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中文摘要 

 材料表面的特性表徵對於理解其性質與行為至關重要。本研究利用 CO 作為

探測分子的紅外光譜，結合深度學習技術，探索二氧化鈰催化劑的表面特性。通過

對不同 CeO2表面 CO 衍生物的密度泛函理論 (Density Functional Theory) 系統性

研究，獲得了包含 CO 在 CeO2表面的振動頻率、強度和吸附能等完整數據集。這

些數據集被用來合成大量的複雜紅外光譜，用於訓練深度學習模型，以預測表面結

構，包括 CeO2表面的分布、CO 衍生物和結合能的分佈。這些模型成功地分析了

CO 在不同類型 CeO2表面吸附的實驗紅外光譜，大多數情況下預測與實驗觀察結

果一致。本研究提供了一種機器學習方法，以理解多種 CeO2材料的形態、局部環

境排列、探測分子的交互作用行為和催化特性。 

 

 

 

 

 

 

 

 

 

 

 

 

 

關鍵字：CO衍生物；CeO2表面；吸附能；紅外光譜；深度神經網絡。 
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ABSTRACT 

 Characterization of material surfaces is crucial for understanding their properties and 

behavior. In this work, we utilized a deep learning technique, along with infrared (IR) 

spectrum of CO as a probe molecule, to explore the surface properties of cerium oxide 

(CeO2) catalysts. Through systematic density functional theory investigation of CO-

derived adspecies on various CeO2 facets, we obtained an extensive dataset containing 

vibrational frequencies, intensities, and adsorption energies of CO on CeO2. This dataset 

was used to synthesize large quantities of complex IR spectra to train deep learning 

models for predicting surface structures, including the distribution of CeO2 facets, CO-

derived adspecies, and binding energies. These models were successful in analyzing 

experimental IR spectra of CO adsorbed on different types of CeO2, and their predictions 

were consistent with experimental observations in most cases. This work provides a 

machine learning approach in understanding the morphology, local environmental 

arrangement, interaction behavior of probe molecules, and catalytic characteristics of 

diverse CeO2 materials. 

 

  

Keywords: CO-derived adspecies; CeO2 facets; Adsorption energy; Infrared 

spectroscopy; Deep neural network 
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1. Introduction 

 One of the most significant metal oxide (MO2) catalysts is CeO2, which exhibits an 

excellent ability to store and release oxygen gas and to transition between the +4 and +3 

oxidation states of cerium [1,2]. CeO2 is used as a catalyst in many gas phase redox 

reactions because of these characteristics, most notably in the water-gas shift [3,4], CO2 

reduction [5], and CO oxidation [6] reactions. Furthermore, by transferring its lattice 

oxygen to reactive adsorbates and so accelerating the oxidation reaction, it contributes 

significantly to the metal-support (M/CeO2) interface reaction as support [6–11]. The 

acid-base properties of CeO2 also plays a significant role by enhancing CO2 

chemisorption, thereby contributing to the improvement of catalytic performance and 

further amplifying the capacity to capture CO2 [12,13]. Apart from serving as catalysts 

and supports, CeO2 nanoparticles demonstrate significant potential in environmental 

sensing [14,15] and environmental remediation [16,17], with a successful implementation 

of green synthesis methods [17,18]. Therefore, understanding the characteristics of CeO2 

surfaces (morphology, coordination number, oxygen vacancy, and local atomic 

arrangement), as well as how gas molecules interact with the oxidized and reduced 

surface of CeO2, at an atomic level, is crucial from a scientific and technical perspective. 

 Traditionally, X-ray based spectroscopies are used to examine the oxygen vacancy 

and local atomic arrangement of the Ce atom. For instance, X-ray Photoelectron 
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Spectroscopy (XPS) [19–24] and X-ray Absorption Near Edge Spectroscopy (XANES) 

[25–28] can be used to determine the chemical state of Ce atoms and reveal their local 

electronic structure. Imaging the crystalline structure and crystallographic defects at the 

atomic level is possible with high-resolution transmission electron microscopy (HRTEM) 

[29–32]. Adsorption of probe molecules is considered to be a convenient method for 

determining the surface structures of various CeO2 facets. The combination of infrared 

(IR) spectroscopy [33–40] and cutting-edge computational modeling [41–48] became the 

all-encompassing method to study the chemisorption of CO or CO2 on CeO2. For instance, 

Chen et al. [40] used in-situ diffuse reflectance infrared Fourier transform spectroscopy 

(DRIFTS) to extensively investigate the chemisorption of CO and CO2 on uniform CeO2, 

TiO2, and Cu2O nanocrystals with varied morphologies. They observed that the formed 

adsorbates are morphology-dependent, surface-composition-sensitive, and coordination 

environment-sensitive. Through the use of first-principle calculations, Yang et al. [46] 

examined the CO adsorption on stoichiometric (110) and (111) CeO2 surfaces. They 

observed that whereas both weak and strong interactions of CO exist on (110) and prefer 

both atop and bridged carbonate topologies, the weak interaction of CO on (111) prefers 

atop configuration. Density functional theory (DFT) and Fourier transform infrared 

(FTIR) spectroscopy were used by Vayssilov et al. [47] to study the surface species 

produced by the interaction of CO2 or CO with activated, reduced, and hydroxylated CeO2 
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nanoparticles and reassign various experimentally observed vibrational modes to 

different surface types. Additionally, stoichiometric and defective surfaces of single 

crystals of CeO2 can be identified using IR spectroscopy and first-principle calculations 

in tandem [48–51] by measuring the shift in the vibrational frequency of the adsorbate, 

preferably under ultrahigh vacuum (UHV) conditions. Despite the fact that HRTEM and 

X-ray based spectroscopic techniques are excellent and frequently employed, they work 

in UHV settings and necessitate specialist expertise for in-depth investigations. While in 

IR spectroscopy, peak assignments are heuristic and challenging for complicated IR 

spectra. It is clear from the discussion above that there is still a lack of sophisticated and 

affordable methods for correctly interpreting the CeO2 surface. In recent years, ML has 

gained popularity among researchers, who believe that this strategy can be used in 

conjunction with first-principles strategies to overcome the majority of the restrictions of 

experimental design. 

 Numerous studies have used ML techniques to interpret the spectra of metal catalysts, 

which contain a wealth of structure-dependent spectroscopic information about the 

material, to understand the surface characteristics of the catalysts, such as coordination 

number, atomic environment, and so forth. The XANES spectra of nanoparticles (NPs) 

were converted into the 3D geometry of metal catalysts using a supervised ML approach 

developed by Timoshenko et al. [52]. On the basis of a synthetic random training set, 
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Drera et al. [53] developed a deep convolutional neural network (CNN) model to identify 

and quantify chemical constituents from experimental XPS data, and they found that the 

accuracy of the model is on par with that of conventional XPS users. Random forest 

models were directly employed by Zheng et al. [54] to predict the coordination 

environment with high accuracy from the XANES spectra, and their model performance 

was demonstrated to outperform deep learning methods. Lansford et al. [55] recently 

proposed a method to characterize Pt surface microstructure using CO and NO as probe 

molecules by employing multinomial regression using neural network ensembles and 

generating synthetic IR spectra from first-principles computations. 

 In this study, we enhanced the approach of Lansford et al. to comprehend the CeO2 

surface properties utilizing CO as a probe molecule. On CeO2 (100, 110, and 111) 

oxidized and reduced surfaces, we considered five CO adsorption configurations, 

including atop, bidentate carbonate (BDC), polydentate carbonate (PDC), bicarbonate, 

and bridged carbonate. This article primarily focuses on (i) creating a dataset of 

frequencies and intensities derived from DFT, taking into account a wide range of 

possible structural forms of CeO2 surfaces with CO-derived adspecies, (ii) designing three 

deep learning models to independently predict CeO2 crystal facets, surface species, and 

adsorption energy (Eads), and (iii) evaluating the performance of our model using both 

synthetic and real-world complex IR spectra. We anticipate that by supplying solely 
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infrared spectra, our models will be able to comprehend the CeO2 crystallographic plane 

and measure the ratio between each facet, which will overcome the constraints of HRTEM 

and provide crucial information for experimentalists. Additionally, the arrangement of 

CO on the CeO2 surface may be quickly determined, and the environment surrounding 

the adsorption site can be examined. We think that our model offers a quick and simple 

method for analyzing the characteristics of unidentified CeO2 surfaces. 

 

 

 

 

 

 

 

 

 

 

 

 

 

doi:10.6342/NTU202302105



6 
 

2. Methodology 

2.1 Model overview 

 This work aims to develop machine learning models that can analyze the IR 

spectrum of CO adsorbed on CeO2 and predict the characteristics of the CeO2 surface. To 

achieve this, the input to the machine learning model should be the IR spectrum, while 

the output should be the surface information of interest. However, a limited amount of 

high-quality CO IR spectrum with detailed CeO2 surface information is available, so it is 

challenging to train the machine learning model solely using experimental data. To 

overcome this issue, we used DFT calculations to create a dataset that covers the IR 

spectrum of a wide range of CO-adsorbed species on CeO2. In this study, various active 

sites of CeO2 surfaces were considered, where CO can adsorb in different configurations, 

such as atop, BDC, PDC, bicarbonate, and bridging carbonate. As shown in Fig. 1, DFT 

calculations were used to determine the frequencies, intensities, and Eads for these 

configurations. To account for DFT errors, the computed frequencies were compared to 

available experimental data to derive scaling factors. Using the scaled DFT frequencies 

and selected experimental data, synthetic complex IR spectra were generated by 

combining individual IR spectra to simulate real-world conditions where different CO-

adsorbed species and CeO2 surfaces coexist in the sample. Three deep learning models 

were built to predict the distribution of CeO2 facets, CO-derived species, and adsorption 
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energies. The model performance was evaluated using both synthetic and actual 

experimental IR spectra. The following subsections will provide detailed discussions of 

each step in the workflow. 

 

 

Fig. 1. Overview of the process of data preparation and model training. This study used 

DFT calculations to create a dataset covering a wide range of CO-adsorbed species on 

CeO2, including various active sites and binding configurations. Synthetic complex IR 

spectra were generated using the computed frequencies and selected experimental data. 

Three deep learning models were built to predict the distribution of CeO2 facets, CO-

derived species, and adsorption energies. 
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2.2 DFT 

 All periodic DFT calculations were performed by the Vienna Ab initio Simulation 

Package (VASP) [56,57]. The core-electron interactions were expressed using the 

projector augmented wave (PAW) approach [58]. The generalized gradient approximation 

(GGA) of the Perdew-Burke-Ernzerhof (PBE) functional was utilized to model electron 

exchange and correlation [59]. The plane wave energy cutoff was set at 450 eV. The 

Hubbard U parameter was employed with a value of 5 eV on Ce, consistent with earlier 

studies [60,61] and corrected for Coulomb interactions. Monkhorst-Pack k-points were 

linearly changed from 2 x 2 x 2 to 12 x 12 x 12 to determine the optimal lattice parameter 

for bulk CeO2. The different slabs (100, 110, and 111) were made using the optimized 

bulk CeO2. The vacuum thickness was set to 15 Å for all slabs in order to ignore the z-

direction interaction. In this study, all surfaces were modeled as (2 x 2) supercells, and 

the integral in the Brillouin zone was performed using samples taken from the surfaces 

(100), (110), and (111), respectively, using 3 x 3 x 1, 6 x 4 x 1, and 6 x 6 x 1. During the 

geometry optimization, all atoms in the bulk computation were allowed to relax, and for 

the (100), (110), and (111) slab models, the top 6, 3, and 6 layers were totally relaxed, 

while the remaining bottom layers remained fixed [44,61,62]. The CO molecule in the 

gas phase was optimized at Γ-point with a cell size of 15x15x15 Å3. The systems of CO 

adsorbed slabs were optimized using the same criteria as free slab relaxation. We also 
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considered the slab with a hydroxyl group and a hydrogen atom on the surface because 

H2O can dissociate on CeO2 surfaces [63]. The energy and force convergence parameters 

were set at 10-6 eV and 0.01 eV/Å, respectively. Dipole corrections and spin-polarized 

were taken into account in all slab calculations. 

 The finite difference approach with a displacement of 0.015 Å was used to calculate 

the vibrational frequencies and electron densities of the modeled CO adsorbate, carbonate 

(CO3), and bicarbonate (CO2(OH). During these calculations, only the CO adsorbate, CO3, 

and CO2(OH) were relaxed, while the other atoms were kept frozen. The electron 

densities obtained were integrated with CHARGEMOL [64,65] to compute the dipole-

moment of adsorbed species. The resulting dipole-moment was utilized to compute the 

intensity (I) by utilizing Porezag and Pederson equation [66]. 

𝛪𝒾
𝐼𝑅 ∝ |

𝑑𝜇

𝑑𝒬𝒾
|

2
          (1) 

where 𝜇 is the dipole moment of the system, and 𝒬𝒾 is the coordinate of normal mode 

i. The Eads is computed using the following equation: 

Eads=ECO/slab – Eslab − ECO          (2) 

where ECO/slab is the total energy of CO adsorbed slab, Eslab is slab energy, and ECO is CO 

molecule energy in the gas phase.  
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For the surface energy (Esurf) calculations, the value can be determined as follows: 

Esurf = (Eslab – nEbulk)/2S           (3) 

where Eslab and Ebulk are the total energies of the slab and the bulk CeO2, n is the ratio of 

the number of slab atoms to the number of bulk atoms, and S denotes the surface area. 

Atomic Simulation Environment (ASE) [67] was used for the post-processing of the 

VASP output files. 

 

2.3 Data cleaning and preparation 

 Under specific conditions, it is possible to measure the frequency of particular 

adsorption modes of CO experimentally. For example, the frequencies of the atop site 

were measured using single crystal CeO2 under UHV conditions [44,49,51]. However, 

high-quality UHV IR spectra with CeO2 surface information are rare, especially for CO 

chemisorption, where defective surfaces are involved. For these cases, DFT calculated 

frequencies were used instead. To account for the DFT errors, we assigned several 

experimental frequencies that are close to the DFT results to obtain scaling factors. 

Therefore, in addition to using the experimental frequencies for the atop configuration 

measured with single crystal CeO2 under UHV, the scaled DFT frequencies were used for 

other CO-derived adspecies in the generation of synthetic complex IR spectra. This not 

only eliminates DFT calculation errors but also results in a clearer dataset. 
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 The synthetic complex IR spectra were generated following the procedures reported 

by Lansford et al. [55]. The frequencies and intensities of each CO-derived adspecies 

were convoluted using Fourier transforms with a Gaussian filter, resulting in the 

generation of single-adsorbed CO spectra. Leveraging the linearity between IR spectral 

intensity and the number of molecules [66], we obtained complex IR spectra by 

combining the single-adsorbed CO spectra through linear combinations. To eliminate 

noise from low frequencies, we only consider DFT frequency peaks in 1200 to 3000 cm-

1 range. We systematically assessed the model performance by increasing the DFT data 

and computed the optimum needed data for the deep neural networks (DNN) models. The 

minimum required data for the CeO2 facet model is 2980, whereas the minimum required 

data for both CO-derived adspecies and Eads groups is 3280. We increased the number of 

data points by perturbing the frequencies and intensities to address the issue of uneven 

distribution of data and account for scaling factor errors. Fig. S1 depicts the training losses 

versus the number of data points for the DNN models. The DFT data was separated into 

25% for testing and 75% for training and 3-fold cross-validation. We generated synthetic 

spectra by randomly selecting n single CO adsorption IR spectra, with a maximum n of 

200, to ensure wide coverage of all possible distributions. The full width at half maximum 

(FWHM) was chosen at random from 2 to 75 cm-1. The final spectra were convoluted 

with 4 cm-1 resolution using Gaussian and Lorentzian filters [68]. 
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2.4 ML approach 

 This work employed DNN to predict the distributions of CeO2 facets, CO-derived 

adspecies, and Eads. Since the synthetic complex IR spectrum contains a variety of CO-

derived adspecies, it is necessary to represent the Eads for these adspecies as a distribution 

rather than a single value. In order to achieve this, the Eads values were categorized into k 

groups using an unsupervised learning method known as K-means clustering. The elbow 

approach was used to determine the ideal k value, which was found to be 5. Based on the 

results of K-means clustering, group 1 to 5 are the Eads ranges -(4.88 ~ 4.09 eV), -(4.09 ~ 

3.25 eV), -(3.25 ~ 2.27 eV), -(2.27 ~ 0.94 eV), and -(0.94 ~ 0 eV). Fig. 2 clearly shows 

that the atop configuration belongs to Group 5. Other configurations fall into more than 

one group. There will be detailed discussions on the Eads of different binding 

configurations in the subsection below.  
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Fig. 2. Classification of the Eads groups using the K-means clustering method for (a) atop, 

(b) BDC, (c) PDC, (d) bicarbonate, and (e) bridged carbonate. 

 

 Unless noted otherwise, the DNN models used in this work were trained with the 

Adam optimizer, and the rectified linear unit (ReLU) was used as the activation function 

of hidden layers. In the output layer, the softmax (Si) activation function was employed 

to construct the probability distributions of each group: 

𝑆𝑖  =  
𝑒𝑥𝑖

∑ 𝑒
𝑥𝑗𝑁

𝑗=1

 (𝑖 = 1,2, . . . , 𝑁)          (4) 

where xi and xj are the outputs of the last hidden layer, and N is the total number of groups.  
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The loss function for measuring the similarity of probability distributions was Wasserstein 

distance (W) [69], and the equation follows from Lansford et al. [55]: 

𝑊 = [
1

𝐶
∑ [∑ 𝑝𝑖

𝑛

𝑖=1

 −  ∑ 𝑡𝑖

𝑛

𝑖=1

]

𝐶

𝑛=1

2

]

1
2

          (5) 

where pi and ti are the predicted and actual probability values of the ith group, and C is the 

total number of groups. R squared (R2) and Wasserstein measures were used to estimate 

model performance. The following is the formula for computing R2 value:  

𝑅2 = 1 −  
∑ (𝑡𝑘 − 𝑝𝑘)2

𝑘=1

∑ (𝑡𝑘 −  𝑡̅)2
𝑘=1

          (6) 

 We utilize random search to optimize hyperparameters, and the best hyperparameters 

of the models are summarized in Tables S2 and S3. We train 60 models with the best 

hyperparameter settings to derive an ensemble prediction and estimate uncertainty and 

confidence interval [70-72]. In this work, the predicted distributions are shown with error 

bars, which represent a 95% confidence interval estimated by the ensemble approach. 
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3. Results and Discussion 

3.1 DFT 

3.1.1 Optimization of bulk CeO2 and free slabs 

 The bulk CeO2 has a cubic fluorite structure, as seen in Fig. 3. Cerium and oxygen 

are 8-fold and 4-fold coordinated, respectively. The best lattice parameter determined for 

the (6x6x6)-Monkhorst-Pack k-point mesh is 5.48 Å, which agrees well with the 

experimental value of 5.41 Å [73]. We note that because CeO2 (100) is Tasker Type 3 

oxide [74], a stable (100) surface of CeO2 needs to be created by deleting half of the 

oxygen from both the top and bottom of the O-terminated surface slabs [75,76]. 

 

 

Fig. 3. (a) Cubic fluorite structure of bulk CeO2. (b) Stoichiometric (100), (110), and (111) 

CeO2 surfaces with (2x2) supercell. (c) Optimized CO as the probe molecule. 
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 The number of atomic layers in each CeO2 (100), (110), and (111) slab were 9, 6, 

and 12 accordingly, as reported in the literature [44,62,77]. The surface energies of (100), 

(110), and (111) are 1.76, 1.15, and 0.65 J/m2, respectively, and are consistent with 

previously reported values [61,78], and the relative stability of the surface is in the order 

of (111) > (110) > (100). Table 1 compares the predicted surface parameters of bulk CeO2 

and its slabs to the literature. 

 

Table 1. Properties of optimized bulk CeO2 and CeO2 (100), (110), and (111) surfaces. 

 Layers Volume 

(Å3) 

Surface energy 

(J/m2) 

Coordination 

number 

This 

work 

Previous 

study 

O Ce 

Bulk CeO2    4 8 

CeO2 (100) 9 2624.65 1.76 1.76 a 2 6 

CeO2 (110) 6 2101.79 1.15 1.01 b 3 6 

CeO2 (111) 12 1358.41 0.65 0.71 a 3 7 

a ref [61]. b ref [78]. 
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3.1.2 Optimization of CO adsorbed CeO2 slabs 

 We considered stoichiometric CeO2 slabs as oxidized (oxid-CeO2) and introduced 

reduced (redu-CeO2) slabs by removing one additional surface oxygen. This approach 

allowed us to investigate the influence of the presence of an extra oxygen vacancy on the 

system. As indicated in Fig. 4, five possible configurations of CO adsorbed CeO2 were 

investigated in this work, all of which are common experimentally observed 

configurations. In theory, the direct adsorption of CO on an oxygen vacant site would 

theoretically lead to the formation of a carbonite species. However, Vayssilov et al. [47] 

conducted calculations and determined that carbonite species are unstable on a ceria 

surface, making their experimental formation and identification unlikely. As a result, the 

carbonite species was not considered in this study. 

 The possible configurations of CO adsorbed CeO2 were optimized and then used to 

calculate vibrational frequencies. To account for differences in DFT-derived frequencies 

of each CO-derived adspecies, the frequency corresponding to each vibrational mode was 

scaled separately. The scaling technique is explained in detail in the Supplementary 

Information. We note that some of the binding configurations were only found on certain 

types of the CeO2 surface. Tables 2-6 present a comparison between the scaled and 

unscaled DFT frequencies and the available experimental values, along with the intensity 

and Eads of CO on CeO2 (100), (110), and (111). In practice, the frequencies and Eads can 
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exhibit variations at different surface coverages, especially at high coverages where the 

interaction between neighboring CO molecules becomes substantial. However, it is 

important to note that our DFT calculations were conducted on a fixed-size model with a 

single CO molecule. Therefore, we did not consider this particular aspect in our 

calculations. 

 

 

Fig. 4. Various binding sites on CeO2 surfaces and patterns of CO adsorption [34,35].  
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3.1.2.1 Atop configuration 

 CO adsorbs on the top site of Ce with weak interactions on all CeO2 (100), (110), 

and (111) slabs in atop arrangement, as shown in Fig. 5. The estimated Eads of CO-

adsorbed oxid- and redu-CeO2 (100), (110), and (111) are in the range of -(0.33 to 0.18) 

eV, with an average Eads of about -0.24 eV with the surface structure remaining nearly 

intact after adsorption. The adsorbed C-O bond length and stretching frequency are (1.14-

1.15) Å and (2088-2165) cm-1, respectively, which are in the same ranges of the 

experimentally measured bond length (1.13 Å) and stretching frequency (2143 cm-1) of 

gas phase CO [79]. Especially for oxid-(110), Lustemberg et al. [44] observed two 

vibrational frequencies (2171 and 2160 cm-1) in the IR spectrum, and assigned to the 

vertical and several tilted configurations of CO, respectively, by DFT calculations, as 

shown in Table 2. Similar to the finding of Lustemberg et al., we also found that a single 

binding configuration may exhibit several slightly distinct stable structures, primarily 

because of differences in the orientation of the adsorbate (Fig. 5b-c). Therefore, a binding 

configuration could have multiple sets of slightly different frequencies. This phenomenon 

is also observed in the cases of CO chemisorption, as listed in Tables 3-6 below. 
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Fig. 5. (Side view) Atop configuration of CO on (a) oxid-CeO2 (100), (b,c) oxid-CeO2 

(110), and (c) oxid-CeO2 (111) slabs. 

 

Table 2. Calculated vibrational frequencies, intensities, and corresponding Eads of atop 

site on CeO2 (100), (110), and (111). 

Facet site 
Frequency (cm-1) 

Intensity  

(D/Å2 amu-1) 

Eads 

(eV) 

DFT After scaling Experimental   

100 

oxidized 2141 2180 2147 a 13.36 -0.32 

reduced 2165 2204 2168 a 5.84 -0.29 

110 

oxidized 

2141 2180 2171 b 8.03 -0.20 

2106 2144 2160 b 8.37 -0.21 

2118 2156 2160 b  6.60 -0.24 

2099 2137 2160 b 6.67 -0.23 

reduced 2088 2126 2175 c 10.84 -0.20 

111 

oxidized 2126 2164 2154 b,c 6.55 -0.18 

reduced 2122 2160 2163 c 16.20 -0.33 

a ref [51]. b ref [44]. c ref [49]. 
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3.1.2.2 BDC configuration 

 The BDC configuration was mostly found on CeO2 (110) and (111) slabs where 

carbon of CO binds with two surface oxygen atoms. Our calculations did not find BDC 

on the CeO2 (100) slab. As indicated in Fig. 6, two possible BDC sites, O-bridged and 

Ce-bridged, were considered. Both O-bridged and Ce-bridged sites exist on the CeO2 (110) 

slab, but only the Ce-bridged site exists on the CeO2 (111) slab. For Ce-bridged site on 

both CeO2 (110) and (111) slabs, one of the surface oxygen atoms is dragged out of the 

plane. As shown in Table 3, we found more than one O-bridged or Ce-bridged site 

structure on both CeO2 (110) and (111) slabs. Based on the definition of Vayssilov et al. 

[47], these species can be further classified into 1.21, 1.2.1, and 1.3.1 types to describe 

the coordination numbers of the three O atoms with the Ce atoms. 

 

 

Fig. 6. (a) (Top view) Schematic representation of the adsorption sites of O-bridged and 

Ce-bridged on the CeO2 (110) surface, labeled as ‘X’. (Side view) BDC configuration of 

CO on (b) O-bridged site of oxid-CeO2 (110), (c) Ce-bridged site of oxid-CeO2 (110), and 

(d) Ce-bridged site of oxid-CeO2 (111) slabs. 
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 Unlike the atop site, the surface shape changed significantly following CO 

adsorption. The computed C-O bond lengths in BDC are in the range (1.24-1.28) Å, which 

is 10-14% longer than the free CO bond length. Furthermore, the vibrational frequencies 

are considerably red-shifted. Table 3 shows the Eads and vibrational frequencies for the 

BDC arrangement on CeO2 (110) and (111). Based on the CO Eads and stretching 

frequencies, it is possible to conclude that the O-bridge site (average Eads of -3.54 eV) has 

a stronger interaction than the Ce-bridged site in the case of CeO2 (110) slab (average Eads 

is -2.72 eV). For CeO2 (111), we found that it has only one adsorption (Ce-bridged) site, 

and one of the surface oxygen atoms is dragged out of the plane. The vibrational 

frequencies are (1194 - 1234) cm-1 and (1557 - 1592) cm-1, and the average Eads is -1.79 

eV. The Ce-bridged BDC configuration of CO on CeO2 (111) is weaker than both the O- 

and Ce-bridged BDC arrangements on (110). In our calculations, the formation of BDC 

species is a highly exothermic process, which is in line with the DFT calculations 

performed by Chen et al. [80] and Song et al. [81]. 
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Table 3. Calculated vibrational frequencies, intensities, and corresponding Eads of BDC on CeO2 (110) and (111). 

Facet site 
Frequency (cm-1) 

Intensity 

(D/Å2 amu-1) 

Eads (eV) 

DFT After scaling  Experimental    

110 

oxidized 

O-bridged 

1228, 1539 1287, 1562 1296, 1563 a 6.41, 11.81 -3.73 

1270, 1474 1331, 1496  9.45, 8.97 -3.51 

Ce-bridged 1247, 1574 1306, 1598  9.77, 13.00 -2.91 

reduced 

O-bridged 

1223, 1566 1282, 1589  7.53, 13.88 -3.17 

1255, 1511 1315, 1534  7.93, 13.42 -3.78 

Ce-bridged 1246, 1562 1306, 1585 1292, 1587 b 9.65, 13.42 -2.53 

111 

oxidized Ce-bridged 

1234, 1557 1293, 1580 1296, 1579 c 5.62, 8.84 -1.65 

1202, 1592 1260, 1616  5.31, 7.69 -1.77 

reduced Ce-bridged 1194, 1572 1251, 1596  6.01, 13.83 -1.96 

a ref [36]. b ref [37]. c ref [40]. 

doi:10.6342/NTU202302105



24 
 

3.1.2.3 PDC configuration 

 Our simulations only found the PDC configurations on the oxid-CeO2 (100) and 

redu-CeO2 (100 & 111) slabs. Fig. 7 depicts the carbon and oxygen of CO, as well as two 

surface oxygens, on a plane parallel to the CeO2 surface. As shown in Fig. 7, we optimized 

two orientations of CO3 species which differs by 90° on redu-CeO2 (100), and only one 

stable PDC configuration for oxid-CeO2 (100) and redu-CeO2 (111). The three C-O bonds 

are about the same length, around 1.30 Å, and form highly symmetric structures among 

various configurations. Similar to BDC, the PDC configuration exhibits two distinct 

stretching frequencies. However, due to the symmetry of PDC, these two peaks are 

closely spaced. In contrast, the two peaks in BDC are well-separated. The calculated 

vibrational frequencies correlate well with the experimental ones [34,38], and their values 

are shown in Table 4. Furthermore, in terms of Eads, the PDC configuration exhibits a 

stronger interaction of CO with the CeO2 surface than the BDC configuration. 
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Fig. 7. (Upper: Top view, Lower: Side view) PDC configuration of CO on (a) oxid-CeO2 

(100), (b,c) two orientations of CO3 on redu-CeO2 (100), and (d) redu-CeO2 (111) slabs.
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Table 4. Calculated vibrational frequencies, intensities, and corresponding Eads of PDC on CeO2 (100) and (111). 

Facet site 
Frequency (cm-1) 

Intensity  

(D/Å2 amu-1) 

Eads (eV) 

DFT After scaling Experimental   

100 

oxidized 1386, 1425 1376, 1463 1367, 1476 a 10.29, 13.65 -4.87 

reduced 

1372, 1422 1362, 1460 1367, 1476 a 9.40, 9.26 -4.48 

1351, 1444 1342, 1483 1348, 1454 b 11.30, 10.46 -4.39 

111 reduced 1364,1365 1354, 1402  10.24, 10.19 -2.97 

a ref [38]. b ref [34]. 
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3.1.2.4 Bicarbonate configuration 

 The interaction of CO with the OH group present in all three low-index CeO2 slabs 

results in the formation of the bicarbonate structure. Vayssilov et al. [47] conducted a 

study on bicarbonate species, exploring four distinct structures through DFT calculations. 

However, their analysis revealed that the vibrational frequencies of these species are 

highly similar, making it challenging to differentiate them based solely on vibrational 

frequencies. Considering this difficulty, in our study, we opted to group all CO2(OH) 

compounds together under the broader category of bicarbonates, without further 

differentiation. 

 Multiple stable structures of bicarbonate species were discovered on all oxidized 

surface. Oxid-(100) exhibits two distinct structures: one closely resembling the bridged 

form (Fig. 8a), while the other resembling the BDC form (Fig. 8b). Although oxid-(110) 

and (111) only has one adsorption site, there are two different hydrogen positions to be 

considered (Fig. 8c-d). The redu-(100) surface exhibits two orientations of CO2(OH), 

similar to PDC on redu-(100). On the redu-(110) surface, there are two distinct CO2(OH) 

structures corresponding to adsorption on O-bridged and Ce-bridged sites, respectively, 

resembling the BDC configuration. Table 5 shows the values of three peaks observed for 

the bicarbonate configuration: two ν(CO3) and one δ(OH). The computed δ(OH) 

frequency is (1163 - 1192) cm-1, which is well isolated from other ν(CO3) peaks. The 
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calculated vibrational frequencies of two ν(CO3) peaks are (1541 - 1636) cm-1 and (1349 

- 1431) cm-1, respectively. Though the two ν(CO3) peaks are significantly distanced from 

each other, these two vibrational ranges overlap with the BDC and PDC configurations. 

Because of this overlapping, we believe that δ(OH) frequency is a key characteristic for 

distinguishing bicarbonate species. The estimated bicarbonate frequencies agree with the 

experimental values [33,35]. Table 5 shows the estimated vibrational frequencies, 

intensities, and Eads, as well as the available experimental values. 
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Fig. 8. (Upper: Top view, Lower: Side view) Bicarbonate configuration of CO on (a,b) 

oxid-CeO2 (100), (c) oxid-CeO2 (110), (d) oxid-CeO2 (111), and (e,f) redu-CeO2 (110). 

The blue dotted circles indicate the considered positions for the surface H atom. 
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Table 5. Calculated vibrational frequencies, intensities, and corresponding Eads of bicarbonate on CeO2 (100), (110), and (111). 

Facet site 
Frequency (cm-1) 

Intensity  

(D/Å2 amu-1) 

Eads (eV) 

DFT After scaling  Experimental    

100 

oxidized 

O-bridged 1178, 1409, 1543 1223, 1433, 1540  8.83, 24.63, 3.68 -3.15 

Non Ce- or 

O-bridged 
1163, 1431, 1541 1207, 1455, 1538  8.37, 23.54, 2.99 -3.33 

reduced O-bridged 

1172, 1374, 1565 1217, 1397, 1562  6.35, 27.38, 3.64 -2.35 

1164, 1383, 1552 1207, 1407, 1549  10.43, 25.66, 1.82 -2.73 

110 

oxidized Ce-bridged 

1192, 1357, 1636 1237, 1380, 1633  7.56, 29.66, 10.65 -2.81 

1191, 1349, 1629 1236, 1372, 1626  5.07, 35.50, 11.51 -3.12 

reduced 

O-bridged 1176, 1352, 1616 1221, 1375, 1613 1218, 1391, 1613 a 6.35, 13.24, 6.10 -2.40 

Ce-bridged 1174, 1382, 1634 1219, 1405, 1631  13.98, 21.78, 14.47 -1.92 

111 

oxidized 
Non Ce- or 

O-bridged 

1172, 1384, 1623 1217, 1407, 1620  10.47, 15.98, 11.58 -2.95 

1170, 1390, 1616 1214, 1414, 1613 1216, 1392, 1611 b 11.10, 18.79, 8.30 -3.04 

reduced 
Non Ce- or 

O-bridged 
1173, 1381, 1599 1218, 1404, 1596 1218, 1413, 1599 a 10.08, 15.57, 11.60 -1.28 

a ref [35]. b ref [33]. 

doi:10.6342/NTU202302105



31 
 

3.1.2.5 Bridged carbonate configuration 

 The bridged carbonate configuration closely resembles the BDC configuration, with 

the distinction that the plane is composed of two surface oxygen atoms and carbon and 

oxygen atoms of CO arranged perpendicular to the surface CeO2. This specific 

arrangement is predominantly observed on CeO2 (100) and (110) slabs. O-bridged and 

Ce-bridged sites, like BDC, were explored for this configuration. Both O-bridged and Ce-

bridged sites exist on the CeO2 (110) slab, but only the O-bridged site exists on the CeO2 

(100) slab. Among them, the O-bridging site on (110) has two possible nearest-neighbor 

oxygen vacancies to be considered (Fig. 9d). Table 6 shows that the frequency of bridged 

carbonate is greater than the BDC, around (1644 - 1711) cm-1, which is consistent with 

experimental findings [33-35,39]. Furthermore, Eads shows that CO interaction on CeO2 

(110) surface prefers O-bridge configuration over Ce-bridge configuration, which is 

consistent with Huang et al. [45]. Table 6 shows the Eads, vibrational frequencies, and 

intensities for this configuration. 

 

 

 

 

 

doi:10.6342/NTU202302105



32 
 

 

 

Fig. 9. (Side view) Bridged carbonate configuration of CO on (a) oxid-CeO2 (100), (b) 

O-bridged site of oxid-CeO2 (110), (c) Ce-bridged site of oxid-CeO2 (110), and (d) two 

possible oxygen vacancies position (blue dotted circle) of O-bridged site on redu-CeO2 

(110). 
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Table 6. Calculated vibrational frequencies, intensities, and corresponding Eads of bridged carbonate on CeO2 (100) and (110). 

Facet site 
Frequency (cm-1) 

Intensity  

(D/Å2 amu-1) 

Eads (eV) 

DFT After scaling  Experimental    

100 

oxidized O-bridged 1702 1734 1728 a 25.33 -3.56 

reduced O-bridged 1711 1744 1736 b 27.51 -3.17 

110 

oxidized 

O-bridged 1657 1688 1695 c 19.21 -3.63 

Ce-bridged 1655 1686 1695 c 23.43 -1.74 

reduced 

O-bridged 

1644 1675 1675 d 22.91 -3.73 

1651 1682  19.67 -3.18 

Ce-bridged 1705 1737 1736 b 27.52 -1.22 

a ref [34]. b ref [35]. c ref [33]. d ref [39]. 
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3.2 Assessment of DNN model 

 We employed various datasets produced from DFT and experimental IR spectrum to 

test the performance of our trained models on the prediction of distributions of CeO2 

facets, CO-derived adspecies, and Eads, the details of which are discussed below. 

 

3.2.1 DFT-based dataset 

 Around 200 complex IR spectra were produced at random and utilized as a testing 

dataset. R2 and Wasserstein (W) were utilized as evaluation measures to examine the 

performance of the DNN models on the prediction of the distribution of oxid/redu-CeO2 

(100, 110, 111), CO-derived adspecies, and Eads. As listed in Table 7, all three DNN 

models produce predictions with high R2 and low W values, suggesting the models 

performed well on the prediction tasks. The predicted distributions were compared to the 

actual ones as shown in Fig. 10. The values of R2 and root mean square error (RMSE) 

show that the predicted and actual values are in good agreement.  

 Our model can capture the majority of the IR spectral characteristics that correspond 

to CeO2 facets (Fig. 10a-f), CO-derived adspecies (Fig. 10g-k), and Eads groups (Fig. 10l-

p). The prediction of CO-derived adspecies has demonstrated the highest accuracy, which 

is due to the fact that each surface species has a distinct frequency range, and some species 

even have two or three vibrational peaks, which can enable the model to recognize. 
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However, in the case of CeO2 facets, some of the predicted values differ from actual 

values. This could be due to the fact that a particular adsorption configuration of CO may 

have similar IR features on various CeO2 surfaces. As a result, it becomes challenging for 

the model to determine the exact CeO2 surface based only on the IR spectra of that 

adsorption configuration. More discussions on this point can be found in the subsection 

below. 

 

Table 7. Performance summary of the DNN models. R2 and 𝑊 obtained by testing 200 

synthetic complex IR spectra. 

Prediction Task R2 𝑊 

CeO2 facets 0.97 0.026 

CO-derived adspecies 0.99 0.0079 

Eads  0.98 0.016 
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Fig. 10. Parity plots of the predicted and actual percentages of (a-f) CeO2 facets, (g-k) 

CO-derived adspecies, and (l-p) Eads composing the synthetic complex IR spectra in the 

test sets. 
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3.2.2 Experimental IR spectrum 

 To assess whether the DNN models capture the essential aspects of real-world IR 

spectra of CO adsorbed on CeO2, we applied them to analyze a few experimental IR 

spectra derived from the literature [40,49]. First, we applied our model to the digitized 

[80] experimental spectra of CO adsorbed on four different single crystal CeO2 (namely 

oxidized_110, reduced_110, oxidized_111, and reduced_111) to examine whether the 

predicted facets agree with the actual crystal structures. From the literature discussion 

[49], CO was in atop configuration with an adsorption energy of about -0.3 eV in all four 

infrared spectra. Fig. S2 shows that our model predictions of CO-derived adspecies and 

Eads are in atop site and group 5 (-0.94 to 0 eV), which agree with the experimental 

findings. As shown in Fig. 11c-e, our model accurately predicted a high percentage of the 

correct facet (0.81, 0.65, and 0.80) in the case of oxidized_111, reduced_110, and 

reduced_111 CeO2, respectively. However, for the oxidized_110 spectrum (Fig. 11b), the 

model misidentified a high proportion of reduced CeO2 (110) and (100) facets. We believe 

this is because the frequency of the atop site of oxid-CeO2 (110) (2171 cm-1) is quite 

similar to redu-CeO2 (110) and (100) (2175 and 2168 cm-1), as listed in Table 2. Therefore, 

it is difficult for the model to distinguish between these CeO2 surfaces based solely on the 

IR spectra of the atop site. 
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Fig. 11. Predicted facets of four CeO2 single crystals. (a) The experimental IR spectra of 

CO adsorption on oxidized_110 (red), oxidized_111 (navy), reduced_110 (green), and 

reduced_111 (magenta) CeO2 single crystals. Predicted facets using IR spectra of CO on 

(b) oxidized_110, (c) oxidized_111, (d) reduced_110, and (e) reduced_111 CeO2. 
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 In addition to the single crystal spectrum, we also examined the performance of the 

model on CeO2 nanorods. Yang et al. recorded an interesting experimental IR spectrum 

of CO adsorbed CeO2 single crystals using infrared reflection absorption spectroscopy 

(IRRAS), and they discovered the presence of a high number of {111}-type nanofacets 

on the (110) planes of active CeO2 nanorods. We applied our model to their IR spectrum 

and quantified the distribution of CeO2 facets. As shown in Fig. 12b, our model predicted 

a substantial proportion of (111) and a smaller percentage of (110) facets, which is 

consistent with the qualitative findings from the experimental observations. 

 

 

Fig. 12. (a) Experimental IR spectrum of CO on CeO2 nanorods. (b) Predicted distribution 

of CeO2 facets. 
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 Finally, we used the complex IR spectra of CO adsorbed on CeO2 nano-octahedra 

(o-CeO2) recorded by Chen et al. [40] to test our model. Fig. 13 shows the predicted 

distributions of CeO2 facets, CO-derived adspecies, and Eads. As shown in Fig. 13b, our 

model predicted that the main exposed facet of o-CeO2 is the (111) surface, which is 

consistent with the HRTEM experimental result of Chen et al. Furthermore, by utilizing 

IR peak assignments that were reported in the literature, Chen et al. established the 

adsorption of CO onto o-CeO2 in the atop, BDC, and bicarbonate configurations. Based 

on our predictions of CO-derived adspecies (Fig. 13c), we estimate that around 0.83 of 

CO produces BDC, 0.16 at the atop site, and 0.012 for bicarbonate species, which is 

consistent with the analysis of Chen et al. Furthermore, the model also predicts that the 

Eads is primarily dominated by group 4 (-2.27 to -0.94 eV). This finding aligns with the 

calculated Eads obtained from the adsorption of BDC on the (111) surface, as listed in 

Table 3. 
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Fig. 13. Predicted facets and microstructure of CeO2 octahedra. (a) Experimental IR 

spectra of CO on CeO2 octahedra (o-CeO2). Predicted distribution of (b) CeO2 facets, (c) 

CO-derived adspecies, and (d) Eads groups. 
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4. Conclusions 

 In this work, we utilized a deep learning approach along with an IR spectrum of CO 

to investigate the surface properties of CeO2 catalysts. Using DFT calculations, we 

systematically examined the possible CO-derived adspecies on different CeO2 facets, 

including atop, BDC, PDC, bridged carbonate, and bicarbonate configurations. Normal 

mode analysis was performed for each adspecies, and the resulting computed frequencies 

were combined with experimental data to create an extensive dataset containing 

vibrational frequencies, intensities, and binding energies of CO adsorbed on CeO2. By 

utilizing this dataset, we generated synthetic IR spectra to develop deep learning models 

for predicting surface structure. The models estimate the distributions of CeO2 facets, 

CO-derived adspecies, and binding energies based on IR spectrum data. We successfully 

applied the models to analyze experimental IR spectra of CO adsorbed on various types 

of CeO2, including single crystal, nanorod, and nano-octahedron. We believe that our 

proposed method can assist in overcoming the challenges of assigning vibrational 

frequencies and determining the distribution of CeO2 facets. This deep learning approach 

also has the potential for understanding the morphology, local environmental arrangement, 

interaction behavior of other probe molecules, e.g., CO2 and NO, and catalytic 

characteristics of diverse CeO2 facets. 
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Supporting Information 

Scaling factor 

To account for the discrepancy between experimental and computed frequencies, the 

frequencies derived from DFT were calibrated using the scaling procedure as proposed 

in the literature [1]. The equation for the scaling factor (SF) is given as,  

𝑆𝐹 =
∑ (𝜈𝑖 ∗ 𝜔𝑖)𝑛

𝑖=1

∑ 𝜔𝑖
2𝑛

𝑖=1

 

where n is the amount of data, 𝜈𝑖 is the experimental frequency, and 𝜔𝑖 is the frequency 

derived from DFT calculations. The scaling factors for each vibrational mode are listed 

in Table S1. For each CO-derived adspecies, the highest frequency is the first mode, the 

second highest frequency is the second mode, and so on. 

 

Table S1. The scaling factor for each vibrational mode. 

CO-derived adspecies 1st mode 2nd mode 3rd mode 

Atop 1.018   

Bidentate carbonate 1.015 1.048  

Polydentate carbonate 1.027 0.993  

Bicarbonate 0.998 1.017 1.038 

Bridged carbonate 1.019   

 

 

 

doi:10.6342/NTU202302105



57 
 

Hyperparameter optimization  

As listed in Table S2, hyperparameters including number of training data per training set, 

number of training sets, number of hidden layers, number of neurons per layer, batch size, 

initial learning rate, epsilon, regularization loss (norm), and regularization parameter 

were tuned to find the optimal hyperparameter set. The optimal hyperparameters for the 

DNN models are listed in Table S3. 

 

Table S2. Hyperparameter search space. 

 Range 

Hidden layers 2 or 3 

Neuron 50~151 

Regularization parameter 10-1 ~ 10-6 

Initial learning rate 10-4 ~ 10-3 

Batch size 10 ~ 100 

Epsilon 10-10 ~ 10-14 

Regularization Loss (norm) L1 or L2 

Number of training data per training set 500 ~ 5000 

Number of training sets 100 ~ 1000 

 

 

 

 

 

 

doi:10.6342/NTU202302105



58 
 

Table S3. The optimum hyperparameter settings for the DNN models. 

            Model tasks 

Hyperparameter 
CeO2 facet 

CO-derived 

adspecies 

Adsorption 

energy groups 

Hidden layer structure (91, 96) (65, 123, 89) (71, 148) 

Regularization parameter 7.7x10-6 4.1x10-5 5.3x10-6 

Initial learning rate 4.5x10-4 2.2x10-4 2.7x10-4 

Batch size 62 51 76 

Epsilon 7.8x10-13 1.1x10-12 1.9x10-12 

Regularization Loss (norm) L1 L2 L1 

Number of training data per 

training set 
4665 2219 4590 

Number of training sets 706 987 900 

 

 

 

 

 

 

 

 

 

 

 

 

doi:10.6342/NTU202302105



59 
 

Impact of training size on model performance 

By introducing noise to the frequency and intensity calculated by DFT and adjusting the 

composition of CO-adsorbed species and surface in the spectra, it is possible to generate 

a large amount of synthetic IR spectra. Our analysis, as shown in Fig. S1, demonstrates 

that training models for Eads and CO-derived adspecies require at least 3280 data, whereas 

the model for the CeO2 facet requires at least 2980 data to reach stable performance. 

 

Fig. S1. The relationship between the number of training data and the accuracy of the 

model predictions for the distribution of (a) CeO2 facets, (b) CO-derived adspecies, and 

(c) adsorption energy. 
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Predicted CO-derived adspecies and adsorption energy on IR shown in 

Fig. 10a 
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Fig. S2. The predicted distribution of CO-derived adspecies and adsorption energy on (a) 

oxidized_110, (b) oxidized_111, (c) reduced_110, and (d) reduced_111 CeO2. 
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