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摘要

互補標籤學習 (Complementary-Label Learning, CLL)是一個弱監督學習問題，

其目標在於僅從互補標籤 (Complementary Labels)訓練出一個分類器，其中互補標

籤指是某個資料「不」屬於的類別。已知方法的主要思想是將此問題化約成一般

的分類問題，並設計特殊的轉換以及代理損失函數使互補標籤可以與一般的分類

問題連結，但這類的方法卻有一些缺點，例如容易過度擬合。在此論文中，我們

設計一個新的框架「化約成互補標籤的分布估計」以避開先前方法可能有的缺點。

我們證明了準缺地估計互補標籤的分布再加上一個簡單的解碼即可準確地分類未

見過的資料。這個框架更可以解釋一些先前互補標籤學習的重要方法，並使他們

在有雜訊的資料集中變得更穩健。此外，這個框架揭示了機率估計的準確度能夠

用來驗證模型的準確度。由於此框架以機率估計為基礎，因此不論是深度模型或

是傳統方法都能在此框架下進行互補標籤學習。我們同時以實驗驗證此框架在不

同情境下皆有一定的準確度以及穩健性。最後，我們也收集、分析並公開了一個

由真實人類標記，而非人工生成的互補標籤資料集：CLCIFAR。

關鍵字：互補標籤學習、弱監督學習、化約、監督式學習、機器學習
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Abstract

Complementary-Label Learning (CLL) is a weakly-supervised learning problem that

aims to learn a multi-class classifier from only complementary labels, which indicate a

class towhich an instance does not belong. Existing approachesmainly adopt the paradigm

of reduction to ordinary classification, which applies specific transformations and surro-

gate losses to connect CLL back to ordinary classification. Those approaches, however,

face several limitations, such as the tendency to overfit. In this paper, we sidestep those

limitations with a novel perspective–reduction to probability estimates of complementary

classes. We prove that accurate probability estimates of complementary labels lead to

good classifiers through a simple decoding step. The proof establishes a reduction frame-

work from CLL to probability estimates. The framework offers explanations of several key

CLL approaches as its special cases and allows us to design an improved algorithm that is

more robust in noisy environments. The framework also suggests a validation procedure

based on the quality of probability estimates, offering a way to validate models with only

CLs. The flexible framework opens a wide range of unexplored opportunities in using
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deep and non-deep models for probability estimates to solve CLL. Empirical experiments

further verified the framework’s efficacy and robustness in various settings. To further ana-

lyze the properties of complementary labels in real world, a CIFAR-based complementary

dataset, CLCIFAR, was also collected, analyzed, and released publicly.

Keywords: Complementary-Label Learning,Weakly Supervised Learning, Reduction, Su-

pervised Learning, Machine Learning
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Chapter 1 Introduction

In real-world machine learning applications, high-quality labels may be hard or costly

to collect. To conquer the problem, researchers turn to the weakly-supervised learning

(WSL) framework, which seeks to learn a good classifier with incomplete, inexact, or in-

accurate data [15]. This paper focuses on a very weak type ofWSL, called complementary-

label learning (CLL) [3]. For the multi-class classification task, a complementary label

(CL) designates a class to which a specific instance does not belong. The CLL problem

assumes that the learner receives complementary labels rather than ordinary ones during

training, while wanting the learner to correctly predict the ordinary labels of the test in-

stances. Complementary labels can be cheaper to obtain. For example, when labeling with

many classes, selecting the correct label is time-consuming for data annotators, while se-

lecting a complementary label would be less costly [3]. In this case, fundamental studies on

CLL models can potentially upgrade multi-class classification models and make machine

learning more realistic. CLL’s usefulness also attracts researchers to study its interaction

with other tasks, such as generative-discriminative learning [7, 12] and domain-adaptation

[14].

Ishida et al. [3, 4] proposed a pioneering model for CLL based on replacing the ordi-

nary classification error with its unbiased risk estimator (URE) computed from only com-

plementary labels assuming that the CLs are generated uniformly. Chou et al. [1] unveiled

the overfitting tendency of URE and proposed the surrogate complementary loss (SCL) as

1
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an alternative design. Yu et al. [13] studied the situation where the CLs are not generated

uniformly, and proposed a loss function that includes a transition matrix for representing

the non-uniform generation. Gao and Zhang [2] argued that the non-uniform generation

shall be tackled by being agnostic to the transition matrix instead of including the matrix

in the loss function.

The methods mentioned above mainly focused on applying transformation and spe-

cific loss functions to the ordinary classifiers. Such a “reduction to ordinary classification”

paradigm, however, faces some limitations and is not completely analyzed. For instance,

so far most of the methods in the paradigm require differentiable models such as neural

networks in their design. It is not clear whether non-deep models could be competitive or

even superior to deep ones. It remains critical to correct the overfitting tendency caused

by the stochastic relationship between complementary and ordinary labels, as repeatedly

observed on URE-related methods [1, 4]. More studies are also needed to understand the

potential of and the sensitivity to the transition matrix in the non-uniform setting, rather

than only fixing the matrix in the loss function [13] or dropping it [2].

The potential limitations from reduction to ordinary classification motivate us to

sidestep them by taking a different perspective—reduction to complementary probabil-

ity estimates. To understand the properties of complementary labels in the real world, we

also collected and analyzed a human-annotated complementary dataset, CLCIFAR. Our

contribution can be summarized as follows.

1. We propose a framework that only relies on the probability estimates of CLs, and

prove that a simple decoding method can map those estimates back to correct ordi-

nary labels with theoretical guarantees.

2. The proposed framework offers explanations of several key CLL approaches as its

2
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special cases and allows us to design an improved algorithm that is more robust in

noisy environments.

3. We propose a validation procedure based on the quality of probability estimates,

providing a novel approach to validate models with only CLs along with theoretical

justifications.

4. We empirically verify the effectiveness of the proposed framework under broader

scenarios than previous works that cover various assumptions on the CL generation

(uniform/non-uniform; clean/noisy) and models (deep /non-deep). The proposed

framework improves the SOTA methods in those scenarios, demonstrating the ef-

fectiveness and robustness of the framework.

It is worth noting that some of the results in Chapter 5 are jointly developed by Hsiu-

Hsuan Wang and the author [9]. The results that should be credited to Hsiu-Hsuan Wang

will be properly acknowledged in the coming chapters. The results without such acknowl-

edgment are the original contributions of the author.

3
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Chapter 2 Problem Setup

In this section, we first introduce the problem of ordinary multi-class classification,

then formulate the CLL problem, and introduce some common assumption.

2.1 Ordinary-label learning

We start by reviewing the problem formulation of ordinary multi-class classification.

In this problem, we let 𝐾 with 𝐾 > 2 denote the number of classes to be classified, and

useY = [𝐾] = {1, 2, . . . , 𝐾} to denote the label set. LetX ⊂ R𝑑 denote the feature space.

Let 𝐷 be an unknown joint distribution overX×Y with density function 𝑝𝐷 (𝑥, 𝑦). Given

𝑁 i.i.d. training samples {(𝑥𝑖, 𝑦𝑖)}𝑁𝑖=1 and a hypothesis set H , the goal of the learner is to

select a classifier 𝑓 : X → R𝐾 from the hypothesis set H that predicts the correct labels

on unseen instances. The prediction �̂� of an unseen instance 𝑥 is determined by taking the

argmax function on 𝑓 , i.e. �̂� = argmax𝑖 𝑓𝑖 (𝑥), where 𝑓𝑖 (𝑥) denote the 𝑖-th output of 𝑓 (𝑥).

The goal of the learner is to learn an 𝑓 fromH that minimizes the following classification

risk: E(𝑥,𝑦)∼𝐷
[
ℓ( 𝑓 (𝑥), 𝑒𝑦)

]
, where ℓ : R𝐾 × R𝐾 → R+ denotes the loss function, and 𝑒𝑦

denotes the one-hot vector of label 𝑦.

4
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2.2 Complementary-label learning

In complementary-label learning (CLL), the goal for the learning algorithm remains

to find an 𝑓 that minimizes the ordinary classification risk. The difference lies in the

dataset to learn from. The CLL algorithm does not have access to the ground-truth labels

𝑦𝑖. Instead, for each instance 𝑥𝑖, the algorithm is given a complementary label �̄�𝑖. A

complementary label is a class that 𝑥𝑖 does not belong to; that is, �̄�𝑖 ∈ [𝐾]\{𝑦𝑖}. In

CLL, it is assumed that the complementary dataset is generated according to an unknown

distribution �̄� over X × Y with density function 𝑝�̄� (𝑥, 𝑦). Given access to i.i.d. samples

{𝑥𝑖, �̄�𝑖}𝑁𝑖=1 from �̄�, the CLL algorithm aims to find a hypothesis that classifies the correct

ordinary labels on unseen instances.

Next, we introduce the class-conditional complementary transition assumption, which

is used by many existing work [2–4, 13]. It assumes that the generation of complementary

labels only depends on the ordinary labels; that is, 𝑃( �̄� | 𝑦, 𝑥) = 𝑃( �̄� | 𝑦). The transition

probability 𝑃( �̄� | 𝑦) is often represented by a 𝐾 × 𝐾 matrix, called transition matrix, with

𝑇𝑖 𝑗 = 𝑃( �̄� = 𝑗 | 𝑦 = 𝑖). It is commonly assumed to be all-zeros on the diagonals, i.e.,

𝑇𝑖𝑖 = 0 for all 𝑖 ∈ [𝐾] in CLL because complementary labels are not ordinary.

The transition matrix is further classified into two categories: (a) Uniform: In uni-

form complementary generation, each complementary label is sampled uniformly from

all labels except the ordinary one. The transition matrix in this setting is accordingly

𝑇 = 1
𝐾−1 (1𝑘 − I𝑘 ). This is the most widely researched and benchmarked setting in CLL.

(b) Biased: A biased complementary generation is one that is not uniform. Biased transi-

tion matrices could be further classified as invertible ones and noninvertible ones based on

its invertibility. The invertibility of a transition matrix comes with less physical meaning

in the context of CLL; however, it plays an important role in some theoretical analysis in

5
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previous work [1, 13].

Following earlier approaches, we assume that the generation of complementary labels

follows class-conditional transition in the rest of the paper and that the transition matrix

is given to the learning algorithms. What is different is that we do not assume the tran-

sition matrix to be uniform nor invertible. This allows us to make comparison in broader

scenarios. In real-world scenario, the true transition matrix may be impossible to access.

To loosen the assumption that the true transition matrix is given, we will analyze the case

that the given matrix is inaccurate later. This analysis can potentially help us understand

the CLL in a more realistic environment.

6
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Chapter 3 Proposed Framework

In this section, we propose a framework for CLL based on complementary probability

estimates (CPE) and decoding. We first motivate the proposed CPE framework in Section

3.1. Then, we describe the framework and derive its theoretical properties in Section

3.2. In Section 3.3, we explain how earlier approaches can be viewed as special cases in

CPE. We further draw insights for earlier approaches through CPE and propose improved

algorithms based on those insights.

3.1 Motivation

To conquer CLL, recent approaches [1–4, 13] mainly focus on applying different

transformation and surrogate loss functions to the ordinary classifier, as summarized in

Table 3.1. This paradigm of reduction to ordinary-label learning, however, faces some

limitations. For instance, as Chou et al. [1] points out, the URE approach suffers from the

large variance in the gradients. Besides, it remains unclear how some of them behave when

the transitionmatrix is biased. Also, thosemethods only studied using neural networks and

linear models as base models. It is unclear how to easily cast other traditional models for

CLL. These limitations motivate us to sidestep themwith a different perspective, reduction

to complementary probability estimates.

7
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Table 3.1: Comparison of recent approaches to CLL. 𝑓 (𝑥) is the probability estimates of
𝑥, and ℓ is an arbitrary multi-class loss.

Method Transformation Loss Function

URE [3, 4] 𝜙 = 𝐼 −(𝐾 − 1)ℓ( 𝑓 (𝑥), �̄�) + ∑𝐾
𝑘=1 ℓ( 𝑓 (𝑥), 𝑘)

SCL-NL [1] 𝜙 = 𝐼 − log(1 − 𝑓�̄� (𝑥))
Fwd [13] 𝜙( 𝑓 )(𝑥) = 𝑇⊤ 𝑓 (𝑥) ℓ(𝜙( 𝑓 ) (𝑥), �̄�)
DM [2] 𝜙( 𝑓 ) (𝑥) = sm(1 − 𝑓 (𝑥)) ℓ(𝜙( 𝑓 ) (𝑥), �̄�)

3.2 Methodology

Overview The proposed method consists of two steps: In training phase, we aim to find

a hypothesis 𝑓 that predicts the distribution of the complementary labels well, i.e., an 𝑓

that approximates 𝑃( �̄� | 𝑥). This step is motivated by Yu et al. [13] and Gao and Zhang [2],

who proposed to model the conditional distribution of the complementary labels 𝑃( �̄� | 𝑥),

and Zhang et al. [14], who applied similar idea on noisy-label learning. What is different

in our framework is the decoding step during prediction. In inference phase, we propose

to predict the label with the closest transition vector to the predicted complementary prob-

ability estimates. Specifically, we propose to predict �̂� = argmin𝑘∈[𝐾] 𝑑
(
𝑓 (𝑥), 𝑇𝑘

)
for an

unseen instance 𝑥, where 𝑑 denotes a loss function. It is a natural choice to decode with

respect to 𝑇 because the transition vector 𝑇𝑘 = (𝑃( �̄� = 1 | 𝑦 = 𝑘), . . . , 𝑃( �̄� = 𝐾 | 𝑦 = 𝑘))⊤

is the ground-truth distribution of the complementary labels if the ordinary label is 𝑘 . In

the following paragraph, we provide further details of our framework.

Training Phase: Probability Estimates In this phase, we aim to find a hypothesis 𝑓

that predicts 𝑃( �̄� | 𝑥) well. To do so, given a hypothesis 𝑓 from hypothesis set H̄ , we set

the following complementary estimation loss to optimize:

𝑅( 𝑓 ; ℓ) = E(𝑥,𝑦)∼D
(
ℓ( 𝑓 (𝑥), 𝑃( �̄� | 𝑥, 𝑦))

)
(3.1)

8
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where ℓ can be any loss function defined between discrete probability distributions. By the

assumption that complementary labels are generated with respect to the transition matrix

𝑇 , the ground-truth distribution for 𝑃( �̄� | 𝑥, 𝑦) is 𝑇𝑦, so we can rewrite Equation (3.1) as

follows:

𝑅( 𝑓 ; ℓ) = E(𝑥,𝑦)∼D
(
ℓ( 𝑓 (𝑥), 𝑇𝑦)

)
(3.2)

The loss function above is still hard to optimize for two reasons: First, the presence of

ordinary label 𝑦 suggests that it cannot be accessed from the complementary dataset. Sec-

ond, as we only have one complementary label per instance, it becomes questionable to

directly use the empirical density, i.e., the one-hot vector of the complementary label 𝑒 �̄�

to approximate 𝑇𝑦 as it may change the objective.

Here we propose to use the Kullback-Leibler divergence for the loss function to solve

the two issues mentioned above with the following property:

Proposition 3.2.1. There is a constant 𝐶 such that

E
(𝑥,�̄�)∼D̄

ℓ( 𝑓 (𝑥), 𝑒 �̄�) + 𝐶 = E
(𝑥,𝑦)∼D

ℓ( 𝑓 (𝑥), 𝑇𝑦) (3.3)

holds for all hypothesis 𝑓 ∈ H̄ if ℓ is the KL divergence, i.e., ℓ( �̂�, 𝑦) = ∑𝐾
𝑘=1 −𝑦𝑘 (log �̂�𝑘 −

log 𝑦𝑘 ).

The result is well-known in the research of proper scoring rules [5, 11]. It allows us

to replace 𝑇𝑦 by 𝑒 �̄� in Equation (3.2) because the objective function only differs by a con-

stant after the replacement. This suggests that minimizing the two objectives is equivalent.

Moreover, the replacement makes the objective function accessible through the comple-

mentary dataset because it only depends on the complementary label �̄� rather than the

ordinary one.

Formally speaking, minimizing Equation (3.2) becomes equivalent to minimizing the

9
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following surrogate complementary estimation loss (SCEL):

�̄�( 𝑓 ; ℓ) = E(𝑥,�̄�)∼D̄
(
ℓ( 𝑓 (𝑥), 𝑒 �̄�)

)
(3.4)

By using KL divergence as the loss function, we have that

�̄�( 𝑓 ; ℓ) = E(𝑥,�̄�)∼D̄
(
− log 𝑓�̄� (𝑥)

)
(3.5)

with 𝑓�̄� (𝑥) being the �̄�-th output of 𝑓 (𝑥). Next, we can use the following empirical version

as the training objective: 1
𝑁

∑𝑁
𝑖=1 − log 𝑓�̄�𝑖 (𝑥𝑖). According to the empirical risk minimiza-

tion (ERM) principle, we can estimate the distribution of complementary labels 𝑃( �̄� | 𝑥)

by minimizing the log loss on the complementary dataset. That is, by choosing 𝑓 ∗ with

𝑓 ∗ = argmin 𝑓 ∈H̄
1
𝑁

∑𝑁
𝑖=1 − log 𝑓�̄�𝑖 (𝑥𝑖), we can get an estimate of 𝑃( �̄� | 𝑥) with 𝑓 ∗.

In essence, we reduce the task of learning from complementary labels into learning

probability estimates for multi-class classification (on the complementary label space). As

themulti-class probability estimates is a well-researched problem, our framework becomes

flexible on the choice of the hypothesis set. For instance, one can use K-Nearest Neighbor

or Gradient Boosting with log loss to estimate the distribution of complementary labels.

The flexibility becomes superior to the previous methods, who mainly focus on using

neural networks to minimize specific surrogate losses. It makes them hard to optimize

for non-differentiable models. In contrast, the proposed methods directly enable existing

ordinary models to learn from complementary labels.

Inference Phase: Decoding After finding a complementary probability estimator 𝑓 ∗

during the training phase, we propose to predict the ordinary label by decoding: Given

an unseen example 𝑥, we predict the label �̂� whose transition vector 𝑇�̂� is closest to the

10
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predicted complementary probability estimates. That is, the label is predicted by

�̂� = argmin
𝑘∈[𝐾]

𝑑
(
𝑓 ∗(𝑥), 𝑇𝑘

)
(3.6)

where 𝑑 could be an arbitrary loss function on the probability simplex and 𝑇𝑘 is the 𝑘-th

row vector of 𝑇 . We use dec( 𝑓 ; 𝑑) to denote the function that decodes the output from 𝑓

according to the loss function 𝑑. The next problem is whether the prediction of the decoder

can guarantee a small out-sample classification error 𝑅01( 𝑓 ) = E(𝑥,𝑦)∼D 𝐼 𝑓 (𝑥)≠𝑦.

We propose to use a simple decoding step by setting 𝐿1 distance as the loss function

for decoding:

dec( 𝑓 ; 𝐿1) (𝑥) = argmin
𝑦∈[𝐾]

∥𝑇𝑦 − 𝑓 (𝑥)∥1 (3.7)

This choice of 𝐿1 distance makes the decoding step easy to perform and provides the

following bound that quantifies the relationship between the error rate and the quality of

probability estimator:

Proposition 3.2.2. For any 𝑓 ∈ H̄ , and distance function 𝑑 defined on the probability

simplex Δ𝐾 , it holds that

𝑅01
(
dec( 𝑓 ; 𝑑)

)
≤ 2
𝛾𝑑
𝑅( 𝑓 ; 𝑑) (3.8)

where 𝛾𝑑 = min𝑖≠ 𝑗 𝑑 (𝑇𝑖, 𝑇𝑗 ) is the minimal distance between any pair of transition vector.

Moreover, if 𝑑 is the 𝐿1 distance and ℓ is the KL divergence, then with 𝛾 = min𝑖≠ 𝑗 ∥𝑇𝑖−𝑇𝑗 ∥1,

it holds that

𝑅01
(
dec( 𝑓 ; 𝐿1)

)
≤ 4

√
2
𝛾

√
𝑅( 𝑓 ; ℓ) (3.9)

The proof is in Appendix A.2. In the realizable case, where there is a target function

𝑔 that satisfies 𝑔(𝑥) = 𝑦 for all instances, the term 𝑅( 𝑓 ; ℓKL) can be minimized to zero with

𝑓★ : 𝑥 ↦→ 𝑇𝑔(𝑥) . This indicates that for a sufficiently rich complementary hypothesis set, if

11
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the complementary probability estimator is consistent ( 𝑓 → 𝑓★) then the 𝐿1 decoded pre-

diction is consistent (𝑅01
(
dec( 𝑓 ; 𝐿1)

)
→ 0). The result suggests that the performance of

the 𝐿1 decoder can be bounded by the accuracy of the probability estimates of complemen-

tary labels measured by the KL divergence. In other words, to obtain an accurate ordinary

classifier, it suffices to find an accurate complementary probability estimator followed by

the 𝐿1 decoding. Admittedly, in the non-realizable case, 𝑅( 𝑓 ; ℓKL) contains irreducible

error. We leave the analysis of the error bound in this case for the future research.

Another implication of the Proposition 3.2.2 is related to the inaccurate transition

matrix. Suppose the complementary labels are generated with respect to the transition

matrix 𝑇 ′, which may be different from 𝑇 , the one provided to the learning algorithm. In

the proposed framework, the only affected component is the decoding step. This allows

us to quantify the effect of inaccuracy as follows:

Corollary 3.2.3. For any 𝑓 ∈ H̄ , if 𝑑 is the 𝐿1 distance and ℓ is the KL divergence, then

𝑅01
(
dec( 𝑓 ; 𝐿1)

)
≤ 4

√
2
𝛾

√
𝑅( 𝑓 ; ℓ) + 2𝜖

𝛾
. (3.10)

where 𝛾 = min𝑖≠ 𝑗 ∥𝑇𝑖−𝑇𝑗 ∥1 is the minimal 𝐿1 distance between pairs of transition vectors,

and 𝜖 = max𝑘∈[𝐾] ∥𝑇 ′
𝑘 − 𝑇𝑘 ∥1 denotes the difference between 𝑇 ′ and 𝑇 .

Validation Phase: Quality of Probability Estimates The third implication of Propo-

sition 3.2.2 is an alternative validation procedure to the unbiased risk estimation (URE)

[3]. According to Proposition 3.2.2, selecting the best-performing parameter minimizes

the right hand side of Eq. (3.9) among all hyper-parameter choices minimizes the ordinary

classification error. This suggests an alternative metric for parameter selection: using the

surrogate complementary estimation loss (SCEL) on the validation dataset.

12
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Although the proposed validation procedure does not directly estimate the ordinary

classification error, it provides benefits in the scenarios where URE does not work well.

For instance, when the transition matrix is non-invertible, the behavior of URE is ill-

defined due to the presence of 𝑇−1 in the formula of URE: E𝑥,�̄� 𝑒 �̄�𝑇−1ℓ( 𝑓 (𝑥)). Indeed,

replacing 𝑇−1 with 𝑇’s pseudo-inverse can avoid the issue; however, it remains unclear

whether the unbiasedness of URE still holds after using pseudo-inverse. In contrast, the

quality of complementary probability estimates sidesteps the issue because it does not

need to invert the transition matrix. This prevents the proposed procedure from the issue

of an ill-conditioned transition matrix.

3.3 Connection to Previous Methods

The proposed framework also explains several earlier approaches as its special cases,

including (1) Forward Correction (FWD) [13], (2) Surrogate Complementary Loss (SCL)

with log loss [1], and (3) DiscriminativeModel (DM) [2], which are explained in Table 3.2

and Appendix A.3. By viewing those earlier approaches in the proposed framework, we

provide additional benefits for them. First, the novel validation process can be applied

for parameter selection. This provides an alternative to validate those approaches. Also,

we fill the gap on the theoretical explanation to help understand those approaches in the

realizable case.

On the other hand, the success of FWD inspires us to reconsider the role of transition

layers in the framework. As the base model’s output 𝑓 (𝑥; 𝜃) is in the probability simplex

Δ𝐾 , the model’s output 𝑇⊤ 𝑓 (𝑥; 𝜃) lies in the convex hull formed by the row vectors of 𝑇 .

If the transition matrix 𝑇 provided to the learning algorithm is accurate, then such trans-

formation helps control the model’s complexity by restricting its output. The restriction

13
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Table 3.2: A unifying view of earlier approaches and proposed algorithms through the lens
of reduction to probability estimates, where 𝑈 denote the uniform transition matrix. Two
versions of Forward Correction are considered: General 𝑇 denotes the original version in
[13], and the Uniform denotes the case when the transition layer is fixed to be uniform.
Proof of the equivalence is in Appendix A.3.

Method Hypothesis set Decoder

Fwd (general 𝑇) [13] {𝑥 ↦→ 𝑇⊤ 𝑓 (𝑥; 𝜃) : 𝜃 ∈ Θ} argmax𝑘 ((𝑇⊤)−1 𝑓 (𝑥))𝑘
Fwd (uniform) [13] {𝑥 ↦→ 𝑈⊤ 𝑓 (𝑥; 𝜃) : 𝜃 ∈ Θ} argmin𝑘 ∥ 𝑓 (𝑥) −𝑈𝑘 ∥1
SCL [1] {𝑥 ↦→ 𝑈⊤ 𝑓 (𝑥; 𝜃) : 𝜃 ∈ Θ} argmin𝑘 ∥ 𝑓 (𝑥) −𝑈𝑘 ∥1
DM [2] {𝑥 ↦→ sm(1 − 𝑓 (𝑥; 𝜃)) : 𝜃 ∈ Θ} argmin𝑘 ∥ 𝑓 (𝑥) −𝑈𝑘 ∥1

CPE-I (no transition) {𝑥 ↦→ 𝑓 (𝑥; 𝜃) : 𝜃 ∈ Θ} argmin𝑘 ∥ 𝑓 (𝑥) − 𝑇𝑘 ∥1
CPE-F (fixed transition) {𝑥 ↦→ 𝑇⊤ 𝑓 (𝑥; 𝜃) : 𝜃 ∈ Θ} argmin𝑘 ∥ 𝑓 (𝑥) − 𝑇𝑘 ∥1
CPE-T (trainable transition) {𝑥 ↦→ 𝑇 (𝑊)⊤ 𝑓 (𝑥; 𝜃) : 𝜃 ∈ Θ,𝑊 ∈ R𝐾×𝐾 } argmin𝑘 ∥ 𝑓 (𝑥) − 𝑇𝑘 ∥1

may be wrong, however, when the given transition matrix 𝑇 is inaccurate. To address

this issue, we propose to allow the transition layer to be trainable. This technique is also

used in label-noise learning, such as [6]. Specifically, we propose three methods in our

Complementary Probability Estimates framework: (a) CPE-I denotes a model without a

transition layer (b) CPE-F denotes a model with a fixed additional layer to 𝑇 (c) CPE-T

denotes a model with a trainable transition layer. To make the transition layer trainable,

we considered a 𝐾 × 𝐾 matrix 𝑊 . A softmax function was applied to each row of 𝑊 to

transform it into a valid transition matrix 𝑇 (𝑊) =
(
sm(𝑊1), sm(𝑊2), . . . , sm(𝑊𝐾)

)⊤. For
a base model 𝑓 , the complementary probability estimates of CPE-T for a given instance 𝑥

would be𝑇 (𝑊)⊤ 𝑓 (𝑥; 𝜃). Note that we use the 𝐿1 decoder forCPE-I,CPE-F, andCPE-T.

14
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Chapter 4 Experiments

In this section, we benchmarked the proposed framework to the state-of-the-art base-

lines and discuss the following questions: (a) Can the transition layers improve the model’s

performance? (b) Is the proposed 𝐿1 decoding competitive toMAX? (c) Does the transition

matrix provide information to the learning algorithms even if it is inaccurate? We further

demonstrate the flexibility of incorporating traditional models in CPE in Chapter 4.3 and

verify the effectiveness of the proposed validation procedure in the Appendix.

4.1 Experiment Setup

Baseline and setup We first evaluated CPE with the following state-of-the-art methods:

(a)URE-GA: Gradient Ascent applied on the unbiased risk estimator [3, 4], (b) Fwd: For-

ward Correction [13], (c) SCL: Surrogate Complementary Loss with negative log loss [1],

and (d)DM: DiscriminativeModels withWeighted Loss [2]. Following the previouswork,

we tested those methods onMNIST, Fashion-MNIST, and Kuzushiji-MNIST, and use one-

layer mlp model (d-500-c) as base models. All models were optimized using Adam with

learning rate selected from {1e-3, 5e-4, 1e-4, 5e-5, 1e-5} and a fixed weight decay 1e-4

for 300 epochs. The learning rate for CPE was selected with the Surrogate Complemen-

tary Estimation Loss (SCEL) on the validation dataset. For the baseline method, it was

selected with unbiased risk estimator (URE) of the zero-one loss. It is worth noting that

15
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Table 4.1: Comparison of the testing classification accuracies with different transition
matrices (upper part) and different noise levels (lower part).

MNIST Fashion-MNIST Kuzushiji-MNIST

Unif. Weak Strong Unif. Weak Strong Unif. Weak Strong

URE-GA 90.3± 0.2 87.8± 0.9 33.8± 8.1 79.4± 0.7 75.7± 2.0 32.3± 4.5 65.6± 0.8 62.5± 1.1 23.3± 5.4
SCL 94.3± 0.4 93.8± 0.4 27.5± 19.8 82.6± 0.4 81.2± 0.1 28.5± 10.8 73.7± 1.4 71.2± 2.9 20.7± 4.8
DM 91.9± 0.6 90.2± 0.3 26.7± 4.6 82.5± 0.3 80.3± 1.1 24.8± 5.0 65.6± 2.9 64.5± 2.7 20.1± 3.2
Fwd 94.4± 0.2 91.9± 0.3 95.3± 0.4 82.6± 0.6 83.0± 1.0 85.5± 0.3 73.5± 1.6 63.1± 2.6 74.1± 4.8

CPE-I 90.2± 0.2 88.4± 0.3 92.7± 0.8 81.1± 0.3 79.2± 0.5 81.9± 1.4 66.2± 1.0 62.5± 0.9 73.7± 1.0
CPE-F 94.4± 0.2 92.0± 0.2 95.5± 0.3 83.0± 0.1 83.0± 0.3 85.8± 0.3 73.5± 1.6 64.6± 0.5 75.3± 2.6
CPE-T 92.8± 0.6 92.1± 0.2 95.2± 0.5 83.0± 0.1 83.0± 0.3 85.8± 0.3 63.6± 0.4 64.6± 0.4 74.2± 2.8

𝜆 = 0.1 𝜆 = 0.2 𝜆 = 0.5 𝜆 = 0.1 𝜆 = 0.2 𝜆 = 0.5 𝜆 = 0.1 𝜆 = 0.2 𝜆 = 0.5

URE-GA 31.8± 6.4 27.8± 8.2 28.1± 4.1 27.3± 5.5 28.6± 4.1 26.3± 2.0 24.5± 4.6 21.1± 2.2 19.8± 2.1
SCL 25.1± 11.7 24.7± 8.9 23.8± 2.7 26.6± 9.2 20.6± 6.7 23.2± 5.7 20.4± 4.6 17.3± 2.9 16.8± 1.6
DM 26.5± 9.1 24.6± 6.5 22.6± 1.3 24.1± 5.1 23.6± 6.7 22.6± 2.9 20.0± 3.0 19.2± 3.1 18.2± 1.6
Fwd 88.3± 8.7 83.9± 10.7 71.6± 18.4 84.8± 0.6 80.2± 6.2 62.9± 20.1 72.8± 5.6 67.6± 7.5 54.7± 12.4

CPE-I 92.4± 0.7 92.0± 0.8 87.6± 1.4 81.7± 1.4 81.3± 1.4 78.2± 1.5 73.0± 0.7 71.6± 0.9 62.7± 1.6
CPE-F 94.3± 0.5 93.6± 0.5 89.0± 1.4 84.1± 0.8 83.0± 1.1 78.4± 2.5 76.1± 1.3 73.7± 1.5 63.7± 1.5
CPE-T 94.4± 0.5 93.7± 0.5 89.6± 0.9 84.1± 0.8 83.2± 1.1 78.9± 2.0 76.1± 1.3 73.9± 1.6 64.2± 1.2

Table 4.2: Comparison of testing accuracies of decoders when the baseline models use
fixed transition layers. The parameters are selected from the one with smallest SCEL on
the validation dataset.

MNIST Fashion-MNIST Kuzushiji-MNIST

Unif. Weak Strong Unif. Weak Strong Unif. Weak Strong

MAX 94.4± 0.2 92.0± 0.2 95.5± 0.2 83.0± 0.1 83.3± 0.2 86.1± 0.5 73.5± 1.6 64.8± 0.5 75.3± 2.6
𝐿1 94.4± 0.2 92.0± 0.2 95.5± 0.3 83.0± 0.1 83.0± 0.3 85.8± 0.3 73.5± 1.6 64.6± 0.5 75.3± 2.6

𝜆 = 0.1 𝜆 = 0.2 𝜆 = 0.5 𝜆 = 0.1 𝜆 = 0.2 𝜆 = 0.5 𝜆 = 0.1 𝜆 = 0.2 𝜆 = 0.5

MAX 94.4± 0.3 93.5± 0.3 84.5± 4.1 85.0± 0.3 84.0± 0.5 76.5± 2.5 76.4± 1.1 73.8± 1.2 59.9± 3.4
𝐿1 94.3± 0.5 93.6± 0.5 89.0± 1.4 84.1± 0.8 83.0± 1.1 78.4± 2.5 76.1± 1.3 73.7± 1.5 63.7± 1.5

the validation datasets consist of only complementary labels, which is different from some

previous works.

Transitionmatrices In the experiment of clean transitionmatrices, three types of transi-

tion matrices were benchmarked in the experiment. Besides the uniform transition matrix,

following [2, 13], we generated two biased ones as follows: For each class 𝑦, the com-

plementary classes Y\{𝑦} are first randomly split into three subsets. Within each subset,

the probabilities were set to 𝑝1, 𝑝2 and 𝑝3, respectively. We considered two cases for

(𝑝1, 𝑝2, 𝑝3): (a) Strong: ( 0.75
3 , 0.24

3 , 0.01
3 ) to model stronger deviation from uniform tran-

sition matrices. (b) Weak: ( 0.45
3 , 0.30

3 , 0.25
3 ) to model milder deviation from uniform tran-

sition matrices. In the experiment of noisy transition matrices, we considered the Strong
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deviation transition matrix 𝑇strong to be the ground-truth transition matrix, and a uniform

noise transition matrix 1
𝐾 1𝐾 to model the noisy complementary label generation. We gen-

erated complementary labels with the transition matrix (1−𝜆)𝑇strong+𝜆 1
𝐾 1𝐾 , but provided

𝑇strong and the generated complementary dataset to the learners. The parameter 𝜆 controls

the proportion of the uniform noise in the complementary labels. The results are reported

in Table 4.1.

4.2 Discussion

Can Transition Layers Improve Performance? The answer is positive in both clean

and noisy experiments. We observed that CPE-F and CPE-T outperformed CPE-I in

both settings, demonstrating that the transition layer helps achieve higher performances,

no matter the provided transition matrix is clean or not. Also, we observed that CPE-T

outperformed CPE-F in the noisy setting, especially when the noise factor 𝜆 was large.

It demonstrated that by making transition layers trainable, the model could potentially fit

the distribution of complementary labels better by altering the transition layer. In con-

trast, CPE-Fwas restricted to a wrong output space, making it underperformCPE-T. The

difference makes CPE-T a better choice for noisy environment.

Is 𝐿1 competitive with MAX? As analyzed in Chapter 3.3, Fwd and CPE-F only dif-

fered in the decoding step, with the former using MAX and the latter using 𝐿1. We provide

the testing accuracies of these decoders when the base models were CPE-F in Table 4.2.

It is displayed that the MAX decoder outperformed 𝐿1 in most noiseless settings; however,

when the transition matrix was highly inaccurate (𝜆 = 0.5), we observed that the 𝐿1 de-

coder outperformed the MAX decoder. This suggests that 𝐿1 could be more tolerant to

an inaccurate transition matrix. These results reveal that a deeper sensitivity analysis of
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Table 4.3: Comparison of testing accuracies of CPE with traditional models. Boldfaced
ones outperform the baseline methods based on single-layer deep models.

MNIST Fashion-MNIST Kuzushiji-MNIST

Model Unif. Weak Strong Unif. Weak Strong Unif. Weak Strong

CPE-KNN 93.1± 0.1 92.6± 0.1 94.5± 0.4 79.1± 0.4 77.8± 0.6 79.0± 1.7 74.9± 0.8 73.7± 0.8 80.4± 1.3
CPE-GBDT 86.9± 0.4 86.0± 0.3 90.3± 0.9 79.8± 0.4 78.0± 0.4 81.4± 1.1 60.6± 0.4 56.6± 1.8 68.4± 2.1

𝜆 = 0.1 𝜆 = 0.2 𝜆 = 0.5 𝜆 = 0.1 𝜆 = 0.2 𝜆 = 0.5 𝜆 = 0.1 𝜆 = 0.2 𝜆 = 0.5

CPE-KNN 93.7± 0.4 93.4± 0.4 91.9± 1.1 78.7± 1.9 78.5± 1.9 76.6± 1.9 77.2± 1.1 75.9± 1.6 73.2± 1.7
CPE-GBDT 89.7± 1.0 88.6± 1.2 84.0± 1.7 80.6± 1.7 80.0± 1.6 76.0± 2.2 66.7± 2.4 64.7± 2.4 55.8± 3.1

different decoders, both empirically and theoretically, would be desired. We leave this as

future studies.

Discussion of 𝑇-agnostic models Among the baseline methods, URE-GA, SCL and

DM are ones that does not take 𝑇 as inputs or assumes 𝑇 is uniform, which we called 𝑇-

agnosticmodels. Thosemodels performedwell when the transitionmatrix was just slightly

deviated from the uniform one, but their performances all droppedwhen the deviation from

uniform becomes larger. As we discussed in Chapter 3.3, the result could be interpreted

to be caused by their implicit assumption on uniform transition matrices, which brings

great performance on uniform transition matrices but worse performance on biased ones.

In contrast, we observed that all variations of CPE had similar testing accuracies across

different transition matrices, demonstrating that CPE did exploit the information from the

transition matrix that helped the models deliver better performance.

4.3 Learn from CL with Traditional Methods

As discussed in Chapter 3, the proposed framework is not constrained by deep mod-

els. We explored the possibility of applying traditional methods to learn from CL, includ-

ing (a) 𝑘-Nearest Neighbor (𝑘-NN) and (b) Gradient Boosting Decision Tree (GBDT). We

benchmarked those models in the same settings and reported the restuls in Table 4.3. It
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Table 4.4: Comparison ofCPE-T’s testing accuracies with different validation procedures.

MNIST Fashion-MNIST Kuzushiji-MNIST

Unif. Weak Strong Unif. Weak Strong Unif. Weak Strong

linear
URE 90.3± 0.6 90.4± 0.3 91.8± 0.5 82.1± 0.3 81.5± 1.2 82.6± 1.3 59.9± 0.4 60.0± 0.9 62.5± 0.5
SCEL 90.5± 0.2 90.6± 0.1 91.8± 0.4 82.0± 0.3 82.1± 0.5 83.2± 1.2 60.3± 0.5 60.6± 0.5 63.0± 0.3

mlp
URE 92.7± 0.5 91.8± 0.7 90.4± 6.5 82.9± 0.1 83.0± 0.3 84.3± 1.5 63.8± 0.7 63.8± 1.9 74.5± 2.7
SCEL 92.8± 0.6 92.1± 0.2 95.2± 0.5 83.0± 0.1 83.0± 0.3 85.8± 0.3 63.6± 0.4 64.6± 0.4 74.2± 2.8

𝜆 = 0.1 𝜆 = 0.2 𝜆 = 0.5 𝜆 = 0.1 𝜆 = 0.2 𝜆 = 0.5 𝜆 = 0.1 𝜆 = 0.2 𝜆 = 0.5

linear
URE 90.9± 1.0 90.2± 0.8 86.1± 1.3 82.2± 1.3 81.2± 1.4 77.1± 1.8 62.3± 0.8 60.6± 0.9 55.3± 2.3
SCEL 91.3± 0.7 90.5± 0.8 85.7± 1.6 82.6± 1.3 81.6± 1.3 78.0± 1.6 62.2± 0.8 61.7± 1.7 55.0± 1.1

mlp
URE 83.7± 9.7 90.8± 4.7 82.9± 9.4 83.0± 3.2 74.8± 10.1 74.3± 10.1 68.5± 11.4 67.1± 7.7 57.2± 16.3
SCEL 94.4± 0.5 93.7± 0.5 89.6± 0.9 84.1± 0.8 83.2± 1.1 78.9± 2.0 76.1± 1.3 73.9± 1.6 64.2± 1.2

Table 4.5: Comparison of Fwd’s testing accuracies with different validation procedures.

MNIST Fashion-MNIST Kuzushiji-MNIST

Unif. Weak Strong Unif. Weak Strong Unif. Weak Strong

linear
URE 90.5± 0.2 90.6± 0.4 91.6± 0.7 82.0± 0.4 81.6± 1.2 83.4± 0.7 59.9± 0.9 60.4± 0.9 62.6± 0.7
SCEL 90.5± 0.2 90.7± 0.2 91.9± 0.4 82.2± 0.3 82.6± 0.3 83.8± 0.2 60.4± 0.6 61.2± 0.3 63.2± 0.2

mlp
URE 94.4± 0.2 91.9± 0.3 95.3± 0.4 82.6± 0.6 83.0± 1.0 85.5± 0.3 73.5± 1.6 63.1± 2.6 74.1± 4.8
SCEL 94.4± 0.2 92.0± 0.2 95.5± 0.2 83.0± 0.1 83.3± 0.2 86.1± 0.5 73.5± 1.6 64.8± 0.5 75.3± 2.6

𝜆 = 0.1 𝜆 = 0.2 𝜆 = 0.5 𝜆 = 0.1 𝜆 = 0.2 𝜆 = 0.5 𝜆 = 0.1 𝜆 = 0.2 𝜆 = 0.5

linear
URE 91.1± 0.7 89.6± 1.0 82.5± 3.6 82.4± 0.9 81.4± 0.9 72.0± 7.5 62.7± 1.0 60.9± 0.9 52.1± 6.2
SCEL 91.4± 0.5 90.5± 0.5 83.9± 2.6 83.2± 0.3 82.4± 0.4 76.3± 2.8 62.5± 0.9 62.5± 1.6 55.6± 2.0

mlp
URE 88.3± 8.7 83.9± 10.7 71.6± 18.4 84.8± 0.6 80.2± 6.2 62.9± 20.1 72.8± 5.6 67.6± 7.5 54.7± 12.4
SCEL 94.4± 0.3 93.5± 0.3 84.5± 4.1 85.0± 0.3 84.0± 0.5 76.5± 2.5 76.4± 1.1 73.8± 1.2 59.9± 3.4

displayed that traditional models, specifically, 𝑘-NN, outperformed all the methods using

deep models in Kuzushiji-MNIST, indicating the benefit of the proposed CPE’s flexibility

in using non-deep models.

4.4 Comparison of validation processes

Table 4.4 and 4.5 provide comparison of validation process using URE and the pro-

posed SCEL. In Table 4.4, we observed that SCEL selected better parameters in most

cases. We also observed that when the transition matrix was inaccurate, the parameters

selected by SCEL tended to be more stable, especially when the base models were mlp.

This demonstrated the superiority of SCEL despite not being an unbiased estimator of the
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classification accuracies. In Table 4.5, we further applied SCEL to Fwd. Similarly, we

observed that SCEL selected better parameters in most cases. This suggested that the pro-

posed validation procedure could not only be applied to CPE but also earlier approaches.

It enables a more robust approach to validate earlier methods.
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Chapter 5 CLCIFAR:

Human-Annotated

Complementary Datasets

In this chapter, we introduce CLCIFAR, a CIFAR-based complementary dataset an-

notated by humans. In Section 5.1, we discuss the motivation for a human-annotated com-

plememtary dataset. In Section 5.2, we propose a protocol to collect complementary labels

from human annonators. Finally, in Section 5.3, a preliminary analysis on the collected

dataset is provided. ¹

5.1 Motivation

As mentioned in Chapter 1, many proponents of studying CLL often highlight its

potential on reducing annotation costs by collecting complementary labels instead of or-

dinary labels. The argument roots from the fact that any multi-class instance is associated

with more complementary labels than the one ordinal label. Nevertheless, the complemen-

tary labels contain less information than ordinary labels, and hence more complementary

labels may be needed to achieve the same level of testing performance. It remains unclear

whether in practice the learning algorithms can produce a meaningful classifier when the

¹All the results in this chapter are significantly original contributions of the author except that Hsiu-
Hsuan Wang deployed the protocol on MTurk and conducted the preliminary analysis. The protocol and
analysis design comes from joint discussion between Hsiu-Hsuan Wang, Hsuan-Tien Lin and the author [9].
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label information is not only very weak but potentially noisy. On the other hand, it re-

mains unknown whether the class-conditional assumption that was utilized frequently in

the literature hold true in practice and whether violation of these assumptions will affect

the performance of the previous algorithms.

To answer the problems mentioned above and contribute to the community, we de-

vised a label collection protocol that allows the annotators to choose a complementary

label for the images in CIFAR10 and CIFAR100, then analyzed the collected complemen-

tary labels.

5.2 Data Collection Protocol

Dataset Selection We base our complementary datasets on CIFAR10 and CIFAR100.

This selection is motivated by the real-world noisy label dataset by Wei et al. [10]. Build-

ing upon the CIFAR datasets allow us to evaluate the noise rate and the empirical transition

matrix easily, as they already contain nearly noise-free ordinary labels. Besides, most of

the SOTA CLL algorithms already perform benchmark on the CIFAR datasets, albeit us-

ing synthetic labels. This allows us to benchmark those methods without putting much

efforts on selecting network architecture or tuning the training hyperparameters. Finally,

CIFAR datasets are sufficiently hard in two aspects. For CLL algorithms, they are demon-

strated to be learnable at least in a noise-free and uniform scenario, while they are still

struggling to perform well on larger datasets such as ImageNet. For humans, the image

labeling tasks are also hard enough to argue that annotating complementary labels are

easier than the ordinary labels. In contrast, it is hard to believe that correctly annotating

the digits in MNIST is challenging for humans. These observation makes us to base our

complementary datasets on the CIFAR dataset.
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Complementary label collection protocol To collect only complementary labels from

the CIFAR dataset, for each image in the training split, we first randomly sample four

distinct labels and ask the human annotators to select any of the incorrect one from them.

To analyze the annotators’ behavior and reduce the noise in the collected labels, each image

is labeled by three different annotators. The four labels are re-sampled for each annotator

on each image. That is, each annotator possibly receives a different set of four labels to

choose from. Note that if the annotators always select one of the correct complementary

labels randomly, the empirical transition matrix will be uniform in expectation. We will

inspect the empirical transition matrix in the next section.

The labeling tasks are deployed on MTurk. We first divide the 50,000 images into

five batches of 10,000 images. Then, each batch is further divided into 1,000 human intel-

ligence tasks (HITs) with each HIT containing 10 images. Each HIT is deployed to three

annotators, who receive 0.03 dollar as the reward by annotating 10 images. To make the

labeling task easier and increase clarity, the size of the images are enlarged to 200 × 200

pixels. For each super-class in CIFAR20, four to six example images from the classes

within the super-class are provided to the annotators for reference.

5.3 Preliminary Dataset Analysis

Next, we take a closer look at the collected complementary labels. We first analyze

the error rates of the collected labels, and then verify whether the transition matrix is

uniform or not. Finally, we end with an analysis on the behavior of the human annotators

observed in the label collection protocol.

Observation 1: noise rate compared to ordinary label collection We first look at the

noise rate of the collected complementary labels. A complementary label is considered to
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Figure 5.1: The label distribution of CLCIFAR10 (left) and CLCIFAR20 (right).

be incorrect if it is actually the ordinary label. The mean error rate made by the human

annotators is 3.93% for CLCIFAR10 and 2.80% for CLCIFAR20. Although it is not a fair

comparison due to the different protocols, we compare to the noise rate of the CIFAR-

N dataset [10] for reference. The noise rate on CIFAR10-N and CIFAR100N-coarse are

around 18% and 25.60%, respectively. This difference suggests that the collected com-

plementary labels could be less noisy than the ordinary ones. On the other hand, if we

compare the human annotators to a random annotator who always annotates the label ran-

domly, the results become different. A random annotator achieves a noise rate of 1
𝐾 for

complementary label annotation and a noise rate of 𝐾−1
𝐾 for ordinary label annotation. If

we compare the human annotators to a random annotator, then for CLCIFAR10, human an-

notators have 60.7% less noisy labels than the random annotator whereas for CIFAR10-N,

human anotators have 80% less noisy labels. This demonstrates that human annotators are

more competent compared to a random annotator in the ordinary-label annotation. Sim-

ilarly, human annotators have 44% less noise than a random annotator for CLCIFAR20

and 73.05% less noise for CIFAR100N-coarse. This observation reveals that while the

absolute noise rate is lower in annotating complementary labels, it may be more difficult

to be competent against random labels than the ordinary label annotation.
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(a) CLCIFAR10 (b) CLCIFAR20

Figure 5.2: The empirical transition matrices of CLCIFAR10 and CLCIFAR20. The label
names of CLCIFAR20 are abbreviated as indexes to save space. The full label names are
provided in Appendix D.1.

Observation 2: imbalanced complementary label annotation Next, we analyze the

distribution of the collected complementary labels. The frequency of the complementary

labels for the CLCIFAR datasets are reported in Figure 5.1. As we can see in the figure,

the annotators have specific bias on certain labels. For instance, the annotators have a

preference for “airplane” and “automobile” in CLCIFAR10 and a preference for “people”

and “flower” in CLCIFAR20. In CLCIFAR10, the annotations are biased towards the

labels with longer names whereas in CLCIFAR20, they are biased towards the labels with

shorter, more concrete and understandable names.

Observation 3: biased transition matrix Finally, we visualize the empirical transition

matrix using the collected complementary labels in Figure 5.2. Based on the first two

observations, we could imagine that the transition matrix is biased. By inspecting Fig-

ure 5.2, we further discover that the bias in the complementary labels are dependent on

the true labels. For instance, in CLCIFAR10, despite we see more annotations on airplane

and automobile in aggregate, conditioning on the transportation-related labels (“airplane”,
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“automobile”, “ship” and “truck”), the distribution of the complementary labels becomes

more biased towards other animal-related labels (“bird”, “cat”, etc.)
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Chapter 6 Conclusion

In this paper, we view the CLL problem from a novel perspective, reduction to com-

plementary probability estimates. Through this perspective, we propose a framework that

only requires complementary probability estimates and prove that a simple decoding step

can map the estimates to ordinary labels. The framework comes with a theoretically jus-

tified validation procedure, provable tolerance in noisy environment, and flexibility of in-

corporating non-deep models. Empirical experiments further verify the effectiveness and

robustness of the proposed framework under broader scenarios, including non-uniform

and noisy complementary label generation. A real-world complementary dataset, CLCI-

FAR, is also collected and analyzed. We expect the realistic elements of the paper to keep

inspiring future research towards making CLL practical.
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Appendix A — Proofs

This section provides the proofs for the propositions claimed in the main text.

A.1 Proof of Proposition 3.2.1

First, set 𝐶 = E(𝑥,𝑦)∼D
∑𝐾
𝑘=1 𝑇𝑦𝑘 log(𝑇𝑦𝑘 ), then

E
(𝑥,𝑦)∼D

ℓ( 𝑓 (𝑥), 𝑇𝑦) = E
(𝑥,𝑦)∼D

𝐾∑
𝑘=1

−𝑇𝑦𝑘 log
(
𝑓𝑘 (𝑥)
𝑇𝑦𝑘

)
= 𝐶 + E

(𝑥,𝑦)∼D

𝐾∑
𝑘=1

−𝑇𝑦𝑘 log( 𝑓𝑘 (𝑥))

(A.1)

Next, as 𝑃( �̄� | 𝑦) = 𝑇𝑦�̄�, then

E
(𝑥,𝑦)∼D

𝐾∑
𝑘=1

−𝑇𝑦𝑘 log( 𝑓𝑘 (𝑥)) = E
(𝑥,𝑦)∼D

(
E
�̄� | 𝑦

− log( 𝑓�̄� (𝑥))
)
= E

(𝑥,�̄�)∼D̄
ℓ( 𝑓 (𝑥), 𝑒 �̄�) (A.2)

Hence, E(𝑥,𝑦)∼D ℓ( 𝑓 (𝑥), 𝑇𝑦) = 𝐶 + E(𝑥,�̄�)∼D̄ ℓ( 𝑓 (𝑥), 𝑒 �̄�).

A.2 Proof of Proposition 3.2.2

Let 𝐼𝐴 denote the indicator function of event 𝐴, then using Markov’s inequality on

the random variable 𝑑 ( 𝑓 (𝑥), 𝑇𝑦), we have

𝑅01
(
dec( 𝑓 ; 𝑑)

)
≤ 𝑃

(
𝑑 ( 𝑓 (𝑥), 𝑇𝑦) ≥

𝛾𝑑
2

)
≤ 2
𝛾𝑑
E

[
𝑑 ( 𝑓 (𝑥), 𝑇𝑦)

]
=

2
𝛾𝑑
𝑅( 𝑓 ; 𝑑) (A.3)
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To see the first inequality holds, note that if 𝑑 ( 𝑓 (𝑥), 𝑇𝑦) < 𝛾𝑑
2 , then for any incorrect class

𝑦′ ≠ 𝑦, we have

𝑑 ( 𝑓 (𝑥), 𝑇𝑦′) ≥ 𝑑 (𝑇𝑦, 𝑇𝑦′) − 𝑑 (𝑇𝑦, 𝑓 (𝑥)) ≥
𝛾𝑑
2

(A.4)

by triangular inequality and the definition of 𝛾𝑑 . As a result, the decoder decodes 𝑓 (𝑥) to

the correct class 𝑦 if 𝑑 ( 𝑓 (𝑥), 𝑇𝑦) < 𝛾𝑑
2 . This completes the first part of the Proposition.

Next, by Pinsker’s inequality and Jensen’s inequality, we have that

𝑅( 𝑓 ; 𝐿1) = E
(𝑥,𝑦)∼D

 𝑓 (𝑥) − 𝑇𝑦1 (A.5)

≤ 2 E
(𝑥,𝑦)∼D

√
2ℓKL

(
𝑓 (𝑥), 𝑇𝑦

)
(A.6)

≤ 2
√

2 E
(𝑥,𝑦)∼D

ℓKL
(
𝑓 (𝑥), 𝑇𝑦

)
= 2

√
2𝑅( 𝑓 ; ℓKL) (A.7)

According to the above inequality and the results of the first part, the proof for the second

part is now complete.

A.3 Proof of Corollary 3.2.3

The decoding step remains the same when 𝑇 ′ ≠ 𝑇 because the decoder uses the

same transition matrix 𝑇 to decode. The only difference is in the complementary prob-

ability estimates. Specifically, we have that the complementary estimation loss becomes

𝑅( 𝑓 ; ℓ) = E(𝑥,𝑦)∼D
(
ℓ( 𝑓 (𝑥), 𝑇 ′

𝑦)
)
as the complementary labels are generated with respect

to 𝑇 ′.

Hence, the last equality in Equation (A.3) is no longer correct. Instead, we use the

following:

E
[
𝑑 ( 𝑓 (𝑥), 𝑇𝑦)

]
≤ E

[
𝑑 ( 𝑓 (𝑥), 𝑇 ′

𝑦) + 𝑑 (𝑇 ′
𝑦, 𝑇𝑦)

]
≤ E

[
𝑑 ( 𝑓 (𝑥), 𝑇 ′

𝑦)
]
+ 𝜖 (A.8)
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to obtain that 𝑅01
(
dec( 𝑓 ; 𝑑)

)
≤ 2

𝛾𝑑
𝑅( 𝑓 ; 𝑑) + 2𝜖

𝛾𝑑
. Then, we can use Pinsker’s inequality

and Jensen’s inequality as in (A.5) to get

𝑅01
(
dec( 𝑓 ; 𝐿1)

)
≤ 4

√
2
𝛾

√
𝑅( 𝑓 ; ℓ) + 2𝜖

𝛾
. (A.9)
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Appendix B — Details of the

Connections between Proposed

Framework and Previous Methods

In this section, we provide further details about how our framework can explain sev-

eral previous methods as its special cases. Across this section, we let 𝑓 (·; 𝜃) denote the

base model parametrized by 𝜃 ∈ Θ. We also provide some insights drawn from viewing

these previous methods using the proposed framework.

Forward Correction In the training phase, Forward Correction optimizes the following

loss functions:

𝐿Fwd(𝜃) =
1
𝑁

𝑁∑
𝑖=1

− log
(
𝑇⊤ 𝑓 (𝑥𝑖; 𝜃)

)
�̄�𝑖

(B.10)

In the inference phase, Forward Correction predicts �̂� = argmax𝑘 𝑓𝑘 (𝑥) for an unseen

instance 𝑥. We claim that Forward Correction is equivalent to CPE with the following

parameters when 𝑇 is invertible:

• Hypothesis Set: {𝑥 ↦→ 𝑇⊤ 𝑓 (𝑥; 𝜃) : 𝜃 ∈ Θ}

• Decoder: argmax𝑘
(
(𝑇⊤)−1 𝑓 (𝑥; 𝜃)

)
𝑘 .

Proof. First, by setting the hypothesis set as above and plugging in the surrogate comple-
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mentary estimation loss, we get the training objective function for CPE:

𝐿CPE(𝜃) =
1
𝑁

𝑁∑
𝑖=1

− log
(
𝑇⊤ 𝑓 (𝑥𝑖; 𝜃)

)
�̄�𝑖

(B.11)

Equation (B.11) matches Equation (B.10), implying that in the training phase they se-

lect the same parameter 𝜃. Next, in the inference phase, it is clear that (𝑇⊤)−1 𝑓 (𝑥; 𝜃) =

(𝑇⊤)−1𝑇⊤ 𝑓 (𝑥; 𝜃) = 𝑓 (𝑥; 𝜃), so both methods predict the same label for an instance 𝑥. □

Next, we further show that when 𝑇 is the uniform transition matrix𝑈, the decoder is

equivalent to the 𝐿1 decoder, i.e., argmax𝑘 ((𝑈⊤)−1 𝑓 (𝑥))𝑘 = argmin𝑘 ∥𝑈𝑘 − 𝑓 (𝑥)∥1:

Proof. First, as

((𝑈⊤)−1 𝑓 (𝑥))𝑘 = −(𝐾 − 1) 𝑓𝑘 (𝑥) +
𝐾∑
𝑘=1

𝑓𝑘 (𝑥) = −(𝐾 − 1) 𝑓𝑘 (𝑥) + 1,

we have that argmax𝑘 ((𝑈⊤)−1 𝑓 (𝑥))𝑘 = argmin𝑘 𝑓𝑘 (𝑥). Next, set �̂� = argmin𝑘 𝑓𝑘 (𝑥). For

any 𝑦 ≠ �̂�, we want to show

|𝑈𝑦�̂� − 𝑓�̂� (𝑥) | + |𝑈𝑦𝑦 − 𝑓𝑦 (𝑥) | ≥ |𝑈�̂� �̂� − 𝑓�̂� (𝑥) | + |𝑈�̂�𝑦 − 𝑓𝑦 (𝑥) |. (B.12)

As 𝑓�̂� (𝑥) ≤ 1
𝐾 ≤ 1

𝐾−1 = 𝑈𝑦�̂�,

|𝑈𝑦�̂� − 𝑓�̂� (𝑥) | + |𝑈𝑦𝑦 − 𝑓𝑦 (𝑥) | = |𝑈𝑦�̂� − 𝑓�̂� (𝑥) | + 𝑓�̂� (𝑥) + |𝑈𝑦𝑦 − 𝑓𝑦 (𝑥) | − 𝑓�̂� (𝑥) (B.13)

= |𝑈�̂� �̂� − 𝑓�̂� (𝑥) | + |𝑈𝑦�̂� − 𝑓�̂� (𝑥) | + |𝑈𝑦𝑦 − 𝑓𝑦 (𝑥) | − 𝑓�̂� (𝑥)

(B.14)

= |𝑈�̂� �̂� − 𝑓�̂� (𝑥) | +
1

𝐾 − 1
− 𝑓�̂� (𝑥) + 𝑓𝑦 (𝑥) − 𝑓�̂� (𝑥) (B.15)
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If 𝑓𝑦 (𝑥) ≤ 1
𝐾−1 , as 𝑓�̂� (𝑥) ≤ 𝑓𝑦 (𝑥),

1
𝐾 − 1

− 𝑓�̂� (𝑥) + 𝑓𝑦 (𝑥) − 𝑓�̂� (𝑥) ≥
1

𝐾 − 1
− 𝑓�̂� (𝑥) ≥

1
𝐾 − 1

− 𝑓𝑦 (𝑥) = |𝑈�̂�𝑦 − 𝑓𝑦 (𝑥) |

Otherwise, as 𝑓�̂� (𝑥) ≤ 1
𝐾 ,

1
𝐾 − 1

− 𝑓�̂� (𝑥) + 𝑓𝑦 (𝑥) − 𝑓�̂� (𝑥) ≥ 𝑓𝑦 (𝑥) − 𝑓�̂� (𝑥) ≥
1

𝐾 − 1
− 𝑓𝑦 (𝑥) = |𝑈�̂�𝑦 − 𝑓𝑦 (𝑥) |.

Hence, Equation (B.12) holds. Now,

𝐾∑
𝑘=1

��𝑈𝑦𝑘 − 𝑓𝑘 (𝑥)
�� = ��𝑈𝑦�̂� − 𝑓�̂� (𝑥)

�� + ��𝑈𝑦𝑦 − 𝑓𝑦 (𝑥)
�� + ∑

𝑘≠𝑦,�̂�

��𝑈𝑦𝑘 − 𝑓𝑘 (𝑥)
�� (B.16)

≥
��𝑈�̂�𝑦 − 𝑓𝑦 (𝑥)

�� + ��𝑈�̂� �̂� − 𝑓�̂� (𝑥)
�� + ∑

𝑘≠𝑦,�̂�

��𝑈�̂�𝑘 − 𝑓𝑘 (𝑥)
�� = 𝐾∑

𝑘=1

��𝑈�̂�𝑘 − 𝑓𝑘 (𝑥)
��

(B.17)

As a result, �̂� minimizes 𝑘 ↦→ ∥𝑈𝑘 − 𝑓 (𝑥)∥1. Hence, we conclude that argmin𝑘 𝑓𝑘 (𝑥) =

�̄� = argmin𝑘 ∥𝑈𝑘 − 𝑓𝑘 (𝑥)∥1. Then the proof is complete. □

As the two decoders are equivalent, we have that Forward Correction is equivalent to

CPE with

• Hypothesis Set: {𝑥 ↦→ 𝑈⊤ 𝑓 (𝑥; 𝜃) : 𝜃 ∈ Θ}

• Decoder: argmin𝑘 ∥ 𝑓 (𝑥; 𝜃) −𝑈𝑘 ∥1.

when the transition layer is fixed to the uniform transition matrix.

Surrogate Complementary Loss In the training phase, Surrogate Complementary Loss

with Log Loss optimizes the following loss functions:

𝐿SCL(𝜃) =
1
𝑁

𝑁∑
𝑖=1

− log(1 − 𝑓 (𝑥𝑖; 𝜃)) �̄�𝑖 (B.18)
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In the inference phase, this method predicts the ordinary labels by �̂� = argmax𝑘 𝑓𝑘 (𝑥) for

an unseen instance 𝑥. We claim that this method is equivalent CPE with:

• Hypothesis Set: {𝑥 ↦→ 𝑈⊤ 𝑓 (𝑥; 𝜃) : 𝜃 ∈ Θ}

• Decoder: argmin𝑘 ∥ 𝑓 (𝑥; 𝜃) −𝑈𝑘 ∥1.

Proof. Observe that the training objective function for CPE with the hypothesis set has

the following property:

𝐿CPE(𝜃) =
1
𝑁

𝑁∑
𝑖=1

− log
(
𝑈⊤ 𝑓 (𝑥𝑖; 𝜃) �̄�𝑖

)
=

1
𝑁

𝑁∑
𝑖=1

− log

(
1

𝐾 − 1

∑
𝑘≠�̄�𝑖

𝑓𝑘 (𝑥𝑖; 𝜃)
)

(B.19)

=
1
𝑁

𝑁∑
𝑖=1

− log
(
1 − 𝑓�̄�𝑖 (𝑥𝑖; 𝜃)

)
+ log(𝐾 − 1) = 𝐿SCL(𝜃) + log(𝐾 − 1) (B.20)

That is, the objective function only differs by a constant. As a result, the two methods

match during the training phase.

In inference phase, SCL predicts �̂� = argmax𝑘 𝑓 (𝑥; 𝜃) for unseen instance 𝑥 as in

Forward Correction. In addition, they have the same hypothesis set {𝑥 ↦→ 𝑈⊤ 𝑓 (𝑥; 𝜃) :

𝜃 ∈ Θ} if the transition layer of Forward Correction is fixed to uniform. Hence, SCL is

equivalent to Forward Correction with uniform transition layer. It implies that they have

the same decoder: �̂� = argmin𝑘 ∥ 𝑓 (𝑥) −𝑈𝑘 ∥1. □

Discriminative Model In the training phase, Discriminative Model with unweighted

loss optimizes the following loss functions:

𝐿DM(𝜃) = 1
𝑁

𝑁∑
𝑖=1

− log
(
sm(1 − 𝑓 (𝑥𝑖; 𝜃))

)
�̄�𝑖

(B.21)

In the inference phase, this method predicts the ordinary labels by �̂� = argmax𝑘 𝑓𝑘 (𝑥) for

an unseen instance 𝑥. We claim that this method is equivalent CPE with:

• Hypothesis Set: {𝑥 ↦→ sm(1 − 𝑓 (𝑥; 𝜃)) : 𝜃 ∈ Θ}
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• Decoder: argmin𝑘 ∥ 𝑓 (𝑥; 𝜃) −𝑈𝑘 ∥1.

Proof. The equivalence in the training phase is clear by plugging in the hypothesis to the

surrogate complementary estimation loss. During inference phase, first observe that

𝑓𝑘 (𝑥) =
1
𝑍

exp
(
1 − 𝑓𝑘 (𝑥𝑖; 𝜃)

)
=
𝑒

𝑍
exp

(
− 𝑓𝑘 (𝑥𝑖; 𝜃)

)
, (B.22)

where 𝑍 =
∑𝐾
𝑘=1 exp

(
1 − 𝑓𝑘 (𝑥𝑖; 𝜃)

)
is the normalization term. As 𝑥 ↦→ exp(−𝑥) is mono-

tonic decreasing, we have that argmin𝑘 𝑓𝑘 (𝑥; 𝜃) = argmax𝑘 𝑓𝑘 (𝑥; 𝜃). Next, as we have

shwon argmin𝑘 𝑓𝑘 (𝑥) = argmin𝑘 ∥𝑈𝑘 − 𝑓𝑘 (𝑥)∥1, so argmax𝑘 𝑓𝑘 (𝑥; 𝜃) = argmin𝑘 ∥𝑈𝑘 −

𝑓𝑘 (𝑥)∥1, implying that both methods predict the same label for all instances. □

Observations by viewing earlier approaches with the proposed framework We also

draw the following observations by viewing earlier approaches with the proposed CPE

framework:

1. By viewing FWD with the proposed framework, the equivalent decoder essentially

converts the complementary probability estimates back to the ordinary probability

estimates and predicts the largest one. We name it MAX decoding for future refer-

ence.

2. If the transition matrix is uniform, then FWD and SCL with log loss match, suggest-

ing that they are the same in this situation. It explains why those two methods have

similar performances in [1], which is also reproduced in our experiment, reported

in Table 4.1.

3. DM was proposed to lift the generation assumption of complementary labels [2],

but from the view of the CPE framework, DM implicitly assumes the complemen-

tary labels are generated uniformly, as we can see from the decoder. This provides
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an alternative explanation why its performance deteriorates as the transition matrix

deviates from the uniform matrix, as shown in [2].
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Appendix C — Experiment Details

In this section, we provide missing details of the experiments in Section 4.

C.1 Setup

Datasets Across the experiments, we use the following datasets:

• MNIST

• Fashion-MNIST

• Kuzushiji-MNIST

For the above dataset, the size of the training set is 60000, and the size of the testing

set is 10000. To perform the hyperparameter selection, in each trial, we split 10 percent

of the training dataset randomly as the validation dataset. We performed five trials with

different random seeds for all the experiments in this paper. To ensure a fair comparison,

the dataset split and the generated complementary labels are the same for the benchmark

algorithms. Also, we did not include data augmentation or consistency regularization [8]

in the experiment to prevent introducing extra factors and simplify the comparison.

Models We implemented the deep models in PyTorch. The base models considered in

the experiment are linear and one-layer mlp model (d-500-c) with 500 hidden units. In

CPE-T, the parameter of the transition layer is initialized such that it matches the provided

transition matrix, i.e. it is initialized to𝑊0 such that 𝑇 (𝑊0) = 𝑇 . All models are optimized
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using Adam with learning rate selected from {1e-3, 5e-4, 1e-4, 5e-5, 1e-5} and a fixed

weight decay 1e-4 for 300 epochs. We used the default parameters in PyTorch for other

parameters in Adam. The experiments are run with Nvidia Tesla V100 GPUs.

For the two traditional models, we used the K nearest neighbor (KNN) classifier

from scikit-learn with the number of neighbors selected from {10, 20, . . . , 250} based on

the complementary estimation loss on the validation dataset. We performed PCA on the

dataset to map the feature to a 32-dimension space for KNN to reduce the training/in-

ference time. We used Gradient Boosting Decision Tree from LightGBM, and set the

objective to “multiclass” to optimize the log loss. The hyperparameters include the num-

ber of trees {5, 10, . . . , 500} and learning rate {0.01, 0.025, 0.05, 0.1}. Those parameters

are also selected based on the complementary estimation loss on the validation dataset.

C.2 Additional Results

This section provides figures and tables that are helpful in analyzing the experiment

results.
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Table C.1: Comparison of the testing classification accuracies with different transition
matrices.

MNIST Fashion-MNIST Kuzushiji-MNIST

Unif. Weak Strong Unif. Weak Strong Unif. Weak Strong

URE-GA 81.7± 0.5 73.4± 1.4 23.7± 2.9 76.2± 0.3 70.8± 1.5 21.3± 5.5 51.0± 1.0 43.7± 1.0 16.7± 2.5
SCL 90.5± 0.2 90.2± 0.2 25.0± 17.9 82.0± 0.4 79.6± 2.2 26.2± 8.7 59.9± 0.9 58.9± 0.7 16.4± 2.2
DM 89.7± 0.5 89.1± 0.2 22.7± 8.5 81.8± 0.3 78.2± 3.1 23.6± 5.5 61.0± 1.5 59.4± 1.4 17.7± 3.0
Fwd 90.5± 0.2 90.6± 0.4 91.6± 0.7 82.0± 0.4 81.6± 1.2 83.4± 0.7 59.9± 0.9 60.4± 0.9 62.6± 0.7

CPE-I 80.4± 0.3 73.5± 1.3 76.1± 1.6 74.6± 0.5 71.0± 1.5 74.7± 2.3 49.7± 0.6 42.8± 0.8 46.8± 1.4
CPE-F 90.5± 0.2 90.7± 0.1 91.8± 0.4 82.2± 0.3 82.4± 0.4 83.1± 1.0 60.4± 0.6 60.8± 0.4 62.8± 0.2
CPE-T 90.5± 0.2 90.6± 0.1 91.8± 0.4 82.0± 0.3 82.1± 0.5 83.2± 1.2 60.3± 0.5 60.6± 0.5 63.0± 0.3

Table C.2: Comparison of the testing classification accuracies with different levels of
noise.

MNIST Fashion-MNIST Kuzushiji-MNIST

𝜆 = 0.1 𝜆 = 0.2 𝜆 = 0.5 𝜆 = 0.1 𝜆 = 0.2 𝜆 = 0.5 𝜆 = 0.1 𝜆 = 0.2 𝜆 = 0.5

URE-GA 22.8± 2.0 21.1± 4.4 21.4± 1.6 20.2± 6.7 23.5± 3.9 22.6± 3.1 16.8± 2.1 16.4± 2.8 15.2± 2.2
SCL 25.6± 13.8 23.9± 10.3 23.7± 4.3 23.9± 7.8 24.5± 5.2 26.0± 3.2 17.8± 2.5 17.8± 3.2 17.4± 1.3
DM 23.3± 7.4 22.4± 8.7 23.4± 2.9 24.1± 7.1 24.3± 5.0 25.6± 3.9 18.1± 2.6 17.6± 2.4 16.5± 1.4
Fwd 91.1± 0.7 89.6± 1.0 82.5± 3.6 82.4± 0.9 81.4± 0.9 72.0± 7.5 62.7± 1.0 60.9± 0.9 52.1± 6.2

CPE-I 75.7± 2.0 75.4± 2.0 73.8± 2.2 74.6± 2.3 73.9± 2.2 71.1± 2.0 47.0± 1.4 46.5± 1.3 43.4± 1.1
CPE-F 91.2± 0.7 90.2± 1.0 85.2± 1.7 82.2± 1.2 81.0± 1.5 75.4± 3.3 61.9± 0.9 61.1± 2.2 53.4± 1.5
CPE-T 91.3± 0.7 90.5± 0.8 85.7± 1.6 82.6± 1.3 81.6± 1.3 78.0± 1.6 62.2± 0.8 61.7± 1.7 55.0± 1.1

Benchmark results of linear models Table C.1 and C.2 provide the the noiseless and

noisy benchmark results using linear models as base models, using the same setting in

Section 4.1. We can see that the proposed CPE performs slightly better or is competitive

with the baseline methods in most scenarios. When the transition matrix is highly inac-

curate (𝜆 = 0.5), CPE outperforms the baselines and is more stable in terms of testing

accuracies. These are consistent with our observation when using mlp as base models.

Training and validation loss curves Figure C.1 and C.2 demonstrate the loss curve of

the proposed CPE framework.
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Figure C.1: Comparison of the training and validation loss of CPEwith different transition
layers in MNIST under different transition matrices. CPE-F and CPE-T perform almost
identically, so the red lines and blue lines overlap in the figures. The shaded area denotes
the standard deviation of five random trials.

Figure C.2: Comparison of the training and validation loss of CPEwith different transition
layers in MNIST under different noise level. CPE-F and CPE-T perform almost identically
when 𝜆 is small, so the red lines and blue lines overlap in those figures. The shaded area
denotes the standard deviation of five random trials.
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Appendix D — Details of CLCIFAR20

D.1 Label names of CLCIFAR20

Index Full Label Name

0 aquatic mammals
1 fish
2 flowers
3 food containers
4 fruit, vegetables and mushrooms
5 household electrical devices
6 household furniture
7 insects
8 large carnivores and bear
9 large man-made outdoor things
10 large natural outdoor scenes
11 large omnivores and herbivores
12 medium-sized mammals
13 non-insect invertebrates
14 people
15 reptiles
16 small mammals
17 trees
18 transportation vehicles
19 non-transportation vehicles
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