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Abstract

In-hospital cardiac arrest (IHCA) is a critical event associated with high mortality rates.
Early identification and intervention are crucial for improving patient outcomes. This
study introduces two innovative predictive models: the Time-Series Early Warning
Score (TEWS) and the Explainable Time-Series Early Warning Score (TEWS-X),
designed to leverage vital signs data and provide accurate and explainable predictions of
IHCA.

The TEWS model utilizes vital signs data from six time windows (48 hours) to predict
IHCA occurrences and performs superior IHCA prediction performance compared to
alternative classification algorithms. Incorporating features from multiple time windows
significantly improves prediction accuracy, with an area under the receiver operating
characteristic curve (AUROC) of 0.808, surpassing the performance of MEWS
(AUROC of MEWS: 0.649).

The TEWS-X model incorporates a tree-based machine learning approach and SHAP
values to enhance model explainability, enabling insights into feature importance and
supporting transparent decision-making, facilitating an understanding of the critical
factors influencing IHCA risk. These models can seamlessly integrate into existing care

processes, improving patient safety without disrupting workflow.

\Y
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The TEWS and TEWS-X models represent significant advancements in IHCA
prediction and explainability. By leveraging vital signs data and incorporating
explainable modeling techniques, these models empower healthcare providers to
identify patients at risk of IHCA and intervene promptly and proactively. Further
research is needed to validate the models in diverse healthcare settings and explore
additional data sources for enhanced predictive capabilities. Implementing the TEWS
and TEWS-X models can improve patient outcomes and optimize resource allocation in
the management of IHCA.

Keyword: IHCA, Early Warning Score, Vital sign, Machine Learning, Explainable Al

Vi

doi:10.6342/NTU202302444



CONTENTS

o UIRE B B D e e ii
5 SR RRPOPTRR i
PR R s iv
ADSEFACT ...ttt b e %
CONTENTS ettt et bttt be b e vii
LIST OF FIGURES. ...t Xi
LIST OF TABLES ... e Xiii
Chapter 1 INtrodUCTION .........coveiieie e 1
IV (o 1Y 14T o OSSR 1
1.2 PUIPOSE. ...ttt bbbt bbbt b e b et b e bt et ke n e bt b nenre e 5
Chapter 2 Literature REVIEW........c..ccviiiieiiie ettt 7
2.1 Importance of IHCA PrediCtioN.........cccoieiiieiiiiiieseie s 7
2.2 Modified Early Warning Score (MEWS) .......ccoiiiiiiiiiceese e 11
2.3 Model of THCA PrediCtioN........c.ccvoiviieie ettt st 14

Chapter 3 Materials and Method for TEWS (Time-Series Early Warning Score)19

4l

doi:10.6342/NTU202302444



T o 1 [T B T=T o U L (o] LTt oo 20

3.2 Setting and Study POPUIALION.............ccviiiiiiiecice bbb 20
IR V- T[4 11 (oo ] 1 T S PR 24
3.4 MOdel DEVEIOPMENT ....c.viiiiiieieeiee e 25
KR R D L W o =T o] 0T T= 1Y [ o PSS 25
3.4.2 Handing IMbalanced Data............ccccuvveiieiieiiie ettt ae et seeene s 26
3.4.3 TEWS MOdel DEVEIOPMENT........i ittt sttt saeeneeenne s 27
3.5 Performance EVAIUALION..............ccoviiiiiee ettt 29
B o LU0 (S T=] =T [ o SR 31

Chapter 4 Materials and Method for TEWS-X (Explainable Time-Series Early

WWAKNING SCOME) ..ttt ettt e e s ae e te e e e beeste e e e s reenraennennes 33
4.1 EthiCS DECIArAtIONS ......vveieeceeeie sttt sttt ettt et nbe et et e enee e 34
4.2 Setting and Study POPUIALION.............ocviiiiieiieiice e 34
4.3 MAIN OULCOIME ....eveiieiiie ettt ettt et e e st et ete s se e e e s beeneesaeeteesaesteeseeseesneenee e 35
4.4 MOAel DEVEIOPMENT ....c.viviiiieieee bbbt 37

4.4.0 DAta PrePrOCESSING .. vceveeueeueeteterteatesteateeseeseestestesbesbesseeseeseebesbesbesbeaseaseee e beseesbesbeeseesenseneesbens 37
4.4.2 Handling IMDalanCed Data...........coeiiiirieriee ettt sre 39
viii

doi:10.6342/NTU202302444



4.4.3 TEWS-X MOdel DEVEIOPMENT......cciiiiieieieeie sttt shb e e eenansseeesreseens 40

4.5 Performance EVAIUALION...........cooiiiiiiiiii bbb 41
4.6 Expandability WIth SHAP ..o 42
Chapter 5 RESUIL........ooeeece e 43
5.1 Result for TEWS (Time-Series Early Warning SCOre) .........ccccooevveiriininieniencneiceens 43
5.1.1 Performance with one, three, and SiX time WINAOWS. ..........cccocureriiinerinineieeneese e 45
5.1.2 Performance with Features Chosen via SBS Algorithm ............cccoveveiiei i 48
5.2 Result for TEWS-X (Explainable Time-Series Early Warning SCore).........c.cccccevevvvnnne 51
5.2.1 Performance OFf TEWS-X.......coi it 51
5.2.2 Feature Importance Difference Visualization ............ccccocveviiiiiiiiic s 54
5.2.3 Feature Impact Amplitude and Distribution Visualization .............ccccccvvveviiiiie i, 56
5.2.4 Feature Impact Distribution Visualization .............ccccovieeieiie e 58
5.2.5 Local Feature Importance Visualization ............ccccoiieiieiieiie e 61
Chapter 6 DISCUSSION ......cviiuieiiieiecee sttt ste ettt ste e te e sraesreennesraenne e 63
6.1 TEWS (Time-Series Warning SCOME) ........ccoveuririrerenieniesieieesese s e 63
6.2 TEWS-X (Explainable Time-Series Early Warning SCOre)..........ccocuvvvenereneneneniennninns 68
6.3 Implementation Of TEWS/TEWS-X......ccciiiiiiiiiieiee s 72
ix

doi:10.6342/NTU202302444



Chapter 7 CONCIUSION.........ccviiieece et sras e nraeneans 76

R I ENCE ... et e e e e ettt e e e e e e e e e e ae s 78

doi:10.6342/NTU202302444



LIST OF FIGURES

FIGURE 1. RESEARCH PROCEDURE. TW REFERS TO THE TIME WINDOW. ....veeveeuresueesueesseesseereensesssessessssassansessessnnsnnes 22
FIGURE 2. (A) STRUCTURE OF TEWS. (B) STRUCTURE OF LSTIM CELL...cevvieuieeireenereeieeesireesireesineeseeeessnesnsnsenssesssnens 28
FIGURE 3. THE PROCEDURE FOR GENERATING TIME INTERVAL DATA. ....vveetreesureesteeesseeessesesssesssseesssesssesesssesssssesssesssses 29

FIGURE 4. DISTRIBUTION OF VITAL SIGN DATA IN GENERAL WARD PATIENTS, EXPRESSED AS MEAN * STANDARD DEVIATION

FIGURE 5. VALUES OF AUROC AND AUPRC FOR CLASSIFIERS UTILIZING ONE, THREE, AND SIX TIME WINDOWS. 'TW' STANDS

FOR TIME WINDOW AND ‘'TEWS' REFERS TO THE TIME-SERIES EARLY WARNING SCORE...cccuvvvreerureeeernrreeesnnreeesnnnens 47

FIGURE 6. THE TOP 5 FEATURES IDENTIFIED USING THE SBS (SEQUENTIAL BACKWARD SELECTION) ALGORITHM................. 48

FIGURE 7. VALUES OF AUROC AND AUPRC FOR THE CLASSIFIER UTILIZING FIVE CHOSEN FEATURES AT ONE AND SIX TIME

WINDOWS (TWS). "TW' REFERS TO TIME WINDOW, 'TEWS' IS THE ACRONYM FOR TIME-SERIES EARLY WARNING

SCORE, AND '5FEATURE' DENOTES THE FIVE SELECTED FEATURES. «vvevesuveeeesureeesseeeeessnseesesseeessssnesssssseesssssneesans 50

FIGURE 8. FEATURE IMPORTANCE BY SHAP BEESWARM PLOT, 30 FEATURES VS.82 FEATURES. (RANDOM FOREST WITH 1:25

CLASS WEIGHT) 1 eeuteeeeetreeeeetseeeeeteeeeeesteeeeessseeessaeeeeesseeeeeaseeseasseeeeasteeeeesseesansseeeeasteeeeesneeesnsseeeeasseeeeenes 55

FIGURE 9. FEATURE IMPORTANCE BY SHAP BAR PLOT AND BEESWARM PLOT, 82 FEATURES. (RANDOM FOREST WITH 1:25

CLASS WEIGHT) 1 tttreeeeeeeeesiutreeeeeeeeeseittaereeseeesesbaseeeeeeesaassssaeaeesesanssaraaseeeesesasstaaseeeeeesastssaeeeseesansrsraeeeeeenan 57

FIGURE 10. SHAP AGGREGATED FORCE PLOT OF HEART RATE OF THE DIFFERENT TIME WINDOWS. (RANDOM FOREST WITH

1:25 CLASS WEIGHT AND 82 FEATURES) ...veeutteeuteesureesiseesuteesseesuteesseesaseesseesusessnseesssessnseessessnseesasessnseesnes 59

Xi

doi:10.6342/NTU202302444



FIGURE 11. SHAP AGGREGATED FORCE PLOT OF DBP DIFFERENCE AND DBP1 AND BT2 OF THE DIFFERENT TIME WINDOWS.

(RANDOM FOREST WITH 1:25 CLASS WEIGHT AND 82 FEATURES) +v1euvveesureesureessreessreesseesssesssssessseesssessseesnesans 60

FIGURE 12. FEATURE IMPORTANCE BY SHAP FORCE PLOT, 30 VS. 82 FEATURES FOR A SINGLE CASE. (RANDOM FOREST WITH

11255 CLASS WEIGHT) t1vtteuveesereesueeesireessseessseassseessseassseessseesnsessssesansessnsessnsessnsessnsessssesensesssessnsessnsessssessnses 62

FIGURE 13.VENN DIAGRAM ILLUSTRATING OUTCOME EVENTS IN GENERAL WARDS. ....ccecttiiiiirrieeeeeenniiiieeeeeesesinneeeeas 75

Xii

doi:10.6342/NTU202302444



LIST OF TABLES

TABLE 1. THIS IS A TABLE DISPLAYING THE MODIFIED EARLY WARNING SCORE (MEWS)......vviiiiiieiiiiiee et ceiee e 12
TABLE 2. COMPARISON OF STUDIES ON IHCA DETECTION IN HOSPITAL SETTINGS ...evvveverererererererererererererereserereseseremenen 15
TABLE 3. CHARACTERISTICS OF THE RESEARCH SAMPLE EXPRESSED AS MEAN £ STANDARD DEVIATION.....ccevvveverererererenenens 23
TABLE 4. LIST OF FEATURES OF AUGMENTED DATASET, BESIDES AGE AND GENDER .....cvvvtvererererererererereserereresererererererenen 38
TABLE 5. DEMOGRAPHIC INFORMATION OF THE RESEARCH SAMPLE .....cvvveveverereeererereeereseeeeeeeseresesssesssesesesesererssssmresee 43
TABLE 6. AUROC FOR IHCA PREDICTION WITH VARYING CLASS WEIGHT ..cevvvererrrererererereeereeeeerereseeesereseseseresesesssenennes 51
TABLE 7. AUPRC FOR IHCA PREDICTION WITH VARYING CLASS WEIGHT ...evvvivirrrererererereeereeeeerereeereseresesesesesesessrerenen 52

TABLE 8. AUROC VALUES FOR CLASSIFIERS WITH ONE, THREE, AND SIX TIME WINDOWS, TW TIME WINDOW, TEWS TIME-

SERIES EARLY WARNING SCORE. ..tutuittuiuiiniuiiniteiiiieeieiiatettetsataeneteeataetsaesssasesenetsaesenetesnrasensassnsasesnsnns 64

TABLE 9. AUPRC VALUES FOR CLASSIFIERS WITH THE FIRST, THE THIRD, AND THE SIXTH TIMES WINDOWS, TW TIME WINDOW,

TEWS TIME-SERIES EARLY WARNING SCORE. ...evuueeruuneereunneerrneeeesneeersnneeesssnessssseserssnnesssseesssnnsesssnessssesssnnns 64

Xiii

doi:10.6342/NTU202302444



Chapter 1 Introduction

1.1 Motivation

In-hospital cardiac arrest (IHCA) poses a substantial risk to patient safety, despite its
infrequency, and carries a high mortality rate. The Utstein resuscitation registry reporting
template defines IHCA as providing chest compressions or defibrillation to patients in
inpatient beds [1].

Annually in the United States, numerous cardiac arrests are reported among hospitalized
patients, with an estimated incidence of approximately 0.92 per 1,000 bed days [2].
Unfortunately, outcomes following cardiac arrest are notably poor, reflected by post-
discharge survival rates close to 25% in the United States and under 20% globally [3, 4].
A meta-analysis encompassing 40 studies reported a 1-year survival rate post-IHCA of
13.4% [5]. Moreover, within this meta-analysis, 17.6% of patients survived hospital
discharge, implying that approximately 76% of patients who survived their hospital stay
live for at least a year [5].

A preliminary analysis of 23 cohort studies has identified several factors associated with
diminished survival odds post-in-hospital cardiac arrest. These include male gender, age
60 or above, presence of active malignancy, and history of chronic kidney disease [6]. In
contrast, some factors are significantly linked to increased survival odds, such as

1
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witnessed arrest, monitored arrest, the daytime occurrence of the arrest, and an initial

shockable rhythm. However, intubation during arrest and a resuscitation duration of at

least 15 minutes are associated with reduced survival odds. Understanding the impact of

intra-arrest factors on patient outcomes underscores the critical need to identify high-risk

individuals. Improved survival rates largely depend on the preparedness and vigilance of

the healthcare team.

Various early warning scoring systems have been established to identify hospitalized

patients at high risk of clinical deterioration, meeting the urgent need for early recognition

of such patients. These scoring systems typically incorporate relevant variables associated

with predictive outcomes. The Modified Early Warning Score (MEWS) [7], which

includes vital signs like temperature, heart rate, respiratory rate, and blood pressure, is a

common approach to informing clinical decision-making. However, the area under the

receiver operating characteristic curve (AUROC) for MEWS consistently falls below 0.7

in multiple studies, suggesting the need to explore the inclusion of additional clinical data

such as laboratory results, demographics, and heart rate variability to augment predictive

performance [8-13]. These efforts aim to enhance the precision and effectiveness of early

warning scoring systems in identifying patients at elevated risk of deterioration and

facilitating timely interventions to improve patient outcomes. Despite their promising

doi:10.6342/NTU202302444



results in accuracy, reduction in false alarms, and favorable detection rates, their

applicability might be restricted in units where routine measurement of such clinical data

is not the norm.

The advent of artificial intelligence (Al) and machine learning (ML) systems heralds a

new chapter in biomedicine, transforming aspects ranging from molecular research to

disease investigation. With their ability to autonomously analyze complex datasets, ML

offers researchers the ability to extract valuable insights and uncover challenging

patterns. Employing ML models could significantly enhance the accuracy of predictions

either by utilizing existing data or optimizing features for optimal performance. By

tapping into these advanced computational approaches, the biomedical community can

open new knowledge pathways and advance disease understanding and management

[14]. For example, Cho and Kwon developed a deep learning-based early warning score

that accurately anticipates patient deterioration using vital signs recorded over 8 hours,

specifically designed for patients in general wards. Similarly, in intensive care units

(ICUs), some research has utilized ML techniques and continuous vital signs

monitoring to anticipate deterioration [15, 16]. Nonetheless, it is crucial to acknowledge

that continuous vital signs measurements might not always be available in general

wards, posing a challenge to the widespread implementation of these approaches.
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1.2 Purpose

Our principal goal is to advance the in-hospital cardiac arrest (IHCA) prediction field by
harnessing the data generated through existing care processes. By capitalizing on these
resources, our primary objective is to develop a refined and more accurate prediction
model for IHCA.

In parallel, we recognize the critical importance of interpretability in healthcare
applications. Although machine learning models have demonstrated remarkable
potential in predicting IHCA, their complex nature, and limited transparency have
hindered their widespread adoption in clinical settings. Consequently, our secondary
objective involves creating a prediction model that achieves exceptional predictive
performance and offers clear and comprehensible explanations for its predictions. By
incorporating explainability into our model, we strive to enhance its utility and facilitate
its integration into routine clinical practice.

It is important to note that our primary objective was not to identify every potential
cardiac arrest patient but rather to identify individuals who may have been overlooked
within the existing care processes and available resources. By focusing on patients who

experienced in-hospital cardiac arrest (IHCA) but were not initially identified as high-

doi:10.6342/NTU202302444



risk individuals, we aimed to uncover specific characteristics that could help improve
the identification and intervention strategies for these patients.

The ultimate goal was to provide healthcare professionals with an improved tool
enabling proactive interventions, potentially averting adverse outcomes associated with

IHCA.

doi:10.6342/NTU202302444



Chapter 2 Literature Review

2.1 Importance of IHCA Prediction

In-hospital cardiac arrest (IHCA) represents a significant health concern associated with
considerable morbidity and mortality, although its incidence is relatively low. In the
United States, an annual estimation of 290,000 cardiac arrest cases are attended to in
hospitalized patients [2]. Survival rates during hospitalization and post-discharge for
patients experiencing cardiac arrest remain deficient, with nearly 25% survival rates post-
discharge in the United States and less than 20% globally [3, 4]. Several intra-arrest
factors, such as a witnessed or monitored event and daytime occurrence, have been
identified as predictive of enhanced survival rates [6]. Prompt recognition of high-risk
patients is thus critical, given the considerable impact of healthcare team preparedness
and responsiveness on post-cardiac arrest survival outcomes.

Nevertheless, achieving an accurate assessment of IHCA incidence and understanding its
implications for patient outcomes is challenging. Previous estimates often rely on data
from single institutions or small hospital clusters within similar geographical regions [17].
Such estimates have limited generalizability due to disparate IHCA definitions and
substantial patient and hospital inclusion criteria variations. Furthermore, the absence of

comprehensive and standardized data on all IHCA events within national registries and

7
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hospital databases obstructs the determination of overarching IHCA rates and potential

shifts. Understanding the scale of this issue is essential, given the considerable variability

in IHCA survival rates among hospitals, indicating significant opportunities for

enhancing outcomes.

Data from the American Heart Association's Get with The Guidelines-Resuscitation

(GWTG-R) registry indicates that the average age of IHCA patients is 66 years, with

males constituting 58% of the cases [2]. Non-shockable rhythms such as asystole or

pulseless electrical activity represent the most frequent presenting rhythms during IHCA,

observed in approximately 81% of cases. Cardiac causes are implicated in most cardiac

arrests, accounting for 50%-60% of cases, followed by respiratory insufficiency,

contributing to 15%-40% of cases [3]. To forestall IHCA, it is crucial to implement robust

systems to identify patients at risk of deterioration and swiftly deliver suitable

interventions. Rapid response teams have proven effective in detecting deteriorating

patients and initiating timely interventions. Essential treatment elements during cardiac

arrest include high-quality chest compressions, adequate ventilation, early defibrillation

when appropriate, and swift attention to reversible causes like hyperkalemia or hypoxia

[18]. However, the evidence supporting more advanced treatment strategies, such as
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extracorporeal cardiopulmonary resuscitation (ECPR) or targeted temperature

management, is still being determined and necessitates further research.

Post-cardiac arrest care represents a vital phase in managing IHCA patients. This phase

prioritizes identifying and treating the underlying cause of cardiac arrest, providing

hemodynamic and respiratory support, and potentially implementing neuroprotective

strategies like targeted temperature management. Prognostication and decision-making in

the post-cardiac arrest period require a comprehensive approach considering the potential

for neurological recovery and ongoing multiorgan failure. It is important to abstain from

prematurely withdrawing care without definitive prognostic signs during and after cardiac

arrest. Advanced monitoring techniques and biomarkers may facilitate prognostication

and guide decision-making in the post-resuscitation period [3].

To foster improvement of IHCA outcomes on a broader scale, it is strongly recommended

that hospitals actively engage in national quality-improvement initiatives. These

initiatives strive to ameliorate the care delivered to IHCA patients by implementing

evidence-based guidelines, refining resuscitation training for healthcare providers, and

fostering a culture of continuous quality improvement. Exchanging best practices,

participation in standardized reporting systems, and involvement in collaborative research
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endeavors can aid in identifying strategies to decrease IHCA rates, enhance survival rates,

and improve long-term patient outcomes [19].

10
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2.2 Modified Early Warning Score (MEWS)

The Modified Early Warning Score (MEWS) is the foremost prediction model for
detecting patient deterioration in healthcare practice [7]. This scoring system is an
invaluable tool in assessing and monitoring the clinical status of patients, enabling
healthcare professionals to promptly identify those at risk of critical conditions or
adverse events, such as cardiac arrest or sepsis. MEWS plays a pivotal role in
facilitating timely interventions to mitigate potential harm.

Early warning scores were conceived in the early 1990s to address the imperative need
for early recognition of deteriorating patients [20]. MEWS was developed as an adapted
version of the traditional Early Warning Score (EWS) to enhance its predictive value
and clinical utility. Since its inception, MEWS has garnered widespread recognition and
has been widely implemented in healthcare institutions across the globe.

Primarily employed in hospital settings, particularly in general wards, MEWS focuses
on the vigilant monitoring of patients' vital signs to detect any indications of
deterioration. It encompasses a comprehensive set of physiological parameters, with
each parameter assigned a score based on the degree of abnormality observed. These

individual scores are aggregated to generate an overall MEWS score, indicating the

11
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patient's risk of clinical deterioration. Higher MEWS scores are associated with a
greater likelihood of deterioration.

While the specific variables and scoring system employed in MEWS may exhibit minor
variations across different healthcare institutions, several typical variables are
commonly included. These variables encompass respiratory rate, heart rate, systolic
blood pressure, body temperature, and level of consciousness. Each variable is assigned
a score according to predefined thresholds or ranges. For instance, if the respiratory rate
falls within the normal range, it may be given a score of 0. However, deviations from
the normal range may result in a higher score, signifying an elevated risk level. The
Modified Early Warning Score (MEWS) classification rule is depicted in Table 1,

providing a comprehensive visual representation of its categorization system.

Table 1. This is a table displaying the Modified Early Warning Score (MEWS).

3 2 1 0 1 2 3
SBP (mmHg) <70 71-80  81-100  101-199 >200
HR (bpm) <40 41-50  51-100  101-110 111-129  >130
RR (bpm) <9 9-14 1520 2129  >30
BT (°C) <35 35-38.4 >38.5
12

doi:10.6342/NTU202302444



AVPU score A \Y P U

Note: 'SBP' stands for Systolic Blood Pressure, 'HR' represents Heart Rate, 'RR' denotes Respiratory Rate,

'BT" refers to Body Temperature. The consciousness level is represented as 'A’ for Alert, "V' for Reacting

to Voice, 'P' for Reacting to Pain, and 'U' for Unresponsive.

Healthcare professionals regularly monitor patients’ vital signs and calculate their

MEWS scores at predetermined intervals. A higher MEWS score triggers an appropriate

response protocol, such as notifying the medical team or increasing the frequency of

vital signs monitoring. These interventions ensure timely and effective care, thereby

preventing further deterioration and optimizing patient outcomes.

MEWS has demonstrated its effectiveness in identifying patients at risk of clinical

deterioration and has significantly contributed to improved patient outcomes through

early intervention [21]. Its simplicity and user-friendly nature have facilitated

widespread adoption in healthcare institutions worldwide. Nevertheless, it is crucial to

acknowledge that MEWS is just one component of a comprehensive approach to patient

monitoring and should be utilized in conjunction with clinical judgment and the

expertise of healthcare professionals.

13
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2.3 Model of IHCA Prediction

Several scoring systems have been employed to identify hospitalized patients at a

heightened risk of clinical deterioration [2, 9-11, 16, 22, 23]. These systems are

typically developed by selecting relevant variables associated with predictive outcomes.

Most commonly used early warning scoring systems, such as the Modified Early

Warning Score (MEWS) [8], rely on vital signs, including temperature, heart rate,

respiratory rate, and blood pressure, for clinical assessments. However, the areas under

the receiver operating characteristic curve (AUROC) for MEWS have often been

reported to fall below 0.7 in numerous studies. Consequently, researchers have sought

to enhance prediction performance by incorporating additional clinical data such as

laboratory results, demographics, and heart rate variability [9-11, 13, 14, 24]. These

approaches have improved accuracy, reducing false alarms and more reliable detection.

Nonetheless, the feasibility of these methods may be limited in clinical units where

regular measurement of such clinical data is not practical. Table 2 provides a

comprehensive overview of research on predicting in-hospital cardiac arrest (IHCA),

offering valuable insights into the diverse studies conducted in this field.
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Table 2. Comparison of Studies on IHCA Detection in Hospital Settings

Cho et Kim et Kwon et Bartkowia = Green et Churpek et

al[16] al[15] al[25] ketal[10] al[9] al[8]
Publication 2020 2019 2018 2018 2018 2016
Year
research ward ICU ward ward ward ward
subject (Surgical)
Interval of 8 hours 6 hours 8 hours 4 hours 8 hours
Vital Sign
AUROC for  0.684 0.746 0.603 0.750 0.698 0.698
MEWS
AUROC for | 0.865 0.896 0.850 0.790 0.801 0.801
research (DEWS) (FAST- (DEWS) (eCART) (eCART) (Random
model PACE) Forest)
SBP V V V Vv V V
HR V V V \Y% V V
RR V V V \Y% V V
BT V V V \Y% V V
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DBP \Y \Y \Y \Y

Spo2 v v v v

AVPU score Vv V Vv

The expanding adoption of artificial intelligence and machine learning (ML) systems

has fundamentally transformed the field of biomedicine from the molecular level to

disease management. ML enables automated analysis of highly complex data and

generates meaningful insights. ML models can potentially enhance prediction accuracy

using the same dataset or reduce features while maintaining performance [14]. Cho and

Kwon developed a deep learning-based early warning score that accurately predicts

deterioration in patients within general wards by leveraging vital signs recorded over 8

hours. Some studies have employed ML techniques with continuous vital signs to

predict deterioration in intensive care units (ICUs) [15, 16]. However, continuous

monitoring of vital signs may not be readily available in general wards.

Therefore, recognizing the limitations posed by the availability of continuous vital signs

measurements in general wards, our study aimed to develop a more precise machine-

learning model for predicting clinical deterioration, leveraging only five commonly

measured vital signs: heart rate, systolic blood pressure, diastolic blood pressure,

respiratory rate, and body temperature. By focusing on these vital signs, which are
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routinely monitored in general wards, our model offers a practical and accessible

approach to risk assessment. This approach presents a potential alternative to the

Modified Early Warning Score (MEWS) system, which relies on a broader range of

variables.

Including heart rate, systolic blood pressure, diastolic blood pressure, respiratory rate,

and body temperature in our model is supported by their clinical significance in

reflecting a patient's physiological state and overall health. Heart rate is a vital indicator

of cardiac function and can provide insights into autonomic regulation and overall

cardiovascular well-being. On the other hand, systolic blood pressure offers valuable

information about perfusion and tissue oxygenation, highlighting a patient's circulatory

status. Lastly, respiratory data, including respiratory rate, is crucial in assessing

respiratory function and detecting signs of respiratory distress or compromise.

The potential benefits of our proposed model are noteworthy. By utilizing the regularly

measured vital signs, healthcare providers in general wards can readily implement this

approach without additional resources or specialized monitoring equipment. Moreover,

our model can improve prediction accuracy compared to scoring systems such as

MEWS. By harnessing the power of machine learning, we aim to uncover intricate
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patterns and relationships within the vital signs data that might not be apparent through

conventional approaches.

It is important to acknowledge that further validation and evaluation of the proposed

model will be essential to ascertain its effectiveness and clinical utility. Prospective

studies and comparative analyses against existing scoring systems are warranted to

establish the superiority of our model in accurately predicting clinical deterioration

within general ward settings. Ultimately, our objective is to provide healthcare

professionals with a reliable tool that can enhance their ability to identify patients at risk

of deterioration promptly, enabling timely interventions and improved patient outcomes.
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Chapter 3 Materials and Method for TEWS (Time-

Series Early Warning Score)

Our primary objective is to develop an enhanced prediction model for in-hospital
cardiac arrest (IHCA) by utilizing the existing data derived from current care processes.
The conventional approach to IHCA prediction within the general ward setting involves
using all available physiological data within a specific period. In our initial study, we
postulated that incorporating information from multiple time points could yield a more
comprehensive understanding of patients’ physiological changes and trends. By
integrating data from different time points, we sought to capture potential early warning
signs of deteriorating health. This innovative approach was anticipated to fortify the
model's predictive capabilities and facilitate the timely identification of patients at risk
of cardiac arrest.

By utilizing existing data and refining predictive capabilities, we aspire to enhance
patient safety and optimize outcomes in the general ward setting. Our overarching goal
is to equip healthcare professionals with an improved tool that enables proactive

interventions with the potential to avert adverse outcomes associated with IHCA.
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3.1 Ethics Declarations

This retrospective cohort study was granted approval by the En-Chu-Kong Hospital
Institutional Review Board (IRB) with the assigned number ECKIRB1071001. We
affirm that all experiments conducted adhered to applicable guidelines and regulations.
The data utilized in this study were extracted from de-identified electronic health
records (EHRs) by an IT specialist, ensuring that patient identities remained unlinked to
the research team. Given this cohort study's retrospective nature and de-identified data
utilization, the En-Chu-Kong Hospital IRB (ECKIRB1071001) waived the requirement

for written informed consent.

3.2 Setting and Study Population

The research was executed within a community-based general hospital, involving a
cohort drawn from the inpatient population. The data analyzed were sourced from the
electronic health records (EHRSs) of adult inpatients, all 20 years or older, who presented
at the facility for care between August 2016 and September 2019. All identifiable
patient information was de-identified and anonymized before the analysis phase to

maintain confidentiality.
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Five core vital signs — systolic blood pressure (SBP), diastolic blood pressure (DBP),

heart rate (HR), respiratory rate (RR), and body temperature (BT) — were utilized as

the predictive features for this study. In line with standard medical practice, these vital

signs were measured and recorded by healthcare staff, typically two to three times per

day, which included measurements taken during the day, night, and early morning

hours. For the study, we delineated the time window (TW) for these measurements into

8-hour segments, constituting three TWs within each 24-hour day. Each TW captured a

complete set of the aforementioned vital signs.

The features captured during each TW were leveraged at three distinct TW intervals: 1,

3, and 6 TWs (corresponding to 8, 24, and 48 hours, respectively). For each TW, one

complete set of features was contained. A visual representation of the study's

methodological process can be found in Figure 1, which succinctly illustrates the step-

by-step progression of the research.
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Figure 1. Research Procedure. TW refers to the time window.
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The hospital data was partitioned by date into a training and validation set (August

2016—-November 2018) and a testing set (December 2018-September 2019). The

training and validation set was utilized for developing the Modified Early Warning

Score (MEWS), while the testing set was used to determine the MEWS performance.

For binary classification, we employed the area under the receiver operating

characteristic curve (AUROC) and the area under the precision-recall curve (AUPRC)

as evaluation metrics. The pertinent characteristics of the study cohort are

comprehensively presented in Table 3, providing essential details regarding the

demographic and clinical attributes of the participants.

Table 3. Characteristics of the Research Sample expressed as mean + standard deviation

Characteristic Training & Validation Set | Testing Set
Duration of the Study 2016/8- 2018/11 2018/12 - 2019/9
Total patient number 11,762 5,103
Patient number with IHCA 81 37
Age 63.8 £ 19.9 63.7 £ 20.5
Gender: Male (%) 5,875 (49.9) 2,293 (44.9)
Body Weight (Kg) 63.2+14.7 63.3+17.6
Respiratory rate (1% TW) 189+4.1 19.1+£5.0
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Diastolic blood pressure (1% TW) 73.6+15.2 72.3+20.1

Systolic blood pressure (1% TW) 133.2+ 31.0 135.0 + 40.8
Body Temperature (1% TW) 36.7+4.4 37.5+6.4
Heart rate (1 TW) 83.4+215 84.9+ 235

3.3 Main Outcome

The primary outcome under investigation in this study was cardiac arrest, defined as the

absence of a detectable pulse accompanied by attempts at resuscitation. A meticulous

examination of the electronic health records (EHRs) was conducted to ascertain the

precise timing of each cardiac arrest event. This comprehensive analysis accurately

identified and classified the selected inpatients into two distinct groups: positive and

negative.

The positive group consisted of inpatients who experienced at least one cardiac arrest

event while admitted to the general wards. In cases where patients encountered multiple

cardiac arrest events during their hospitalization, only the initial event was considered

for analysis. This approach ensured that each patient was represented by a single cardiac

arrest event, maintaining the independence of observations and preventing duplication

in the dataset.
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Conversely, the negative group comprised inpatients not admitted to the intensive care
unit (ICU) and did not encounter any cardiac arrest events throughout the study period;
including this negative group allowed for a comprehensive evaluation of the factors
associated with the occurrence of cardiac arrest. By comparing the positive and negative
groups, we aimed to provide a thorough understanding of the characteristics and

circumstances surrounding cardiac arrest events in the general ward setting.

3.4 Model Development
3.4.1 Data Preprocessing

Given the inherent susceptibility to human or system errors in the compilation of
electronic health records (EHRS), our dataset was potentially exposed to the problem of
missing values. It is conceivable, for instance, that health personnel may not have
recorded certain vital sign measurements within specific time windows (TWSs), leading
to incomplete TW data. To address this challenge, we implemented the method of
multiple imputations by chained equations[24]. This technique, which effectively
reintroduces the natural variability associated with missing data and accounts for the
resultant uncertainty, is particularly effective for valid statistical inferences. In instances
of duplicate data within the same TW, our protocol involved retaining the highest value.
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Additionally, we encountered a substantial distribution range in the feature values
within our dataset, which could complicate the classifier training process. To surmount
this hurdle, we employed standard scores (z-scores) to normalize the values of the
features. This statistical transformation, by adjusting the distribution of feature values,

aids in ensuring more reliable model training.

3.4.2 Handing Imbalanced Data

Imbalances in datasets are common in practical scenarios, especially within medical
research, where class distributions frequently exhibit severe skewness. This issue of
class imbalance similarly afflicted our dataset. It is essential to acknowledge that the
effectiveness of most machine learning algorithms is maximized when the classes are
balanced or nearly so. Unaddressed imbalances in datasets could undermine the
classifier's performance, as biases in the training data could result in the neglect of
underrepresented classes. There are several strategies, such as under-sampling (i.e.,
eliminating instances from the majority class) or oversampling (i.e., cases duplicating
from the minority class), that are recommended to manage such imbalanced datasets. In
our prior research [26], we mitigated the imbalance within the dataset by under-

sampling negative samples to detect in-hospital cardiac arrest (IHCA).
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For this study, however, instead of adopting the oversampling or under-sampling
techniques, we chose a modified weight-balancing method to address the class
imbalance issue in our dataset. This method was particularly effective when one class
significantly outnumbered the other. The modified weight balancing strategy adjusted
the class weights according to the ratio of IHCA-positive to IHCA-negative samples,
thereby ensuring equitable contributions from all classes during the loss computation
process. In addition, we incorporated focal loss, a technique designed to assign greater
weight to the minority class during training, to equalize the representation of classes
further. By combining focal loss and the weight-balancing method, we successfully
addressed the class imbalance issue within our imbalanced dataset while developing the

Time-Series Early Warning Score (TEWS).

3.4.3 TEWS Model Development

Our TEWS model consisted of three recurrent neural network (RNN) layers utilizing
Long Short-Term Memory (LSTM) units [27]. RNNs are neural networks designed to
handle sequential data, making them well-suited for processing EHRS, which inherently
possess a time-series structure [28]. The TEWS architecture, incorporating LSTM units,
is depicted in Figure 2. LSTM units comprise a cell, an input gate, an output gate, and a
forget gate. These components enable the cell to retain information over arbitrary time
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intervals while the gates regulate the flow of information into and out of the cell.

Leveraging the strengths of LSTM in handling time-series data, TEWS effectively

processes the temporal nature of the EHRs.
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Figure 2. (A) Structure of TEWS. (B) Structure of LSTM cell
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The dataset allocated for training was utilized to refine the Time-Series Early Warning

Score (TEWS) model, with subsequent evaluation of the model's performance

conducted using a validation dataset. Our TEWS model implemented a division of the

training and validation datasets at an 8:2 ratio. The algorithm employed to define six

distinct time windows for each vital sign measurement across the entirety of the

inpatient population is depicted in Figure 3. This methodological approach provides a

systematic and uniform process for creating time windows, facilitating an encompassing

analysis of the vital sign data.
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Algorithm TW_data($)
Input: a set of inpatients S with vital signs;
Output: 6 time windows of each inpatient in TW;
Method:
TW=¢;
S* € sort(S); // sorted S by medical record numbers of inpatients
FOR EACH inpatient P € S DO
Ps & sort(P);  // sorted P by time of measure of each vital sign
FOR EACH vital sign data B € P DO
Create 6 time windows (1ITW~6TW) by time for each inpatient P;
FOR EACH TW, data V € B and V € this TW

N N o P s e

V V, calculate the first and last value, maximum, minimum, mean, and standard
deviation during the same time window;
9. END FOR EACH
10. END FOR EACH
11. END FOR EACH
12. RETURN TW;

Figure 3. The procedure for generating time interval data.

3.5 Performance Evaluation

The LSTM-based system for our study was implemented using the Python-based scikit-
learn package [29]. At the same time, the neural networks were brought into effect using
Keras, with TensorFlow as the backend engine. We employed several classification
algorithms within the scikit-learn package for an extensive benchmarking procedure
[30]. This suite of algorithms included AdaBoost [31, 32], random forest [33], logistic
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regression [34], gradient boosting [35], classification and regression tree [36], nave

Bayes [37], support vector machine (SVM) [38, 39], k-nearest neighbor [40, 41], and

C4.5 decision tree [42].

Gradient boosting integrates weak prediction models to yield a single prediction model

and can be interpreted as an optimization algorithm for an appropriate cost function[43].

Logistic regression is a statistical model that predicts the probability of a specific class

utilizing a logistic function to model a binary dependent variable. Random forest, an

ensemble learning method, has utility in classification, regression, and other tasks by

constructing multiple decision trees during training and generating predictions based on

the modal or mean values of the individual tree predictions.

Due to the imbalanced nature of our dataset, our proposed Time-Series Early Warning

Score (TEWS) allocates class weights according to the ratio of IHCA-positive to IHCA-

negative samples. Predicted probabilities for each instance in the validation dataset were

calculated from each model to assess the predictive performance of the classification

mentioned above algorithms and TEWS. The Modified Early Warning Score (MEWS)

was also computed for comparative purposes. To contextualize the accuracy of these

results against existing literature, we determined the area under the receiver operating

characteristic curve (AUROC) and the area under the precision-recall curve (AUPRC)
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while considering whether an event occurred within an eight-hour window of each

observation. These metrics are typically employed in the comparative evaluation of

early warning scores.

In summary, we employed various contemporary algorithms and our proposed TEWS to

benchmark and compare their prediction performance. The calculated predicted

probabilities, AUROCs, and AUPRCs provide valuable insights into the accuracy and

effectiveness of these models within the context of existing literature and contribute to

the advancement of IHCA prediction in clinical practice.

3.6 Feature Selection

The feature selection process fundamentally identifies the most informative features

from a pool of potentially useful features to efficiently distinguish between classes. The

undertaking of feature selection can be effectuated through a process of elimination,

which bifurcates into two primary methodologies: filter methods and wrapper methods.

Wrapper methods leverage the performance of the predictor as the selection criterion. In

this arrangement, the predictor is integrated into a search algorithm that identifies the

subset of features that deliver the highest predictor performance. Sequential backward

selection (SBS) algorithms are widely utilized within the framework of wrapper
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methods. SBS algorithms adopt a straightforward and greedy approach in their quest for
feature selection. They systematically remove one feature from the complete set of
features at a time while ensuring a slight decrement in predictor performance.

The SBS algorithm significantly benefits when the optimal feature subset consists of
fewer features[44, 45]. This algorithm effectively pinpoints relevant features,

contributing to reliable and efficient class discrimination.
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Chapter 4 Materials and Method for TEWS-X

(Explainable Time-Series Early Warning Score)

Our primary objective is to develop an enhanced prediction model for in-hospital
cardiac arrest (IHCA) by utilizing the existing data derived from current care processes.
In addition to developing an enhanced prediction model, our second goal is to create an
explainable prediction model based on our previous research. While deep learning
models have shown great promise in predicting IHCA, the lack of interpretability often
limits their adoption in clinical practice. Therefore, we aim to create a model that
achieves high predictive performance and provides clear and understandable
explanations for its predictions.

By incorporating techniques such as SHAP (SHaley Additive exPlanations) values, we
can generate explanations for each prediction made by the model[46, 47]. These
explanations will highlight the key contributing factors and their relative importance in
determining the patient's risk of IHCA. This transparent and interpretable approach will
enable healthcare providers to understand the underlying reasons behind the model's
predictions, increasing their confidence in utilizing its outputs for clinical decision-

making.
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Our research aims to develop an enhanced prediction model for IHCA using existing
data and to ensure its interpretability and explainability. By achieving these goals, we
hope to provide healthcare providers with a powerful tool that can assist in risk
stratification and early intervention and ultimately improve patient outcomes in the

context of IHCA.

4.1 Ethics Declarations

This retrospective cohort study was executed with the endorsement of the Institutional
Review Board (IRB) at the En-Chu-Kong Hospital under the assigned IRB number
ECKIRB1071001. The study was conducted meticulously, adhering to all relevant
guidelines and regulations about human research. The dataset utilized in this study
aligns with that employed in the initial investigation[48], and we attest to the complete

compliance of all experiments with these established guidelines and regulations.

4.2 Setting and Study Population

The study cohort consisted of adult inpatients aged 20 years or older who received
medical care at a community-based general hospital. The study dataset comprised these
individuals' electronic health records (EHRS) from August 2016 to September 2019.
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Importantly, it should be noted that this timeframe predates the emergence of the

COVID-19 pandemic, thereby minimizing any potential impact of the pandemic on

healthcare processes and resource allocation that could confound the study results.

For this investigation, we identified five vital signs as crucial predictors: systolic blood

pressure, diastolic blood pressure, heart rate, respiratory rate, and body temperature.

These vital signs were routinely assessed by healthcare professionals, with

measurements conducted multiple times per day at varying periods, including daytime,

nighttime, and early morning. To establish a standardized time window (TW) for data

collection, we defined each TW as a duration of 8 hours. Thus, three TWs were

identified within a single day, during which the aforementioned vital signs were

documented.

4.3 Main Outcome

The principal aim of this study was to scrutinize the incidence of cardiac arrest as the

primary outcome of interest. Cardiac arrest was delineated as the cessation of a

discernible pulse coupled with resuscitation efforts. An in-depth appraisal of electronic

health records (EHRs) was undertaken to ascertain the exact timing of each cardiac
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arrest event. This facilitated accurately identifying and categorizing the selected

inpatients into positive and negative groups.

The positive group encapsulated inpatients who underwent at least one instance of

cardiac arrest during their admission to the general wards. In scenarios where patients

experienced multiple cardiac arrest events throughout their hospitalization, solely the

first event was taken into account for analysis. This methodology ensured that each

patient was represented by a singular cardiac arrest event, thereby maintaining the

independence of observations and avoiding duplication within the dataset.

Conversely, the negative group consisted of inpatients not admitted to the intensive care

unit (ICU) and did not experience any cardiac arrest event throughout the study period.

A comprehensive evaluation of the factors associated with cardiac arrest occurrence was

possible by including positive and negative groups. This comparative analysis allowed

for a thorough examination of the predictors and risk factors related to cardiac arrest in

the general ward setting.
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4.4 Model Development
4.4.1 Data Preprocessing

In addition to the five vital signs measured across six times windows, we also
incorporate the calculation of vital signs differences between different time windows.
For instance, "HR1-6" represents the difference in heart rate between the first and the
sixth times windows. Furthermore, age and gender variables are included in our dataset.
Consequently, our augmented dataset encompasses 82 features, expanding from the
original set of 30 features.

A notable distinction in the second study pertains to the nomenclature employed for the
time windows, which differs from that used in the initial research. In the second study,
we adopted a naming convention aligned with the chronological sequence of the
intervals. Consequently, the first time window corresponds to the farthest period
preceding the event, whereas the sixth time interval represents the immediate timeframe
preceding the event. This revised ordering facilitates a clearer understanding of the
temporal relationship between the intervals and the occurrence of the event under
investigation. The nomenclature of features within the augmented dataset is presented in
Table 4, providing a comprehensive overview of the assigned names for reference and
analysis.
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Table 4. List of features of augmented dataset, besides age and gender

Respiratory  Body Heart rate Systolic Diastolic

rate temperature pressure pressure
1 TW | RR1 BT1 HR1 SBP1 DBP1
2" TW | RR2 BT2 HR2 SBP2 DBP2
3“TW | RR3 BT3 HR3 SBP3 DBP3
4" TW | RR4 BT4 HR4 SBP4 DBP4
5" TW | RR5 BT5 HR5 SBP5 DBP5
6" TW A RR6 BT6 HR6 SBP6 DBP6
1%t-2M | RR1-2 BT1-2 HR1-2 SBP1-2 DBP1-2
1%t- 3" | RR1-3 BT1-3 HR1-3 SBP1-3 DBP1-3
1% - 4" | RR1-4 BT1-4 HR1-4 SBP1-4 DBP1-4
1%t- 5" | RR1-5 BT1-5 HR1-5 SBP1-5 DBP1-5
1%t- 6" | RR1-6 BT1-6 HR1-6 SBP1-6 DBP1-6
2" - 6" | RR2-6 BT2-6 HR2-6 SBP2-6 DBP2-6
3-6" | RR3-6 BT3-6 HR3-6 SBP3-6 DBP3-6
4"-6" | RR4-6 BT4-6 HR4-6 SBP4-6 DBP4-6
5" - 6" | RR5-6 BT5-6 HR5-6 SBP5-6 DBP5-6
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MAX-MIN | RRMAX- BTMAX- HRMAX- SBPMAX- DBPMAX-

MIN MIN MIN MIN MIN

4.4.2 Handling Imbalanced Data

In various practical scenarios, particularly in the medical domain, datasets often exhibit
imbalanced class distributions, where the prevalence of one class far outweighs the
other. Similarly, the dataset utilized in our study also suffered from imbalanced class
distribution. However, the performance of many machine learning algorithms is
optimized when the number of samples in each class is relatively balanced. Neglecting
the management of imbalanced datasets can significantly impact the effectiveness of
classifiers. In machine learning classifiers, the biases present in training datasets may
result in ignoring minority classes altogether. Therefore, our study aimed to address this
imbalanced data issue by leveraging our three tree-based algorithms' inherent "weight"
function.

Incorporating weight functions within these algorithms allowed us to account for the
imbalanced nature of our dataset. By assigning appropriate weights to the samples from
different classes, we aimed to ensure that the classifiers were not biased toward the
majority class. This approach enabled us to mitigate the potentially detrimental effects
of imbalanced data on the performance of our classifiers. By carefully managing
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imbalanced data, we sought to enhance the robustness and reliability of our machine
learning models in addressing the specific challenges posed by imbalanced class

distributions.

4.4.3 TEWS-X Model Development

Our second goal is to develop an explainable prediction model based on our initial
research findings. We employed three tree-based systems implemented using the scikit-
learn package in Python, which encompassed logistic regression, random forest, and
XGBoost algorithms.

Our study used the three aforementioned tree-based algorithms to build our prediction
model. To account for the imbalanced nature of our dataset, we applied weight
adjustments during the model training process, ensuring that the minority class (i.e., the
less prevalent outcome) receives higher emphasis.

By adjusting the weight for imbalanced data, we aimed to address the potential bias that
could arise from our dataset's unequal distribution of outcomes. This approach allows
the model to capture patterns better and make accurate predictions for both the majority
and minority classes, ultimately improving the overall performance and reliability of the

model.

40

doi:10.6342/NTU202302444



Furthermore, we comprehensively compared the datasets containing 82 features and 30
features. The dataset with 82 features incorporated the five vital signs in six times
windows and included additional information such as age and gender. This augmented
dataset aimed to provide a more comprehensive representation of the patient's

characteristics and physiological changes over time.

4.5 Performance Evaluation

The evaluation of the developed Explainable Time-Series Early Warning Score (TEWS-
X) was performed using the dedicated testing set, employing well-established
performance metrics, including the area under the receiver operating characteristic
curve (AUROC) and the area under the precision-recall curve (AUPRC). Given the
inherent imbalance within our dataset, the AUPRC was employed as an additional
evaluation criterion, offering a comprehensive assessment of our model's performance.
To assess the impact of feature augmentation on the predictive accuracy of the models,
we conducted a comparative analysis, examining the performance of the three tree-
based algorithms on both datasets. This analysis aimed to determine whether adding
additional features improved the models' ability to discriminate between different
outcomes and enhance the accuracy of predictions.
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4.6 Expandability with SHAP

We employed the Shapley Additive Explanations (SHAP) method to analyze the feature
importance of our three tree-based algorithms[46, 47]. This approach allowed us to gain
insights into the global and local importance of features in each case, focusing on
positive-prediction instances. By utilizing the SHAP method, we aimed to understand
the overall contribution of features in our models. The global feature importance
provided us with a comprehensive view of the relative significance of each input
variable in predicting outcomes. This information was valuable in identifying the key
factors driving the predictions made by our tree-based algorithms.

Additionally, we examined the local importance of features in positive-prediction cases.
This analysis helped us understand the specific factors influencing individual instances
where our models successfully predicted positive outcomes. We better understood these
predictions' underlying mechanisms and reasoning by investigating the local

importance.
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Chapter 5 Result

5.1 Result for TEWS (Time-Series Early Warning Score)

This study carefully selected a cohort of 16,865 adult admissions for analysis. Among
these admissions, 118 individuals (0.7%) encountered cardiac arrest within a general
ward setting, as depicted in Table 5. To provide a comprehensive understanding of the
data, we describe the characteristics of both IHCA-positive and IHCA-negative cases in
Figure 4.

Table 5. Demographic Information of the Research Sample

Characteristic Data for Training and Data for Testing

Validation

Duration of the Study ~ August 2016-November 2018 December 2018-September 2019

Number of Patients 11,762 5,103

IHCA 81 37

Age 63.8 £ 19.9 63.7 £ 20.5

Gender: Male (%) 5,875 (49.9) 2,293 (44.9)

Body Weight 63.2+14.7 63.3+17.6
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Figure 4. Distribution of vital sign data in general ward patients, expressed as mean + standard deviation

(SD).

Note: 'SD' denotes standard deviation, 'ITHCA' designates the group experiencing an IHCA event, while

'non-IHCA!' represents the group that did not have an IHCA event.

We employed two distinct tasks to assess the efficacy of our proposed Time-Series

Early Warning Score (TEWS). Subsequently, we conducted a comparative analysis

between the TEWS model and these classification approaches. The tasks encompassed

the following components, each shedding light on the TEWS model's performance and

predictive capabilities.
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5.1.1 Performance with one, three, and six time windows.

In the cohort characterized by one time window (TW) or an 8-hour interval, the Time-
Series Early Warning Score (TEWS) model was employed. This model uses five vital
signs from a specific TW to anticipate in-hospital cardiac arrest (IHCA) events. Figure 5
illustrates a comparative evaluation of the TEWS model, the Modified Early Warning
Score (MEWS), and other classifiers. Remarkably, the Support Vector Machine (SVM)
and logistic regression algorithms indicated the most elevated area under the receiver
operating characteristic curve (AUROC) values (0.729 and 0.721, respectively). This
was followed by gradient boosting (0.712) and the TEWS (0.688). Nonetheless, all
classifiers performed within the range demarcated by the MEWS.

Within the cohort characterized by 3 TWs or a 24-hour interval, features derived from
three TWs (24 h) were utilized to predict IHCA events using the TEWS model. Each
TW contained a unique set of vital signs, culminating in 15 features. Notably, the
TEWS model demonstrated a superior AUROC value (0.762), outperforming logistic
regression (0.730), random forest (0.676), MEWS (0.649), and other algorithms.

In the cohort characterized by 6 TWSs or a 48-hour interval, the TEWS model employed
features derived from six TWs (48 h) to anticipate IHCA events. The TEWS model
exhibited a higher AUROC value (0.808) when compared to gradient boosting (0.768),
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SVM (0.747), random forest (0.733), and other algorithms, affirming its consistent high
performance across the 1TW, 3TW, and 6 TW groups.

While most classification algorithms demonstrated comparable performance levels
when using features from a single TW, with AUROC values ranging between 0.62 and
0.73 (AUROC of MEWS: 0.65), the predictive abilities of specific classifiers improved
when integrating data from multiple TWs. Our TEWS model exhibited superior
performance in the 6TW group (AUROC = 0.808, AUPRC = 0.052) compared to the

MEWS (AUROC = 0.649, AUPRC = 0.015).
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Figure 5. Values of AUROC and AUPRC for classifiers utilizing one, three, and six time windows. 'TW'

stands for time window and 'TEWS' refers to the time-series early warning score.
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5.1.2 Performance with Features Chosen via SBS Algorithm

For the preliminary task of anticipating in-hospital cardiac arrest (IHCA), the Time-
Series Early Warning Score (TEWS) exhibited optimal performance when integrating
data from six time windows (TWSs), which represented a duration of 48 hours. This
methodology, however, required 30 features from the six TWSs, prompting us to explore
strategies to streamline the feature set without compromising on performance. For this
purpose, a Sequential Backward Selection (SBS) algorithm was employed to discern the
most critical elements within the six TWSs. Figure 6 portrays the features selected, with
the initial TW being the most proximate to the cardiopulmonary resuscitation time for
IHCA-positive patients. Heart rate, respiratory rate, and systolic blood pressure emerged
as essential features in predicting IHCA events. Notably, the outstanding features were
the heart rate within the first, fourth, and fifth TWs, respiratory rate, and systolic blood

pressure during the initial TW.

6t time | 5™ time | 4™ time | 3™ time | 2" time [ 1% time
window | window | window | window [ window | window
HR @ o o ®
SBP @ ®
DBP @
RR
BT

Figure 6. The top 5 features identified using the SBS (Sequential Backward Selection) algorithm.
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Upon incorporating the identified quintet of features, we appraised their efficacy when
integrated into the Time-Series Early Warning Score (TEWS) model and alternative
algorithms. To ascertain the predictive prowess of these algorithms employing the
condensed feature set, we contrasted their performance against the Modified Early
Warning Score (MEWS) and other classifiers, as depicted in Figure 7.

The TEWS model displayed its paramount performance, achieving a notable AUROC
value of 0.875 alongside an AUPRC value of 0.087. Adaboost demonstrated potent
performance, with an AUROC of 0.958 and an AUPRC of 0.110. The logistic
regression also delivered praiseworthy performance, with an AUROC of 0.845 and an
AUPRC of 0.050. These findings emphasize the efficacy of the selected features when
paired with the TEWS model and alternative algorithms for the prediction of in-hospital

cardiac arrest (IHCA).
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Figure 7. Values of AUROC and AUPRC for the classifier utilizing five chosen features at one and six

time windows (TWs). TW' refers to time window, 'TEWS' is the acronym for time-series early warning

score, and '5feature’ denotes the five selected features.
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5.2 Result for TEWS-X (Explainable Time-Series Early

Warning Score)

5.2.1 Performance of TEWS-X

The performance metrics, specifically the area under the receiver operating
characteristic curve (AUROC) and the area under the precision-recall curve (AUPRC),
achieved by each algorithm for the corresponding feature set and class weighting are
presented in Table 6 and Table 7. For instance, in Logistic Regression, the accuracy
scores range from 0.750 to 0.773 for the 30-feature sets and from 0.803 to 0.836 for the
82-feature sets. Random Forest achieves accuracy scores ranging from 0.721 to 0.779
for the 30-feature sets and 0.754 to 0.839 for the 82-feature sets. XGBoost attains
accuracy scores ranging from 0.739 to 0.770 for the 30-feature sets and 0.776 to 0.834
for the 82-feature sets.

Table 6. AUROC for IHCA Prediction with Varying Class Weight

Weight 1:25 1:50 1:100 balanced
Original LR 0.75052 0.75562 0.76169 0.7729
features (30) RF 0.77915 0.74375 0.72176 0.72145
XGB 0.77026 0.73864 0.75273 0.75389
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Feature LR 0.80302 0.81353 0.82362 0.83579

augmentation RF 0.83949 0.81057 0.78873 0.75421

(82) XGB 0.83391 0.80607 0.78575 0.77578

Table 7. AUPRC for IHCA Prediction with Varying Class Weight

1:25 1:50 1:100 balanced
Original LR 0.05403 0.06346 0.06438 0.06237
features (30) RF 0.02478 0.01681 0.01247 0.01117
XGB 0.03094 0.02922 0.01573 0.01415
Feature LR 0.06215 0.06706 0.06905 0.07060
augmentation RF 0.08605 0.04260 0.02203 0.01499
(82) XGB 0.03776 0.02593 0.01817 0.01558

The results demonstrate that the performance of the algorithms varies depending on the

feature set and class weighting. Overall, Random Forest consistently exhibits higher

accuracy scores than Logistic Regression and XGBoost across most feature sets and

class weightings.

These findings emphasize the importance of considering feature selection and class

weighting when applying machine learning algorithms. The table provides valuable
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insights into the relative performance of the algorithms under different settings, aiding

in selecting the most suitable approach based on the specific requirements of the

problem at hand. Considering the AUROC and AUPRC metrics, the random forest

model with a class weighting of 1:25 and utilizing 82 features achieved the best

prediction performance.
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5.2.2 Feature Importance Difference Visualization

We utilized the SHAP beeswarm plot, a concise and information-rich visualization tool,
to explore the influence of the top features in our dataset on the model's output. This
plot provides valuable insights into the significance of these features about predicting
in-hospital cardiac arrest (IHCA).

Figure 8 presents the feature impact on our IHCA prediction model using the 30-feature
and 82-feature datasets. Notably, our observations highlight the substantial impact of
heart rate measurements from different time windows on IHCA prediction. Specifically,
the 5th and 6th time windows demonstrate notable contributions, suggesting that heart
rate values or trends during these periods contain valuable information for accurate
IHCA prediction. This emphasizes the importance of considering heart rate

measurements at different time points when assessing the risk of IHCA.
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Figure 8. Feature importance by SHAP beeswarm plot, 30 features vs.82 features. (Random Forest with
1:25 class weight)

Furthermore, the order of feature importance remains consistent between the 30-feature
set and the augmented 82-feature set. This consistency implies that the additional
features do not significantly alter the relative importance of the top features of IHCA
prediction.
In addition, the SHAP plot reveals that features related to diastolic blood pressure
(DBP) show a consistent impact direction. Specifically, the decreases in DBP1-4,
DBP1-2, and DBP1-5 are associated with an increased likelihood of IHCA. This
observation suggests that a drop in diastolic pressure may contribute to IHCA.
Overall, the SHAP beeswarm plot provides valuable insights into the relationship
between specific features and IHCA prediction, highlighting the critical role of heart
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rate measurements from different time windows and the consistent impact of decreased

diastolic blood pressure on IHCA.

5.2.3 Feature Impact Amplitude and Distribution Visualization

We employed SHAP bar and beeswarm plots to visually depict the feature order and
impact values for predicting in-hospital cardiac arrest (IHCA), providing valuable
insights into the significance of different features in IHCA prediction.

Figure 9 presents the feature impact amplitude and distribution in our IHCA prediction
model using the 82-feature datasets. Our analysis shows that heart rate, body
temperature, and changes in diastolic blood pressure rank among the top 10 features that
significantly contribute to IHCA prediction. These findings indicate the importance of
these features in identifying patients at risk of IHCA. Heart rate is the most prominent
among these influential features, exerting the most substantial impact on IHCA
prediction. This underscores the crucial role of heart rate as a key indicator in assessing

the likelihood of IHCA.
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5.2.4 Feature Impact Distribution Visualization

We use the SHAP aggregated force plot to provide insights into the impact of feature
values on the prediction of in-hospital cardiac arrest (IHCA). By examining the plot in
our study, we can determine the cutoff points for each feature, indicating the threshold
at which they significantly contribute to IHCA prediction.

Figure 10 in our study showcases the cutoff points observed for HR5 and HR6 at 80
beats per minute. This finding suggests that tachycardia, characterized by an elevated
heart rate, may significantly influence the prediction of in-hospital cardiac arrest
(IHCA). Figure 11, on the other hand, demonstrates that DBP1-2 and DBP1-5 exhibit a
cutoff point at -10 mmHg. Crossing this threshold, a decrease in diastolic blood pressure
indicates an increased probability of IHCA prediction. Furthermore, BT2 reveals a
cutoff point at 35.7 degrees Celsius, meaning that a low body temperature preceding the
assessment day can potentially impact IHCA prediction. These observations provide
important insights into the relationship between these vital sign indicators and the

likelihood of IHCA.
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It is important to note that while individual features have cutoff points indicating their
impact, the overall contribution of a single feature remains minimal in the context of
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IHCA prediction. The SHAP Aggregated Force plot provides a comprehensive
understanding of the relationship between feature values and their impact on IHCA
prediction. It highlights the significance of multiple features working in combination

rather than relying on a single feature alone.

5.2.5 Local Feature Importance Visualization

The SHAP force plot, a powerful analytical tool, allows for a detailed examination of
the local impact of individual features on a single case. We gain valuable insights into
the factors by considering a specific case from the positive group correctly predicted as
positive. In Figure 12, we observe the varying importance of features between the 30-
feature and 82-feature models. Notably, the 82-feature model highlights the discrepancy
in diastolic blood pressure as the primary determinant of IHCA prediction. Despite
DBP1-5 being ranked sixth in global importance, it substantially influences the local
prediction outcome. We acquire additional information that enhances our understanding
of the prediction results by employing the SHAP force plot in conjunction with the 82-

feature model.
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Figure 12. Feature importance by SHAP force plot, 30 vs. 82 features for a single case. (Random Forest
with 1:25 class weight)

By employing the SHAP force plot and the augmented feature set, we gain deeper
insights into the specific factors driving the IHCA prediction in this positive case. This
comprehensive analysis enhances our understanding of the local impact of individual

features and their contribution to the accurate prediction of IHCA.
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Chapter 6 Discussion

6.1 TEWS (Time-Series Warning Score)

Our initial investigation aimed to exploit vital signs data over a forty-eight-hour
window to predict the incidence of cardiac arrest[48]. Following rigorous examination,
we substantiated the superior efficacy of the Time-Series Early Warning Score (TEWS)
model, which utilizes features extracted from six distinct time windows (TWSs), in
contrast to alternative classification algorithms. Table 8 and
Table 9 provide a comprehensive synopsis of the performance of various classifiers
across divergent datasets.
Our results unveil that applying the TEWS model incorporating features derived from
six TWs yielded an impressive predictive prowess, evidenced by an AUROC value of
0.808 and an AUPRC value of 0.052. These outcomes surpass those achieved when
employing features from a single TW (AUROC = 0.688, AUPRC = 0.041) and the
Modified Early Warning Score (MEWS) (AUROC = 0.649, AUPRC = 0.015). Such
compelling evidence reinforces that including vital signs data from multiple TWs offers

invaluable insights for accurately predicting cardiac arrest.
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Table 8. AUROC values for classifiers with one, three, and six time windows, TW time window, TEWS

time-series early warning score.

ALGORITHM 1TW 3TW 6TW

ADABOOST 0.6195 0.4131 0.4765
DECISION TREE_C4.5 0.5110 0.4963 0.4963
CART 0.5112 0.4960 0.4980
KNN 0.5014 0.5426 0.5215
GAUSSIAN NAIVE BAYES 0.6147 0.3976 0.5381
MEWS 0.6492 0.6492 0.6492
LOGISTIC REGRESSION 0.7213 0.7297 0.7281
RANDOM FOREST 0.6024 0.6761 0.7327
SVM 0.7292 0.3656 0.7469
GRADIENT BOOSTING 0.7122 0.5199 0.7678
TEWS 0.6883 0.7621 0.8080

Table 9. AUPRC values for classifiers with the first, the third, and the sixth times windows, TW time

window, TEWS time-series early warning score.

ALGORITHM

1TW

3TW

6TW
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GRADIENT BOOSTING 0.0448 0.0092 0.0073
DECISION TREE_C4.5 0.0266 0.0073 0.0073
CART 0.0073 0.0073 0.0073
KNN 0.0073 0.0102 0.0088
ADABOOST 0.0265 0.0069 0.0096
SVM 0.0073 0.0068 0.0108
RANDOM FOREST 0.0277 0.0160 0.0137
GAUSSIAN NAIVE BAYES 0.0266 0.0065 0.0142
MEWS 0.0153 0.0153 0.0153
LOGISTIC REGRESSION 0.0421 0.0278 0.0306
TEWS 0.0412 0.0210 0.0519

Previous studies have similarly designated respiratory rate, heart rate, age, and systolic

blood pressure as pivotal predictors of clinical deterioration[8]. Our investigation

introduces a TEWS model that utilizes merely five features from six TWSs: respiratory

rate, systolic blood pressure within the most recent TW, and three heart rate readings

from distinct TWSs. This strategy yields a notable AUROC of 0.875 and AUPRC of

0.087, surpassing other classification algorithms. These outcomes emphasize
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introducing analyzing trends in heart rate variation, rather than solely absolute heart rate

values, to enhance prediction accuracy.

Our investigation showcases several advantages compared to prior research. Firstly,

while specific deep learning-based early warning systems are proficient at predicting

patient deterioration, particularly within intensive care settings, our TEWS model has

broader applicability, including general wards and long-term care facilities. Secondly,

we embraced a longer observation window of 48 hours for vital signs, paired with a

deep learning-based approach, to amplify the precision of cardiac arrest prediction

without additional variables. Lastly, our model exclusively employs vital sign data,

making it universally compatible with any system configured for Modified Early

Warning Score (MEWS) deployment. The implementation of TEWS merely

necessitates a personal computer equipped for either manual vital signs input or

automatic extraction from electronic health records (EHRS).

Despite these advantages, our investigation bears several limitations. Firstly, it was

conducted at a solitary community general hospital, potentially curtailing the broad

applicability of our results to varied healthcare settings. Secondly, despite the superior

performance of our TEWS model when utilizing vital signs data across 48 hours, its

predictive capacity on the first day of admission did not eclipse that of other early
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warning systems. However, wearable devices collecting prehospital heart rate data
might be an alternative data source to enhance the model's performance. Lastly, our
model demonstrated shortcomings in precisely predicting some instances of cardiac
arrest within our dataset, particularly those characterized by sudden collapses such as
pulmonary embolism following cesarean section or postoperative airway obstruction
with hematoma. Moreover, the TEWS model is unable to detect deterioration between
two time windows, which points to an inherent limitation of noncontinuous vital signs-
based prediction models.

In summation, our investigation effectively exhibits the efficacy of the TEWS model in
predicting cardiac arrest by leveraging vital signs data. Incorporating multiple time
windows and emphasizing trend analysis of heart rate substantially enhance the model's
performance relative to other classification algorithms. While our investigation offers
invaluable insights, additional research is needed to validate these findings across varied
healthcare settings and explore integrating alternative data sources to further enhance

predictive capabilities.
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6.2 TEWS-X (Explainable Time-Series Early Warning Score)

Our primary objective in this study was to utilize vital signs data spanning two days to
predict the occurrence of cardiac arrest accurately. Additionally, we aimed to develop a
prediction model for in-hospital cardiac arrest (IHCA) that is both straightforward and
explainable based on our initial research findings.

We opted for a tree-based machine learning method instead of deep learning to achieve
explainability. Although this approach does not fully capture the time-series nature of
the data like recurrent neural networks (RNNs) do, we preserved some time-series
factors in our tree-based model by considering the sign of feature differences along the
timeline. This enables us to retain certain aspects of the vital sign trends and their
impact on IHCA prediction.

We employed an augmented dataset and adjusted the class weights to perform similarly
to RNNs to compensate for the loss of time-series modeling capabilities. By
incorporating techniques such as SHAP (SHapley Additive exPlanations) values, we
could generate explanations for each prediction made by our model. These explanations
provide insights into the key contributing factors and their relative importance in
assessing the patient's risk of IHCA. This transparent and interpretable approach
empowers healthcare providers to comprehend the rationale behind the model's

68

doi:10.6342/NTU202302444



predictions, thereby increasing their confidence in leveraging the model's outputs for

clinical decision-making.

We utilized SHAP bar plots and beeswarm plots to ascertain the global feature

importance, offering valuable insights into the model's inner workings. This enables us

to employ these models for IHCA prediction and allocate additional attention to cases

where the predictions align reasonably well. Furthermore, the SHAP force plot provides

us with local feature importance, aiding in identifying the direction of potential

treatment strategies.

Given that vital signs are the foundation of our prediction model, the local SHAP

impact values for individual cases can be effectively described on the TPR

(Temperature, Pulse, Respiration) sheet, which records daily vital signs. As part of the

routine care process, when the care team records the most recent vital signs, this data

can be seamlessly transmitted to the TEWS-X service and promptly displayed on the

TPR sheet page. By incorporating an alarm system into the daily care routine,

modifying or disrupting existing care processes is unnecessary.

Integrating the TEWS-X service into the TPR sheet allows for real-time monitoring and

evaluation of patients' vital signs within their natural care setting. The SHAP impact

values offer valuable insights into the influence of specific vital sign measurements on
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predicting in-hospital cardiac arrest (IHCA). By providing this information on the TPR

sheet, the care team can easily interpret the significance of each vital sign measurement

and identify any concerning trends or patterns.

The automatic display of the TEWS-X results on the TPR sheet serves as an additional

layer of support for the care team, facilitating early detection of patients at risk of

IHCA. This seamless integration ensures that the alarm system becomes integral to the

daily care routine, allowing healthcare providers to respond promptly and appropriately

when necessary.

Importantly, incorporating the TEWS-X service and alarm system does not necessitate

any changes to the existing care processes. It seamlessly integrates into the routine

documentation of vital signs, ensuring that healthcare providers can continue their daily

tasks without disruption. By enhancing the TPR sheet with the predictive capabilities of

the TEWS-X service, healthcare teams can optimize patient care and improve outcomes

without compromising the established care workflow.

In summary, when integrated with the TPR sheet, the TEWS-X service can provide a

user-friendly platform for displaying vital sign data and SHAP impact values. This

integration allows for continuous monitoring and early detection of patients at risk of

IHCA within the existing care routine. By incorporating these features, we enhance
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patient safety and facilitate informed decision-making by the care team, all without the

need for any changes to the daily care process.
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6.3 Implementation of TEWS/TEWS-X

In-hospital cardiac arrest (IHCA) can be categorized into predictable and unpredictable.
Predictable IHCA refers to cases with identifiable patterns or similarities to previous
instances of IHCA.. In these cases, valuable insights can be gleaned from previous
experiences and medical knowledge, aiding in anticipating and managing such events.
Common symptoms of predictable IHCA include chest tightness with dyspnea,
hypotension with tachycardia, or alterations in consciousness. Recognizing these
indicators allows for timely intervention and the allocation of appropriate resources,
such as immediate transfer to the intensive care unit (ICU), to prevent further
deterioration.

To guide the prioritization of ICU admission for predictable IHCA cases, specific ICU
admission criteria have been developed[49]. These criteria serve as guidelines to ensure
that patients with a higher likelihood of deterioration receive the necessary intensive
care promptly. However, it is essential to note that the decision for ICU admission can
be influenced by factors such as the availability of ICU beds and the awareness and
judgment of the care team[50]. Limited ICU bed capacity or variations in individual
clinical assessment may impact the decision-making process, potentially affecting the
timeliness of ICU admission for those at risk of IHCA.
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While proactive measures can be taken to identify patients at risk of in-hospital cardiac

arrest (IHCA) and transfer them to the intensive care unit (ICU) for close monitoring

and intervention, it is essential to acknowledge that certain cases of IHCA remain

unpredictable. These instances encompass rare and unforeseen events such as

anaphylactic shock, acute post-operative hemorrhage, and amniotic fluid embolism.

Unlike predictable IHCA cases, these events occur in advance without significant

warning signs or evident indicators.

Figure 13 showcases the outcomes observed in general ward settings during routine

daily care. Our primary objective is to identify individuals requiring heightened

attention within the existing care processes and available resources. Through our

research, we have developed an automated alert system utilizing vital sign data obtained

during routine care. This method holds promise for implementation in various

healthcare settings, including long-term care units, low-staffed care units, home

healthcare, telemedicine services, and medical facilities in remote areas. The application

of our method provides a compelling rationale for transferring patients to evacuation

hospitals when necessary.
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By leveraging the power of technology and utilizing vital sign data, our approach
enables the timely identification of patients at risk of adverse events in general ward
settings. This proactive alert system serves as an additional layer of safety, ensuring that
patients receive appropriate monitoring, interventions, and care based on their
individual needs. Implementing our method in different healthcare settings, particularly
those with limited resources or geographical constraints, can enhance patient outcomes
and improve the overall quality of care.

The automatic alert system generated by our method serves as a valuable tool for
healthcare providers, allowing them to respond to critical situations and allocate
resources effectively and promptly. By identifying individuals who require closer
monitoring or specialized interventions, our method aids in optimizing patient care and
facilitating timely transfers to the evacuation unit when warranted.

Integrating our approach into routine care processes can significantly enhance patient
safety and improve healthcare outcomes. By harnessing the capabilities of technology,
we can proactively identify individuals in need of attention, ensure timely interventions,

and ultimately improve patient outcomes in various healthcare settings.
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ICU Transfer

Figure 13.Venn Diagram lllustrating Outcome Events in General Wards.
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Chapter 7 Conclusion

Currently, healthcare providers are emphasizing disease treatment and symptom
Improvement to optimize patient outcomes. However, allocating healthcare resources
requires a balanced approach, ensuring reasonable care for all patients rather than
universal intensive care. Consequently, there is a possibility of unexpected cardiac
arrest cases that may go unnoticed in general wards.

Our primary objective is not to identify every potential cardiac arrest patient but to
identify individuals who may be overlooked within the existing care processes and
available resources. We strive to identify specific characteristics of patients who have
experienced in-hospital cardiac arrest (IHCA) but were not initially identified as high-
risk individuals. Our ultimate goal is to intervene and provide additional care to these
potential patients, reducing unforeseen cardiac arrest events.

Recognizing resource allocation limitations, healthcare providers must prioritize
patients based on their clinical condition and allocate intensive care resources
accordingly. This approach ensures that patients with more severe conditions receive the
required attention and care, including bedside monitoring or transfer to the intensive

care unit (ICU) to prevent further deterioration.
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We aim to supplement the existing care processes by identifying patients who have

experienced IHCA despite not being initially flagged as high-risk individuals. This

approach allows us to implement targeted interventions and provide additional care,

reducing the likelihood of unexpected cardiac arrest events. We can achieve these goals

by optimizing resource allocation and improving patient outcomes without significantly

disrupting the current care infrastructure.

In conclusion, our TEWS and TEWS-X models represent noteworthy advancements in

IHCA prediction and comprehensibility. By harnessing vital signs data and

incorporating explicable modeling techniques, these models empower healthcare

providers to proactively identify individuals at risk of IHCA and intervene promptly and

purposefully. Early identification and timely intervention are pivotal in diminishing

IHCA mortality rates and ameliorating patient outcomes. Further research is warranted

to validate the models across diverse healthcare settings and explore supplementary data

sources for enhanced predictive capabilities. Implementing the TEWS and TEWS-X

models can revolutionize IHCA management by providing healthcare providers with

valuable tools to enhance patient care and optimize resource allocation. The integration

of these models into clinical practice can heighten patient safety, curtail cardiac arrest

incidents, and ultimately save lives.
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