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摘要

發現WDM驅動程式的資安漏洞很困難，因為它們大多不是開源的，有些驅

動程式甚至需要指定的環境才能將它們加載到系統核心中。符號執行和污點分析

是軟體安全中常用的技術，用於識別程式中的漏洞。然而，符號執行可能會出現

「路徑爆炸「問題，當程式複雜度增加時，可能的程式路徑數量呈指數級增長。污

點分析也可能會出現「污點爆炸」問題，當程式複雜度增加時，可能被污染的輸

入數量呈指數級增長。

本研究提出了一種名為 IOCTLance的解決方案，它利用符號執行和污點分析

來檢測WDM驅動程式中的漏洞。通過將目標輸入緩衝區從用戶模式進程標記為

「污點」，IOCTLance能夠檢測各種漏洞類型，例如「映射物理內存」、「可控進程

句柄」、「緩衝區溢出」、「空指針引用」、「可讀/可寫可控地址」、「任意 shellcode執

行」、「任意 wrmsr」、“任意 out」以及「危險的文件操作」。此外還開發了幾個可

調整的選項，以解決符號執行中的「路徑爆炸「問題。將 IOCTLance應用於 104

個已知有漏洞的驅動程式上，在其中 22個驅動程式中發現了 117個未知的漏洞，

目前已回報並取得 41個 CVE，其中包括 25個拒絕服務，5個訪問權限控制不足

以及 11個提權漏洞。

關鍵字：Windows核心、符號執行、汙點分析、漏洞
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Abstract

Discovering the security vulnerabilities ofWDM drivers is challenging because most

of them are not open-source and some drivers even need the specified environment to load

them into the kernel. Symbolic execution and taint analysis are common techniques used

in software security to identify vulnerabilities in software. However, symbolic execution

can suffer from the ”path explosion” problem, where the number of possible paths through

a program grows exponentially as the program complexity increases. Taint analysis can

also suffer from the ”taint explosion” problem, where the number of potentially tainted

inputs grows exponentially as the program complexity increases.

This research paper presents a solution called IOCTLance that aims to detect vul-

nerabilities in WDM drivers using symbolic execution and taint analysis. By marking

the target input buffer from the user mode process, IOCTLance is able to detect various

vulnerability types, such as ”map physical memory”, ”controllable process handle”, ”

buffer overflow”, ”null pointer dereference”, ”read/write controllable address”, ”arbitrary

vii
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shellcode execution”, ”arbitrary wrmsr”, ”arbitrary out”, and ”dangerous file operation”.

Several customizable options have also been developed to improve the performance while

symbolic execution. IOCTLance is evaluated on 104 known vulnerableWDM drivers and

318 unknownWDM drivers and discovered 117 previously unknown vulnerabilities in 26

unique drivers, resulting in 41 CVEs, including 25 denial of service, 5 insufficient access

control, and 11 elevation of privilege vulnerabilities.

Keywords: Windows Kernel, Symbolic Execution, Taint Analysis, Vulnerability
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Chapter 1 Introduction

SinceWindows 2000, Microsoft has recommended that hardware device manufactur-

ers use WDM (Windows Driver Model) [20] drivers to provide basic support for devices.

It plays a crucial role in the operation of Windows-based systems, as they act as interme-

diaries between hardware devices and the operating system. As a result, WDM drivers

account for most of the Windows kernel drivers in the market. However, as with any

software, WDM drivers are not immune to security vulnerabilities. Over the years, many

security vulnerabilities have been discovered in WDM drivers that could be exploited by

attackers to gain unauthorized access, execute arbitrary code, or elevate privileges. These

vulnerabilities pose a significant threat to the security of Windows-based systems and can

lead to system crashes, data breaches, and even full system compromise.

BYOVD (Bring Your Own Vulnerable Driver) is a type of attack on theWindows op-

erating system that can be used by an attacker. This attack involves loading a vulnerable

driver with elevated privileges into the kernel, enabling the attacker to gain access to sen-

sitive system resources or execute arbitrary kernel code. The BlackByte [1] cyber attack

abused the ”read/write controllable address” vulnerability in RTCore.sys driver to by-

pass antivirus software, granting full kernel-level privileges, then executing ransomware.

Similarly, Candiru [13] exploited the ”map physical memory” vulnerability in the HW.sys

driver, used for custom hardware communication, to install a rootkit and spyware on in-

1
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fected systems.

To tackle these challenges, we introduce a system named IOCTLance, which applies

symbolic execution and taint analysis to detect vulnerabilities inWDMdrivers. One of the

primary obstacles of symbolic execution is the path explosion problem, where the number

of feasible paths through a program grows exponentially with the program’s complex-

ity. To address this issue, IOCTLance intercepts opcodes and functions, sets breakpoints,

and employs several methods to minimize the program’s complexity for simulation. In

conclusion, this paper contributes by proposing the following enhancements.

1. By extending the symbolic execution engine, IOCTLance enhances its ability to

detect additional vulnerability types in WDM drivers.

2. We conducted an evaluation of IOCTLance by testing various options on a test

dataset of 104 known vulnerable WDM drivers and 328 unknownWDM drivers, enabling

us to statically and efficiently identify vulnerabilities at scale.

3. During our evaluation, IOCTLance successfully detected 117 previously unknown

vulnerabilities across 26 distinct drivers. As a result, we were able to report and receive 41

CVEs, including 25 instances of denial of service, 5 cases of insufficient access control,

and 11 examples of elevation of privilege.

The rest of this paper is organized as follows. Chapter 2 provides background infor-

mation on the WDM driver, symbolic execution, and taint analysis. Chapter 3 describes

the design of IOCTLance, including the preprocessing steps, setting breakpoints, and re-

porting vulnerabilities. Chapter 4 discusses several target vulnerability types that the tool

can detect. Chapter 5 of the paper illustrates the implementation of the symbolic exe-

cution engine, while Chapter 6 evaluates the performance of IOCTLance. In Chapter 7

2
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explores various options for customizing the analysis process and examine real-world sce-

narios encountered during the search for vulnerabilities. Finally, Chapter 8 presents the

conclusions of this paper.

3
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Chapter 2 Background

2.1 WDM Driver

WDM (Windows Driver Model) is a driver framework introduced by Microsoft for

Windows 2000 and later versions of Windows operating systems. WDM provides a lay-

ered message-passing architecture for Windows drivers, allowing them to communicate

with the operating system kernel and peripheral devices in a standardized way. WDM

drivers are binary-compatible and can run on multiple versions of the Windows operating

system, making it easier for hardware manufacturers to develop and deploy drivers for

their devices. WDM drivers can be developed using C or C++ programming languages,

and they interact with the operating system through the DDI (Device Driver Interface)

provided by Windows.

2.1.1 Driver Object

The driver object [40] is a data structure in the WDM driver that represents a loaded

driver in the system and contains various information about the driver, including its entry

points, driver extension, and device object list.

When a driver is loaded into the kernel, the I/O manager [23] creates a driver object

5
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for it. The driver object serves as an entry point for the driver and contains pointers to

the driver’s DriverEntry, AddDevice, Unload, and dispatch routines handling I/O requests

that are directed to the driver’s devices.

The driver object also contains a pointer to the driver’s device object list. Each device

object represents a physical or logical device that the driver controls. The device object

list is used by the system to manage devices and to route I/O requests to the appropriate

driver.

Additionally, the driver object may contain a driver extension, which is a structure

that can be used by the driver to store additional driver-specific data. The driver extension

is allocated by the driver itself and is typically used to store global driver state or other

driver-specific data that is not associated with a particular device object.

2.1.2 Device Object

In theWDMdriver framework, a device object represents a physical or logical device

that is managed by the driver. Device objects are created by the driver during initialization

using the IoCreateDevice [45] function. The device object is associated with the driver

object and contains a set of device-specific data structures and information.

The device object provides a way for the driver to communicate with the system and

other drivers, and it serves as the interface between the driver and the operating system.

When the system sends a request to the driver, it sends the request to the device object

associated with the request. The device object then forwards the request to the driver’s

dispatch routines [25], which are responsible for processing the request and returning a

response.

6
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2.1.3 IRP

IRP (I/O Request Packet) [29] is a fundamental data structure used in Windows op-

erating systems to communicate between various drivers and the operating system. In a

WDM driver, the IRP is a data structure that represents an I/O request made by a user

mode application or by another driver in the system.

Figure 2.1 illustrates how to send IRP from a user-mode process to a kernel-mode

driver. When a user-mode application sends an I/O request to a device driver, the I/O

Manager creates an IRP and populates it with information about the request, such as the

type of request, the data buffer, and the target device object. The IRP is then passed down

through the driver stack to the appropriate driver for processing.

Each driver in the driver stack can examine and modify the IRP as it passes through,

and perform the necessary processing for the particular I/O request. After processing is

complete, the driver may either pass the IRP down the stack to the next driver or complete

the IRP and return it to the I/O Manager.

There are several members in IRP that IOCTLance concerns, including System-

Buffer, InputBufferLength, OutputBufferLength, UserBuffer, Type3InputBuffer, and Ma-

jorFunction [49].

SystemBuffer is a pointer to the kernel buffer that contains the data associated with

the I/O request. For example, if the IRP is associated with a read request, the data that is

being read from the device will be stored in the SystemBuffer.

InputBufferLength indicates the length of the input buffer associated with the I/O

request. The input buffer is typically used to pass data from user mode to kernel mode.

7
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Figure 2.1: Send IRP from a user-mode process to a kernel-mode
driver.

OutputBufferLength indicates the length of the output buffer associated with the I/O

request. The output buffer is typically used to pass data from kernel mode to user mode.

UserBuffer is a pointer to the user buffer that contains the data associated with the I/

O request. This field is only relevant if the I/O request originated in user mode.

Type3InputBuffer is only used for method buffered I/O requests. It contains a pointer

to the input buffer associated with the I/O request.

MajorFunction in the IRP specifies the type of I/O operation that is being requested by

the I/OManager. This field can have values such as IRP_MJ_CREATE [51], IRP_MJ_CLOSE

[50], IRP_MJ_READ [53], IRP_MJ_WRITE [54], IRP_MJ_DEVICE_CONTROL [52],

etc. The driver’s dispatch routine processes the IRP based on its MajorFunction value.

2.1.4 IOCTL Handler

In a WDM driver, an IOCTL (I/O control) [18] handler is a function that handles

a specific input/output control request from an application. When an application sends

an IOCTL request to a device object, the request is passed down to the driver’s dispatch

8
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routine, which then routes the request to the appropriate IOCTL handler.

The IOCTL handler is responsible for processing the IOCTL request, which typically

involves reading or writing data to or from a device, setting or retrieving device configu-

ration parameters, or performing some other specific operation on the device. The handler

uses the input and output buffers provided by the application to exchange data with the

device.

2.2 Symbolic Execution

Symbolic Execution is a technique used in software engineering and computer secu-

rity to analyze software code without having to run it on a real system. It involves creating

a mathematical model of a program and executing the program symbolically by assign-

ing symbolic values to its input variables. The symbolic execution engine then tracks

how these values propagate through the program and how they affect program behavior,

including control flow, data flow, and memory access.

Symbolic execution is useful for identifying bugs and security vulnerabilities in soft-

ware, as it can systematically explore all possible paths through the program and generate

test cases that trigger edge cases that might be missed in traditional testing.

2.3 Taint Analysis

Taint analysis is a technique used in software security to identify and track potentially

unsafe inputs that may be used to exploit a program. It involves tracing the flow of data

through a program and marking any data that has originated from an untrusted source as ”
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tainted”. This can include data from user input, network communication, or other external

sources.

Once the data has been marked as tainted, the taint analysis tool can track its propa-

gation through the program and identify any points where the tainted data may be used in

an unsafe or unintended way.

2.4 Related Work

Several tools exist for fuzzingWindows kernel drivers, such as ioctlfuzzer [8], ioctlbf

[15], iofuzz [7], and Microsoft’s IoAttack [26]. However, these tools are limited in their

ability to provide comprehensive coverage and insights beyond kernel interface return

values. Additionally, the implementation of these tools is relatively straightforward, and

they cannot analyze code in-depth.

CAB-FUZZ [14] gives priority to the boundary states of symbolic memories and

loops because they have the potential to cause stack or heap overflows and underflows.

Several studies have attempted to specialize in symbolic execution to detect overflows and

underflows. For example, IntScope [67] and SmartFuzz [64] use symbolic execution to de-

tect integer overflows, with SmartFuzz also covering integer underflows, narrowing con-

versions, and signed/unsigned conversions. Dowser [11] focuses on identifying overflows

and underflows in a buffer within a loop. Conversely, DIODE [66] concentrates on identi-

fying integer overflow errors at specific memory locations using a detailed dynamic taint

analysis that identifies all memory allocation sites, extracts target and branch constraints

from instrumented execution, solve the constraints, and executes goal-directed conditional

branch enforcement. On the contrary, IOCTLance can directly perform symbolic analysis
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on kernel driver binaries without requiring the environment to load the driver.

Other tools and frameworks, such as Screwed-Drivers [9] and POPKORN [10], have

been developed to identify and exploit vulnerabilities in Windows kernel drivers. These

tools employ symbolic execution and taint analysis to detect opcodes and kernel APIs that

are likely to be exploited. However, these tools do not address the path explosion issue

in symbolic execution and are limited to targeting API-type and opcode-type vulnerabil-

ities only. In contrast, IOCTLance targets a wider range of API-type, opcode-type, and

memory-type vulnerabilities. Additionally, IOCTLance reduces both false positives and

false negatives and improves the performance of the symbolic execution engine.

11
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Chapter 3 Design

IOCTLance leverages symbolic execution and taint analysis to detect vulnerabilities

in WDM drivers and consists of the following steps: information gathering, preprocess,

find IOCTL handler, hunt vulnerabilities, and report. Figure 3.1 shows the design of

IOCTLance.

3.1 Information Gathering

To facilitate communicationwith other kernel modules, aWDMdriver utilizes IoCre-

ateDevice to register a device. IoCreateDevice is a function provided by the Windows

Driver Model that is used to create a new device object within a driver. Device objects

represent physical or virtual devices that the driver manages. As a result, it is essential to

verify the presence of IoCreateDevice in the import table.

IOCTLance uses a string signature to determine the target device name and symbolic

link name created by IoCreateSymbolicLink [28] which are used to connect to WDM

drivers from the user mode process. With this information, we can use it to write the PoC

to exploit the target vulnerable drivers.

IOCTLance parses WDM drivers to get information such as opcodes, function ad-
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Figure 3.1: IOCTLance Design

dresses, addresses of the indirect jump, etc. With the information, we can know where to

hook and avoid to improve the performance of symbolic execution.

3.2 Preprocess

Prior to simulation, IOCTLance prepares the symbolic execution engine environment

to ensure smoother simulation. This involves opcode and function hooking as well as

breakpoint setting.

3.2.1 Hook Opcodes

To enhance the quality of symbolic execution, IOCTLance hooks specific opcodes

that may hinder the simulation. Additionally, in some cases, symbolic variables are con-

cretized for certain instructions to prevent issues that may cause the simulation to get

stuck.

Moreover, IOCTLance also hooks opcodes that fall under the target vulnerability

types in our scope. To minimize the occurrence of false positives and false negatives, we
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have incorporated validation within the hook function. This involves setting constraints

on operands and checking if the state is satisfiable.

3.2.2 Hook Functions

Angr does not implement most of the kernel APIs, but instead, it summarizes the

functions and returns a symbolic variable. This may lead to a loss of semantics during

symbolic execution and restricts code coverage because some parameters of kernel APIs

are passed by reference and get their values inside the APIs. As a result, there is a possibil-

ity of encountering false positives and false negatives. To address this issue, IOCTLance

hooks these kernel APIs and provides appropriate values or symbolic variables to the pa-

rameters that are expected to be assigned inside the APIs and are passed by reference.

Furthermore, many vulnerabilities stem from kernel APIs. In order to detect these

types of vulnerabilities, IOCTLance hooks the kernel APIs that are of interest to us. The

system then verifies the safety of the usage of a kernel API within the hook function.

Moreover, certain functions like memset and memcpy, which are built-in during code

writing, become highly complex after compilation, leading to performance degradation

during symbolic execution. In order to enhance performance without compromising the

original program’s semantics, IOCTLance hooks such functions and implements them

internally.

3.2.3 Set Breakpoints

IOCTLance sets breakpoints on mem_read and mem_write to trace the tainted buffer

and the buffer it points to. This helps detect some target vulnerability types, such as
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null pointer dereference and read/write controllable address. In the next section, ”Find

IOCTL Handler,” the mem_write breakpoint is also used to identify the target value in the

DRIVER_OBJECT structure when it is written into the function pointer.

IOCTLance has implemented a custom function that is executed whenever the sym-

bolic execution engine simulates the call instruction, which is triggered by a breakpoint.

This breakpoint is useful for detecting situations where the target function address is either

a symbolic variable or a tainted buffer that is controlled by an attacker. In such scenarios,

the call breakpoint can detect arbitrary shellcode execution by handling these situations

appropriately.

3.2.4 Use Techniques

IOCTLance offers various options for customizing the analysis of drivers. These op-

tions can be adjusted to better suit different situations. Limits can be set for the length of

instructions that a state can execute, the number of times a state can repeat a loop and the

number of times a state can recurse. There are also limits on the total time allowed for

symbolic execution and the time allowed for each IoControlCode in the ”Hunt Vulnera-

bilities” phase.

3.2.5 Initialize Structures

IOCTLance simplifies access to common kernel structures in WDM drivers by reg-

istering them. These structures must be initialized before symbolic execution. In the first

phase of the analysis, called Find IOCTL Handler, IOCTLance symbolizes two parame-

ters, namely DRIVER_OBJECT and REGISTRY_PATH, in DriverEntry. This allows the
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tool to bypass parameter checks and obtain the function pointer of the IOCTL handler.

In the second phase, known as Hunt Vulnerabilities, IOCTLance initializes parameters

such as DeviceObject and IRP in the IOCTL handler. To trace and identify vulnerabilities,

IOCTLance symbolizes certain members, such as SystemBuffer, Type3InputBuffer, User-

Buffer, InputBufferLength, OutputBufferLength, and IoControlCode, as tainted buffers.

In addition, some other members are also initialized to a concretized value to pass certain

checks in the program. The data section can also be symbolized on a case-by-case basis,

as needed.

3.3 First Phase - Find IOCTL Handler

IOCTLance begins searching for the IOCTL handler after setting up the symbolic

engine environment, starting from DriverEntry. The simulation begins by examining the

mem_write action on MajorFunction’s DEVICE_IO_CONTROL in DRIVER_OBJECT.

Additionally, some drivers have their logic in DriverStartIo [41], so we also inspect the

mem_write action on DriverStartIo in DRIVER_OBJECT. After locating the IOCTL han-

dler, IOCTLance searches for a state that returns from DriverEntry with NT_SUCCESS,

which becomes the base state for identifying vulnerabilities.

3.4 Second Phase - Hunt Vulnerabilities

The next step for IOCTLance is to search for vulnerabilities starting from the IOCTL

handler, which was identified in the previous step. The symbolic execution engine will

analyze the program and execute the hooked functions and opcodes, breaking on the in-

spected actions. When a vulnerability condition is satisfied, IOCTLance will generate a
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JSON-formatted report containing details including the vulnerability’s title, description,

state when it was detected, parameters, and return address. This information is logged to

help with manual vulnerability confirmation.

To obtain a better understanding of the vulnerability-hunting process, IOCTLance

evaluates the values of SystemBuffer, Type3InputBuffer, UserBuffer, InputBufferLength,

and OutputBufferLength, which are all potentially controlled by a user mode process.

Additionally, we consider the constraints imposed by ProbeForRead [34], ProbeForWrite

[35], and MmIsAddressValid [57] to minimize the likelihood of false positives.

3.5 Report

Once IOCTLance has generated a list of vulnerabilities, it applies deduplication to

eliminate duplicates. The IoControlCode and vulnerability type are used to determine if

a vulnerability is unique or not. Additionally, IOCTLance calculates the time taken and

memory consumed for finding the IOCTL handler and hunting vulnerabilities, respec-

tively. To calculate the code coverage, it unionizes the history of all states and gets the

length of unique executed addresses.

The information on the hunted vulnerabilities is added to a list and included in the

report, containing the title of the vulnerability type, the description of the vulnerability, the

evaluation of the input buffer, the address where the vulnerability occurs, the limitation set

by kernel API, and the return address. Any errors that occurred during the program simu-

lation are also logged in the report to facilitate debugging and adjustment of IOCTLance’s

symbolic engine.
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Chapter 4 Target Vulnerability Types

The following section outlines the vulnerability types within the scope of our inves-

tigation, including ”map physical memory”, ”controllable process handle”, ”buffer over-

flow”, ”null pointer dereference”, ”read/write controllable address”, ”arbitrary shellcode

execution”, ”arbitrary wrmsr”, ”arbitrary out”, and ”dangerous file operation”. Figure 4.1

shows the relationships between tainted buffer and target vulnerability types.

4.1 Map Physical Memory

IOCTLance intercepts the kernel APIs MmMapIoSpace [58], MmMapIoSpaceEx

[31], and ZwMapViewOfSection [62], which are used by drivers to map physical mem-

ory for hardware register access, memory optimization, and direct memory access. The

symbolic execution engine simulates these functions to detect vulnerabilities.

4.1.1 MmMapIoSpace and MmMapIoSpaceEx

The vulnerability type we are focusing on concerns the parameters PhysicalAddress

and NumberOfBytes of the MmMapIoSpace and MmMapIoSpaceEx kernel APIs. The

PhysicalAddress parameter specifies the physical address to bemapped, while NumberOf-

Bytes parameter specifies the length of the physical memory to be mapped. If an attacker
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Figure 4.1: Relationships between Target Vulnerability Types
and Tainted Buffer
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can control either of these parameters, it may allow for arbitrary kernel memory mapping

and result in an elevation of privilege vulnerability. Listing 4.1 illustrates an instance that

is deemed vulnerable by IOCTLance, since an attacker can manipulate the PhysicalAd-

dress parameter in MmMapIoSpace.

1 VOID Vuln_MmMapIoSpace (PVOID i n b u f )

2 {

3 i f ( ! i n b u f ) re turn ;

4 MmMapIoSpace (* (PHYSICAL_ADDRESS *) i nbu f , 4 , MmNonCached ) ;

5 }

Listing 4.1: Map Physical Memory - MmMapIoSpace

4.1.2 ZwMapViewOfSection

ZwMapViewOfSection is another kernel API that is inspected by this type of vulnera-

bility. It takes four parameters: SectionHandle, BaseAddress, CommitSize, andViewSize.

Among these, the vulnerability focuses on SectionHandle, BaseAddress, CommitSize, and

ViewSize. SectionHandle is the handle of the section to be mapped, while BaseAddress

is the starting virtual address for the allocated view. CommitSize indicates the committed

region of the view, and ViewSize is the size of the view. If an attacker can control Section-

Handle or use \Device\PhysicalMemory and can also control BaseAddress or CommitSize

and ViewSize, they can map any arbitrary physical memory address, potentially leading

to privilege escalation. Listing 4.2 portrays a scenario that is considered vulnerable by

IOCTLance due to the attacker’s ability tomanipulate the SectionHandle and BaseAddress

parameters in MmMapIoSpace.

1 VOID Vuln_ZwMapViewOfSection (PVOID i n b u f )

2 {

3 i f ( ! i n b u f ) re turn ;

4 ZwMapViewOfSection (

21



doi:10.6342/NTU202302404

5 *(HANDLE *) i nbu f ,
6 ZwCur r en tP roce s s ( ) ,

7 *(PVOID **) ( i n b u f + 8) ,

8 0 ,

9 1000 ,

10 0 ,

11 1000 ,

12 ( SECTION_INHERIT ) 1 ,

13 MEM_RESERVE,

14 PAGE_READWRITE

15 ) ;

16 }

Listing 4.2: Map Physical Memory - ZwMapViewOfSection

4.2 Controllable Process Handle

The target process handle is a parameter passed before executing process operations.

If an attacker can control the process handle passed as a parameter, it could result in po-

tential vulnerabilities. IOCTLance intercepts the kernel APIs ZwOpenProcess [39] and

ObOpenObjectByPointer [32] which can be used to get process handle.

4.2.1 ZwOpenProcess

This type of vulnerability focuses on the parameters of ZwOpenProcess, namely Ob-

jectAttributes, and ClientId. ObjectAttributes is used to specify the attributes to apply,

while ClientId identifies the thread whose process is to be opened. If these parameters can

be controlled by an attacker, it may lead to vulnerabilities.

When thememberAttributes inObjectAttributes is not OBJ_FORCE_ACCESS_CHECK
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and ProcessId in ClientId is manipulable, it becomes possible for an attacker to return an

arbitrary process handle, which can result in unauthorized access control. The example in

Listing 4.3 is considered vulnerable by IOCTLance, as the attacker can manipulate the

UniqueProcess in CLIENT_ID parameter of ZwOpenProcess. Moreover, the ObjectAt-

tributes parameter is not set to OBJ_FORCE_ACCESS_CHECK.

1 VOID Vuln_ZwOpenProcess (PVOID i n b u f )

2 {

3 i f ( ! i n b u f ) re turn ;

4 OBJECT_ATTRIBUTES o b jA t t r ;

5 CLIENT_ID c l i e n t I d ;

6 HANDLE p roc e s sHand l e ;

7 I n i t i a l i z e O b j e c t A t t r i b u t e s (

8 &ob jA t t r ,

9 NULL,

10 OBJ_KERNEL_HANDLE,

11 NULL,

12 NULL

13 ) ;

14

15 c l i e n t I d . Un iqueP roce s s = *(HANDLE *) i n b u f ;
16 c l i e n t I d . UniqueThread = (HANDLE) 0 ;

17 ZwOpenProcess (

18 &proce s sHand l e ,

19 PROCESS_ALL_ACCESS ,

20 &ob jA t t r ,

21 c l i e n t I d

22 ) ;

23 }

Listing 4.3: Controllable Process Handle - ZwOpenProcess
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4.2.2 ObOpenObjectByPointer

If the parameter ”Object” passed to ObOpenObjectByPointer is a pointer to EPRO-

CESS and can be controlled by an attacker, it may result in the attacker obtaining an arbi-

trary process handle and may lead to unauthorized access control. IOCTLance considers

Listing 4.4 as vulnerable because an attacker can manipulate the parameter ProcessId in

PsLookupProcessByProcessId and pass it into ObOpenObjectByPointer.

1 VOID Vuln_ObOpenObjec tByPoin te r (PVOID i n b u f )

2 {

3 i f ( ! i n b u f ) re turn ;

4 PEPROCESS p ;

5 HANDLE h ;

6 PsLookupProce s sByProce s s Id (* (HANDLE *) i nbu f , &p ) ;

7 ObOpenObjec tByPoin te r (

8 p ,

9 OBJ_KERNEL_HANDLE,

10 NULL,

11 KEY_ALL_ACCESS ,

12 (POBJECT_TYPE) PsProcessType ,

13 0 ,

14 &h

15 ) ;

16 }

Listing 4.4: ObOpenObjectByPointer

4.3 Buffer Overflow

The parameter of interest for this type of vulnerability in memcpy is the destination

buffer size. If an attacker can control the size of the destination buffer, it may cause a

buffer overflow, resulting in a denial of service and elevation of privilege. Listing 4.5
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demonstrates a vulnerability identified by IOCTLance where an attacker can manipulate

the size parameter in memcpy.

1 VOID Vuln_Buf fe rOve r f low (PVOID i n b u f )

2 {

3 i f ( ! i n b u f ) re turn ;

4 memcpy ( de s t , s r c , *(SIZE_T *) ( i n b u f ) ) ;
5 }

Listing 4.5: Buffer Overflow

4.4 Null Pointer Dereference

IOCTLance carefully analyzes all memory read and write operations to monitor spe-

cific buffers that do not undergo null validation. We focus on two types of buffers, namely

tainted buffers and allocated memory.

4.4.1 Tainted Buffer

During symbolic execution, IOCTLance inspects each memory read and write oper-

ation on tainted buffers. An attacker can invoke DeviceIoControl with SystemBuffer set

as NULL. If the driver fails to validate the input received from a user-mode process and

accesses it, a null pointer dereference can occur. Our system verifies if the buffer accessed

is controlled by the attacker and is possibly NULL to determine whether the operation is

vulnerable. The example shown in Listing 4.6 is considered vulnerable by IOCTLance

because the program fails to verify if the input buffer has a NULL value or not.

1 VOID Vu l n _Nu l l P o i n t e rD e r e f e r e n c e _T a i n t e dBu f f e r (PVOID i n b u f )

2 {

3 *(CHAR *) i n b u f = 0 ;
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4 }

Listing 4.6: Null Pointer Dereference - Tainted Buffer

4.4.2 Allocated Memory

IOCTLance examines each memory read and write operation on buffers that are al-

located using kernel APIs that return NULL when there is not enough memory in the free

pool to satisfy the request. If a program fails to check whether the return value of these

APIs is NULL or not, an attacker can cause null pointer dereference by intentionally mak-

ing the kernel API fail. Our system verifies whether the buffer being accessed is likely

to be null to determine whether the operation is vulnerable. Listing 4.7 demonstrates a

situation that IOCTLance considers vulnerable, as the program fails to verify the return

value of MmAllocateNonCachedMemory.

1 VOID Vu ln_Nu l lPo i n t e rDe r e f e r enc e_A l l o c a t edMemory ( )

2 {

3 memory = MmAllocateNonCachedMemory (0 x1000 ) ;

4 *(CHAR *)memory = 0 ;

5 }

Listing 4.7: Null Pointer Dereference - Allocated Memory

4.5 Read/Write Controllable Address

IOCTLance verifies each read and write operation during its search for vulnerabili-

ties. If an attacker can control the destination address for the read or write operation, they

can make the program read from or write to unintended addresses.
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4.5.1 Tainted Buffer

If a program reads from or writes to a tainted buffer, it means that an attacker can

manipulate the address that the program accesses, which could potentially result in denial

of service and elevation of privilege. Listing 4.8 presents an example that is considered

vulnerable by IOCTLance because it allows an attacker to write NULL into a controllable

address.

1 VOID Vu l n _Re adWr i t eCon t r o l l a b l eAdd r e s s _Ta i n t e dBu f f e r (PVOID i n b u f )

2 {

3 i f ( ! i n b u f ) re turn ;

4 **(char **) i n b u f = 0 ;

5 }

Listing 4.8: Read/Write Controllable Address - Tainted Buffer

4.5.2 memcpy

When using the memcpy function, the dest and src parameters are of particular in-

terest in terms of vulnerability. The dest parameter is a pointer to the destination array

where the data will be copied. The src parameter is a pointer to the source of the data to

be copied.

If either src or dest parameter is under an attacker’s control, it could allow the attacker

to read from or write to arbitrary memory addresses. This could result in denial of service

and even elevation of privilege. Listing 4.9 exemplifies a case that IOCTLance considers

vulnerable, as an attacker can manipulate both the destination and source addresses in the

memcpy function.

1 VOID Vuln_ReadWr i t eCon t ro l l ab l eAddres s_memcpy (PVOID i n b u f )

2 {
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3 i f ( ! i n b u f ) re turn ;

4 memcpy (* (CHAR *) i nbu f , *(CHAR *) ( i n b u f + 8) , 4 ) ;

5 }

Listing 4.9: Read/Write Controllable Address - memcpy

4.6 Arbitrary Shellcode Execution

If an attacker controls the address that a program uses to call a function, they can

execute arbitrary code and potentially elevate their privileges and achieve arbitrary kernel

execution. Listing 4.10 depicts an example of the vulnerability identified by IOCTLance,

where the program calls a function whose address can be manipulated by an attacker,

allowing for arbitrary shellcode execution.

1 VOID Vu l n _A r b i t r a r y S h e l l c o d eEx e c u t i o n (PVOID i n b u f )

2 {

3 i f ( ! i n b u f ) re turn ;

4 ( (VOID (* ) ( ) ) i n b u f ) ( ) ;
5 }

Listing 4.10: Arbitrary Shellcode Execution

4.7 Arbitrary Wrmsr

The wrmsr [24] function is a kernel function in Windows that enables writing data

to a Model-Specific Register (MSR) located in the CPU. MSRs control hardware features

and performance data. This function is commonly used in device drivers for hardware

interaction and system behavior control.

By invoking the SYSCALL function, the OS system-call handler at privilege level
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0 is activated. RIP is loaded from the IA32_LSTAR MSR, while the address of the in-

struction following SYSCALL is saved into RCX. RFLAGS is saved into R11 and then

masked using the IA32_FMASK MSR.

The _xeroxz/msrexec [12] open-source project created by IDontCode exploits the

wrmsr function to execute arbitrary kernel code. The wrmsr function takes operands Ad-

dress and Value, where Value is written into Address. If an attacker can control both

operands, it could lead to arbitrary kernel execution. Listing 4.11 demonstrates an in-

stance that is considered vulnerable by IOCTLance, as an attacker can manipulate the

Address and Value operands in the opcode wrmsr.

1 VOID Vuln_Arb i t r a ryWrmsr (PVOID i n b u f )

2 {

3 i f ( ! i n b u f ) re turn ;

4 __wr i t ems r (* ( i n t *) i nbu f , *( unsigned __ i n t 6 4 *) ( i n b u f + 8) ) ;

5 }

Listing 4.11: Arbitrary Wrmsr

4.8 Arbitrary Out

The Windows kernel utilizes the out [22] opcode to transfer data from the CPU to an

I/O device, often by writing to an I/O port. This instruction requires two operands: the

first operand, Port, specifies the I/O port number, and the second operand, Value, is the

data to be written.

When developing kernel drivers, the out opcode may be utilized to transfer data to

hardware devices such as sound cards or network adapters or to communicate with I/O

controllers.
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However, if an attacker can manipulate the Port and Value operands, they can set Port

to 0xcf9 and Value to 6 to shut down the system, or set Port to 0xcf9 and Value to 0xe to

restart the system, potentially causing a denial of service. Listing 4.12 depicts an example

that is considered vulnerable by IOCTLance, as an attacker can manipulate the Port and

Value operands in the opcode out.

1 VOID Vu ln_Arb i t r a r yOu t (PVOID i n b u f )

2 {

3 i f ( ! i n b u f ) re turn ;

4 __ou t by t e (* (USHORT *) i nbu f , *(UCHAR *) ( i n b u f + 8) ) ;

5 }

Listing 4.12: Arbitrary Out

4.9 Dangerous File Operation

IOCTLance examines the parameters passed to kernel APIs such as ZwDeleteFile

[38], ZwOpenFile [63], ZwCreateFile [61], IoCreateFile [46], IoCreateFileEx [47], and

IoCreateFileSpecifyDeviceObjectHint [48], which use ObjectAttributes [59] to specify

the file to operate on. ObjectName in ObjectAttributes holds the file name, while At-

tributes holds the bitmask of flags that determine the object’s attributes.

When an attacker can control ObjectName andAttributes is not OBJ_FORCE_ACCESS_CHECK,

calling these kernel APIs may allow performing operations on arbitrary files and lead to

unauthorized access control. ZwDeleteFile is a kernel API used to delete the file specified

by ObjectName in ObjectAttributes. The other APIs generate a file handle with the spec-

ified name in ObjectName in ObjectAttributes. Listing 4.13 demonstrates an example

considered vulnerable by IOCTLance due to the ability of an attacker to manipulate the

ObjectName parameter in ObjectAttributes, while Attributes in ObjectAttributes does not
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have the OBJ_FORCE_ACCESS_CHECK flag.

1 VOID Vu ln_Dange r ou sF i l eOpe r a t i on (PVOID i n b u f )

2 {

3 i f ( ! i n b u f ) re turn ;

4 OBJECT_ATTRIBUTES Ob j e c t A t t r i b u t e s ;

5 I n i t i a l i z e O b j e c t A t t r i b u t e s (

6 &Ob j e c t A t t r i b u t e s ,

7 (PUNICODE_STRING) inbu f ,

8 OBJ_CASE_INSENSITIVE | OBJ_KERNEL_HANDLE,

9 NULL,

10 NULL

11 ) ;

12 ZwDe l e t eF i l e (& O b j e c t A t t r i b u t e s ) ;

13 }

Listing 4.13: Dangerous File Operation
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Chapter 5 Implementation

Our system, IOCTLance, is built on top of the POPKORN framework and leverages

the angr [68] symbolic execution engine. We have customized and enhanced the engine

to make it more effective in detecting vulnerabilities specifically in WDM drivers.

5.1 Hook Opcodes

IOCTLance employs objdump [16] to identify opcode addresses in the driver file.

This is done by creating a subprocess to generate disassembly and then capturing the stan-

dard output. We subsequently compare each line of output with the opcode names that we

are targeting, to locate their respective addresses.

5.1.1 wrmsr

The Windows kernel function wrmsr is used to write data to a Model-Specific Reg-

ister (MSR) on the CPU and is classified as a vulnerability type in IOCTLance. The

function accepts two arguments, Address and Value, which are specified by registers ecx

and edx:eax, respectively. When both arguments can be controlled by an attacker through

the input buffer, arbitrary kernel execution can be achieved.
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To detect the controllability of wrmsr’s operands, IOCTLance hooks the function and

evaluates whether both registers are tainted by the input buffer during execution. If Ad-

dress can be set to 0xC0000082, which contains the address of the x64 system call handler

and it may result in arbitrary kernel execution, the function is considered vulnerable and

inserted into the report.

1 void __wr i t ems r (

2 unsigned long Reg i s t e r ,

3 unsigned __ i n t 6 4 Value

4 ) ;

5.1.2 out

The opcode ”out” copies a value to the I/O port and has two operands, Port and Value,

which are specified by registers edx and eax, respectively. If an attacker can control both

operands, it may cause a denial of service resulting in a BSOD.

To detect the controllability of its operands, IOCTLance hooks ”out”. If both operands

Port and Value are tainted by the input buffer that is controlled by an attacker during the

instruction execution, and if Port can be 0xcf9 and Value can be 0xe, it will be marked as

vulnerable and added to the report.

1 void __ou t by t e (

2 unsigned shor t Por t ,

3 unsigned char Data

4 ) ;
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5.1.3 rep

The rep instruction is used to repeat a series of instructions, such as the rep movsb

opcode which copies values from register rsi to rdi for the length specified by ecx. How-

ever, when ecx is a symbolic variable or too long, the operation can be time-consuming.

Therefore, IOCTLance hooks instructions with rep, such as rep movsw, rep movsd, rep

stosb, rep stosw, rep stosd, etc., and implements them in our system.

All these instructions use register ecx to specify the length of the operation. However,

if ecx is symbolic, determining the length can be complex and time-consuming. To address

this issue, IOCTLance evaluates a minimum value for the length inside the hook function.

If the length is zero, it is set to one to avoid missing read/write controllable addresses that

could result in false negatives. Conversely, if the length is too large, causing cumbersome

memory operations, the length is set to a maximum value of 0x1000.

5.1.4 indirect jump

An indirect jump is a type of computer programming instruction that determines the

destination of a jump at runtime, rather than directly specifying it. The instruction contains

a reference to a memory address or register that holds the address of the target instruction.

During program execution, the indirect jump reads the memory address or registers

specified in the instruction and jumps to the instruction located at that address. This allows

for more flexibility and dynamic behavior in the program’s logic, as the destination of the

jump can be determined based on the program’s state or input.

Indirect jumps are commonly used in programming languages like C and C++ to
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implement function pointers and virtual method tables. In assembly language, they can be

achieved using instructions like jmp and call with a memory or register operand containing

the target address.

IOCTLance hooks every indirect jump and evaluates the target addresses. If there are

multiple evaluations of the target addresses, it copies the current state, adds a constraint

to set the target address to one of the evaluations, and appends this state to the simulation

manager [2].

5.2 Hook Functions

By default, angr’s summary of kernel APIs returns a symbolic variable, and some of

the API parameters passed by reference may not be properly assigned. IOCTLance checks

for tainted parameters in kernel APIs to identify target vulnerabilities. Although memset

and memcpy are built-in functions, they are not compiled as imported functions but rather

have complicated implementations that significantly impact performance during symbolic

execution. To resolve these issues, IOCTLance hooks these functions and implements

them internally.

5.2.1 memset and memcpy

The functions memset and memcpy are commonly used to perform memory opera-

tions on a buffer, with the former copying memory from a source address to a destination

address and the latter setting memory to a specified value. However, these functions are

often compiled as functions that are not in the imported function table, which can compli-

cate their implementation during symbolic execution.
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To address these issues, IOCTLance hooks both functions and replaces memset with

the one implemented by angr. When the symbolic execution engine encounters the hook

function for memcpy, we check whether the parameters dest and src are tainted or not.

This indicates whether an attacker can control the destination or source address, which

could result in a read/write controllable address vulnerability.

To avoid false positives, we also check whether the addresses are restricted by Probe-

ForRead and ProbeForWrite. If dest is restricted by ProbeForWrite and src is restricted by

ProbeForRead, then the vulnerability is not considered vulnerable. Another vulnerability

that is checked for is buffer overflow, which can occur if the size parameter of memcpy is

controlled by an attacker.

In order to optimize performance, we have established a threshold of 0x1000 for the

size parameter when it is either too large or symbolic. However, it is important to note that

if the size is evaluated as 0, a false negative may occur due to the mem_read or mem_write

breakpoint not being triggered. This could result in a failure to detect null pointer derefer-

ence vulnerabilities. To address this, we set the size to 1 in these cases and check whether

the state is satisfiable [5]. Overall, IOCTLance leverages memcpy and memset hooks to

enhance performance during symbolic execution and identify vulnerabilities.

5.2.2 Imported Kernel APIs

Windows kernel APIs are essential components of the operating system that are im-

ported from a built-in library. However, angr does not have a built-in mechanism to handle

these APIs, and instead, it returns a symbolic variable, which may result in lost output that

should have been set as parameters from the APIs. This can impact the program’s behav-
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ior, especially if the output is necessary for executing certain code, leading to decreased

code coverage during simulation.

Furthermore, there are many vulnerabilities in the code that can be exploited by at-

tackers due to a lack of parameter validation in the APIs. To identify such vulnerabilities,

IOCTLance hooks APIs that are commonly targeted by attackers or are prone to common

kernel exploits. In the detoured function, the system checks whether the code is vulnerable

by evaluating the parameters of the API.

5.2.2.1 Restricted Address

Several kernel APIs in the Windows kernel, such as MmIsAddressValid, ProbeFor-

Read, and ProbeForWrite, are used to validate addresses. MmIsAddressValid checks

whether a given virtual address will cause a page fault during a read or write operation.

ProbeForRead checks whether a user-mode buffer is located in the correct portion of the

address space and is properly aligned, while ProbeForWrite checks whether a user-mode

buffer is located in the user-mode portion of the address space, is writable, and is properly

aligned.

To avoid generating false positives, IOCTLance keeps a record of the addresses that

have been validated by these kernel APIs. This helps prevent issues like null pointer

dereference or read/write controllable address.

5.2.2.2 Unicode String

The structure UNICODE_STRING is utilized to define Unicode strings. By reg-

istering a type for UNICODE_STRING, IOCTLance is able to conveniently access the
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member within the structure.

The kernel API RtlInitUnicodeString is used to initialize a counted Unicode string,

with DestinationString and SourceString as its parameters. The former is the buffer for

the initialized counted Unicode string, while the latter is a pointer to a null-terminated

Unicode string. By implementing the API, if SourceString is tainted, IOCTLance saves

the DestinationString to the tainted Unicode strings list.

The kernel API RtlCopyUnicodeString is used to copy a source string to a destination

string, with both parameters being pointers to Unicode strings. IOCTLance implements

the API and if SourceString is tainted or in the tainted Unicode strings list, the Destina-

tionString is saved to the tainted Unicode strings list as well.

5.2.2.3 ObjectAttributes

The OBJECT_ATTRIBUTES is a data structure in the Windows kernel that specifies

the attributes of a kernel object, including its name, security descriptor, and other control

attributes during object creation or manipulation.

To access the members inside ObjectAttributes, IOCTLance registers a type for OB-

JECT_ATTRIBUTES. We specifically resolve ObjectName and Attributes members and

check if ObjectName is tainted and the value of Attributes. To avoid false positives, we

add a constraint that Attributes should not be 1024, which indicates that it is not necessarily

OBJ_FORCE_ACCESS_CHECK. We then check if the state is satisfiable.

1 t ypede f s t r u c t _OBJECT_ATTRIBUTES {

2 ULONG Length ;

3 HANDLE Roo tD i r e c t o r y ;

4 PUNICODE_STRING ObjectName ;

5 ULONG A t t r i b u t e s ;
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6 PVOID S e c u r i t y D e s c r i p t o r ;

7 PVOID S e c u r i t yQ u a l i t yO f S e r v i c e ;

8 } OBJECT_ATTRIBUTES ;

5.2.2.4 Map Physical Memory

Several kernel APIs are available in the Windows kernel to map physical memory,

including MmMapIoSpace, MmMapIoSpaceEx, and ZwMapViewOfSection.

When it comes to MmMapIoSpace and MmMapIoSpaceEx, their parameters Physi-

calAddress and NumberOfBytes are checked by IOCTLance. If either of these parameters

is tainted, it can be used by attackers to map an arbitrary physical memory address, leading

to insertion into the report.

1 PVOID MmMapIoSpace (

2 PHYSICAL_ADDRESS Phy s i c a lAdd r e s s ,

3 SIZE_T NumberOfBytes ,

4 MEMORY_CACHING_TYPE CacheType

5 ) ;

For ZwMapViewOfSection, if SectionHandle is either \Device\PhysicalMemory or

is tainted, and BaseAddress or CommitSize and ViewSize are also tainted, it can be used

by attackers to map arbitrary physical memory addresses. To determine whether Section-

Handle is tainted or \Device\PhysicalMemory, IOCTLance hooks ZwOpenSection and

creates a symbolic variable to store the information. Then, we can identify the parameter

SectionHandle in ZwMapViewOfSection.

1 NTSYSAPI NTSTATUS ZwMapViewOfSection (

2 HANDLE Sec t i onHand l e ,

3 HANDLE Proces sHand le ,

4 PVOID *BaseAddress ,
5 ULONG_PTR Ze roB i t s ,
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6 SIZE_T CommitSize ,

7 PLARGE_INTEGER Se c t i o nO f f s e t ,

8 PSIZE_T ViewSize ,

9 SECTION_INHERIT I n h e r i t D i s p o s i t i o n ,

10 ULONG Al loca t i onType ,

11 ULONG Win32Pro t ec t

12 ) ;

5.2.2.5 Allocated Memory

Several kernel APIs are available inWindows to allocate kernel memory, such as Ex-

AllocatePool [42], ExAllocatePool2 [43], ExAllocatePool3 [27], MmAllocateNonCached-

Memory [56], ExAllocatePoolWithTag [44], and MmAllocateContiguousMemorySpeci-

fyCache [55]. IOCTLance hooks these APIs and returns a symbolic variable with a recog-

nizable name. This name is then used to validate whether the allocated memory is likely

to be NULL, by setting mem_read and mem_write breakpoints. If it is likely to be NULL,

this indicates that the program doesn’t check the value returned by the kernel API, which

could lead to null pointer dereference vulnerabilities.

5.2.2.6 Process Operation

IOCTLance monitors the ZwOpenProcess and ObOpenObjectByPointer kernel APIs

to ensure that attackers cannot control the accessibility to the process and the process ID.

The CLIENT_ID structure is used in ZwOpenProcess, which takes ObjectAttributes

and ClientId as parameters. IOCTLance registers a type for CLIENT_ID, which allows ac-

cess to the member inside the structure. If either the ClientId or UniqueProcess is tainted,

and the resolved ObjectAttributes attribute is not OBJ_FORCE_ACCESS_CHECK, it is
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considered vulnerable.

1 NTSYSAPI NTSTATUS ZwOpenProcess (

2 PHANDLE Proces sHand le ,

3 ACCESS_MASK Des i r edAcces s ,

4 POBJECT_ATTRIBUTES Ob j e c t A t t r i b u t e s ,

5 PCLIENT_ID C l i e n t I d

6 ) ;

ObOpenObjectByPointer is another kernel API that returns a process handle. IOCT-

Lance hooks this function against process operation, which takes a parameter Object and

outputs a process handle. To identify if Object is an EPROCESS object and is tainted,

IOCTLance also hooks PsLookupProcessByProcessId. This routine accepts a process ID

and returns a referenced pointer to the EPROCESS structure. If the ProcessId is tainted,

it is put into the tainted list. If Object passed to ObOpenObjectByPointer is in the tainted

list, it is considered vulnerable.

1 NTSTATUS ObOpenObjec tByPoin te r (

2 PVOID Objec t ,

3 ULONG Hand l eA t t r i b u t e s ,

4 PACCESS_STATE Pa s s edAcc e s sS t a t e ,

5 ACCESS_MASK Des i r edAcces s ,

6 POBJECT_TYPE ObjectType ,

7 KPROCESSOR_MODE AccessMode ,

8 PHANDLE Handle

9 ) ;

5.2.2.7 File Operation

There are several kernel APIs used for file operations inWindows, such as ZwDelete-

File, ZwOpenFile, ZwCreateFile, IoCreateFile, IoCreateFileEx, and IoCreateFileSpecify-

DeviceObjectHint. One of the parameters they all take is ObjectAttributes, which is of
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interest to us.

We can resolve ObjectName and Attributes parameters in ObjectAttributes. If Ob-

jectName in ObjectAttributes is tainted and the value of Attributes is not definitively

OBJ_FORCE_ACCESS_CHECK, then an attacker can perform file operations on any

file without verifying the required privilege. In such a scenario, it will be considered

vulnerable.

5.2.2.8 Other

To avoid listing all the hooked Windows kernel APIs, here’s a summary of some

important ones that IOCTLance uses.

The IoStartPacket [21] function is hooked to create a call state and insert it into the

simulation manager, based on the current state and calling DriverStartIo defined in Driv-

erEntry.

IoCreateDevice is hooked to initialize the DeviceObject as a symbolic variable and

create DeviceExtension with the size specified by the parameter DeviceExtensionSize.

RtlGetVersion [37] is hooked to pass conditions of the version set by some WDM

drivers. IOCTLance registers a type for RTL_OSVERSIONINFOW[33] andRTL_OSVERSIONINFOEXW

[60], and symbolizes the dwMajorVersion, dwMinorVersion, and dwBuildNumber in lpVer-

sionInformation, to overcome version validation from the program.

1 t ypede f s t r u c t _OSVERSIONINFOW {

2 ULONG dwOSVers ionInfoS ize ;

3 ULONG dwMajorVers ion ;

4 ULONG dwMinorVersion ;

5 ULONG dwBuildNumber ;

6 ULONG dwPla t fo rmId ;
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7 WCHAR szCSDVersion [ 1 2 8 ] ;

8 } OSVERSIONINFOW, *POSVERSIONINFOW, *LPOSVERSIONINFOW,

RTL_OSVERSIONINFOW, *PRTL_OSVERSIONINFOW;

Some programs use PsGetVersion [36] to check the version and execute correspond-

ing codes. IOCTLance symbolizes the parameters MajorVersion, MinorVersion, Build-

Number, and CSDVersion to pass the conditions set by WDM drivers.

1 BOOLEAN PsGe tVe r s ion (

2 PULONG MajorVers ion ,

3 PULONG MinorVers ion ,

4 PULONG BuildNumber ,

5 PUNICODE_STRING CSDVersion

6 ) ;

MmGetSystemRoutineAddress [30] and FltGetRoutineAddress [19] are hooked to

return a function pointer of a SimProcedure that returns 0 and avoid running into an un-

concretized address. By resolving the API name from the parameter, IOCTLance can

hook the target API with a specified SimProcedure to produce more accurate results.

5.3 Set Breakpoints

IOCTLance utilizes APIs to set breakpoints on specific operations for taint analysis

and to handle situations that affect symbolic execution. IOCTLance sets breakpoints on

mem_read and mem_write to trace tainted buffers and identify vulnerability types. Addi-

tionally, the breakpoint for the call instruction is implemented to handle situations where

the target function address is either a symbolic variable or a tainted buffer that is controlled

by an attacker, allowing for the detection of arbitrary shellcode execution.
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5.3.1 mem_read and mem_write

Taint analysis is crucial in identifying vulnerabilities in our system. In addition to

symbolizing the buffer of interest, we also examine the memories of concretized addresses

to identify tainted buffers. IOCTLance inspects memory read and write to determine if

the target address is tainted and not yet concretized. If so, we concretize the target ad-

dress and symbolize the memory it points to. We use this approach to detect target values

written into a structure and find the IOCTL handler. We inspect various target addresses,

including SystemBuffer, Type3InputBuffer, UserBuffer, and memory allocated by differ-

ent functions.

To identify null pointer dereference vulnerabilities, we impose a constraint on the

allocated memory to check if the target address can be NULL. If the state is satisfiable, it

indicates that the program does not validate the success of kernel APIs, potentially allow-

ing an attacker to cause null pointer dereference.

In the case of SystemBuffer, Type3InputBuffer, andUserBuffer, they are input buffers

that can be manipulated by attackers. At the initialization stage, IOCTLance generates

symbolic variables for these input buffers. During breakpoints, we set constraints to ver-

ify that SystemBuffer is NULL, InputBufferLength is 0, and OutputBufferLength is 0. If

it is possible for these to be NULL and not restricted by MmIsAddressValid, this implies

that the program does not validate whether SystemBuffer is NULL, which can lead to null

pointer dereference. Because Type3InputBuffer or UserBuffer does not copy the contents

to other memory locations like SystemBuffer does, if the program fails to validate these

buffers, attackers may be able to manipulate read/write addresses. We examine the vulner-

ability by setting Type3InputBuffer or UserBuffer to any non-null value, and if the state
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is satisfiable and the target address is not limited by ProbeForRead or ProbeForWrite, this

implies that the vulnerability exists, and the attacker can manipulate the address to read or

write.

In addition to SystemBuffer, Type3InputBuffer, and UserBuffer, IOCTLance also

focuses on the pointers contained within these buffers. We use concrete addresses to rep-

resent these buffers and store our own symbolic variables at these addresses. Because

we can identify these buffers, we validate them when performing read/write operations

by adding a constraint to set them to any non-null value. If the state is satisfiable and

the target address is not restricted by ProbeForRead or ProbeForWrite, it indicates that

an attacker can manipulate the address to perform read/write operations, indicating the

presence of a vulnerability.

5.3.2 Call

IOCTLance places breakpoints on all function calls to handle situations where the

address of the called function is symbolized. This occurs when a program calls a func-

tion pointer that has not been successfully assigned, such as when the function pointer is

assigned in other IoControlCodes but used in others. This creates an error state because

angr is unable to determine the target address to call, resulting in decreased code coverage.

Therefore, in the call breakpoint, if the target function address is symbolic, we manually

set the instruction pointer to a SimProcedure that executes nothing.

Furthermore, we verify whether the target address is tainted to confirm if there is

an arbitrary shellcode execution vulnerability. If the target function address is either Sys-

temBuffer, Type3InputBuffer, or UserBuffer, IOCTLance includes the vulnerability in the
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report.

5.4 Use Techniques

ExplorationTechnique [3] is a feature provided by angr that allows users to customize

the behavior during symbolic execution. In order to prevent recursion, IOCTLance checks

the call stack of each state to ensure that a function address does not appear more than once.

If a recursive call is detected, the state is terminated. In addition, WDM drivers often

have multiple IoControlCodes that perform different tasks. To prevent the analysis of a

particularly complex IoControlCode from affecting the overall analysis, IOCTLance sets

a timeout for each individual IoControlCode. The starting time of each IoControlCode is

recorded when it is evaluated in each state. If the time taken to analyze an IoControlCode

exceeds its timeout, all states associated with that IoControlCode are terminated.

IOCTLance provides various options for controlling the symbolic execution of drivers

using angr. One such option is Timeout [4], which enables the user to set a maximum time

limit for the analysis to finish. If the analysis exceeds this limit, it is terminated. Another

option offered by angr is LengthLimiter, which allows the user to restrict the length of in-

structions that a state can execute. This helps to minimize the number of states and prevent

state explosion. In addition, IOCTLance utilizes Angr’s LoopSeer and LocalLoopSeer

techniques to constrain the number of times a state can loop. This can also decrease the

number of states and mitigate state explosion.
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5.5 Initialize Structures

During the vulnerability hunting process, IOCTLance employs taint analysis. To be-

gin with, we construct the kernel structures ourselves and generate symbolic variables

for the specific members that our system targets. IOCTLance employs two phases for

conducting symbolic execution, namely, finding the IOCTL handler and hunting vulner-

abilities.

During the first phase - find IOCTL handler, IOCTLance sets addresses and stores

the symbolic variables we created into those addresses to represent DriverObject and Reg-

istryPath, respectively. This phase starts from DriverEntry, which takes the parameters

DriverObject and RegistryPath.

The second phase - hunt vulnerabilities, begins from the IOCTL handler, which takes

parameters DeviceObject and IRP. To properly execute this phase, DeviceObject needs to

be built in IoCreateDevice and initialized in DriverEntry when finding the IOCTL han-

dler. However, if our system fails to find the entire initialization of kernel structures

within the timeout, we will proceed to hunt vulnerabilities from a blank state and cre-

ate a symbolic variable for DeviceObject. In IRP, several members may be under the

control of an attacker. Hence, IOCTLance sets MajorFunction to 14, which represents

DEVICE_IO_CONTROL, and sets RequestorMode to 1, which represents user mode.

We also create symbolic variables for SystemBuffer, InputBufferLength, OutputBuffer-

Length, Type3InputBuffer, UserBuffer, and IoControlCode.

Programs often use global variables in the data section to determine whether to ex-

ecute a statement. By default, angr initializes the data section with NULL, which can
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decrease code coverage during symbolic execution. For instance, if a global variable is

set in an IoControlCode, and another reads the global variable, some code may not be

simulated, leading to false positives. To address this issue, we have the option to sym-

bolize the data section with a specified length. The decision of how long to symbolize

is a tradeoff between solving false negatives and generating new false positives. We will

discuss the impact of symbolizing the data section in the Evaluation section.
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Chapter 6 Evaluation

In this chapter, we assess the performance of IOCTLance and compare it to POP-

KORN using both known and unknown drivers. Our experiments were conducted on a

four-core Intel i7-3770K 3.40GHz CPU and 32GB of RAM. The evaluation process was

divided into two phases: finding the IOCTL handler and hunting vulnerabilities.

We obtained 185 vulnerable WDM drivers from namazso/physmem_drivers [65]

and CaledoniaProject/drivers-binaries [6] for the known driver dataset. Through man-

ual reverse-engineering, we deduplicated the set to 104 unique drivers, with the largest

file being 1.3 MB and the smallest being 10.1 KB. On average, the drivers in the known

dataset had a size of 62.4 KB.

For the unknown driver dataset, we manually downloaded and installed various soft-

ware and collected 1959 drivers. We first removed non-WDM drivers and duplicates,

resulting in 342 unique drivers. Next, we removed drivers that were solely used to ex-

port functions for other drivers and those without an IOCTL handler, leaving us with 318

unique drivers. The largest file in this dataset was 71.1 MB, while the smallest was 7.2

KB, with an average size of 630.0 KB.
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6.1 Known Drivers

To evaluate IOCTLance, we conducted manual reverse-engineering on each vulner-

able driver and used the results as a benchmark for comparison. We set a total timeout

of 30 minutes for both phases and 40 seconds for each IoControlCode, and were able to

successfully analyze 103 known drivers. Of these, IOCTLance was able to identify the

IOCTL handler within 30 seconds in the first phase for 100 known drivers. The second

phase, which involved hunting for vulnerabilities, was completed in 20 minutes for 98

known drivers. Table 6.1 compares the number of vulnerabilities in the known WDM

drivers found by IOCTLance with the ground truth. v1, v2, v3, v4, v5, v6, v7, v8, and v9

represent ”map physical memory”, ”controllable process handle”, ”read/write controllable

address”, ”buffer overflow”, ”null pointer dereference”, ”arbitrary shellcode execution”,

”arbitrary wrmsr”, ”arbitrary out”, and ”dangerous file operation” respectively.

The number of vulnerabilities found in the experiment is lower than the ground truth

due to the following reasons. Despite the occurrence of some false negatives, we were

able to mitigate the issues by customizing options for IOCTLance.

1. Timeout. To locate the IOCTL handler, a total timeout of 30 minutes was set, and

IOCTLance was able to find IOCTL handlers in 103 out of 104 known drivers. However,

in three drivers, the IOCTL handler was located within the timeout period, but the initial-

ization step from DriverEntry was not completed, leading to the hunting of vulnerabilities

with a blank state. For the last driver, the issue was caused by long-running concrete loops,

which we solved by manually reverse-engineering and finding the address of the IOCTL

handler ourselves. If an analysis lacks the necessary context to hunt vulnerabilities, it may

cause false negatives. But in our experiment, the lack of context did not affect the number
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of vulnerabilities much.

To hunt vulnerabilities, a total timeout of 30 minutes and an IoControlCode timeout

of 40 seconds were set. This means that in the worst case, only 45 IoControlCodes can

be analyzed by IOCTLance. Some drivers, such as rtkiow10x64.sys with 192 IoControl-

Codes, have many IoControlCodes, and in our experiment, six out of 104 known drivers

required a longer total timeout due to the large number of IoControlCodes. Additionally,

40 seconds for each IoControlCodemay not be enough, as some drivers implement several

features within an IoControlCode, leading to false negatives when IOCTLance reaches the

timeout for IoControlCodes.

2. Data Section. Global variables are used as conditions to decide whether to walk

into logic in some vulnerabilities. Although global variables belong to the data section,

they are not symbolized by default. Therefore, if global variables are not correctly initial-

ized, false negatives may occur. IOCTLance provides an option for users to symbolize

an editable length of the data section to address this issue. In our experiment, one driver

required symbolizing 0x3000 bytes in the first phase, and three out of 104 known drivers

required symbolizing 0x1000 bytes of the data section to analyze properly in the second

phase. By symbolizing the customized length of the data section, we were able to suc-

cessfully find the correct number of vulnerabilities.

Table 6.1: Compare ground truth with experiment by the number of the vulnerability.

Result v1 v2 v3 v4 v5 v6 v7 v8 v9
Ground Truth 221 12 104 65 818 8 49 179 6
Experiment 217 12 103 65 813 8 49 172 4
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6.2 Unknown Drivers

In this section, we present an evaluation of IOCTLance using a set of 318 unknown

drivers. To analyze these drivers, we set a total timeout of 30 minutes for both phases,

with each IoControlCode given 40 seconds to execute. During the first phase, the IOCTL

handler of 220 unidentified drivers can be detected within 30 seconds, and 259 unknown

drivers can be detected before the timeout. The remaining drivers are manually tuned by

setting the length limit, the bound limit, and the length of the data section to symbolize. In

the second phase, which aims to identify vulnerabilities, 282 unknown drivers can be an-

alyzed within 20 minutes and 287 can be examined before the timeout. For the remaining

drivers, the timeout of the second phase is extended to ensure their complete analysis.

We consider a vulnerability to be unique if it differs in either the IoControlCode or

the vulnerability type. Using this criterion, we discovered 117 previously unknown vul-

nerabilities in 26 unique drivers, resulting in the identification of 41 CVEs, including 5

CVEs from Advanced Micro Devices and 2 CVEs fromMicrosoft. Some of these vulner-

abilities are currently being addressed. The number of real-world vulnerabilities found by

IOCTLance in unknown WDM drivers is presented in Table 6.2, while the vulnerabili-

ties that have been assigned CVE numbers at the time of writing this paper are listed in

Table A.1. v1, v2, v3, v4, v5, v6, v7, v8, and v9 represent ”map physical memory”, ”

controllable process handle”, ”read/write controllable address”, ”buffer overflow”, ”null

pointer dereference”, ”arbitrary shellcode execution”, ”arbitrary wrmsr”, ”arbitrary out”,

and ”dangerous file operation” respectively.
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Table 6.2: Vulnerabilities hunted by IOCTLance.

v1 v2 v3 v4 v5 v6 v7 v8 v9
19 1 18 5 55 1 2 12 4

6.3 Comparison with POPKORN

This section provides a comparison between IOCTLance and POPKORN, using the

ucsb-seclab/popkorn-artifact [17] open-source project. POPKORN is a lightweight tool

that utilizes symbolic execution and taint analysis to identify vulnerabilities related to

MmMapIoSpace, ZwMapViewOfSeciton, and ZwOpenProcess. It prevents state explo-

sion by monitoring the number of states and terminating symbolic execution once it ex-

ceeds a specific threshold. However, POPKORN lacks optimization, leading to poor per-

formance and numerous false negatives. On the other hand, IOCTLance surpasses POP-

KORN in detecting various vulnerability types. It also enhances performance by hooking

functions and opcodes to bypass certain checks in the target programs.

When analyzing parameters in the target function, POPKORN may generate false

positives. Listing 6.1 shows an example. if a parameter is tainted, but our input buffer

only serves as an index of a global array, POPKORN can mistake it for being controllable

by an attacker, and thus mark it as vulnerable. To illustrate, suppose the parameter Phys-

icalAddress is tainted by the input buffer controlled by an attacker, but it can only affect

the index of a global variable. In this scenario, POPKORN would misidentify it as tainted

and deem it vulnerable. However, IOCTLance avoids this problem by scrutinizing the

combination of a tainted symbolic variable, thus preventing false positives.

1 void FalsePos i t ive_MmMapIoSpace (PVOID i n b u f )

2 {

3 PHYSICAL_ADDRESS g l o b a l _ a r r a y [ 4 ] = { g loba l_pa1 , g l oba l_pa2 ,
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g loba l_pa3 , g l o b a l _ p a4 } ;

4 i f ( i n b u f && *( i n t *) i n b u f < 4 && *( i n t *) i n b u f >= 0)

5 {

6 / / f a l s e p o s i t i v e : map p h y s i c a l memory

7 MmMapIoSpace ( g l o b a l _ a r r a y [* ( i n t *) i n b u f ] , 4 , MmNonCached ) ;

8 }

9 }

Listing 6.1: False Positive For POPKORN: Tainted Buffer

Upon examining the source code of POPKORN, we discovered that it only exam-

ines the state of the target function via a single path. Consequently, it may fail to detect

vulnerabilities in other IoControlCodes that use the same target function. On the other

hand, IOCTLance intercepts the target functions and comprehensively analyzes each Io-

ControlCode from the IOCTL handler. This approach ensures that no vulnerabilities are

overlooked. In our dataset of 104 known drivers, we confirmed that every vulnerability

detected by POPKORN was also detected by IOCTLance.

Table 6.3 shows the number of IOCTL handlers in the known drivers and the average

time taken by IOCTLance and POPKORN. We conducted a comparison of the time taken

by IOCTLance and POPKORN to find the IOCTL handler. It was observed that POP-

KORN was only able to find the handler within the 30-minute timeout limit. In contrast,

IOCTLance demonstrated significantly better performance in this aspect, indicating that

we have effectively improved the efficiency of the first phase.

Table 6.3: Performance for IOCTLance and POPKORN.

Tool IOCTL Handler Found Average Time (s)
POPKORN 95 82
IOCTLance 103 3
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6.4 False Positive

Even though we have implemented checks on MmIsAddressValid, ProbeForRead,

and ProbeForWrite to reduce false positives, there are other kernel APIs that can verify

whether the parameters are NULL or not. Listing 6.2 shows an example. When the

program invokes RtlInitUnicodeString with the SourceString as the input buffer, if Des-

tinationString is not NULL, the program writes into the address pointed to by the input

buffer. This could lead to a null pointer dereference vulnerability being reported, even

though it should only occur if DestinationString is not NULL. However, since System-

Buffer is not NULL when DestinationString is not NULL, this condition should also be

checked.

1 void F a l s e P o s i t i v e _N u l l P o i n t e r D e r e f e r e n c e (PVOID i n b u f )

2 {

3 D e s t i n a t i o n S t r i n g = NULL;

4 R t l I n i t U n i c o d e S t r i n g (&D e s t i n a t i o n S t r i n g , i n b u f ) ;

5 i f ( D e s t i n a t i o n S t r i n g )

6 {

7 / / f a l s e p o s i t i v e : n u l l p o i n t e r d e r e f e r e n c e

8 * i n b u f = 1 ;

9 }

10 }

Listing 6.2: False Positive: Kernel APIs

Certain programs use the try-except mechanism to handle exceptions. This tech-

nique can prevent some vulnerabilities from being triggered under the circumstances. For

instance, when dealing with null pointer dereference, we expect the system to crash when

the program accesses a null pointer. However, if the exception is caught by an exception

handler, the program may return from the function without crashing. Since IOCTLance
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does not support detecting this kind of mechanism, we have to manually validate the vul-

nerabilities found by IOCTLance.

6.5 False Negative

Not symbolizing the data section may result in false negatives. For instance, a global

variable is initialized in one IoControlCode and checked in another to determine whether

to perform a task. Even when symbolizing the data section, we must allocate sufficient

length. Balancing false positives, false negatives, time, and memory is crucial.

Discontinuing the state of recursion may lead to some false negatives. However, we

haven’t found any actual scenarios where vulnerabilities were missed due to this.

While IOCTLance has significantly improved symbolic execution for WDM drivers,

it can still be challenging for them to navigate the target address of complex programs,

leading to path explosion. This is a severe impediment to symbolic execution.
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Chapter 7 Discussion

In this chapter, we explore some specific cases encountered during our analysis and

demonstrate the various options available to customize the analysis, and offer guidance on

selecting appropriate options for optimal results. The evaluation results are presented, pro-

viding further insight into IOCTLance’s operation. Additionally, this chapter highlights

certain limitations that we have identified.

7.1 Customization

IOCTLance offers users several options to customize their analysis based on specific

cases. The following section outlines how to adjust these features based on our experience.

1. Length Limit: By default, IOCTLance does not set a length limit since it depends

on the complexity and size of the target driver. Although there is no definite correlation

between the driver size and length limit, larger drivers usually require a larger limit. In

general, a larger length limit can be set for bigger drivers, but a precise limit can be ob-

tained by reverse-engineering the target driver to analyze the length of the DriverEntry

and IOCTL handler.

2. Loop Bound: By default, IOCTLance does not set a loop bound since a con-
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crete loop that a program must pass through can cause false negatives if not accounted

for. Many WDM drivers use loops to assign function pointers to correspond to IRP op-

erations, usually iterating 28 times. A loop bound of 30 can bypass such situations, but

unpredictable situations may affect the setting. Reverse-engineering the target driver to

analyze the iteration is crucial for determining a proper loop bound.

3. Total Timeout: IOCTLance sets the total timeout to 30 minutes by default, which

has proven successful in detecting vulnerabilities completely in 98 out of 104 known

drivers. If the time taken to hunt for vulnerabilities exceeds the total timeout, a larger

value should be set. If it takes longer to find the IOCTL handler than the total timeout,

two possible reasons exist. Either it needs more time to obtain the IOCTL handler, or it

runs into complex codes. In the former case, a longer total timeout is needed, and in the

latter, a proper length limit or loop bound should be set after manual analysis.

4. IoControlCodes Timeout: By default, IOCTLance sets the timeout to 40 seconds

since the majority of vulnerabilities in our dataset can be detected with this setting. How-

ever, some drivers implement many features in an IoControlCode, leading to insufficient

time to go deeper. Under such circumstances, a larger timeout for IoControlCodes is rec-

ommended. If it runs into complex codes, a proper length limit or loop bound should be

set after manual analysis.

5. Recursion: By default, IOCTLance kills the recursion states since it critically

affects the performance of symbolic execution. While there are no known vulnerabilities

in recursion among our 104 known drivers due to IOCTLance’s focus, a rare case may

arise. Therefore, the option is available to users for customization.

6. Symbolize Data Section: By default, IOCTLance does not symbolize the data sec-
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tion. In our experiment, only 3 out of 104 known drivers required symbolizing 0x1000 to

get the correct result, and only 1 out of 104 known drivers required symbolizing 0x3000.

However, symbolizing the data section incurs overhead, with symbolizing 0x1000 data

section taking over 27 seconds and consuming more than 96KB of memory on average

to hunt for vulnerabilities in the 104 known drivers. In addition, The act of symbolizing

the data section can potentially result in false positives. Listing 7.1 shows an example.

If a program has a condition that restricts a global variable to an tainted buffer, IOCT-

Lance may perceive it as a vulnerability where the address is read from or written into.

For instance, if global_var is constrained to SystemBuffer and the program writes into

the address pointed by global_var, IOCTLance will report it as a read/write controllable

address vulnerability. However, this may actually be a function pointer stored in a global

variable, where the program is comparing the input buffer with it. Users must decide how

long they need to symbolize the data section while analyzing the target driver.

1 void F a l s e P o s i t i v e _R e a dWr i t eC o n t r o l l a b l eAd d r e s s (PVOID i n b u f )

2 {

3 i f ( i n b u f && g l o b a l _ v a r == i n b u f [ 0 ] )

4 {

5 / / f a l s e p o s i t i v e : read / w r i t e c o n t r o l l a b l e add r e s s

6 *g l o b a l _ v a r = 1 ;

7 }

8 }

Listing 7.1: False Positive: Symbolize Data Section

7.2 Bugs Not Vulnerabilities

The vulnerabilities detected by IOCTLance possible to turn out to be mere bugs un-

der certain conditions. For instance, the null pointer dereference caused by accessing allo-
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cated memory without validating the return value is one such type of vulnerability that can

sometimes be just a bug. If we cannot find a way to deplete the kernel memory resources

to make the APIs used to allocate memory fail, it is less possible to cause a BSOD, and

hence it is more unlikely to be considered a vulnerability.

Moreover, certain WDM drivers or their functionalities can only be accessed by pro-

cesses with Administrator privileges or even other kernel drivers. In such cases, an at-

tacker cannot exploit the vulnerabilities from a user-mode process with unprivileged ac-

cess. Given the controversy surrounding the boundary between Administrator and kernel

privileges, many vendors do not consider it a vulnerability if Administrator privilege or

access from other kernel-mode drivers is required. At present, IOCTLance lacks the capa-

bility to automatically identify whether a specific privilege is required to exploit a vulner-

ability. As a result, we have to manually analyze the drivers that appear to be vulnerable.

7.3 Limitations

IOCTLance currently supports only x64 WDM drivers, and it is weak to analyze

packed drivers. To analyze a packed driver, it has to analyze complicated code and may

need to interact with OS to perform correctly. In addition, if a driver imports functions

from another driver, IOCTLance currently can not simulate the imported function, and

thus it causes some false negatives under the condition.
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Chapter 8 Conclusion

WDM drivers can pose a significant security risk to a system because of their kernel-

level privileges. The proposed solution, IOCTLance, utilizes symbolic execution and taint

analysis to hunt for vulnerabilities. Vulnerability types targeted by IOCTLance include ”

map physical memory”, ”controllable process handle”, ”buffer overflow”, ”null pointer

dereference”, ”read/write controllable address”, ”arbitrary shellcode execution”, ”arbi-

trary wrmsr”, ”arbitrary out”, and ”dangerous file operation”. By tracing the target in-

put buffer and marking them as tainted, IOCTLance hooks kernel APIs and opcodes and

sets breakpoints to detect vulnerabilities, reducing both false positives and false negatives

while improving symbolic execution performance. By testing IOCTLance on 104 known

vulnerable WDM drivers and 318 unknown WDM drivers, we demonstrate that IOCT-

Lance can effectively analyze WDM drivers. Compared to POPKORN, IOCTLance has

superior performance and lower rates of false positives and false negatives. The discus-

sion delves into the customizations made to IOCTLance for analyzing WDM drivers on a

case-by-case basis, as well as the controversial vulnerabilities and limitations encountered

during the hunting process. As of the writing of this paper, IOCTLance has successfully

uncovered 117 vulnerabilities that were previously unknown, spread across 26 drivers,

resulting in the assignment of 41 CVEs.
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Appendix A — IOCTLance CVEs

Table A.1 presents the CVEs discovered by IOCTLance as of the paper’s writing.

Out of the 41 assigned CVEs, only 38 have been released and made public.

Table A.1: CVEs found by IOCTLance.

Vendor Driver Vulnerability Disclosure

FabulaTech ftwebcam.sys v5 CVE-2023-1186

FabulaTech ftwebcam.sys v5 CVE-2023-1188

WiseCleaner WiseFs64.sys v5 CVE-2023-1189

Watchdog wsdk-driver.sys v9 CVE-2023-1453

WiseCleaner WiseUnlock64.sys v9 CVE-2023-1486

WiseCleaner WiseHDInfo64.dll v5 CVE-2023-1487

WiseCleaner WiseHDInfo64.dll v8 CVE-2023-1488

WiseCleaner WiseHDInfo64.dll v7 CVE-2023-1489

Max Secure SDActMon.sys v9 CVE-2023-1490

Max Secure MaxCryptMon.sys v9 CVE-2023-1491

Max Secure MaxProc64.sys v5 CVE-2023-1492

Max Secure MaxProctetor64.sys v5 CVE-2023-1493

Continued on next page
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Table A.1 – continued from previous page

Vendor Driver Vulnerability Disclosure

JiangMin kvcore.sys v4 CVE-2023-1629

JiangMin kvcore.sys v5 CVE-2023-1630

AMD AMDPowerProfiler.sys v5 CVE-2023-20556

AMD AMDCpuProfiler.sys v5 CVE-2023-20561

AMD AMDCpuProfiler.sys v3 CVE-2023-20562

AMD AMDRyzenMasterDriver.sys v5 CVE-2023-20560

AMD AMDRyzenMasterDriver.sys v1 CVE-2023-20564

IObit ImfRegistryFilter.sys v5 CVE-2023-1638

IObit ObCallbackProcess.sys v5 CVE-2023-1640

IObit ObCallbackProcess.sys v5 CVE-2023-1641

IObit ImfHpRegFilter.sys v5 CVE-2023-1643

IObit IMFCameraProtect.sys v5 CVE-2023-1644

IObit IMFCameraProtect.sys v4 CVE-2023-1645

IObit IMFCameraProtect.sys v4 CVE-2023-1646

DriverGenius mydrivers64.sys v7 CVE-2023-1676

DriverGenius mydrivers64.sys v5 CVE-2023-1677

DriverGenius mydrivers64.sys v8 CVE-2023-1678

DriverGenius mydrivers64.sys v1 CVE-2023-1679

Microsoft pgodriver.sys v5 CVE-2023-28262

Microsoft pgodriver.sys v3 CVE-2023-28263

EnTech Taiwan Se64a.sys v8 CVE-2023-2870

Continued on next page
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Table A.1 – continued from previous page

Vendor Driver Vulnerability Disclosure

FabulaTech ftusbbus2.sys v5 CVE-2023-2871

FLEXIHUB fusbhub.sys v5 CVE-2023-2872

Twister Antivirus filppd.sys v3 CVE-2023-2873

Twister Antivirus filppd.sys v5 CVE-2023-2874

eScan PROCOBSRVESX.SYS v5 CVE-2023-2875
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