Bt FTFHRT LT
AL~

Department of Graduate Institute of Electrical Engineering
College of Electrical Engineering and Computer Science

National Taiwan University

Master thesis

B AUE BGE 2T (7 1 S B S P B
Parallel KD Tree Acceleration:Structures for Ray Tracing

on Multi-Core Precessor

i

]

L
Chih;Cheng Tseng

pERELE B4
Advisor: Shyh-Kang Jeng, Ph.D.

P EF 98 E 61

June, 2009

Pt

$f3D gﬂéiﬁrmif = lgwwf\mw?v’“Jﬁl%fﬁﬂﬁ\ P -
PEESEESE I S R BT O RTTFI% - ISR
(SR %a:ﬁ_u |~ 0 SRR A

SERETS (PG T SR RS O
%ﬁ@ﬁﬁ’ﬁ%ﬁﬁWﬁVo@V¥$«’&$%j@¥mgiﬂéﬁ°W?
SEFBRER > RIUNEAEF e RIAORLI e o S 40 B R URHEE HE -
”F SRS g Ry S RURBIVRLET RUBT o ST L v E TR
RS IR J’W“ m [A G T
SR o Sy AR b‘h[[ﬁ* ok L [l ’F:LL ‘[/“\iﬁ ’

5 it R - slolﬁﬁgﬁﬂﬁﬁ P?ﬁu‘iﬂ*ﬁw&*éﬁ@ PEESVFL
= i 2T dEspuE e L -v.;; ||'I

FIGTEIEILS o e T2 - (" P IR R

2T P T - 3 gt F‘lizwffﬁfﬂfﬁ FERIA L~ o 2R
S RLIY- 7SS CUDA » g S0 F 1= #r e 97 ARSIR[IVS 1
A B E RS o AR £ SV - B PRI TR
(SRR T

EESE PN «%—ﬁﬁw P TYHIF I LA o S phs s (R
-~ SOLO ~* ~] B STl » HERLMERE PV F])] ey~ TR
ﬁ’ﬂéﬁﬁﬁ@T@ﬁﬂﬁio

SRR TR T TR L PR R ST g SRR
VY P FIERL IRV AE

4 %

W

Loy)
T ’

\

i

il

il

Abstract

Global illumination is vital in nowadays computer animation, where ray tracing is
used to simulate the lighting in real world. Due to the massive computation requirement,
the algorithm cannot be applied in real time interactive application. In the era of post
Moore’s law, desktop CPU has more and more cores, 8-core and 16-core CPU are going
to appear, one can see the prospect of ray traced games.

KD tree is able to fast cull out the empty spaces in the scene, while other structures
lack this feature. Especially for unstructured scenes with fast changing geometry where
local updates of the structure degra&e immediatelysand a fast reconstruction is preferred.

In the thesis we will skip other parj'.;-ef ray tracing, but focus on the parallel
implementation of the KD tree .on n;n;lti-core :ICI.’U; that is the key to speed up. At
beginning we decompose the scene space into sﬁb regions. These sub regions are going

to be processed by different cores of CPU. Finally we merge the subtrees into one. We

achieve a near fully parallel construction and still preserve a high quality tree.

Keywords: KD tree, global illumination, ray tracing, animation, interactive, game

v

PERBPEIRS 3D NP ETCHE 0 H O RIT A R LA B R E F K
A BE* AR YRR o A RER T Eae

» AR L2 CPU 2 A (8- 0 7 U3 A

Bob gt BHEY 0 KDtree it A »af cnd B34 - #u Al Mt
PRy R BRSO RIS LATR A L ond o nipfiR R
THEAFFR2BFEOEREHLE o

2 #% i ray tracing B # 84 > @ & i3 KD tree 15T 70 aE ~ $F 3 0
i H 4eiE ray tracing cPBfdE o BB AR AF S I ZF L # 7 5P CPU A Y
BOEA BB 5 B 0 bt RS HE B TA DT - BRITR 2T R o

B2 PRI F AR A e
n'

\ 5 |
.r'\.,.- {

«:."'."#':
; || J-"t |
Mg @ 2EBP ~Jc<‘>i£&m “*’"pﬁv% {

CONTENTS

TR BB eeeereeennncnsanesanessanessanessanessnnesssnssssasessanessasessasessasessasessasesssssessanessanessanessane i
ADSEFACT cueeereeerneeeeeennecereeerseccessesssne iv
FE B et a s b s s e e e R R a bbb b 00 v
CONTENTS coeeeeceereeneeccereeeeeecessessesscsssssesssssssssssssssssssssssssssssessssssssssssssesssses vi
LISTS OF FIGURES ... eteeeecceeneeeeeceensseeessessssescsessssssssssssssssssssssssssssssse ix
LIST OF TABLESooeeetieereeencceereeeeecersesssescssessesscsssssssssssssssssossssssssssssase xi
Chapter 1 INErOdUCEION couuveerecerrrnnerecssssnnrecssssnnnnecsssssnssesssssnsssssssssassssses 1
1.1 Outline of the ThesSIS.....cocvviviiiieeeiiieeeeeeeeeeeeeee e 1
1.2 Contributions.......c......50.....4 B e rereaenans 2
Chapter 2 BacKground....cococoieiitincpesessccscsesnsnssssssnacscsccscsnsnsasaes 3
2.1 Ray Tracing................ = 1 U T O 3
2.2 Acceleration Structures T 4
Chapter 3 Related Work ... 5
3.1 Fast KD tree Construction . ioooviiiiiiiiiiiieiieeeeeeeeeeeeeeeeeeeeeeen 5
3.1 1 INIPOAUCIION ..o 5
3.1.2 Fast KD tree construction OVerview...........ccccuueeeeeeeeenennn.. 6
3.1.3 Surface Area HeuriSticccccocvevcvenceesieeaieaeeennnnn 7
3.1.4 Split Candidatecccccoovvviviiiiiaiiiiiiieeiieeeee 9
3.1.5 Triangle Classification and Clippingcccc....... 11
3.1.6 Event Classification and Generation............................... 12
3.1.7 Splice to two childrenc..cccoovvivviiiiviiaiianne. 13
3.1.8 Termination CrileriQ...........ccccuuueueeeeeeieeeeeeeeeeeeeeeeeeeeeenn 13
3.1.9 CONCIUSTON ...c.coeeeoeeeeeeeeeeeeee e 14
3.2 Parallel KD tree Construction on Multi-Core CPU................ 14
32,1 INIFOAUCHION ..o 15
3.2.2 BIANING ..ot 15
3.2.3 Initial CIUStEring..............cccovveeviieaeeiiieeeieeeeie e 15

vi

Chapter 4 Optimizing KD tree Constructioncccceeeeeeeecccccnensees 17

4.1 Augmented AABB........oooiiiie e 17
4.2 A Trivial and General Method for Event Classification......... 19
4.3 Using Preallocated POOIScccveeviieniiiniieciiecieeee e 20
4.4 DFS KD Tree Construction with Preallocated Pools 21
4.5 BFS KD Tree Construction with Preallocated Pools.............. 23
4.6 KD Tree Construction: DFS VS BFS ... 24
4.7 KD Tree Node Structures: AOS VS SOAccoviviiiiiniennn 25
Chapter 5 Parallel Construction on Multi-Core CPU........cccccuueeree. 27
5.1 OpenMP Standard..........ccceeeeeeiiieniiieniieeieee e 27
5.2 Domain Partitioning 1n-Serials.....ci e, 27
5.3 Subtree Constructioﬁ in Paralleli, . o 28
5.4 Merging of Subtrees..... a-r;:. .. 29
5.5 Event Sorting 0iGPUL.... .. L. 1. 2f N 29
5.6 Domain Paﬂitionihg 1n Parallel Using 1D Binning................ 30
5.7 Domain Partitioning in Pareﬂlel Using 3D Binning................ 32
Chapter 6 Single Ray Traversal on Multi-Core CPU.........cccecuueeeee. 33
6.1 The Standard Traversalcccccoeveeniiniiniiniieeceeeeeee, 33
6.2 The Stackless Traversalccccceeviieniiiiniieniiieieeieeeeee, 33
6.3 Iterative Single Ray Traversalccccceeviveiiiiniieniienieee, 35
6.4 Optimized Ray Triangle Intersection.............cccccvveeviveennnennns 37
6.5 Hashed MailboXing........c.ccccoveeviieniieniieeiieeiie e 38
6.6 Parallel Single Ray Traversal on Multi-Core CPU................. 39
Chapter 7 SIMD Incoherent Ray Bundle Tracing..........ccccceecunnnneees 41
7.1 Data Level Parallelism with Streaming SIMD Extension...... 41

vii

7.2 Optimization with SSE INtrinsics........cccceeeevveeeiciieeeniieeeiieeens 41
7.3 The Initial CHPPING.....ccevvieeiiiieiieieeeieecite e 42
7.4 SIMD Ray Triangle Intersection..........cccceeuveeeecrieeenvieenineeens 43
7.5 Omnidirectional Ray Traversal for KD Tree...........cccuueen.ee.. 44
Chapter 8 Parallel Primitives on GPUcciicivvveericcsscnnniccsscnnnnnees 47
8.1 BitoniC MErge SOIt......cccvuiiiriiiieeiiieeeiiee et eiee e eee e 47
8.2 Prefix Sum (SCan).....ccceeecvieieciiieeiie e 47
8.3 Segmented Prefix Sum (Scan).......cccceeeveeeeiiiiiiciiiiiiiieeeiees 48
8.4 Segmented SPIit.....ccceiieiiiiieiiiee e 49
Chapter 9 Experiments and Results..........eeeceivcvnneeicsicnnneccsccnnnnnes 51
9.1 Ray Traced Scenes:........k.....54 B e eeeeeenereneeeeeeneaenens 51
9.2 Serial Domain Partiﬁoning s T VT ORNOTNRIRONNS 52
9.3 Parallel Domain Partition\ilﬁ;g_ ._With 1D Binning...........cccccoe.e. 53
9.4 Parallel Domain Partitioniég with 3DBinning....................... 53
9.5 Render Time and &16 _Quality OF TrEe ..o, 54
Chapter 10 Conclusions and Futﬁre R 1) ¢ | 57
10.1 CONCIUSIONS ..c.vviiiiiieiiieeiie et 57
10.2 Future WOrkoocoooiiiiiiieiiiceceee e 57
| 2)) 1 o O RN 59

viii

LISTS OF FIGURES

Fig. 2-1 Whitted style recursive ray tracing..........cccocveeeeuveeeevreeesveeeeseveeene 4
Fig. 3-1 Split at (A) spatial median (B) object median (C) minimum SAH

[0 E] A OO PP URUPUPRTPTR 8
Fig. 3-2 Events of triangle..........cccoeoviieiiieniieriieciee e 9
Fig. 3-3 Incremental sweeping for split........ccccoveieiiiiieiiiieecieeeiee e, 10
Fig. 3-4 Conventional binning and min-max binning on one axis 15

Fig. 4-1 At the time the sweeping reaches the plane p, we have NL = 2 and

INR =2 ettt 18
Fig. 4-2 Augmented min-max events.of the AABBccccoviininnnne. 19
Fig. 4-3 A trivial and general method for event classification 19

Fig. 4-4 DFS KD tree constructlon (Blue for internal, green for leaf, red for
empty), IDs in brackets are undeﬁned". ... 22

Fig. 4-5 BFS KD tree construction (Blue for mtemal, green for leaf, red for

(ALOS) et ettt sttt st 25
Fig. 5-1 Domain partitioning in serial.........cccccecvriiiiiireniiiiieeiie e 28
Fig. 5-2 Merging of SUD-arraysccccccvveeviiiriieniie e 29
Fig. 5-3 Parallel 1D binning for domain partitioningcccceeeveeeennnennn. 31
Fig. 5-4 Parallel 3D binning for domain partitioningc...cceceevverunennee. 32
Fig. 6-1 KD-REStaIt.....ccccuiiieiiiieciiie ettt 34

Fig. 8-1 A bitonic merge sort of 2048 elements on CUDA, with block size

X

Fig. 9-1 (a) Arm, 816 triangles (b) Kila, 4,110 triangles (c) Dragon, 65,533
triangles (d) Temple, 222,900 trianglesccceeveveerciieeiieenieenieeeree e, 52

LIST OF TABLES

Table 9-1 Construction time (sec) with subtree construction in parallel.... 52
Table 9-2 Construction time (sec) with parallel subtree construction and
parallel 1D BINNING........cccoviiiiiiiieeieeee e e 53
Table 9-3 Construction time (sec) with parallel subtree construction and
parallel 3D bINNING........ccoovviiieiiiieeie e e 54
Table 9-4 Render time (4 threads) (sec) with subtree construction in

J 021 221 1<) SRS 54
Table 9-5 Render time (4 threads) (sec) with parallel subtree construction
and parallel 1D binning.........0 0088 B R e eeeeeeereeneereeeeeeeeneaes 55
Table 9-6 Render time (4 threads) (sec) with,parallel subtree construction

and parallel 3D binning................. B2 I O T 55

a3

X1

Chapter 1 Introduction

1.1 Outline of the Thesis

In the thesis we are going to thoroughly discuss various algorithms of the KD tree.
The thesis begins with the fundamentals of ray tracing in Chapter 2. In Chapter 3, the
state-of-the-art of KD tree construction is covered. We then present some optimizing
techniques in Chapter 4, also the pros and cons of DFS and BFS construction, SOA and
AOS node implementation.

Chapter 5 is about how the KD tre€ construction is‘mapped to multi-core processor.

e
-
_—"
- —

Highly parallel implementations-(the pa}ralli'_é;._l domain partitioning with binning plus the
concurrent subtree construction) .is adldressgd. fi“hé: comparison of 1D binning and 3D
binning reveals the trade-off between the construction and traversal of the KD tree.

In Chapter 6 we show that the conventional KD-restart and KD-backtrack can be
easily powered with openMP.

The two fundamental operations on GPU are introduced in Chapter 7. The bitonic
merge sort and the segmented prefix sum can be used to accelerate the KD tree

construction. We also showed the implementations of the two algorithms on CUDA.

1.2 Contributions

For fast KD tree construction, some researchers use three events: starting, ending
and lying to classify the triangles. We have proposed a new concept called augmented
AABB, where only two events are needed. And we have proved that the augmented
AABB is more general, robust and efficient.

We have presented a comparison between the DFS construction and the BFS
construction with preallocated memory. And we found that construction with BFS
fashion outperform the conventional. DES cpnstruction. As far as we know, this
comparison is never done before.

For parallel domain partitioning, a prmtl;-work resorted to the 1D binning; we have
implemented and tested the 3D binnini,g'l. Although .the' 1D binning performs faster, for a

partition more than 8 the 3D binning makes.aigood trade-off between the construction

time and the traversal time. This observation has never been proposed before.

Chapter 2 Background

2.1 Ray Tracing

Phong’s model has dominated the screen of 3D games, where the light source is
assumed to be infinitely away from all the objects, and the radiance is merely from the
dot product of the surface normal and the light direction.

In physics, photons bounce frpm surfaces to surfaces, generate reflections and

refractions from different materials. If there/are obstacles between an object and the

-
-

_—"
=

light source, the occluded object becdt}les-'_%_'hadqwed, and that is what we want in 3D
games. The need for realism stimﬁlateé the r_esealrc}':f of ray tracing.

[33] proposed a simple but powerful model, sometimes called recursive ray tracing.
Rays are first shot from virtual camera through each pixel into the scene, they are called
“primary rays”, and their mission is to find the closest intersection point. And if there is
a hit point, a “shadow ray” is launched toward the light source to see if the light is
blocked or not. The ray incidence with the geometry surface determines the intensity of
radiance, combined with the property of material then we can calculate the shading.

Secondary rays are needed to generate the phenomena like reflection or refraction, and

these rays can be spawned recursively, contribute to the shading.

lightsource

<~ ~ shadow ray refraction ray
Y 'h

\\"'-.

e “-'l‘ WA

WWAWA WW
b VA A VA A Y

ME'AW.F AWEEN reflection ray
7

primary ray

2.2 Acceleration Struetur

.-:_',.._;-'

= b
: b
'l -

While millions of rays are looklﬁg: for. their nearest collisions in a scene with

% (>

millions of triangles, it is unlikely to apply a brutal search, instead we resort to some

advanced structures. The intersection test of a ray and a triangle is very expensive, and

for each ray we cannot afford too many tests, the ability to fast cull away most of the

triangles is the most important.

Structures like uniform grid, BVH (bounding volume hierarchy), BSP tree, OBB

tree (oriented bounding box), K-Dop, octree, KD tree, have been used in ray tracing.

Chapter 3 Related Work

3.1 Fast KD tree Construction

3.1.1 Introduction

KD tree is a variant of BSP tree, it is widely used in the area of computer graphics
and science computing, the relevant applications are not limited to ray tracing, but any
problem related to nearest neighbor search. For_the scene with few triangles, the

construction time can be insignificant/compared to the-render time. However, modern

i -
_—"
"

animations with elaborate scenes and 'd:eta-ij.jcd characters usually may have millions of
triangles, and the construction tirﬂe beclzomes_ crit_licél.

For earlier GPUs uniform grid was used [21, 22], the structure is simple but fits
badly to sparse scenes.

Although structures like BVH can efficiently represent some structured models like
characters, where a motion can be handled with local updates of BVH [9], unstructured
models like dynamics system make BVH degrade immediately, and a reconstruction
from scratch is necessary.

KD tree has been recognized as the best structure for ray tracing [11]. It is able to

fast cull away the empty spaces in the scene, which is crucial for wide open scenes
where the triangle distribution is sparse. And further, KD tree uses AABB (axis aligned
bounding box) as a proxy for geometry primitives, these axis aligned voxels offer
extremely fast traversal. Structure like OBB tree [8] is able to fit the primitives well,
however the arbitrary orientation make it much slow for traversal.

Variants of KD tree like B-KD tree [29, 34] and SKD tree [12] use two slabs for the
split, and simplify the problem of straddling triangles [14]. For such trees left node and
right node have overlapped region, and also the two empty spaces at the two ends can
be culled. However, they lack an Sptimized traversal approach like [4, 24, 25]. These

trees are not the mainstream and will not be-discussed here.
bl FE‘
I -

3.1.2 Fast KD tree construction OVefview

KD tree construction begins as a global voxel which contains the whole scene,
called root node, then a top-down fashion binary split is proceeded recursively. Each
node is going to split into two children. The pattern continues until the current node no
longer has to split, by the time the leaf node usually has only a few triangles.

The process of fast KD tree construction in O(NlogN) can be roughly divided in
several stages :

(1) Termination criterion checking

(2) Determine the split axis

(3) Split position evaluation

(4) Classification of triangles

(5) Classification of events

(6) Splice to left and right node

Given a node, we first check some criteria to qualify the node for upcoming stages.
If the depth has reached a threshold, or the number of triangles within the node has
fallen below a user-specified value, the node then is tagged leaf. Otherwise the node is
an internal node.

To split a non leaf node, -fitst we lfgiqré;-t'o choose the split axis. Evaluation of
I FE‘
| 1 10 !
geometry distribution is not trivial'and time consuming, the common sense is to always

choose the axis with longest extent, or choese in round robin fashion.

3.1.3 Surface Area Heuristic

Split at spatial median is easy, but inefficient. It is important to discard most of the
spaces and triangles as early as possible. Our goal is to terminate the ray as fast as we
can, and a carefully picked split can make a big difference. The trick is to produce large
chunks of empty space close to the root of the tree. [28] has mentioned “Benefits of a

good tree are not small”, and may be “several times faster than a mediocre tree”.

A __;J-;f_,_ 1= 2. ;\{\ ’:_...
Fig. 3-1 Split at (A) spati_a.ﬂr?ned' (B) obj g@i&p (C) minimum SAH cost
& G By
i / = g

A cost model based on:‘:geo etric| prob lity o ray“::'iflas been proposed [11, 15].
The model assumes the rays are’u ibuted, and the likelihood a ray will
—,"‘:I ",’.'-'3,_.‘}_, - c&ﬁ;“ .r-'ll‘":
T T o3 tad Vo

T -", - = Ay
intersect the node is roughly proﬁbfﬁ@nﬁh,tmﬁts” surface area. Also if the cost of

intersection is Ci, the cost of intersection test against N triangles roughly equals NCi.

Based on [15], the cost of tree can be expressed as follows.

C,:cost of traversal
C,: cost of intersection test
N,;: number of triangles in the node
SA(node) SA(leaf)
—CT + oar. N Vwiva
All nodes SA(FOOt) All leaves SA(FOOt)

(3.1)

With this cost function, the same triangle may appear in different leaves, and will

be tested several times against the same ray. A correct version is derived as follows.

SA(left subnode) C, |+ SA(right subnode)
SA(node) g SA(node)

C=Cr+C(|Cr) (3.2)
Although theoretically CL and CR are going to be recursively evaluated, in fact this

approximation works great. The concept is called surface area heuristic, and based on

this we can pick the split to minimize the cost of the node.

3.1.4 Split Candidate
Theoretically on the split axis there can be infinite split candidates, nevertheless

the cost is piecewise linear along tl_lle_.gx_is;--a:nd_.i}_ changes only at the AABB planes of

1' = = i i
i s =5 A

. & U
the triangle. What we have tm.confm; M&g positions, also called events of
L ._:H-a. j ! =

triangle.

iy o o mm mw am mm o Em em e E em e e
v '

minX maxX

Fig. 3-2 Events of triangle

[32] suggested that there are three kinds of event.

starting = min position of triangle on the axis
ending = max position of triangle on the axis (3.3)

lying = min=max if the triangle is perpendicular to the axis

All events are sorted once at root in ascending order, the order is maintained during
the entire construction process. Every node has its own sorted event list, and to each
event we perform SAH evaluation. One thing to note is that if we do not maintain the
events as sorted, but merely compute the SAH cost for each event individually, then
each time we have to count again the triangles to the left and to the right, the complexity
is terribly O(N"2).

Taking the advantage of the sqrted events, the number of triangles to the left and to

the right can be counted incrementally [19, 32]. At the'first event, all triangles lie on the

- |

right side, so NL is zero and NR-has ai]{. Bﬁ'_sweélping over the events from left to right,
| \L 4

each time we simply increment the’NL and. decrement the NR, and the cost of all

candidates can be known in O(N). Record the event with the minimum cost as the split.

Fig. 3-3 Incremental sweeping for split

10

p; : Triangles starting on plane i
p; : Triangles ending on plane i

p, : Triangles lying on plane i

Np=py, N/=0 Np=N-p

for(i =0;i < numEvents;i++){ (3.4)
Np=p,
Np=Ng'-p;-p)

cost, =SAH(p,,N,,Ny)

Ny =Ni'+p +p

A bonus for culling away empty space is suggested [25, 32]. The cost is scaled by
about 80% if we choose to split at the position Where one side is empty.

Exact SAH evaluation can be ai)proximated by coarsely sampling at finite discrete
positions [14]. Especially for nedes neaf théumot this method saves a lot of time without

S i

losing much accuracy. |

Binning [14, 19, 27] is an alternativeto ihcrémental sweeping, the method also has a
sort-free like feature, and is able to fast evaluate the cost regardless of the number of
triangles. The main problem about binning is the accuracy of the SAH cost, and deeper

the node is, more obvious the problem has become. The issues about binning will be

discussed later.

3.1.5 Triangle Classification and Clipping
Once the split position has been decided, we are going to distribute the events to left

11

and right. However, some of the events belong to straddling triangles, which contribute
its events to both sides, and should be further clipped into two pieces.
So before we process the events directly, we want to tag these triangles as “LEFT”,

“RIGHT”, or “BOTH”. An efficient sweeping can be applied as follows.

for all t
side[t][=BOTH;

for all e && e, ., ==splitAxis (3.5)
if(ey,, == ending && e, <= splitPosition)side[e,; [=LEFT;

]=RIGHT;

else if(e,,, == starting && e, >= splitPosition)side[e,;

Most of the triangles will be marked “LEFT” or “RIGHT”, and a few will remain as
“BOTH”, these triangles straddle the split plane, and need special care.
3.1.6 Event Classification-amd: Ge.ner.alltl:i_on

There is no problem about dealing with e.Vents associated with triangles marked
“LEFT” or “RIGHT”, these events will be copied to one side with the ascending order
unchanged. But for a straddling triangle, its “starting” event lies in left and its “ending”
event lies in right. And the triangle should be clipped into two polygons, one for each
side.

The precise way is to apply a Sutherland Hodgeman clipping to the triangle, two
polygons are generated. We have to calculate the AABB for the two polygons, and

replace the old events of the triangle with the new events of the two polygons, on both

12

sides. These new events should be merged with the event arrays to maintain the
ascending order.

The process of triangle clipping, with generation of new events and merging of
events can be an impact to performance. Fortunately in reasonable cases the number of
straddling triangles is minor.

A trivial way is to just copy these events to both sides, and update the events if they

exceed the boundaries.

3.1.7 Splice to two children
New memory is dynamically alloce;té&"%'éi the two children, or the bias address is
T

incremented if we have preallocated poc';ls.

3.1.8 Termination Criteria

The stages above are performed for each node split, and the ascending order of new
event lists are always preserved. The pattern continues until some of the criteria have
been achieved.
(1) The number of triangles of the node is smaller than a threshold.
(2) The depth of the node exceeds a threshold.
(3) The split position cannot be found for the node.

13

The first is mandatory, and the second can be optional. It is notable that we cannot
always find a split for every node. In a case where many triangles have the same
minimum and maximum on the split axis, the only two split candidates are the
minimum and maximum of the node’s AABB. The split like this will not be performed,

and we either switch to another split axis, or force the node to be a leaf.

3.1.9 Conclusion

All stages required for a node split are presented here.

(1) Termination criteria checking => O(l)
(2) Split axis picking => O(1)

(3) Incremental sweeping for split=> O(N); Ic (3.6)
(4) Triangle classification => O(N),. | ,.-:

(5) Event classification, generation, and_: meféing = O(N)

Sum up all the stages we gét OtN) fo_r 0_1I1e':'node split. From an easy math the
complexity of the whole tree is derived as following.
T(N) = N+2T(N/2) = ... = O(NlogN) (3.7)
This is the fastest we can get for KD tree construction so far. However, for
interactive games with millions of triangles even the best optimized algorithm is not

enough, and we have to look for help from hardware.

3.2 Parallel KD tree Construction on Multi-Core CPU

14

3.2.1 Introduction

[27, 32] have demonstrated KD tree construction on multi-core CPU. They have
proposed the method to partition the scene domain into sub-regions, and build sub-trees
in parallel. [32] has done the domain partitioning in serial, and the scalability is
sub-linear with the number of processors. [27] has proposed a fully parallel

implementation with initial clustering based on binning, and achieved good scalability.

. = g i
—_— & ' \5} A
3.2.2 Binning y A -
Y

[19, 27] advocate the soi‘"t-fre SW piﬁb im ove"the performance by applying

=’\

coarser sampling, also calledrhxf:i‘n B1 nin Smlﬂar to pigeonhole and bucket
-.‘f"-' (’%ﬁ:&" A

sorting, which is originally deV1sed for“ pmpj:g, Fel'r frlangles the conventional binning is

improper for SAH evaluation, and a min-max binning is used instead [27].

Fig. 3-4 Conventional binning and min-max binning on one axis

3.2.3 [Initial Clustering

15

There are two ways to construct the tree. First, all threads work together to build the
whole tree, the problem is that everyone needs to access all the primitives, this demands
large cache of all the processors and usually causes race condition. A better way is to
evenly divide the tree into subtrees, and each subtree is handled by exactly one thread.
This makes sense since subtrees can be stored in the local memory of the processor in
charge. Therefore each processor has its own primitive pools to work on, and the
memory traffics are reduced.

[19] used only one thread to do the initial. partitioning task, and [27] proposed an
initial clustering in parallel. Thegf first uniformly distribute all primitives to all
processors, and all threads run the blnn]%gon their portion of primitives. And by
splitting at object median they e_,venly': divide the.bi'ns of the selected dimension into

segments, and then each segment of the bins is assigned to one thread. Now all the

threads know its own set of primitives, and subtrees are built in parallel.

16

Chapter 4 Optimizing KD tree Construction

4.1 Augmented AABB

We have made some modifications to the fast KD tree construction [32]. They
mentioned that three kinds of event are used: “starting”, “ending” and “lying”, triangles
lying in the split plane should be placed into either left or right, depends on SAH
evaluation [32]. However, from our experiments we observed that additional conditions

are needed for “lying” events, and these conditions complicated the process.

We do not see the bengfits from/ using “lying™ ‘events; instead we advocate the

i -
_—"

method using minimum and maximut'ni of-'}:.he AABBs: [19]. This is also more general
and robust, since KD tree is not aiwayé for t_riangle':s; any primitive can be an element of
KD tree and can be easily fit into an AABB.

Based on our observation, benefits are induced if we use the min-max events of the
AABB:s.

(1) Only one bit flag is required to tell from minimum or maximum.

(2) The number of events is automatically double the number of triangles, on all

three axes.

(3) Simplify the incremental sweeping.

17

(4) Simplify the SAH cost function; eliminate the situation that some triangles lie on
the split candidate.
(5) Simplify the classification of triangles and events.

(6) Simplify the condition branch in ray traversal.

Based upon our observation at least 10% speedup is achieved. Unfortunately some
problems arise from the modification. The incremental sweeping for SAH now becomes

as follows.

N} =0 Np=N
Jor(i =0;i < numEvents;i++){:

Nz =Ng' -p; : (4.1)
Costl = SAH(pl, NL’ NR) T ,f-':'\.ll II,r -:\..
_ . Y=g | |
Ni =N+ pr A =22]
\ : ,| | m |}

'l. ' ;:

1 12
Triangles lying on the plane orthogonal to. the split axis generate minimum and

maximum of the same value. You can see that such triangles are omitted by SAH

function, since by the time the triangles have already been deleted from NR, but have

not been added to NL. Let us see the case below.

P

Fig. 4-1 At the time the sweeping reaches the plane p, we have NL =2 and NR =2

18

A remedy to this is to augment the AABB; we decrease the minimum and increase

the maximum by an epsilon. Now the SAH function works correctly.

£ s
Fd P
’ s 7
minX = maxxX minX - eps maxX + eps

Fig. 4-2 Augmented min-max events of the AABB

4.2 A Trivial and General Method for Event Classification

The standard event 013551ﬁcat10n for stradd],mg trlangles [32] requires Sutherland
l. : 3

Hodgeman clipping and mergmg ’% M w1t;h the originals. The approach

seriously complicates the eyent ass' caﬁﬁ; dc nnotx be applied when primitives

rﬁl«and robust method to handle the

other than triangle are used.rHex%“}é;
™ e Ql.

s y

straddling AABBs. The pseudo aléofithng _.is‘a,s follows.

Triangles tagged as LEFT A_
Triangles tagged as RIGHT A
Triangles tagged as BOTH A

node events o0+ 1+ 0O 2+ 2 - 1- -----

2" {LEFT + RIGHT + BOTH}

LA -

o+ 1+ o 2+ 2 [-----------

-_—> leftchild events <€ > nghtchlld events <——
2 * {LEFT + BOTH} spm 2 " (RIGHT + BOTH)

Fig. 4-3 A trivial and general method for event classification

19

for all e on the splitAxis SO
if(side[e] == LEFT)
Event L[SO][numE L[SO0]++] = Event[SO][e];
if(side[e] == RIGHT)
Event R[SO][numE B[S0]/2 + numE R[SO]++] = Event[S0][e];
if(side[e] == BOTH)
if(Event[SO][e] is ending)
Event L[SO][numE L[SO]+ numTriBOTH + numE BL[SO0]++] = Event[SO][e];
Set the event position as splitPosition
Event R[SO][numTriBOTH + numE_R[SO0]++] = Event[SO0][e];
if(Event[SO][e] is starting)
Event L[SO][numE L[SO]++] = Event[SO][e];
Event R[SO][numE BR[SO]++] = Event[SO][e];

Set the event position as splitPosition

for all e on the non-splitAxis S=(S0+1)%3.and S=(S0+2)%?3
if(side[e] == LEFT) -
Event L[S][numE_L[S}++]= Event[S][€];
if(side[e] = RIGHT) Ao
Event R[S][numE R[S]++] = Ev*éjzl':[-[é] [e];
if(side[e] = BOTH) . / 'S ||V
Event_L[S][numE_L[S}++]= EveritfS]fe]:
Event R[S][numE _R[S]++] = Event[S][e];

(4.2)
This method works excellently in the situation where most of the primitives have

similar sizes. And further, this method helps us handle non-triangle based surfaces.

4.3 Using Preallocated Pools

A major bottleneck of KD tree construction is the rapid memory allocation. [2, 27]

have proposed the concept of pre-allocated pool, and we have used a similar method.

20

The difficulties arise from the prediction of the final size of the pools. The method
to precisely estimate the size of nodes and leaves of the whole tree remains unknown.
[27] has used chunks of memory linked into lists for nodes and leaves. They perform
the construction in DFS fashion, and if the current chunk is full they allocate a new one.

Similarly we deploy one node pool and one leaf pool. At each level we first check if
the remaining space is enough for the next level. If necessary we allocate a larger pool
and move over the original arrays.

Based upon our experiments, the construgtion with preallocated pools is at least
twice faster than the one using dyna%nic allocations,

b s '

i | \

4.4 DFS KD Tree Consfruciiori Witi}:_Préallocated Pools

KD tree is generally constructe(i i DE S. t27] proposed a DFS construction with
preallocated memory, here we present a similar implementation.

The node pool and leaf pool grow constantly during construction. Merely two
temporary arrays are needed, array A for left sub-nodes and array B for right sub-nodes.
As one node splits into two, we replace the events of the node with the events of its left
child in array A, and the events of its right child are “pushed” to array B. Array B

actually serves like a stack, each time the split reaches a leaf, the events of the newest

node in array B are “popped” to array A. Node split always takes place in array A.

21

EventBufferA
EventBufferB

|

Leal Tnangle Pool

Emply

EvantBufferA
EventBufferB
Leaf Tnangle Pool

EventBulierA

| 8 EventBuffor8

l_._l

Leaf Tnangle Pool
-}

EventBufferA

ﬂ BB E o
oEaEE aopT

EventBufferA
EventBullers
Laaf Triangle Pool

Emply

Emply

Emply

Emply

Fig. 4-4 DFS KD tree construction (Blue for internal, green for

IDs in brackets are undefined

IE‘E’IE‘ I S’IE'
R g Z| 8%

leaf, red for empty),

Note that while the nodes reside in the stack (array B), their node ID are still

undetermined. The node is assigned an ID and added to the node pool only after it is

22

popped to array A.

4.5 BFS KD Tree Construction with Preallocated Pools

We perform the construction in BFS style, each time we process one level of the tree.
The same two temporary arrays are needed. All the nodes of the first level reside in
array A. After we perform the split all the children are moved to array B. And next time
array A becomes the input. The two arrays are used alternately until the maximum level

is reached. . _..;.:1..--:-.’-'.'-._;5. .
s ~
2F 1.' 3

\.

Any node generated is moved WWnd its bias address in the pool will
=)

Iso ar gpy node detected as leaf will

-

Yé :
o
have its events moved to the 1eaf @; 20 &
-f'-: (::1:!51 e G\?ﬁ:&: ;’_\.'\.
":"J. ’-’I LI '? ..i_...""t (BuflerA
07 Yo e Even
EventBulferB
Lesf Triangle Pool Emply

EventBuller B
EventBufier A

Leaf Triangle Pool

EventBulferA
EventBufferB

23

Fig. 4-5 BFS KD tree construction (Blue for internal, green for leaf, red for empty)

4.6 KD Tree Construction: DFS VS BFS

The DFS fashion benefits from always choosing the left child to split, and there is
no need to store the AABB min/max. Therefore it consumes less memory than the BFS
fashion.

At traversal stage, DFS has another advantage of always placing the left child
immediately after the node in the node pool: This increases the data coherent and may
perform better when the cache siée 1S small."The fashion is necessary for efficient

b s '

traversal [13, 20].

The BFS construction demands ma':my -f-ewelr. i.ter'ati-ons, only one iteration for one
level. On the other hand, DFS suffers from.rap.id stack operations, each time a node is
split, the right child has to be pushed to array B; and each time the split reaches a leaf,
one node in array B has to be popped to array A. The frequent memory traffic
considerably limits the performance.

Based upon our experiments, construction using BFS is about 25% faster than that

using DFS. Thus we have adopted BFS as our default throughout all the upcoming

chapters.

24

4.7 KD Tree Node Structures: AOS VS SOA

Although storing nodes as array of structures (AOS) may be more straightforward,

structure of arrays (SOA) is necessary for parallel implementations. Especially for some

architecture like NVIDIA CUDA, where structure and class are not supported and SOA

must be used.

For traversal as KD-restart rather than KD-backtrack, the AABB min/max can be

omitted, as well as the pointer to parent.

smebu fler A
Leal Tnangle Pod

MNode Pool

Fig. 4-6 BFS construction with node pool implemented as array of structure (AOS)

25

26

Chapter S Parallel Construction on Multi-Core CPU

5.1 OpenMP Standard

Nowadays there are two major parallel programming models; one is openMP [6],
based on shared memory architecture, the other is MPI [23], or the message passing
interface. OpenMP has a huge advantage of keeping the sequential and parallel codes
identical. Directives are used to tell the compiler whether to parallel the region or not,
this preserves the original sequentiql codes. O'penMP is also portable; the codes can be

ported to various machines without modifi¢ation. Here we choose openMP as our

p—

i -
]
i |

parallel implementation.

5.2 Domain Partitioning in Serial

Our goal is to divide the scene into disjoint regions with roughly the same number
of primitives, and each region represents a subtree. Simply divide at primitive median
and we can have two sub-domains with roughly equal primitives.

At first one thread is in charge of the construction, the only difference is that we
simply use the event median rather than incremental sweeping SAH for the split

position. The construction is proceeded until a certain level, where each node of the

27

level will be the root of a subtree at the next stage. For example, if we need eight

subtrees, the construction is performed until level three is done.

The events of these nodes are moved to the event arrays of the subtrees.

AR TN

L
firy, il - - R
- \,_;\.f ":'-"n el __ L

5.3 Subtree Construction i aParallel"

Let each subtree have its own node pool and event pool; we assign them to threads

and run the subtree construction in parallel.

#pragma omp parallel for
Sor(int sub = 0; sub < numSubtree; sub ++) (5.1)
buildSubTree(sub);

According to the number “sub” it has been assigned, each thread knows which pools
to work on.

The subtree construction is totally the same as the regular construction we have

28

mentioned in the previous chapter.

5.4 Merging of Subtrees

After the subtree construction is done, every subtree has its own node pool and leaf
pool. As we would hope to maintain the same ray traversal codes, we must merge the

sub-arrays into a whole one.

0 2000 4400 6200

Fig. 5-2 Merging of sub-arrays
5.5 Event Sorting on GPU
Since all events are sorted at root only once, and the ascending order is maintained

during the overall construction, much time can be saved if we can do the sorting in

parallel. For a model with 60k triangles, there are 120k events on all three axes, thus we
have to do a sorting of 120k elements 3 times. We use a bitonic merge sort on GPU for
the sorting; the details are discussed in Chapter 6.

Although GPUs afford extreme performance for the root event sorting, the domain
partition here is still performed in serial. Also it is unlikely to expect that every desktop
has a decent GPU card, let alone a laptop. The implementation differs from various

GPUs, and we know that NVIDIA is not the sole vendor in the market.

5.6 Domain Partitioning in Parallél Using 1D Binning
To achieve a higher scalability we musf‘wda .the initial partitioning in parallel as well.
TR :
By intuition we would like to do-the eyént ;:iassif;lgatibn in parallel, but this is not going
to work out. Multiple threads work togethér o.n the same event lists, this cause race
condition. Of course we can evenly distribute the events to threads, but in order to
maintain the ascending order additional merge sorts are inevitable.

Rather than partitioning the sorted events, we instead partition the triangles. We
pigeonhole all the triangles on one selected axis, this is called binning [27]. And by
accumulating the triangles one can decide at which bin the region is split. Finally we
will have regions with roughly equal number of triangles.

First we calculate the minimum and maximum of the whole scene on the three axes,

30

and find the axis with the longest extent to perform binning, this can be done in O(N). A

fixed number of bins are set on the selected axis. All triangles are evenly distributed to

threads, and all threads perform the min-max binning in parallel. And then we

increment one bin at a time to accumulate the triangles from the minimum to the

maximum, if the accumulated triangles are larger than the percentage (25% if 4 sub

regions), we mark the left boundary of the bin as one boundary of the sub region.

Fig. 5-3 Parallel 1D binning for domain partitioning

After all boundaries of the sub regions have been decided, we classify all triangles

into sub regions, also in parallel. Now all subtrees have roughly the same number of

triangles, and by sorting each subtree has its own sorted event list.

Not only are the triangles binned in parallel, but also the event sorting is done in

parallel. The scalability has improved drastically.

31

5.7 Domain Partitioning in Parallel Using 3D Binning

Binning on one dimension is easy, but may finally reach a “tipping point”. For a
partition of 8, 16 and up, the space becomes “slices of bread”. The quality of tree
degrades seriously, and we can see that the performance of ray traversal plunges.

A remedy to this is to perform the binning on all three dimensions. However,
another difficult arises as that we cannot bin all the triangles into its sub-region at one

step. Therefore the binning is factored into DFS or BFS fashion.

Fig. 5-4 Parallel 3D binning for domain partitioning

The 3D binning is slower, but better preserves the quality of tree. For a partition

fewer than 8 we still prefer 1D binning.

32

Chapter 6 Single Ray Traversal on Multi-Core CPU

6.1 The Standard Traversal

Given a constructed tree, every ray starts at the root, and goes down for a hit.
According to the split plane of the current node, the ray may intersect with only left or
right child, or both. If the ray intersects only with the left child, we can easily advance
the ray to the left child. A ray straddles the split slab must have intersections with both
children, by the direction sign on th_e split axis, either left or right will be traversed first,

and the other child will be pushed onfo the stack. The-pattern is repeated until the ray

i -
_—"

has reached a leaf, and if the ray finds no lﬁt in|the leaf; one node will be popped from
the stack, where the down traversal starts agaim: This‘is the standard approach [18], on

the stack one node is closer to the ray origin than all nodes behind it.

6.2 The Stackless Traversal

The standard approach demands one stack per ray. Since for GPU the cores process
many rays simultaneously, and the shared memory among cores usually is limited, the
per ray stack approach becomes problematic. [7] presented two stackless traversal

methods, called KD-restart and KD-backtrack.

33

A segment of ray can be represented as a time interval [t min, t max]. At beginning

we have the entire range, and during the down traversal the interval [t min, t max]

keeps being modified until we reach a leaf. If there is no collision found in the leaf and

the ray has not reached its end, instead of popping a node from the stack we merely

advance the segment. At the time the new t min is assigned the value of t max, and the

traversal either restart from the root (KD-restart), or from the closest ancestor

(KD-backtrack).

|I. " Y o 1 !
T

Node Pool

MNode Pool

Fig. 6-1 KD-Restart

Although theoretically KD-backtrack may be slightly faster than KD-restart, it

consumes much more memory space and may also cause additional burden on the

construction stage. The KD-backtrack requires additional information about a pointer to

34

parent and the parent node’s AABB (7 floats per node). Thus KD-restart has gradually
become recognized as a conventional traversal scheme [13]. Based upon our
experiments, KD-restart and KD-backtrack have indistinguishable performance. [7]
mentioned that the KD-restart is at most three times slower than the stack based

traversal.

6.3 Iterative Single Ray Traversal

For performance reason we implement/the traversal as iterative “while loops” rather
than tail calls. Here we show our pseudo algorithm,of KD-restart implemented as SOA.

I | il

35

node = 0;
rayStop = false;
while (rayStop == false){
//Non-leaf node
if (KD bLeaf[node] == false){
if (rayDir[axis] > 0) {
t split = (KD_splitPoint[node] - rayStart[axis]) / rayDir[axis];
if(t_split >=t max) node = KD subl[node];
else if(t_split <=t min) node = KD subR[node];
else {node = KD subL[node]; t max =t split;}
}
if (rayDir[axis] < 0) {
t split = (KD_splitPoint[node] - rayStart[axis]) / rayDir[axis];
if(t_split >=t_max) node = KD _subR[node];
else if(t_split <=t min) node = KD_subL[node];
else {node = KD_subR[node]; t_max =t split;}

H
else { \
if(rayStart[axis] < KD sphtPomt[a,ms]) node = KD_subL[node]; (6.1)
else if(rayStart[axis] > KD sphtPongt[ams]) node =KD subR[node];
else node = subL[node] '
H
H
//leaf node
else {

if(KD bEmpty[node] == false) Hit = ray triangle intersection;
if(Hit) rayStop = true;
else {
if(t max >=t max_G) rayStop = true;
else {
t min =t max;
t max =t max_G;
//Restart

node = 0;

} (6.2)

36

Note that the division by ray direction can be replaced with a precomputed

reciprocal.

6.4 Optimized Ray Triangle Intersection

The ray triangle intersection occupies a large fraction of the render time, [33]
mentioned that the fraction can be in a range of 75% to 95%.

[5] separated the ray traversal into two phases, the traversal control flow is handled
by CPU, and the ray triangle intersection tests-are.totally moved to GPU.

A conventional routine for the'intersection test begins with a distance test, if the
distance between the ray origin and the tfiﬁéig-le plane is in the interval, then there is a

S i

chance to get a hit. The barycentric eoordinates lare’ computed to see if the hit point lies

inside the triangle [16, 17], note thatwe store the barycentric coordinates for the

afterward shading [30].

P=aA+pB+yC=(1-p—-y)A+pB+yC
P-A=pBB-A)+y(C-A4) (6.3)
if (0<a,p,y<1)the P is within the triangle

37

The project method [30] optimizes the barycentric calculation by projecting the
triangle and the hit point onto a 2D plane while preserving the barycentric coordinates.

The plane is chosen to have the largest projected area for numerical stability.

1§ proj Apm.i =h(B proj Apro}) ty (Cpmj B Apmj)

leth=C,,~4,,andc=B,, ~4,, and p=P, -4,
p=pe+yb (6.4)
:bu*pv—bv*pu :cv*pu—cu*pv
bu*cv—bv*cu bu*cv—bv*cu

Note that the projected edges b = (bu, bv) and ¢ = (cu, cv) can be precomputed. The
method is almost two times faster than the original [16].
In the same leaf we record the'distance of the triangle that has been checked, and if

the next triangle has a farther distan¢e it is/discarded immediately. Only those with

= |
shorter distance have to undergo-the bair;yceﬁ_tric test.

6.5 Hashed Mailboxing

A ray may encounter multiple leaves which contain the same primitives. Mailboxing
is applied to record the triangles which have already been tested against the ray, this
avoids unnecessary tests. According to [2], a full sized table is impractical. We deploy a
similar hashed mailbox. For regular scenes with flat surfaces we did not see any

performance gain, but for those with bumps or folds there may be a benefit.

38

6.6 Parallel Single Ray Traversal on Multi-Core CPU

Since every ray is independent with others during traversal, we can simply distribute

the rays to threads and run in parallel. This is also called screen-space parallelization.

39

40

Chapter 7 SIMD Incoherent Ray Bundle Tracing

7.1 Data Level Parallelism with Streaming SIMD Extension

The Intel’s Streaming SIMD Extension (SSE) was first introduced on Intel’s
Pentium III, where additional eight 128-bit XMM registers were provided. Four 32-bit
floating point values can be packed in one XMM register, and via one instruction we
actually operate on four data sets. Versions after SSE2 also support four 32-bit integer
values.

The layout of data should be arrang'?c__}l:ifl.l the,structure of array (SOA) to be eligible
and beneficial for the SSE implementati'oni-'; §

Hand-written assembly codeg are difﬁqult to maintain, furthermore, it loses the
support of compiler’s rearrangement and optimization, which tightly relates to the

problem of data dependency and latency. The SSE intrinsic provides the performance of

assembly coding, and also preserves the optimizations from the compiler’s view.

7.2 Optimization with SSE Intrinsics

To eliminate the branches induced by if-else clause, a register level macro is applied

12].

41

inline m128 BLEND4(const ml128 f, const ml28 a, const ml28 b){
return_mm_or ps(_mm_and ps(f, a), mm_andnot ps(f, b)); (7.1)

The reciprocal operation is costly, but is necessary for the inverse of ray direction. A

conventional way is to approximate it with a Newton-Raphson iteration [2].

inline m128 RECIPROCAL4(const m128 a){
const ml28 rcp= mm rcp ps(a);
return _mm_sub_ps(_mm _add ps(rcp, rcp), mm mul ps(_mm_mul ps(rcp, rep), a));

(7.2)
Usually the mm_movemask ps is used to check the sign bits of the four ray results,
the branch will take place if at leas_tt one'sign bit is asserted. As mentioned in [24], this
operation is expensive and can be replaé,e_d; Eya mm_movemask epi8.

= '
| il

7.3 The Initial Clipping.

Not every ray has a hit with the scene box; these rays are marked as invalid and will
not be performed during the traversal. At the very beginning, we have to clip each ray to

its valid interval.

42

~ ml28t mind = mm_setzero ps();

~ ml28t max4 = mm_set psl(FLT MAX);

/1 t mint max clip on X
~ ml28 tClip mind = mm _mul ps(mm_sub ps(_mm_set psl(m_min[0]), rayStart4[0]), rayDirR4[0]);
~ ml28 tClip max4 = mm mul ps(_ mm sub ps(_mm_set psl(m_max[0]), rayStart4[0]), rayDirR4[0])
__ml28 rayDirSignd = mm_cmpgt ps(rayDir4[0], mm_setzero ps());

t mind = mm_max_ps(t_min4, BLEND4(rayDirSign4, tClip_min4, tClip_max4));
t max4=_mm_min_ps(t_max4, BLEND4(rayDirSign4, tClip_max4, tClip_min4));

/1 t mint max cliponY

tClip min4 = mm_mul ps(_ mm_sub ps(_mm_set psl(m_min[1]), rayStart4[1]), rayDirR4[1]);
tClip max4 = mm_mul ps(_ mm sub ps(_ mm set psl(m max[1]), rayStart4[1]), rayDirR4[1]);
rayDirSign4 = mm_cmpgt ps(rayDir4[1], mm_setzero ps());

t mind = mm_max_ps(t min4, BLEND4(rayDirSign4, tClip_min4, tClip_max4));

t max4 = mm min_ps(t max4, BLEND4(rayDirSign4, tClip_max4, tClip_min4));

/l t mint max clip on Z
tClip min4d = mm_mul ps(_mm_sub ps(_ mm_set. psl(m_min[2]), rayStart4[2]), rayDirR4[2]);
tClip_ max4 = mm_mul ps(_mm sub _psLmni_se_t < psk(m_max[2]), rayStart4[2]), rayDirR4[2]);
rayDirSignd = mm_cmpgt ps(rayDird[2], mm Setzero ps());

t mind = mm_max_ps(t_min4, BLENDiga§DirSign4, tClip_min4, tClip_max4));

t max4 = _mm_min_ps(t_max4, BLEI_\IIDAIF(?:;fj-‘IIDirSign& tClip_max4, tClip_min4));

I/ Clip the rayLength+ '

t max4 = mm_min_ps(t max4, rayLengthd); '

// Check the intersection

blntersection4d = mm_cmple ps(t min4, t max4);

(7.3)
7.4 SIMD Ray Triangle Intersection

There are two ways to do this [30]. First we can consider intersecting one ray with
four triangles. Obviously there is some problem with this; not every leaf has a multiple
of four triangles, and usually they have only one or two triangles. Also KD tree tends to
perform better with small leaves [31].

The alternative is to test four rays against one triangle. This makes sense because

43

rays in a bundle are from consecutive pixels, and usually have similar origins and

directions. There is much of a chance to have all four rays collided on one big triangle.

7.5 Omnidirectional Ray Traversal for KD Tree

The traditional SSE traversal requires that the ray bundle is coherent in direction,
that is, the four rays have the same signs in all three dimensions. Early exit is favored,
because the nodes traversed are in the ascending distance order from all four ray’s
origins. On the contrary, the need to classify thg rays into coherent group and treat them
individually inevitably lowers:the utilization of the. SIMD: fashion. An alternative way is
to cluster the rays into eight coherentééélp:s., but it results in bad work sharing on

TR
multi-core architecture. |

Omnidirectional traversal [24] is dev.ised to process incoherent ray bundles.
Compared with the coherent traversal, it greatly reduces the number of triangle
intersection tests and reports an average of 1.5X speedup [24]. However, it comes at the
expense of no early exit. We cannot ensure that either the left child or the right child is

traversed first for incoherent rays; the only thing we consider is whether both children

are traversed or not.

44

const ml28 mixOf = mm castsil28 ps(_mm_setl epi32(0x00001ftY));
__ml28 rayTracingd = mm_and ps(_mm_castsil28 ps(_mm_setl epi32(0xffftfftr)), rayValid4);

while(_ mm_movemask ps(rayTracing4)){
if(kdg_bLeaf[node] == false){
DWORD axis = kdg_splitAxis[node];
__ml28 timeHitSplit4 = mm_mul ps(
~mm_sub_ps(_ mm_set psl(kdg splitPoint[node]), rayStart4[axis]), rayDirR4[axis]);
__ml128 maskDir4 = mm_cmplt ps(rayDir4[axis], mm_setzero ps());
__ml28 maskNear4 = mm_cmple ps(t min4, timeHitSplit4);
__ml28 maskFar4 = mm_cmpge ps(t_max4, timeHitSplit4);
__ml128 maskSelect4 = mm_xor ps(mix0f, maskDir4);
__ml28 maskValid4 = mm_cmple ps(t_min4, t max4);
_ml28 maskHit4 = mm and ps(maskValid4, BLEND4(maskSelect4, maskNear4, maskFar4));
int hit4 = mm_movemask epi8(_mm_castps_sil28(maskHit4));
int hitRight4 = hit4 & Oxcccc;
int hitLeft4 = hit4 & 0x3333; »
if(hitLeft4 == 0){node = kdg subR[node];continue;}
if(hitRight4 == 0){node = kdg_subLt:gocie];continue;}
PUSH(kdg_subR[node], =
BLEND4(maskDir4, t.mind, mm-max, ps(@imeHitSplit4, t_mind)),
BLEND4(maskDir4, muh min . ps(@imeHifSplit4, t max4), t max4));
node = kdg_subL[node]; ' . 5
t min4 = BLEND4(maskDir4, mm_max_ps(timeHitSplit4, t min4), t min4);
t max4 = BLEND4(maskDir4, t max4, mm_min_ps(timeHitSplit4, t max4));
h
else{
if(kdg bEmpty[node] == false){
DO TRIANGLE INTERSECTION HERE
b
if(nodeStack)POP(node, t min4, t max4);

else rayTracingd = mm_setzero ps();

(7.4)

45

The trick is to select the near child and the far child by the ray direction. For rays
with positive directions [far, near] is recorded, for those with negative directions [near,
far] is recorded instead. Now we have [right, left] for all four rays, and we can ignore
the right child if all rays go to the left.

Note that there is no early exit; some rays are traversed in the reversed order. An
intersection with triangle is valid only if the hit time is smaller than the one before. And
the barycentric test is performed only if at least one ray has a valid hit time.

Though theoretically the SIMD implementgtion brings 4X speedup over the single
ray traversal, in regular conditions 1t reports a 1.5X to 2.5X speedup [3, 4]. Due to some

t'l

lack of optimizations our implementati(:_);'_t_\-';:-;i-si- just slightly faster than the single ray
‘ | i

traversal. s A il

46

Chapter 8 Parallel Primitives on GPU

8.1 Bitonic Merge Sort

Bitonic merge sort [1, 22] is a commonly used divide-and-conquer algorithm on
GPU. The concept of bitonic merge is to merge an equal-sized ascending and
descending sequence into one ascending or descending sequence.

A mapping of bitonic merge to CUDA can be done in two levels. It begins with

small chunk merges done within _i_ﬁdi\'?.iaual. .'-.l-:s'loc.l-gs. ‘And then large chunk merge is

155
)
AN N

RN
— | ‘III!‘IIII‘

Fig. 8-1 A bitonic merge sort of 2048 elements on CUDA, with block size = 512

8.2 Prefix Sum (scan)

47

Although modern GPUs become more powerful and general purpose, not all

algorithms can be easily mapped to GPU. Problems like scan, split, and sorting, demand

“global knowledge” of the input data. They suit far well to serial processors as Intel x86,

and porting them to GPU requires different implementation. The prefix-sum (scan) [10,

26] is one of the fundamental algorithms, it is also the primitive operation of many

advanced applications.

The scan consists of two phases: reduction (up-sweep) and down-sweep.

Fig. 8-2 Unsegmented scan: reduction (left) and down-sweep (right)

8.3 Segmented Prefix Sum (scan)

When the algorithm has to be applied to different sections of the array individually,
the segmented version is used. A head flag array of the same length with the input data

is needed to indicate the position of a new segment.

48

Data 5 8 2 4 0 9 1 7 3 8
Flag 10 0 0 0 0 0 1 0 O
OQut 0 5 13 15191928 0 7

2
0

The pseudo algorithm is as follows.

Reduction
ford =0tolog,n—1do
for all k=0ton—1by 2" in parallel do
if flk+2"" —1]is not set then
xk + 29" 1]« x[k +2¢ =1]+ 2k + 27" —1]
fle+27" =1« fTk+2 =11 | fTk+2"" 1]
Down sweep
x[n—1]«0
for d =log, n—1down to 0 do
forall k=0to n—1by 2" in parallel.do
t < x[k+2" 1]
xk +29 —1]« x[k + 25 1]
I S originar L+ 2%]is set then
Me+2 11«0 B ||
elseif flk+2~1]is setthen |
x[k+29" 1] 1t
else
X[k + 29" — 1]t + x[k+27" —1]
unset fTk+2% 1]

L AT

8.4 Segmented Split

5 4
1 0

10 18 0 5 9

(8.1)

(8.2)

(8.3)

The split operation divides a vector of true/false values into two parts, with the first

filled with all false values, and the other with all true values. The segmented split

factors the operation into sections of the input. Note that it is based on the segmented

scan.

49

50

Chapter 9 Experiments and Results

9.1 Ray Traced Scenes

Here we show the scenes of 800x800 resolution rendered with one primary ray, one
shadow ray and one point light source. The model is placed in a textured box.

The program was done in C++, and openMP for the parallel implementations.
Images were presented onto screen using WinGDI.

All the performance measurements, were from-a WindowsXP desktop, with Intel

Core2 Quad 9550 (2.83Ghz), NVIDIA GTX 260+

fal P

51

Fig. 9-1 (a) Arm, 816 triangles (b) Kila, 4,110 triangles (c) Dragon, 65,533 triangles

(d) Temp,le; 2-22',90(_), triangles

9.2 Serial Domain Parhtl

In chapter 4 we have presented th%,u\@ﬁﬁsqnstlpctlon in parallel, but with domain
'|||!,é ™
partitioning in serial. The benchmarkxl s belov&’! J G 8
w‘*f e -

-Q-.-' o

Table 9-1 Construction time (sec) _with. sub‘tree construction in parallel

Threads | #Sub(partition) Arm Kila Dragon Temple
1 1 0.011 0.054 0.807 2.902
2 2 0.008 0.034 0.504 1.727
4 4 0.006 0.024 0.369 1.254
4 8 0.006 0.024 0.365 1.254

The construction has far better scalability for large models. Anyway, the scalability

is sub linear with number of threads.

52

9.3 Parallel Domain Partitioning with 1D Binning

We replace the serial domain partitioning with a parallel 1D binning, making the

construction process achieve a higher scalability.

Table 9-2 Construction time (sec) with parallel subtree construction and parallel

1D binning
Threads | #Sub(partition) Arm Kila Dragon Temple
1 1 0.011 0.056 0.822 2.887
2 2 ‘0.0QS 0.030 0.459 1.552
4 4 0.00624 || 0.019 0.271 0.923
| - :
4 8) 0.02)5 , 9.019 0.266 0.901

The scalability is way better than the one with serial domain partitioning, achieves

more than 3X speedup for large models. For a finer partitioning, there is a slight gain

since the O(NlogN) merge sort is divided into smaller pieces. Also we wonder that in a

finer partitioned scene the workload is better balanced among the threads.

9.4 Parallel Domain Partitioning with 3D Binning

Compared to 1D binning, the 3D binning costs more time in the construction stage,

but generates better partitions.

53

Table 9-3 Construction time (sec) with parallel subtree construction and parallel

3D binning
Threads | #Sub(partition) Arm Kila Dragon Temple
1 1 0.012 0.053 0.792 2.804
2 2 0.009 0.040 0.611 2.112
4 4 0.008 0.032 0.466 1.688
4 8 0.008 0.033 0.491 1.697

Maybe due to some implementation problem,:the 3D binning is considerably slower
than the 1D binning.
9.5 Render Time and the Quality of Trée

We apply openMP to parallelize the‘optimized single ray traversal, and benchmark

render time with the different construction scheme. All scenes are rendered with all 4

cores, what we want to see is the effect of different partitioning scheme on the quality of

tree.

Table 9-4 Render time (4 threads) (sec) with subtree construction in parallel

Threads | #Sub(partition) Arm Kila Dragon Temple
1 1 0.659 0.877 0.982 6.538
2 2 0.646 0.910 0.987 6.473

54

4 4 0.645 0.941 1.029 6.437

4 8 0.654 0.891 1.081 6.443

Since the partitioning is done in 3D, we preserve the quality of the tree even with a

large number of partitions.

Table 9-5 Render time (4 threads) (sec) with parallel subtree construction and

parallel 1D binning

Threads | #Sub(partition) Arm Kila Dragon Temple
1 1 0.651 ©2.0.875 0.977 6.535
2 2 0.636 0.931 0.992 6.410
4 4 0.648< = |1 0.929 1.072 6.381
1 "E; :
.I - 1 5 -
4 8 e 0717)} 0.919 1.267 6.652

We wonder that in a finer partitioned scene the 1D binning hurts the quality of the
tree; the performance of traversal has an obvious decline with a partition of 8.

Table 9-6 Render time (4 threads) (sec) with parallel subtree construction and

parallel 3D binning
Threads | #Sub(partition) Arm Kila Dragon Temple
1 1 0.646 0.887 0.991 6.507
2 2 0.639 0.909 1.009 6.363

55

4 4 0.659 0.923 1.036 6.453

4 8 0.694 0.934 1.119 6.409

In a partition of 8, the 3D binning renders slightly faster than the 1D binning, but

still cannot make up for the cost at the construction stage.

' "I‘"Exff', lﬁtq-‘:"ﬂﬁ
RGeS

g

56

Chapter 10 Conclusions and Future Work

10.1 Conclusions

We have succeeded in achieving a high scalability of parallel KD tree construction
on the shared memory based multi-core CPU. The work load is well balanced among all
the threads, and the quality loss is in a limited range. The program can be ported to
various CPUs with different number of cores. Our algorithm may benefit many
interactive applications. In near futl_lre ray traced games with similar algorithms will be

available on everyone’s desktop:

=N

10.2 Future Work

We would like to look for the ways to simplify and speedup some operations in the

KD tree construction. And we are going to figure out some more efficient approaches

for animated scenes; instead of reconstruction from scratch every frame, for structured

scenes some partial updates of the tree may be enough.

Also the coherent ray bundle traversal and the data level parallelism with Intel SSE

are the crucial issues. Our future modifications will focus on exploiting the coherent

problems.

57

58

Reference

Batcher, K., Sorting networks and their applications. in, (1968),
ACM New York, NY, USA, 307-314.

Benthin, C. Realtime Ray Tracing on Current CPU Architectures,
Universitatsbibliothek, 2006.

Boulos, S., Edwards, D., Lacewell, J., Kniss, J., Kautz, J., Shirley, P
and Wald, I., Packet-based whitted and distribution ray tracing. in
Proceedings of Graphics Interface, (2007), ACM New York, NY,
USA, 177-184.

Boulos, S., Wald, 1. and Benthin, C., Adaptive ray packet reordering.
in IEEE Symposium on Interactive Ray Tracing

(2008), 131-138.

5.

10.

11.

12.

Carr, N., Hall, J. and Hart, J., The ray engine. in Proceedings of the
ACM SIGGRAPH/EUROGRAPHICS conference on Graphics
hardware, (2002), Eurographics Association Aire-la-Ville,
Switzerland, Switzerland, 37-46.

Chapman, B., Jost, G.,/Van Der Pas R. and Kuck, D. Using
OpenMP: portable Sharea’ memory paxallel programming. The MIT
Press, 2007.

Foley, T. and Sugerman,J.; Kdtree acceleration structures for a
GPU raytracer. in Proceedings of the ACM
SIGGRAPH/EUROGRAPHICS conference on Graphics hardware,
(2005).

Gottschalk, S., Lin, M. and Manocha, D., OBBTree: A hierarchical
structure for rapid interference detection. in ACM Transactions on
Graphics ACM SIGGRAPH, (1996), ACM New York, NY, USA,
171-180.

Gunther, J., Friedrich, H., Seidel, H. and Slusallek, P. Interactive ray
tracing of skinned animations. The Visual Computer, 22 (9).
785-792.

Harris, M., Sengupta, S. and Owens, J. Parallel prefix sum (scan)
with CUDA. GPU Gems, 3.

Havran, V. Heuristic ray shooting algorithms Unpublished doctoral
dissertation, Czech Technical University in Prague, 2000.

Havran, V., Herzog, R. and Seidel, H., On the fast construction of
spatial hierarchies for ray tracing. in [EEE Symposium on Interactive

59

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Ray Tracing, (2006), 71-80.

Horn, D., Sugerman, J., Houston, M. and Hanrahan, P., Interactive
kd tree GPU raytracing. in ACM SIGGRAPH symposium on
Interactive 3D graphics and games, (2007), ACM New York, NY,
USA, 167-174.

Hunt, W., Mark, W. and Stoll, G., Fast kd-tree construction with an
adaptive error-bounded heuristic. in IEEE Symposium on Interactive
Ray Tracing, (2006), 81-88.

MacDonald, J. and Booth, K. Heuristics for ray tracing using space
subdivision. The Visual Computer, 6 (3). 153-166.

Moller, T. A fast triangle-triangle intersection test. Journal of
graphics tools, 2 (2). 25-30.

Moller, T. and Trumbore, B. Fast, minimum storage ray-triangle
intersection. Graphics Tools: The Jgt Editors' Choice. 181.

Pharr, M. and Humphreys, G. Physically Based Rendering: From
Theory to Implementation. Morgan Kaufmann, 2004.

Popov, S., Gunther, J., Seidel;, H: and Slusallek, P., Experiences with
streaming construction of SAH KD-trees:\in /EEE Symposium on
Interactive Ray Tracing, (2006),:89:94.

Popov, S., Gunther, J., Seidlel,""'_]:I-." and Slusallek, P., Stackless kd-tree
traversal for high performance’GPU|ray tfacing. in Eurographics,
(2007), Blackwell Publishingditd,415-424.

Purcell, T., Buck, I., Matk, W. and Hanrahan, P., Ray tracing on
programmable graphics hardware. in International Conference on
Computer Graphics and Interactive Techniques, (2005), ACM New
York, NY, USA.

Purcell, T., Donner, C., Cammarano, M., Jensen, H. and Hanrahan,
P., Photon mapping on programmable graphics hardware. in
Proceedings of the ACM SIGGRAPH/EUROGRAPHICS conference
on Graphics hardware

(2003), Eurographics Association Aire-la-Ville, Switzerland, Switzerland,

23.

24.

25.

41-50.

Quinn, M. Parallel Programming in C with MPI and OpenMP,
2004.

Reshetov, A., Omnidirectional ray tracing traversal algorithm for
kd-trees. in IEEE Symposium on Interactive Ray Tracing, (2006),
57-60.

Reshetov, A., Soupikov, A. and Hurley, J. Multi-level ray tracing

60

26.

217.

28.

29.

30.

31.

32.

33.

34.

algorithm. Proceedings of ACM SIGGRAPH 2005, 24 (3).
1176-1185.

Sengupta, S., Harris, M., Zhang, Y. and Owens, J., Scan primitives
for GPU computing. in Proceedings of the ACM
SIGGRAPH/EUROGRAPHICS conference on Graphics hardware,
(2007), Eurographics Association Aire-la-Ville, Switzerland,
Switzerland, 97-106.

Shevtsov, M., Soupikov, A. and Kapustin, A., Highly parallel fast
kd-tree construction for interactive ray tracing of dynamic scenes. in
Eurographics, (2007), 395-404.

Stoll, G. Part II: Achieving real time-optimization techniques.
SIGGRAPH 2005 Course on Interactive Ray Tracing.

Wachter, C. and Keller, A. Instant ray tracing: The bounding interval
hierarchy. Rendering techniques, 2006. 139-149.

Wald, I. Realtime ray tracing and interactive global illumination,
Universitatsbibliothek, 2004.

Wald, 1., Benthin, C. and-Boulos; S., Getting rid of packets-Efficient
SIMD single-ray traversal using multi=branching BVHs. in /EEE
Symposium on Interactive Raydracing, (2008), 49-57.

Wald, 1. and Havran, V5,.On b'iﬁ-l'ding fast kd-trees for ray tracing,
and on doing that in O (N log NY. inlIEEE' Symposium on Interactive
Ray Tracing, (2006),61-69-

Whitted, T. An improved illumination'model for shaded display.
ACM Communications.

Woop, S., Marmitt, G. and Slusallek, P. B-kd trees for hardware
accelerated ray tracing of dynamic scenes. Graphics Hardware 2006:

Eurographics Suymposium Procceding Vienna, Austria September
3-4, 2006. 67.

61

62

	Chapter 1 Introduction
	1.1 Outline of the Thesis
	1.2 Contributions

	Chapter 2 Background
	2.1 Ray Tracing
	2.2 Acceleration Structures

	Chapter 3 Related Work
	3.1 Fast KD tree Construction
	3.1.1 Introduction
	3.1.2 Fast KD tree construction overview
	3.1.3 Surface Area Heuristic
	3.1.4 Split Candidate
	3.1.5 Triangle Classification and Clipping
	3.1.6 Event Classification and Generation
	3.1.7 Splice to two children
	3.1.8 Termination Criteria
	3.1.9 Conclusion

	3.2 Parallel KD tree Construction on Multi-Core CPU
	3.2.1 Introduction
	3.2.2 Binning
	3.2.3 Initial Clustering

	Chapter 4 Optimizing KD tree Construction
	4.1 Augmented AABB
	4.2 A Trivial and General Method for Event Classification
	4.3 Using Preallocated Pools
	4.4 DFS KD Tree Construction with Preallocated Pools
	4.5 BFS KD Tree Construction with Preallocated Pools
	4.6 KD Tree Construction: DFS VS BFS
	4.7 KD Tree Node Structures: AOS VS SOA

	Chapter 5 Parallel Construction on Multi-Core CPU
	5.1 OpenMP Standard
	5.2 Domain Partitioning in Serial
	5.3 Subtree Construction in Parallel
	5.4 Merging of Subtrees
	5.5 Event Sorting on GPU
	5.6 Domain Partitioning in Parallel Using 1D Binning
	5.7 Domain Partitioning in Parallel Using 3D Binning

	Chapter 6 Single Ray Traversal on Multi-Core CPU
	6.1 The Standard Traversal
	6.2 The Stackless Traversal
	6.3 Iterative Single Ray Traversal
	6.4 Optimized Ray Triangle Intersection
	6.5 Hashed Mailboxing
	6.6 Parallel Single Ray Traversal on Multi-Core CPU

	Chapter 7 SIMD Incoherent Ray Bundle Tracing
	7.1 Data Level Parallelism with Streaming SIMD Extension
	7.2 Optimization with SSE Intrinsics
	7.3 The Initial Clipping
	7.4 SIMD Ray Triangle Intersection
	7.5 Omnidirectional Ray Traversal for KD Tree

	Chapter 8 Parallel Primitives on GPU
	8.1 Bitonic Merge Sort
	8.2 Prefix Sum (scan)
	8.3 Segmented Prefix Sum (scan)
	8.4 Segmented Split

	Chapter 9 Experiments and Results
	9.1 Ray Traced Scenes
	9.2 Serial Domain Partitioning
	9.3 Parallel Domain Partitioning with 1D Binning
	9.4 Parallel Domain Partitioning with 3D Binning
	9.5 Render Time and the Quality of Tree

	Chapter 10 Conclusions and Future Work
	10.1 Conclusions
	10.2 Future Work

