∫
surface

~F · d~a =

∫
surface

ψs~∇
eikr

r
· d~a

=

∫
surface

ψs~∇
(
eikr

r

)
· d~a

=

∫
surface

ψs

(
ik

r
− 1

r2

)
eikrr̂ · d~a (2.5)

Notice that r̂ and ~ρf ≡ ~r − ~rF (the vector from ~rF to the edge) is related by

r̂ · d~a =
~r

r
· d~a =

~ρf
r
· d~a (2.6)

and actually the quantity ~r · d~a is the shortest distance between the field point ~rF

and the tangent plane at the integrating point on the surface.

Up to the present we have not made any assumption to the functional form of

ψs—it can be a point source or a plane wave, for example. To proceed, we must specify

the type of the source, as discussed in the following two cases.

Case (I) Plane Wave Diffraction

In this case

ψs = Aeikρ (2.7)

where ρ is the distance the wave has traveled from an arbitrary constant phase plane,

and A is the amplitude.
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The illuminated region now is a cylinder parallel to the direction of propagation,

and therefore the area element of the auxiliary surface is

d~a = d~l × ρ̂sdρ (2.8)

where d~l is the line element along the edge of the aperture (counterclockwise as

observed from z > 0) and ρ̂s is the unit vector parallel to the propagation
1. From

Eqs.(2.6)(2.7)(2.8), we get

−
∫
surface

~F · d~a = A

∫
surface

eik(ρ+r)

(
ik

r2
− 1

r3

)
~ρf ·

(
d~l × ρ̂s

)
dρ

= A

∮
edge

~ρf ·
(
d~l × ρ̂s

)∫ ∞
ρs

eik(ρ+r)

(
ik

r2
− 1

r3

)
dρ

Use the law of cosine:

r2 = ρ2
f + (ρ− ρs)

2 + 2ρf (ρ− ρs) ρ̂f · ρ̂s

and then differentiate it with respect to ρ :

r
dr

dρ
= ρ− ρs + ρf ρ̂f · ρ̂s,

r

(
1 +

dr

dρ

)
= r + ρ− ρs + ρf ρ̂f · ρ̂s.

Use the identities above, and notice that

d

dρ

(
eik(ρ+r)

r
(
r + ρ− ρs + ρf ρ̂f · ρ̂s

)) = eik(ρ+r)

(
ik

r2
− 1

r3

)
we have

−
∫
surface

~F · d~a = −
∮
edge

Aeikρs
eikρf

ρf

(
ρ̂s × ρ̂f

1 + ρ̂s · ρ̂f

)
· d~l. (2.9)

1In this case ρ̂s is just a constant vector, but as we’ll see in the next case, ρ̂s changes its direction
along the edge.
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Case (II) Point Source Diffraction

In this case

ψs = A
eikρ

ρ

where ρ = ‖~r − ~rS‖ and ~rS is the position of the source. The illuminated region is

now a cone with vertex at ~rS, with surface element

d~a =
ρ

ρs

(
d~l × ρ̂s

)
dρ.

As before, the surface integral thus turns out to be

−
∫
surface

~F · d~a = A

∫
surface

eik(ρ+r)

ρs

(
ik

r2
− 1

r3

)
eikr~ρf ·

(
d~l × ρ̂s

)
dρ

= A

∮
edge

~ρf
ρs
·
(
d~l × ρ̂s

)∫ ∞
ρs

eik(ρ+r)

(
ik

r2
− 1

r3

)
dρ

= −
∮
edge

A
eikρs

ρs

eikρf

ρf

(
ρ̂s × ρ̂f

1 + ρ̂s · ρ̂f

)
· d~l (2.10)

As we can see in both cases,

ψ (~rF ) = − 1

4π

∮
edge

ψs
eikρf

ρf

(
ρ̂s × ρ̂f

1 + ρ̂s · ρ̂f

)
· d~l+


ψs (~rF ) , ~rF ∈ illuminated region

0 , otherwise

(2.11)

and the functional form of the line integral is independent of the type of the source

field.
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2.2 Modified Version of Rubinowicz’Decomposi-

tion

As mentioned earlier, the derivation in the previous section is based on the incon-

sistent boundary conditions Eqs.(2.1)(2.2). The B.C.s are inconsistent because the

requirements are more than enough; there is no need to impose both ψ and ∂ψ/∂n

on the boundary to determine the unique solution ψ (~rF ) , and imposing excessive

B.C.s generally leads to the self-inconsistency. It is straightforward to show that the

solution Eq.(2.11) does not satisfy the B.C.s on the aperture and the screen 2.

Traditionally there are three major types of boundary conditions[6]: the Dirichlet

type (the value ψ on the boundary is given), the Neumann type (the gradient of ψ on

the boundary is given), and the mixed type (imposing ψ on part of the boundary and

∂ψ/∂n on the rest part), which are standard B.C.s that can uniquely3 determine the

solution ψ (~rF ) . In this section we attempt to reformulate Rubinowicz’Decomposition

trick based on the Dirichlet boundary condition as suggested by Sommerfeld:
ψ = ψs , on the aperture

ψ = 0 , on the screen

, (2.12)

(the Neumann’s version can be easily accomplished by the same procedure.) Introduce

2Although Eq.(2.11) is consequently not the mathematical solution to the problem at hand, it IS
a solution for another situation called "saltus problem" provided by Kottler, see [5], for example.

3Or up to a constant for the Neumann’s type.
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the Green’s function

GD =
eik‖~r−~rF ‖

‖~r − ~rF‖
− eik‖~r−~r∗F‖
‖~r − ~r∗F‖

≡ eikr

r
− eikr

∗

r∗
(2.13)

which vanishes at the whole screen yet still satisfies

(
∇2 + k2

)
GD = −4πδ3 (~r − ~rF ) , for z > 0

where ~r∗F is the image of the field point with respect to the screen
4, as also shown in

Figs.(2.1)(2.2). The subscript K reminds us that GK is the Green’s function for the

Dirichlet-type B.C.. So again we apply Green’s second identity

ψ (~rF ) = − 1

4π

∫
whole screen

(
ψ
∂GD

∂n
−GD

∂ψ

∂n

)
da

= − 1

4π

∫
aperture

ψs
∂GD

∂n
da

= − 1

4π

∫
aperture

(
ψs
∂GD

∂n
−GD

∂ψs
∂n

)
da. (2.14)

In the third step we add a zero term GD (∂ψs/∂n) to make the integrand "divergence-

free", as shown in the following calculations: Let

~F = −ψs~∇GD +GD
~∇ψs

and Eq.(2.14) reduces to

ψ (~rF ) =
1

4π

∫
aperture

~F · d~a.

4Or, the inversion point w.r.t the screen.
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As before, we make the same auxiliary surface and apply the divergence theorem

to the enclosed region V:∫
aperture

~F · d~a+

∫
surface

~F · d~a =

∫
V
~∇ · ~Fdτ

Although the Green’s function now takes a new form Eq.(2.13), the divergence of

~F is still the same due to the zero term GD (∂ψs/∂n)

~∇ · ~F = GD∇2ψs − ψs∇2GD

=

(
eikr

r
− eikr

∗

r∗

)(
−k2ψs

)
− ψs

(
−k2 e

ikr

r
− 4πδ3 (~r − ~rF ) + k2 e

ikr∗

r∗

)
= 4πψsδ

3 (~r − ~rF ) ,

so again we have

ψ (~rF ) = − 1

4π

∫
surface

~F · d~a+


ψs (~rF ) , ~rF ∈ illuminated region

0 , otherwise

.

What’s more, the zero term GD (∂ψs/∂n) still vanishes on the auxiliary surface

since ~∇ψs = ~0. Therefore,

−
∫
surface

~F · d~a =

∫
surface

(
ψs~∇GD −GD

~∇ψs
)
· d~a

=

∫
surface

ψs~∇GD · d~a

=

∫
surface

ψs~∇
(
eikr

r
− eikr

∗

r∗

)
· d~a

=

∫
surface

ψs~∇
(
eikr

r

)
· d~a−

∫
surface

ψs~∇
(
eikr

∗

r∗

)
· d~a.

Here we identify that the first term is just Eq.(2.5):∫
surface

ψs~∇
(
eikr

r

)
· d~a = − 1

4π

∮
edge

ψs
eikρf

ρf

(
ρ̂s × ρ̂f

1 + ρ̂s · ρ̂f

)
· d~l. (2.15)
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The second part can be evaluated as the same way in the previous section, with

replacing ~rF with ~r∗F , and thus we have a similar line integral

−
∫
surface

ψs~∇
(
eikr

∗

r∗

)
· d~a =

1

4π

∮
edge

ψs
eikρf

ρf

(
ρ̂s × ρ̂∗f

1 + ρ̂s · ρ̂∗f

)
· d~l, (2.16)

where ~ρ∗f ≡ ~r − ~r∗F = (the vector from ~r∗F to the edge), and ρ̂
∗
f is its unit vector.

Notice that ρ∗f ≡
∥∥~ρ∗f∥∥ = ρf since ~r

∗
F is the inversion of ~rF w.r.t the plane. Together

with the two line integral representations,

ψ (~rF ) =


ψs (~rF ) , ~rF ∈ illuminated region

0 , otherwise

− 1

4π

∮
edge

ψs
eikρf

ρf

(
ρ̂s × ρ̂f

1 + ρ̂s · ρ̂f
−

ρ̂s × ρ̂∗f
1 + ρ̂s · ρ̂∗f

)
· d~l (2.17)

Historically, in his original paper Rubinowicz has ever pointed out that if one

used a different Green’s function (like what we’ve done in this section) then there

would be an image term associated with the line integral. For some reason most

people (including Rubinowicz himself) seem to ignore the image term in the following

related papers. Thus traditionally the formula of the reflected part of ψ reads

− 1

4π

∮
edge

ψs
eikρf

ρf

(
ρ̂s × ρ̂f

1 + ρ̂s · ρ̂f

)
· d~l. (2.18)

However, as mentioned earlier, this formulation Eq.(2.18) has the defect of self-

inconsistency: the total wave ψ does not vanish at the screen nor does it take on the

value ψs as imposed as an assumption in the derivation. Furthermore, as we shall see

in Chapter 5, the complete representation Eq.(2.17) exhibits some merits, which in
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some sense suggests that the complete representation could describe a more physical

situation.
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Chapter 3

"Reflective" Representation

3.1 Motivations from Geometrical Optics

As derived in the previous chapter, by using the proper Green’s function Eq.(2.13)

we have a more satisfactory result that exhibits no mathematical inconsistency. How-

ever, the so called "reflected wave" part

− 1

4π

∮
edge

ψs
eikρf

ρf

(
ρ̂s × ρ̂f

1 + ρ̂s · ρ̂f
−

ρ̂s × ρ̂∗f
1 + ρ̂s · ρ̂∗f

)
· d~l. (3.1)

has become more cumbersome and fails to convey clearly what really happens on the

boundary of the aperture due to the confusing factor

ρ̂s × ρ̂f
1 + ρ̂s · ρ̂f

−
ρ̂s × ρ̂∗f

1 + ρ̂s · ρ̂∗f
. (3.2)

Traditionally Eq.(3.1)1 is interpreted as follows[7]: the reflected wave is obtained

1Actually, the explanation is given to the incomplete representation Eq.(2.18).
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by constructing a spherical wave

ψspherical ≡
eikρf

ρf

at each point on the edge with amplitude ψs (evaluated at the boundary), multiplying

the angular factor Eq.(3.2), and finally summing over all the spherical waves. But this

is actually nothing to do with the "reflection"2: In ordinary geometrical optics, the

reflection can be comprehended by drawing the "image point" behind the "mirror", as

shown in Fig.(3.1), and the reflected wave is equal to incident wave from this image

source. Therefore, if what Young really meant (in the early day when he saw the

diffraction phenomena) by "reflection" was the reflection in geometrical optics, then

we expect the line integral should take the form

ψreflection ∼
∮
edge

eik(ρs+ρf) for plane wave, (3.3)

ψreflection ∼
∮
edge

eik(ρs+ρf)

ρs + ρf
for point source. (3.4)

Figure (3.1): Ordinary Reflection

2Instead, it resembles Huygens’Principle.
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That is, the source wave ψs travels an optical path ρs+ρf , where ρs = ‖~r − ~rS‖ =the

distance from the source to the edge, ρf = ‖~r − ~rF‖ =the distance form the edge to

the field point, and the edge plays the role of the mirror. This expectation actually

can be accomplished by some deformations of Eq.(3.1). But let’s do it another way:

to derive the "reflected wave" from the beginning Eq.(2.14). This will make the idea

more tangible and will enlighten the spirit of Young’s primordial interpretation, as

shown in the following two sections.

3.2 Reflection at the Boundary

By Eq.(2.14), we have

ψ (~rF ) = − 1

4π

∫
aperture

ψs
∂

∂n

(
eikr

r
− eikr

∗

r∗

)
da

= − 1

2π

∫
aperture

ψs
∂

∂n

(
eikr

r

)
da

=
1

2π

∫
aperture

ψs
∂

∂r

(
eikr

r

)
∂r

∂z
da (3.5)

Case (I) Plane Wave Diffraction

To simplify the calculation, let’s assume the wave propagates in the direction

perpendicular to the screen—and it is reasonable to make this assumption since ex-

perimentally it is the most common configuration. As shown in Fig.(3.2), we make

a projection of F on the screen, and call it the origin O. Notice that O does not

necessarily lie inside the aperture. Next, let ~lf ≡
−→
OF , and ~l be the vector from O
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to a specific point on the edge of the aperture, so that every points along ~l can be

described by s~l, where 0 ≤ s ≤ 1. Therefore

r ≡ ‖~r − ~rF‖ =
∥∥∥s~l −~lf∥∥∥ =

√
s2l2 + l2f

and the area element on the aperture is

d~a = ~lds× sd~l.

Figure (3.2): Integration over the Aperture

So Eq.(3.5) can be evaluated as (for simplicity, the amplitude A of the source wave

is taken to be 1 from now on)

ψ (~rF ) = − 1

2π

∫
aperture

eikρ
(
ik

r
− 1

r2

)
eikr

zf
r
da

= − lfe
ikρs

2π

∫
aperture

(
ik

r2
− 1

r3

)
eikrda

= − lfe
ikρs

2π

∮
edge

∫ s=1

s=0

(
ik

s2l2 + l2f
− 1(

s2l2 + l2f
)3/2

)
eik
√
s2l2+l2f

(
~lds× sd~l

)
· êz.

= − lfe
ikρs

2π

∮
edge

(
~l × d~l

)
· êz

l2

 eik
√
s2l2+l2f√

s2l2 + l2f

∣∣∣∣s=1

s=0
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But (
~l × d~l

)
· êz = l2dφ,

where φ is the angle subtended by the arc of the boundary of the aperture as measured

from O. So

ψ (~rF ) =
lfe

ikρs

2π

∮
edge

dφ

eiklf
lf
− eik

√
l2+l2f√

l2 + l2f


=

1

2π

∮
edge

dφ
(
ψs (~rF )− eik(ρs+ρf) cos θf

)

where θf is indicated in Fig.(3.2).

This formula can be transformed into Rubinowicz’type easily: Note that

1

2π

∮
edge

ψs (~rf ) dφ =


ψs (~rF ) , if O lies inside the aperture

0 , otherwise

so

ψ (~rF ) =


ψs (~rF ) , if O lies inside the aperture

0 , otherwise

− 1

2π

∮
edge

eik(ρs+ρf) cos θfdφ

(3.6)

Notice that the "reflected wave"

ψreflection = − 1

2π

∮
edge

eik(ρs+ρf) cos θfdφ

now takes the form of Eq.(3.3) accompanied by a more friendly geometric factor

cos θf .
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Eq.(3.6) also simplifies the calculation of ψ (~rF ) . For example, when lf → 0, then

cos θf → 0 and we have

ψ (~rF )→


ψs (~rF ) , if O lies inside the aperture

0 , otherwise

,

as expected. Furthermore, if the aperture is circular with radius a, then ψ (~rf ) right

above the center of the circle can be evaluated explicitly:

ψ (~rF ) = eiklf − lfe
ik
√
a2+l2f√

a2 + l2f

.

Case (II) Point Source Diffraction

Similar to the previous case: we assume the SF is perpendicular to the screen.

Then define O, ~lf , ~l as before, and define a new vector ~ls to be the vector from O to

S. Therefore,

ρ ≡ ‖~r − ~rS‖ =
∥∥∥s~l −~ls∥∥∥ =

√
s2l2 + l2s

So Eq.(3.5) can be evaluated as

ψ (~rF ) = − 1

2π

∫
aperture

eikρ

ρ

(
ik

r
− 1

r2

)
eikr

lf
r
da

= − lf
2π

∫
aperture

eik(ρ+r)

ρ

(
ik

r2
− 1

r3

)
da

= − lf
2π

∮
edge

∫ s=1

s=0

e
ik
(√

s2l2+l2f+
√
s2l2+l2s

)
√
s2l2 + l2s

(
ik

s2l2 + l2f
− 1(

s2l2 + l2f
)3/2

)(
~lds× sd~l

)
· êz

= − lf
2π

∮
edge

(
~l × d~l

)
· êz

l2

 eik
√
s2l2+l2f√

s2l2 + l2f

eik
√
s2l2+l2s√

s2l2 + l2f +
√
s2l2 + l2s

∣∣∣∣s=1

s=0
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So

ψ (~rF ) =
lf
2π

∮
edge

eiklf
lf

eikls

lf + ls
− eik

√
l2+l2f√

l2 + l2f

eik
√
l2+l2s√

l2 + l2f +
√
l2 + l2s

 dφ

=
1

2π

∮
edge

(
eik(lf+ls)

lf + ls
− eik(ρs+ρf)

ρs + ρf

lf
ρf

)
dφ

=
1

2π

∮
edge

(
ψs (~rf )−

eik(ρs+ρf)

ρs + ρf
cos θf

)
dφ

where θf has the same definition as before.

This formula can as well be transformed to Rubinowicz’type:

ψ (~rF ) =


ψs (~rF ) , if O lies inside the aperture

0 , otherwise

− 1

2π

∮
edge

eik(ρs+ρf)

ρs + ρf
cos θfdφ

(3.7)

Notice that the "reflected wave"

ψreflection = − 1

2π

∮
edge

eik(ρs+ρf)

ρs + ρf
cos θfdφ

takes the form of Eq.(3.4) accompanied by the same factor cos θf .

As before, when lf → 0, then cos θf → 0 and

ψ (~rF )→


ψs (~rF ) , if O lies inside the aperture

0 , otherwise

.

Also, if the aperture is circular with radius a, then ψ (~rf ) just right above the center

of the circle is

ψ (~rF ) =
eik(ls+lf)

ls + lf
− e

ik
(√

a2+l2s+
√
a2+l2f

)
√
a2 + l2s +

√
a2 + l2f

lf√
a2 + l2f

.
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3.3 A More Elegant Derivation

There is a more elegant and easier derivation that utilizes the property of "normal

incidence"—the line through S and F is perpendicular to the screen. But before going

into the detail, we first mention a lemma from calculus.

Lemma Assume f is differentiable, g is continuous, and G is the antiderivative of

g, then

d

dx

∫ f2(x)

f1(x)

g (t) dt =
d

dx
[G (f1 (x))−G (f2 (x))]

= G′ (f1 (x)) f ′1 (x)−G′ (f2 (x)) f ′2 (x)

= g (f1 (x)) f ′1 (x)− g (f2 (x)) f ′2 (x) .

With this lemma, we can derive the results of Eqs.(3.6)(3.7) easily, as shown in

the following two cases:

Case (I) Plane Wave Diffraction

Start from Eq.(2.14), and note that ψs =constant on the aperture, we have

ψ (~rF ) = − 1

4π

∫
aperture

ψs
∂GD

∂n
da =

ψs
2π

∫
aperture

∂

∂z

(
eikr

r

)
da

= −ψs
2π

∮
edge

∫ s=1

s=0

∂

∂zf

(
eikr

r

)
l2sdsdφ = −ψs

2π

∮
edge

∂

∂zf

∫ s=1

s=0

(
eikr

r

)
l2sdsdφ

where ∂/∂zf is the differentiation with respect to the z coordinate of the field point

~rF , and thus it can go outside the integral sign.
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Since r =
√
s2l2 + l2f , we have rdr = l2sds, and

da = l2sdsdφ = rdrdφ.

So

ψ (~rF ) = −ψs
2π

∮
edge

∂

∂zf

∫ s=1

s=0

(
eikr

r

)
rdrdφ = −ψs

2π

∮
edge

∂

∂zf

∫ r=ρf

r=lf

eikrdrdφ

= −ψs
2π

∮
edge

(
eikρf

∂ρf
∂zf
− eiklf ∂lf

∂zf

)
dφ =

1

2π

∮
edge

(
eik(ls+lf) − eik(ρs+ρf) cos θf

)
dφ.

In this case the derivation seems to be trivial—we can derive the same result easily

without the aid of the lemma. But as shown in the next case, when the integration

cannot be performed explicitly, the lemma gives us a way to bypass the integration.

Case (II) Point Source Diffraction

Also start from Eq.(2.14), and note that ψs = eikρ

ρ
on the aperture, we have

ψ (~rF ) = − 1

4π

∫
aperture

ψs
∂GD

∂n
da =

1

2π

∫
aperture

eikρ

ρ

∂

∂z

(
eikr

r

)
da

= − 1

2π

∮
edge

∂

∂zf

∫ s=1

s=0

eikρ

ρ

(
eikr

r

)
l2sdsdφ.

Now let

u = r + ρ =
√
l2s2 + l2s +

√
l2s2 + l2f ,
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then

du =

 1√
l2s2 + l2s

+
1√

l2s2 + l2f

 l2sds

=

√l2s2 + l2s +
√
l2s2 + l2f√

l2s2 + l2s

√
l2s2 + l2f

 l2sds

=
u

ρr
l2sds,

and therefore

ψ (~rF ) = − 1

2π

∮
edge

∂

∂zf

(∫ u=ρs+ρf

u=ls+lf

eiku

u
du

)
dφ.

Actually the integral ∫
eiku

u
du

cannot be expressed in terms of elementary functions. However, with the aid of the

previous lemma, we can skip this problem: remember what we need is the derivatives

(with respect to zf):

ψ (~rF ) =
1

2π

∮
edge

(
eik(ls+lf)

ls + lf

dlf
dzf
− eik(ρs+ρf)

ρs + ρf

dρf
dzf

)
dφ

=
1

2π

∮
edge

(
eik(ls+lf)

ls + lf
− eik(ρs+ρf)

ρs + ρf
cos θf

)
dφ.

Note that the geometric and the reflected part of the waves come from the lower

and upper limits of the integration, respectively. Upon setting up the coordinate

on the aperture (as shown in Fig.(3.3)) the s−integral represents integration over

different loops from the origin to the edge.



27

Figure (3.3)

The integral at the innermost loop corresponds to the geometric light, which

vanishes if the origin is outside the aperture; the integral at the outermost loop

corresponds to the reflection wave at the edge. The integral for the loops in-between

somehow eliminate (or interfere) with each other. Moreover, the integrand is always

of the form

eik(ρ+r)

ρ+ r
, (3.8)

which means that the light travels an optical path from the source to the edge the

aperture, and then to the field point. For example, when s = 0 Eq.(3.8) becomes

eik(ls+lf)

ls + lf
,

which represents a light ray propagating form the source ~rS directly to ~rF (geometric

light), and when s = 1, Eq.(3.8) becomes

eik(ρs+ρf)

ρs + ρf
,
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representing a light ray propagating form the source to the edge, and then being

"reflected" to ~rF (reflected wave).
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Chapter 4

Solid-Angle Representation

4.1 Motivation from Electrostatics

Although ψ (~rF ) in Eq.(2.17) is mathematically self-consistent, it still exhibits the

same problem as what Rubinowicz encountered—the geometric part

ψgeometric (~rF ) ≡


ψs (~rF ) , ~rF ∈ illuminated region

0 , otherwise

is discontinuous across the surface enclosing the illuminated region, so is the reflected

part

ψreflected (~rF ) ≡ − 1

4π

∮
edge

ψs
eikρf

ρf

(
ρ̂s × ρ̂f

1 + ρ̂s · ρ̂f
−

ρ̂s × ρ̂∗f
1 + ρ̂s · ρ̂∗f

)
· d~l,

since, as ~rF crosses the surface, ρ̂s · ρ̂f becomes −1 and the integrand diverges1.

To overcome this problem, we seek for the analogy in electrostatics: Consider

a grounded infinite plane with a finite region σ at which the potential is held at a
1The image’s term does not exhibit the discontinuity, since ρ̂s · ρ̂∗f never takes the value −1.
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constant value V0 :

V =


V0 , on the region σ

0 , otherwise

.

To solve the potential at the field point ~rF , we define the Green’s function:

G ≡ 1

‖~r − ~rF‖
− 1

‖~r − ~r∗F‖
≡ 1

r
− 1

r∗

~r∗F ≡ the image of ~rF w.r.t the plane

and apply Green’s second identity

V (~rF ) = − 1

4π

∫
whole plane

(
V ~∇G−G~∇V

)
· d~a

= − 1

4π

∫
σ

V0
~∇G · d~a

= − 1

2π

∫
σ

V0
~∇
(

1

r

)
· d~a

=
1

2π

∫
σ

V0

(
r̂

r2

)
· d~a =

1

2π

∫
σ

V0dΩ.

So

V (~rF ) =
Ωf

2π
V0 (4.1)

where Ωf is the solid angle subtended by the aperture as observed at ~rF .

Inspired by the electrostatic result, we attempt a solution for diffraction problem

of the form

ψ (~rF ) =
Ωf

2π
ψs (~rF ) + (a line-integral),

that is, we demand the geometric part to possess a solid angle term Ωf/2π. As the

field point ~rF approaches to the black screen, Ωf → 0 and the geometric part vanishes;
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yet as ~rF approaches to the aperture, Ωf → 2π and the geometric part dominates,

and, finally, we regain ψs when ~rF is exactly on the aperture (the reflected part now

vanishes as before.) The advantages of this formulation is that both the geometric

and reflected parts now vary continuously, without any jump discontinuity across the

boundary of the illuminated region.

4.2 Derivations

Let’s begin with Eq.(2.14): ψ (~rF ) can be expressed as

ψ (~rF ) = − 1

4π

∫
aperture

[
ψs
∂GD

∂n
−GD

∂ψs
∂n

]
da

= − 1

4π

∫
aperture

[
ψs

∂

∂n

(
eikr

r

)
− eikr

r

∂ψs
∂n

]
da

+
1

4π

∫
aperture

[
ψs

∂

∂n

(
eikr

∗

r∗

)
− eikr

∗

r∗
∂ψs
∂n

]
da.

≡ J + J∗

To evaluate J, we define

~F = −ψs~∇
eikr

r
+
eikr

r
~∇ψs

as before, and

J =
1

4π

∫
aperture

~F · d~a.
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Figure (4.1): Deforming the Integration Region

Next we do a trick slightly different from what Rubinowicz did. We make an

auxiliary surface with the vertex at the field point , as shown in Fig.(4.1). Also make

a small ball centered at the field point, and define σ2 to be the surface of the small

ball inside the cone, while define σ1 to be the surface of the cone outside the small

ball. Apply the divergence theorem to the region enclosed by σ1, σ2 and the aperture:

∫
aperture

~F · d~a+

∫
σ1

~F · d~a+

∫
σ2

~F · d~a = 0

or

4πJ +

∫
σ1

~F · d~a− Ωf

4π
(4πψs (~rF )) = 0.

The third term comes from the fact that σ2 encloses Ωf/4π part of the singularity of

~∇ · ~F , which is 4πψs (~rF ). The next task is to evaluate
∫
σ1
~F · d~a. This can be done

by the same trick presented by Rubinowicz, as discuss in the following cases.
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Case (I) Plane Wave Diffraction

∫
σ1

~F · d~a =

∫
σ1

(
−eikρ~∇e

ikr

r
+
eikr

r
~∇eikρ

)
· d~a

=

∫
σ1

eikr

r
~∇eikρ · d~a =

∫
σ1

eikr

r
ikeikρρ̂ ·

(
ρ̂f × d~l
ρf

rdr

)

=

∫
σ1

ikeik(r+ρ)ρ̂s ·
(
ρ̂f × d~l
ρf

dr

)

=

∮
edge

ikρ̂s ·
(
ρ̂f × d~l
ρf

)∫ r=ρf

r=0

eik(r+ρ)dr.

Figure (4.2): Solid Angle for Plane Waves

But from the geometry structure of Fig.(4.2), we have

ρ = −
(
ρf − r

)
ρ̂s · ρ̂f + ρs



34

so

∫ r=ρf

r=0

eik(r+ρ)dr = eik(−ρf ρ̂s·ρ̂f+ρs)
∫ r=ρf

r=0

eikr(1+ρ̂s·ρ̂f)dr

=
1

ik

eik(ρs+ρf) − eik(−ρf ρ̂s·ρ̂f+ρs)

1 + ρ̂s · ρ̂f

and ∫
σ1

~F · d~a =

∮
edge

eikρs
eikρf

ρf

(
1− e−ikρf(1+ρ̂s·ρ̂f)

)( ρ̂s × ρ̂f
1 + ρ̂s · ρ̂f

)
· d~l.

Therefore

J =
Ωf

4π
ψs (~rF )

− 1

4π

∮
edge

eikρs
eikρf

ρf

(
1− e−ikρf(1+ρ̂s·ρ̂f)

)( ρ̂s × ρ̂f
1 + ρ̂s · ρ̂f

)
· d~l,

and it is straightforward to check that both parts of J are now continuous across the

surface of illuminated region.

To evaluate J∗, we construct the same surface as used in Chapter 2—the boundary

of illuminated region, and apply divergence theorem again:

∫
aperture

[
ψs~∇

eikr
∗

r∗
− eikr

∗

r∗
~∇ψs

]
· d~a+

∫
surface

[
ψs~∇

eikr
∗

r∗
− eikr

∗

r∗
~∇ψs

]
· d~a = 0

or

4πJ∗ +

∫
surface

ψs~∇
(
eikr

∗

r∗

)
· d~a = 0.

The second part is given by Eq.(2.16) for plane wave. Thus

J∗ =
1

4π

∮
edge

eikρs
eikρf

ρf

(
ρ̂s × ρ̂∗f

1 + ρ̂s · ρ̂∗f

)
· d~l
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Combining J and J∗ :

ψ (~rF ) =
Ωf

4π
ψs (~rF )

− 1

4π

∮
edge

eikρs
eikρf

ρf

[(
1− e−ikρf(1+ρ̂s·ρ̂f)

)( ρ̂s × ρ̂f
1 + ρ̂s · ρ̂f

)
−
(

ρ̂s × ρ̂∗f
1 + ρ̂s · ρ̂∗f

)]
· d~l.

(4.2)

Although this result fits our demand—ψ (~rF ) is now expressed in terms of the solid

angle Ωf , it is still unsatisfactory since the factor accompanied is 1/4π instead of

1/2π. Accordingly, if ~rF approaches to the aperture, the geometrical part only gives

one half of the total source wave ψs (~rF ), and thus the reflected part must contribute

the rest half part of ψs (~rF ) :
Geometric Part→ 1

2
ψs (~rF )

Reflected Part→ 1

2
ψs (~rF )

, as ~rF approaches to the aperture.

To fix the problem, we take the limit k → 0, and thus

ψs = ei0ρ ≡ 1.

So by Eq.(4.1), we must have

ψ (~rF )→ Ωf

4π
+

1

4π

∮
edge

1

ρf

(
ρ̂s × ρ̂∗f

1 + ρ̂s · ρ̂∗f

)
· d~l (4.1)

=
Ωf

2π
,

or

Ωf

4π
=

1

4π

∮
edge

1

ρf

(
ρ̂s × ρ̂∗f

1 + ρ̂s · ρ̂∗f

)
· d~l. (4.3)

This is a line-integral representation of solid angle, which has been also derived

by John S. Asvestas [8]. Note that ρ̂s is an arbitrary constant unit vector which can
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point to any direction, so the representation is not unique.

Finally, we construct ψ (~rF ) with proper geometric part by adding Eq.(4.3) into

Eq.(4.2)

ψ (~rF ) =
Ωf

2π
ψs (~rF )− 1

4π

∮
edge

eikρs
1

ρf

(
ρ̂s × ρ̂∗f

1 + ρ̂s · ρ̂∗f

)
· d~l

− 1

4π

∮
edge

eikρs
eikρf

ρf

[(
1− e−ikρf(1+ρ̂s·ρ̂f)

)( ρ̂s × ρ̂f
1 + ρ̂s · ρ̂f

)
−
(

ρ̂s × ρ̂∗f
1 + ρ̂s · ρ̂∗f

)]
· d~l

=
Ωf

2π
ψs (~rF )− 1

4π

∮
edge

ψs
eikρf

ρf


(

1− e−ikρf(1+ρ̂s·ρ̂f)
)( ρ̂s × ρ̂f

1 + ρ̂s · ρ̂f

)
−
(

1− e−ik(ρs+ρf)
)( ρ̂s × ρ̂∗f

1 + ρ̂s · ρ̂∗f

)
 · d~l

Case (II) Point Source Diffraction

∫
σ1

~F · d~a =

∫
σ1

(
−e

ikρ

ρ
~∇e

ikr

r
+
eikr

r
~∇e

ikρ

ρ

)
· d~a

=

∫
σ1

eikr

r
~∇e

ikρ

ρ
· d~a =

∫
σ1

eik(r+ρ)

r

(
ik

ρ
− 1

ρ2

)
ρ̂ ·
(
ρ̂f × d~l
ρf

rdr

)

=

∫
σ1

eik(r+ρ)

(
ik

ρ
− 1

ρ2

)
~ρs
ρ
·
(
ρ̂f × d~l
ρf

dr

)

=

∮
edge

~ρs ·
(
ρ̂f × d~l
ρf

)∫ r=ρf

r=0

eik(r+ρ)

(
ik

ρ2
− 1

ρ3

)
dr

Follow the Rubinowicz’trick:

ρ2 = ρ2
s +

(
ρf − r

)2 − 2ρs
(
ρf − r

)
ρ̂s · ρ̂f

ρ

(
1 +

dρ

dr

)
= r + ρ− ρf + ρsρ̂s · ρ̂f
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and

∫ r=ρf

r=0

eik(r+ρ)

(
ik

ρ2
− 1

ρ3

)
dr =

eik(r+ρ)

ρ
(
r + ρ− ρf + ρsρ̂s · ρ̂f

)∣∣∣∣r=ρf
r=0

=
eik(ρf+ρs)

ρ2
s

(
1 + ρ̂s · ρ̂f

) − eikρ0

ρ0

(
ρ0 − ρf + ρsρ̂s · ρ̂f

)
=

eik(ρf+ρs)

ρ2
s

(
1 + ρ̂s · ρ̂f

) − eikρ0

ρ2
0

(
1 + ρ̂0 · ρ̂f

)
where

~ρ0 ≡ ~ρs − ~ρf

is the vector from S to F. So

∫
σ1

~F · d~a =

∮
edge

(
eik(ρf+ρs)

ρs
(
1 + ρ̂s · ρ̂f

) − ρs
ρ2

0

eikρ0(
1 + ρ̂0 · ρ̂f

)) ρ̂s × ρ̂f
ρf

· d~l

=

∮
edge

eikρs

ρs

eikρf

ρf

(
1

1 + ρ̂s · ρ̂f
− ρ2

s

ρ2
0

e−ik(ρs+ρf−ρ0)

1 + ρ̂0 · ρ̂f

)(
ρ̂s × ρ̂f

)
· d~l.

Therefore

J =
Ωf

4π
ψs (~rF )

− 1

4π

∮
edge

eikρs

ρs

eikρf

ρf

(
1

1 + ρ̂s · ρ̂f
− ρ2

s

ρ2
0

e−ik(ρs+ρf−ρ0)

1 + ρ̂0 · ρ̂f

)(
ρ̂s × ρ̂f

)
· d~l,

and it is straightforward to check that both parts of J are now continuous across the

surface of illuminated region.

To evaluate J∗, we again construct the same surface as used in Chapter 2—the

boundary of illuminated region, and apply the divergence theorem:

∫
aperture

[
ψs~∇

eikr
∗

r∗
− eikr

∗

r∗
~∇ψs

]
· d~a+

∫
surface

[
ψs~∇

eikr
∗

r∗
− eikr

∗

r∗
~∇ψs

]
· d~a = 0
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or

4πJ∗ +

∫
surface

ψs~∇
(
eikr

∗

r∗

)
· d~a = 0.

The second part is again, given by Eq.(2.16) for point source, so

J∗ =
1

4π

∮
edge

eikρs

ρs

eikρf

ρf

(
ρ̂s × ρ̂∗f

1 + ρ̂s · ρ̂∗f

)
· d~l

and combine J and J∗, we have

ψ (~rF ) =
Ωf

4π
ψs (~rF )

− 1

4π

∮
edge

eikρs

ρs

eikρf

ρf


(

1

1 + ρ̂s · ρ̂f
− ρ2

s

ρ2
0

e−ik(ρs+ρf−ρ0)

1 + ρ̂0 · ρ̂f

)(
ρ̂s × ρ̂f

)
−

ρ̂s × ρ̂∗f
1 + ρ̂s · ρ̂∗f

 · d~l.
(4.4)

To construct the correct factor 1/2π, we use Eq.(4.3) to add another Ωf
4π
ψs (~rF )

to the geometric wave. But notice that in Eq.(4.3) ρ̂s is a constant vector, and in

the case of point source ρ̂s changes its direction as we integrate along the edge, so we

must specify one direction for ρ̂s in Eq.(4.3) so that we can insert it into Eq.(4.4).
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The result is most symmetric if we adopt ρ̂s ≡ ρ̂0 ≡the unit vector from ~rS to ~rF :

ψ (~rF ) =
Ωf

2π
ψs (~rF )− 1

4π

∮
edge

eikρs

ρs

1

ρf

(
ρ̂0 × ρ̂∗f

1 + ρ̂0 · ρ̂∗f

)
· d~l

− 1

4π

∮
edge

eikρs

ρs

eikρf

ρf


(

1

1 + ρ̂s · ρ̂f
− ρ2

s

ρ2
0

e−ik(ρs+ρf−ρ0)

1 + ρ̂0 · ρ̂f

)(
ρ̂s × ρ̂f

)
−

ρ̂s × ρ̂∗f
1 + ρ̂s · ρ̂∗f

 · d~l

=
Ωf

2π
ψs (~rF )− 1

4π

∮
edge

ψs
eikρf

ρf


(

1

1 + ρ̂s · ρ̂f
− ρ2

s

ρ2
0

e−ik(ρs+ρf−ρ0)

1 + ρ̂0 · ρ̂f

)(
ρ̂s × ρ̂f

)
−

ρ̂s × ρ̂∗f
1 + ρ̂s · ρ̂∗f

+ e−ikρf
(

ρ̂0 × ρ̂∗f
1 + ρ̂0 · ρ̂∗f

)
 · d~l

We have seen that in both cases the field ψ (~rF ) has the form

ψ (~rF ) =
Ωf

2π
ψs (~rF )− 1

4π

∮
edge

ψs
eikρf

ρf
[· · · ] · d~l.

However, the integrand in [· · · ] now depends on the type of the source.

There is another point to be noticed: since Ωf ∝ 1/ρf
2, in the far zone the

geometric term is overwhelmed by the reflected field, which is proportional to 1/ρf

of the source wave. The situation reverses in the near zone, of course.
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Chapter 5

Approximations

As discussed in previous chapters, the boundary conditions based on Kirchhoff’s

theory is mathematically inconsistent, and by using the proper Green’s function

Eq.(2.13), the diffraction theory can be transformed into a boundary value prob-

lem of Dirichlet type which is mathematically admissible. However, this is not the

whole story. As the source wave ψs propagates toward the aperture, the wave must

be modified by the presence of the opaque screen, and thus ψ is not exactly equal

to ψs, the unperturbed source, on the aperture. So the boundary value Eq.(2.12)

imposed earlier is still, unsatisfactory in the physical sense.

Nevertheless, the formulation based on Eq.(2.12) can, to some extent, still describe

the diffraction phenomena in the real world. For example, Sommerfeld has solved a 2-

D straight edge diffraction problem rigorously without using the unperturbed source

wave as boundary values [9], and his result can be derived from our formulation
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developed in Chapter 2 by letting the size of the aperture approach to infinity, while

keeping the field point lie in the vicinity of the edge of the aperture. The result

is, of course, a little different from Sommerfeld’s solution due to the unphysical B.C.

Eq.(2.12) we imposed. But if we use Kirchhoff’s B.C., things get worse since the result

has totally different functional form from Sommerfeld’s solution. Consequently, we

may "ranks" of boundary conditions as:

Kirchhoff(inconsistent) < Dirichlet(consistent) < Sommerfeld(physical)

In the following sections, we first solve the 2-D straight edge diffraction problem

by using the formulation established in Section 2.2 (with a little approximations), and

then compare the results with Sommerfeld’s work. In the Appendix B, we provide

a more rigorous method for treating the diffraction problem based on the physical

boundary conditions.

5.1 Approximated Solution for a Point Source

Consider an infinite half plane lying on z = 0 and x > 0, with a point source lying

in the region z < 0 as before. The solution of diffracted wave in the space z > 0 can

be solved by Eq.(2.17)

ψ (~rF ) =


ψs (~rF ) , ~rF ∈ illuminated region

0 , otherwise

− 1

4π

∫
edge

ψs
eikρf

ρf

(
ρ̂s × ρ̂f

1 + ρ̂s · ρ̂f
−

ρ̂s × ρ̂∗f
1 + ρ̂s · ρ̂∗f

)
· d~l.
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where the line integral is performed along the infinite straight edge1. In the far field

region kρf � 1, we apply stationary-phase approximation to evaluate the reflected

part

I =
1

4π

∫
edge

A
eik(ρs+ρf)

ρsρf

(
ρ̂s × ρ̂f

1 + ρ̂s · ρ̂f
−

ρ̂s × ρ̂∗f
1 + ρ̂s · ρ̂∗f

)
· d~l.

The the stationary point occurs when

∇
(
ρs + ρf

)
· d~l = 0,

or (
ρ̂s + ρ̂f

)
· d~l = 0.

Also, since ρf = ρ∗f , at the stationary point, we also have

(
ρ̂s + ρ̂∗f

)
· d~l = 0.

Now expand the phase at the stationary point:

ρs + ρf =
(
ρs + ρf

) ∣∣∣∣
0

+∇
(
ρs + ρf

) ∣∣∣∣
0

· δ~l +
1

2
δ~l ·
(
1̂− ρ̂sρ̂s

ρs
+
1̂− ρ̂f ρ̂f

ρf

)∣∣∣∣
0

· δ~l

=
(
ρs + ρf

) ∣∣∣∣
0

+
1

2

(
1

ρs
+

1

ρf

)
δ~l ·
(
1̂− ρ̂sρ̂s

) ∣∣∣∣
0

· δ~l

=
(
ρs + ρf

) ∣∣∣∣
0

+
1

2

ρs + ρf
ρsρf

(
δ~l2 − δ~l2 cos2

(
d~l, ρ̂s

)) ∣∣∣∣
0

=
(
ρs + ρf

) ∣∣∣∣
0

+
1

2

ρs + ρf
ρsρf

δ~l2 sin2
(
d~l, ρ̂s

) ∣∣∣∣
0

,

where the subscript 0 denotes the stationary point, which in this special case is the

point on the edge nearest to ~rF ; also, 1̂ is the identity operator in three dimensional

1And thus the integral sign
∫
is used instead of

∮
.
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space. Thus

I =
1

4π

∫
edge

A
eik(ρs+ρf)

ρsρf

(
ρ̂s × ρ̂f

1 + ρ̂s · ρ̂f
−

ρ̂s × ρ̂∗f
1 + ρ̂s · ρ̂∗f

)
· d~l

' 1

4π
A
eik(ρs+ρf)

ρsρf

(
ρ̂s × ρ̂f

1 + ρ̂s · ρ̂f
−

ρ̂s × ρ̂∗f
1 + ρ̂s · ρ̂∗f

)
· d~l∥∥∥d~l∥∥∥

∣∣∣∣
0

∫
edge

e
ik

(
1
2

ρs+ρf
ρsρf

sin2(d~l,ρ̂s)
)
δ~l2

d (δl)

' Aeik(ρs+ρf)

ρsρf

(
ρ̂s × ρ̂f

1 + ρ̂s · ρ̂f
−

ρ̂s × ρ̂∗f
1 + ρ̂s · ρ̂∗f

)
· d~l∥∥∥d~l∥∥∥

∣∣∣∣
0

√
2πi

k

ρsρf
ρs + ρf

1

sin
(
d~l, ρ̂s

)∣∣∣∣
0

.

But2

1

4π
A
eik(ρs+ρf)

ρsρf

(
ρ̂s × ρ̂f

1 + ρ̂s · ρ̂f
−

ρ̂s × ρ̂∗f
1 + ρ̂s · ρ̂∗f

)
· d~l∥∥∥d~l∥∥∥

=
1

4π
A
eik(ρs+ρf)

ρsρf

 ρ̂f ·
(
d~l × ρ̂s

)
1 + ρ̂s · ρ̂f

−
ρ̂∗f ·

(
d~l × ρ̂s

)
1 + ρ̂s · ρ̂∗f

 1∥∥∥d~l∥∥∥
=

1

4π
A
eik(ρs+ρf)

ρsρf

(
ρ̂f · n̂

1 + ρ̂s · ρ̂f
sin
(
d~l, ρ̂s

)
−

ρ̂∗f · n̂
1 + ρ̂s · ρ̂∗f

sin
(
d~l, ρ̂s

))

where

n̂ =
d~l × ρ̂s∥∥∥d~l × ρ̂s∥∥∥

is the outward normal of the geometric light cone. Therefore,

I ' 1

4π
A
eik(ρs+ρf)

ρsρf

(
ρ̂f · n̂

1 + ρ̂s · ρ̂f
−

ρ̂∗f · n̂
1 + ρ̂s · ρ̂∗f

)
sin
(
d~l, ρ̂s

)√2πi

k

ρsρf
ρs + ρf

1

sin
(
d~l, ρ̂s

)
=

1

4π
A
eik(ρs+ρf)

ρsρf

(
ρ̂f · n̂

1 + ρ̂s · ρ̂f
−

ρ̂∗f · n̂
1 + ρ̂s · ρ̂∗f

)√
2πi

k

ρsρf
ρs + ρf

To simplify the factor in the parenthesis, refer to Fig.(5.1).

2We suppress the subscript 0 to makes the notation neat.
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Figure (5.1): Sommerfeld’s 2D diffraction configuration

and

1 + ρ̂s · ρ̂f = 1 + cos (φ− α) ,

ρ̂f · n̂ = − sin (φ− α) ,

1 + ρ̂s · ρ̂∗f = 1 + cos (φ+ α) ,

ρ̂∗f · n̂ = sin (φ+ α) .

So

ρ̂f · n̂
1 + ρ̂s · ρ̂f

−
ρ̂∗f · n̂

1 + ρ̂s · ρ̂∗f

=
− sin (φ− α)

1 + cos (φ− α)
− sin (φ+ α)

1 + cos (φ+ α)

= −sin (φ− α) + sin (φ+ α) + sin (φ− α) cos (φ+ α) + cos (φ− α) sin (φ+ α)

1 + cos (φ+ α) + cos (φ− α) + cos (φ+ α) cos (φ− α)

= − 2 sinφ

cosα + cosφ
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Finally,

I ' 1

4π
A
eik(ρs+ρf)

ρsρf

(
ρ̂f · n̂

1 + ρ̂s · ρ̂f
−

ρ̂∗f · n̂
1 + ρ̂s · ρ̂∗f

)√
2πi

k

ρsρf
ρs + ρf

= −A eik(ρs+ρf)√
2πkρsρf

2 sinφ

cosα + cosφ

ei
π
4√

ρs + ρf
(5.1)

The factor ei
π
4 can explain the reason why the diffraction pattern in the water has a

phase delay compared to the incident wave.

5.2 Approximated Solution for Plane Waves

According to Sommerfeld, the diffraction wave based on the rigorous derivation

has the form [9]:

ψ (~rF ) '


ψs (~rF ) +

1 + i

4
√
πkρf

eikρf

(
1

cos φ−α
2

− 1

cos φ+α
2

)
, ~rF ∈ illuminated region

1 + i

4
√
πkρf

eikρf

(
1

cos φ−α
2

− 1

cos φ+α
2

)
, otherwise

.

for kρf � 1. Note that the geometric part already has the same form as that of our

formula. The rest of the work is to verify to what extent the reflected part derived

from our formula can approximate Sommerfeld’s. This can be done by considering

Eq.(5.1) for plane wave source, i.e., by taking the limit

ρs →∞, A→∞, while keeping
A

ρs
→ finite number taken to be 1

The result is
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I ' − 1

2π

eik(ρs+ρf)

ρf

(
2 sinφ

cosα + cosφ

)√
2πi

k
ρf

= −e
ik(ρs+ρf)√

2πkρf

(
2 sinφ

cosα + cosφ

)
ei
π
4

The angle factor can be simplified as

2 sinφ

cosα + cosφ
= −

4 sin φ
2

sin α
2

cosα + cosφ

cos φ
2

2 sin α
2

=

(
1

cos φ−α
2

− 1

cos φ+α
2

)
cos φ

2

2 sin α
2

and therefore

I ' − 1 + i

4
√
πkρf

eikρf

(
1

cos φ−α
2

− 1

cos φ+α
2

)
cos φ

2

sin α
2

Here eikρs has been dropped since Sommerfeld assumed that the plane wave has phase

0 right at ρf = 0. So apart from a remaining factor
cos φ

2

sin α
2

, the representation mimic

the form given by Sommerfeld. The discrepancy results from the different bound-

ary conditions: in Sommerfeld’s formulation, ψ represents the parallel component of

the electric field (of the normal component of the magnetic field) w.r.t the screen,

and thus ψ ≡ 0 when α = 0—this is the reason why the factor
(
sin α

2

)
appears in

the denominator. Also, we’ve assumed the unperturbed ψs on the aperture while

Sommerfeld used the perturbed ψ, so as the field point approaches the aperture, our

formula predicts that the reflected wave I vanishes exactly—this is the reason for the

presence of cos φ
2
in the numerator. Apart from these discrepancies, the angular form

of the two solutions is exactly the same.
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If, however, we use the mathematically inconsistent boundary conditions Eqs.(2.1)(2.2),

then the reflected wave would be

I ' 1 + i

4
√
πkρf

eikρf
sin (φ− α)

1 + cos (φ− α)
=

1 + i

4
√
πkρf

eikρf tan

(
φ− α

2

)
,

which is totally different from Sommerfeld’s solution.
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Chapter 6

Conclusion

By using mathematically consistent boundary conditions, we have seen that Rubi-

nowicz’decomposition formulation can be more powerful: the functional form of the

line integral becomes much neater and admits a simple interpretation of reflection at

edges. The new boundary conditions also provide us a different approach that makes

the diffraction be much similar to the electrostatic problem by using solid angle rep-

resentation for the geometric part of the field. Finally, the field predicted by this

formulation is much closer to the physical solution.

It is known that the Kirchhoff’s surface integral formula would cause some trou-

bles in the numerical simulations, since near the aperture the spherical waves in the

Kirchhoff’s formula make the integrand diverge. The line integral formulation can

avoid such trouble since the edge is still far from the observation point, and remember

it is a one-dimensional integration instead of two-dimensional surface integral, and
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this provides us an easier way for analyzing the diffraction problem with computers.
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Appendix A

The Mathematical Foundation of

Huygens’Principle

In this appendix we present a short review to Kirchhoff’s formulation of Huygens’

principle, which plays a significant role in the motivation of Rubinowicz’decomposi-

tion trick. This is just a brief introduction, remember. If the readers want to have a

more comprehensive and complete understanding of Kirchhoff’s formula and its appli-

cations in optics, I particular recommend the book written by Born M. and Wolf E.,

Principles of Optics; or the book I mentioned throughout this thesis, Sommerfeld’s

Optics.
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A.1 Kirchhoff’s Formulation

Figure (A.1): The typical diffraction porblem

The spirit of Kirchhoff’s formulation is to regard the Huygens’ principle as a

boundary value problem. We’ve already know that the scalar wave ψ satisfies the

Helmholtz equation

(
∇2 + k2

)
ψ = 0

behind the screen. Using the Green’s second identity,

∫
behind

the screen

(
ψ∇2G−G∇2ψ

)
dτ =

∫
whole screen

(
ψ
∂G

∂n
−G∂ψ

∂n

)
da (A.1)

where G is the Green’s function defined by

G ≡ GK =
eik‖~r−~rF ‖

‖~r − ~rF‖
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and n is the outward normal of the screen. Since
(
∇2 + k2

)
GK = −4πδ (~r − ~rF ) ,

Eq.(A.1) can be reduced to

ψ (~rF ) = − 1

4π

∫
whole screen

(
ψ
∂GK

∂n
−GK

∂ψ

∂n

)
da. (A.2)

To simply the integral, Kirchhoff adopted the boundary conditions
ψ = ψs

∂ψ

∂n
=
∂ψs
∂n

on the aperture (A.3)

where ψs is the the unperturbed source wave (ψ would be identically ψs if there is no

screen), and 
ψ = 0

∂ψ

∂n
= 0

on the rest of the screen. (A.4)

With these assumptions, Eq.(A.2) simplifies to

ψ (~rF ) = − 1

4π

∫
aperture

(
ψs
∂GK

∂n
−GK

∂ψs
∂n

)
da. (A.5)

This is the famous Kirchhoff’s diffraction formula.

A.2 Sommerfeld’s Modification

Kirchhoff’s diffraction formula has been used widely since it can predict the dif-

fraction pattern correctly and thus becomes the foundation of diffraction theory. How-

ever, there is a snake lurking in the derivation of Kirchhoff’s formula. The boundary

conditions imposed in the previous section is mathematically inconsistent, for, if an
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analytic function (satisfies the Helmholtz equation) has zero value ψ = 0 and zero

gradient ∂ψ/∂n = 0 on a finite region of a surface, then it vanishes everywhere. But

from the expression of Eq.(A.5), it is clearly not a trivial function, so the only possi-

bility is that wave function ψ given by Eq.(A.5) must not satisfy Eqs.(A.3)(A.4) on

the boundary.

To solve this problem, Sommerfeld, on the other hand, proposed another boundary

condition given by


ψ = ψs , on the aperture

ψ = 0 , on the rest of the screen

. (A.6)

This boundary condition, on the contrary, constitutes a self-consistent boundary value

problem of Dirichlet type, which admit the existence of the solution (and, as the

expected, the solution is guaranteed to be unique.) But since we have only assumed

the value of ψ on the screen and lacked of the information of ∂ψ/∂n, we have to

modify the Green’s function such that the G (∂ψ/∂n) term vanishes completely on

the screen. Theoretically this can be accomplished by choosing appropriate Green’s

function satisfying G ≡ 0 on the screen. If we choose the screen to be an infinite

plane, then this G can be solved explicitly:

G ≡ GD =
eik‖~r−~rF ‖

‖~r − ~rF‖
− eik‖~r−~r∗F‖
‖~r − ~r∗F‖

where ~r∗F is image of the field point ~rF with respective to the plane screen. Substitute
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G into Eq.(A.1), together with the B.C. Eq.(A.6), and note that

∂

∂n

(
eik‖~r−~rF ‖

‖~r − ~rF‖

)
= − ∂

∂n

(
eik‖~r−~r∗F‖
‖~r − ~r∗F‖

)
on the screen,

we have

ψ (~rF ) = − 1

2π

∫
aperture

ψs
∂

∂n

(
eik‖~r−~rF ‖

‖~r − ~rF‖

)
da. (A.7)

In the short wavelength limit k →∞, Eq.(A.7) can be written as

ψ (~rF ) =
1

2π

∫
aperture

ψs

(
ik

‖~r − ~rF‖
− 1

‖~r − ~rF‖2

)
cos θF e

ik‖~r−~rF ‖da

' ik

2π

∫
aperture

ψs

(
eik‖~r−~rF ‖

‖~r − ~rF‖
cos θF

)
da

≡ ik

2π

∫
aperture

ψs

(
eikr

r
cos θF

)
da. (A.8)

where θF is indicated in Fig.(A.2).

Figure (A.2): Huygens’principle of a plane screen

Eq.(A.8) not only is a self-consistent solution compatible with the B.C. Eq.(A.6),

but it has a vivid physical interpretations as well. It tells us that the diffracted wave
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behind the screen is the summation of spherical waves eikr/r with amplitudes ψs

emitted at each point inside the aperture. It also predict that the spherical waves are

not isotropic, but has a modulating factor cos θF that reduces the field to zero when

~rF approaches to the screen.
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Appendix B

Diffraction Problems with Physical

Boundary Conditions

Up to the present we’ve been using the mathematically consistent boundary con-

dition to obtain a series of consequences. However, as mentioned in Chapter 5, this

boundary condition is still not entirely satisfactory since, by its nature, it assumes

the unperturbed ψs on the aperture and thus somehow fails to describe the real phe-

nomena near the aperture especially in the vicinity of the edge, since, as we know, the

screen that "absorbs" the incident wave will produce an induced current (or induced

charges, due to the model we use) on the surface, and the current then produces

another wave in return such as to cancel the wave inside the bulk of the screen. As

a result, the only boundary condition that we can imposed is

ψ = 0 on the screen
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and we are actually lack of information of the boundary values on the aperture.

This complicates the situation. Historically, Sommerfeld has solved the problem

for a half-plane screen with a plane wave propagating perpendicular to the straight

edge. Born and Wolf [10] have generalized this problem by demanding the incident

wave to propagate in an arbitrary direction (still diffracted by a half-plane screen).

In this chapter, we provide general approach that in principle deals with a general

situation when the aperture is finite with arbitrary shape (that is, an arbitrary shape

hole on an infinite opaque screen), with arbitrary source distribution. However, even

the simplest case of normal incidence requires some numerical analysis to estimate

the wave function ψ, as shown in the following sections.

B.1 The General Approach

Assume there is an arbitrary source distribution behind the screen. Question:

what is the wave function (denoted by ψ(0)) if there is no aperture on the screen?

The problem is easy: behind the screen (the opposite side of the source) ψ(0) ≡ 0; ,

in front of the screen we pretend to put some image source (same distribution with

the "real" one, but with opposite sign) behind the screen, and the wave ψ(0) in front

of the screen is the interference of the real and the image source waves. For example,

assume that there is a point source at a distance d in front of the screen, then the
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wave function ψ(0) at the field point ~rF = (x, y, z) is

ψ(0) =


0 , behind the screen (z > 0)

eik
√
x2+y2+(z+d)2√

x2 + y2 + (z + d)2
− eik

√
x2+y2+(z−d)2√

x2 + y2 + (z − d)2
, in front of the screen (z < 0)

.

(B.1)

Now if we carve a hole on the screen, then the total wave can be regarded as a

"perturbation" of the original wave ψ(0) :

ψ = ψ(0) + ψ(1)

where ψ(1) is due to the presence of the aperture. But notice that ψ(1) does not need

to be small—it is just a change between ψ and ψ(0), and the following derivations are

all exact. The task is now reduced to finding the new function ψ(1). First we claim

that ψ(1) is an even function of z—this can be comprehend easily from the physical

perspective: we know that the contribution from the image source is actually produced

by the current (or charge) on the screen, and thus Eq.(B.1)1 can be expressed in terms

of the current (denoted by σ):

ψ(0) =
eik
√
x2+y2+(z+d)2√

x2 + y2 + (z + d)2
+

∫
plane

σ (x′, y′)
eik
√

(x−x′)2+(y−y′)2+z2√
(x− x′)2 + (y − y′)2 + z2

dx′dy′,

that is, σ acts as the surface source density (like the surface charge density in electro-

statics). Now a hole on the screen will in general change the distribution σ to σ+∆σ,

1We take the point source case for illustration, but actually the consequence is quite general, for
every source distribution can be regarded as the superposition of points of source.
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so

ψ = ψ(0) + ψ(1)

=
eik
√
x2+y2+(z+d)2√

x2 + y2 + (z + d)2
+

∫
plane

(σ (x′, y′) + ∆σ (x′, y′)) eik
√

(x−x′)2+(y−y′)2+z2√
(x− x′)2 + (y − y′)2 + z2

dx′dy′

=

 eik
√
x2+y2+(z+d)2√

x2 + y2 + (z + d)2
+

∫
plane

σ (x′, y′)
eik
√

(x−x′)2+(y−y′)2+z2√
(x− x′)2 + (y − y′)2 + z2

dx′dy′


+

∫
plane

∆σ (x′, y′)
eik
√

(x−x′)2+(y−y′)2+z2√
(x− x′)2 + (y − y′)2 + z2

dx′dy′

and hence we identify

ψ(1) =

∫
plane

∆σ (x′, y′)
eik
√

(x−x′)2+(y−y′)2+z2√
(x− x′)2 + (y − y′)2 + z2

dx′dy′,

which is an even function of z.

Next we seek the boundary conditions that ψ(1) has to satisfy. Since ψ ≡ 0 on

the screen, and ψ(0) is already equal to zero on the whole plane z = 0 (including the

aperture and the screen), we have

ψ(1) ≡ 0 on the screen. (B.2)

Furthermore, since there is no source on the aperture, ∂ψ/∂z must be continuous:

∂ψ

∂z

∣∣∣∣
z=0+

=
∂ψ

∂z

∣∣∣∣
z=0−

on the aperture.

Since ψ(1) is even in z, we have

∂ψ(1)

∂z

∣∣∣∣
z=0+

= −∂ψ
(1)

∂z

∣∣∣∣
z=0+

,
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and thus we have2

∂ψ(1)

∂z

∣∣∣∣
z=0

=
∂

∂z

 eik
√
x2+y2+(z+d)2√

x2 + y2 + (z + d)2

∣∣∣∣
z=0

=
∂ψs
∂z

∣∣∣∣
z=0

. (B.3)

Since what we’re interested is ψ in the the region z > 0 (behind the screen), where

ψ = ψ(0) + ψ(1) = ψ(1). Accordingly, the physically admitted boundary condition for

ψ is
∂ψ

∂z
=
∂ψs
∂z

, on the aperture

ψ = 0 , on the screen

. (B.4)

It is not the Dirichlet nor the Neumann’s type, but a "mixed" boundary condition.

The next strategy is to turn the mixed-boundary-condition problem into the more

familiar Neumann’s type problem. Define the Green’s function

GN =
eik‖~r−~rF ‖

‖~r − ~rF‖
+
eik‖~r−~r∗F‖
‖~r − ~r∗F‖

=
eikr

r
+
eikr

∗

r∗

and apply Green’s second identity

ψ (~rF ) = − 1

4π

∫
plane

(
ψ
∂GN

∂n
−GN

∂ψ

∂n

)
da

=
1

4π

∫
plane

GN
∂ψ

∂n
da

=
1

2π

∫
plane

(
−∂ψ
∂z

)
eikr

r
da ≡ 1

2π

∫
plane

σ
eikr

r
da (B.5)

Since we’ve already known that ∂ψ/∂z = ∂ψs/∂z on the aperture, then if we can also

know the value ∂ψ/∂z on the screen, then the problem can be solved by integrating

Eq.(B.5). In the following section, we’ll illustrate a simple case in which the value

∂ψ/∂z on the screen can be solved analytically.
2Again we use the point source case for illustration, and the consequence is generally true, for

we can assume an arbitrary functional form of the source wave ψs and its image ψ
∗
s. It is straight

forward to show that ∂ψs/∂z = −∂ψ∗s/∂z.
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B.2 Clements and Love’sMethod for Circular Aper-

ture

We consider a simple situation where the aperture is circular and the source dis-

tribution possesses azimuthal symmetry. Actually D. L. Clements and E. R. Love

have solved the similar problem for electrostatic potentials [11]. Here we apply their

method for Helmholtz equation. Before we proceed, we present two lemmas.

Lemma 1 If a, b and k are real, then

∫ 2π

0

exp
(
ik
√
a2 + b2 − 2ab cos θ

)
√
a2 + b2 − 2ab cos θ

dθ = 4

∫ ∞
max(a,b)

exp
(
k
√

(t2 − a2) (t2 − b2)/t
)
dt√

(t2 − a2) (t2 − b2)
.

Lemma 2 (Abel’s Integral Equation) f ∈ C1 on a < t < b. If

f (t) =

∫ t

a

g (ρ)√
t2 − ρ2

dρ, then g (t) =
2

π

d

dt

∫ t

a

ρf (ρ)√
t2 − ρ2

dρ.

The first lemma is actually the generalization of the electrostatic version (or called

Copson’s integral):

∫ 2π

0

dθ√
a2 + b2 − 2ab cos θ

= 4

∫ ∞
max(a,b)

dt√
(t2 − a2) (t2 − b2)

,

which is derived by Copson in 1947 [12]. The derivation for our modified version

can be derived by the same method without diffi culty. The second lemma is the

famous Abel’s integral equation, and the derivation can be found, for example, in

[13]. Notice that a slightly change of the notation occurs here: from now on we’ll use
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ρ as the radial coordinate on the plane (instead of the distance from the aperture to

the source). Also, the coordinate of the field point is ~rF ≡ (s, φ, z) , so

r ≡ ‖~r − ~rF‖ = ‖(ρ, θ, 0)− (s, φ, z)‖

=
√
s2 + z2 + ρ2 − 2sρ cos (φ− θ)

(Since our solution ψ now also possesses azimuthal symmetry, φ can be taken to

be 0.) Assume the radius of the aperture is a, then for s > a and z = 0,(on the screen)

we have

0 =
1

2π

∫
plane

σ
eikr

r

∣∣∣∣
s>a, z=0

da

=
1

2π

∫ ∞
0

σ (ρ) ρdρ

∫ 2π

0

exp
(
ik
√
s2 + ρ2 − 2sρ cos θ

)
√
s2 + ρ2 − 2sρ cos θ

dθ.

By Lemma 1, the angular integral can be transformed:

0 =
2

π

∫ s

0

σ (ρ) ρdρ

∫ ∞
s

exp
(
k
√

(t2 − s2) (t2 − ρ2)/t
)
dt√

(t2 − s2) (t2 − ρ2)

+
2

π

∫ ∞
s

σ (ρ) ρdρ

∫ ∞
ρ

exp
(
k
√

(t2 − s2) (t2 − ρ2)/t
)
dt√

(t2 − s2) (t2 − ρ2)

=
2

π

∫ ∞
s

dt√
t2 − s2

∫ s

0

exp
(
k
√

(t2 − s2) (t2 − ρ2)/t
)
σ (ρ) ρdρ√

t2 − ρ2

+
2

π

∫ ∞
s

dt√
t2 − s2

∫ t

s

exp
(
k
√

(t2 − s2) (t2 − ρ2)/t
)
σ (ρ) ρdρ√

t2 − ρ2

=
2

π

∫ ∞
s

dt√
t2 − s2

∫ t

0

exp
(
k
√

(t2 − s2) (t2 − ρ2)/t
)
σ (ρ) ρdρ√

t2 − ρ2

≡ 2

π

∫ ∞
s

f (t) + h (t) dt√
t2 − s2

,
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where

h (t) ≡
∫ a

0

exp
(
k
√

(t2 − s2) (t2 − ρ2)/t
)
σ0 (ρ)√

t2 − ρ2
ρdρ

f (t) ≡
∫ t

a

exp
(
k
√

(t2 − s2) (t2 − ρ2)/t
)
σ (ρ)√

t2 − ρ2
ρdρ.

Use the Lemma 2 to solve Abel’s integral equation, we have

f (t) + h (t) =

∫ a

0

exp
(
k
√

(t2 − s2) (t2 − ρ2)/t
)
σ0 (ρ)√

t2 − ρ2
ρdρ

+

∫ t

a

exp
(
k
√

(t2 − s2) (t2 − ρ2)/t
)
σ (ρ)√

t2 − ρ2
ρdρ

= 0.

Note that 0 < a < s < t. Now the equation holds for all s < t, so if we take the

limit s→ t, then the equation reduces to

∫ a

0

σ0 (ρ)√
t2 − ρ2

ρdρ+

∫ t

a

σ (ρ)√
t2 − ρ2

ρdρ = 0.

Solve Abel’s integral equation again for σ (t) t, we have

σ (t) t = − 2

π

d

dt

∫ t

a

ρdρ√
t2 − ρ2

∫ a

0

σ0 (ρ′) ρ′dρ′√
ρ2 − ρ′2

= − 2

π

∫ a

0

σ0 (ρ′) ρ′dρ′
d

dt

∫ t

a

ρdρ√
t2 − ρ2

√
ρ2 − ρ′2

= − 2

π

∫ a

0

σ0 (ρ′) ρ′dρ′

(
t

t2 − ρ′2

√
a2 − ρ′2
t2 − a2

)
.

By changing the dummy variable ρ′ to ρ, we have

σ (t) = − 2

π

∫ a

0

σ0 (ρ) ρdρ

(
1

t2 − ρ2

√
a2 − ρ2

t2 − a2

)
. (B.6)
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where

σ0 = −∂ψs
∂z

∣∣∣∣
z=0

is supposed to be given on the aperture 0 < ρ < a. So as long as ψs is known, we can

integrate over the aperture to get σ (t) for t > a. That is, we’ve successfully obtained

the general solution of ∂ψ/∂z and thus transformed the mixed boundary condition

problem into the Neumann’s Type.

B.3 Normal Incidence

The simplest example for which ψs possesses azimuthal symmetry is the plane

wave propagating perpendicular to the screen. Assume ψs = eikz, then σ0 = −ik,

and Eq.(B.6) can be evaluated explicitly:

σ (t) = − 2

π

∫ a

0

σ0 (ρ) ρdρ

(
1

t2 − ρ2

√
a2 − ρ2

t2 − a2

)

=
2ik

π

∫ a

0

ρdρ

(
1

t2 − ρ2

√
a2 − ρ2

t2 − a2

)

=
2

π
ik

(
a√

t2 − a2
− tan−1

(
a√

t2 − a2

))
.

So the solution of ψ is

ψ (~rF ) =
1

2π

∫
plane

σ
eikr

r
da

where

σ (ρ) =


−ik , on the aperture

2

π
ik

(
a√

ρ2 − a2
− tan−1

(
a√

ρ2 − a2

))
, on the screen

.
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Since σ (or the gradient of ψ) on the whole plane is know, the wave function ψ (~rF )

can be estimated by numerical methods.
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