
doi:10.6342/NTU202302797

 

 

國立臺灣大學電機資訊學院資訊工程學研究所 

碩士論文 

Department of Computer Science and Information Engineering 

College of Electrical Engineering and Computer Science 

National Taiwan University 

Master Thesis 

 

鍾手勢：手勢辨認使用飛時相機應用於智慧型眼鏡 

ChungGesture: Hand Gesture Recognition with Time-of-

Flight Camera for Smart Glasses 

 

鍾承鎧 

Cheng-Kai Chung 

 

指導教授：傅楸善 博士 

Advisor: Chiou-Shann Fuh, Ph.D. 

 

中華民國 112年 6月 

June 2023 



doi:10.6342/NTU202302797



doi:10.6342/NTU202302797

 

 

i 

誌謝 

能順利完成本篇論文首先要感謝傅楸善教授的指導，他總是不遺餘力地在研

究過程中支持我並給予建議，同時也要感謝佐臻股份有限公司提供合作的機會，

支持我研究這個主題。感謝公司同仁們專業的意見讓我受益良多，尤其是陳宏融

同事的指導。  

 另外也要感謝數位相機與電腦視覺實驗室的學長姊、同學和學弟妹們在研究

期間的照顧。邵育翔學長、龔柏丞學長、孫譽學長、呂英弘學長、李志洸學長、

蕭延儒學長、閻楷青學姊無論在任何問題總會給予我適當的幫助，讓我在研究過

程中順利度過難關。同學張季祐、許銘真、游凱任、林正偉、林佳城、林聖祐，

在研究過程中互相扶持照顧，一同分享學業上的甘苦。學弟何志宏、郁霈靖、李

詠億、吳柏緯、邱議禾、游惟丞，學妹方郁婷、張婷淇，實驗室因為你們的加入

帶來不少歡樂，讓我忘卻課業上的煩悶。數位相機與電腦視覺實驗室的所有成員

們對於幫助我完成這篇論文實在功不可沒。 

 最後要感謝我的家人和好友，總是毫無保留地支持我在學業上的任何決定，

使我能專心投入課業，無後顧之憂。在此僅將這段時間的研究成果匯集成本論

文，獻給所有曾經關心、照顧與幫助我的所有人。 

  



doi:10.6342/NTU202302797

 

 

ii 

中文摘要 

本論文提出一個名為「鍾手勢」的演算法，希望藉由搭載著 8x8像素的低解析

度飛時深度相機的智慧型眼鏡，來進行手勢辨識，其中共包含了六個精準、快速、

舒適的動作，旨在提高使用者的操作體驗。 

我們首先回顧了手勢辨認技術的相關知識和現有相關研究，並探索三種主要

的深度預測技術：立體視覺、結構光和 ToF 相機。接著，我們針對智慧型眼鏡的

特性和使用情境，提出了適合的手勢辨認應用場景和手勢操作設計，並開發了相對

應的軟體系統。最後，我們進行了實驗評估，包括手勢辨認的精準度、穩定度和使

用者的滿意度。實驗結果顯示，本研究所提出的手勢辨認系統具有良好的準確度和

穩定度，且能有效提升智慧型眼鏡的使用體驗。 

我們的演算法開發及應用皆是在佐臻的 J7EF Plus智慧型眼鏡上，詳細的方法

和流程會在論文中加以說明。 

 

關鍵字：鍾手勢、飛時相機、手勢辨識、擴增實境眼鏡 
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ABSTRACT 

 

 In this thesis, we propose ChungGesture, which utilizes a low-resolution Time-of-

Flight (ToF) camera with 8x8 pixels to perform gesture recognition on smart glasses. The 

algorithm consists of six precise, fast, and comfortable gestures designed to enhance the 

user experience.  

We first review the relevant knowledge and existing research on gesture recognition 

technology and explored three main depth prediction techniques: stereo vision, structured 

light, and ToF camera. Next, we propose suitable application scenarios and gesture 

designs based on the characteristics and usage context of smart glasses, and develop 

corresponding software systems. Finally, we conduct experimental evaluations, including 

gesture recognition accuracy, stability, and user satisfaction. The results show that our 

gesture recognition system has good accuracy and stability and can effectively improve 

the user experience of smart glasses.  

Our algorithm development and application are performed on Jorjin J7EF Plus smart 

glasses, and the detailed methods and processes will be explained in this thesis. 

Key words: ChungGesture, Time-Of-Flight Camera, Gesture Recognition, Augmented 

Reality (AR) Glasses 
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Chapter 1 Introduction 

 

1.1  The Concept of Smart Glasses 

 

Smart glasses are a type of Optical Head-Mounted Display (OHMD) device that 

mainly provides the wearer with real-time reference and judgment of various information 

by projecting computer screens onto the lenses of the glasses. With the advent of the 5G 

era, network transmission is getting faster. Smart glasses, combined with cloud 

technology, are further expanded into various fields, such as simulating real-life scenarios 

for assistive and medical personnel. With the assistance of smart glasses, they can handle 

real-time information more efficiently and give the wearer a more immersive experience. 

Currently, smart glasses have become a fierce competition project for major companies 

such as Microsoft, Amazon, Google, Apple, Sony, and Samsung. 

 

This thesis aims to illustrate how to combine medical and entertainment activities 

through the use of self-developed smart glasses and gesture recognition algorithm in 

collaboration with Jorjin Technologies. Therefore, smart glasses play a very important 

role in this thesis, responsible for receiving information, data processing, triggering 
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events, and finally displaying them on the screen, allowing users to overlay virtual world 

information onto the physical world and achieve a more immersive interactive experience. 

In this section, we will introduce the hardware of smart glasses, as well as what Virtual 

Reality (VR) and Augmented Reality (AR) are, and how users interact with the 

environment through smart glasses in both virtual and real worlds. 

 

1.1.1 Hardware 

 

Currently, many companies engage in the development of smart glasses. The most 

common hardware components include: 

• Display: A miniature display screen located within the glasses that projects 

images and videos onto the wearer's field of view. Some glasses use micro-

Organic Light-Emitting Diode (OLED) displays to provide high resolution and 

sharpness. 

• Camera: A built-in camera that captures images and videos of the user's 

surroundings. This feature is essential for AR experiences as it allows the device 

to recognize and overlay digital information onto physical objects. 

• Sensors: Smart glasses may also come equipped with a range of sensors such as 
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accelerometers, gyroscopes, and magnetometers. These sensors track the user's 

head movements, allowing the device to adjust the display accordingly. 

• Processor and Memory: A Central Processing Unit (CPU) and memory are 

essential components that enable the device to run complex algorithms and render 

high-quality graphics. Some smart glasses use mobile processors and operating 

systems similar to those found in smartphones. 

• Connectivity: Smart glasses often feature Wireless Fidelity (Wi-Fi), Bluetooth, or 

cellular connectivity, allowing them to connect to Internet and other devices. 

 

1.1.2 Virtual Reality (VR) and Augmented Reality (AR) 

 

Recently, the development of Augmented Reality (AR) and Virtual Reality (VR) 

technologies has brought new possibilities to the field of smart glasses. Therefore, we 

need to first define what Virtual Reality and Augmented Reality are. 

 

Virtual Reality (VR) and Augmented Reality (AR) are both technologies that 

combine computer-generated graphics with the real world. In VR, users are immersed in 

a completely synthetic world and can interact with it. Users can experience a sense of 
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presence. The physical laws of the real world may not apply in this synthetic world. VR 

is commonly used in applications such as gaming and education. On the other hand, AR 

overlays virtual images onto the real-world environment, allowing users to see both the 

real world and virtual graphics simultaneously. For example, AR filters on social media 

platforms add virtual animal ears or masks onto users' faces in real time. As the Jorjin 

J7EF Plus smart glasses used in this thesis are an AR application, in this section we will 

focus on AR. 

 

In Figure 1-1, AR is a subset of Mixed Reality (MR). MR visual displays are a 

specific category of Virtual Reality (VR) technologies that involve the integration of real 

and virtual worlds at various points along the "virtuality continuum", which ranges from 

entirely real environments to fully virtual ones (Milgram & Kishino, 1994) [1]. The 

concept of a "virtuality continuum" refers to the blending of object classes presented in a 

particular display situation. This continuum spans from completely real environments at 

one end to completely virtual ones at the other. At the left end, real environments consist 

solely of real objects and can be observed through a conventional video display or directly 

without any electronic display. At the opposite end, virtual environments consist solely 

of virtual objects, such as those in a computer-generated simulation. 
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Figure 1-1: Simplified representation of a “virtuality continuum” [1]. 

 

While the term "Mixed Reality" may not be widely used, the term "Augmented 

Reality" (AR) has become increasingly common in the literature. Thus, we define 

Augmented Reality as any situation where a real-world environment is enhanced or 

"augmented" by virtual computer-generated objects. Clear classification helps us to have 

a better understanding of AR. In the following, we will introduce the six categories 

defined by Milgram and Kishino [1]. 

1. Monitor-based video displays, also known as "window-on-the-World" (WoW) 

displays, where computer-generated images are overlaid electronically or 

digitally. An example is a 3D movie or game displayed on a computer screen. 

2. Video displays similar to those in Class 1, but with immersive Head-Mounted 

Displays (HMD’s) rather than WoW monitors. 

3. HMDs equipped with a see-through capability, allowing computer-generated 
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graphics to be optically superimposed onto real-world scenes viewed directly. 

An instance of this would be the Google Glass, which features a transparent 

display attached to the right side of the glasses. 

4. Similar to Class 3, but with video viewing of the "outside" world instead of 

optical. The displayed world in Class 4 should correspond orthoscopically with 

the immediate outside real world, creating a "video see-through" system, similar 

to the optical see-through of option 3. 

5. Completely graphic display environments to which video "reality" is added, 

either completely immersive, partially immersive, or otherwise. 

6. Completely graphic but partially immersive environments where real physical 

objects in the user's environment play a role in the computer-generated scene, 

such as reaching in and grabbing something with one's own hand. 

After a brief overview of the various types of MR, it becomes apparent that even if 

many projects and applications share the same AR tag, they may require quite different 

hardware configurations and software implementations. In this thesis, we will focus on 

Class 3 MR devices, also referred to as "smart glasses." 
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1.1.3 Interacting with Smart Glasses 

 

After understanding the hardware of smart glasses and the concepts of VR and AR, 

we will now introduce how to interact with smart glasses. 

Smart devices today primarily use touchscreens as the main input method. However, 

smart wearable devices such as smart glasses do not incorporate touchscreens because 

they can block the user's line of sight and limit the flexibility of hand movements. The 

interaction approaches are classified into three categories based on Lee and Hui's work 

(Lee & Hui, 2018) [2]: handheld, touch, and touchless. First, handheld utilizes handheld 

controllers, such as smartphones. Second, touch refers to non-handheld touch-based 

interaction, including gestures and tapping on body surfaces, as well as touch-sensing 

wearable devices such as smart rings, smart wrist bands, and watches. Last, touchless 

includes non-handheld and non-touch input, such as mid-air hand gestures, head and body 

movements, gaze interaction, and voice recognition. 
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Figure 1-2: Classification of interaction approaches for smart glasses [2].  

 

To minimize the need for additional devices, we prioritize touchless methods. As 

classified by Lee and Hui (2018) [2], touchless input can be divided into two types: hands-
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free interaction and freehand interaction. Hands-free interaction involves voice 

recognition, head movements, gaze movements, and tongue movements. For our project, 

we will concentrate on freehand interactions based on vision-based gestures. 

 

1.2  Hand Gestures 

 

In order to provide users with a satisfactory experience, appropriate gesture design 

becomes especially important. There are two common approaches to design a gesture 

language for user interactions: using the User Defined Interfaces (UDI) methodology to 

elicit gestures, or designing a language that avoids conflicts, is ergonomic, and carries 

high bandwidth (Aigner, et al., 2012) [3]. UDI aims to recognize gestures that users 

intuitively communicate with. However, although UDI improves the novice "first guess", 

it may produce inconsistent results since the same gesture may have a different purpose 

among users, or different gestures may be used to achieve the same result. Aigner et al. 

[3] developed a methodology similar to UDI, but with to reduce ambiguity. They defined 

10 target gesture effects and categorized gesture types into 5 distinct categories. 

 

 



doi:10.6342/NTU202302797

 

10 

 

 

Figure 1-3: The classification Aigner et al. used to communicate information about 

objects or entities, such as specific sizes, shapes, and motion paths [3]. 
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The 10 target effects include select, release, accept, refuse, remove, cancel, navigate, 

identify, translate, and rotate. The 5 gesture types include pointing, semaphoric, 

pantomimic, iconic, and manipulation. Semaphoric gestures can be further classified into 

three types: static, dynamic, and stroke. 

After a thorough understanding of the gesture design system, we can analyze the 

required effects and corresponding gestures from the perspective of UDI, even when 

there are hardware specifications limitations. 

 

1.3  Thesis Organization 

 

 The related works about ChungGesture are briefly introduced in Chapter 2. The 

definition of our six gestures and methodology will be described in Chapter 3. The 

experimental results will be presented in Chapter 4. The last chapter contains the 

conclusion of this thesis and some future works. 
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Chapter 2 Related Works 

 

2.1  History of Smart Glasses 

 

According to P. A. Rauschnabel, A. Brem, and Y. Ro [7], a framework for the 

evolution of media is proposed, consisting of five distinct generations of media. Figure 

2-1 illustrates the temporal dimension along the x-axis and the influence of each media 

generation's technologies on users' lives along the y-axis.  

 

Figure 2-1: Evolution of media devices [7]. 

The first generation of media, referred to as offline media, encompassed stationary 
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and uni-directional platforms such as newspapers, television, and others. These 

technologies relied on internal storage, cartridges (e.g., game consoles), CD-ROMs 

(Compact Disk – Read-Only Memory), or analog radio frequencies (e.g., TV (TeleVision) 

or radio) for information delivery. 

The second generation, known as Web 1.0, emerged as early online technologies 

with static websites being prominent examples. Users in this generation predominantly 

consumed content produced by professional organizations, assuming a passive role. 

Although limited two-way communication was feasible, most Web 1.0 technologies 

remained uni-directional. Early websites largely served as digital brochures, primarily 

created by professional organizations. A few innovative individuals manually 

programmed HTML (Hyper-Text Markup Language) code to develop personal websites. 

The third generation, which began in the early 2000s, is referred to as Web 2.0 or 

social media. Social media platforms enabled complex and multi-directional 

communication, transforming users into both consumers and producers of content (often 

called 'prosumers'). Factors such as faster Internet connections, user-friendly devices, and 

increased trust in the Internet contributed to the widespread adoption of Web 2.0 

technologies. Early examples of Web 2.0 technologies include Facebook, SecondLife, 

and Myspace. 
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The fourth generation extended social media from static devices to mobile devices, 

including laptops, tablets, and smartphones. This generation also encompasses wearable 

devices such as smart watches, smart clothing, and smart wristbands. Mobile technologies 

grant users constant access to their social media environment, resulting in social media 

applications such as Facebook and Instagram becoming highly popular smartphone apps. 

The fifth generation of media introduces Wearable Augmented Reality Devices 

(WARD), which merge virtual and physical realities. These technologies integrate virtual 

elements into the real world, with augmented reality smart glasses being a notable 

example and the primary focus of this research. 

P. A. Rauschnabel, A. Brem, and Y. Ro. [7] defined Augmented Reality Smart 

Glasses as wearable Augmented Reality (AR) devices that are worn like regular glasses 

and merge virtual information with physical information in a user’s view field. 

The first Head-Mounted Display (HMD) driven by graphics was pioneered by Ivan 

Sutherland in the 1960s [8]. Over the years, the term HMD has also been used in military 

applications to refer to helmet-mounted displays integrated with military helmets. 

Designing an ergonomically optimized headband to securely fasten the HMD to the user's 

head poses a significant challenge for HMD designers. Due to factors such as weight, 

weak processors, short battery life, and small screen size, HMD devices have faced 
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challenges in achieving widespread adoption in the market. 

In recent years, commercial HMD devices have been dedicated to enhancing 

performance and reducing weight in order to achieve greater convenience and comfort. A 

prime example of this trend is the Google Glass [9].  

Table 2-1. Specification of Google Glass Enterprise Edition 2 [9], Microsoft 

HoloLens 2 [11], and Epson Moverio BT-350 [12]. 

Item 
Google Glass 

Enterprise Edition 2 
Microsoft HoloLens 2 

Epson Moverio 

BT-350 

Resolution 

(Pixels) 
640×360 2048 x 1080 1280 x 720 

Storage 32 GB 64 GB 48 GB 

CPU 
Qualcomm XR1 1.7 

GHz Quad-core 

Qualcomm Snapdragon 

850 

Intel Atom X5 (1.44 

GHz Quad-Core) 

RAM DDR4 3 GB 
4 GB LPDDR4x system 

DRAM 
2 GB 

Battery 800 mA·h 16,500 mA·h 2,950 mA·h 

Camera 8-megapixel camera 
8-megapixel camera, 

1080p video recording 
5-megapixel camera 

Operating 

System 

Android Open-Source 

Project 8.1 (Oreo) 
Windows 10 Android 5.1 

Weight 46 g 566 g 151 g 

Sensor 

Wi-Fi 

Bluetooth 

GPS 

6-axis gyroscope 

Azure Kinect sensor 

accelerometer 

Gyroscope 

Magnetometer 

6-DoF (Degrees of Freedom)  

GPS 

Wi-Fi 

 Bluetooth 

GPS 

3-axis gyroscope 

Fluoroscopy 

method 

Curved mirror 

(+Reflective 

waveguide):  

Google Light pipe 

Holographic waveguide 

Reflective 

waveguide:  

Epson light guide 
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Table 2-1 presents the product specifications of three commonly found smart glasses 

in the market. Among them, Google Glass Enterprise Edition 2 is the most widely used, 

with a specific focus on utility in industrial sectors such as aviation and medicine. 

Microsoft HoloLens creates a Mixed Reality (MR) environment that enables interactive 

experiences akin to physically touching virtual objects based on a depth sensor equipped 

with artificial intelligence. HoloLens extends beyond industrial applications, finding use 

in operating rooms as well as construction and maintenance sites. In contrast, BT-350 

requires a wired controller connected to the main unit for operation, which can lead to 

user discomfort [10].  

2.2  The Method of Depth Estimation 

  

We use ToF camera: depth sensing camera. Therefore, in this section, we will delve 

into the study of depth prediction techniques, which can be mainly classified into three 

methods: stereo vision, structured light, and ToF camera. We will provide a detailed 

introduction to each of these methods, with particular emphasis on ToF camera. Table 2-2 

presents a comparison of these three major 3D imaging technologies.  
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Table 2-2. Comparison of 3D imaging technologies [21]. 

 Stereo Vision Structured Light Time-of-Flight 

Software Complexity High Medium Low 

Material Cost Low High Medium 

Compactness Low High Low 

Response Time Medium Slow Fast 

Depth Accuracy Low High Medium 

Low-Light Performance Weak Good Good 

Bright-Light 

Performance 
Good Weak Good 

Power Consumption Low Medium Scalable 

Range Limited Scalable Scalable 

 

2.2.1 Stereo Vision 

 

Stereo vision, as emphasized by R. Szeliski [19], has emerged as a highly active 

technology in the realm of computer vision research. It pertains to the task of inferring 

the three-dimensional structure of a scene based on multiple digital images captured from 

distinct viewpoints [16]. In Figure 2-2, by employing a mathematical solution, the depth 
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of an object can be determined by analyzing the triangle formed from the intersection 

point generated by projecting the object onto two distinct lenses.  

 

Figure 2-2: Stereoscopic vision diagram [20]. 

 

2.2.2 Structured Light 

 

A structured light camera is a type of depth-sensing camera that uses a structured 

pattern of light projected onto a scene to determine depth information. The camera emits 

a known pattern of light, such as a grid or a series of horizontal or vertical lines, onto the 

objects or surfaces in its field of view [22]. By capturing the reflected or deformed pattern 

of light using specialized sensors, the camera can analyze the distortions in the pattern 

and calculate the depth of various points in the scene. In Figure 2-3, structued light relies 



doi:10.6342/NTU202302797

 

19 

 

on the principle of triangulation, where the known pattern of light is projected from a 

known position, and the camera observes the resulting deformation or displacement of 

the pattern on the objects or surfaces. By analyzing the distortions, the camera can 

reconstruct a depth map, providing information about the distance of each point from the 

camera.  

 

 

 

Figure 2-3: Structured light camera diagram [23]. 
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2.2.3 Time-of-Flight Camera 

 

According to F. Remondino and D. Stoppa et al. [4], ToF camera can be categorized 

into two main types: Direct Time-of-Flight (D-ToF) and Indirect Time-of-Flight (IToF). 

D-TOF is typically employed in single-point range systems, specifically in 

scannerless ToF systems. It is well-suited for Single Photon Avalanche Diode (SPAD)-

based systems. In the case of Direct-ToF (D-ToF) measurement, the detector system 

initiates a highly precise stopwatch simultaneously with the emission of light pulses from 

the emitter. When the stopwatch is stopped, the roundtrip time τ_ToF is directly recorded. 

The target distance z can then be estimated using a simple equation: 

𝑍 =
𝑐

2
⋅ 𝜏𝑇𝑜𝐹 

An alternative solution to D-ToF is known as Indirect-ToF (I-ToF), which involves 

extrapolating the roundtrip time from a time-gated measurement of light intensity. In this 

case, a highly accurate stopwatch is not required. Instead, time-gated photon counters or 

charge integrators are used, which can be implemented at a pixel level with less 

complexity and silicon area. I-ToF is particularly suitable for ToF cameras based on 

electronic and photo-mixing devices. The operation principle of D-ToF and an example 

of a four-gates I-ToF are in Figure 2-4. 
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Figure 2-4: Overview of pulsed and modulated D-ToF and I-ToF measuring 

techniques [4]. 

As stated by P. Padmanabhan and C. Zhang et al. [5], dToF image sensors based on 

Time-Correlated Single-Photon Counting (TCSPC) offer high-speed performance and 

accurate ranging capability, and they have been extensively studied in recent years. To 

obtain stable depth information, the dToF approach involves detecting events across 

multiple laser pulses directed at the target, which are then captured by the SPAD sensor 

depicted in Figure 2-5. This method also mitigates the issue of multiple reflections that 

can impact iToF cameras.  
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Figure 2-5: Principle of dToF sensor [5]. 

According to [6], dToF technology offers the advantage of more stable depth 

information compared with iToF. However, it also has certain drawbacks. For instance, 

operating a Single Photon Avalanche Diode (SPAD) in dToF requires a high bias voltage 

(>10 V), and shrinking the pixel size is challenging, resulting in a limited pixel count of 

only tens of thousands. In contrast, iToF can be implemented on a standard 

Complementary Metal-Oxide Semiconductor (CMOS) sensor using lower power (<3.3 

V), making it easier to shrink the pixel size and achieve a larger pixel count within a 

smaller optical format. Additionally, SPAD technology is more expensive than iToF 

CMOS Image Sensor (CIS). A detailed comparison between dToF and iToF is presented 

in Table 2-3. 
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Table 2-3. Comparison between dToF and iToF. 

 dToF iToF 

Principle of operation Time-dependent Phase-dependent 

Sensor SPAD array iTOF CIS 

Difficulty of making difficult Easy 

Power consumption Low High 

Measurement accuracy Stable Depends on distance 

Multiple Reflections Easy to solve Difficult to solve 

Price Expensive Cheap 

Application iPhone 13 Samsung Galaxy 

 

 

2.3  Hand Gestures Recognition 

 

Hand gesture recognition plays a crucial role in facilitating natural and intuitive user 

interfaces for Human-Computer Interaction (HCI), offering users an effortless and user-

friendly experience [13]. 

 According to M. Oudah, A. Al-Naji, and J. Chahl [15], there are two commonly 
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used approaches for interpreting gestures in HCI applications. The first approach utilizes 

data gloves, either wearable or in direct contact, while the second approach relies on 

computer vision without the requirement of wearing any sensors. The second approach 

can be further classified into various categories: color-based recognition, appearance-

based recognition, motion-based recognition, skeleton-based recognition, depth-based 

recognition, 3D model-based recognition, and deep-learning based recognition. We will 

focus on depth-based recognition. 

In Figure 2-6, J. Suarez and R. R. Murphy proposed a system for depth-based hand 

gesture recognition [14].  

 

Figure 2-6: The components of a video- or depth-based hand  

gesture recognition and pose estimation system [14]. 
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Depth-based hand gesture recognition starts by capturing depth images, which relies 

on the specific sensor employed. Subsequently, hand localization is conducted on the 

obtained sequence of images through tracking and segmentation techniques. Finally, the 

segmented hand images and/or their tracked trajectories are classified into specific 

gestures or poses, utilizing a predefined set of gestures. 
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Chapter 3 Background 

 

3.1  Our Device Configuration 

 

 

Figure 3-1: Jorjin J-Reality J7EF Plus [18]. 

 

The smart glasses used in this experiment are Jorjin J7EF Plus connected to a Sony 

Xperia 1 II smartphone with operating system Android 12.  
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Figure 3-2: Sony Xperia 1 II [24]. 

Jorjin J7EF Plus has a 1080p (1,920x1,080 pixels) binocular display with horizontal 

FoV (Field of View) of 29.6 degrees. Its Inter-Pupillary Distance (IPD) is 65 millimeters. 

It is also equipped with 4 sensors, including an 8-megapixel RGB (Red, Green, Blue) 

camera, a 64 (=8x8) pixels Time-of-Flight (ToF) depth camera (ST VL53L5CX) with 15 

FPS (Frames Per Second), ambient light sensor, and an IMU (Inertial Measurement Unit) 

consisting of an accelerometer, gyroscope, and magnetometer. The gesture recognition 

algorithms are run on a Micro-Controller Unit (MCU: ST STM32F401CE). 

Jorjin J7EF Plus relies on a host device to provide both content and power. To ensure 

proper functionality, certain factors must be considered when selecting the host device: 

• DP Alt (DisplayPort Alternate) Mode: a special mode defined by USB-IF 
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(Universal Serial Bus - Implementers Forum) to transmit high-definition video 

over USB-C ports, is the main protocol used for graphic transmission to the 

glasses. The host device must support DP Alt Mode to display content on Jorjin 

J7EF Plus glasses. 

• Power output: another important factor for the glasses. A standard USB 2.0 port 

can only supply a maximum of 500mA current to a client device. A Power-

Delivery enabled USB port can output a higher current (1.5A or more) to the 

connected device. If the host device cannot provide sufficient power to the 

glasses, unstable connections and abnormal functionalities may occur during 

operation. 

Jorjin J7EF Plus also has 2D and 3D display modes. In 2D mode, users will see the 

same content on the left and the right displays on the glasses, and the aspect ratio on the 

glasses’ displays will be the same as the original one on the host display. In 3D mode, 

users will see different content on the left and the right displays, and the aspect ratio on 

the glasses displays will be twice as the original one on the host display since the original 

content will be split in half then be stretched to the normal size before displaying on the 

glasses. In our experiment, we only consider 2D mode. 
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(a) (b) 

Figure 3-3: Jorjin J7EF Plus display mode. (a) 2D mode. (b) 3D mode (Jorjin, 2023) 

[18]. 

 

 

3.2  Sensor Decision 

 

In the selection of sensors, we opted for a ToF camera instead of an RGB camera. 

This choice was made due to the ToF camera's ability to easily eliminate background 

noise. In traditional RGB camera-based gesture recognition, foreground objects need to 

be separated from the background. This can be easily achieved when the background 

remains static. However, with smart glasses worn on the user's head, the background is 

constantly changing, making this task more challenging. By using a ToF camera, we only 

need to retain the pixels within the range where we anticipate the user will perform 

gestures, while ignoring all pixels outside this range. Another advantage is the accuracy 
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in detecting depth variations. RGB cameras can only estimate distance variations by 

observing minor shape and feature differences, leading to relatively larger errors. In 

contrast, ToF cameras inherently possess depth information, providing a distinct 

advantage when designing gestures that are perpendicular to the sensor plane. 

 

3.3  Hardware Limitation 

 

3.3.1 The Low-Resolution Depth Sensor 

 

Due to the limited computational power of the MCU on smart glasses, it is not as 

powerful as a typical CPU installed in desktop computers. Furthermore, our research 

focuses on low cost and low power consumption. Therefore, we choose a ToF camera 

with a resolution of only 8x8 as our sensor. We aim to achieve precise, fast, and 

comfortable gestures. However, due to the low resolution, it is not possible to accurately 

recognize the shape of a palm, let alone individual fingers. As a result, we exclude static 

gestures such as finger counting and instead choose motion-based gestures with larger 

displacement amplitudes, such as swiping. 
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3.3.2 Limited Field of View (FoV) 

Due to the placement of our sensor on the smart glasses, specifically on the user's 

forehead with a sensing area directly in front of the eyes, users need to raise their hands 

slightly higher to keep them within the sensing range. Besides, to ensure gesture comfort, 

we design our gestures to minimize upper arm movements and instead focus on 

movements of the forearm. 

3.3.3 Sensor Mobility Constraint 

Due to the placement of the sensor on the user's head in smart glasses, the sensing 

area is influenced by head movements and rotations. Even slight shaking can result in 

static objects being detected as moving objects. Furthermore, if the head rotates too much, 

it may cause the hand to move out of the sensing area, interrupting an incomplete gesture. 

Therefore, when designing gestures, we took into account the importance of interactivity. 

 

3.4  Existing Techniques and Limitations 

 

3.4.1 LuGesture Method 

 

The previous development of Jorjin J-Reality J7EF Plus Smart Glasses was mainly 



doi:10.6342/NTU202302797

 

32 

 

based on Y. H. Lu's work [17]. LuGesture focuses on hand gesture recognition using ToF 

technology integrated into the smart glasses. LuGesture enables the recognition of three 

gesture sets, including: 

1. Swipe + Push/Pull: The four swipe directions include up, down, left, and right. 

These specific gestures have been chosen to emulate the arrow keys on a 

keyboard. The complete process involves the following steps: First, binarize the 

pixels based on whether they fall within the sensing range. Then, calculate the 

difference between the current and previous frames, and apply image blur to 

distribute the differences more evenly. By analyzing the blurred difference image 

and identifying the gradient directions, we can determine the swipe direction for 

each difference frame. When the hand is no longer present or stops moving, we 

can determine the gesture direction by examining the most frequently occurring 

direction in the sequence. Alternatively, we can sum the scores of all frames in 

the sequence to determine the gesture direction. 

The push and pull gestures are designed to be triggered when a hand moves 

towards or away from the sensor, covering a certain distance. The algorithm 

consists of two stages: ready stage and trigger stage. In ready stage, we detect 

the presence of a hand. We calculate the mean distance of the pixels that detect 



doi:10.6342/NTU202302797

 

33 

 

an object within the sensing range, which serves as the start distance. The 

algorithm transitions from ready stage to trigger stage when the difference 

between the current mean distance and the start distance exceeds a specified 

distance threshold. This transition triggers the push gesture if the current distance 

is larger, while it triggers the pull gesture if the current distance is smaller. Once 

the gesture is triggered, the algorithm is reset, allowing for the detection of 

subsequent gestures. 

Due to the possibility of simultaneous triggering of swipe gestures and push/pull 

gestures, LuGesture assigns higher priority to push/pull gestures.  

 

(a) (b) (c) (d) 

Figure 3-4: Examples of difference images for each direction. (a) Swipe left. (b) 

Swipe right. (c) Swipe up. (d) Swipe down. The motion direction can be observed by 

the general direction from red (disappearing: negative values) to blue (appearing: 

positive values) [17]. 
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Figure 3-5: The whole process to detect swipe gestures. For Step 3, we show the 
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graph of the 4th row. We can see that the score peaks at index 3 and 4, which is where 

our middle point is. The same process applies to every row for the horizontal score as 

shown, and every column for the vertical score [17]. 

 

 

Figure 3-6: Illustration of the two stages of a push gesture [17]. 

 

2. Hand Speed: This gesture is primarily designed for throwing games and records 

the speed at which the hand is pushed forward. Imagine an invisible wall in front 

of us, with the closer side referred to as the close side and the farther side as the 

far side. The algorithm can be divided into three stages: ready stage, trigger stage, 

and sleep stage. In the ready stage, the algorithm detects the hand but waits for 

the hand to cross the invisible wall, as the number of pixels on the far side is less 
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than the required threshold for triggering the speed registration. Once the hand 

crosses the wall, it enters the trigger stage. In the trigger stage, LuGesture 

calculates the hand speed by subtracting the mean distance between hand pixels 

in the current and previous frames, capturing the maximum speed since entering 

the ready stage. During the sleep stage, LuGesture pauses its operation to avoid 

triggering unnecessary gestures. After the sleep time expires, it can re-enter the 

ready stage for further detection. 

 

Figure 3-7: Illustration of the three stages for hand-speed detection [17]. 

 

3. Hand Tracking: This gesture is designed to allow users to use their hands as a 

cursor even in low-resolution conditions. The complete process involves: 

binarizing the image based on the sensing range to extract hand pixels, adjusting 

weights to reduce the impact of twinkle pixels, upscaling the image, applying 

image blurring, calculating the centroid, and performing interpolation between 
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frames to improve FPS. 

 

(a) (b) (c) 

Figure 3-8: Processing to reduce jitter. (a) Unprocessed binary image. (b) Reweighted 

image. (c) Upscaled and blurred image after reweighting. Note that these are different 

frames [17]. 

 

3.4.2 Limitations of LuGesture Method 

 

After conducting practical experiments with LuGesture, we observe that the gesture 

recognition performance did not meet expectations, as shown in Figure 3-9, with frequent 

instances of misjudgment. Therefore, we analyze and identify potential risks associated 

with LuGesture: 

1. Excessive non-palm region: During Hand Tracking, the hand's centroid struggles to 

reach the upper region. Even when the palm moves upward, the sensor may still 
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detect the forearm, thereby affecting centroid calculation. 

2. Insufficient stability: The low resolution (8x8 pixels) of the camera has a limited 

number of pixels. Consequently, even a single pixel can have a significant impact on 

the centroid calculation. Additionally, the inherent limitations of ToF technology can 

result in twinkle issues when the palm edges fall between two pixels, greatly 

impacting stability. 

3. Lack of functional integration: Each component of LuGesture operates 

independently, lacking seamless integration into a comprehensive system. 

   

(a) (b) (c) 

Figure 3-9: The result image of LuGesture. Hand in the (a) top-left corner, (b) upper-

center corner, (c) top-right corner. 

 

To address these identified risks, ChungGesture proposes the following solutions to 

achieve improved results below: 
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1. Differentiating between left and right hands. 

2. Improving precision. 

3. Improving stability. 

4. Enhancing gesture recognition accuracy. 

5. Integrating all components into a unified system. 

 

Detailed explanations of these solutions will be provided in Methodology. 
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Chapter 4 Methodology 

 

4.1  Overview 

 

 Based on the three risks outlined in Chapter 3, we have developed a system that 

achieves the functionalities of 4 swipe directions, push/pull, and tracking by accurately 

calculating the centroid of the palm. Figure 4-1 illustrates the main process flow of 

ChungGesture: First, we apply distance and signal strength filtering. Second, we filter out 

the background and partial arm by defining a reasonable range of palm movements. After 

that, we handle the twinkle pixels along the palm edges and determine whether it is the 

left or right hand. Finally, based on the left/right hand, we filter out the remaining arm 

regions, leaving only the palm, and calculate its centroid for accurate gesture recognition. 
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Figure 4-1: Main flowchart of ChungGesture. 

 

4.2  Data Collection 

 

Based on Jorjin Software Development Kit (SDK) in Figure 4-2, depth information 

and signal strength of the ToF Camera can be obtained by calling the API (Application 

Programming Interface) named "onTofIncomingFrame". The data are stored and 

transmitted in arrays of size 64 (=8X8 pixels). 
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Figure 4-2: The data flow chart of smart glasses [18]. 

 

4.3  Noise Reduction 

 

4.3.1 Remove Background 

 

In order to extract only the palm information, the first step after obtaining the depth 

information and signal strength is to remove background noise. Based on our observations, 

hand movement range for most individuals falls within the range of 0~45 centimeters. 

Therefore, pixels outside this range are initially ignored. Additionally, to mitigate distance 

measurement errors in the ToF camera, ChungGesture also considers the signal strength 

returned by the ToF camera as an auxiliary parameter. Only the data with signal strength 

above a certain threshold (=122) is selected to ensure data accuracy. If all pixels are 
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filtered out, the frame is deemed invalid, and no further processing or calculations are 

performed on that frame. Conversely, the remaining pixels are referred to as valid pixels. 

Generally, when waving the hand, the palm tends to tilt slightly forward, with the 

fingertips being farthest away from our body in Figure 4-3. Therefore, we use the distance 

of the farthest valid pixel as the reference and retain the valid pixels within 10 centimeters 

of this distance. These retained pixels are referred to as hand pixels, while the remaining 

valid pixels are assumed as arm and ignored. The depth values of all hand pixels are 

summed and averaged to obtain the depth of the hand.  

  

(a) (b) 

Figure 4-3: Sensing range of hand pixels. (a) Direct view. (b) Side view. 
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4.3.2 Remove Twinkle 

 

After performing the aforementioned processing steps, we can roughly filter out the 

shape of the hand. However, due to the accuracy and low resolution of the ToF camera, 

when the edge of the palm falls between pixels in Figure 4-4 (a), gray pixels are prone to 

twinkle. Therefore, we keep a record of the hand pixels from the previous 8 frames and 

compare them with the current frame. If a pixel was present in the past but not in the 

current frame, or vice versa, we consider those pixels as twinkle pixels.  

  

(a) (b) 

Figure 4-4: Comparison chart of twinkle processing. (a) Twinkle image. (b) After 

twinkle removal. 
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By considering both the twinkle pixels and the hand pixels together, we classify them 

based on their connectivity. Connected pixels in Figure 4-4 (b), refer to those pixels that 

are connected to each other. This approach helps reduce the instability caused by 

flickering. 

 

4.4  Hand Area Detection 

 

4.4.1 Left-Right Hand Discrimination 

 

Through observation, we have found that when most people wave their right hand, 

it tilts to the left, and vice versa in Figure 4-5 (a). Taking the example of the right hand, 

after performing noise reduction on the frame, we can observe that the connected pixels 

form a connection from the top left to the bottom right. Leveraging this characteristic, we 

identify the leftmost and rightmost columns of connected pixels. We calculate the average 

y-coordinate values of the connected pixels on these two columns in Figure 4-5 (b). 

Similarly, we identify the topmost and bottommost rows and calculate the average x-

coordinate values of the connected pixels on these two rows in Figure 4-5 (c). If the 

average y-value of the leftmost column is higher than that of the rightmost column, and 
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at the same time, the average x-value of the top row is to the left of the average x-value 

of the bottom row, and this pattern persists for three consecutive frames, then it is 

determined as a right hand, and vice versa. 

 

   

(a) (b) (c) 

Figure 4-5: Determine left-right hand. 

 

 

4.4.2 Cropping for Left-Right Hand Differentiation 

 

The size of an object varies with its distance from the eyes, and the same applies to 

the hand in relation to glasses. The closer the hand is, the larger it appears and the more 

pixels it occupies. Through repeated observations, we can utilize the average depth 

calculated in Section 4.3.1 to determine the expected number of pixels for the palm at that 
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distance in Equations 1 and 2: 

𝐿 =  (𝑑 × tan( 𝜃) /𝑙) (1) 

ℎ(𝑑) = (𝑊 × 𝐻)/𝐿2 (2) 

 

where L represents the actual length of a pixel; d represents the average depth of the hand; 

θ represents the angle between the line connecting the glasses and the palm and the 

palm itself; l represents the length of the palm as it appears in the image; h represents the 

number of pixels for the hand; and W and H represent the width and height of the palm, 

respectively. 

 

After obtaining the information of the left and right hands along with their 

corresponding pixel counts, we take the right hand as an example. In Figure 4-6 (a), based 

on the recorded top-left point (red pixel) mentioned in Section 4.4.1, we follow the 

sequence indicated in Figure 4-6 (b) to selectively retain the connected pixels while not 

exceeding the expected number of pixels for the hand. All remaining pixels are filtered 

out, resulting in a representation of the palm in the form of pixels in Figure 4-6 (c). The 

yellow pixels are referred to as hand palm pixels, and the blue pixel represents the final 

pixel we have chosen. 
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(a) (b) (c) 

Figure 4-6: Hand palm image. 

 

4.4.3 Calculating Hand Palm Centroid 

 

Now we have obtained the pixels representing the shape of the hand palm, the next 

crucial step is calculating the centroid. This part is considered the most important because 

subsequent gesture recognition and tracking are based on the centroid. We evaluate the 

effectiveness of our methods by precsion and stability. Therefore, we have developed four 

methods, which will be explained in detail below, and the comparative results will be 

presented in Chapter 5. 

In Method 1, if we simply take the average of the coordinates of hand palm pixels, 

it can be easily influenced by edge twinkle pixels, even after processing the twinkle pixels. 
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Therefore, to increase stability, we apply Gaussian weighting to the averaged point using 

Equations 5 to 7. This helps us reduce the impact of edge twinkle pixels, where points 

closer to the center (hand palm center) have higher weights, while points farther from the 

center (hand palm edges) have lower weights. By recalculating the centroid based on 

these weights, we obtain our hand palm centroid. 

Using the aforementioned method still poses a problem, which is the precision. 

Taking the right hand as an example, when our right palm reaches the top left corner 

of the sensor detection area, the calculated hand palm centroid is in Figure 4-7. 

However, if the palm continues to extend towards the top left corner beyond the sensor 

detection area, the calculated hand palm centroid remains at the same position. We can 

never reach the actual top left corner. 

 

Figure 4-7: Precision problem. 
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To address the aforementioned issue, we record the hand palm centroid and depth 

when the hand first reaches the top left corner. We simulate the movement of the hand 

palm towards the top left corner by pushing it forward. Here, we set a parameter P 

representing the longest distance of the push (5 centimeters). Assuming the hand palm 

continues to touch the top left corner, we apply Equation 3 to scale the hand palm 

centroid proportionally: 

(𝑥, 𝑦)𝑓 = (𝑥, 𝑦)𝑐 +
(𝑑𝑐 − 𝑑𝑟)

𝑃
× ((𝑥, 𝑦)𝑡 − (𝑥, 𝑦)𝑐) (3) 

where, (x, y) represents the coordinate values; f represents the final result; c represents 

the current frame; r represents records when first reaches the corner; t represents the 

target corner; d represents the depth; and P represents the longest distance of the push. 

Methods 2, 3, and 4 are also developed to address the mentioned issue. 

 

Method 2 involves proportional scaling, specifically, the resolution is projected 

from 7x7 to 8x8. The path traveled by the hand is normalized to a length of 8 units. 

The hand palm centroid, which has undergone Gaussian weighting in Method 1, is 

proportionally scaled using Equation 4: 

(𝑥, 𝑦)𝑜𝑢𝑡𝑝𝑢𝑡 =  
(𝑥, 𝑦) − (𝑥, 𝑦)𝑚𝑖𝑛

(𝑥, 𝑦)𝑚𝑎𝑥 − (𝑥, 𝑦)𝑚𝑖𝑛
 (4) 

where (x,y)max represents the max coordinate of the sensor, which means (7, 7) in this 
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paper;  (x,y)min represents the min coordinate of the sensor, which means (0, 0) in this 

paper. 

 

Method 3, similar to Method 1, employs Gaussian weighting using Equations 

5 to 7. However, the key distinction lies in the fact that we now assign weights based 

on fingertip position in Figure 4-8. 

  

(a) (b) 

Figure 4-8: Gaussian weighting image. (a) Averaged point. (b) Fingertip. 

 

𝐷𝑖𝑗 = √(𝑖 − 𝑐𝑥)2 + (𝑗 − 𝑐𝑦)
2
 (5) 

𝑊𝑖𝑗 =  
1

𝜎√2𝜋
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2/(2𝜎2) (6) 

𝐶 =  (
∑ ∑ (𝑖 ∗ 𝑊𝑖𝑗)𝑁−1
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𝑖=0

∑ ∑ 𝑊𝑖𝑗
𝑁−1
𝑗=0

𝑀−1
𝑖=0

,
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𝑗=0
𝑀
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𝑁
𝑗=0

𝑀
𝑖=0
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where Dij represents the distance between coordinate (i, j) and center coordinate (cx, 

cy); Wij represents the weight from Gaussian; C represents the coordinate after 

reweighting; and M and N represent the dimension of hand palm pixels matrix.  

 

Method 4 involves directly assigning an 8x8 weight table based on the left- or right-

hand determination obtained from Section 4.4.1. The centroid is then calculated using this 

weight distribution, as illustrated in Figure 4-9. 

 

Figure 4-9: Weight table. 

 

 

4.4.4 Smoothing 
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To improve stability, we consider the inherent inaccuracies of ToF sensor itself. Even 

when the hand remains motionless, slight fluctuations can be observed in the depth values 

provided by the sensor, which can affect our determination of the hand palm centroid. To 

address this issue, we incorporate a Gaussian weighting technique by considering the 

hand palm centroids of the previous three frames when calculating the current frame's 

hand palm centroid. This approach is based on the assumption that hand movements are 

coherent, and the variations between consecutive frames are not significant. After 

applying Gaussian weighting, we obtain the final hand palm centroid with improved 

stability. 

 

4.5  Gesture Recognition 

 

After undergoing the smoothing process, the hand palm centroid allows us to achieve 

accurate hand tracking. In this section, we will explain how we utilize the hand palm 

centroid to enable detection of four swipe directions (up, down, left, and right) as well as 

push and pull gestures. 
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4.5.1 Swipe 

 

In the case of detecting the four swipe directions, there are two aspects to consider: 

observation and recognition. First, we aim to achieve recognition by analyzing the user's 

motion vectors. However, each individual's hand length, hand palm size, motion habits, 

and speed differ, and there is also a distinction between left and right hands. As a result, 

the obtained motion vectors will vary. We have previously explained the process of 

obtaining the hand palm centroid to facilitate our observation and analysis in Figure 4-10. 

Taking the example of a right-hand swipe left, through repeated observations, we noticed 

that even for a simple leftward motion, the hand palm centroid enters from the upper-right 

position of the frame and exits from the lower-left position. We record displacement 

vector during this process, taking four frames as a unit. Considering the limitation of 15 

Frames-Per-Second (FPS), a higher number of frames may introduce delay and 

misjudgment, while a lower number may overlook slower hand motions. Similarly, we 

record displacement vectors for swipe right, up, and down, corresponding to the other 

three directions. 
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Figure 4-10: Right-hand swipe left image. 

 

Once we have the statistical vectors for the four swipe directions, we have a basis 

for gesture recognition. When the user actually performs a hand swipe, it generates a 

displacement vector. If this displacement vector reaches a certain magnitude within four 

frames, we compute the dot product between this vector and the previously recorded 

statistical vectors for each swipe direction. Subsequently, we calculate the angle using the 

following equation: 
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𝐴𝑛𝑔𝑙𝑒 =  cos−1(
𝑉𝐷 ∙ 𝑉𝐶

|𝑉𝐷| × |𝑉𝐶|
) 

where VD represents the current displacement vector, and VC represents the previously 

recorded statistical displacement vectors. The recognized gesture corresponds to the 

smallest calculated angle. We employ this approach because we consider the statistical 

vectors as ground truth, and calculating the angle between the displacement vector and 

the statistical vector is akin to measuring the similarity to the corresponding gesture. 

4.5.2 Push and Pull 

 

Next, we discuss the push/pull gestures, which involve movements perpendicular to 

the plane of the ToF sensor sensing area. These gestures are closely tied to our depth 

information. The determination of these two gestures primarily relies on the hand's depth 

in Section 4.3.1. Their triggering conditions are associated with depth variation. We have 

set two parameters: a depth variation threshold for triggering push and pull gestures. The 

threshold for push is set to 12 centimeters, while the threshold for pull is set to 8 

centimeters. Similar to the swipe gestures, we consider a window of four frames. We 

detect whether the hand's depth variation exceeds the threshold within these four frames. 

If the depth variation increases beyond 12 centimeters, it is recognized as a push gesture. 

Conversely, if the depth variation decreases beyond 8 centimeters, it is recognized as a 
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pull gesture. 

 

 

Figure 4-11: Illustration of a push gesture. 

 

 

4.6  Our System 

 

Our ChungGesture recognition system is primarily based on the hand palm centroid. 

Whether it is hand tracking, the four swipe directions, or push/pull gestures, required 
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displacement and depth variation can be obtained through the methods proposed in this 

thesis. Therefore, we can integrate all gestures into a single system. However, during the 

same motion, it is possible to trigger multiple gestures simultaneously. For example, while 

performing a left swipe, the hand may also move closer to the body, triggering both a 

swipe left and a pull gesture. To address this, we have set a cooldown parameter (0.5 

seconds) to prevent continuous triggering of multiple gestures. Furthermore, we assign 

priorities to these gestures based on their triggering difficulty and the frequency of gesture 

usage. Push/pull gestures are given higher priority, followed by the four swipe directions. 



doi:10.6342/NTU202302797

 

59 

 

Chapter 5 Experimental Results 

 

5.1  Experimental Setting 

 

In this thesis, our experimental setup consists of Jorjin's J-Reality J7EF Plus smart 

glasses and Sony's Xperia 1 II smartphone. Data acquisition is performed through the 

SDK provided by Jorjin, which imposes certain environmental limitations. Therefore, all 

algorithms in this experiment are implemented within Unity 2020.3.32f1 version. The 

Minimum API Level and Target API Level are set to Android 8.1 'Oreo' (API level 27). 

The entire project is built into an APK file and installed on the Xperia 1 II running the 

Android 12 operating system. Once the smart glasses are connected to the smartphone, 

data transmission begins, and the smartphone screen is displayed on the smart glasses 

synchronously. All our participants are students from the College of Electrical 

Engineering and Computer Science, National Taiwan University. 

 

5.2  Precision Result 

 

In our experiment, we used the color weakness game to test precision. The color 
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weakness game involved dividing the screen into equally sized blocks. A red dot would 

move according to the hand palm centroid, and the objective was to keep the red dot 

within the only block on the screen with a different color for at least 0.5 seconds to 

obtaining score. As the score increased, the size of the blocks decreased, and the number 

of blocks displayed on the screen increased. Ultimately, we measured the precision based 

on the maximum achievable resolution. 

 

Figure 5-1: Screenshot from the Color Weakness game used in our experiments. 

 

The test results, in Table 5-1, demonstrate that all of our methods outperform 

LuGesture. This is attributed to LuGesture's excessive inclusion of non-palm regions, 

which prevents it from reaching the upper-left corner, causing it to freeze at a resolution 

of 5x3. In contrast, our methods rank in the following order: Method 2, Method 3, Method 

4, and Method 1. 
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Table 5-1. Comparison results of precision. 

 
Resolution↑ 

(pixels) 

Rank↓ of 

Precision 

Method 1 12x7 4 

Method 2 17x10 1 

Method 3 16x9 2 

Method 4 14x8 3 

LuGesture 5x3 5 

 

5.3  Stability Result 

 

To test the stability, we employed a method where the hand was kept fixed in a 

consistent position. Using the initial hand palm centroid as the reference point, we 

measured the maximum and average displacement of the hand palm centroid over the 

following 2 seconds. This stability test was conducted simultaneously with the four 

methods mentioned in Section 4.4.3, along with LuGesture, to ensure that the input data 

remain consistent across all tests. 
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We conduct tests at hand-to-glasses distances of 25 cm, 35 cm, and 45 cm, and the 

results are summarized in Table 5-2. Method 2 performed better only at closer distances, 

with a decreasing performance as the distance increased. This can be attributed to the 

centroid being scaled proportionally. With fewer pixels being available at farther 

distances, the calculated centroid is more susceptible to the influence of twinkle pixels, 

which amplifies the impact. On the other hand, Method 1 consistently performed well 

across all distances. Method 3 exhibited a deteriorating performance as the distance 

increased, highlighting the significance of adjusting the weight distribution between edge 

and center pixels as the pixel count decreases. Method 4 and LuGesture maintained a 

moderate performance throughout the distances. Based on these tests, we concluded that 

Method 1 is the most stable approach.  
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Table 5-2. Comparison results of stability. 

Distance Method 

Max 

Displacement 

(↓) 

Average 

Displacement 

(↓) 

Rank↓ 

(Max) 

Rank↓ 

(Avg.) 

25cm 

Method 1 0.30797 0.07797 1 1 

Method 2 0.49090 0.13533 2 2 

Method 3 0.59835 0.22994 4 3 

Method 4 0.61624 0.26741 5 5 

LuGesture 0.53071 0.23308 3 4 

35cm 

Method 1 0.433898 0.17689 2 1 

Method 2 0.60592 0.22490 5 5 

Method 3 0.37658 0.18161 1 2 

Method 4 0.46323 0.20023 3 3 

LuGesture 0.48287 0.20820 4 4 

45cm 

Method 1 0.37906 0.18205 1 1 

Method 2 0.58799 0.25649 5 5 

Method 3 0.46471 0.21001 4 4 

Method 4 0.40675 0.18507 2 2 

LuGesture 0.41865 0.19921 3 3 
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5.4  Gesture Recognition Accuracy Result 

 

In this experiment, we employ Method 1 to conduct 50 tests with ten participants 

respectively using their right hand for swipe gestures in four directions (up, down, left, 

and right), as well as push/pull gestures in Table 5-3. It can be observed that 

ChungGesture outperformed LuGesture in all gesture directions, particularly in Swipe up 

and Swipe right. Participants often swing their hands diagonally from the lower-left 

corner to the upper-right corner of the sensor's sensing range while performing these two 

gestures, resulting in mutual misinterpretations. To address this issue, we pre-record 

vectors to achieve better performance. 
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Table 5-3. Comparison results of gesture recognition. 

Accuracy↑ ChungGesture LuGesture 

Swipe Left 95% 92% 

Swipe Right 93% 89% 

Swipe Up 91% 87% 

Swipe Down 91% 88% 

Push 96% 96% 

Pull 93% 93% 
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Chapter 6 Conclusion and Future Works 

 

 In this thesis, we propose ChungGesture, which consists of six precise, fast, and 

comfortable gestures aimed at enhancing the user experience of Jorjin J-Reality J7EF Plus 

users. Despite the low resolution of low-cost and power-efficient ToF sensor, we 

encounter challenges such as excessive non-palm areas and insufficient stability based on 

LuGesture. However, through our efforts and the methods proposed in Chapter 4, we have 

been able to overcome hardware limitations and improve the mentioned issues. 

In Chapter 5, we identify instances of gesture misjudgment, mainly due to variations 

in individuals' swinging habits. Designing a gesture recognition system that is applicable 

to every individual remains a goal that requires further research and effort. 

Currently, we have successfully improved the gesture recognition accuracy from a 

minimum of 87% to 91% and integrated different functionalities into the ChungGesture 

system. In the future, additional gesture testing in different environments, such as multi-

user settings and handling varying lighting conditions, will be necessary to achieve higher 

precision and stability. Once everything is refined, we hope to further develop 

ChungGesture towards a 3D mouse and explore more augmented reality applications 

through collaboration with Jorjin. 
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