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中文摘要 

 

氣喘是兒童常見的過敏性疾病之一，根據統計全球約一成的人口有氣喘的困

擾，歐洲塵蟎 (Dermatophagoides pteronyssinus) 是八成台灣過敏病患的過敏原之

一。氣喘的臨床症狀包含：呼吸道過度反應、嗜酸性白血球浸潤於呼吸道、活化

的過敏原特異性第二型輔助型 T 細胞增加、呼吸道黏液增加、甚至是呼吸道重塑

等等。口服耐受性，是指透過口服抗原而引發抗原特異性的免疫反應下降的現象，

目前被認為具潛力成為過敏性氣喘的治療方式。本篇研究希望透過口服餵食基因

重組第二類與第一類歐洲塵蟎過敏原  (recombinant D. pteronyssinus group 2 

allergen, rDp2; recombinant D. pteronyssinus group 1 allergen, rDp1)，藉此來降低由

歐洲塵蟎粗萃蛋白所引發的呼吸道發炎現象。我們利用腹腔注射粗萃蛋白致敏

BALB/c 雌性小鼠，並給予氣管粗萃蛋白引發呼吸道發炎。結果顯示，腹腔注射高

劑量 (50 μg) 的粗萃蛋白可有效誘發過敏性氣喘的臨床症狀，包含血清中塵蟎蛋

白特異性的 IgE 含量增加、促進嗜酸性白血球浸潤於肺部、肺部沖洗液中介白素-5 

(Interleukin-5, IL-5) 含量增加、小鼠脾臟細胞經粗萃蛋白刺激可產生大量 Th2 的細

胞激素 (IL-5 與 IL-13) 並且大量增生。更進一步，我們利用口服餵食的方式，連

續七天給予致敏小鼠 0.2 或 1.0 mg 劑量的 rDp2 或粗萃蛋白，探討是否能有效降低

粗萃蛋白引發的氣喘症狀。結果發現，給予 1.0 mg 的 rDp2 可有效降低呼吸道過度

反應，並減緩呼吸道發炎現象。因此，我們認為餵食較高劑量的基因重組蛋白或

粗萃蛋白，有減緩過敏性氣喘症狀的傾向；未來將需要更多的實驗，以尋找合適

的餵食計量與時間。 

 

關鍵字：過敏性氣喘；歐洲塵蟎；第二類歐洲塵蟎過敏原；口服耐受性。 
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Abstract 

 

Asthma is one of the most common allergic diseases in children; in addition, about 

80% of asthmatic patients in Taiwan are sensitized by house dust mite -- D. 

pteronyssinus. The characteristics of asthma such as AHR, eosinophils infiltration, 

antigen-specific T helper 2 cells activation, increased mucus secretion and even airway 

remodeling. Antigens-specific immune tolerance by prior oral administration of 

antigens might be a therapeutic strategy for allergic asthma. Therefore, we aimed to 

apply oral administration of rDp2 to decrease the airway inflammation induced by D. 

pteronyssinus. The female BALB/c mice were used and given with crude mite extract of 

D. pteronyssinus as the allergic asthma. In present study, we sensitized mice with 

peritoneal injection, and then challenged with intratracheal injection of crude mite 

extract. The results showed that peritoneal injection with high-dose could induce the 

clinical features of asthma significantly, including elevated mite-specific IgE in serum, 

production of Th2 cytokines (IL-5, IL-13) of splenocytes, and crude mite-specific 

lymphoproliferation. Furthermore, oral delivery of rDp2 or crude mite extract 0.2 or 1.0 

mg/day for consecutive 7 days at the beginning of sensitization showed some beneficial 
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effects on airway inflammation. Oral feeding 1.0 mg/day of rDp2 reduced AHR and 

slightly decreased the airway inflammation induced by crude mite extract. In conclusion, 

we suggest that oral delivery of high dose of single recombinant allergen seems to be 

more benefit on airway inflammation induced by the complex crude mite extract, and 

the feeding dose and feeding period need further investigation. 

 

 

Keywords: allergic asthma; Dermatophagoides pteronyssinus; Dp2; oral tolerance. 
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Epidemiology of allergic asthma 

Allergic asthma is the most common chronic respiratory disease of children, and 

its prevalence has been increased in resent decades. According to World Health 

Organization estimation, as many as 300 million people of all age suffer from 

asthma and asthma caused 255 thousand deaths in 2005. Based on WHO estimation, 

asthma affects about 10% of population in worldwide. In northern Taiwan, the 

prevalence of asthma of school-children has an increased trend, from 5.1% in 1985 

to 10.2% in 1998 (吳家興 et al., 1998). In Taoyuan, the prevalence of diagnosed 

asthma is 12.2%, and the prevalence of wheeze-ever is 16.8% (Kao et al., 2005). 

Allergic asthma has become a public problem not only for developed countries but 

for all the regardless developing countries.  

 

Risk factors for asthma 

Childhood asthma has familial clustering which is due to a complex interaction 

between unknown genes and environmental factors. To study the genes involved in 

asthma, many genome screens have been carried out. Asthma shows some genetic 

linkages overlap with type 1 diabetes (also known as insulin-dependent diabetes), 

multiple sclerosis, rheumatoid arthritis, and ankylosing spondylitis (Cookson, 2002). 
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In addition, both polymorphisms of CD14 and Interleukin-13 (IL-13) have been 

reported that associated with the level of total IgE in serum (Baldini et al., 1999). 

The variation of FCERIB gene alters the activity of FcεRI of mast cells, and might 

affect the expression level as well (Donnadieu et al., 2003). Furthermore, ADAM33 

expressed by bronchial smooth muscle (Su et al., 2008), DPP10 encodes a dipeptidyl 

peptidases (Allen et al., 2003; Blakey et al., 2009), both of which have been 

identified and the effects on asthma are still working.  

Strachan proposed a hypothesis, which was called the hygiene hypothesis, to 

explain the increased the prevalence of asthma in children (Strachan, 1989). The 

hygiene hypothesis suggested that the increase in the prevalence of allergic diseases 

in the past decades seems to be resulted from the decrease in the frequency of 

childhood infection (Strachan, 1989), and also decreased regulatory cytokine levels 

(Weiss, 2002). Braun-fahrlander and coworkers even indicated that endotoxin levels 

in the dust were inversely related to the occurrence of atopic asthma 

(Braun-Fahrlander et al., 2002). Moreover, it has been proposed that endotoxin 

stimulation may play a role in normal immune system development (Weiss, 2002). 

Therefore, the westernized life style, urbanization (Lin et al., 2001), and compounds 

surround in environment, such as cell-wall component of fungi (Weiss, 2002) and air 
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pollution molecules (Ho et al., 2007) could be the factors for developing asthma.  

 

Definition of asthma 

According to the guideline provided by National Institutes of Health on 2007, 

asthma composes of airway inflammation, AHR, bronchoconstriction, and results in 

individual variant and recurring symptoms. Many cells are involved in airway 

inflammation, such as eosinophils, mast cells, and Type 2 helper cells (Th2 cells). 

The interactions among these cells result in airway inflammation, including AHR, 

and mucus hypersecretion. Consequently, asthmatic patients and susceptible 

individuals have clinical symptoms, including night coughing, wheezing, 

breathlessness, and bronchoconstriction quickly after a variety of stimulations.  

 

Mechanism of asthma 

The mechanism of asthma has been studied for a long time, and it involved 

various cell types and cytokines. Firstly, the innocuous antigens are uptaken by 

airway dendritic cells (DCs) throgh extending dendrites into airway lumen (Jahnsen 

et al., 2006) or the allergens digest the tight junction to penetrate the epithelial cells 

barrier (Wan et al., 1999). The allergen bearing DCs migrate to draining lymph 
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nodes to present allergen to naïve Th cells and induce the naïve Th cells differentiate 

into Th2 cells in the presence of interleukin 4 (IL-4) (Demeure et al., 1995). 

Consequently, these Th2 cells produce Th2 cytokines, including IL-4, IL-5, IL-9 and 

IL-13 to affect other immune cells. The IL-4 and IL-13 are essential for IgE class 

switching in B cell, and IL-5, IL-6, and IL-9 can also enhance the IgE production 

(Robinson, 2000). Both IL-5 and IL-9 promotes eosinophils development, survival 

and infiltration (Robinson, 2000; Takahashi et al., 1992). IL-9 overexpression 

increases number of mast cells in lung, accumulates mucus-like materials, and 

elevates AHR (Temann et al., 1998). IL-13 plays a role in mucus hypersecretion and 

AHR (Zhu et al., 1999). Consequently, while asthmatic individual re-encounter the 

allergens, both innate and adaptive immune responses are activated. The mast cells 

activated by cross-linking the FcεRI on the membrane (Novak et al., 2001), release 

histamine, leukotrienes (LTC4), prostaglandins (PGD2), cytokines, chemokines, and 

growth factors by degranulation. The activated eosinophils release pro-inflammatory 

mediators (Gelfand, 2004), such as cysteinyl leukotrienes, major basic protein, 

eosinophil peroxidase, and cytokines. Finally, these episodes lead to vascular 

permeability increase, smooth-muscle constriction, and mucus hypersecretion. 
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Animal model for allergic asthma 

Animal models reproducing many features of human asthma were used for a 

hundred years for research. Clinical asthma symptoms include serum IgE elevation, 

airway inflammation, goblet cell hyperplasia, epithelial hypertrophy, AHR, and even 

airway remodeling (Vignola et al., 2000). Current knowledge of the pathology of 

asthma are resulted from animal studies such as sheep, dogs, guinea pigs, rats and 

mice (Zosky and Sly, 2007). The mouse is the commonly used laboratory animals, 

due to its easier to handle and more supports in transgenic technology. Ovalbumin 

(OVA) is often used as allergen to address issue of asthma, but other allergens, such 

as pollen, house dust mite, and cockroach, are also used to mimic clinical cases. The 

acute sensitization and challenge protocol usually contains several systemic 

administration of the allergen with an adjuvant and then challenged animals with 

allergen through airway for a period (Nials and Uddin, 2008). The mouse strains, the 

allergens, and the sensitization and challenge protocols affect the features of the 

animal model. 

 

Drugs for asthma treatment 

In addition to allergen avoidance, the most common treatment of asthma are 
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inhaling corticosteroids, β2-adrenoceptor agonists, mediator antagonists, and 

phosphodiesterase inhibitors (Holgate and Polosa, 2008). The corticosteroids 

suppress the Th2-cell-mediated inflammation by inhibiting the expression of 

cytokines and chemokines which are regulated by nuclear factor-κB (NF-κB) and 

activator protein 1 (AP1) (Barnes and Adcock, 1998). However, corticosteroids 

inhalation does not influence the disease essentially. The β2-adrenoceptor agonists 

suppress the bronchoconstriction (Usmani et al., 2005) by binding β2-adrenoceptor, 

activating protein kinase A, opening Ca2+-dependent K+ channels. H1-antihistamines 

(Manjra et al., 2009), leukotriene inhibitors (Ishimura et al., 2009), and 

phosphodiesterase inhibitors (Kita et al., 2009) were also used to relax asthmatic 

symptoms. 

 

Oral tolerance 

The definition of oral tolerance is that the specific suppression of cellular and/or 

humoral immune responses to an antigen in induced by prior administration of the 

antigen through the oral route (Weiner, 2000). Two major mechanisms are involved 

in oral tolerance, including antigen-specific regulatory T cells induced by lower and 

repeating doses of oral antigen (Tsuji and Kosaka, 2008) and clonal deletion (Chen 
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et al., 1995) or anergy induced by higher single dose of oral antigen (Cobbold and 

Waldmann, 1998). Many different kinds of regulatory T cells (Treg) are involved in 

oral tolerance including natural Treg (nTreg), inducible Type 3 helper cells (Th3), 

and T regulatory type 1 (Tr1) cells. As Sakaguchi defined, nTreg are thymus-derived 

CD4+CD25+Foxp3+ T cells and their suppression are major through cytotoxic T 

lymphocyte antigen 4 (CTLA-4) (Wing et al., 2008). Another report showed that the 

indoleamine 2,3-dioxygenase (IDO)-expressing DCs in Peyer’s patches from orally 

tolerized mice are involved in the generation of CD4+CD25+Foxp3+ T cells in a 

collagen-induced arthritis murine model (Park et al., 2008). Oral tolerance can be 

induced in absent of nTreg; however, oral tolerance dependents on transforming 

growth factor β (TGF-β) production (Mucida et al., 2005). Previous studies 

discovered a population of CD4+ T cells with latency-associated peptide (bearing the 

membrane-bound form of TGF-β) and the ability to produce TGF-β, such as Th3, 

are considered as potent regulatory T cells involved in oral tolerance (Chen et al., 

2008; Oida et al., 2003). T regulatory type 1 (Tr1) cells are defined as a subset cells, 

which are developed in the presence of IL-10 and have the ability to secret IL-10 

(Martinez-Forero et al., 2008). Previous study reported that Peyer’s patch cells 

produce IL-10 to suppress systemic inflammation after low-dose oral tolerance 
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induction (Tsuji et al., 2001).  

Oral tolerance has been regarded as a potential strategy for autoimmune such as 

collagen-induced arthritis (Khare et al., 1995), type I diabetes (Maron et al., 1996), 

and multiple sclerosis (Martinez-Forero et al., 2008). Merill Chase showed that oral 

administration of contact-sensitizing agent could prevent guinea pigs from allergic 

disease induced by the contact-sensitizing agent (Chase, 1946). Other research also 

showed that oral feeding with OVA prevent and improve the asthma symptoms 

(Chung et al., 2002). 

 

House dust mite 

Dermatophagoides pteronyssinus (D. pteronyssinus), the predominant house 

dust mite in Taiwan (Kuo et al., 1999), has been discovered that over 15 proteins of 

which can induce IgE production. Particularly, the group 1 and 2 allergens derived 

from house dust mites are considered major allergens based on the frequency of 

patients sensitized (Thomas et al., 2002).  

Group 1 allergen derived from the D. pteronyssinus (Dp1) in mite feces has 

been described as an aeroallergen. Dp1 is composed of major 222 amino acids with 

a molecular mass of 25 kD, 19-residues signal peptide, and 80-residues pro-domain 
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sequence (Zhang et al., 2009). Dp1 block the IgE producing feedback through 

cleaving CD23 (FcεRII) on B cells (Schulz et al., 1995), inhibit differentiation to 

Type 1 helper (Th1) linage though cleaving CD-25 (IL-2Rα) on T cells (Schulz et al., 

1998), facilitate its own passage cross the barrier through digest the intercellular 

tight junctions of airway epithelial cells (Kalsheker et al., 1996; Wan et al., 1999), 

and induce mast cells and basophils degranulation to release proinflammatory 

cytokines (Mita et al., 1995). A clinical research showed that among 47 patients 

sensitized by D. pteronyssinus with allergic rhinitis with or without asthma, 31 

patients (63.8%) had positive IgE to Dp1 (Taketomi et al., 2006). 

Group 2 allergen derived from the D. pteronyssinus (Dp2) in male mite 

reproductive tract (Thomas and Chua, 1995) is composed of 129 amino acids. Dp2 

has 35% identity to the human epididymal epithelial cell secreted protein (HE1), 

which is known to bind cholesterol with high affinity. Dp2 has been reported that it 

can promote toll like receptor 4 (TLR4) signaling to enhance the response of 

epithelial cells to LPS (Trompette et al., 2009). Additionally, 87.8% of D. 

pteronyssinus -sensitized asthmatic patients in Taiwan had a positive reaction in 

purified Dp2 skin-prick tests (Tsai et al., 2000).  
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Recombinant allergens 

Due to the high cost of money to purify some rare or unstable allergen, protein 

expression systems seem to be an efficient strategy to gain allergen. Many hose cells 

are used to express recombinant proteins, such as Escherichia coli (E. coli), Pichia 

pastoris, drosophila cells, mammalian cells and so on. The E. coli and Pichia 

pastoris protein expression systems have been studied for a long time and utilized in 

lots of researches. Pichia pastoris systems were used to express recombinant 

allergens in this study to avoid the disadvantages in E. coli systems, 

lipopolysacchride contamination, protein uncompleted folding, and different gene 

codes usage. 

 

Hypothesis and specific aims  

In the previous data, we have known that the oral administration of recombinant 

Dp2 (rDp2) to rDp2 sensitized and challenged mice can decrease Dp2-specific IgE, 

total IgE, AHR, cell infiltration to lung, IL-4 levels in bronchoalveolar larvage fluid 

(BALF) and splenocyte cultured supernatant, and increase IL-10 level in BALF (李

佩芸, 2004). Most asthmatic patients are not sensitized by Dp2 but the whole mite; 

thereby, the crude mite extract was used in this study rather than rDp2 to mimic the 
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symptoms of clinical asthma. We hypothesized that the airway inflammation 

induced by crude mite extract from D. pteronyssinus can be decreased by prior oral 

delivery with mite allergens, rDp2 or recombinant Dp1 (rDp1) or crude mite extract. 

Based on this hypothesis, the 3 specific aims were in the present study. Firstly, we 

would like to prepare large amount of rDp2 and rDp1 produced by Pichia pastoris 

for oral delivery. Secondary, we will select an appropriate intraperitoneal (i.p.) 

injection dose of crude mite extract to establish an asthmatic murine model. Finally, 

we would like to investigate the effect of oral delivery of rDp2 or crude mite extract 

on the airway inflammation induced by crude mite. 



 

13 

 

 

 

 

 

 

 

 

MATERIALS & METHODS 
 



 

14 

 

Preparation of crude mite extract 

Crude mite extraction was prepared by following the protocol established 

previous in lab (何祥, 2002) with modifications. In breif, 1 gram of house dust whole 

culture mite (4960, Allergon AB, Sweden) was dissolved in 50 mL ether, mixed by a 

stirrer (Fisher Scientific, USA) at 4 ℃ for 48 hours, and the pellet was collected by 

centrifuging at 3000 rpm for 30 minutes. The pellet was suspended with 30 mL 

sterilized PBS, ground the pellet on ice, and mixed by a stirrer at 4 ℃ for 48 hours. 

The supernatant was collected by centrifuging at 10000 rpm for 30 minutes, dialyzed 

(Spectra/Por® Molecularporous membrane tubing MWCO: 6000-8000, Spectrum, 

USA) with PBS for 48 hours. Finally, the supernatant was filtered with 0.22μm filter 

(Acrodisc® Syringe Filter, PALL Life Sciences, USA), determined the concentration 

by BCA protein assay (Thermo Scientific, Rockford, USA), and stored at -80 ℃. 

 

Preparation of rDp2 

 The Pichia pastoris GS115 transformed with der p 2 gene in pPICZα-A 

(pPICZα-A-der p 2) was kindly provided by Dr. KY Chua, and the expression by a 

fermentor was kindly provided by Dr. KT Lee (Institute of Microbiology and 

Biochemistry, National Taiwan University). The yeast cultured supernatant from a 
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fermentor was collected, lyophilized by a freezer, and dissolved with ddH2O. The 

cultured supernatant was depleted the alcohol oxidase by applying to Amicon® 

Ultra-15 PL-30 Ultrafiltration. Then protein in the fraction below 30 kD was 

dialyzed (Spectra/Por® Molecularporous membrane tubing MWCO: 6000-8000, 

Spectrum, CA, USA) with PBS at 4  for 48 hours. After that, the fraction ℃

containing rDp2 was concentrated and desalted by applying to Amicon® Ultra-15 

PL-3 Ultrafiltration. Finally, the concentrated rDp2 protein was filtered with 0.22 

μm filter (Acrodisc® Syringe Filter, PALL Life Sciences, NY, USA), determined 

the concentration by BCA protein assay (Thermo Scientific, Rockford, IL, USA), 

and stored at -80℃. 

 

Expression of rDp1 

The E. coli DH5α containing der p 1 gene in pPICZα-A (pPICZα-A-der p 1) 

was kindly provided by Dr. KT Lee (Institute of Microbiology and Biochemistry, 

National Taiwan University). The pPICZα-A-der p 1 was amplified and extracted by 

following the protocol provided by Plasmid DNA Extraction (Viogene, Taiwan). The 

concentration of pPICZα-A-der p 1 was measured by a spectrophotometer (DU®800, 

Beckman Coulter, USA).  
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Six μg pPICZα-A-der p 1 were digested into linear form by 20 Unit SacI (New 

England BioLabs, USA) in a 37 ℃ water bath (YIHDERN) for 1 hour. The liner 

pPICZα-A-der p 1 was transformed into the Pichia pastoris X33 by the protocol 

provided by the EasySelectTM Pichia Expression Kit (Invitrogen, USA). Briefly, the 

50 μL Pichia pastoris were added with 3 μg linear pPICZα-A-der p 1 and 1 mL 

solution II. And then the Pichia pastoris were incubated in a 30℃ dry bath incubator 

(Violet BioScience, Taipei, Taiwan) for 1 hour, heat shocked in 42℃ water bath 

(YIHDERN) for 10 minutes, and added with 1mL fresh YPDZ and incubated at 30℃ 

with shacking 250 rpm for 1 hour. The yeast cells pellet were collected by 

centrifuging at 3000 rpm for 5 minutes, washed with 0.5 mL solution III, 

resuspended with 150 μL of solution III, and spread on YPDSZ plates and incubated 

in 30℃ incubator until colony formed (3 to 5 days). Colonies were streaked again on 

YPDSZ plates, and incubated at 30 ℃ until colony formed.  

Colony polymerase chain reaction (PCR) was performed to confirm the 

successful transformation. Primers including EcoRI-der p 1 and der p 1-XbaI 

(Appendix. 3) were used to confirm the insertion of der p 1. The colony PCR was 

performed by T3 thermocycler (Biometra, Germany) with the protocol that 95 ℃ for 

5 minutes, 30 cycles (95 ℃ for 1 minute, 55 ℃ for 1 minute, and 72 ℃ for 1 minute), 
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and 72 ℃ for 5 minute. The PCR product was examined by agarose gel 

electrophoresis. 

The pPICZα-A-der p 1 inserted into Pichia pastoris genome may result in the 

destruction of AOX1 gene and poor metabolism of alcohol. MD and MM plates were 

used to select strains which can sustain in alcohol metabolites. Colonies from the 

YPDSZ plates were selected to streak on the MD and MM plates, and the colonies 

from the MM plates were selected to express protein in a small scale for further 

selection. The bigger single colonies were streaked into 5 mL BMG medium in 

sterilized 50 mL centrifuge tube, incubated in a shaking incubator (200 rpm) at 30 ℃ 

until OD600 reached 2-4 (about 16-18 hours). The Pichia pastoris were harvested by 

centrifuging at 2000 × g for 10 minutes at room temperature, and suspended to an 

OD600 of 1.0 in BMM medium. After overnight incubation at 30℃, the suspension 

was added with 100% methanol every 24 hours to reach the final concentration of 

0.5% methanol. The supernatant was collected after induction for 96 hours by 

centrifuging at 9000 rpm for 15 minutes at 4 ℃, and for further Western blot 

confirmation. 

The cultured supernatant from a fermentor was depleted the alcohol oxidase by 

applying to Amicon® Ultra-15 PL-50 Ultrafiltration. The fraction below 50 kD 
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dialyzed with 5 L of PBS in a dialysis bag (Spectra/Por® Molecularporous 

membrane tubing MWCO: 6000-8000, Spectrum, USA) at 4 ℃ for 24 hours. The 

fraction of rDp1 was concentrated and desalted by applying to Amicon® Ultra-15 

PL-10 Ultrafiltration. Finally, the concentrated rDp1 protein was filtered with 0.22 

μm filter (Acrodisc® Syringe Filter, PALL Life Sciences, USA), determined the 

concentration by BCA protein assay (Thermo Scientific, USA), and stored at -80 ℃. 

 

Western blotting of rDp2 and rDp1 

The sample proteins were mixed with 4 × loading dye and boiled at 95 ℃ for 10 

minutes. Firstly, the samples and protein ladder (PageRulerTM Prestainged protein 

ladder, Fermentas, Canada) were run on SDS-polyacryamide gel (80V for 5% 

stacking gel, 100V for 15% running gel). Next, the gels were electro-blotted onto 

PVDF membrane (PALL Life Sciences, USA) at 150V for 90 minutes. After 

blocking with 1% BSA in TBS at room temperature for 1 hour, 5000-fold diluted 

mouse anti-Dp2 IgG, or 1000-fold diluted mouse anti-Dp1 IgG, or 10000-fold 

diluted mouse anti-His tag IgG were added and incubated at 4 ℃ overnight. The 

PVDF membranes were washed with TBST (120 rpm, 15 minutes) 3 times, and 

covered with 5000-fold or 10000-fold diluted goat anti-mouse IgG antibody at room 
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temperature for 30-60 minutes. The membranes were washed 6 times, added with 

ECL (PerkinElmer, USA), and the luminescence was detected by exposing to X-ray 

film (Super RX, Fujifilm, Japan). 

 

Animals 

Six to eight-week-old female BALB/c mice were purchased from the Animal 

Center of the College of Medicine at National Taiwan University for sensitization 

and challenge experiment, and from National Laboratory Animal Center for the oral 

feeding experiment. The animal room has a 12 hours light-dark cycle, a constant 

temperature (25±2 ℃) and humidity, and the mice are fed with chow diet (Lab 

Rodent Chow; Ralson Purina, USA). Each group in both experiments has 5 to 6 mice 

at beginning. 

 

Sensitization and challenge of crude mite extract to establish allergic airway 

inflammation 

The sensitization and challegne protocol was followed the protocol established 

previous in lab (Lee et al., 2001) with modifications. As summarized in Fig.4, each 

mouse was received 5 times i.p. injection with crude mite extract and 4 mg Imject® 
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Alum (Pierce, USA) plus with 200 ng pertussis toxin (PT, List Biological Lab, USA), 

and after the 5th i.p., mice were intratracheally (i.t.) challenged with crude mite 

extract. The mice in negative control group were sensitized and challenged with 

PBS.  

 

Determination the levels of crude mite specific antibodies in serum 

Mice were bled by retro-orbital venous plexus on day 0, 37, 44, 51. After 

incubating at room temperature for 2 hours, the sera were collected by centrifuging at 

5500 rpm for 10 minutes at 4 ℃. The levels of mite-specific IgE, IgG1, and IgG2a in 

sera were determined by enzyme-linked immunosorbent assay (ELISA). 96-well 

plates (Nunc, Denmark) were coated with 100 μL per well of 10 μg/mL crude mite 

extract in coating buffer (151 mM Na2CO3 (Merck, Germany), 35 mM NaHCO3 

(Wako, Japan) , 3 mM NaN3 (Ferak, Germany), and pH 6.0 in ddH2O) and incubated 

at 4 ℃ overnight. The plates were washed with PBST (0.5 % Tween-20 

(Riedel-de-Haёn, Germany) in PBS), blocked with 200 μL per well of block buffer 

(3% BSA (Sigma, USA) in PBS) at 4 ℃ overnight. The sera were used at 1:50 

dilution for IgE, 1:500 dilution for IgG2a, and 1:10000 dilution for IgG1 

determinations. After washing, the plates were added 100 μL per well of the sera 
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diluted with block buffer and incubated at 4 ℃ overnight. Next, the plates were 

washed and loaded with with 100 μL per well of the 2 μg/mL detection antibody 

(biotinylated rat anti-mouse IgE (553419, BD Bioscience PharMingen, USA), IgG1 

(553441, BD Bioscience PharMingen, USA) and IgG2a (553388, BD Bioscience 

PharMingen, USA) antibody) in block buffer and incubated at room temperature for 

1 hour. After washing, the plates were loaded with with 100 μL per well of 

streptavidin-HRP (R&D, USA) used at 1:5000 in block buffer, avoid from direct 

light, incubated at room temperature for 20 minutes. The plates were washed, 100 μL 

of 3,3',5,5'-tetramethylbenzidine (TMB, KPL, USA) per well was loaded and 

incubated at room temperature for 10 to 20 minutes. Finally, the reaction was 

stopped by 50 μL per well of the 2N H2SO4 and the optical density (OD was 

measured at 450 nm and 540 nm as a reference filter) was measured with a 

VERSAmax microplate reader (Molecular Devices, USA). The results were 

presented in ELISA unit (E.U. =(ODsample - ODblank)/ (ODpositive control 

-ODblank)). 

 

Determination the levels of total IgE in serum 

The levels of total IgE in sera were determined by ELISA. Briefly, 96-well 
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plates (Nunc, Denmark) were coated with 100 μL per well of 2 μg/mL purified rat 

anti-mouse IgE (553413, BD Bioscience PharMingen, USA) in PBS and incubated at 

4 ℃ overnight. The plates were washed with PBST (0.5 % Tween-20 

(Riedel-de-Haёn, Germany) in PBS), blocked with 200 μL per well of block buffer 

(3% BSA (Sigma, USA) in PBS) and incubated at 4  overnight. The sera were℃  

used at 1:500 dilutions for total IgE determinations, and the standards (557079, BD 

Bioscience PharMingen, USA) were used in a serial two-fold dilution with block 

buffer. After washing, the plates were loaded with 100 μL per well of the sera diluted 

with block buffer and incubated at 4  overnight. The plates were washed and ℃

loaded with 100 μL per well of the 2 μg/ mL detection antibody (biotinylated rat 

anti-mouse IgE (553419, BD Bioscience PharMingen, USA)) in block buffer and 

incubated at room temperature for 45 minutes. After washing, the plates were loaded 

with 100 μL per well of streptavidin-HRP (R&D, USA) used at 1:5000 in block 

buffer, avoid from direct light, and incubated at room temperature for 30 minutes. 

The plates were washed and loaded with 100 μL per well of TMB, and incubated at 

room temperature for 10 to 20 minutes. Finally, the reaction was stopped by 50 μL 

per well of the 2N H2SO4 and the optical density (OD was measured at 450 nm and 

540 nm as a reference filter) was measured with a VERSAmax microplate reader 
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(Molecular Devices, USA). 

 

Measurement of AHR 

Pulmonary function of mice was measured on the day after the 2nd i.t. challenge. 

Mice were placed in a barometric whole-body plethysmographic chamber (Buxco 

Electronics, Sharon, USA) and given different doses of acetyl-β-methylcholine 

chloride (use at 0, 3.125, 6.25, 12.5, 25 and 50 mg/ml in PBS, methacholine, Sigma, 

USA). After inhalation of nebulized methacholine for 3 minutes, the respiratory 

pressure curves were recorded for the following 3 minutes. The averages of 

methacholine-induced airway obstruction were presented as plethysmography and 

enhanced pause (Penh= pause× (peak expiratory box flow/peak inspiratory box flow) 

values.  

 

Analysis of cellular composition of BALF 

After mouse was sacrificed, the trachea was immediately lavaged via a trachea 

cannula (Angiocatch®, BD, USA) with 1 mL HBSS (Hank’s balanced salts (Sigma, 

USA) in 1L ddH2O, pH to 7.2- 7.4 by using filtered 7.5% NaHCO3) for the 1st time 

and 1 mL HBSS with 2% FBS for twice. The lavages were centrifuged 1500 rpm, at 
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4  for 10 minutes, and then collect the supernatant of 1℃ st lavage were collected for 

cytokine analysis. In addition, the cell pellet was collected and resuspended by HBSS 

with 2% FBS for cell composition analysis. The total cell number in the BALF was 

counted with standard hemocytometer (Sigma, USA), and then 1 × 105 cells were 

cytocentrifuged (Cytospin, Shandon, UK) onto glass slide at 500 rpm for 4 minutes. 

The BALF cells were immediately stained with Liu’s stain. A minimum of 300 cells 

were counted per slide and differentiated as eosinophils, neutrophils, 

macrophages/monocytes, and lymphocytes by standard morphological criteria of 

leukocytes. 

 

Determination of cytokines secretion of splenocytes by ELISA 

Spleens were harvested from all mice by sterile scissors and forceps, and were 

grinded into single-cell suspensions in RPMI-1640 medium (1% L-glutamine 

(Biological Industries, USA), 1% PSA (Biological Industries, USA), 1% HEPES 

(Gibco Brl, USA), and 5% Fetal Bovine Serum (FBS, Hyclone, USA) in RPMI-1640 

(Hyclone, USA)). To remove the large connective tissue, the cell suspensions stood 

at room temperature for 10 minutes and the supernatants were transferred to new 

tubes. After removal of erythrocytes by ACK lysis buffer (150 mM NH4Cl (Ferak, 
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Germany), 10 mM KHCO3 (Ferak, Germany), and 0.1 mM Na2EDTA (Sigma, USA) 

in ddH2O), splenocytes were washed with HBSS buffer for twice. Splenocytes were 

seeded in 48-well plates with 5 × 106 cells per well for cytokine profile analysis and 

in 96-well plates with 2 × 105 cells per well for proliferation assay in 5% FBS 

RPMI-1640 medium and incubated in a 37  and 5% CO℃ 2 incubator. In addition, 

splenocytes were cultured with different concentrations of crude mite extract (0, 2.5, 

5, 10, 20 μg/mL) or the nonspecific stimulation of mitogen Concanavalin A (Con A, 

Sigma, USA , 5 μg/mL).  

After 48 hours incubation, the splenocytes in 48-well plates were centrifuged to 

collect the supernatants. The levels of IL-5, IL-10, IL-13, eotaxin, TGF-β and INF-γ 

in splenocytes culture supernatant were determined by sandwich-ELISA (DuoSet 

ELISA Development kit, R&D, USA). The 96-well plates (Nunc, Denmark) were 

coated with 100 μL per well of capture antibody in PBS and incubated at room 

temperature overnight. Then plates were washed with PBST (0.5 % Tween-20 

(Riedel-de-Haёn, Germany) in PBS), blocked with 200 μL per well of block buffer 

(1% BSA (Sigma, USA) in PBS) and incubated at room temperature for 1 hour. 

After washing, the plates were loaded with 100 μL per well of the supernatant and 

standard, serial two-fold diluted with reagent diluents (1% BSA (Sigma, USA) in 
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PBS for IL-5, IL-10, IL-13, and eotaxin determination; 1.4% BSA (Sigma, USA) and 

0.05% Tween 20 (Riedel-de-Haёn, Germany) in PBS for TGF-β determination; 0.1% 

BSA and 0.05% Tween 20 (Riedel-de-Haёn, Germany) in TBS for INF-γ 

determination), and incubated at 4  overnight. The plates were washed and loaded ℃

with 100 μL per well of biotinylated detection antibody in reagent diluents and 

incubated at room temperature for 2 hour. After washing, the plates were loaded with 

100 μL per well of streptavidin-HRP used at 1:200 in reagent diluents, avoid from 

direct light, and incubated at room temperature for 20 minutes. The plates were 

washed and loaded with 100 μL per well of TMB and incubated at room temperature 

for 10 to 20 minutes. Finally, the reaction was stopped with 50 μL per well of the 2N 

H2SO4, and the optical density (OD was measured at 450 nm and 540 nm as a 

reference filter) was measured with a VERSAmax microplate reader (Molecular 

Devices, USA). 

 

Determination the lymphoproliferation of splenocytes 

After 48 hours incubation, the splenocytes in 96-well plates were pulsed with 1 

μCi per well of [3H]-thymidine (Ameresco, USA) for 16 to 18 hours. Then the cells 

were harvested onto glass fiber paper (Packard, Meriden, USA) by a semi-automated 
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harvester (Filtermate 196, Packard, Meriden, USA), and the value of counts per 

minute (c.p.m.) were read by a β-counter instrument (Direct Beta Counter, Packard, 

Meriden, USA). The results were presented in c.p.m. (cpmsample-cpmmedium alone). 

 

Oral feeding protocol 

The time line was summarized in Fig. 12. Crude mite extract-sensitized mice 

were divided into five groups (fed with 0.2 or 1.0 mg/day of rDp2 or crude mite 

extract, and a positive control group fed with PBS) and a PBS-sensitized group (as 

negative control), and each group consisted of 3 to 5 animals. Mice were tube-fed 

with 0.5 mL of rDp2 or crude mite extract dissolved in PBS for consecutive 7 days 

started from day 1. 

 

Statistical Analysis 

All the results were expressed as means with standard deviation. Statistical 

analysis was determined by Students’ t-test, and a p value less than 0.05 was 

considered to be significant.  
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RESULTS 
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Successful expression of rDp2 protein from a fermentor produced by Pichia 

pastoris  

To get large amount of rDp2, the fermentor were used for yeast culture. The 

Pichia pastoris was used as the recombinant protein expression system for its 

endotoxin-free, larger scale of protein expression, and the ability to secrete the 

recombinant protein into cultured medium. The rDp2 was collected from the cultured 

supernatant of Pichia pastoris from a fermentor and concentrated by Amicon tubes. 

The concentrated rDp2 was confirmed by SDS-PAGE (Fig. 2a) and Western blot 

with anti-Dp2 antibody (Fig. 2b). Since rDp2 contains 6 histidines at its C terminus 

(Appendix. 1), the rDp2 was confirmed by Western blot with anti-His tag antibody 

(Fig. 2b). As Fig. 2a shown, the rDp2 is the major protein after concentration and the 

size of rDp2 can be predicted similar with Dp2 (14kD) purified from house dust 

mite.  

 

Expression of rDp1 protein produced by Pichia pastoris  

The E. coli DH5α containing pPICZα-A- der p 1 gene was kindly provided by 

Dr. KT Lee (Institute of Microbiology and Biochemistry, National Taiwan 

University). The der p 1 gene was inserted into pPICZα-A, a commercial plasmid for 
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yeast protein expression system, and the sequencing result was shown in Appendix. 

2. The der p 1 gene was inserted by EcoRI and XbaI between α-factor and c-myc 

epitope in the pPICZα-A. The 153th- 155th, the sequence start from the restriction 

enzyme cutting site (EcoRI), had a variation that TAC was replaced by CAC, and the 

375th- 377th had variation that GTA was replaced by GCA (Chua et al., 1993). The 

328th-330th showed a base wobbles, GCA was replaced by GCG, and it did not affect 

the counterpart amino acid. The sequencing result demonstrated that the 

pPICZα-A-der p 1 contained the correct sequence of der p 1 gene. 

The pPICZα-A-der p 1 was amplified and collected from DH5α, and then 

transformed into Pichia pastoris as a linear form by the EasySelectTM Pichia 

Expression Kit (Invitrogen, USA). The 8 clones (clone 8, 14, 15, 16, 17, 21, 27, and 

30) growing on the YPDSZ plate were pricked to confirm the insertion of der p 1 by 

directly colony PCR (Fig. 3a). Six clones (clone 8, 14, 15, 16, 17, and 21) in the 8 

clones confirmed by colony PCR had inserted by pPICZα-A-der p 1. Among them 4 

clones (clone 8, 16, 17, and 21) were selected to express rDp1 in a small scale. After 

induction for 96 house, the supernatant were collected, confirmed by Western blot 

(Fig. 3b), and the size of rDp1 produced by the 4 selected clones were similar with 

Dp1 purified from house dust mite. These data suggested that the 4 clones selected 
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(clone 8, 16, 17, and 21) can produce rDp1 successfully. 

To get large amount of rDp1, the fermentor were used for the large scale yeast 

culture. The rDp1 was collected from cultured supernatant of Pichia pastoris and 

concentrated. The concentrated rDp1 was confirmed by SDS-PAGE (Fig. 3c) and 

Western blot (Fig. 3d). The data suggested that the size of rDp1 can be predicted 

similar with Dp1 (25kD) purified from house dust mite and slightly higher than 

25kD.  

 

Sensitization with crude mite extract elevated specific immunoglobulin 

To assess the effectiveness of the sensitization and challenge protocol, mice 

were bled on day 0 (pre-i.p.), 37 (i.p. 4), 44 (i.p. 5) and 51 (Sacrifice) to analyze the 

antibody level in serum. The experimental design was summarized in Fig. 4 and the 

flow chart of the sacrifice was shown in Fig. 5. Increased IgE production is one of 

the most common symptoms of asthma, and an apparent parameter for the 

confirmation of the effectiveness of the sensitization and challenge protocol. 

As summarized in Fig. 6a and Fig. 6b, the total IgE levels and mite-specific IgE 

levels in serum of 3 experimental groups (Low, Mid, and High; crude mite extract 

sensitized) were significantly higher than that of the negative control group (NC; 
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PBS sensitized), except the serum before i.p. (pre-i.p.). Mite-specific IgE, IgG1, 

IgG2a (Fig. 6c) levels in sera of mice at the sacrificed timepoint (day 51) were also 

significantly higher than that of NC. The data suggested that the IgE level was 

significantly elevated by the sensitization and challenge protocol. 

 

Sensitization and challenge with crude mite extract increased lymphoproliferation 

of splenocytes 

To measure the lymphoproliferative ability of splenocytes after sensitization and 

challenge, 3H-incorporation proliferation assay was used to determine the 

lymphoproliferation. Data summarized in Fig. 7, crude mite extract sensitized and 

challenged groups had apparently proliferation under crude mite extract stimulation. 

The proliferative response of splenocytes under 5 μg/mL of Con A stimulation 

showed no difference among each group indicated that the proliferative ability of 

splenocytes was not affected by the sensitization and challenge protocol. In brief, the 

splenocytes of crude mite extract sensitized and chllanged groups had significantly 

higher lymphoproliferative abilities under crude mite extract stimulation than that of 

NC. 
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Sensitization and challenge with crude mite extract increased inflammatory 

cytokine secretions of splenocytes  

To assess the systemic immune response after crude mite extract sensitization 

and challenge, the cytokines profiles in the supernatant of splenocytes cultured with 

different stimulations were analyzed. Since allergic asthma is a disease major driven 

by the Th2 cells, and IL-4 and IL-5 are the major cytokines produced by Th2 cells. 

The levels of IL-4 and IL-5 were determined by ELISA. 

The IL-4 levels of 3 experimental groups treated with crude mite extract were 

significantly higher than that of NC (Fig. 8a). Splenocytes of 3 experimental groups 

produced higher amount of IL-5 (Fig. 8b) than that of NC with crude mite extract 

stimulation. Furthermore, the IL-5 levels of low-dose and high-dose groups treated 

with 5 μg/mL of Con A (non-specific stimulation) were higher than that of NC (Fig. 

8b). The data suggested that the splenocytes of crude mite extract sensitized groups 

produced more Th2 cytokines under crude mite extraction stimulations. 

 

Sensitization and challenge with crude mite extract induced AHR 

To assess the effects of sensitization and challenge protocol on lung function, 

the AHR was measured after i.t. challenges. AHR is another important parameter of 
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clinical symptoms of asthma. Acetylcholine stimulation induces bronchoconstriction, 

and methacholine was used to mimic the stimulation induced by the short-half life of 

acetylcholine. Aerosolized methacholine induces the bronchoconstriction, and with 

increasing concentration of methacholine accompanied by the marked 

bronchoconstriction.  

The ratio of Penh value had an increasing trend with the increased concentration 

of methacholine (Fig. 9). The high-dose group had higher Penh ratio significantly 

compared with that of NC. Therefore, the data demonstrated that 50 μg crude mite 

extract as the i.p. dose and i.t. dose can induce AHR significantly. 

 

Sensitization and challenge with crude mite extract facilitated eosinophils 

infiltration in BALF 

To assess the lung inflammation, the levels of cytokines and compositions of 

infiltrated cells in BALF were analyzed. Eosinophils infiltration into lung is a 

parameter for asthma and airway inflammation. Eotaxin is a chemokine for 

eosinophils recruitment; additionally, IL-5 is a major cytokine produced by Th2 cells 

and has been reported to be involved in eosinophils development.  

To assay the compositions of infiltrated cells, both the percentage and number 
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of cell populations in BALF were summarized in Fig. 6a and Fig. 6b, respectively. 

The eosinophils of mid-dose and high-dose groups were signigicantly increased in 

percentage (Fig. 10a), but not the number (Fig. 10b).The eosinophils of low-dose 

group were significantly higher than that of NC in number (Fig. 10b) but not the 

percentage (Fig. 10a). The number of lymphocytes of high-dose group was 

significantly higher than that of NC (Fig. 10b). Moreover, the high-dose group 

showed higher neutrophils and lower monocytes both in number (Fig. 10b) and 

percentage (Fig. 10a).  

The BALF were collected, and both eotaxin and IL-5 levels were determined by 

ELISA (Fig. 11). The eotaxin levels of mid-dose and high-dose groups were slightly 

higher than that of NC (Fig. 11a). The IL-5 level of high-dose groups was higher 

than that of NC without significance (Fig. 11b). To sum up, the high-dose group 

showed more severe airway inflammation, including higher percentage of 

eosinophils in BALF, and higher eotaxin and IL-5. 

 

Oral feeding showed no effects on the levels of immunoglobulin in serum 

The experimental design was summarized in Fig. 12 and the flow chart of the 

sacrifice was shown in Fig. 5. To evaluate the effect of oral feeding on the levels of 



 

36 

 

mite-specific immunoglobulin in serum, the sera were collected at the sacrificed 

timepoint (day 43) for the measurement of the antibody levels. As summarized in Fig. 

13, the total IgE, mite-specific IgE, and mite-specific IgG1 levels in serum of crude 

mite sensitized groups (PC, rD2 0.2, rD2 1.0, Mite 0.2, and Mite 1.0 group) were 

significantly higher than that of PBS sensitized group (NC). These data suggested 

that the level of total IgE, mite-specific IgE and mite-specific IgG1 were not affected 

by oral feeding. 

 

The lymphoproliferation were not affected by oral feeding with mite allergens 

To assess whether the lymphoproliferative ability of splenocytes was affected 

by the oral feeding with mite allergens or not, 3H-incorporation proliferation assay 

was used to determine the lymphoproliferation. As summarized in Fig. 14, the crude 

mite sensitized and challenged groups had higher proliferation compared with that of 

NC. The data suggested that the proliferation of splenocytes under crude mite extract 

stimulation was not affected oral feeding with mite allergens.  

 

IL-4 productions of splenocytes decreased after oral feeding  

To assess the systemic immune response after oral feeding, the cytokines 
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profiles in splenocytes cultured supernatant were analyzed. The Mite 0.2 group 

decreased IL-4 production under 5 and 10 μg/mL of crude mite extract treatment 

(Fig. 15a). The rD2 0.2 group had higher IL-5 production than that of PC which 

were treated with crude mite extract, and the rD2 1.0 group had higher IL-5 

production than that of PC which were treated with 2.5 μg/mL of crude mite extract 

(Fig. 15b). Summarily, oral feeding with crude mite extract had slightly effects on 

decreasing Th2 cytokines production of splenocytes. 

 

Oral feeding with mite allergens slightly elevated IL-10 levels of splenocytes 

To evaluate whether oral feeding with mite allergen increases the regulatory 

cytokines or not, the IL-10 and TGF-β levels in splenocytes cultured supernatants 

were measured. The IL-10 productions under specific or non-specific stimulation 

showed no statistical difference and the rD2 0.2 group had slightly higher IL-10 level 

than that of PC (Fig. 16a). Furthermore, the TGF-β showed more variable levels 

among each group, and the Mite 1.0 group under 5 μg/mL of crude mite extract 

treatment showed higher TGF-β levels than that of PC without statistic difference 

(Fig. 16b). To sum up, the IL-10 levels were slightly elevated by oral feeding with 

mite allergens. 
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Oral feeding with higher dose of mite allergens reduced the AHR 

To assess the effect of oral feeding with mite allergens on lung function, mice 

were measured the AHR at day 42. As summarized in Fig. 17, the ratio of Penh value 

of rD2 1.0 group was lower than PC under 3.125, 6.25, 12.5, and 25 mg/mL of 

methacholine stimulation. Under 25 mg/mL of methacholine stimulation, Mite 1.0 

group showed lower ratio of Penh valure than that of PC. Therefore, these data 

demonstrated that oral feeding with 1.0 mg/day of rDp2 or crude mite eactract for 

constitutive 7 days reduced the AHR. 

 

The airway inflammation were slightly decreased after oral feeding  

To evaluate the effect of oral feeding mite allergens on the lung inflammation, 

the levels of cytokines and compositions of infiltrated cells in BALF were analyzed. 

The percentage and number of cell populations in BALF were summarized in Fig. 

18b and Fig. 18a, respectively. The groups sensitized and challenged with crude mite 

extract had higher eosinophils (Fig. 18). The rD2 0.2, rD2 1.0, and Mite 1.0 groups 

had lower neutrophil than that of PC in percentage (Fig. 18a). The rD2 0.2, Mite 0.2, 

and Mite 1.0 groups had lower total cell numbers than that of PC (Fig. 18b).  
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The BALF were collected for eotaxin, IL-5, IL-10, and IL-13 measurement by 

ELISA (Fig. 19). The rD2 1.0 and Mite 1.0 groups had lower eotaxin (Fig. 19a) and 

IL-10 levels (Fig. 19c) than that of PC. The rD2 1.0, Mite 0.2, and Mite 1.0 groups 

had lower levels of IL-5 (Fig. 19b) and IL-13 (Fig. 19d). To sum up, the infiltrated 

neutrophils percentage in BALF were slightly reduced, and the inflammatory 

cytokines were slightly decreased after oral feeding. 
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Allergic asthma model induction 

To figure out the suitable i.p. dose for sensitization, the modified protocol had 5 

times i.p. injections with different doses of crude mite extract in the presence of 

adjuvants and twice i.t. challenge. BALB/c female mice were used in this study 

based on its Th2 biased immunological response (Boyce and Austen, 2005; Melgert 

et al., 2005), such as higher IgE response and severe airway hypersensitiveness 

(Leong and Huston, 2001). Crude mite extract from house dust mite D. pteronyssinus 

were utilized as the allergen here rather than OVA for its greater clinical relevance; 

moreover, crude mite extract had been used as the allergen used in sensitization 

(Johnson et al., 2004) and challenge phase (Tournoy et al., 2000) in other reports. 

The parameters used in this study to evaluate the protocol are the specific IgE 

elevation, AHR induction, and the airway inflammation. 

As the data shown (Fig. 6), the levels of mite-specific antibodies IgE and IgG in 

crude mite immunized mice were elevated significantly after 5 times i.p. injection. 

IgG1 and IgE production in vivo have been linked to Th2 cytokines, such as IL-4 

(Finkelman et al., 1988) and IL-13; likewise, IgG2a has been linked to Th1 cytokines, 

such as interferon-γ (IFN-γ) (Snapper et al., 1988). Pertussis toxin increases IFN-γ, 

IL-2 (Ryan et al., 1998), and IL-4 production of naïve T cells (Mu and Sewell, 1993). 
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It has been suggested that pertussis toxin activates antigen presenting cells to 

promote clonal expansion and differentiation of Th1 and Th2 cells and enhances both 

Th1 and Th2 cytokines production (Shive et al., 2000). So that pertussis toxin has 

widely used as an adjuvant in animal models of Th1-mediated autoimmune disease 

(Munoz et al., 1984) and delayed-type hypersensitivity (Sewell et al., 1987). 

Additionally, the crude extract of D. pteronyssinus plus with alum salt sensitized 

mice elevated mite specific IgE, IgG1, IgG2a, and IgG2b (Sato et al., 2002). Based 

on the adjuvant effects and the property of crude extract of D. pteronyssinus, mite 

specific IgE, IgG1, and IgG2a significantly increased in the crude mite extract 

sensitized mice after sensitization. The splenocytes derived from crude mite 

immunized mice secreted higher Th2 cytokines and exhibited higher proliferative 

abilities than negative control group under crude mite stimulation but there were no 

difference among 3 experimental groups. These data suggest that no differences in 

systemic responses among different sensitization dose might be caused by the potent 

enhancement of adjuvants. 

The symptoms induced by crude mite extract were similar with that induced by 

rDp2, including elevated allergen specific IgE and IgG, increased AHR, eosinophil 

infiltration in the lung, airway inflammation, and a splenic Th2 response (何祥, 2002; 
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李佩芸, 2004). These are also similar with the symptoms induced by natural Dp1, 

such as high titer of allergen specific IgG1, elevated AHR, eosinophil infiltration into 

lung, increased IL-5 level in BALF (Lee et al., 1999; Lee et al., 2001). However, 

crude mite extract induced significantly mite specific IgE levels after 5 times of i.p. 

injection, which differ from rDp2 sensitization, which induced rDp2-IgE levels after 

4 times of i.p. injection. That might be because the allergens are only a small part of 

crude mite extract; thereby, the crude mite extract needs more boost to elevate 

specific IgE levels. 

To sum up, the present study showed that the systemic responses were similar 

among 3 different doses of i.p. injection, and the local airway inflammation and 

AHR response were more significantly induced by the high dose of i.p. injection (50 

μg of crude mite extract). 

 

The effects of oral delivery with rDp2 on airway inflammation 

Oral tolerance has been studied for a long time as a potential strategy to 

modulate autoimmune and allergic disease (Mayer and Shao, 2004). Some evidences 

suggested that the regulatory T cells induced at the gut might migrate to periphery to 

exert their suppressive function by direct or indirect mechanism (Tsuji and Kosaka, 
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2008). Our previous studies showed that oral delivery of the single allergen decreases 

the allergen-specific IgE and airway inflammation (李佩芸, 2004; 徐凡琪, 2004; 

游詩怡, 2007). Thus, we aimed to evaluate the effects of an oral tolerance response 

induced by low doses to rDp2 on crude mite induced allergic airway inflammation.  

As the results shown (Fig. 13), the serum antibody levels, including total IgE 

and mite-specific antibodies, did not be affected by the oral feeding strategy. These 

data were different from our previous studies in which oral feeding 0.5 mg/day of 

OVA for 5 days reduced OVA-specific IgE (游詩怡, 2007), and oral feeding 0.2 

mg/day of rDp2 for 7 days reduced Dp2-specific IgE and total IgE (李佩芸, 2004). 

Oral delivery of crude extract of D. pteronyssinus to D. pteronyssinus sensitized 

A/Sn mice decreased the IgE response (Carvalho et al., 2004). In a serial studies, oral 

feeding crude extract of D. pteronyssinus decreased the allergen specific IgE and IgG 

in crude mite sensitized A/Sn mice which might be through the production of 

autoantibody IgG anti-IgE (Sato et al., 1998; Sato et al., 2002). However, another 

report demonstrated that oral delivery of recombinant Der f 2 (rDf2) could not 

decrease the level of Der f 2-specific IgE in Dermatophagoides farinae plus with 

rDf2 sensitized A/J mice (Yasue et al., 1997). It has been reported that there are 

about 0.1 μg Dp2 in 1 mg fecal extract and there are about 1 μg Dp2 in 1 mg body 
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extract of D. pteronyssinus (Heymann et al., 1989). Therefore, we speculated that the 

oral feeding induced Dp2-specific regulatory T cells could decrease the Dp2 specific 

systemic response by direct suppression but might be not enough to decrease the 

crude mite systemic immune response through indirect mechanism. However, this 

needs to be confirmed further.  

In the mice fed with 1.0 mg/day of rDp2, IL-4 secretion of splenocytes were 

slightly decreased, TGF-β secretion of splenocytes were slightly elevated, AHR were 

significantly reduced, eotaxin and IL-13 levels in BALF were slightly retarded, and 

the number of neutrophil were slightly decreased. Our previous studies showed that 

oral delivery of 0.2 mg/day of rDp2 could decrease the IL-4 production of 

splenocytes, and oral feeding with 1.0 mg/day of rDp2 decreased AHR, the 

eosinophils number in BALF, and the IL-4 level in BALF (李佩芸, 2004; 徐凡琪, 

2004). The differences between the present study and the previous studies might be 

due to the antigens used for feeding and sensitization. It has been well demonstrated 

that oral delivery with an antigen could decrease the same antigen induced allergic 

response in our and other groups’ previous studies. Additionally, oral feeding with 

rDf2 slightly decreased the neutrophil infiltration in BALF in Dermatophagoides 

farinae plus with rDf2 sensitized A/J mice (Yasue et al., 1997). We had showed that 
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oral delivery with 1.0 mg/day of rDp2 significantly decreased AHR and slightly 

reduced IL-13, AHR and airway inflammation. Therefore, we suggested that oral 

delivery with single allergen, even its natural content is small, might alleviate the 

complex crude mite induced inflammation.  

 

The effects of oral delivery with crude mite extract 

Oral feeding with 0.2 mg/day of crude mite extract significantly decreased IL-4 

and TGF-β levels, increased IL-5 production of splenocytes, and slightly reduced 

AHR. Oral feeding with 1.0 mg/day of crude mite extract showed reduced AHR, 

lower eotaxin level in BALF, reduced neutrophil percentage and total infiltrated cell 

number in BALF, and mild lymphoproliferation of splenocytes. OVA sensitized 

BALB/c and BP2 mice, which were oral administered with OVA in drinking water, 

showed reduced AHR, mucus hypersecretion, the levels of Th2 type cytokines in 

BALF, and the levels of OVA-specific IgE (Russo et al., 2001). Oral delivery of 

crude extract of D. pteronyssinus to D. pteronyssinus sensitized A/Sn mice decreased 

neutrophils and lymphocytes infiltration in BALF (Carvalho et al., 2004), 

significantly decreased IL-4 and IL-5 and increased TGF-β production of splenocytes 

(Sato et al., 2001). The difference might be caused by the different oral feeding doses 



 

47 

 

and days, and the different animal model. Another reason for the unclear trend was 

that the number of mice in oral feeding experiment was 3 to 5 per group, which was 

too few to represent a clear trend. In addition, the mice used in 2 animal experiments 

were from different origins, which might result in some difference between these 2 

experiments. Therefore, we only suggest that feeding with a higher dose (≧1 mg) of 

single recombinant allergen or with a longer period (≧ 7 days) might have much 

more benefit on complex-crude-mite-induced airway inflammation. 

 

Conclusion  

In the present study, we found the suitable i.p. dose of crude mite extract to 

establish an asthmatic murine model. The mice sensitized and challenged by 50 μg of 

crude mite extract had increased mite-specific IgE in serum, elevated airway 

hypersensitiveness, and a splenic Th2 immune response to crude mite stimulation. 

The data suggested that the sensitization and challenge protocol induces an asthmatic 

murine model to mimic clinical asthma symptoms for further study. We also showed 

that oral delivery of 1.0 mg/day of rDp2 for consecutive 7 days reduced AHR, 

slightly decreased the eotaxin level in BLAF, and elevated TGF-β production of 

splenocytes in an asthmatic model established by crude mite extract. We suggested 
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that oral delivery of high dose (1 mg/day) of single recombinant allergen seems to be 

more beneficial on airway inflammation induced by the complex crude mite extract, 

but the proper feeding dose and feeding period need further investigation. In the 

future, the oral feeding experiment is needed to be repeated to conclude a significant 

effect of oral delivery with a recombinant major allergen on crude-mite-induced 

airway inflammation and then we would like to further investigate its mechanism.  
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Figure 1. The scheme of allergic asthma 

In the sensitization phase, the airway DCs present the processed allergen to naïve Th 

cells, which develop into Th2 cells in the presence of early IL-4. The Th2 cells secrete 

IL-4, IL-13, IL-5, and IL-9 to promote IgE production by B cells, AHR, mucus 

hypersecretion, and support eosinophils and mast cells development. In the challenge 

phase, the allergen bearing IgE binding to mast cells induces degranulation of mast cells, 

and releases of histamine, leukotrienes, prostaglandins, and cytokines. Finally, all the 

events result in increasing mucus production, broncho-constriction, and wheezing. The 

infiltrated eosinophils release basic proteins, leukotrienes, and pro-inflammatory 

cytokines to enhance the airway inflammation.  
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(a)           (b) 

 

Figure 2. Successful expression of rDp2 protein from a fermentor produced by 

Pichia pastoris 

The rDp2 protein was concentrated from Pichia pastoris cultured supernatant collected 

from a fermentor. The concentrated rDp2 was confirmed the size with SDS-PAGE (a) 

and western blot by anti-Dp2 and anti-His tag antibody (b). (Dp2, natural Dp2 purified 

from mite was as a control for rDp2 size confirmation; M, marker) 
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The levels of total IgE in sera before i.p. (pre-i.p.), after 4th i.p. (i.p.-4), after 5th i.p. 

(i.p.-5), and the sacrificed timepoint (Sacrifice) were shown in (a), and the level of 

mite-specific IgE were shown in (b). The levels of mite-specific IgE, IgG1, and IgG2a 

of the sacrificed day were shown in (c). (NC, negative control group; Low, low-dose 

group; Mid, middle group; High, high-dose group) Statistical analysis was determined 

by Students’ t-test. Error bars represent the standard deviation of the means and * 

presents P < 0.05 compared to the negative control group with statistical difference. 
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Appendix 2. Sequence of pPICZα-A-der p 1 

The sequencing result of pPICZα-A-der p 1, which was kindly provided by Dr. KT 

Lee (Institute of Microbiology and Biochemistry, National Taiwan University). 
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Appendix 3. Reagents 

Phosphate Buffer Solution, PBS 

20.2 mM Na2HPO4 (Bionavas, USA), 137 mM NaCl (Ameresco, USA), 1.5 mM 

KH2PO4 (Wako, Japan), and 2.7 mM KCl (Merck, Germany) in ddH2O 

 

Tris-Buffered Saline, TBS 

50 mM Trizma® base (Sigma, USA) and 154 mM NaCl (Ameresco, USA) in ddH2O 

 

Yeast extract peptone dextrose medium, YPD 

1% Yeast extract (Merck, Germany), 2% Peptone-A (Bio Basic, Canada) 2% 

D(+)-Glucose (dextrose, Riedel-de-Haёn, Germany), and 100 μg/mL Zeocin in 

ddH2O 

 

Yeast extract peptone dextrose plate, YPDSZ plate 

1% Yeast extract (Merck, Germany), 2% Peptone-A (Bio Basic, Canada), 2% 

D(+)-Glucose (dextrose, Riedel-de-Haёn, Germany), 2% Agar-agar (Merck, 

Germany), 1M Sorbitol (Bionavas), and 100 μg/mL Zeocin in ddH2O 
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Minimal dextrose plates, MD plates 

1.34% Yeast nitrogen base (Invitrogen, USA), 4× 10-5% Biotin (Sigma, USA), 2% 

D(+)-Glucose (dextrose, Riedel-de-Haёn, Germany), 1.5% Agar-agar (Merck, 

Germany), and 100 μg/mL Zeocin in ddH2O 

 

Minimal methanol plates, MM plates 

1.34% Yeast nitrogen base (Invitrogen, USA), 4× 10-5% Biotin (Sigma, USA), 0.5% 

Methanol (Mallinckrodt, USA), 1.5% Agar-agar (Merck, Germany), and 100 μg/mL 

Zeocin in ddH2O 

 

Buffered minimal glycerol, BMG 

100 mM Potassium phosphate, pH 6.0 (Wako, Japan), 1.34% yeast nitrogen base 

(Invitrogen, USA), 4× 10-5% Biotin (Sigma, USA), and 1% Glycerol (Nihon Shiyaku 

Reagent, Japan) in ddH2O 

 

Buffered minimal methanol, BMM 

100 mM Potassium phosphate, pH 6.0 (Wako, Japan), 1.34% Yeast nitrogen base 

(Invitrogen, USA), 4× 10-5% Biotin (Sigma, USA), and 0.5% Methanol 
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(Mallinckrodt, USA) in ddH2O 

 

Primers for colony PCR 

EcoRI-der p 1, 5'-GAA TTC ACT AAC GCC TGC AGT ATC -3’; der p 1-XbaI, 

5' –TCT AGA CCG AGA ATG ACA ACA TAT GGA-3’. 

 

SDS-acryamide gel for Western blot 

(mL) 15% running gel 5% stacking gel 

ddH2O 4.745 6.150 

1.5 M Tris, pH 8.8 3.250  

0.5 M Tris, pH 6.8  2.500 

10% SDS 0.130 0.100 

40% Acryamide 4.875 1.250 

10% APS*  0.975 0.075 

TEMED* 0.013 0.010 

* Added just before the gel loading 

 

 

 


