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摘要

營建工程的進度管控是工程成功交付的重要關鍵，而目前影像資料已是瞭解

工程進度的重要資訊來源之一。在過去幾十年中，許多研究開發應用電腦視覺於

建築施工的自動進度監測的方法，這些方法在監測個別元件（如柱子、樑、牆壁）

方面非常有效，但在監測由元件組成之排程工項工程進度（如一樓模板工程、鋼

筋綁匝、混凝土澆置）仍有困難。現有方法通常難以推測介於已建或未建之間的

未完成進度之工程狀態，因此限制了此技術在分析細節進度資訊方面的應用。本

研究旨在透過兩種新的方法解決之研究問題。第一種方法稱為排程工項進度監測

系統（ALPMS），旨在監測正在施工的元件之活動級別進度，主要以施工現場影

像和四維建築信息模型（BIM）作為輸入，產出數位孿生資訊系統。該系統從影

像中生成實境現場的點雲，將其與原排程中的 BIM進行比較，並應用基於深度學

習的語義分割進行進度推理。因此可估計每個工項的完成百分比，並且為更新專

案進度提供有價值的資訊。數位孿生資訊系統同時可將語義資訊整合到實際建造

的點雲和 BIM中，實現進度狀態的三維可視化。第二種方法研究於在缺乏更新的

四維 BIM的情況下也能自動比對專案進度與實際模型，該比對方法首先使用三維

BIM或控制點將實際模型對應到世界坐標系統，然後應用點雲分割來檢測與特

定位置、建築元件和工項相關的進度。使用基於自然語言處理（NLP）的技術從

每個工項中提取相關位置、元件和任務的資訊。從實際模型和工項中提取的資料

通過基於語意距離的匹配技術進行比對，再將進度資訊與相應的進度活動進行比
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對。以上提出的方法已在台灣的工程專案上應用及評估並且有展示相關的有效性

和適用性，ALPMS成功分析工項等級的進度狀態，平均絕對誤差少於 6％，而缺

乏四維 BIM的情況下仍可準確更新進度資料。這些方法論通過提供有關元件和

工項等級進度的分析，為工程進度監測領域進一步的貢獻，也可使人們更容易地

理解專案狀態，以實現高效的進度管理和做出明智的決策，進而促進專案成功交

付。

關鍵字：深度學習、計算機視覺、活動級進度監控、神經輻射場、自然語言處

理、日程更新、數字孿生
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Abstract

Monitoring the progress of construction projects is crucial for ensuring successful

project delivery. Visual data, such as images and videos, has emerged as a valuable

source of information to understand the status of construction operations. Over the past

few decades, several vision-based methods have been developed for automated progress

monitoring in building construction. These methods have been effective in monitoring in-

dividual elements (e.g., columns, beams, walls) but face challenges in monitoring progress

at the schedule activity level (e.g., formwork, reinforcement, concrete). Existing methods

often struggle to report progress status beyond a binary form of built or not-built, limiting

their usefulness in capturing nuanced progress information. This research focuses on ad-

dressing these challenges through two novel methodologies. The first methodology, called

the Activity Level Progress Monitoring System (ALPMS), aims to monitor progress at the

activity level of under-construction building elements. It takes construction site images

and a four-dimensional building information model (BIM) as input and creates a Digital
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Twin information system. The system generates as-built point clouds from the images,

compares them with the as-planned BIM, and applies deep learning-based semantic seg-

mentation for progress reasoning. This enables the estimation of activity-wise completion

percentages, providing valuable information for updating project schedules. TheDT infor-

mation system also integrates rich semantic information into the as-built point cloud and

BIM, enabling three-dimensional visualization of progress status. The second methodol-

ogy focuses on automatically aligning project schedules with reality models, even in the

absence of an updated 4D BIM. The alignment method starts by aligning reality models to

the world coordinate system using a 3D BIM or control points. Point cloud segmentation

is then applied to detect progress associated with specific locations, building elements, and

tasks. Information about locations, elements, and tasks is extracted from each schedule ac-

tivity using natural language processing (NLP)-based techniques. Extracted information

from the reality models and the schedule activities are matched through a distance-based

matching technique, mapping the progress information with the corresponding schedule

activities. The proposed methodologies have been applied and evaluated on construc-

tion projects in Taiwan, demonstrating their effectiveness and applicability. The ALPMS

successfully reports activity level progress status with less than 6% mean absolute error.

The automatic alignment method shows promise in accurately updating progress infor-
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mation without relying on an updated 4D BIM. These methodologies contribute to the

field of construction progress monitoring by providing accurate and detailed insights into

progress at both the element and activity levels. They enable a better understanding of

project status, efficient schedule management, and informed decision-making, ultimately

facilitating successful project delivery.

Keywords: Deep learning, computer vision, activity-level progress monitoring, neural

radiance field, natural language processing, schedule update, digital twin
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Chapter 1 Introduction

1.1 Motivation and Background

Global demand for building construction is increasing. According to a recent report

by Autodesk Redshift (2019), 13,000 buildings need to be built every day up to 2050 to

meet the demand of 7 million people living in cities. On the contrary, the construction

industry faces challenges like delays in project delivery, cost overruns, disputes, and low

productivity. MGI 2017 reported that construction-related spending contributes 13% to

the global GDP but the annual productivity growth for this sector has remained at only

1% over the past twenty years. This growth rate is much lower than the global average of

2.8%, as well as the 3.6% growth rate of the manufacturing industry (McKinsey Global In-

stitute 2017). According to a 2021 report by the Office for National Statistics (ONS), UK,

the construction industry has one of the lowest productivity growth rates among all ma-

jor sectors in the United Kingdom (UK). Although the labor productivity rate has grown

slightly faster since 2008, it remains below the country average [60]. Automation and

digitization in the construction processes could tackle many of the age-old problems of

this industry and thus increase the construction businesses’ profitability. World economic

forum’s (2016) report [23] indicates that full-scale digitization in the construction indus-

try could save $0.7-1.2 trillion in the design, engineering, and construction phase in ten
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years. Similarly, Accenture’s report highlights that with the incorporation of artificial

intelligence (AI) in the construction industry, the profit may increase by 71% by 2035

[75]. Recently, the maturity of building information management techniques and the ad-

vancement in real-world data collection, storing, and processing technologies have created

a unique opportunity for construction researchers and practitioners to automate various

project management tasks such as construction progress monitoring (CPM), quality in-

spection, productivity assessment, and safety management [68]. Effective progress moni-

toring at construction sites is necessary to ensure successful project delivery. By promptly

monitoring a construction project’s progress, construction professionals can identify and

address any issues that may arise during the construction process, such as delays or quality

issues, which can help improve the overall efficiency of the construction process. Provid-

ing the most up-to-date information about the project status to all the stakeholders can

also enhance the opportunities for proactive project control and reduce the risks of sched-

ule delays and cost overruns [51]. Conventionally, progress monitoring is done through

manual site measurements of as-built constructions and paper-based daily progress re-

ports (DPR). Later the project schedules are updated with the physical progress percent-

ages retrieved from the DPRs. However, this traditional method is time-consuming and

needs considerable human effort. Additionally, paper-based reporting cannot instantly

verify three-dimensional (3D) progress status. To overcome these challenges, researchers

have developed various automated progress monitoring methods. From time to time, re-

searchers have investigated various digital technologies, such as Radio Frequency Identi-

fication (RFID), Ultra-Wide Band (UWB), barcodes, digital imaging, laser scanning, and

photogrammetry, for automating the CPM processes [67] in building and infrastructure

projects. Vision-based automated construction progress monitoring through visual data
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analytics has gained massive popularity among researchers and practitioners in the last

couple of decades because of the following reasons: (1) the increasing availability of low-

cost visual data capturing devices, (2) the advancement of graphics processing hardware

technologies, and affordable prices of graphics processing units (GPU) in recent times,

(3) advent of computer vision and computer graphics technologies, and (4) inception of

convolutional neural networks (CNN) for deep-learning-based visual data analytics [68].

The state-of-the-art vision-based progress monitoring methods are categorized into

occupancy-based and appearance-based [100]. In occupancy-basedmethods, as-built real-

ity captured models are compared with as-planned models such as BIMs and their physical

occupancy is assessed in a 3D space. For example, [14, 17] introduced a method for de-

tecting 3D CADmodel elements from point clouds for checking dimensional compliance.

Later [88, 89] used similar methods for schedule monitoring and earned value analysis.

On the other hand, in appearance-based methods, the progress status is inferred by ana-

lyzing the appearance of BIM elements in 2D images.[38] introduced an operation-level

progress monitoring method that relied on appearance-based construction material classi-

fication. The technique was further improved and integrated with the occupancy-based

methods by [37]. Appearance detection in hyperspectral images generated from laser

scans was studied by [5] and [101].[52] used deep-learning-based material classification

for appearance-based construction progress monitoring. More recent studies have also

leveraged extended reality techniques [3], [45], [72], digital twining methods [4], deep-

learning-based 2D [19], [54], and 3D object detection algorithms [43], [99] deep-learning-

based 3D point cloud segmentation approaches [80], [58], [2] and automatic scan-to-BIM

techniques [21] for enhancing the occupancy and appearance-based progress monitor-

ing methods. Although there have been significant improvements in progress detection
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from visual data, some knowledge gaps still hinder its widespread adoption in the con-

struction industry, such as 1) existing methods are more suitable for monitoring element-

level progress (beam, column, slab, wall, floor, etc.) than task-level progress (concrete,

formwork, rebar, painting, plastering, etc.), 2) Determining the percentage completion of

construction activities is still difficult as the state-of-the-art methods report construction

progress in binary form, and 3) the schedule update process still relies on manual inputs

of detected progress. Therefore an improved version of automated CPM is needed to ad-

dress these challenges to monitor the progress of construction activities against project

baseline schedules. These existing methodological gaps are described in detail in the next

sub-sections.

1.2 Problem statement

Three major methodological gaps that need immediate attention from the researchers

are as follows: 1) Lack of methods for activity-level progress monitoring; 2) Lack of

methods for reporting partial completion of progress; 3) Lack of methods for the automatic

schedule update. In the subsequent sections, these are discussed in detail.

1.2.1 Lack of methods for activity-level progress monitoring

The project management body of knowledge (PMBOK) guide suggests dividing the

projects into work breakdown structures (WBS) for better management of the projects.

WBSs are further decomposed into schedule activities for effectively estimating, schedul-

ing, executing, monitoring, and controlling the project work [73]. However, 3D BIMs

used during construction are not often modeled to that detailed level [38]. In such cases,
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while creating the 4D BIM for construction, multiple schedule activities are often linked

to a single BIM element. For that reason, inferring the progress status of individual activ-

ities becomes difficult, and progress monitoring for that element can only be done after

completing all scheduled activities. In Figure 1.1, let’s look at the construction schedule

of wall construction. It consists of 5 sequential activities starting from the tying of rein-

forcement steel. The as-planned BIM available for the construction phase only contains

one element to represent that wall. So, all sequential activities are linked to that ele-

ment for creating the as-planned 4D BIM. However, actual construction at the site takes

place as per the construction sequences followed in the project schedule. As occupancy-

based progress monitoring methods fully rely on geometry modeling, the progress status

of the activities that are not modeled in BIM (e.g., formwork, reinforcement steel) can’t

be inferred using such methods. Few researchers, [38] and [37], tried to overcome such

challenges through appearance-based progress detection. However, in such methods, the

activitymust be 100% completed to be detected during the progressmonitoring. Then only

the activity details can be inferred from the BIM-registered image patches by conventional

machine learning (ML) based construction material classification. Suppose an activity is

partially completed, and the test image patch corresponding to a BIM element contains

the appearance of more than one construction material. In that case, these methods may

not be workable. Figure 1.2 shows one such situation in the example of plastering on a

brick wall.

1.2.2 Lack of methods for reporting partial completion of progress

There can be two possible cases while dealing with activity level progress monitor-

ing. Case 1: As-planned BIM is modeled with enough details to link one schedule activity

5
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Figure 1.1: An example showing many-to-one relationship between project schedule and
BIM

Figure 1.2: An example showing the appearance of multiple materials on a single image
patch
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with one BIM element. Case 2: As-planned BIM has a low level of development (or de-

tail) (LOD), so multiple schedule activities need to be linked to one BIM element. The

requirement for partial completion reporting may arise in both cases because one or more

activities may remain in an ‘in-progress’ state at the time of progress monitoring. The

existing vision-based progress monitoring methods mostly report the progress in binary

forms such as built/ not built [19] and completed/ not completed [38]. So, the progress

status of ‘in-progress’ activities is often not reported. In Figure 1.3, let’s look at the ex-

ample of the construction of a wall with concrete masonry units (CMU). In this case, the

progress reporting through the existingmethods is less useful as the construction activity is

partially completed on the progress monitoring date. The progress status of the activity can

only be reported after the completion of the wall construction. However, recording partial

completion of progress and reporting it in terms of completion percentage is necessary for

effective project control. The same progress percentages are also required for updating the

project schedule. Figure 1.4 shows the screenshot of a popular project scheduling soft-

ware where progress percentages are being recorded while updating the project schedule.

Very few researchers [66], [76] have tried to report progress in the completion percentage.

However, their methods entirely relied on occupancy-based progress monitoring, which is

unsuitable for inferring the activity level progress status. To the best of the author’s knowl-

edge, there is no method to simultaneously identify the activity level progress status and

report partial completion of progress in terms of completion percentage.

1.2.3 Lack of methods for automatic schedule update

Aconstruction progress update is a critical process that involves evaluating the progress

of a construction project and making necessary updates to the timeline. It is essential to
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Figure 1.3: Example showing partial completion of construction on the progress reporting
date

Figure 1.4: Screenshot showing progress percentage requirement for the schedule update

regularly update the schedule to ensure that the project stays on track and meets its goals

within the specified timeframe. Additionally, the update reflects any unforeseen delays or

challenges during the construction process. Accurate and up-to-date scheduling informa-

tion is essential to keep all stakeholders informed, maintain project momentum, and help

ensure a successful outcome. Conventionally, project schedules are updated manually,

with on-site progress reported through paper-based daily progress reports. With the ad-

vancement of visual data analytics techniques, estimating ongoing construction progress

from visual data such as images and videos has become very effective for automated con-

struction progress monitoring [68]. Estimated progress is updated in the project schedule

with the help of an updated 4DBIM [88]. Although this process is more efficient than con-

ventional schedule updates, the availability of a 4D BIM is necessary. 4D BIM creation

requires manually matching BIM elements with construction schedule activities. This

process is time-consuming and demands advanced knowledge of construction engineer-
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ing. Additionally, the schedule-linked models often become outdated after construction

begins. In this situation, project schedules must automatically be linked to the reality

models and extract the task-wise physical progress status required for schedule updates.

However, no such method is currently available for automatically connecting progress and

schedule data.

1.3 Objectives

Digital twin (DT), a high-fidelity digital representation of a physical asset, can moni-

tor, simulate, predict performance, and control the physical system through a bi-directional

data-to-information flow throughout its lifecycle [33]. Digital twins are increasingly be-

ing used across the industries such as manufacturing [46], aerospace [50], healthcare [90],

etc. In construction, DT allows stakeholders to simulate the project’s design, construc-

tion, and operation, enabling data-driven decision-making, improving the performance

and maintenance of the built asset, and monitoring and optimizing the building’s systems

in real time. According to [81], Digital twin construction (DTC) is a newway of managing

design and construction, leveraging the data collected from various site monitoring tech-

nologies. DTC uses BIM, sensing technologies, artificially intelligent functions, and lean

construction practices to provide accurate status information and proactively analyze and

optimize the ongoing design, planning, and production processes. This results in more ef-

ficient construction processes and reduces the risk of delays and errors, improving overall

productivity. Additionally, DTC technology enables better analysis of construction data

and helps to improve the safety, sustainability, and overall performance of buildings and

infrastructures, providing greater value to the stakeholders. CPM, an integral part of the

construction planning and control process, can be significantly improved through the DTC
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implementation.

So, this study aims to propose a novel vision-based progress monitoring method

based on the DTC concept. The main objective of this study is to propose a methodology

for the automatic estimation of activity-wise percentage completion and automatic project

schedule update by linking 3D reality models and construction activities. This objective

is achieved by solving two important tasks:

1. Progress estimation and visualization

2. Progress update in the project schedule

For solving task 1, an Activity-level progress monitoring system (ALPMS) is devel-

oped to report activity-wise completion percentages by taking 4D BIM and site images

as input. The system creates an as-built reality-captured model (point cloud) from input

images using structure from motion (SfM) and multiview stereo (MVS) algorithm and the

model is alignedwith the as-planned 4DBIM in the same coordinate system. Then a digital

twin of the construction project (DTC) is created by integrating BIM, reality captures, and

project schedules to monitor project progress continuously. DTC compares the as-built

model with the as-planned BIM through an occupancy-based method to check whether

the construction activity has been started for an element. Next, a virtual camera parallel

to the BIM element under examination is set up automatically. The camera looks straight

at the element’s largest surface. An orthographic view of that element’s surface is synthe-

sized using projective transformation or the latest computer graphics technique that uses

a neural radiance field (NeRF) for novel view synthesis. Parallelly, a deep learning-based

semantic segmentation model (Mask RCNN) [39] is trained for activity-level progress

reasoning. The synthesized image is then passed through the trained segmentation model,

10

http://dx.doi.org/10.6342/NTU202302333


doi:10.6342/NTU202302333

and activity-wise segmentation masks are created. The progress percentage of a sched-

ule activity is computed by taking the ratio of the mask’s area and the appearance of the

element’s entire face area in the ortho-view image. Finally, the as-planned BIM is color-

coded, and the as-built point cloud is semantically segmented for 3D progress visualization

by projecting the 2D segmentation masks onto the 3D point cloud. The method is vali-

dated in two building construction projects in Taiwan. Four datasets consisting of point

clouds created from site images for different scan dates and 4D BIMs are used for valida-

tion. The method was tested on four case studies comprised of nearly 500 BIM elements.

The method is specifically applicable to building construction projects. There are three

significant contributions from this part of the study.

(a) Activity-level progress monitoring framework, i.e., ALPMS: This framework de-

tects activity level progress status and reports completion percentage progress. Other

methodological novelties include (a) orthographic view synthesis for accurate progress

percentage estimation, (b) deep-learning-based semantic segmentation of images

for activity-wise appearance detection, and (c) 3D progress visualization through

the semantic segmentation of the as-built point cloud.

(b) Semantic segmentation dataset for activity level progress monitoring: Supervised

learning-based deep-learning models require a considerable amount of labeled data

for training. This paper introduces a dataset for the semantic segmentation of con-

struction images based on major construction activities. The data set can be used

for many purposes, including activity-level construction progress monitoring.

(c) Use of Neural Radiance field (NeRF) for novel view synthesis for PM: A realistic

orthographic image of the element’s surface is essential for inferring activity-wise
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progress status. This paper introduces a method that uses a NeRF for synthesizing

photorealistic orthographic views.

For solving task 2, vision-based progress detection results are integrated with project

schedules through Natural Language Processing (NLP). First, semantic information from

construction schedules, such as location, object, materials, and task (LOMT) information

from each activity, is extracted through similar NLP techniques used in Named Entity

Recognition (NER). Parallelly, computer vision algorithms are used to extract semantic

information such as location, object, material, and task (LOMT) from reality models. Us-

ing common information, project schedules and reality models are linked for construction

progress updates. Precisely, given a reality model, it is first positioned in the world co-

ordinate system with the help of 3D BIM (if available) or pre-defined Ground Control

Points (GCP). Next, the location information (L) is inferred from BIM or the GCPs. With

the availability of 3D BIM, objects (O), i.e., building elements (beams, columns, walls,

ceilings, and floors), are detected through occupancy checks. Otherwise, deep learning

(DL)-based point cloud segmentation algorithms are employed to detect them. Tasks (T)

and materials (M), such as pouring concrete, fixing formwork, etc., are identified through

appearance-based segmentation of point clouds or images, and progress percentages of

each activity are estimated. LOMTs from schedule activities are then matched with reality

models’ LOMTs to create a linkage between the schedule and the reality models. Finally,

schedule activities are updated with progress percentages derived from the vision-based

progress detection results. There are two significant contributions from this part of the

study.

(a) Automatic schedule update by linking reality models and construction schedules:
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This study proposes a framework for linking progress information excerpted from

vision-based methods and schedule activities with or without the availability of a

3D BIM.

(b) Use of Large Language Models (LLM) for schedule information extraction: This

study introduces a few-shot learning approach and prompt engineering techniques

to extract semantic information for construction schedules needed for automated

construction progress monitoring.

1.4 Organization of the thesis

The organization of this thesis is as follows: Chapter 2 reviews previous studies re-

lated to vision-based construction progressmonitoring and deep learning-based visual data

analytics; Section 3 describes the proposed progress estimation and visualization method

and its application in real-world construction projects; Section 4 details the Progress up-

date method proposed in this study and its validation through construction case studies; at

the end, Section 5 concludes the study with the hints of potential future research.
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Chapter 2 Literature Review

Research on automated construction progress monitoring has matured with the ad-

vancement and affordable availability of data collection, storage, and processing technolo-

gies in the last few decades. Model-assisted progress monitoring with computer vision-

based data analytics techniques has received wide acceptance in the construction industry.

This section reviews the developments in vision-based construction progress monitoring

methods.

2.1 Vision-based construction progress monitoring

Vision-based progress monitoring methods that rely on model-assisted progress rea-

soning can be divided into two groups based on the level of progress monitoring. 1)

methods that can only check the on-site physical completion of the BIM elements, and

2) methods that monitor the progress of the schedule activities associated with the BIM

elements.

2.1.1 Element-level Progress Monitoring

In element-level progress monitoring methods, as-built site conditions are compared

against as-planned BIMs and the physical presence of the BIM elements at the construction
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site is checked. So, these approaches are suitable formonitoring the progress up to the BIM

element level, such as column, beam, slab, etc. For detecting the elements in the as-built

state, researchers have developed variousmethods from time to time. Thosemethods often

used time-lapse images and 3D point clouds generated through reality capture techniques

such as photogrammetry or laser scanning.

During early research on computer vision-based progress monitoring, [30] detected

as-built elements by superimposing a 4D BIMmodel on time-lapse images.[102] and [98]

used image processing techniques and 4D computer-aided design (CAD) based filtering

for recognizing elements in construction site images. With the advent of deep learning-

based object detection, these image-based element detection methods have improved fur-

ther [19]. [102][102]) used such techniques for monitoringmodular construction progress.

DL-based object detection and tracking were used by [93] for monitoring precast wall con-

struction.

Methods that use reality models follow scan-vs-BIM techniques or scan-to-BIM and

BIM-to-BIM comparison for object detection [15]. In scan-vs-BIM techniques, as-built

point clouds are aligned with as-planned BIM in the same coordinate system, and the

planned elements’ presence in the as-built scene is detected by geometry-based reason-

ing. [16] developed a method for detecting 3D CAD elements in laser scan point clouds.

[30] and [31] introduced methods for detecting objects in image-based point clouds. An

improved object recognition algorithm was proposed by [88], and the same was used for

automated earned value management (EVM). To further automate the progress monitor-

ing methods, a machine learning-based voxel coloring and voxel labeling algorithm was

introduced by [32]. Improvements in object detection accuracy following BIM element

sequencing logic were presented by [18]. Automatic schedule update while progress mon-

16

http://dx.doi.org/10.6342/NTU202302333


doi:10.6342/NTU202302333

itoring was observed in the study by [85]. A progress deviation notification system was

proposed by [66]. [51] proposed a visual and virtual production management system for

proactive project controls.

Scan-to-BIM techniques first segment the as-built point clouds into meaningful re-

gions, detect geometric features and their relationships, and finally create BIM objects

leveraging them. Methods that follow scan-to-BIM techniques in progress monitoring

compare as-planned BIM and as-built BIM for progress assessments. [83] developed

a method for recognizing and modeling structural elements from the 3D data collected

through a stereo vision system. [15] introduced an integrated scan-vs-BIM and scan-to-

BIM approach for the progress monitoring of building mechanical, electrical, and plumb-

ing (MEP) components. [74] proposed an excitingmethod for progressmonitoring through

real-time 3D scans from the camera fitted on workers’ hard hats. A typical scan-to-BIM

approach was adopted by [59] and [44] to detect the progress of reinforced concrete el-

ements. More recent studies have included deep-learning-based semantic segmentation

of the point clouds in the scan-to-BIM workflow [21]. Deep-learning based 3D object

detection methodology was presented by [99]

Beyond image-based or laser scan-based data collection and processing, few recent

studies investigated extended reality options for real-time progress monitoring. For ex-

ample, Kopsida and Brilakis (2020) [45] used a Microsoft HoloLens device to detect the

existence of volumetric objects such as beams, columns, and walls in physical space.

Although these element-level progress monitoring methods were convenient in vari-

ous instances, they were unsuitable for effective schedule control because of activity-level

progress inference limitations. Previous studies have discussed these and highlighted the
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need for activity-level progress monitoring.

2.1.2 Activity-level Progress Monitoring

The progress status of schedule activities associated with BIM elements is inferred in

activity-level progress monitoring methods. Material recognition and classification cor-

responding to the schedule activities and BIM elements in the as-built scene are essential

in the activity-level progress monitoring methods. Initial studies have only focused on

material recognition in construction site images. For example, [104] proposed an ML-

based concrete region identification method. Similarly,[84] proposed another method for

concrete detection by comparing threeML algorithms. Later [27] introduced the construc-

tion material library (CML) with 20 typical construction materials and proposed a novel

ML-based method for detecting construction materials in 200x200 pixel image patches.

With the maturity of material recognition techniques, researchers have focused on

incorporating them in model-assisted progress monitoring workflows. [38] developed an

appearance-based progress monitoring method that checked BIM elements’ physical ap-

pearance from 2D image patches. [38] presented a BIM-integrated construction sequence

ontology for improving activity-level progress monitoring. Later [37] introduced two

more appearance-based procedures: Texture-based reasoning for image-based 3D point

clouds and color-based reasoning for laser-scanned point clouds. Few studies investigated

activity-level progress monitoring in indoor construction scenarios. [36] took a conven-

tional computer vision-based approach to detect the activities of an indoor partition wall

construction. Another indoor construction progress monitoring method was presented by

[47] . BIM-assisted floor tiling activity monitoring was studied by [24]. Researchers

also tried to classify common building materials in hyperspectral images collected from
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terrestrial laser scanners (TLS) [5], [101].

Recent studies have implemented deep learning-based image classification. [52]. [3]

‘ring column finishing activities and Heating, Ventilation, and Air Conditioning (HVAC)

installation activities.

Although existing methods have overcome the challenges of element-level progress

monitoring, they still have some inherent limitations. Completion percentages of activities

are essential information for effective schedule control. However, prevailing methods can

only report the progress status in binary form. In some methods [38], [37], selective im-

age patches of the BIM elements are analyzed for appearance checking. However, those

patches may not always represent the appearance of the whole element. In a real con-

struction scenario, multiple activities may take place simultaneously on the same element,

and the appearance of multiple materials may be observed in a single image patch. Ex-

isting methods have limited usability in such cases. Some earlier approaches have been

developed specifically for certain construction activities [36], [24]. Generalizing them for

different construction scenarios is difficult. The authors highlighted the need for partial

progress monitoring in their previous studies to overcome these challenges [69]

2.1.3 Progress monitoring of partially completed elements and activ-

ities

Few past studies tried to estimate and report the progress of partially completed

building elements or activities. However, unfortunately, none of them are well suited

for activity-level progress monitoring and reporting of partially completed building ele-

ments. Early studies by [88, 89], and [85] focused on updating construction schedules by
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comparing 4D BIM and point clouds. These studies took an occupancy-based approach

to recognize and count completed building elements and later computed the progress per-

centage of a schedule activity by taking a ratio between the number of recognized objects

and the expected objects. This method is workable if, in 4D linking, multiple elements

are linked to one schedule item. However, it’s ineffective in the two cases mentioned in

Section 1.2. Later [66] and [76] tried to estimate the partial completion of each BIM ele-

ment by comparing the number of points and point density in the as-planned point cloud

and as-built point cloud. However, this method can get affected by the completeness of

the as-built point cloud data. As all these previous methods followed an occupancy-based

approach, it faces the limitations of occupancy-based progress monitoring.

A few research focused on detecting task-level completion through a conventional

ML-based image processing approach. For example, [36] studied under-construction in-

door partitions, [24] studied floor tiling tasks to report progress in percentage. One of the

significant drawbacks of these methods is their application is particular to a specific con-

struction task and not easily generalizable for other tasks. Recently, [69] and [97] have

tried to implement an image-segmentation-based approach for operation-level progress

monitoring. However, the underlying assumption of these studies is element face for

which the progress is being detected will always be within a single camera view. In other

words, the face appearance can be represented in a single image. That may not be the case

for all elements in a construction project.
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2.2 Deep-learning-based data analytics in constructionman-

agement

Although researchers discovered the importance of big data, especially visual data

and text data, in constructionmanagement applications almost two decades ago, utilization

of those data was limited to some specific tasks because of the limitations of data analytics

techniques. Widespread applications of big visual or text data in constructionmanagement

were constrained until the adoption of deep learning [68]. Deep learning (DL) is a subset of

machine learning that is largely based on artificial neural networks (ANN) [25]. They use

neural networks with multiple layers to progressively extract higher-level features from

raw input data [49]. The end-to-end learning approach significantly differs from tradi-

tional data analytics methods, which rely heavily on handcrafted features. Extraction and

selection of important features for initiating the traditional data analytics methods require

expert feature engineers and a long trial-and-error process [65]. Figure 2.1 shows the

difference in workflows between traditional methods and DL methods. Deep-learning ap-

plications for solving computer vision (CV) tasks and natural language processing (NLP)

tasks related to construction management are discussed in the subsequent sections.

Figure 2.1: Workflows of the traditional methods (top) and DL-based methods (bottom)
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2.2.1 Knowledge extraction from visual data

In recent years, researchers and practitioners have extensively used DL for ana-

lyzing visual data and inferring valuable information for effective construction manage-

ment purposes. The visual data collected from construction sites are utilized for vari-

ous operations-level management purposes, such as monitoring construction safety [29],

monitoring equipment and worker performance [53, 79], monitoring the progress of con-

struction activities [19], in situ and post-construction quality assessment [55], construction

waste management [96], facilities management [28], and dynamic worksite management

[57]. Various CV tasks such as image classification, object detection, object tracking, pose

estimation, and activity recognition were solved through DL algorithms as an integral part

of these applications. A study by Pal and Hsieh (2021) [68] identified six major fields and

52 subfields of construction management applications through an in-depth review of 142

selected papers. The major application fields included safety management (44%), pro-

ductivity management (24%), facilities management (19%), progress monitoring (5%),

quality management (3%), construction waste management (2%), and other applications

(3%). The percentages in parentheses for each application indicate the proportions of the

entire collection of papers. Figure 2.2 shows a tree-diagram visualization of those appli-

cations.

2.2.2 Information extraction from construction schedules

NLP algorithms help extract information from text data. Construction schedules pre-

pared by experienced construction schedulers are written in natural languages. Applica-

tions of NLP in semantic information extraction from construction schedules are found
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Figure 2.2: DL-based visual data analytics applications in construction management
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promising. For example, Zhao et al. (2019) [103] tried to extract construction knowledge

from project schedules through parts of speech (POS) tagging and named entity recogni-

tion (NER). Amer and Golparvar-Fard (2019) [6] proposed Part-of-Activity (POA) tag-

ging to identify action, object, location, and responsible party from the activity descrip-

tions. Information retrieved from project schedules was further utilized for linking long-

term and short-term project schedules using transformer machine learning models [7].

Logical linking between activities is essential for schedule quality control. Amer et al.

(2022) [8] used the bidirectional long short-term memory (LSTM) model to learn pair-

wise activity sequences. Hong et al. (2023) [40] used a Graph Convolutional Network

(GCN) to identify and understand different activity types and sequences. To achieve this,

they used various input features such as numerical data, text descriptions of activities and

WBS, graphical features, and logic links between the activities. Although schedule infor-

mation extraction through NLP has started gaining importance, very few studies have tried

to use identified schedule information for automated construction monitoring [71, 78].

2.3 Summary

The literature review focuses on vision-based construction progress monitoring and

deep-learning-based data analytics in construction management. Vision-based progress

monitoringmethods are categorized into element-level monitoring and activity-level mon-

itoring. Element-levelmethods focus on comparing as-built site conditionswith as-planned

BIM models to detect the presence of BIM elements. Activity-level monitoring involves

inferring the progress of schedule activities associated with BIM elements. For activity-

level monitoring, material recognition in construction site images has been a key area of

research, and it has been integrated into model-assisted progress monitoring workflows.
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However, existing methods have limitations in reporting partial progress and are often

specific to certain construction tasks.

Deep learning has revolutionized data analytics in construction management, partic-

ularly in analyzing visual and text data and extracting valuable information. Applications

include construction safety monitoring, equipment and worker performance monitoring,

activity progress monitoring, quality assessment, waste management, and facilities man-

agement. Various computer vision tasks, such as image classification, object detection,

tracking, pose estimation, and activity recognition, have been successfully addressed us-

ing deep learning algorithms. Similarly, deep learning is also applied to natural language

processing (NLP) tasks. In construction, an exciting application of DL-based NLP is ob-

served in information extraction from construction schedules, such as semantic informa-

tion and activity sequencing. However, few studies have utilized this extracted schedule

information for automated construction monitoring.

Overall, the review highlights the advancements in vision-based progress monitoring

and the transformative impact of deep learning in construction management data analyt-

ics. However, there is still a need for further research to address the limitations in partial

progress reporting and generalize activity-level monitoring methods to different construc-

tion scenarios. The utilization of NLP-extracted schedule information for automated mon-

itoring also holds promise for future developments.
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Chapter 3 Progress estimation and

visualization

3.1 Methodology: Overview of the activity-level progress

monitoring system (ALPMS)

Based on the task involved, the proposed ALPMS is divided into eight modules:

(1) input, (2) 3D reconstruction, camera pose estimation, and BIM+point cloud registra-

tion, (3) detection of elements under construction, (4) orthographic view synthesis, (5)

dataset preparation for semantic segmentation, (6) progress status detection, (7) comple-

tion percentage estimation, and (8) progress visualization. The methodology adopted in

each phase is described in detail in this section. The overview of the ALPMS is shown in

Figure 3.1.

3.1.1 Input

The ALPMS takes 4D production-level BIM and construction site images as input.

The 4D production level BIM is used to know the as-planned project status at any given

time. It is created by linking schedule activities with 3Dmodel elements. For a project, 4D
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Figure 3.1: Overview of the ALPMS
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BIM creation is generally a one-time effort and is done during the project’s initial phase.

Project schedules prepared in commercial project scheduling software are exported in the

supported file format of the BIM coordination tool, and the coordination tool links the

schedule activities and the 3D model elements by querying their task ids and element

ids, respectively. Based on the model element’s LoD and the project schedule’s WBS

level, linkages can be of three types, as shown in Table 3.1. In a 4D BIM, the activities

associated with each element can be represented through a Gantt chart. As-planned model

for a specific date is derived by filtering the model elements by their start or finish dates.

Table 3.1: Linkage scenarios for various LoD and WBS level

Sl. No. Linkage type Situation
1. One-to-one linkage between the ac-

tivity and the element
LoD of the element and WBS level
matches with each other

2. Multiple activities linked to one
model element

High WBS level but low LoD of el-
ement

3. Multiple elements linked to one ac-
tivity

Low WBS level

The ALPMS can take construction site images or videos captured by any device,

including smartphone cameras, commercial digital cameras, drones, cameras with spher-

ical 360-degree lenses, or fisheye lenses as input. Given a video input, the system de-

tects the keyframes in the one-second interval and extracts them as image sequences. The

360-degree spherical images are first converted into equirectangular photos through the

internal image processing pipeline. Further, each equirectangular image is mapped as a

3D cube, and six perspective images of top, bottom, right, left, front and back faces are

extracted. Similarly, fisheye camera images are also preprocessed to remove the distor-

tion before using them in the next module. Commonly 360-degree cameras and fisheye

cameras are used for interior construction monitoring for their higher field of view (FOV);

alternatively, drones are used for capturing exterior construction data.

29

http://dx.doi.org/10.6342/NTU202302333


doi:10.6342/NTU202302333

3.1.2 3D reconstruction, camera pose estimation, andBIM+point cloud

registration

This module uses an SfM-MVS-based 3D reconstruction pipeline to create a reality

model. The SfM algorithm uses overlapping images from different viewpoints of the same

construction site as input. It outputs a sparse as-built point cloud model of the construction

site and the intrinsic (focal length, optical center, image sensor format) and extrinsic (ro-

tation and translation) camera parameters for all input images. The SfM pipeline detects

and matches features in the corresponding images and uses image registration, triangula-

tion, and bundle adjustment to incrementally reconstruct the sparse 3D scene [1]. Later

MVS pipeline computes depth maps and normal maps from the SfM output and produces

a dense point cloud of the 3D scene by fusing them from multiple images [82]. Figure 3.2

shows the typical 3D reconstruction pipeline.

Figure 3.2: A typical 3D reconstruction pipeline (Schönberger and Frahm 2016)

The reality model and camera poses generated from the 3D reconstruction are up to

scale and generally located in an arbitrary 3D coordinate system. First, the as-planned

4D BIM in industry foundation class (IFC 2x3) format and the as-built point cloud model

with corresponding camera poses are imported into an open-source 3D computer graphics

software. A two-step registration process is followed to align them in the same coordinate

system. In the coarse registration step, three or more corresponding points (vertices) are

selected manually between the as-planned BIM and the as-built point cloud. The point
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cloud is then roughly scaled and transformed into BIM coordinate system by solving the

seven degrees of freedom (DOF) similarity transformation. The iterative closest point

(ICP) algorithm [61] is used in the fine registration step to register the BIM and point cloud

closely. Before fine registration, the BIM was converted into an equivalent point cloud

by sampling points around its surfaces. The point cloud was cleaned up by applying a

statistical outlier removal. In statistical outlier removal, the average distance di from point

Pi to its k nearest neighbors in the 3D point cloud is computed. The point is eliminated

if the average distance d to its k neighbors exceeds the threshold T . The threshold is

calculated using Equation 1, where α is a standard deviation multiplier, µd and σd are the

mean and standard deviation of distances di.

T = µd + α ∗ σd (1)

At the end of the registration process, a 4x4 fine transformation matrix, a combi-

nation of rotation, scale, and translation, is obtained. Initial camera positions are then

transformed into the BIM coordinate by applying the fine transformation matrix.

3.1.3 Detection of elements under construction

This module checks whether construction has started for a BIM element through a

simple occupancy-based method. Finely registered BIM and point cloud models are fed

into algorithm 1 to get the element e wise construction status and the number of points

present in the element’s bounding box npce . If npce exceeds a threshold number n per

square meter surface area, the element is considered under construction and labeled as

“in progress＂; otherwise labeled as“no progress.＂, The value of n is set experimentally.
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To accommodate the registration error and the presence of the temporary structure such

as formwork around the element, the element’s bounding box dimensions are increased

by a threshold value ϵreg. Points inside the elements’ bounding boxes are retained and

counted. Finally, a filtered point cloud within the BIM’s boundary is obtained, as shown

in (the example in the experiment section). This filtering removes the unnecessary points

beyond the region of interest and enhances the system’s efficiency. Elements marked as

“in progress＂are only passed to the subsequent modules for checking the activity level

progress status.

Algorithm 1: Detect elements under construction
Input: A BIM and a point cloud pc
Output: number of points inside a BIM element’s bbox npce

Construction status of the element
1 foreach e in BIM do
2 co← coordinates the bounding box (B)
3 Compute cog of B: 1/8

∑
co

4 Compute extent of B : dimensions of e
5 Threshold: registration error (ϵreg)
6 B with threshold (B′): dimensions of ei + ϵreg
7 Point cloud inside B′: pce = pc < B′

8 Count points inside B′: npce

9 if npce > n points/m2 then
10 e← “in progress”
11 return pce

12 Select e for activity-level progress detection
13 else
14 e← : “no progress”
15 end
16 end

3.1.4 Orthographic view synthesis

In practice, activity level progress status is determined by looking at the appearance

of the elements’ surfaces. Viewing elements’ surfaces from an orthographic position is

necessary for accurate progress percentage measurement [97]. Oblique views may often
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cause measurement errors [47]. However, it is impractical and often impossible to collect

orthographic views of all surfaces of all the elements present in the as-planned BIM during

reality capture. So, in this study, we propose two approaches for synthesizing orthographic

views of element faces. These two approaches address two scenarios that may occur while

using ALPMS, as shown in Table 3.2.

Table 3.2: Scenarios and proposed approaches for orthographic view synthesis

Scenario. Details of the scenarios Proposed approach
1. Element’s face is entirely visible in at least

one camera viewwithout dynamic occlusion.
Projective transformation of a
selected camera view

2. Element’s face is not entirely visible in one
camera view because a. reality capture path
passes very close to that face; b. the face
area is too big to be accommodated in a sin-
gle camera view; c. the face is occluded by
dynamic occlusions in k camera views.

Novel orthographic view syn-
thesis using Neural radiance
field (NeRF)

3.1.4.1 Projective transformation of a selected camera view

In this approach, the system checks whether the face f of an element e in the BIM

is entirely visible from any camera c that belongs to the reality capture C. Algorithm 2

helps to find the best camera θf that captures the element’s face entirely within their FOV.

For this purpose, first, each camera cast a ray towards the center of the face Of , cameras

whose ray hits the target are considered for the next check. Next, vertices Vf of face f are

back-projected from the world coordinate system (WCS) to the camera’s pixel coordinates

(PCS) using Equation 2.


u

v

1

 = Kθ[RθT θ]



X

Y

Z

1


[RθT θ] =

R3∗3 T3∗1

03∗3 1

 (2)
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This equation transforms any point (X,Y, Z) in WCS to its equivalent pixel coordinate

(u, v) by applying an 11 DOF camera projection matrixKθ[RθT θ].

Algorithm 2: Camera selection
Input: Elements e ∈ BIM ; Cameras c ∈ C
Output: θf : Selected camera corresponding to each face of each element in

BIM
1 foreach element e in BIM do
2 foreach face f in e do
3 Of ← center of f
4 V f ← vertices of f
5 cf : list of selected cameras corresponding to f
6 foreach camera c in C do
7 η ← 0 : number of vertices within camera view
8 Cast a ray from c to Of

9 if ray hits Of then
/* Check if the vertex is within camera FOV */

10 foreach vertex v in V f do
11 v(u, v)← back project v to image plane of c
12 if v(u, v) < c(u, v) then
13 η ++
14 end
15 end
16 if η = count of V f then
17 cf ← +c // append c in cf

18 area(f)c ← Compute area of f in c camera view
19 else
20 Apply NeRF-based solution
21 end
22 end
23 end

/* Choose top k cameras and sort based on area(f)c */
24 foreach selected camera ck in cf do
25 Check dynamic occlusion
26 if f is not occluded in ck view then
27 area(f)ck ← Compute area of f in ck camera view
28 end
29 θf ← arg max all area(f)ck
30 Apply projective transformation
31 end
32 return θf

33 end
34 end

Here 3 DOF rotation Rθ and 3 DOF translation T θ are represented by an extrinsic
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camera matrix [RθT θ], and the 5 DOF intrinsic camera matrix is defined asKθ [86]. The

back-projection process is illustrated graphically in Figure 3.3.

Figure 3.3: 3D object’s back projection to the pixel coordinates of a camera

The real image taken by the camera is checked for dynamic occlusion if all the back-

projected vertices ∀v(u, v) are seen within the image boundary c(u, v). Here dynamic

occlusion refers to the occlusion caused by moving objects on the construction site, such

as workers and machines. It is assumed that the presence of this type of occlusion will

differ from camera to camera because of their moving nature. The reality model’s depth

map and as-planned BIM’s depth map are compared for the dynamic occlusion checking.

Region of interest (ROI) areas are cropped from the depth maps for pixel-by-pixel depth

analysis. ROI is the image area covered by the back-projected vertices in PCS. In case of

difference between depths exceeds a threshold, the respective camera image is considered

occluded; hence the camera is rejected. The face area in each camera of k number of top

selected cameras is computed. The camera θf with maximum area coverage is chosen for

projective transformation. In case no suitable camera is found, the system prompts for

NeRF based solution.

A virtual cameraΘ is added to the 3D scene for orthographic view synthesis through

projective transformation. Algorithm 3 transforms the image taken from the selected cam-
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era θf into an ROI cropped ortho view Πf of face f . Virtual camera is placed program-

matically at the center of the face f at a distance of df in the normal direction of f to

look at the face orthographically. The camera-to-face distance df is computed to fit the

diagonal length of the face into the vertical sensor height of the camera. Next, the face

vertices Vf are back-projected to the pixel coordinates of camera θf and θ, and an 8 DOF

homography matrix Hf is computed by mapping the corresponding vertex coordinates in

PCS. Finally, the actual image taken by θf is transformed into an orthographic view by

applying the homography matrix Hf and the area within the ROI is cropped to get Πf .

The projective transformation mechanism can be seen in Figure 3.4.

Figure 3.4: Projective transformation of an image

3.1.4.2 Novel orthographic view synthesis using Neural radiance field (NeRF)

The ALPMS adopts a NeRF-based approach when the above process fails to find a

suitable camera in the reality capture plan for projective transformation. This situation is

evident when the reality capture path passes very close to the element’s face, if the face is

too large to be accommodated in a single camera view in the reality capture, or if the face
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Algorithm 3: Orthoview synthesis by perspective projection
Input: Face f ∈ element e

Selected camera θf
Virtual camera Θ

Output: Πf : ROI cropped orthoview of face f
1 foreach face f in e do
2 Of ← center of f
3 V f ← vertices of f
4 N̂ f ← Normal of f

/* place Θ at the center of f at a distance df */
5 df = Df×FΘ

hΘ // Df : diagonal length of f; FΘ & hΘ : focal
length and sensor height of Θ

6 Move Θ to Of to df × N̂ f

7 V f
Θ (u, v)← back-projected V f on image plane of Θ

8 V f
θ (u, v)← back-projected V f on image plane of θf

9 homography matrix Hf ← Projective transformation between V f
Θ (u, v) and

V f
θ (u, v)

10 Orthoview image πf ← Hf . image taken from θf // Transform the
image taken from θf by applying Hf

11 Πf ← Crop πf inside the boundary of V f
Θ (u, v)

12 return Πf

13 end

is occluded in a k number of selected camera images.

NeRF is a fully-connected neural network that can generate novel views of complex

3D scenes given a sparse set of 2D input images. A novel view indicates a photorealistic

rendered image of the 3D scene generated from any arbitrary camera location. In NeRF

method, a 3D scene is represented as a 5D vector-valued function. It takes 3D spatial

location (x, y, z) and 2D viewing direction (θ, ϕ) as input and outputs the emitted color (r,

g, b) and volume density (α) while passing through a multilayer perceptron (MLP). The

MLP comprises nine fully connected (FC) layers of 256 channels. A non-linear ReLU

activation layer connects two consecutive FC layers. The network architecture of a NeRF

model is shown in Figure 3.5.

View synthesis from a given camera follows four steps to generate a neural radiance
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Figure 3.5: Network Architecture of the NeRF model [62]

field, as shown in Figure 3.6. (a) A ray from the camera marched through the pixel’s posi-

tion and the 3D scene to generate a sampled set of 3D points. (b)Those points’ location and

viewing directions are inputted to the MLP to produce colors and density corresponding

to those points. (c) A classical volume rendering technique is adopted to accumulate the

color and densities into a 2D image. (d) Finally, the scene representations are optimized

by minimizing the loss between the synthetically generated image and the original image.

Further, the quality of the output image is improved by applying positional encoding γ(x)

and hierarchical volume sampling [62]. Although initial NeRF implementation [62] was

very costly to train and evaluate, a recent one [63] has reduced the time significantly from

1-2 days to a few minutes by introducing multiresolution hash encoding. NeRF imple-

mentation in this study follows the method suggested by [63]. Finally, The NeRF model’s

performance is evaluated by image quality assessment metrics named peak signal-to-noise

ratio (PSNR) and structural similarity index measure (SSIM). Higher PSNR and SSIM

values indicate better quality of image synthesis.

For training a NeRF model, a collection of input images and their corresponding

camera intrinsic and extrinsic parameters are needed. Once the face f of an element eB
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Figure 3.6: Overview of the NeRF-based view synthesis process [62]

that requires a NeRF-based solution is identified, algorithm 4 finds cameras that capture

f partially or fully in their FOV. Each camera in the reality capture casts a ray towards

their respective view direction; if the ray hits the target face, the camera is selected and

included in the NeRF training camera set. A NeRF model M f is trained using the real

images taken by those selected cameras and their camera parameters. A collection of

orthographic views πf
NeRF along the face f is synthesized from the trained NeRF model

M f through volumetric rendering. The virtual camera θ is programmatically placed at a

distance of 1.5 m from the face’s lower left vertex to look at the face orthographically.

The camera-to-face distance of 1.5 m is determined experimentally. The camera moves

horizontally and vertically, generating (nf
v ∗ n

f
h) number of orthographic views π

f
NeRF .

Algorithm 4 computes the camera’s step size in both directions considering a 30% overlap

between consecutive views. A case of a large element whose face cannot be fitted entirely

in a camera view is illustrated in Figure 3.7. The cameras in orange color represent the

cameras being used for NeRF training. And the camera in the lower left corner is the

ortho view camera that traverses along the face. The rendered ortho views πf
NeRF may

also contain images of objects in the 3D scene behind the target face. Before progress

status detection, the target face region is cropped out from these views through binary

ROI masks generated from the as-planned BIM.
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Algorithm 4: Orthoview synthesis by NeRF
Input: Face f ∈ element eB that requires NeRF-based solution

Virtual camera Θ
Cameras c ∈ C

Output: πf
NeRF : A set of orthoview images of face f

1 foreach face f in eB do
2 cf : list of selected cameras corresponding to f
3 foreach camera c in C do
4 Cast a ray from c towards its view direction
5 if ray hits f then
6 cf ← +c // append c in selected camera list
7 get camera pose of c
8 end
9 end
10 Train a NeRF ModelM f using images and poses of cf

/* Move Θ along f and synthesize a set of orthographic
views */

11 Lvf ← lower left vertex of f
12 N̂ f ← Normal of f
13 df ← average dist. of training cams // distance between f and Θ

14 base←Move Θ to Lvf to df × N̂ f // place Θ at lower left
corner at a distance df m from f

15 Camera coverage CCΘ = df×hΘ

FΘ // hΘ & FΘ : sensor height and
focal length of Θ

16 Overlap← overlap between two consecutive images
17 Step← 1−Overlap

/* Compute number of frames in horizontal nf
h and vertical

nf
v direction */

18 nf
h = Lf/Step +1 ; nf

v = Hf/Step + 1 // Lf & Hf : length and
height of f

19 while i < nf
v do

20 while j < nf
h do

21 Synthesize orthographic view image F f
ij from NeRF modelM f

22 πf
NeRF ← +F f

ij // append F f
ij in πf

NeRF

23 Move Θ one Step in horizontal direction
24 end
25 base + Move Θ i Step in vertical direction
26 end
27 end
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Figure 3.7: Example of camera setup for NeRF-based ortho view synthesis

3.1.5 Dataset preparation for semantic segmentation

For detecting the progress status from the ortho-view images of an element’s face,

ALPMS leverages the semantic image segmentation method. This method clusters im-

age pixels that belong to the same class. Achieving this task through supervised learning

requires a set of labeled training images. In such a labeling process, parts of an image

that belong to a class are masked with a polygon. In this case, these classes are construc-

tion materials that represent a specific construction activity. So far, no dataset has been

publicly available for construction activity-based semantic segmentation. So, during this

study, we have prepared a construction image segmentation dataset by labeling construc-

tion activities with polygon masks. Open source application LabelMe [42] is used for

image annotation with polygons. The dataset contains 2,458 images captured from multi-

ple building construction sites through UAVs, 360-degree-cameras, and fisheye cameras.

Six perspective images extracted from each 360-degree camera image are annotated, as

shown in Figure 3.8. Fisheye camera images are undistorted first and then annotated
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for dataset preparation. These images are annotated with six construction material classes

representing six different construction activities. Four of these activities, such as concrete,

formwork (wooded and aluminum), reinforcement steel, and steel structure, are related to

structural work. Two other activities, wall and floor tiles are related to finishing work.

Sample annotations are shown in Figure 3.8.

Figure 3.8: Sample annotations of dataset images

3.1.6 Progress status detection

For progress status detection in ortho view images, ALPMS uses a mask region-

based convolutional neural network (Mask R-CNN). Mask R-CNN is chosen because of

its high accuracy and efficiency than other image segmentation models [97]. The Mask

R-CNNmodel consists of 5 parts: a backbone, a region proposal network (RPN), a region

of interest alignment layer (ROI Align), a class prediction and bounding box regression

module, and a mask generation module. The network architecture is shown in Figure 3.9.
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The backbone is the primary feature extractor. In this study, ResNet101 is chosen as the

backbone. Once an image is inputted, it passes through the different layers of ResNet101

and turns into a feature map. RPN proposes the regions where a class object may exist

in the feature map. The ROI Align layer extracts feature vectors from the RPN proposed

feature map regions and turns them into a fixed-size tensor for further processing. The

class prediction and bounding box regression module is a fully connected (FC) layer that

predicts the class ID and the bounding box from the ROI-aligned feature vector. The

mask generation module consists of a series of transpose convolutional and convolutional

layers. This module generates predicted binary masks for each class detected in the class

prediction module.

Figure 3.9: Network architecture of Mask-R-CNN

The transfer learning method is adopted to finetune and train a pre-trained Mask R-

CNN model for detecting five activity classes and a background class. The finetuning

process changes different hyperparameters, such as backbone architecture, optimizers,

learning rates (LR), LR schedules, bach size, and epoch size. The dataset is divided into

training, validation, and testing with a 70:20:10 ratio. A set of evaluationmetrics evaluates

the semantic image segmentation model’s performance on the test dataset. These metrics

are mean intersection over union (mIoU), mean average precision (mAP), and precision-

recall curve (P-R curves). One may refer to [68] for further details on DL model training
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and evaluation. Ortho view images synthesized from the previous module are fed into the

trained Mask R-CNNmodel to extract color-coded masks representing different construc-

tion activities in the image.

3.1.7 Completion percentage estimation

A rule based-approach is adopted to estimate the activity-level completion percent-

age. The progress status detection module generates color-coded masks for each activity

appearing on the element’s face. This module finds the latest ongoing activity on the face

through precedence relationships. Finally, the completion percentage δeact of the activity

is estimated by Equation 3.

δeact =

∑
Area(mask)act

Area(face)e
× 100% (3)

This equation calculates the percentage of the element’s face covered by the total area of

masks corresponding to that activity by taking a ratio between the summation of mask

area in pixels to that of total face area in pixels.

For different progress monitoring scenarios, a completion percentage estimation rule

is set, as shown in Figure 3.10. For outdoor monitoring, the progress percentage of the

latest activity associated with an element is only estimated from the appearance on the

outer face of the element. In the case of indoor construction monitoring, elements can be

categorized into two types: Inner and outer elements. Activity progress is estimated on

the inner largest of the outer elements on the two largest faces of an inner element. If both

faces of an inner element have the same ongoing latest activity, the progress percentage is

calculated as the average progress on both faces. Alternatively, the latest and preceding
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activity progress is recorded separately if different activities are in progress on two faces.

Figure 3.10: Rule-based progress estimation

ALPMS can easily calculate the activity level progress percentage for different link-

age types used in a 4D BIM. Table 3.3 shows the formulae for the same. While type A and

type B progress can be calculated directly, progress for type C can be derived by taking the

mean progress of the activity across all elements present in the as-planned BIM. Progress

percentages of activities associated with the building elements are then exported into a

spreadsheet. These percentages can be used for schedule updates, look ahead planning

and delay analysis. However, schedule update is beyond the scope of the present study.

Table 3.3: Completion percentage estimation for different 4D linkage types

Type Linkage Progress percentage calcu-
lation

A One-to-one linkage between the
activity and the element

Activity progress = δeact

B Multiple activities linked to one
model element

Latest activity progress =
δeactlatest

C Multiple elements linked to one
activity

Activity progress =
1/n

∑
δeiact
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3.1.8 Progress visualization

Progress visualization on a 3D model helps to understand the project status instantly.

Visualization results help project managers identify and focus on areas that need attention.

Managers can resolve constraints or deploy additional resources to speed up the progress

in slow-progress regions. The last module of ALPMS helps visualize the activity-wise

progress status on the 3D as-planned model and the as-built point cloud. The as-planned

model’s elements are color coded with the traffic signal metaphor to show the progress

status. Elements with ongoing latest activities similar to the planned schedule are col-

ored with green, elements with preceding activities are colored with amber, and the ‘no

progress’ status is highlighted with red. An example is shown in Figure 3.28, in the

experiment section.

Additionally, the as-built point cloud is classified with activity level progress infor-

mation. All images of reality capture are passed through the image segmentation network,

and activity-wise color-coded masks are generated. Pre-computed depth maps and the

camera poses from the 3D reconstruction module are used to project the 2D masks onto

the 3D point cloud; thus, a semantically segmented as-built point cloud is generated. The

process for semantic segmentation of point cloud is shown in Figure 3.11. An example

of a case study can be seen in Figure 3.29. This study uses the segmented point cloud for

progress visualization only.

Figure 3.11: Semantic segmentation of the point cloud
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3.2 Experiments

3.2.1 Input data

TheALPMSwas tested in two construction projects in Taiwan to validate themethod-

ology. Project A is an educational building construction project within National Taiwan

University, and Project B is an office building construction project in Taipei. Rendered

3D views of these buildings are shown in Figure 3.12. These two projects were chosen

based on their project completion status. While structural work was in progress in Project

A, Project B was in the finishing-work stage. Four case studies were conducted to test the

performance of the ALPMS system for different progress monitoring scenarios. These

monitoring scenarios include outdoor, indoor without the roof, complete indoor, and in-

door at the balcony. The illumination condition for the first two cases was brighter than the

others, whereas the complete indoor condition was relatively the darkest. Three different

types of cameras: UAV, 360-degree cameras, and fisheye cameras, were used for reality

capture. Video data were collected from the construction sites and used as input to the

ALPMS system. The system further processed the video and extracted overlapping image

frames per second and six perspective images of 600 x 600 size from each 360-degree

image. The details of four case studies are given in Table 3.4.

Figure 3.12: Rendered 3D views of the projects: Left- project A and Right- project B
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Table 3.4: Details of the case studies

Case
Study

Construction
Status

Monitoring
scenario

Camera Type Image
Frames

Perspective
Images

A_1F Structural
Work

Indoor –w/
roof

360-degree 280 1680

A_3F Structural
Work

Indoor–w/o
roof

360-degree 1155 6930

A_4F Structural
Work

Outdoor UAV 665 —

B_3F Finishing
Work

Indoor - Bal-
cony

fisheye 483 —

The BIM used in the construction phase and the project schedules prepared in com-

mercial scheduling software were received from the contractors. The process described in

Section 3.1.1 was used to create 4D BIMs. Project A’s 4D BIM is shown as an example in

Figure 3.13. The 4D BIMs in the IFC format were exported and used for model-assisted

progress monitoring in further steps.

Figure 3.13: An example of 4D BIM creation

3.2.2 3D reconstruction, registration, occupancy detection

Module 2 of ALPMS created dense point clouds and estimated camera poses from the

input images using the SfM-MVS-based 3D reconstruction method described in Section

3.1.2. Further, 4D BIMs and as-built point clouds were registered in the same coordinate

system using the coarse-to-fine registration method. During fine registration, BIMs were

converted into equivalent point clouds by sampling 500 points/ mm2 of surface area. Also,

as-built point clouds were cleaned using statistical outlier filtering. Six nearest neighbor

points were considered for estimating the threshold by Equation 1, and the standard devia-
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tion multiplier α was set as 1. These values were tuned to get the point cloud with optimum

point density. The registration process generated a 4x4 transformation matrix that helped

to superimpose the BIMs and point clouds and transformed the cameras into as-planned

models’ coordinates. The BIM+Point cloud Registration registration errors for four case

studies are shown in Table 3.5. BIM in IFC format, the registered point clouds, cameras,

and images corresponding to each camera were hosted, visualized, and processed in an

open-source 3D computer graphics software [13].

Table 3.5: BIM+Point cloud registration error

Case
Study

BIM+Point cloud
Registration error

A_1F 1.89 cm
A_3F 2.99 cm
A_4F 1.61 cm
B_3F 1.08 cm

The outcome of the processes described above is illustrated graphically in Figure

3.14. Each column in this figure represents a case study. The first row shows the sample

of input images for image-based 3D reconstruction. In the second row, reconstructed

point clouds are shown. 4D BIMs are shown in the third row. The registered BIM and

point cloud models can be seen in the 4th row of the image. Camera positions in the

BIM coordinate are displayed in the fifth row. And the last row shows the samples of one

camera view from each case study where the BIM, point cloud, and the corresponding real

images can be seen together. The cameras and their related real images were further used

for orthographic view synthesis.

Elements in the as-planned 4D BIMs were checked through an occupancy-based

method to confirm that construction had started for a particular element. The outcome of

this occupancy check guided the ALMPS to only focus on those elements that are under

construction. The relevant method is explained in Section 3.1.3. Each element’s bound-
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Figure 3.14: 3D reconstruction and BIM+point cloud registration: First row- input im-
ages for reconstruction; second row- reconstructed point clouds; third row- as-planned
4D BIMs; fourth row–registered BIM+point clouds; fifth row- camera positions in BIM
coordinates; and sixth row- registered image+BIM+point clouds
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ing boxes were increased with a threshold to accommodate the registration errors and the

presence of temporary structures. For case studies, the threshold value varied between 0

and 10 percent higher than the registration errors, and an appropriate value of ϵreg was set.

The in-progress status of an element was determined by counting the number of points

inside the element’s bounding box. The element was considered under construction if the

count exceeded 1000 points/m2 [19]. Finally, a filtered point cloud was generated for

each case. The filtered point cloud of the A_3F case for different ϵreg is shown as an

example in Figure 3.15. The element-wise bounding boxes are shown in blue color. In

the A_3F case study, with ϵreg = 3cm, all elements’ presence in the reality model could be

checked accurately.

Figure 3.15: Filtering for occupancy check with different ϵreg values: left: ϵreg. = 0 cm
; and right: ϵreg. = 3 cm

3.2.3 Orthographic view synthesis

3.2.3.1 Projective transformation of selected camera view

For elements that fit the criteria for orthographic view synthesis by projective trans-

formation, the method described in the first part of Section 3.1.4 was used for processing.

An equivalent orthographic image of the element’s face was generated by applying pro-

jective transformation on a selected camera image. In case the element’s face was visible

from n number of camera views, only the first five images where maximum face cov-

erage was observed were selected for dynamic occlusion checking. Manually captured
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360-degree images also capture the person who holds the camera. The target element’s

face gets occluded by the person’s appearance in a few camera images. The dynamic

occlusion checking algorithm eliminated such camera views. Finally, an image with no

dynamic occlusion was selected for projective transformation. By fixing the number five,

cameras close to the elements were only considered. The appearance of the element’s

face gets distorted in far-away cameras. Also, chances of occlusion increase with higher

element-to-camera distance. Some examples of orthographic view synthesis by the pro-

jective transformation method are shown in Figure 3.16. In this figure, each row repre-

sents one example. The first and second column of the figure shows the element’s face

position in the selected camera view and the ROI cropped image of the element’s face

in the selected image. The view from the virtually placed orthographic camera is shown

in the third column. And the last column shows the equivalent orthographic view of the

element’s face.

3.2.3.2 NeRF-based orthographic view synthesis

In case orthographic view synthesis through projective transformation was not fea-

sible, a NeRF-based approach was taken for novel view synthesis, as explained in the

second part of Section 3.1.4. For training a NeRF model, two different methods were

tested. In the first case, a NeRF model was trained with all the images and camera poses

belonging to a reality capture. In the other case, individual models for individual elements

were trained with images and camera poses corresponding to that element. In the case of a

particular element-wise model, the number of input images varied from 10 to 200 based on

the element’s size, shape, and position in the 3D scene. The total number of rays marched

through an imagewas equal to the image’s height multiplied by the width of the image. For
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Figure 3.16: Orthographic view synthesis through perspective projection: First column-
element’s face in the selected camera view; second column- ROI cropped selected camera
image; third column- element’s face in the virtual camera view; fourth column –ROI
cropped orthographic view of the element’s face
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example, in the case of a 600x600 image number of rays marched was 3,60,000. During

training and validation, 1024 rays were processed in a batch, and 64 points were sampled

along each ray. All models’ outcomes were checked by visually comparing a ground truth

image and a synthesized image and by image reconstruction assessment metrics such as

PSNR and SSIM. Each model was trained for 20,000 iterations. The time required for

training using the method proposed by [63] was between 2 to 5 minutes on a server com-

puter with a Linux operating system, 128-gigabyte memory, and 24-gigabyte NVIDIA

RTX 3090 graphics processing unit (GPU). For generating the orthographic views from

the NeRF model, the virtual camera was placed at different distances from the element’s

face, and the quality of the synthesized images was checked. The distances varied from

0.5m to 3m were tested. An example of NeRF-generated orthographic images is shown in

Figure 3.17. The top row in the figure shows the element’s position in the 3D view, and

the bottom row shows the orthographic views of the element’s inner face.

Figure 3.17: Orthographic view synthesis using NeRF: Top- 3D view of the element,
bottom–orthographic views in 16 frames
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3.2.4 Deep-learning-based semantic segmentation

For progress status detection through semantic segmentation, a deep-learning model

Mask RCNN was chosen because of its higher accuracy than its peers. The transfer learn-

ing approach was adopted to train, validate and test the model with our custom dataset.

The mask-RCNN model’s last layer was modified, and the backbone architecture was

altered to customize it for detecting construction activity classes: concrete, formwork,

reinforcement steel, steel structure, wall tiles, and floor tiles. The dataset was split into

the train, validation, and test data, with 1723, 490, and 245 images. The model was fine-

tuned with six sets of hyperparameters, as shown in Table 3.6. The hyperparameter tun-

ing included changing the backbone architecture, optimizers, learning rate (LR), and LR

schedules. Four different backbone architectures with different depths such as ResNet-

18, ResNet-34, ResNet-50, and ResNet-101, were tested for feature detection. Different

neural network depths are tested because the deeper network often may cause overfitting.

The ResNet models were pre-trained on Microsoft’s common object in context (COCO)

dataset and finetuned during segmentation model training. The model was trained for 100

epochs for each hyperparameter setting. During the training, one epoch’s training followed

one validation round, and ten images were processed in a batch. Data augmentation was

applied to the training data to bring variability and avoid overfitting. Augmentation meth-

ods included horizontal and vertical flip, random rotation, random cropping, and random

photogrammetric distortions (change of brightness, contrast, hue, and saturation).

Optimizer plays a vital role in deep-learning model training. It changes network

weights and learning rates to reduce the losses. In this study, three popularly used opti-

mizers: Adam, SGD with momentum, and Adam with weight decay (AdamW), are tested
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Table 3.6: Hyperparameter settings

Hyper -
parameters

R18
_adamw

R34
_adamw

R50
_adamw

R101
_SDG

R101
_adam

R101
_adamw

Backbone ResNet-
18

ResNet-
34

ResNet-
50

ResNet-
101

ResNet-
101

ResNet-
101

Optimizer AdamW AdamW AdamW SDG with
Momen-
tum 0.9

Adam AdamW

Learning
Rate (LR)

0.00005 0.00005 0.00005 0.0001 0.0001 0.00005

Weight
Decay

0.005 0.005 0.005 0.0005 - 0.005

LR Sched-
uler

Reduce on
plateau:
factor 0.75
Patience:
3 epochs

Reduce on
plateau:
factor 0.75
Patience:
3 epochs

Reduce on
plateau:
factor 0.75
Patience:
3 epochs

Reduce
10x per 25
epoch

Reduce
10x per 25
epoch

Reduce on
plateau:
factor 0.75
Patience:
3 epochs

Epochs 100 100 100 100 100 100
Batch Size 10 10 10 10 10 10

in combination with various initial learning rates and learning rate schedules. Previous

studies have mainly used the Adam optimizer for its faster convergence rate than Stochas-

tic gradient descent (SGD). However, the solutions obtained from Adam are not always

generalizable [34]. That means themodel performs less accurately when applied to the test

data. On the other hand, the improved version of Adam, called AdamW, which includes a

weight decay in its algorithm, performs much better in generalizability and convergence

[56]. Weight decay is a form of regularization that helps to reduce the chance of over-

fitting. For the cases where the AdamW optimizer was used, the initial learning rate was

set as 0.00005. The learning rate scheduler was introduced so that when the gradient

reaches a plateau and the validation loss does not reduce for three consecutive epochs, the

LR will be reduced by a factor of 0.75. Similarly, for Adam and SDG with momentum,

the initial LR value was 0.0001, and the LR scheduler reduced it ten times after every 25

epochs. During training, how learning rate values were changed in every epoch is shown

in Figure 3.18. The deep-learning models were developed using the PyTorch framework
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and trained on a server computer with a Linux operating system, 128-gigabyte memory,

and 24-gigabyte NVIDIA RTX 3090 grapics processing unit (GPU).

Figure 3.18: Changes in learning rates per epoch

3.3 Results and discussions

The following section discusses the performance of NeRF models, the semantic seg-

mentation model, and the overall activity-level progress monitoring system.

3.3.1 Performance of the NeRF

3.3.1.1 Factors affecting synthetic image quality and training time

Two different methods were tested while training the NeRF models. In one case, all

images of a reality capture were used to prepare a NeRF model for the entire scanned area.

In the other case, for each element that required NeRF based solution, a separate NeRF

model was trained, using the method introduced in the second part of Section 3.2.3. The

results and the synthetic image output from the two case studies are shown in Table 7. It is

observed that with proper training cameras and image sets, the similarity between a ground
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truth image and a synthetic image can reach more than 90%. On the contrary, an improper

setting outputs a blurred and nosy image. The higher PSNR and SSIM values and the

output image quality indicate that element-wise training ensures better image synthesis.

The phenomenon is normal with NeRF implementation proposed by [62]. The NeRF

model focuses on the center of the 3D scene reconstructed from the available camera poses.

While using all cameras in reality capture, the focus point doesn’t remain on the target

element if it is not located at the scene’s center. On the other hand, element-wise training

with corresponding cameras confirms the model’s focus on the target element only. The

view direction of all cameras used for training must be toward the target element.

The experiment shown in table 7 was extended to check the effect of input image

numbers and resolution on the output image quality and training time. It is found that

the output image quality from a NeRF model largely depends on the resolution of the

input images, camera positions, and view directions but not on the number of images used

for training. Results in Table 3.7 show that training loss is reduced in higher resolution

images. Still, a higher number of high-resolution input images has no significant impact on

training time while using the method proposed by [63]. Although the perspective images

derived from a 360-degree image have a lower resolution, it has no significant impact on

the performance of the ALPMS. A NeRF model trained with proper camera positions and

view directions outputs synthetic images with the sufficient quality required for activity-

level progress monitoring. The performance of ALPMS is discussed in the third part of

this section.
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Table 3.7: Factors affecting NeRF models output

Training cameras No. of
images

Image size Training
Loss

Training
Time (min)

All cameras in reality cap-
ture A_3F

1155 600 x 600 0.00912 3.43

Cameras associated with
the element ID# 997279

149 600 x 600 0.00728 3.52

All cameras in reality cap-
ture B_3F

483 3840 x 2160 0.00275 2.42

Cameras associated with
the element ID# 840815

13 3840 x 2160 0.00152 3.58

3.3.1.2 Effect of element-to-camera distance on orthographic view synthesis

Following Algorithm 4, a virtual camera was placed and traversed along the element

to generate images containing orthographic views of the element’s surface. Element-to-

camera distance controls the number of images generated per face of the element and the

quality of the orthographic views. Suppose the camera is placed closer to the element’s

face. In that case, more images will be generated to get the appearance of the entire face.

Although a distant camera placement will reduce the number of generated images, the

quality of an output image will be affected. In the case of a higher element-to-camera

distance, the camera view may get occluded by the appearance of other objects between

the camera and the element’s face. Additionally, the synthetic view generated from a

distant camera observes blurring effects and visual artifacts. Two examples of synthesized

images from 0.5 to 3-meter camera distances are shown in Figure 3.19. The presence of

visual artifacts can be seen in photos with higher element-to-camera distances. These

artifacts may affect the performance of the image segmentation task significantly. Table

3.8 shows examples of elements 997643 and 432802 with dimensions (32.0mx3.08mx0.2)

and (4.1mx3.35mx0.15m), respectively. This table shows the number of images generated

for each camera distance and the average segmentation accuracy. 1.5m element-to-camera
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distance was optimal for ALPMS as it balances the number of orthographic view images

generated per face and the performance of the segmentation on the generated images.

Figure 3.19: Ortho-views with changing element to camera distances

Table 3.8: Effects of element-to-camera distance

Distance Element # 997643 Element # 432802
No. of frames No. of frames

0.5 46 8
1.0 32 6
1.5 16 4
2.0 15 2
2.5 12 1
3.0 8 1

3.3.2 Performance of the semantic segmentation

3.3.2.1 Hyperparameter tuning and model selection

The performance of the semantic segmentation models depends on the appropriate

hyperparameter selection. In this study, the Mask-RCNN model with six combinations

of hyperparameters were tested, and the model, trained with ResNet-101 backbone and

AdamW optimizer (R101_adamw), was found to be the best-performing model. The

train and validation loss curves are shown in Figures 3.20 and 3.21, respectively. The

R101_adamwmodel displays the lowest loss in training and validation, whereas the model

trained with SGD with momentum exhibited the highest. The mAP evaluation metrics

evaluated the model performance on the test data. The R101_adamw model performed

with the highest accuracy of 0.900 for IoU > 0.5. The model performed significantly

60

http://dx.doi.org/10.6342/NTU202302333


doi:10.6342/NTU202302333

better than other models because of the weight decay regularization effect offered by the

AdamW optimizer. Also, using the LR scheduler“reduce on plateau＂helped maintain

appropriate LRs throughout the training and thus avoided settling the model at the local

minima. The comparison of mAP values for six models is shown in Table 3.9. Following

the test results, the best-performing segmentation model was chosen for implementation

within ALPMS.

Figure 3.20: Training loss curves

Figure 3.21: Validation loss curves

Table 3.9: Performance comparison of different models

Evaluaton
Metric

R18
_adamw

R34
_adamw

R50
_adamw

R101
_SDG

R101
_adam

R101
_adamw

Overall
mAP

0.774 0.798 0.781 0.203 0.743 0.900
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3.3.2.2 Performance of the selected model on original images

The selected Mask-RCNN model was applied to the test dataset containing original

site images, and class-wise mAP values for IoU thresholds 0.5 and 0.75 were checked.

The results are shown in Table 3.10. The model performed the segmentation task with

more than 90% accuracy for IoU threshold 0.5 in most classes. For IoU > 0.75, the model

achieved more than 75% overall accuracy. Among all the classes, the detection accuracy

for the formwork class is the highest. The distinct and widespread appearance of form-

work material on an image helped the model learn the features of that class better. The

area under the Precision-recall curves represents the mAP for each category. Figure 3.22

shows the P-R curves for IoU>0.5 for six construction activity classes (a) concrete, (b)

formwork, (c) reinforcement steel, (d) steel structure, (e) floor tile, (f) wall tile, and (g) all

classes together. Figure 3.23 shows some sample detection results. The left part of this

figure shows the detection results on as-is images, where the first column shows the orig-

inal image and the second and third columns show the ground truth and detected masks.

The right part shows sample detection results on ortho-view images created by projective

transformation. In this figure, for each element, the left is the ortho view generated by

projective transformation, and the right is the detected masks. The overall segmentation

model’s accuracy does not directly relate to the overall accuracy of the ALPMS because,

for any given case study, all six classes have not appeared simultaneously.

3.3.2.3 Performance on synthetic data

TheMask-RCNNmodel trained with original site images was tested on a dataset con-

taining synthetic photos generated from the NeRF model. However, the model’s perfor-
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Figure 3.22: Precision-Recall curves: (a) concrete, (b) formwork, (c) reinforcement steel,
(d) steel structure, (e) floor tile, (f) wall tile, and (g) all classes

Figure 3.23: Visualization of the segmentation results: (a) as-is images (b) ortho view
images created by a projective transformation

63

http://dx.doi.org/10.6342/NTU202302333


doi:10.6342/NTU202302333

Table 3.10: Class-wise performance of the Mask-RCNN model

Class AP (IoU
>0.5)

AP (IoU
>0.75)

Concrete 0.943 0.636
Formwork 0.944 0.915
Reinforcement steel 0.920 0.900
Steel structure 0.812 0.723
Floor tiles 0.916 0.721
Wall tile 0.866 0.750
Overall(mAP) 0.900 0.774

mance was not satisfactory. The segmentation model was then re-trained with a synthetic

image dataset to improve its performance on the synthetic data. Although the re-training

improved the accuracy up to a certain level, it was not helpful for activity level progress

monitoring. Later, original and synthetic data were blended to train the model. The blend-

ing could significantly improve the model’s performance. The model trained with a blend

of 70% original and 30% synthetic images achieved a segmentation mAP of 0.713 and

bounding box mAp of 0.885 for more than the 0.5 IoU threshold. However, the addition

of more percentage of original data further reduced the model’s performance on synthetic

image segmentation. The results of different tests are shown in Table 3.11. The top part of

Figure 3.24 shows some sample detection results on the synthetic data. This figure’s first

and third columns are the original and NeRF-generated synthetic images, and the second

and fourth are ground truth masks and detected masks. The bottom part of Figure 3.24

shows the image segmentation results on orthographic views synthesized from a NeRF

model. This figure shows the segmentation masks overlaid on the synthetically generated

orthographic image frames.
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(a)

(b)

Figure 3.24: Visualization of the segmentation on synthetic images
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Table 3.11: Segmentation model’s performance on a synthetic image dataset

Training data Test Data Overall mAP
(box)

Overall mAP
(seg)

Original Synthetic 0.035 0.000
Synthetic Synthetic 0.721 0.428
Original+Synthetic (50:50) Synthetic 0.837 0.650
Original+Synthetic (70:30) Synthetic 0.885 0.713

3.3.3 Performance of the overall activity-level progress monitoring

system

3.3.3.1 Percentage completion estimation

In the end, ALPMS estimated and reported the progress of construction activities in

percentage. The method explained in Section 3.1.7 was implemented to calculate the per-

centage completion of the latest activities per element. The output was exported into a

spreadsheet, and the estimated progress percentage per element was compared with the

actual progress percentages. The estimated progress percentage progress can be used to

update the project schedule. However, the schedule update is beyond the scope of the

present study and will be researched in the future. Absolute estimation error was calcu-

lated by taking the difference between the predicted and actual progress percentages. The

overall performance of activity-level progress monitoring was expressed by the mean ab-

solute error (MAE). MAE is calculated by taking the average of all elements’ absolute

error. MAE is represented by Equation 4.

MAE =
1

n

∑
ypred − yact (4)

The orthographic images were manually annotated to create ground truth masks of
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the related activities. Later, the actual progress of the latest activity was measured by

Equation 3 using the ground truth masks. The element-wise absolute error estimation

sample is shown in Table 3.12.

Table 3.12: Sample of element-wise absolute error estimation.

Element
ID

Type Latest ac-
tivity

Actual
progress

Detected
progress

Absolute
error

1971166 Wall Formwork 85 83.25 1.75
1971541 Wall Formwork 35 34.28 0.72
615274 Wall Formwork 95 98.12 3.12
673854 Beam Formwork 100 97.77 2.23
673856 Beam Formwork 100 89.76 10.24
673858 Beam Formwork 100 99.11 0.89
………

The MAE values are calculated for four case studies and shown in Table 3.13. This

table shows the overall performance of ALPMS. Initially calculatedMAE values indicated

in the MAE1 column are affected by three main factors: artifacts or blurring effects in the

orthographic views, static occlusion effects caused bymaterial stacking in the construction

sites, and dark lighting conditions.

Table 3.13: Overall performance of ALPMS

Case
Study

Number of
elements
checked

MAE1 MAE2 Factors affecting

A_1F 47 5.60 3.98 Lighting condition
A_3F 283 9.54 4.48 Artifacts, static occlu-

sion
A_4F 15 6.73 5.69 Static occlusion
B_3F 152 14.21 8.36 Lighting condition,

artifacts, static occlu-
sion

Average 9.02 5.63

The accuracy of the progress estimation depends on the performance of the segmen-

tation model, and the performance of the segmentation models on the ortho-view images

largely depends on the quality of the ortho-view images. The quality of the equivalent or-

thographic image generated from the projective transformation depends on the appropriate
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camera selection from the reality capture. If the selected camera’s position is too oblique

or distant from the element’s face, the equivalent ortho-view image would be blurry. An

example of this effect is shown in Figure 3.25. This makes the segmentation tasks diffi-

cult. The camera selection algorithm (algorithm 2) in ALPMS is designed to prevent this

issue from arising while conducting activity level progress monitoring. Also, instead of

segmenting the ortho-view image, the original image was segmented, and the projective

transformation was applied to the segmentation masks.

Figure 3.25: Blurring effect caused by the projective transformation of oblique images

Similarly, the output image quality of the NeRF-generated image depends on several

factors discussed in Section 3.3.1. The performance of the segmentation model on the syn-

thetic image is also discussed in the second part of Section 3.3.2. Even after considering

those factors in ALPMS, in a few cases, artifacts in the bottom half of the NeRF-generated

synthetic images have caused a performance reduction in the overall system. Figure 3.26

shows the effect of the artifact in a NeRF-generated ortho view image. For case studies

A_1F, A_3F, and B_3F, the construction site images are captured manually. So, the reality

capture path’s height equals the average human height. And it passes through the upper

half of the vertical elements. For this reason, the NeRF model trained with these input
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images contains fewer details of the bottom part of the element and causes artifacts in the

bottom half. In this study, to neglect the effect of the artifacts on the ortho view images,

only the top half of the NeRF-generated images are analyzed, and revised MAE2 is esti-

mated. However, automatic data capturing in two levels along the elements could solve

this issue in the future.

Figure 3.26: Artifacts in the bottom half of the NeRF-generated orthographic image.

The performance of the overall system was also affected by the static occlusion

caused by the stacking of different construction objects near the element’s face. The dy-

namic occlusions, whose appearance will not remain in all camera images, and the static

occlusion caused by other building elements was handled by algorithm 2 in ALPMS. How-

ever, in a few cases, static occlusion caused by material stacking, which blocks the surface

appearance of the target face in all camera views in the reality capture, caused a problem

for activity-level progress detection. An example of static and dynamic occlusion is shown

in Figure 3.27. Methods like occlusion removal and image inpainting [10] can be tried in

the future to overcome this static occlusion problem.

Lighting condition is a crucial factor to be considered while conducting progress

monitoring in the indoor environment. In the case of indoor construction monitoring,
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Figure 3.27: (a) Static and dynamic occlusion blocking the appearance of an element’s
face (b) dark lighting condition

some locations are very dark due to extremely low light. Progress detection results in

such areas are often erroneous. A few elements in case studies A_1F and B_3F have

faced such situations. Image preprocessing techniques, such as brightening dark photos

[48], could be used in the future to solve this issue. For improved MAE2 calculations,

such scenarios were neglected.

3.3.3.2 Progress visualization

The progress status of each element was visualized by color coding the as-planned

BIM as mentioned in Section 3.1.8. This visualization can help project managers to iden-

tify project status in 3D. They can take immediate action in low-progress areas to avoid or

mitigate further delays. In the color coding approach, however, one can only understand

the latest activity name currently in progress but can not get the intuition on how much

that activity is completed. Understanding the completion percentage of the activity is es-

sential to taking appropriate action. For example, in the 3D color-coded display of cases

A_3F and B_3F shown in Figure 3.28, seeing the green color, we can understand where
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the latest activities are in progress. However, it isn’t easy to judge their completion status.

(a)

(b)

Figure 3.28: Progress visualization through color-coded as-planned BIM

Further, the as-built point cloud model was semantically segmented to enhance the

3D visualization with activity-level progress completion status. By looking at the seman-

tically segmented point cloud, one can easily perceive the activity-wise progress status.

Figure 3.29 shows two examples of cases A_1F and B_3F. The green patches on the A_1F
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point cloud indicate the quantity and location of the formwork removal activity are yet to

complete. Similarly, the exact spot where the tiling work is yet to be finished can be de-

termined in B_3F. In this study, the segmented point clouds are only used for progress

visualization. However, future research in this direction would explore the opportunity

for activity-level progress monitoring through the digital twin construction.

Figure 3.29: Progress visualization through semantic segmentation of as-built point cloud

3.3.4 Implementing ALPMS in the construction management pro-

cess

In construction management, progress monitoring is a crucial aspect. It helps project

managers track construction activity progress, identify potential issues, and take corrective
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actions before they become critical. The ALPMS framework proposed in this research can

automate the progress monitoring process and provide more accurate and objective infor-

mation about the progress of construction activities. By using 3D-informed orthographic

views and deep learning-based semantic segmentation, the ALPMS framework can detect

and report the completion percentage of construction activities. It can help construction

managers to track the progress of individual activities, such as formwork, reinforcement,

and concrete placement, and identify potential delays or issues earlier in the construc-

tion process. The progress of each activity can be visualized through BIM color coding

and point cloud segmentation, which can help project managers to make better-informed

decisions and improve resource allocation.

Implementing theALPMS framework in the constructionmanagement processwould

require some effort. First, a monitoring mechanism needs to be established, which in-

cludes selecting devices and methods for capturing images of the construction site, plan-

ning the reality capture, and executing the steps of ALPMS. Processes involved in imple-

menting ALPMS and an approximate estimation of time spent for each process are shown

in Table 3.14. Time data is estimated from the four case studies presented in this research.

Processes that are performed once during the project are colored in peach. Sky-blue color

is used to represent the processes that are conducted every time after data collection. And

the green-colored processes are applied to each element that is under construction. The

remarks column highlights the factors affecting the average time taken for each process. It

is observed that 3D reconstruction through SfM-MVS is the most time-consuming process

that needs to be performed each time. Post-3D reconstruction workflow of ALPMS can be

completed within an hour. Future research should investigate reducing the time and fre-

quency required for 3D reconstruction through Simultaneous Localization and Mapping
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(SLAM) [87] and CNN-based 2D to 3D image localization techniques [95] (Wang et al.

2023).

Table 3.14: Details of approximate time spent for implementing ALPMS

Processes Algorithms Approx.
time spent

Remarks

Data collection (video) NA 15-20
mins/
round

Time depends on the area
covered

Data download and upload
to the cloud server

NA 5 mins/
10GB

Time depends on file size

3D reconstruction and
camera pose estimation

SfM-MVS 10-15 hrs/
model

Time depends on the num-
ber and resolution of im-
ages

Point cloud cleaning SOR 5 mins/
model

Time depends on the size
of the as-built point clouds

4D BIM and point cloud
registration

Manual point
picking

10-15
mins/
model

Coarse registration

ICP 10-12
secs/
model

Fine registration

Detection of elements un-
der construction

Algo. 1 2-5 mins/
model

Time depends on the num-
ber of elements in the
model

Dataset preparation* Manual
labeling
(polygon
mask)

3-5 mins/
image

Time depends on the num-
ber of images in the dataset

Deep-learning model
training for semantic
segmentation*

Transfer
learning, hy-
perparameter
tuning

12-15 hrs/
project

Time depends on several
factors: Hardware capac-
ity, dataset size, etc.

Camera selection, ortho-
view synthesis, progress
status detection, percent-
complete estimation

Algo. 2,
Projective
Transforma-
tion

10 secs/
element

Applicable for most of the
elements

Algo. 2,
NeRF

2-5 mins/
element

Only a few elements re-
quire NeRF

Progress visualization BIM color-
ing

10 secs/
model

Time depends on the num-
ber of elements in the
model

Point cloud
Segmenta-
tion

5-10 mins/
model

Time depends on the size
of the as-built point clouds

* This is a one-time effort, not required for every project
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Other factors that must be considered for the practical implementation of ALPMS

are image quality, the requirement of images for representing an element＇s appearance,

and the frequency of image data collection. Image sizes used in four case studies and the

overall performances of ALPMS are shown in Tables 3 and 12, respectively. It is observed

that images with a minimum size of 600 x 600 confirmed the satisfactory performance of

ALPMS. For activity-level progress monitoring, the appearance of the target element must

be captured fully in at least five or more images in the reality capture. While data collec-

tion, the same was ensured by recording videos near and around each building element.

However, automatic data collection following optimized reality capture plans [41] shall be

tried in the future. The frequency of image data collection depends on the project require-

ments. Project managers can decide the frequency considering the pace of the project＇s

progress. During the initial project phase, when the progress pace is relatively slow, fort-

nightly data collection can be conducted. However, during peak construction time, reality

capture shall be performed weekly.

3.4 Summary

The proposed ALPMS (Activity-Level ProgressMonitoring System) is a comprehen-

sive solution for estimating and visualizing construction progress at the schedule activity

level. By leveraging construction images and 4D BIM data, ALPMS accurately deter-

mines the progress percentages of construction activities associated with BIM elements.

It employs as-built point clouds reconstructed from site images, compares them with the

as-planned BIM, andmeasures the progress of activities related to the in-progress elements

through the segmentation of orthographic views. The system utilizes two innovative ap-

proaches, projective transformation and NeRF-based novel view synthesis, to generate
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equivalent ortho-views, and employs a deep-learning model for semantic segmentation

to detect construction activities. Through validation in multiple case studies, ALPMS

demonstrates promising performance with an average error rate of 5.63%. While some

challenges, such as artifacts in NeRF-generated images and occlusion caused by material

stacking, need to be addressed, the system sets the stage for future research directions, in-

cluding volume-based progress estimation and predictive scheduling, to further enhance

construction progress monitoring and decision-making processes.
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Chapter 4 Progress update in the

project schedule

4.1 Methodology

The proposed methodology is shown in Figure 4.1. It displays the steps required for

progress updates by automatically linking project schedules and reality models. Twomain

components of this methodology are to recognize the location (L), building elements (E),

and materials (M) from reality models and project schedules and to map them for progress

updates.

4.1.1 Progress estimation from reality models with L-E-M informa-

tion

Two separate cases are considered: with the availability of 3D BIM (right side of

Figure 4.1) and without having a 3D BIM (left side of Figure 4.1) for the construction

project.

In case the 3D BIM is available for a construction project, the reality models (as-built

point clouds) are registered with that manually by choosing three or more distinct corre-
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Figure 4.1: Proposed methodology for linking progress data with schedule activities
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sponding points between the models and by solving seven degrees of freedom similarity

transformation [69]. This process helps position the reality model in the BIM’s world

coordinate system. Hence, location information for any part of the reality model can be

extracted from the corresponding BIM’s location. Next, building elements are detected

through a BIM-based occupancy check. While comparing the registered BIM and point

cloud model, if the number of points available in a BIM element’s bounding box exceeds

a certain threshold, the presence of that element in the as-built model is confirmed. For

identifying the ongoing tasks associated with a building element, on-site images are col-

lected and registered with the 3D model. A deep-learning model for image segmentation

is trained to detect construction tasks based on the appearance of the materials. Later,

progress percentages of the tasks are determined by taking the ratio of the area of masks

representing a construction task and the total surface area of the building element using

Equation 3 and Table 3.3. The details of this method can be found in the previous chapter.

In the case of the non-availability of a BIM, the reality models are aligned with the

pre-surveyed control points (CP). Any part of the reality model’s location can be iden-

tified with a reference from the CPs. Reality models, in their raw form, lack semantic

information. So, a point cloud segmentation approach is adopted to extract building ele-

ment information from the reality model. First, a DL model for point cloud segmentation

is trained to detect building elements such as beams, columns, walls, floors, and ceilings

[59, 70]. Similar to the BIM-based approach, for detecting construction tasks, onsite im-

ages are collected and registered with the 3D reality model in the same coordinate system.

Later, an image segmentation model is employed to detect the appearance of the construc-

tion materials to identify ongoing construction activity. This process helps in identifying

the construction tasks associated with the material appearance. Finally, the progress sta-
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tus is reported by taking a ratio of the detected elements and the total number of elements

expected for completing that activity using Equation 5.

Progdetect,i =
| {Eledetect} ∩ {Eleexpect} |i

| {Eleexpect} |i
× 100 (5)

Here, {Eleexpect} is the set of expected building elements for activity i, and {Eledetect} is

the set of recognized elements for that activity.

For progress estimation of both cases, it is assumed that if the appearance of the

material associated with the latest activity is detected, proceeding activities are deemed

fully completed. Finally, the estimated progress is saved in a spreadsheet file with the

location, building element, and material information.

4.1.2 Location, building element, andmaterial recognition from sched-

ule activity

A construction schedule is a detailed plan that outlines the timeline and milestones

for completing a construction project. A well-designed construction schedule includes a

breakdown of each project component (WBS) and lists activities to be completed in each

component. These activity descriptions, along with their WBS name, generally contain

basic information, such as the name of the material related to the construction task, build-

ing elements associated with that task, and the task’s location. For example, in the activity

description: “Erection of steel columns at floor 2,” erection is the task, steel is the material

name, columns are the building elements, and the location is floor 2. Named entity recog-

nition (NER) is a task in NLP that identify and extract meaningful information (entities)

from the text. Named entities are words or phrases that refer to specific information. In
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the case of construction schedule analysis, these entities are locations, building elements,

and materials. In this research, two powerful transformer models developed for natural

language processing are used, and their performance on schedule information extraction is

compared. They are pre-trained Bidirectional Encoder Representations from Transform-

ers (BERT) [26] and Generative Pre-trained Transformer-3 (GPT3)[20].

BERT is a language model developed by Google in 2018. It captures contextual

word representations by considering both preceding and succeeding words. Pre-trained

on vast amounts of text data, BERT learns rich word and sentence representations through

masked language modeling. It can be fine-tuned for specific tasks, adapting its param-

eters to achieve high performance. BERT’s bidirectional approach and Transformer ar-

chitecture enable it to understand language nuances and capture contextual relationships

effectively. It has revolutionized natural language processing and achieved state-of-the-

art results in various tasks like text classification, named entity recognition, and sentiment

analysis. BERT has become a widely used model, powering numerous language-related

applications. In this study, a pre-trained BERT model is fine-tuned to detect construction

schedule entities. The mechanism of the BERTmodel for schedule information extraction

is shown in Figure 4.2. While preparing the training data, IOB tagging is used to ensure

the BERT model recognizes named entities that may consist of single or multiple words.

The IOB tagging scheme represents each word in a sentence as either Inside, Outside, or

Beginning of an entity. An example is shown in Figure 4.3. Next WordPiece tokenization

and post-tokenization label adjustment are made. Finally, the trained BERT model is used

for identifying and extracting L-E-Ms from a given schedule activity by classifying em-

bedding vector output from all of the tokens with three classes: location, building element,

and material.
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Figure 4.2: Information extraction from activity descriptions using BERT

Figure 4.3: Example of data labeling for fine-tuning BERT model

82

http://dx.doi.org/10.6342/NTU202302333


doi:10.6342/NTU202302333

GPT-3 is an advanced language model developed by OpenAI. It belongs to the family

of Transformer models and has gained significant attention for its impressive text genera-

tion capabilities. GPT-3 is a generative model, meaning it can generate coherent and con-

textually relevant text based on a given prompt. Unlike traditional language models that

process text sequentially, GPT-3 utilizes a Transformer architecture that allows it to cap-

ture long-range dependencies and understand the context of words. It is pre-trained on an

enormous amount of internet text data, enabling it to learn patterns, grammar, and seman-

tic relationships. With 175 billion parameters, GPT-3 is one of the largest languagemodels

available. Its size enables it to generate highly coherent and contextually appropriate re-

sponses, making it capable of producing human-like text in a wide range of applications.

In this study, GPT-3 model is used for extracting L-E-M information from construction

schedule activities using a few-shot learning approach. To achieve this, along with target

activity descriptions, a few examples (maximum three) of construction activity descrip-

tions with L-E-M tags are promoted to the GPT-3 model. OpenAI’s API key is used to

request access for the pre-trained GPT-3 model named “text-davinci-003”. The informa-

tion extraction process using GPT-3 is shown in Figure 4.4

Figure 4.4: Information extraction from activity descriptions using GPT-3

4.1.3 Matching activity and progress data using L-E-M strings

Once progress data is stored in text format with location, building element, and ma-

terial information, and the L-E-M strings are extracted from the scheduled activity, string
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matching techniques are used to map the progress data and the schedule activity. Al-

gorithm 5 calculates the best matching score between activities and progress data. A

sequential matching approach is adopted to match the location, building element, and ma-

terials strings sequentially from schedule and progress data. Matching scores are stored

in matrices [L], [E], and[M ]. Finally, an argmax operation on the element-wise multi-

plication results of [L], [E], and[M ] matrices maps activities with their most appropriate

progress counterpart.

Algorithm 5: Linking progress data with schedule activity
Input: Location (Al), building element (Ae), and material (Am)

information from schedule activity
Progress data with location (P l), building element (P e),
and material (Pm) information

Output: Matching between activity and progress data
1 [L]← A matrix containing location matching score
2 [E]← A matrix containing building element matching score
3 [M ]← A matrix containing material matching score
4 foreach activity A in Schedule do
5 foreach progress P in Progress data do
6 Calculate location matching score between Al and P l and update [L]
7 Calculate element matching score between Ae and P e and update [E]
8 Calculate material matching score between Am and Pm and update [M ]

9 end
10 end
11 [F ]← A matrix containing final matching score
12 [F ] = [L] * [E] * [M ]
13 Best match = argmax[F ]
14 return Best match

A fuzzy string matching using the Levenshtein Distance algorithm [9] and Cosine

similarity using text embedding models [94] are tested in this study. Fuzzy string match-

ing using the Levenshtein Distance algorithm is a technique used to compare and measure

the similarity between two strings. The Levenshtein Distance, also known as the Edit Dis-

tance, calculates the minimum number of insertions, deletions, and substitutions required
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to transform one string into another. It is calculated using Equation 6:

lev(As, P s) =



max(|As|, |P s|) if min(|As|, |P s|) = 0

min



lev(tail(As), tail(P s)) + 1,

lev(As, tail(P s)) + 1,

lev(tail(As), P s) + 1

otherwise
(6)

whereAs andP s are the strings from activity and progress data, respectively, and tail(expression)

is the expression without its first character. For example, tail(“floor3”) is “loor3”.

Another string-matching approach that uses text embedding and cosine similarity cal-

culation is used in this study. Text embedding provides condensed representations of text

that capture semantic information, facilitating efficient analysis and processing in natural

language processing tasks, and cosine similarity calculates the cosine distance between

a text pair in the n-dimensional vector space. Higher similarity values indicate better

matching. In this approach, first, the extracted texts from activities and progress data are

tokenized. Then the tokens and, subsequently, the whole text are vectorized using a large

text embedding model named“e5-large-v2.＂. E5 is a general-purpose text embedding

model proposed by Microsoft’s research team for tasks requiring a single-vector represen-

tation. This model has 24 layers, and it creates an embedding with a size of 1024. The

cosine distance between the text pairs is calculated using Equation 7.

Similarity = cos(A,P ) =
A.P

∥A∥∥P∥
=

∑n
i=1 AiPi√∑n

i=1 (Ai)2
√∑n

i=1 (Pi)2
(7)

Steps for this string-matching approach are shown in Figure 4.5.
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Figure 4.5: Distance-based matching between activity and progress information

Finally, based on the results of the matching algorithm, the progress data is mapped

with the schedule activities. This mapping is further utilized for updating the project

schedule with activity completion percentages derived from reality models.

4.2 Experiments and Results

The proposed methodology was tested and validated in two construction projects in

Taiwan. Project A was an educational building construction project within National Tai-

wan University’s main campus, and Project B was a hospital building construction project

at the National Taiwan University Hospital campus. Project A was chosen to demonstrate

the with-BIM workflow, and Project B was for the without-BIM workflow. Structural

work was in progress during the validation period in both Projects A and B. Two differ-

ent types of construction methodologies were adopted in these projects. While Project

A followed in-situ concrete construction, Project B was constructed using pre-fabricated

steel structures. The structural element construction on two levels (3rd and 4th floor) of

Project A and three levels (12th, 13th, and 14th) of Project B was selected as case stud-

ies to test the performance of the proposed methodology. Each floor’s 360-degree videos

were recorded for reality capture at Project A. Later, as-built point clouds per floor were

reconstructed using the photogrammetry technique explained in the previous chapter. For

Project B, the floor-wise reality models were captured using a LiDAR and depth camera
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assembly, which could provide a clean point cloud with 3D coordinates and color values.

360-degree videos of each floor were also recorded for image-based point cloud recon-

struction. For project A, reality models (point clouds) were registered with the 3D BIM

in the same world coordinate system, and the location information was extracted from the

BIM’s location. Similarly, Project B’s as-built point cloud models were registered with

three to four nearest control points. The location information in the case of Project B

was extracted by taking the reference from the nearest CP’s location. As the BIM-based

workflow used in project A followed the same occupancy-based approach described in

the previous chapter for building element detection, those results are not discussed here.

However, the performance of the point cloud segmentation model proposed for building

element detection in the without-BIM workflow is discussed in the following subsection.

As both workflows use the same image segmentation approach for appearance detection

presented in the previous chapter, the results of appearance detection are also not dis-

cussed here exclusively. But the overall performance of the progress estimation for both

with-BIM and without-BIM workflows is highlighted. Additionally, the performance of

the language models for schedule information extraction and the matching results are pre-

sented in the following subsections.

4.2.1 Semantic segmentation of point clouds

An instance segmentation model named SoftGroup [92] and its upgraded version

SoftGroup++ [91] were used to detect building elements from the point clouds. Unlike

previous point cloud segmentation methods that use hard predictions and suffer from low

overlaps and false positives, SoftGroup performs bottom-up soft grouping and top-down

refinement. It allows each point to be associated with multiple classes, reducing the im-
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pact of semantic prediction errors and effectively suppresses false positive instances by

categorizing them as background. Experimental results on various datasets demonstrate

that SoftGroup outperforms the strongest prior method by a significant margin, achieving

higher average precision (AP50) scores. Considering these benefits, SoftGroup++ was

chosen for this study.

The segmentation model was initially trained with Stanford 3D Indoor Scene Dataset

(S3DIS) [11]; later, it was fine-tuned with a small amount of custom data from the precast

building project. The S3DIS dataset consists of 3D point clouds captured from six large-

scale indoor areas, including office spaces, conference rooms, and hallways. The point

clouds are collected using a 3D laser scanner and represent the geometry and spatial layout

of the scenes. Each point in the point cloud is associated with semantic labels, indicating

the class or category of the corresponding surface or object in the indoor scene. The dataset

provides labels for various objects and surfaces, such as walls, floors, ceilings, columns,

beams, windows, doors, and furniture types commonly found in indoor environments.

The model’s performance for building element detection (mainly structural compo-

nents) was tested on a dataset created from Project B. The average segmentation results

(average precision, recall, and mean intersection over union) of six classes (beam, col-

umn, ceiling, floor, wall, and clutter) are shown in Table 4.1. Also, Figure 4.6 shows

the visualization of building element detection results and compares them with the ground

truth annotations. The results confirm the satisfactory performance of the model for build-

ing element detection from raw point cloud data. Semantic and instance segmentation of

building elements for a typical floor of Project B is shown in Figure 4.7.
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Table 4.1: Evaluation of the segmentation model for building element detection

Class AP_50% AP_25% RC_50% RC_25% mIoU
Ceiling 1.000 1.000 1.000 1.000 52.2
Floor 1.000 1.000 1.000 1.000 97.8
Wall 0.576 0.576 0.875 0.875 80.1
Beam 0.483 0.673 0.577 0.712 79.1
Column 1.000 1.000 1.000 1.000 96.3
Clutter 0.111 0.111 0.111 0.111 48.5
Average 0.695 0.755 0.813 0.883 75.7

Figure 4.6: Visualization of semantic segmentation results: ground truth (left) and predic-
tion (right)

(a) Semantic segmentation (b) Instance segmentation

Figure 4.7: Point cloud segmentation of a typical floor (excluding ceiling)

4.2.2 Progress percentage estimation

For without-BIM workflow, the detected progress percentage per activity was calcu-

lated using Equation 5. {Eleexpect} for each activity was estimated by taking the reference

from the previously completed floor, and The actual progress percentage was estimated

using Equation 8.

Progactual,i =
| {Eleactual} ∩ {Eleexpect} |i

| {Eleexpect} |i
× 100 (8)
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{Eleactual} was determined by manual inspection at the construction sites. The appear-

ance of the building elements associated with the activity was determined by the image

segmentation model, and the estimated progress percentages were recorded against the

task/material whose appearance was detected during the progress monitoring process.

However, previous tasks’ progress was recorded as 100% once the latest task’s appear-

ance was present. Progress estimation results of the case studies selected from Project B

are shown in Table 4.2

For estimating the progress of with-BIM workflow, the method described in the pre-

vious chapter was used. Formulae shown in Table 3.3 were leveraged to estimate the

progress of each construction activity. Similar to without-BIM workflow, the preceding

activities’ progress was recorded as 100% once the latest task’s appearance was detected.

Progress estimation results of the case studies selected from Project A are shown in Table

4.2

Finally, the progress data were stored in spreadsheet files along with location, build-

ing element, and material information.

4.2.3 Information extraction from schedule activities

The BERT model was trained with 1351 schedule activities from three construction

schedules to recognize L-E-Ms from the schedule activities. The model achieved 95%

training and 92% validation accuracy. However, when the trained model was tested on

a test dataset created by taking 100 sample activities from Project A and B’s schedule, it

could detect the location, building element, andmaterials from the activities with only 57%

average accuracy. A few examples of correctly predicted results are shown in Figure 4.8.
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Table 4.2: Progress estimation of Project B (without-BIM)

Location Building
element

Material Actual
progress

Detected
progress

Absolute
error

12 Floor Column Steel 100% 100% 0.0%
12 Floor Beam Steel 100% 100% 0.0%
12 Floor Roof Steel 100% 100% 0.0%
12 Floor Column Fireproofing 100% 100% 0.0%
12 Floor Beam Fireproofing 100% 95% 5.0%
12 Floor Roof Fireproofing 100% 100% 0.0%
12 Floor Wall Concrete 100% 93% 7.0%
13 Floor Column Steel 100% 100% 0.0%
13 Floor Beam Steel 100% 100% 0.0%
13 Floor Roof Steel 100% 100% 0.0%
13 Floor Column Fireproofing 100% 100% 0.0%
13 Floor Beam Fireproofing 100% 97% 3.0%
13 Floor Roof Fireproofing 100% 100% 0.0%
13 Floor Wall Concrete 90% 84% 6.0%
14 Floor Column Steel 100% 100% 0.0%
14 Floor Beam Steel 100% 94% 6.0%
14 Floor Roof Steel 100% 100% 0.0%
14 Floor Column Fireproofing 100% 100% 0.0%
14 Floor Beam Fireproofing 100% 95% 5.0%
14 Floor Roof Fireproofing 100% 100% 0.0%
14 Floor Wall Concrete 65% 60% 5.0%

Possible causes for the BERT model’s poor performance could be the small size training

dataset and a considerable variation between the training and test data. Project schedules

used for training were mostly from in-situ building construction projects, where activity

descriptions differed somewhat from precast construction projects.

Figure 4.8: Examples of correct predictions by BERT

However, the GPT-3model with few shot learning performed significantly better than

the BERT model. It could achieve around 98% average testing accuracy while detecting
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Table 4.3: Progress estimation of Project A (with-BIM)

Location Building
element

Material Actual
progress

Detected
progress

Absolute
error

3 Floor Column Reinforcement steel 100% 100% 0%
3 Floor Wall Reinforcement steel 100% 100% 0%
3 Floor Column Formwork 100% 100% 0%
3 Floor Wall Formwork 100% 100% 0%
3 Floor Column Concrete 100% 100% 0%
3 Floor Wall Concrete 100% 100% 0%
3 Floor Beam Reinforcement steel 100% 100% 0%
3 Floor Beam Formwork 100% 100% 0%
3 Floor Slab Reinforcement steel 100% 100% 0%
3 Floor Slab Formwork 100% 100% 0%
3 Floor Slab Concrete 100% 100% 0%
4 Floor Column Reinforcement steel 100% 100% 0%
4 Floor Wall Reinforcement steel 100% 100% 0%
4 Floor Column Formwork 85% 83% 2%
4 Floor Wall Formwork 85% 89% 4%
4 Floor Column Concrete 0% 0% 0%
4 Floor Wall Concrete 0% 0% 0%
4 Floor Beam Reinforcement steel 100% 100% 0%
4 Floor Beam Formwork 60% 52% 8%
4 Floor Slab Reinforcement steel 0% 0% 0%
4 Floor Slab Formwork 35% 38% 3%
4 Floor Slab Concrete 0% 0% 0%

location, building elements, and materials from the schedule activity descriptions of the

test dataset. A few examples of GPT-3 predictions are shown in Figure 4.9. A comparison

of testing accuracy between the BERT and GPT-3 models is shown in Table 4.4. Because

of the significantly better performance of the GPT-3 model for all classes, it was selected

for further extraction of L-E-M information from projects A and B’s schedule activities.

Table 4.4: Comparison of testing accuracy between BERT and GPT-3 model

Entity BERT GPT-3
Location 0.75 0.98
Building Element 0.60 1.00
Material 0.35 0.95
Average 0.57 0.98
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Figure 4.9: Examples of predictions by GPT-3

4.2.4 Mapping schedule activities and estimated progress

Schedule activities and progress data were mapped using the string-matching method

described in Section 4.1.3. Location, building element, and material information from

schedule activities were matched with progress data sequentially. The matching perfor-

mance of the fuzzy matching technique and the text embedding-based matching approach

is compared in Table 4.5. It is observed that the fuzzy matching score is purely based

on text appearance, not on their semantic meanings. That’s why, although the location

of the “8th floor” and “7th floor” is semantically different, a high fuzzy matching score

is calculated because of their similarity in appearance. On the other hand, text embed-

ding captures high-semantic information, showing a high cosine similarity between “8th

level” and “floor 8” despite their significant difference in text appearance. Because of the

significantly better performance of the text embedding models, the same was applied for

L-E-M matching required for mapping schedule activities and estimated progress. Map-

ping results for the case studies with or without BIM are shown in Figure 4.10 and 4.11,
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respectively.

Table 4.5: Comparison of string matching results

Text pair FuzzyMatching Score Cosine Similarity Score
“8th level” & “floor 8” 15 93
“8th level” & “7th floor” 47 87
“8th floor” & “7th floor” 89 91

Figure 4.10: Matching results: with BIM case

4.2.5 Comparison between with and without BIM progress estima-

tion workflows

The method with BIM relies on the availability of a complete and up-to-date BIM

model, which allows for precise alignment of the reality model and the BIM, enabling ac-

curate location information for each part of the construction project. The inherent semantic

information in the BIM makes it easier to detect and identify various building elements,
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Figure 4.11: Matching results: without BIM case
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improving the accuracy of element detection through BIM-based occupancy checks. Ad-

ditionally, the comprehensive nature of the BIMmodel facilitates better progress tracking,

providing a holistic view of the entire project scope, which aids in efficient taskmonitoring

and management. However, this approach has limitations, including the cost and effort

involved in creating and maintaining the BIM model, which might not be feasible for all

construction projects, particularly smaller ones or those with limited resources. Moreover,

the manual registration process required for aligning the reality model with the BIM can

be time-consuming and prone to human errors.

On the other hand, the method without BIM offers more versatility as it can be ap-

plied to construction projects where BIM is not available or practical. By aligning the

reality model with pre-surveyed control points, this approach enables location identifi-

cation without BIM dependency. This reduces project costs by eliminating the need for

BIM creation and maintenance. However, without the inherent semantic information in

a BIM model, this method relies on point cloud segmentation to extract building element

information, which might result in less accurate element detection compared to the BIM-

based approach. The scope of this method may also be limited to specific elements, such

as beams, columns, walls, etc., rather than providing a comprehensive model of the en-

tire project. Additionally, as this method completely relies on a learning-based approach,

additional processing and training time would be required for element detection.

The choice between the two methods depends on the specific requirements of the

construction project and the available resources. The BIM-based approach offers higher

accuracy, semantic information, and comprehensive progress tracking but requires a func-

tional BIM model. On the other hand, the method without BIM provides flexibility and

reduced cost but may have limitations in semantic information, processing time require-
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ments and overall accuracy, making it suitable for projects where BIM is not available or

cost-effective.

4.3 Summary

This part of the research introduces an innovative methodology for the automatic

alignment of project schedules and reality models in construction progress updates. It

focuses on detecting and matching locations, building elements, and materials (L-E-M)

information from reality models and schedule activities. Two distinct workflows are pre-

sented, one leveraging 3D BIM and the other without. For detecting L-E-Ms from con-

struction activity descriptions, NLP algorithms for Named Entity Recognition (NER) are

employed, with GPT-3 exhibiting superior performance. The methodology incorporates

text embedding-based models for accurate mapping of schedule information and progress

estimation. Through on-site case studies, the methodology demonstrates its practical ap-

plication for the automatic update of construction schedules with real-time progress infor-

mation. While the current implementation focuses on structural elements, further research

is needed to explore its potential application to other construction activities and processes,

ensuring its scalability and effectiveness across diverse projects.
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Chapter 5 Conclusion and future

research directions

5.1 Conclusion

This research presents a method for activity-level automated construction progress

monitoring integrating on-site visual data and construction schedules through digital twin

construction. It is divided into two main parts. The first part proposes an activity-level

progressmonitoring system calledALPMS for schedule activity-level construction progress

estimation and visualization, and the second part focuses on a project schedule update by

linking activity information and estimated progress.

ALPMS takes construction images and 4D BIM as input and outputs progress per-

centages of construction activities associated with BIM elements. As-built point clouds

reconstructed from site images are compared with as-planned BIM to detect components

under construction. The percentage progress of construction activities related to the in-

progress elements is then measured by segmenting orthographic views of the elements’

faces. Two approaches: projective transformation, and NeRF-based novel view synthesis,

are proposed to generate an equivalent ortho-view of element surfaces. A deep-learning

model for semantic segmentation is implemented to detect polygon masks representing
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construction activities. The model is trained with a custom dataset comprised of six con-

struction material classes. Finally, the activity-level progress status is visualized through

color-coded BIM and semantically segmented as-built point clouds.

The framework is validated in 4 case studies prepared from two construction sites.

Activity-level progress monitoring was conducted on these case studies with an average

error of 5.63%. Factors that affect the performance of ALPMS are studied in detail. A

series of tests are conducted to improve the synthetic image quality and the performance

of the segmentation models. The NeRF model trained for individual elements, and the

virtual camera placed at a distance equal to the average distance of the training cameras

from the element’s face synthesized the best quality ortho-view image. The segmentation

model trained with 70% original and 30% synthetic data performed the best on synthetic

image segmentation.

The system faces performance deficiency in the current implementation due to three

open challenges: artifacts in the NeRF-generated ortho view image caused due manual

data collection, static occlusion caused by the material stacking at the construction sites,

and low-light conditions in the indoor environment. Some other research challenges that

may interest future researchers are as follows. The proposed method is suitable for activ-

ities whose progress can be measured through area-based measurements. Activity-wise

segmented as-built point cloud generated as an end product of this method can be used

for volume-based partial progress estimation. Updating project schedules with activity-

level partial progress details and predicting project completion dates could be tried in the

future. As this method entirely relies on appearance-based progress detection, significant

changes in the elements’ surface appearance are needed for effective progress estimation.

The construction image segmentation dataset can be expanded with various construction
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materials representing several other construction activities and different project settings,

such as variable lighting and weather conditions, such as rainy, cloudy, and sunny. Syn-

thetic image rendering with different backgrounds can be tried to augment the existing

dataset.

The second part of this research proposes a novel methodology for automatically

aligning project schedules and reality models for construction progress updates. It recom-

mends detecting and matching locations, building elements, and materials (L-E-M) infor-

mation from reality models and schedule activities. Two separate workflows are presented

for detecting such information: with or without a 3D BIM. NLP algorithms for NER are

proposed for detecting L-E-Ms from construction activity descriptions. Two transformer-

basedNLPmodels are tested and compared, and the Large LanguageModel: GPT-3 shows

significantly higher performance in schedule information extraction. Two sting matching

algorithms are tested for mapping schedule information with estimated progress. The text-

embedding-based model shows high semantic understanding and higher matching accu-

racy. Later, progress schedules are updated with progress data. Finally, the on-site ap-

plication of this methodology is demonstrated through case studies from two construction

projects. The results confirm its applicability for an automatic update of the construction

schedule with up-to-date progress information.

However, future studies need to address a few limitations for the full-scale application

of this method. As of now, the method is tested on the construction of structural elements

only. However, the applicability of this method in different construction activities and

processes will be investigated in the future.
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5.2 Future research directions

This study can be further expanded and applied to improve several construction man-

agement practices. Three such applications are explained here: (a) real-timemonitoring of

construction projects, (b) productivity assessment by linking progress and resource data,

and (c) predictive monitoring of construction projects.

5.2.1 Real-time monitoring of construction projects

Real-time monitoring of construction progress can give instant information about

project status, which can help project managers make timely decisions and take correc-

tive actions to avoid delays and cost overruns. Fig.5.1 suggests a workflow for real-time

progress monitoring that leverages SLAM-based autonomous navigation, AI-powered

progress detection, and AR-based progress visualization. The workflow proposes using a

camera-equipped robotic system with an attached AR device, similar to the one used by

[35]. The SLAM technology is used to create an initial map of the construction site by

capturing images or videos of the environment and processing them to detect key points

or features. The map is then used as a reference frame to estimate the position of the AR

device within the environment. The initial map of the construction site is overlaid on the

BIM to create a combined model of the as-built and as-planned environment. Alignment

with BIM can improve localization accuracy and be used for progress monitoring [12].

As the AR device moves within the construction site, SLAM algorithms track its position

and orientation, updating the combined model accordingly. The model can be updated

in real-time as construction progresses. Then AI-powered image segmentation algorithm

proposed for activity percent complete measurement can be applied to the BIM-registered
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Figure 5.1: Real-time construction progress monitoring workflow

images to detect progress percentages. AI models can be deployed on-site through local-

server, cloud computing, or edge computing devices such as NVIDIA Jetson Nano and

Raspberry Pi 3B+ with Intel NCS [68]. AR-device can be used to display the progress,

and the responsible project team member can annotate areas of the construction site that

need attention. Multiple team members can access the same virtual model and view con-

struction progress from different perspectives. This visualization enables real-time col-

laboration and decision-making, even when team members work remotely or on different

shifts.

5.2.2 Productivity assessment by linking progress and resource data

Productivity, which measures resource utilization efficiency, is a key indicator for

measuring project success at an intermediate time. By measuring the productivity of on-

going progress and comparing it against the plan, project controllers can get a sense of

whether there will be a delay or cost overrun. Subsequently, corrective actions can be
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taken. Some previous studies investigated automated equipment productivity assessment

from visual data for earthwork activities [22]. However, current automated progress mon-

itoring methods cannot link the progress data (output) and resource data (input) to estimate

the productivity of structural, finishing, and MEP works. Also, there are some limitations

in AI-powered vision-based resource data analysis. These are limited datasets for activity

recognition of construction resources, difficulties in workgroup identification, and group

activity recognition. With the ability to integrate data from different sensors, DTC has the

potential to address this open challenge. Future research should focus on solving these is-

sues and developing a data integration platform for integrating progress data and resource

data to facilitate productivity estimation in terms of progress per unit of resource utilized

in unit time. Additionally, the combination of visual, audio, and kinematic sensors can be

studied to complement vision-based methods [77].

The productivity data needs to be reviewed by the management team at specific inter-

vals. It can be compared within and between projects. This comparison helps benchmark

the current status and identify the causes of low and high performance. Low produc-

tivity not only indicates the use of excessive resources but also signals the need for im-

proved collaboration and logistics between trade contractors. This understanding enables

the management team to make decisions that reduce waste and increase value [64].

5.2.3 Predictive monitoring of construction projects

Predictive monitoring of construction projects is a strategy that uses data analysis and

machine learning algorithms to predict potential issues and risks in a construction project

before they occur. This approach can help project managers identify and address poten-

tial problems early on, reducing the risk of delays, cost overruns, and other issues arising
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during construction. Predictive monitoring involves collecting data from various sources,

such as project schedules, resource utilization and work productivity metrics, progress

monitoring metrics, and external data sources, like weather forecasts and economic indi-

cators. This data is then analyzed using machine learning algorithms to identify patterns

and predict future performance based on the project’s current state.

For example, predictive monitoring can be used to analyze project schedules and

identify potential delays based on historical data and other factors such as resource avail-

ability, weather conditions, and productivity levels. It can also be used to monitor progress

in real-time and identify areas where work is falling behind schedule, or progress devia-

tions are likely to occur.

The benefits of predictivemonitoring in construction projects include improved project

performance, reduced risk of delays and cost overruns, improved safety, and better decision-

making. By identifying potential issues before they occur, project managers can take

proactive measures to mitigate risks and keep the project on track, ultimately leading to

the successful completion of the project. The DTC framework for closed-loop project

control proposed in this study is expected to make the process of predictive monitoring

in construction smoother. In the near future, with the availability of extensive data from

closed-loop project operations, the DTC platforms will not only predict the risks in the

construction process but also assist managers with potential mitigation actions proactively.

5.2.4 Quality control and quality assurance

As part of future work, the integration of quality control and quality assurance pro-

cesses within the ALPMS framework presents a promising avenue for enhancing construc-
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tion management practices. By incorporating quality control mechanisms, construction

managers can proactively monitor and inspect construction activities to ensure compliance

with specified standards, reducing the likelihood of defects and rework. Concurrently,

integrating quality assurance measures enables continuous evaluation of the ALPMS’s

performance, ensuring accurate completion percentage estimations and enhancing the re-

liability of the monitoring system. The synergistic integration of both quality control and

quality assurance within ALPMS creates a closed-loop feedback system, where detected

issues during quality control inspections can inform iterative improvements to the deep

learning model and the overall progress monitoring methodology. Ultimately, this holistic

approach not only enhances the accuracy and efficiency of construction progress moni-

toring but also fosters continuous improvement and greater project success.
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