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中文摘要 

住院期間的心跳驟停（In-hospital cardiac arrest, IHCA）是嚴重的事件，常伴隨高

死亡率，各大研究亦強調了早期識別和早期介入對於改善患者預後的重要性。部

份的心跳驟停是突然地發生，沒有伴隨明顯徵兆，因此開發自動化的預測模型以

識別高風險患者並及時進行介入是非常重要的。本研究引入了兩個創新的預測模

型：『時間序列早期預警分數（Time-Series Early Warning Score, TEWS）』和

『可解釋的時間序列早期預警分數（Explainable Time-Series Early Warning Score, 

TEWS-X）』。這兩個模型只使用常規量測的生命徵象資料來提供較為準確且可

解釋的 IHCA預測，使醫療提供者能夠採取主動措施，提高患者安全性。 

TEWS 模型通過結合多個時間窗口的特徵，再加上類神經網路對於特徵趨勢和模

式的處理能力，實現了更高的預測準確性。此外，TEWS-X模型通過採用基於決

策樹的機器學習方法和 SHAP 值，對醫療照顧者解釋其預測結果，使醫療照顧者

可依此結果作出臨床決策。這些模型可以無縫地集成到現有的照護流程中，無需

中斷工作流程，進而提升病人安全並優化資源分配。 

關鍵字：住院病人心跳驟停、早期警訊系統、生命徵象、機器學習、可解釋人工

智慧 
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Abstract 

In-hospital cardiac arrest (IHCA) is a critical event associated with high mortality rates. 

Early identification and intervention are crucial for improving patient outcomes. This 

study introduces two innovative predictive models: the Time-Series Early Warning 

Score (TEWS) and the Explainable Time-Series Early Warning Score (TEWS-X), 

designed to leverage vital signs data and provide accurate and explainable predictions of 

IHCA. 

The TEWS model utilizes vital signs data from six time windows (48 hours) to predict 

IHCA occurrences and performs superior IHCA prediction performance compared to 

alternative classification algorithms. Incorporating features from multiple time windows 

significantly improves prediction accuracy, with an area under the receiver operating 

characteristic curve (AUROC) of 0.808, surpassing the performance of MEWS 

(AUROC of MEWS: 0.649).  

The TEWS-X model incorporates a tree-based machine learning approach and SHAP 

values to enhance model explainability, enabling insights into feature importance and 

supporting transparent decision-making, facilitating an understanding of the critical 

factors influencing IHCA risk. These models can seamlessly integrate into existing care 

processes, improving patient safety without disrupting workflow. 
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The TEWS and TEWS-X models represent significant advancements in IHCA 

prediction and explainability. By leveraging vital signs data and incorporating 

explainable modeling techniques, these models empower healthcare providers to 

identify patients at risk of IHCA and intervene promptly and proactively. Further 

research is needed to validate the models in diverse healthcare settings and explore 

additional data sources for enhanced predictive capabilities. Implementing the TEWS 

and TEWS-X models can improve patient outcomes and optimize resource allocation in 

the management of IHCA. 

Keyword: IHCA, Early Warning Score, Vital sign, Machine Learning, Explainable AI 
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Chapter 1 Introduction 

1.1 Motivation 

In-hospital cardiac arrest (IHCA) poses a substantial risk to patient safety, despite its 

infrequency, and carries a high mortality rate. The Utstein resuscitation registry reporting 

template defines IHCA as providing chest compressions or defibrillation to patients in 

inpatient beds [1]. 

Annually in the United States, numerous cardiac arrests are reported among hospitalized 

patients, with an estimated incidence of approximately 0.92 per 1,000 bed days [2]. 

Unfortunately, outcomes following cardiac arrest are notably poor, reflected by post-

discharge survival rates close to 25% in the United States and under 20% globally [3, 4]. 

A meta-analysis encompassing 40 studies reported a 1-year survival rate post-IHCA of 

13.4% [5]. Moreover, within this meta-analysis, 17.6% of patients survived hospital 

discharge, implying that approximately 76% of patients who survived their hospital stay 

live for at least a year [5]. 

A preliminary analysis of 23 cohort studies has identified several factors associated with 

diminished survival odds post-in-hospital cardiac arrest. These include male gender, age 

60 or above, presence of active malignancy, and history of chronic kidney disease [6]. In 

contrast, some factors are significantly linked to increased survival odds, such as 
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witnessed arrest, monitored arrest, the daytime occurrence of the arrest, and an initial 

shockable rhythm. However, intubation during arrest and a resuscitation duration of at 

least 15 minutes are associated with reduced survival odds. Understanding the impact of 

intra-arrest factors on patient outcomes underscores the critical need to identify high-risk 

individuals. Improved survival rates largely depend on the preparedness and vigilance of 

the healthcare team. 

Various early warning scoring systems have been established to identify hospitalized 

patients at high risk of clinical deterioration, meeting the urgent need for early recognition 

of such patients. These scoring systems typically incorporate relevant variables associated 

with predictive outcomes. The Modified Early Warning Score (MEWS) [7], which 

includes vital signs like temperature, heart rate, respiratory rate, and blood pressure, is a 

common approach to informing clinical decision-making. However, the area under the 

receiver operating characteristic curve (AUROC) for MEWS consistently falls below 0.7 

in multiple studies, suggesting the need to explore the inclusion of additional clinical data 

such as laboratory results, demographics, and heart rate variability to augment predictive 

performance [8-13]. These efforts aim to enhance the precision and effectiveness of early 

warning scoring systems in identifying patients at elevated risk of deterioration and 

facilitating timely interventions to improve patient outcomes. Despite their promising 
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results in accuracy, reduction in false alarms, and favorable detection rates, their 

applicability might be restricted in units where routine measurement of such clinical data 

is not the norm. 

The advent of artificial intelligence (AI) and machine learning (ML) systems heralds a 

new chapter in biomedicine, transforming aspects ranging from molecular research to 

disease investigation. With their ability to autonomously analyze complex datasets, ML 

offers researchers the ability to extract valuable insights and uncover challenging 

patterns. Employing ML models could significantly enhance the accuracy of predictions 

either by utilizing existing data or optimizing features for optimal performance. By 

tapping into these advanced computational approaches, the biomedical community can 

open new knowledge pathways and advance disease understanding and management 

[14]. For example, Cho and Kwon developed a deep learning-based early warning score 

that accurately anticipates patient deterioration using vital signs recorded over 8 hours, 

specifically designed for patients in general wards. Similarly, in intensive care units 

(ICUs), some research has utilized ML techniques and continuous vital signs 

monitoring to anticipate deterioration [15, 16]. Nonetheless, it is crucial to acknowledge 

that continuous vital signs measurements might not always be available in general 

wards, posing a challenge to the widespread implementation of these approaches. 
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1.2 Purpose 

Our principal goal is to advance the in-hospital cardiac arrest (IHCA) prediction field by 

harnessing the data generated through existing care processes. By capitalizing on these 

resources, our primary objective is to develop a refined and more accurate prediction 

model for IHCA. 

In parallel, we recognize the critical importance of interpretability in healthcare 

applications. Although machine learning models have demonstrated remarkable 

potential in predicting IHCA, their complex nature, and limited transparency have 

hindered their widespread adoption in clinical settings. Consequently, our secondary 

objective involves creating a prediction model that achieves exceptional predictive 

performance and offers clear and comprehensible explanations for its predictions. By 

incorporating explainability into our model, we strive to enhance its utility and facilitate 

its integration into routine clinical practice. 

It is important to note that our primary objective was not to identify every potential 

cardiac arrest patient but rather to identify individuals who may have been overlooked 

within the existing care processes and available resources. By focusing on patients who 

experienced in-hospital cardiac arrest (IHCA) but were not initially identified as high-
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risk individuals, we aimed to uncover specific characteristics that could help improve 

the identification and intervention strategies for these patients. 

The ultimate goal was to provide healthcare professionals with an improved tool 

enabling proactive interventions, potentially averting adverse outcomes associated with 

IHCA. 
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Chapter 2 Literature Review 

2.1 Importance of IHCA Prediction 

In-hospital cardiac arrest (IHCA) represents a significant health concern associated with 

considerable morbidity and mortality, although its incidence is relatively low. In the 

United States, an annual estimation of 290,000 cardiac arrest cases are attended to in 

hospitalized patients [2]. Survival rates during hospitalization and post-discharge for 

patients experiencing cardiac arrest remain deficient, with nearly 25% survival rates post-

discharge in the United States and less than 20% globally [3, 4]. Several intra-arrest 

factors, such as a witnessed or monitored event and daytime occurrence, have been 

identified as predictive of enhanced survival rates [6]. Prompt recognition of high-risk 

patients is thus critical, given the considerable impact of healthcare team preparedness 

and responsiveness on post-cardiac arrest survival outcomes. 

Nevertheless, achieving an accurate assessment of IHCA incidence and understanding its 

implications for patient outcomes is challenging. Previous estimates often rely on data 

from single institutions or small hospital clusters within similar geographical regions [17]. 

Such estimates have limited generalizability due to disparate IHCA definitions and 

substantial patient and hospital inclusion criteria variations. Furthermore, the absence of 

comprehensive and standardized data on all IHCA events within national registries and 
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hospital databases obstructs the determination of overarching IHCA rates and potential 

shifts. Understanding the scale of this issue is essential, given the considerable variability 

in IHCA survival rates among hospitals, indicating significant opportunities for 

enhancing outcomes. 

Data from the American Heart Association's Get with The Guidelines-Resuscitation 

(GWTG-R) registry indicates that the average age of IHCA patients is 66 years, with 

males constituting 58% of the cases [2]. Non-shockable rhythms such as asystole or 

pulseless electrical activity represent the most frequent presenting rhythms during IHCA, 

observed in approximately 81% of cases. Cardiac causes are implicated in most cardiac 

arrests, accounting for 50%-60% of cases, followed by respiratory insufficiency, 

contributing to 15%-40% of cases [3]. To forestall IHCA, it is crucial to implement robust 

systems to identify patients at risk of deterioration and swiftly deliver suitable 

interventions. Rapid response teams have proven effective in detecting deteriorating 

patients and initiating timely interventions. Essential treatment elements during cardiac 

arrest include high-quality chest compressions, adequate ventilation, early defibrillation 

when appropriate, and swift attention to reversible causes like hyperkalemia or hypoxia 

[18]. However, the evidence supporting more advanced treatment strategies, such as 
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extracorporeal cardiopulmonary resuscitation (ECPR) or targeted temperature 

management, is still being determined and necessitates further research. 

Post-cardiac arrest care represents a vital phase in managing IHCA patients. This phase 

prioritizes identifying and treating the underlying cause of cardiac arrest, providing 

hemodynamic and respiratory support, and potentially implementing neuroprotective 

strategies like targeted temperature management. Prognostication and decision-making in 

the post-cardiac arrest period require a comprehensive approach considering the potential 

for neurological recovery and ongoing multiorgan failure. It is important to abstain from 

prematurely withdrawing care without definitive prognostic signs during and after cardiac 

arrest. Advanced monitoring techniques and biomarkers may facilitate prognostication 

and guide decision-making in the post-resuscitation period [3]. 

To foster improvement of IHCA outcomes on a broader scale, it is strongly recommended 

that hospitals actively engage in national quality-improvement initiatives. These 

initiatives strive to ameliorate the care delivered to IHCA patients by implementing 

evidence-based guidelines, refining resuscitation training for healthcare providers, and 

fostering a culture of continuous quality improvement. Exchanging best practices, 

participation in standardized reporting systems, and involvement in collaborative research 
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endeavors can aid in identifying strategies to decrease IHCA rates, enhance survival rates, 

and improve long-term patient outcomes [19]. 
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2.2 Modified Early Warning Score (MEWS) 

The Modified Early Warning Score (MEWS) is the foremost prediction model for 

detecting patient deterioration in healthcare practice [7]. This scoring system is an 

invaluable tool in assessing and monitoring the clinical status of patients, enabling 

healthcare professionals to promptly identify those at risk of critical conditions or 

adverse events, such as cardiac arrest or sepsis. MEWS plays a pivotal role in 

facilitating timely interventions to mitigate potential harm. 

Early warning scores were conceived in the early 1990s to address the imperative need 

for early recognition of deteriorating patients [20]. MEWS was developed as an adapted 

version of the traditional Early Warning Score (EWS) to enhance its predictive value 

and clinical utility. Since its inception, MEWS has garnered widespread recognition and 

has been widely implemented in healthcare institutions across the globe. 

Primarily employed in hospital settings, particularly in general wards, MEWS focuses 

on the vigilant monitoring of patients' vital signs to detect any indications of 

deterioration. It encompasses a comprehensive set of physiological parameters, with 

each parameter assigned a score based on the degree of abnormality observed. These 

individual scores are aggregated to generate an overall MEWS score, indicating the 
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patient's risk of clinical deterioration. Higher MEWS scores are associated with a 

greater likelihood of deterioration. 

While the specific variables and scoring system employed in MEWS may exhibit minor 

variations across different healthcare institutions, several typical variables are 

commonly included. These variables encompass respiratory rate, heart rate, systolic 

blood pressure, body temperature, and level of consciousness. Each variable is assigned 

a score according to predefined thresholds or ranges. For instance, if the respiratory rate 

falls within the normal range, it may be given a score of 0. However, deviations from 

the normal range may result in a higher score, signifying an elevated risk level. The 

Modified Early Warning Score (MEWS) classification rule is depicted in Table 1,  

providing a comprehensive visual representation of its categorization system. 

 

Table 1. This is a table displaying the Modified Early Warning Score (MEWS). 

 3 2 1 0 1 2 3 

SBP (mmHg) <70 71-80 81-100 101-199  ≥200  

HR (bpm)  <40 41-50 51-100 101-110 111-129 ≥130 

RR (bpm)  <9  9-14 15-20 21-29 ≥30 

BT (°C)  <35  35-38.4  ≥38.5  
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AVPU score    A V P U 

Note: 'SBP' stands for Systolic Blood Pressure, 'HR' represents Heart Rate, 'RR' denotes Respiratory Rate, 

'BT' refers to Body Temperature. The consciousness level is represented as 'A' for Alert, 'V' for Reacting 

to Voice, 'P' for Reacting to Pain, and 'U' for Unresponsive. 

 

Healthcare professionals regularly monitor patients' vital signs and calculate their 

MEWS scores at predetermined intervals. A higher MEWS score triggers an appropriate 

response protocol, such as notifying the medical team or increasing the frequency of 

vital signs monitoring. These interventions ensure timely and effective care, thereby 

preventing further deterioration and optimizing patient outcomes. 

MEWS has demonstrated its effectiveness in identifying patients at risk of clinical 

deterioration and has significantly contributed to improved patient outcomes through 

early intervention [21]. Its simplicity and user-friendly nature have facilitated 

widespread adoption in healthcare institutions worldwide. Nevertheless, it is crucial to 

acknowledge that MEWS is just one component of a comprehensive approach to patient 

monitoring and should be utilized in conjunction with clinical judgment and the 

expertise of healthcare professionals. 
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2.3 Model of IHCA Prediction 

Several scoring systems have been employed to identify hospitalized patients at a 

heightened risk of clinical deterioration [2, 9-11, 16, 22, 23]. These systems are 

typically developed by selecting relevant variables associated with predictive outcomes. 

Most commonly used early warning scoring systems, such as the Modified Early 

Warning Score (MEWS) [8], rely on vital signs, including temperature, heart rate, 

respiratory rate, and blood pressure, for clinical assessments. However, the areas under 

the receiver operating characteristic curve (AUROC) for MEWS have often been 

reported to fall below 0.7 in numerous studies. Consequently, researchers have sought 

to enhance prediction performance by incorporating additional clinical data such as 

laboratory results, demographics, and heart rate variability [9-11, 13, 14, 24]. These 

approaches have improved accuracy, reducing false alarms and more reliable detection. 

Nonetheless, the feasibility of these methods may be limited in clinical units where 

regular measurement of such clinical data is not practical. Table 2 provides a 

comprehensive overview of research on predicting in-hospital cardiac arrest (IHCA), 

offering valuable insights into the diverse studies conducted in this field. 
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Table 2. Comparison of Studies on IHCA Detection in Hospital Settings 

  Cho et 

al[16] 

Kim et 

al[15] 

Kwon et 

al[25] 

Bartkowia

k et al[10] 

Green et 

al[9] 

Churpek et 

al[8] 

Publication 

Year 

2020 2019 2018 2018 2018 2016 

research 

subject 

ward ICU ward ward 

(Surgical) 

ward ward 

Interval of 

Vital Sign 

8 hours 

 

6 hours 

 

8 hours 

 

 

 

4 hours 

 

8 hours 

 

AUROC for 

MEWS 

0.684 0.746 0.603 0.750 0.698 0.698 

AUROC for 

research 

model 

0.865 

(DEWS) 

0.896 

(FAST-

PACE) 

0.850 

(DEWS) 

0.790 

(eCART) 

0.801 

(eCART) 

0.801 

(Random 

Forest) 

SBP V V V V V V 

HR V V V V V V 

RR V V V V V V 

BT V V V V V V 
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DBP  V  V V V 

SpO2  V  V V V 

AVPU score    V V V 

The expanding adoption of artificial intelligence and machine learning (ML) systems 

has fundamentally transformed the field of biomedicine from the molecular level to 

disease management. ML enables automated analysis of highly complex data and 

generates meaningful insights. ML models can potentially enhance prediction accuracy 

using the same dataset or reduce features while maintaining performance [14]. Cho and 

Kwon developed a deep learning-based early warning score that accurately predicts 

deterioration in patients within general wards by leveraging vital signs recorded over 8 

hours. Some studies have employed ML techniques with continuous vital signs to 

predict deterioration in intensive care units (ICUs) [15, 16]. However, continuous 

monitoring of vital signs may not be readily available in general wards. 

Therefore, recognizing the limitations posed by the availability of continuous vital signs 

measurements in general wards, our study aimed to develop a more precise machine-

learning model for predicting clinical deterioration, leveraging only five commonly 

measured vital signs: heart rate, systolic blood pressure, diastolic blood pressure, 

respiratory rate, and body temperature. By focusing on these vital signs, which are 
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routinely monitored in general wards, our model offers a practical and accessible 

approach to risk assessment. This approach presents a potential alternative to the 

Modified Early Warning Score (MEWS) system, which relies on a broader range of 

variables. 

Including heart rate, systolic blood pressure, diastolic blood pressure, respiratory rate, 

and body temperature in our model is supported by their clinical significance in 

reflecting a patient's physiological state and overall health. Heart rate is a vital indicator 

of cardiac function and can provide insights into autonomic regulation and overall 

cardiovascular well-being. On the other hand, systolic blood pressure offers valuable 

information about perfusion and tissue oxygenation, highlighting a patient's circulatory 

status. Lastly, respiratory data, including respiratory rate, is crucial in assessing 

respiratory function and detecting signs of respiratory distress or compromise. 

The potential benefits of our proposed model are noteworthy. By utilizing the regularly 

measured vital signs, healthcare providers in general wards can readily implement this 

approach without additional resources or specialized monitoring equipment. Moreover, 

our model can improve prediction accuracy compared to scoring systems such as 

MEWS. By harnessing the power of machine learning, we aim to uncover intricate 
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patterns and relationships within the vital signs data that might not be apparent through 

conventional approaches. 

It is important to acknowledge that further validation and evaluation of the proposed 

model will be essential to ascertain its effectiveness and clinical utility. Prospective 

studies and comparative analyses against existing scoring systems are warranted to 

establish the superiority of our model in accurately predicting clinical deterioration 

within general ward settings. Ultimately, our objective is to provide healthcare 

professionals with a reliable tool that can enhance their ability to identify patients at risk 

of deterioration promptly, enabling timely interventions and improved patient outcomes. 
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Chapter 3 Materials and Method for TEWS (Time-

Series Early Warning Score) 

Our primary objective is to develop an enhanced prediction model for in-hospital 

cardiac arrest (IHCA) by utilizing the existing data derived from current care processes. 

The conventional approach to IHCA prediction within the general ward setting involves 

using all available physiological data within a specific period. In our initial study, we 

postulated that incorporating information from multiple time points could yield a more 

comprehensive understanding of patients' physiological changes and trends. By 

integrating data from different time points, we sought to capture potential early warning 

signs of deteriorating health. This innovative approach was anticipated to fortify the 

model's predictive capabilities and facilitate the timely identification of patients at risk 

of cardiac arrest. 

By utilizing existing data and refining predictive capabilities, we aspire to enhance 

patient safety and optimize outcomes in the general ward setting. Our overarching goal 

is to equip healthcare professionals with an improved tool that enables proactive 

interventions with the potential to avert adverse outcomes associated with IHCA. 
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3.1 Ethics Declarations 

This retrospective cohort study was granted approval by the En-Chu-Kong Hospital 

Institutional Review Board (IRB) with the assigned number ECKIRB1071001. We 

affirm that all experiments conducted adhered to applicable guidelines and regulations. 

The data utilized in this study were extracted from de-identified electronic health 

records (EHRs) by an IT specialist, ensuring that patient identities remained unlinked to 

the research team. Given this cohort study's retrospective nature and de-identified data 

utilization, the En-Chu-Kong Hospital IRB (ECKIRB1071001) waived the requirement 

for written informed consent. 

 

3.2 Setting and Study Population 

The research was executed within a community-based general hospital, involving a 

cohort drawn from the inpatient population. The data analyzed were sourced from the 

electronic health records (EHRs) of adult inpatients, all 20 years or older, who presented 

at the facility for care between August 2016 and September 2019. All identifiable 

patient information was de-identified and anonymized before the analysis phase to 

maintain confidentiality. 
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Five core vital signs — systolic blood pressure (SBP), diastolic blood pressure (DBP), 

heart rate (HR), respiratory rate (RR), and body temperature (BT) — were utilized as 

the predictive features for this study. In line with standard medical practice, these vital 

signs were measured and recorded by healthcare staff, typically two to three times per 

day, which included measurements taken during the day, night, and early morning 

hours. For the study, we delineated the time window (TW) for these measurements into 

8-hour segments, constituting three TWs within each 24-hour day. Each TW captured a 

complete set of the aforementioned vital signs. 

The features captured during each TW were leveraged at three distinct TW intervals: 1, 

3, and 6 TWs (corresponding to 8, 24, and 48 hours, respectively). For each TW, one 

complete set of features was contained. A visual representation of the study's 

methodological process can be found in Figure 1, which succinctly illustrates the step-

by-step progression of the research. 
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Figure 1. Research Procedure. TW refers to the time window. 
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The hospital data was partitioned by date into a training and validation set (August 

2016–November 2018) and a testing set (December 2018–September 2019). The 

training and validation set was utilized for developing the Modified Early Warning 

Score (MEWS), while the testing set was used to determine the MEWS performance. 

For binary classification, we employed the area under the receiver operating 

characteristic curve (AUROC) and the area under the precision-recall curve (AUPRC) 

as evaluation metrics. The pertinent characteristics of the study cohort are 

comprehensively presented in Table 3, providing essential details regarding the 

demographic and clinical attributes of the participants. 

Table 3. Characteristics of the Research Sample expressed as mean ± standard deviation  

Characteristic Training & Validation Set Testing Set 

Duration of the Study 2016/8- 2018/11 2018/12 - 2019/9 

Total patient number 11,762 5,103 

Patient number with IHCA 81 37 

Age 63.8 ± 19.9 63.7 ± 20.5 

Gender: Male (%) 5,875 (49.9) 2,293 (44.9) 

Body Weight (Kg) 63.2 ± 14.7 63.3 ± 17.6 

Respiratory rate (1st TW) 18.9 ± 4.1 19.1 ± 5.0  
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Diastolic blood pressure (1st TW) 73.6 ± 15.2 72.3 ± 20.1 

Systolic blood pressure (1st TW) 133.2 ± 31.0 135.0 ± 40.8 

Body Temperature (1st TW) 36.7 ± 4.4 37.5 ± 6.4 

Heart rate (1st TW) 83.4 ± 21.5 84.9 ± 23.5 

 

3.3 Main Outcome 

The primary outcome under investigation in this study was cardiac arrest, defined as the 

absence of a detectable pulse accompanied by attempts at resuscitation. A meticulous 

examination of the electronic health records (EHRs) was conducted to ascertain the 

precise timing of each cardiac arrest event. This comprehensive analysis accurately 

identified and classified the selected inpatients into two distinct groups: positive and 

negative. 

The positive group consisted of inpatients who experienced at least one cardiac arrest 

event while admitted to the general wards. In cases where patients encountered multiple 

cardiac arrest events during their hospitalization, only the initial event was considered 

for analysis. This approach ensured that each patient was represented by a single cardiac 

arrest event, maintaining the independence of observations and preventing duplication 

in the dataset. 
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Conversely, the negative group comprised inpatients not admitted to the intensive care 

unit (ICU) and did not encounter any cardiac arrest events throughout the study period; 

including this negative group allowed for a comprehensive evaluation of the factors 

associated with the occurrence of cardiac arrest. By comparing the positive and negative 

groups, we aimed to provide a thorough understanding of the characteristics and 

circumstances surrounding cardiac arrest events in the general ward setting. 

 

3.4 Model Development 

3.4.1 Data Preprocessing 

Given the inherent susceptibility to human or system errors in the compilation of 

electronic health records (EHRs), our dataset was potentially exposed to the problem of 

missing values. It is conceivable, for instance, that health personnel may not have 

recorded certain vital sign measurements within specific time windows (TWs), leading 

to incomplete TW data. To address this challenge, we implemented the method of 

multiple imputations by chained equations[24]. This technique, which effectively 

reintroduces the natural variability associated with missing data and accounts for the 

resultant uncertainty, is particularly effective for valid statistical inferences. In instances 

of duplicate data within the same TW, our protocol involved retaining the highest value. 
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Additionally, we encountered a substantial distribution range in the feature values 

within our dataset, which could complicate the classifier training process. To surmount 

this hurdle, we employed standard scores (z-scores) to normalize the values of the 

features. This statistical transformation, by adjusting the distribution of feature values, 

aids in ensuring more reliable model training. 

3.4.2 Handing Imbalanced Data 

Imbalances in datasets are common in practical scenarios, especially within medical 

research, where class distributions frequently exhibit severe skewness. This issue of 

class imbalance similarly afflicted our dataset. It is essential to acknowledge that the 

effectiveness of most machine learning algorithms is maximized when the classes are 

balanced or nearly so. Unaddressed imbalances in datasets could undermine the 

classifier's performance, as biases in the training data could result in the neglect of 

underrepresented classes. There are several strategies, such as under-sampling (i.e., 

eliminating instances from the majority class) or oversampling (i.e., cases duplicating 

from the minority class), that are recommended to manage such imbalanced datasets. In 

our prior research [26], we mitigated the imbalance within the dataset by under-

sampling negative samples to detect in-hospital cardiac arrest (IHCA). 
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For this study, however, instead of adopting the oversampling or under-sampling 

techniques, we chose a modified weight-balancing method to address the class 

imbalance issue in our dataset. This method was particularly effective when one class 

significantly outnumbered the other. The modified weight balancing strategy adjusted 

the class weights according to the ratio of IHCA-positive to IHCA-negative samples, 

thereby ensuring equitable contributions from all classes during the loss computation 

process. In addition, we incorporated focal loss, a technique designed to assign greater 

weight to the minority class during training, to equalize the representation of classes 

further. By combining focal loss and the weight-balancing method, we successfully 

addressed the class imbalance issue within our imbalanced dataset while developing the 

Time-Series Early Warning Score (TEWS). 

3.4.3 TEWS Model Development 

Our TEWS model consisted of three recurrent neural network (RNN) layers utilizing 

Long Short-Term Memory (LSTM) units [27]. RNNs are neural networks designed to 

handle sequential data, making them well-suited for processing EHRs, which inherently 

possess a time-series structure [28]. The TEWS architecture, incorporating LSTM units, 

is depicted in Figure 2. LSTM units comprise a cell, an input gate, an output gate, and a 

forget gate. These components enable the cell to retain information over arbitrary time 
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intervals while the gates regulate the flow of information into and out of the cell. 

Leveraging the strengths of LSTM in handling time-series data, TEWS effectively 

processes the temporal nature of the EHRs. 

 

Figure 2. (A) Structure of TEWS. (B) Structure of LSTM cell 

The dataset allocated for training was utilized to refine the Time-Series Early Warning 

Score (TEWS) model, with subsequent evaluation of the model's performance 

conducted using a validation dataset. Our TEWS model implemented a division of the 

training and validation datasets at an 8:2 ratio. The algorithm employed to define six 

distinct time windows for each vital sign measurement across the entirety of the 

inpatient population is depicted in Figure 3. This methodological approach provides a 

systematic and uniform process for creating time windows, facilitating an encompassing 

analysis of the vital sign data. 
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Figure 3. The procedure for generating time interval data. 

 

3.5 Performance Evaluation 

The LSTM-based system for our study was implemented using the Python-based scikit-

learn package [29]. At the same time, the neural networks were brought into effect using 

Keras, with TensorFlow as the backend engine. We employed several classification 

algorithms within the scikit-learn package for an extensive benchmarking procedure 

[30]. This suite of algorithms included AdaBoost [31, 32], random forest [33], logistic 
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regression [34], gradient boosting [35], classification and regression tree [36], naïve 

Bayes [37], support vector machine (SVM) [38, 39], k-nearest neighbor [40, 41], and 

C4.5 decision tree [42]. 

Gradient boosting integrates weak prediction models to yield a single prediction model 

and can be interpreted as an optimization algorithm for an appropriate cost function[43]. 

Logistic regression is a statistical model that predicts the probability of a specific class 

utilizing a logistic function to model a binary dependent variable. Random forest, an 

ensemble learning method, has utility in classification, regression, and other tasks by 

constructing multiple decision trees during training and generating predictions based on 

the modal or mean values of the individual tree predictions. 

Due to the imbalanced nature of our dataset, our proposed Time-Series Early Warning 

Score (TEWS) allocates class weights according to the ratio of IHCA-positive to IHCA-

negative samples. Predicted probabilities for each instance in the validation dataset were 

calculated from each model to assess the predictive performance of the classification 

mentioned above algorithms and TEWS. The Modified Early Warning Score (MEWS) 

was also computed for comparative purposes. To contextualize the accuracy of these 

results against existing literature, we determined the area under the receiver operating 

characteristic curve (AUROC) and the area under the precision-recall curve (AUPRC) 
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while considering whether an event occurred within an eight-hour window of each 

observation. These metrics are typically employed in the comparative evaluation of 

early warning scores. 

In summary, we employed various contemporary algorithms and our proposed TEWS to 

benchmark and compare their prediction performance. The calculated predicted 

probabilities, AUROCs, and AUPRCs provide valuable insights into the accuracy and 

effectiveness of these models within the context of existing literature and contribute to 

the advancement of IHCA prediction in clinical practice. 

 

3.6 Feature Selection 

The feature selection process fundamentally identifies the most informative features 

from a pool of potentially useful features to efficiently distinguish between classes. The 

undertaking of feature selection can be effectuated through a process of elimination, 

which bifurcates into two primary methodologies: filter methods and wrapper methods. 

Wrapper methods leverage the performance of the predictor as the selection criterion. In 

this arrangement, the predictor is integrated into a search algorithm that identifies the 

subset of features that deliver the highest predictor performance. Sequential backward 

selection (SBS) algorithms are widely utilized within the framework of wrapper 
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methods. SBS algorithms adopt a straightforward and greedy approach in their quest for 

feature selection. They systematically remove one feature from the complete set of 

features at a time while ensuring a slight decrement in predictor performance. 

The SBS algorithm significantly benefits when the optimal feature subset consists of 

fewer features[44, 45]. This algorithm effectively pinpoints relevant features, 

contributing to reliable and efficient class discrimination. 
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Chapter 4 Materials and Method for TEWS-X 

(Explainable Time-Series Early Warning Score) 

Our primary objective is to develop an enhanced prediction model for in-hospital 

cardiac arrest (IHCA) by utilizing the existing data derived from current care processes. 

In addition to developing an enhanced prediction model, our second goal is to create an 

explainable prediction model based on our previous research. While deep learning 

models have shown great promise in predicting IHCA, the lack of interpretability often 

limits their adoption in clinical practice. Therefore, we aim to create a model that 

achieves high predictive performance and provides clear and understandable 

explanations for its predictions. 

By incorporating techniques such as SHAP (SHaley Additive exPlanations) values, we 

can generate explanations for each prediction made by the model[46, 47]. These 

explanations will highlight the key contributing factors and their relative importance in 

determining the patient's risk of IHCA. This transparent and interpretable approach will 

enable healthcare providers to understand the underlying reasons behind the model's 

predictions, increasing their confidence in utilizing its outputs for clinical decision-

making. 
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Our research aims to develop an enhanced prediction model for IHCA using existing 

data and to ensure its interpretability and explainability. By achieving these goals, we 

hope to provide healthcare providers with a powerful tool that can assist in risk 

stratification and early intervention and ultimately improve patient outcomes in the 

context of IHCA. 

 

4.1 Ethics Declarations 

This retrospective cohort study was executed with the endorsement of the Institutional 

Review Board (IRB) at the En-Chu-Kong Hospital under the assigned IRB number 

ECKIRB1071001. The study was conducted meticulously, adhering to all relevant 

guidelines and regulations about human research. The dataset utilized in this study 

aligns with that employed in the initial investigation[48], and we attest to the complete 

compliance of all experiments with these established guidelines and regulations. 

 

4.2 Setting and Study Population 

The study cohort consisted of adult inpatients aged 20 years or older who received 

medical care at a community-based general hospital. The study dataset comprised these 

individuals' electronic health records (EHRs) from August 2016 to September 2019. 
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Importantly, it should be noted that this timeframe predates the emergence of the 

COVID-19 pandemic, thereby minimizing any potential impact of the pandemic on 

healthcare processes and resource allocation that could confound the study results. 

For this investigation, we identified five vital signs as crucial predictors: systolic blood 

pressure, diastolic blood pressure, heart rate, respiratory rate, and body temperature. 

These vital signs were routinely assessed by healthcare professionals, with 

measurements conducted multiple times per day at varying periods, including daytime, 

nighttime, and early morning. To establish a standardized time window (TW) for data 

collection, we defined each TW as a duration of 8 hours. Thus, three TWs were 

identified within a single day, during which the aforementioned vital signs were 

documented. 

 

4.3 Main Outcome 

The principal aim of this study was to scrutinize the incidence of cardiac arrest as the 

primary outcome of interest. Cardiac arrest was delineated as the cessation of a 

discernible pulse coupled with resuscitation efforts. An in-depth appraisal of electronic 

health records (EHRs) was undertaken to ascertain the exact timing of each cardiac 
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arrest event. This facilitated accurately identifying and categorizing the selected 

inpatients into positive and negative groups. 

The positive group encapsulated inpatients who underwent at least one instance of 

cardiac arrest during their admission to the general wards. In scenarios where patients 

experienced multiple cardiac arrest events throughout their hospitalization, solely the 

first event was taken into account for analysis. This methodology ensured that each 

patient was represented by a singular cardiac arrest event, thereby maintaining the 

independence of observations and avoiding duplication within the dataset. 

Conversely, the negative group consisted of inpatients not admitted to the intensive care 

unit (ICU) and did not experience any cardiac arrest event throughout the study period. 

A comprehensive evaluation of the factors associated with cardiac arrest occurrence was 

possible by including positive and negative groups. This comparative analysis allowed 

for a thorough examination of the predictors and risk factors related to cardiac arrest in 

the general ward setting. 
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4.4 Model Development 

4.4.1 Data Preprocessing 

In addition to the five vital signs measured across six times windows, we also 

incorporate the calculation of vital signs differences between different time windows. 

For instance, "HR1-6" represents the difference in heart rate between the first and the 

sixth times windows. Furthermore, age and gender variables are included in our dataset. 

Consequently, our augmented dataset encompasses 82 features, expanding from the 

original set of 30 features. 

A notable distinction in the second study pertains to the nomenclature employed for the 

time windows, which differs from that used in the initial research. In the second study, 

we adopted a naming convention aligned with the chronological sequence of the 

intervals. Consequently, the first time window corresponds to the farthest period 

preceding the event, whereas the sixth time interval represents the immediate timeframe 

preceding the event. This revised ordering facilitates a clearer understanding of the 

temporal relationship between the intervals and the occurrence of the event under 

investigation. The nomenclature of features within the augmented dataset is presented in 

Table 4, providing a comprehensive overview of the assigned names for reference and 

analysis. 
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Table 4. List of features of augmented dataset, besides age and gender 

 Respiratory 

rate 

Body 

temperature 

Heart rate Systolic 

pressure 

Diastolic 

pressure 

1st TW RR1 BT1 HR1 SBP1 DBP1 

2nd TW RR2 BT2 HR2 SBP2 DBP2 

3rd TW RR3 BT3 HR3 SBP3 DBP3 

4th TW RR4 BT4 HR4 SBP4 DBP4 

5th TW RR5 BT5 HR5 SBP5 DBP5 

6th TW RR6 BT6 HR6 SBP6 DBP6 

1st - 2nd  RR1-2 BT1-2 HR1-2 SBP1-2 DBP1-2 

1st - 3rd  RR1-3 BT1-3 HR1-3 SBP1-3 DBP1-3 

1st - 4th  RR1-4 BT1-4 HR1-4 SBP1-4 DBP1-4 

1st - 5th   RR1-5 BT1-5 HR1-5 SBP1-5 DBP1-5 

1st - 6th RR1-6 BT1-6 HR1-6 SBP1-6 DBP1-6 

2nd - 6th RR2-6 BT2-6 HR2-6 SBP2-6 DBP2-6 

3rd - 6th RR3-6 BT3-6 HR3-6 SBP3-6 DBP3-6 

4th - 6th RR4-6 BT4-6 HR4-6 SBP4-6 DBP4-6 

5th - 6th RR5-6 BT5-6 HR5-6 SBP5-6 DBP5-6 
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MAX-MIN RRMAX-

MIN 

BTMAX-

MIN 

HRMAX-

MIN 

SBPMAX-

MIN 

DBPMAX-

MIN 

4.4.2 Handling Imbalanced Data 

In various practical scenarios, particularly in the medical domain, datasets often exhibit 

imbalanced class distributions, where the prevalence of one class far outweighs the 

other. Similarly, the dataset utilized in our study also suffered from imbalanced class 

distribution. However, the performance of many machine learning algorithms is 

optimized when the number of samples in each class is relatively balanced. Neglecting 

the management of imbalanced datasets can significantly impact the effectiveness of 

classifiers. In machine learning classifiers, the biases present in training datasets may 

result in ignoring minority classes altogether. Therefore, our study aimed to address this 

imbalanced data issue by leveraging our three tree-based algorithms' inherent "weight" 

function. 

Incorporating weight functions within these algorithms allowed us to account for the 

imbalanced nature of our dataset. By assigning appropriate weights to the samples from 

different classes, we aimed to ensure that the classifiers were not biased toward the 

majority class. This approach enabled us to mitigate the potentially detrimental effects 

of imbalanced data on the performance of our classifiers. By carefully managing 
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imbalanced data, we sought to enhance the robustness and reliability of our machine 

learning models in addressing the specific challenges posed by imbalanced class 

distributions. 

4.4.3 TEWS-X Model Development 

Our second goal is to develop an explainable prediction model based on our initial 

research findings. We employed three tree-based systems implemented using the scikit-

learn package in Python, which encompassed logistic regression, random forest, and 

XGBoost algorithms. 

Our study used the three aforementioned tree-based algorithms to build our prediction 

model. To account for the imbalanced nature of our dataset, we applied weight 

adjustments during the model training process, ensuring that the minority class (i.e., the 

less prevalent outcome) receives higher emphasis. 

By adjusting the weight for imbalanced data, we aimed to address the potential bias that 

could arise from our dataset's unequal distribution of outcomes. This approach allows 

the model to capture patterns better and make accurate predictions for both the majority 

and minority classes, ultimately improving the overall performance and reliability of the 

model. 
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Furthermore, we comprehensively compared the datasets containing 82 features and 30 

features. The dataset with 82 features incorporated the five vital signs in six times 

windows and included additional information such as age and gender. This augmented 

dataset aimed to provide a more comprehensive representation of the patient's 

characteristics and physiological changes over time. 

 

4.5 Performance Evaluation 

The evaluation of the developed Explainable Time-Series Early Warning Score (TEWS-

X) was performed using the dedicated testing set, employing well-established 

performance metrics, including the area under the receiver operating characteristic 

curve (AUROC) and the area under the precision-recall curve (AUPRC). Given the 

inherent imbalance within our dataset, the AUPRC was employed as an additional 

evaluation criterion, offering a comprehensive assessment of our model's performance. 

To assess the impact of feature augmentation on the predictive accuracy of the models, 

we conducted a comparative analysis, examining the performance of the three tree-

based algorithms on both datasets. This analysis aimed to determine whether adding 

additional features improved the models' ability to discriminate between different 

outcomes and enhance the accuracy of predictions. 
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4.6 Expandability with SHAP 

We employed the Shapley Additive Explanations (SHAP) method to analyze the feature 

importance of our three tree-based algorithms[46, 47]. This approach allowed us to gain 

insights into the global and local importance of features in each case, focusing on 

positive-prediction instances. By utilizing the SHAP method, we aimed to understand 

the overall contribution of features in our models. The global feature importance 

provided us with a comprehensive view of the relative significance of each input 

variable in predicting outcomes. This information was valuable in identifying the key 

factors driving the predictions made by our tree-based algorithms. 

Additionally, we examined the local importance of features in positive-prediction cases. 

This analysis helped us understand the specific factors influencing individual instances 

where our models successfully predicted positive outcomes. We better understood these 

predictions' underlying mechanisms and reasoning by investigating the local 

importance. 
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Chapter 5 Result 

5.1 Result for TEWS (Time-Series Early Warning Score) 

This study carefully selected a cohort of 16,865 adult admissions for analysis. Among 

these admissions, 118 individuals (0.7%) encountered cardiac arrest within a general 

ward setting, as depicted in Table 5. To provide a comprehensive understanding of the 

data, we describe the characteristics of both IHCA-positive and IHCA-negative cases in 

Figure 4. 

Table 5. Demographic Information of the Research Sample 

Characteristic Data for Training and 

Validation 

Data for Testing 

Duration of the Study August 2016-November 2018 December 2018-September 2019 

Number of Patients 11,762 5,103 

IHCA 81 37 

Age 63.8 ± 19.9 63.7 ± 20.5 

Gender: Male (%) 5,875 (49.9) 2,293 (44.9) 

Body Weight 63.2 ± 14.7 63.3 ± 17.6 
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Figure 4. Distribution of vital sign data in general ward patients, expressed as mean ± standard deviation 

(SD). 

Note: 'SD' denotes standard deviation, 'IHCA' designates the group experiencing an IHCA event, while 

'non-IHCA' represents the group that did not have an IHCA event. 

 

We employed two distinct tasks to assess the efficacy of our proposed Time-Series 

Early Warning Score (TEWS). Subsequently, we conducted a comparative analysis 

between the TEWS model and these classification approaches. The tasks encompassed 

the following components, each shedding light on the TEWS model's performance and 

predictive capabilities. 
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5.1.1 Performance with one, three, and six time windows. 

In the cohort characterized by one time window (TW) or an 8-hour interval, the Time-

Series Early Warning Score (TEWS) model was employed. This model uses five vital 

signs from a specific TW to anticipate in-hospital cardiac arrest (IHCA) events. Figure 5 

illustrates a comparative evaluation of the TEWS model, the Modified Early Warning 

Score (MEWS), and other classifiers. Remarkably, the Support Vector Machine (SVM) 

and logistic regression algorithms indicated the most elevated area under the receiver 

operating characteristic curve (AUROC) values (0.729 and 0.721, respectively). This 

was followed by gradient boosting (0.712) and the TEWS (0.688). Nonetheless, all 

classifiers performed within the range demarcated by the MEWS. 

Within the cohort characterized by 3 TWs or a 24-hour interval, features derived from 

three TWs (24 h) were utilized to predict IHCA events using the TEWS model. Each 

TW contained a unique set of vital signs, culminating in 15 features. Notably, the 

TEWS model demonstrated a superior AUROC value (0.762), outperforming logistic 

regression (0.730), random forest (0.676), MEWS (0.649), and other algorithms. 

In the cohort characterized by 6 TWs or a 48-hour interval, the TEWS model employed 

features derived from six TWs (48 h) to anticipate IHCA events. The TEWS model 

exhibited a higher AUROC value (0.808) when compared to gradient boosting (0.768), 
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SVM (0.747), random forest (0.733), and other algorithms, affirming its consistent high 

performance across the 1TW, 3TW, and 6TW groups. 

While most classification algorithms demonstrated comparable performance levels 

when using features from a single TW, with AUROC values ranging between 0.62 and 

0.73 (AUROC of MEWS: 0.65), the predictive abilities of specific classifiers improved 

when integrating data from multiple TWs. Our TEWS model exhibited superior 

performance in the 6TW group (AUROC = 0.808, AUPRC = 0.052) compared to the 

MEWS (AUROC = 0.649, AUPRC = 0.015). 
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Figure 5. Values of AUROC and AUPRC for classifiers utilizing one, three, and six time windows. 'TW' 

stands for time window and 'TEWS' refers to the time-series early warning score. 
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5.1.2 Performance with Features Chosen via SBS Algorithm 

For the preliminary task of anticipating in-hospital cardiac arrest (IHCA), the Time-

Series Early Warning Score (TEWS) exhibited optimal performance when integrating 

data from six time windows (TWs), which represented a duration of 48 hours. This 

methodology, however, required 30 features from the six TWs, prompting us to explore 

strategies to streamline the feature set without compromising on performance. For this 

purpose, a Sequential Backward Selection (SBS) algorithm was employed to discern the 

most critical elements within the six TWs. Figure 6 portrays the features selected, with 

the initial TW being the most proximate to the cardiopulmonary resuscitation time for 

IHCA-positive patients. Heart rate, respiratory rate, and systolic blood pressure emerged 

as essential features in predicting IHCA events. Notably, the outstanding features were 

the heart rate within the first, fourth, and fifth TWs, respiratory rate, and systolic blood 

pressure during the initial TW. 

 

Figure 6. The top 5 features identified using the SBS (Sequential Backward Selection) algorithm. 
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Upon incorporating the identified quintet of features, we appraised their efficacy when 

integrated into the Time-Series Early Warning Score (TEWS) model and alternative 

algorithms. To ascertain the predictive prowess of these algorithms employing the 

condensed feature set, we contrasted their performance against the Modified Early 

Warning Score (MEWS) and other classifiers, as depicted in Figure 7. 

The TEWS model displayed its paramount performance, achieving a notable AUROC 

value of 0.875 alongside an AUPRC value of 0.087. Adaboost demonstrated potent 

performance, with an AUROC of 0.958 and an AUPRC of 0.110. The logistic 

regression also delivered praiseworthy performance, with an AUROC of 0.845 and an 

AUPRC of 0.050. These findings emphasize the efficacy of the selected features when 

paired with the TEWS model and alternative algorithms for the prediction of in-hospital 

cardiac arrest (IHCA). 
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Figure 7. Values of AUROC and AUPRC for the classifier utilizing five chosen features at one and six 

time windows (TWs). 'TW' refers to time window, 'TEWS' is the acronym for time-series early warning 

score, and '5feature' denotes the five selected features. 
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5.2 Result for TEWS-X (Explainable Time-Series Early 

Warning Score) 

5.2.1 Performance of TEWS-X 

The performance metrics, specifically the area under the receiver operating 

characteristic curve (AUROC) and the area under the precision-recall curve (AUPRC), 

achieved by each algorithm for the corresponding feature set and class weighting are 

presented in Table 6 and Table 7. For instance, in Logistic Regression, the accuracy 

scores range from 0.750 to 0.773 for the 30-feature sets and from 0.803 to 0.836 for the 

82-feature sets. Random Forest achieves accuracy scores ranging from 0.721 to 0.779 

for the 30-feature sets and 0.754 to 0.839 for the 82-feature sets. XGBoost attains 

accuracy scores ranging from 0.739 to 0.770 for the 30-feature sets and 0.776 to 0.834 

for the 82-feature sets. 

Table 6. AUROC for IHCA Prediction with Varying Class Weight 

Weight  1:25 1:50 1:100 balanced 

Original 

features (30) 

LR 0.75052 0.75562 0.76169 0.7729 

RF 0.77915 0.74375 0.72176 0.72145 

XGB 0.77026 0.73864 0.75273 0.75389 
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Feature 

augmentation 

(82) 

LR 0.80302 0.81353 0.82362 0.83579 

RF 0.83949 0.81057 0.78873 0.75421 

XGB 0.83391 0.80607 0.78575 0.77578 

 

Table 7. AUPRC for IHCA Prediction with Varying Class Weight 

  1:25 1:50 1:100 balanced 

Original 

features (30) 

LR 0.05403 0.06346 0.06438 0.06237 

RF 0.02478 0.01681 0.01247 0.01117 

XGB 0.03094 0.02922 0.01573 0.01415 

Feature 

augmentation 

(82) 

LR 0.06215 0.06706 0.06905 0.07060 

RF 0.08605 0.04260 0.02203 0.01499 

XGB 0.03776 0.02593 0.01817 0.01558 

The results demonstrate that the performance of the algorithms varies depending on the 

feature set and class weighting. Overall, Random Forest consistently exhibits higher 

accuracy scores than Logistic Regression and XGBoost across most feature sets and 

class weightings. 

These findings emphasize the importance of considering feature selection and class 

weighting when applying machine learning algorithms. The table provides valuable 
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insights into the relative performance of the algorithms under different settings, aiding 

in selecting the most suitable approach based on the specific requirements of the 

problem at hand. Considering the AUROC and AUPRC metrics, the random forest 

model with a class weighting of 1:25 and utilizing 82 features achieved the best 

prediction performance. 
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5.2.2 Feature Importance Difference Visualization 

We utilized the SHAP beeswarm plot, a concise and information-rich visualization tool, 

to explore the influence of the top features in our dataset on the model's output. This 

plot provides valuable insights into the significance of these features about predicting 

in-hospital cardiac arrest (IHCA). 

Figure 8 presents the feature impact on our IHCA prediction model using the 30-feature 

and 82-feature datasets. Notably, our observations highlight the substantial impact of 

heart rate measurements from different time windows on IHCA prediction. Specifically, 

the 5th and 6th time windows demonstrate notable contributions, suggesting that heart 

rate values or trends during these periods contain valuable information for accurate 

IHCA prediction. This emphasizes the importance of considering heart rate 

measurements at different time points when assessing the risk of IHCA. 
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Figure 8. Feature importance by SHAP beeswarm plot, 30 features vs.82 features. (Random Forest with 

1:25 class weight) 

Furthermore, the order of feature importance remains consistent between the 30-feature 

set and the augmented 82-feature set. This consistency implies that the additional 

features do not significantly alter the relative importance of the top features of IHCA 

prediction. 

In addition, the SHAP plot reveals that features related to diastolic blood pressure 

(DBP) show a consistent impact direction. Specifically, the decreases in DBP1-4, 

DBP1-2, and DBP1-5 are associated with an increased likelihood of IHCA. This 

observation suggests that a drop in diastolic pressure may contribute to IHCA. 

Overall, the SHAP beeswarm plot provides valuable insights into the relationship 

between specific features and IHCA prediction, highlighting the critical role of heart 
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rate measurements from different time windows and the consistent impact of decreased 

diastolic blood pressure on IHCA. 

5.2.3 Feature Impact Amplitude and Distribution Visualization 

We employed SHAP bar and beeswarm plots to visually depict the feature order and 

impact values for predicting in-hospital cardiac arrest (IHCA), providing valuable 

insights into the significance of different features in IHCA prediction. 

Figure 9 presents the feature impact amplitude and distribution in our IHCA prediction 

model using the 82-feature datasets. Our analysis shows that heart rate, body 

temperature, and changes in diastolic blood pressure rank among the top 10 features that 

significantly contribute to IHCA prediction. These findings indicate the importance of 

these features in identifying patients at risk of IHCA. Heart rate is the most prominent 

among these influential features, exerting the most substantial impact on IHCA 

prediction. This underscores the crucial role of heart rate as a key indicator in assessing 

the likelihood of IHCA. 
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Figure 9. Feature importance by SHAP bar plot and beeswarm plot, 82 features. (Random Forest with 

1:25 class weight) 
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5.2.4 Feature Impact Distribution Visualization 

We use the SHAP aggregated force plot to provide insights into the impact of feature 

values on the prediction of in-hospital cardiac arrest (IHCA). By examining the plot in 

our study, we can determine the cutoff points for each feature, indicating the threshold 

at which they significantly contribute to IHCA prediction. 

Figure 10 in our study showcases the cutoff points observed for HR5 and HR6 at 80 

beats per minute. This finding suggests that tachycardia, characterized by an elevated 

heart rate, may significantly influence the prediction of in-hospital cardiac arrest 

(IHCA). Figure 11, on the other hand, demonstrates that DBP1-2 and DBP1-5 exhibit a 

cutoff point at -10 mmHg. Crossing this threshold, a decrease in diastolic blood pressure 

indicates an increased probability of IHCA prediction. Furthermore, BT2 reveals a 

cutoff point at 35.7 degrees Celsius, meaning that a low body temperature preceding the 

assessment day can potentially impact IHCA prediction. These observations provide 

important insights into the relationship between these vital sign indicators and the 

likelihood of IHCA. 
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Figure 10. SHAP aggregated force plot of Heart rate of the different time windows. (Random Forest with 

1:25 class weight and 82 features) 



doi:10.6342/NTU202302444

60 

 

 

Figure 11. SHAP Aggregated Force plot of DBP difference and DBP1 and BT2 of the different time 

windows. (Random Forest with 1:25 class weight and 82 features) 

It is important to note that while individual features have cutoff points indicating their 

impact, the overall contribution of a single feature remains minimal in the context of 
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IHCA prediction. The SHAP Aggregated Force plot provides a comprehensive 

understanding of the relationship between feature values and their impact on IHCA 

prediction. It highlights the significance of multiple features working in combination 

rather than relying on a single feature alone. 

5.2.5 Local Feature Importance Visualization 

The SHAP force plot, a powerful analytical tool, allows for a detailed examination of 

the local impact of individual features on a single case. We gain valuable insights into 

the factors by considering a specific case from the positive group correctly predicted as 

positive. In Figure 12, we observe the varying importance of features between the 30-

feature and 82-feature models. Notably, the 82-feature model highlights the discrepancy 

in diastolic blood pressure as the primary determinant of IHCA prediction. Despite 

DBP1-5 being ranked sixth in global importance, it substantially influences the local 

prediction outcome. We acquire additional information that enhances our understanding 

of the prediction results by employing the SHAP force plot in conjunction with the 82-

feature model. 
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Figure 12. Feature importance by SHAP force plot, 30 vs. 82 features for a single case. (Random Forest 

with 1:25 class weight) 

By employing the SHAP force plot and the augmented feature set, we gain deeper 

insights into the specific factors driving the IHCA prediction in this positive case. This 

comprehensive analysis enhances our understanding of the local impact of individual 

features and their contribution to the accurate prediction of IHCA. 
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Chapter 6 Discussion 

6.1 TEWS (Time-Series Warning Score) 

Our initial investigation aimed to exploit vital signs data over a forty-eight-hour 

window to predict the incidence of cardiac arrest[48]. Following rigorous examination, 

we substantiated the superior efficacy of the Time-Series Early Warning Score (TEWS) 

model, which utilizes features extracted from six distinct time windows (TWs), in 

contrast to alternative classification algorithms. Table 8 and  

Table 9 provide a comprehensive synopsis of the performance of various classifiers 

across divergent datasets. 

Our results unveil that applying the TEWS model incorporating features derived from 

six TWs yielded an impressive predictive prowess, evidenced by an AUROC value of 

0.808 and an AUPRC value of 0.052. These outcomes surpass those achieved when 

employing features from a single TW (AUROC = 0.688, AUPRC = 0.041) and the 

Modified Early Warning Score (MEWS) (AUROC = 0.649, AUPRC = 0.015). Such 

compelling evidence reinforces that including vital signs data from multiple TWs offers 

invaluable insights for accurately predicting cardiac arrest. 
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Table 8. AUROC values for classifiers with one, three, and six time windows, TW time window, TEWS 

time-series early warning score. 

ALGORITHM 1TW 3TW 6TW 

ADABOOST 0.6195 0.4131 0.4765 

DECISION TREE_C4.5 0.5110 0.4963 0.4963 

CART 0.5112 0.4960 0.4980 

KNN 0.5014 0.5426 0.5215 

GAUSSIAN NAÏVE BAYES 0.6147 0.3976 0.5381 

MEWS 0.6492 0.6492 0.6492 

LOGISTIC REGRESSION 0.7213 0.7297 0.7281 

RANDOM FOREST 0.6024 0.6761 0.7327 

SVM 0.7292 0.3656 0.7469 

GRADIENT BOOSTING 0.7122 0.5199 0.7678 

TEWS 0.6883 0.7621 0.8080 

 

Table 9. AUPRC values for classifiers with the first, the third, and the sixth times windows, TW time 

window, TEWS time-series early warning score. 

ALGORITHM 1TW 3TW 6TW 
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GRADIENT BOOSTING 0.0448 0.0092 0.0073 

DECISION TREE_C4.5 0.0266 0.0073 0.0073 

CART 0.0073 0.0073 0.0073 

KNN 0.0073 0.0102 0.0088 

ADABOOST 0.0265 0.0069 0.0096 

SVM 0.0073 0.0068 0.0108 

RANDOM FOREST 0.0277 0.0160 0.0137 

GAUSSIAN NAÏVE BAYES 0.0266 0.0065 0.0142 

MEWS 0.0153 0.0153 0.0153 

LOGISTIC REGRESSION 0.0421 0.0278 0.0306 

TEWS 0.0412 0.0210 0.0519 

 

Previous studies have similarly designated respiratory rate, heart rate, age, and systolic 

blood pressure as pivotal predictors of clinical deterioration[8]. Our investigation 

introduces a TEWS model that utilizes merely five features from six TWs: respiratory 

rate, systolic blood pressure within the most recent TW, and three heart rate readings 

from distinct TWs. This strategy yields a notable AUROC of 0.875 and AUPRC of 

0.087, surpassing other classification algorithms. These outcomes emphasize 
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introducing analyzing trends in heart rate variation, rather than solely absolute heart rate 

values, to enhance prediction accuracy. 

Our investigation showcases several advantages compared to prior research. Firstly, 

while specific deep learning-based early warning systems are proficient at predicting 

patient deterioration, particularly within intensive care settings, our TEWS model has 

broader applicability, including general wards and long-term care facilities. Secondly, 

we embraced a longer observation window of 48 hours for vital signs, paired with a 

deep learning-based approach, to amplify the precision of cardiac arrest prediction 

without additional variables. Lastly, our model exclusively employs vital sign data, 

making it universally compatible with any system configured for Modified Early 

Warning Score (MEWS) deployment. The implementation of TEWS merely 

necessitates a personal computer equipped for either manual vital signs input or 

automatic extraction from electronic health records (EHRs). 

Despite these advantages, our investigation bears several limitations. Firstly, it was 

conducted at a solitary community general hospital, potentially curtailing the broad 

applicability of our results to varied healthcare settings. Secondly, despite the superior 

performance of our TEWS model when utilizing vital signs data across 48 hours, its 

predictive capacity on the first day of admission did not eclipse that of other early 
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warning systems. However, wearable devices collecting prehospital heart rate data 

might be an alternative data source to enhance the model's performance. Lastly, our 

model demonstrated shortcomings in precisely predicting some instances of cardiac 

arrest within our dataset, particularly those characterized by sudden collapses such as 

pulmonary embolism following cesarean section or postoperative airway obstruction 

with hematoma. Moreover, the TEWS model is unable to detect deterioration between 

two time windows, which points to an inherent limitation of noncontinuous vital signs-

based prediction models. 

In summation, our investigation effectively exhibits the efficacy of the TEWS model in 

predicting cardiac arrest by leveraging vital signs data. Incorporating multiple time 

windows and emphasizing trend analysis of heart rate substantially enhance the model's 

performance relative to other classification algorithms. While our investigation offers 

invaluable insights, additional research is needed to validate these findings across varied 

healthcare settings and explore integrating alternative data sources to further enhance 

predictive capabilities. 
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6.2 TEWS-X (Explainable Time-Series Early Warning Score) 

Our primary objective in this study was to utilize vital signs data spanning two days to 

predict the occurrence of cardiac arrest accurately. Additionally, we aimed to develop a 

prediction model for in-hospital cardiac arrest (IHCA) that is both straightforward and 

explainable based on our initial research findings. 

We opted for a tree-based machine learning method instead of deep learning to achieve 

explainability. Although this approach does not fully capture the time-series nature of 

the data like recurrent neural networks (RNNs) do, we preserved some time-series 

factors in our tree-based model by considering the sign of feature differences along the 

timeline. This enables us to retain certain aspects of the vital sign trends and their 

impact on IHCA prediction. 

We employed an augmented dataset and adjusted the class weights to perform similarly 

to RNNs to compensate for the loss of time-series modeling capabilities. By 

incorporating techniques such as SHAP (SHapley Additive exPlanations) values, we 

could generate explanations for each prediction made by our model. These explanations 

provide insights into the key contributing factors and their relative importance in 

assessing the patient's risk of IHCA. This transparent and interpretable approach 

empowers healthcare providers to comprehend the rationale behind the model's 
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predictions, thereby increasing their confidence in leveraging the model's outputs for 

clinical decision-making. 

We utilized SHAP bar plots and beeswarm plots to ascertain the global feature 

importance, offering valuable insights into the model's inner workings. This enables us 

to employ these models for IHCA prediction and allocate additional attention to cases 

where the predictions align reasonably well. Furthermore, the SHAP force plot provides 

us with local feature importance, aiding in identifying the direction of potential 

treatment strategies. 

Given that vital signs are the foundation of our prediction model, the local SHAP 

impact values for individual cases can be effectively described on the TPR 

(Temperature, Pulse, Respiration) sheet, which records daily vital signs. As part of the 

routine care process, when the care team records the most recent vital signs, this data 

can be seamlessly transmitted to the TEWS-X service and promptly displayed on the 

TPR sheet page. By incorporating an alarm system into the daily care routine, 

modifying or disrupting existing care processes is unnecessary. 

Integrating the TEWS-X service into the TPR sheet allows for real-time monitoring and 

evaluation of patients' vital signs within their natural care setting. The SHAP impact 

values offer valuable insights into the influence of specific vital sign measurements on 
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predicting in-hospital cardiac arrest (IHCA). By providing this information on the TPR 

sheet, the care team can easily interpret the significance of each vital sign measurement 

and identify any concerning trends or patterns. 

The automatic display of the TEWS-X results on the TPR sheet serves as an additional 

layer of support for the care team, facilitating early detection of patients at risk of 

IHCA. This seamless integration ensures that the alarm system becomes integral to the 

daily care routine, allowing healthcare providers to respond promptly and appropriately 

when necessary. 

Importantly, incorporating the TEWS-X service and alarm system does not necessitate 

any changes to the existing care processes. It seamlessly integrates into the routine 

documentation of vital signs, ensuring that healthcare providers can continue their daily 

tasks without disruption. By enhancing the TPR sheet with the predictive capabilities of 

the TEWS-X service, healthcare teams can optimize patient care and improve outcomes 

without compromising the established care workflow. 

In summary, when integrated with the TPR sheet, the TEWS-X service can provide a 

user-friendly platform for displaying vital sign data and SHAP impact values. This 

integration allows for continuous monitoring and early detection of patients at risk of 

IHCA within the existing care routine. By incorporating these features, we enhance 
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patient safety and facilitate informed decision-making by the care team, all without the 

need for any changes to the daily care process.  
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6.3 Implementation of TEWS/TEWS-X 

In-hospital cardiac arrest (IHCA) can be categorized into predictable and unpredictable. 

Predictable IHCA refers to cases with identifiable patterns or similarities to previous 

instances of IHCA. In these cases, valuable insights can be gleaned from previous 

experiences and medical knowledge, aiding in anticipating and managing such events. 

Common symptoms of predictable IHCA include chest tightness with dyspnea, 

hypotension with tachycardia, or alterations in consciousness. Recognizing these 

indicators allows for timely intervention and the allocation of appropriate resources, 

such as immediate transfer to the intensive care unit (ICU), to prevent further 

deterioration. 

To guide the prioritization of ICU admission for predictable IHCA cases, specific ICU 

admission criteria have been developed[49]. These criteria serve as guidelines to ensure 

that patients with a higher likelihood of deterioration receive the necessary intensive 

care promptly. However, it is essential to note that the decision for ICU admission can 

be influenced by factors such as the availability of ICU beds and the awareness and 

judgment of the care team[50]. Limited ICU bed capacity or variations in individual 

clinical assessment may impact the decision-making process, potentially affecting the 

timeliness of ICU admission for those at risk of IHCA. 
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While proactive measures can be taken to identify patients at risk of in-hospital cardiac 

arrest (IHCA) and transfer them to the intensive care unit (ICU) for close monitoring 

and intervention, it is essential to acknowledge that certain cases of IHCA remain 

unpredictable. These instances encompass rare and unforeseen events such as 

anaphylactic shock, acute post-operative hemorrhage, and amniotic fluid embolism. 

Unlike predictable IHCA cases, these events occur in advance without significant 

warning signs or evident indicators. 

 

Figure 13 showcases the outcomes observed in general ward settings during routine 

daily care. Our primary objective is to identify individuals requiring heightened 

attention within the existing care processes and available resources. Through our 

research, we have developed an automated alert system utilizing vital sign data obtained 

during routine care. This method holds promise for implementation in various 

healthcare settings, including long-term care units, low-staffed care units, home 

healthcare, telemedicine services, and medical facilities in remote areas. The application 

of our method provides a compelling rationale for transferring patients to evacuation 

hospitals when necessary. 
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By leveraging the power of technology and utilizing vital sign data, our approach 

enables the timely identification of patients at risk of adverse events in general ward 

settings. This proactive alert system serves as an additional layer of safety, ensuring that 

patients receive appropriate monitoring, interventions, and care based on their 

individual needs. Implementing our method in different healthcare settings, particularly 

those with limited resources or geographical constraints, can enhance patient outcomes 

and improve the overall quality of care. 

The automatic alert system generated by our method serves as a valuable tool for 

healthcare providers, allowing them to respond to critical situations and allocate 

resources effectively and promptly. By identifying individuals who require closer 

monitoring or specialized interventions, our method aids in optimizing patient care and 

facilitating timely transfers to the evacuation unit when warranted. 

Integrating our approach into routine care processes can significantly enhance patient 

safety and improve healthcare outcomes. By harnessing the capabilities of technology, 

we can proactively identify individuals in need of attention, ensure timely interventions, 

and ultimately improve patient outcomes in various healthcare settings. 
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Figure 13.Venn Diagram Illustrating Outcome Events in General Wards. 
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Chapter 7 Conclusion 

Currently, healthcare providers are emphasizing disease treatment and symptom 

improvement to optimize patient outcomes. However, allocating healthcare resources 

requires a balanced approach, ensuring reasonable care for all patients rather than 

universal intensive care. Consequently, there is a possibility of unexpected cardiac 

arrest cases that may go unnoticed in general wards. 

Our primary objective is not to identify every potential cardiac arrest patient but to 

identify individuals who may be overlooked within the existing care processes and 

available resources. We strive to identify specific characteristics of patients who have 

experienced in-hospital cardiac arrest (IHCA) but were not initially identified as high-

risk individuals. Our ultimate goal is to intervene and provide additional care to these 

potential patients, reducing unforeseen cardiac arrest events. 

Recognizing resource allocation limitations, healthcare providers must prioritize 

patients based on their clinical condition and allocate intensive care resources 

accordingly. This approach ensures that patients with more severe conditions receive the 

required attention and care, including bedside monitoring or transfer to the intensive 

care unit (ICU) to prevent further deterioration. 
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We aim to supplement the existing care processes by identifying patients who have 

experienced IHCA despite not being initially flagged as high-risk individuals. This 

approach allows us to implement targeted interventions and provide additional care, 

reducing the likelihood of unexpected cardiac arrest events. We can achieve these goals 

by optimizing resource allocation and improving patient outcomes without significantly 

disrupting the current care infrastructure. 

In conclusion, our TEWS and TEWS-X models represent noteworthy advancements in 

IHCA prediction and comprehensibility. By harnessing vital signs data and 

incorporating explicable modeling techniques, these models empower healthcare 

providers to proactively identify individuals at risk of IHCA and intervene promptly and 

purposefully. Early identification and timely intervention are pivotal in diminishing 

IHCA mortality rates and ameliorating patient outcomes. Further research is warranted 

to validate the models across diverse healthcare settings and explore supplementary data 

sources for enhanced predictive capabilities. Implementing the TEWS and TEWS-X 

models can revolutionize IHCA management by providing healthcare providers with 

valuable tools to enhance patient care and optimize resource allocation. The integration 

of these models into clinical practice can heighten patient safety, curtail cardiac arrest 

incidents, and ultimately save lives. 
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