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中文摘要

移動邊緣運算是一種有前途的技術，可提供計算和無線資源，並縮短與移動

終端用戶的通訊延遲。移動邊緣運算位於整個網絡架構的邊緣，對於計算資源受

限的移動終端用戶來說，移動邊緣運算可以用於卸載應用，而且在距離上比起傳

統的雲數據中心更為接近。然而，由於移動邊緣運算的資源有限，因此需要一個

好的資源分配方式，以有效地分配資源給終端用戶，並防止資源被低效利用。拍

賣機制非常適合用以實現資源的最佳分配，並為資源提供者和資源使用者提供參

與資源分配交易的誘因。

目前大部分將拍賣機制應用於移動邊緣運算中的資源分配的研究都沒有綜合

考慮計算和無線資源的分配，這些研究都只專注於計算資源的分配，而這會使移

動終端用戶面臨暴露問題，最終導致較低的社會福利。此外，大多數拍賣模型的

研究都僅關注最大化社會福利，很少考慮拍賣的公平性，但是忽視公平性通常會

導致某部分的資源使用者的服務匱乏，造成使用者流失，使用者流失可能會導致

寡頭市場的產生，這給剩餘的使用者降低出價的議價權，從而降低社會福利。

為了解決上述問題，我們首先提出了一個單輪拍賣機制，該機制在移動終端

用戶卸載任務期限約束下，共同分配資源提供者（即移動運營商）的計算和無線

資源給資源使用者（即移動終端用戶），同時最大化社會福利。我們將此資源分配

問題建模為一個整數線性規劃問題。為了有效地解決這個整數線性規劃問題，我
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們提出了一種貪心近似演算法，它提供了一個與商業求解器的解決方案相比具有

快速執行速度的近似最優解。其次，基於一輪拍賣機制，我們提出了一個公平拍

賣機制，用於公平分配資源，以解決使用者流失的問題，該機制提供了一種可以

有效且公平地分配計算和無線資源給移動用戶的方法。最後，大量模擬實驗的結

果證明我們提出的模型確實可以在最大化系統的整體福利之餘，解決暴露問題和

使用者流失問題。在這篇研究當中，我們的主要貢獻是提供了一種在資源競爭的

移動邊緣運算環境中，使用拍賣機制來有效、高效、且公平地共同分配計算和無

線資源給移動用戶的方法。

關鍵字：行動邊緣運算、資源分配、定價機制、拍賣機制、公平拍賣機制
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Abstract

Mobile edge computing is a promising technology that provides computing and wire-

less resources with lower communication latency to the end user. Deployed at the net-

work’s edge, mobile edge computing is geographically closer for resource-restricted mo-

bile devices to offload their task than traditional cloud data centers. However, with limited

resources, a well-designed resource allocation scheme is needed to efficiently allocate re-

sources to end users and prevent resources from under-utilization. The auction mechanism

is well-suited for achieving optimal allocation strategy and incentivizes resource providers

and consumers to participate in the resource allocation trade.

Most existing works that apply auction mechanisms failed to jointly allocate comput-

ing andwireless resources while maximizing social welfare under task deadline constraint,

leading to the exposure problems for mobile users and minor social welfare. Furthermore,

most auction-based models focus only on maximizing social welfare. Few have consid-

ered fairness among auction participants, but without considering fairness leads to the
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bidder dropout problem due to service starvation in a recurrent auction environment, and

the bidder dropout problem may lead to an oligopoly market, which gives the remaining

bidder bargaining power to lower their bid, thus decreasing social welfare.

To address the problems mentioned above, we propose a one-round auction mecha-

nism, which jointly allocates computing and wireless resources of the resource provider,

i.e., the mobile operator, to consumers, i.e., mobile users, while maximizing social wel-

fare under users’ offloaded tasks’ deadline constraint. Wemodeled this resource allocation

problem as an integer linear programming problem. To solve this integer linear program-

ming problem efficiently, we proposed a greedy approximation algorithm, which provides

a near-optimal solution with fast execution speed compared to the commercial solver’s so-

lution. Second, based on the one-round auction mechanism, we proposed a fairness-aware

auctionmechanism for fair resource allocation to address the user’s dropout problem. This

mechanism provides a way to efficiently and fairly allocate computing and wireless re-

sources to mobile users while preventing the bidder dropout problem from arising. Finally,

we performed extensive simulations, proving that our proposed model can solve the expo-

sure and bidder dropout problems while maximizing the social welfare. In brief, our main

contribution is providing an effective and efficient way to jointly and fairly allocate com-

puting and wireless resources to mobile users using a fairness-aware auction mechanism

viii
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in a resource-competitive MEC environment.

Keywords: mobile edge computing, resource allocation, pricing mechanism, auction

mechanism, fairness-aware auction mechanism
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Chapter 1 Introduction

1.1 Background and Motivation

As the fifth-generation (5G) network is being deployed worldwide, more resource-

intensive and latency-sensitive applications are running on end users’ mobile devices.

These applications generate ultrahigh network bandwidth demands, usually hundreds of

gigabits per second, which imposes significant pressure on the backbone network. Sup-

pose mobile operators attempt to address this issue by expanding the capacity of aggrega-

tion andmetropolitan networks. In that case, the cost per unit of media stream transmission

will increase substantially, making achieving a return on investment difficult. These ap-

plications also require end-to-end ultralow latency, which cannot be satisfied by merely

relying on advancements in wireless and network’s physical and transmission layer tech-

nologies. Last but not least, these applications generate massive amounts of data, leading

to significant challenges in operational management. Centralized monitoring from the

cloud alone cannot support such complex systems.

Hence, when considering 5G application use cases, technological complexities, and

cost considerations, utilizing Mobile Edge Computing (MEC) emerges as the most effec-

tive solution for operators to overcome the abovementioned challenges. MEC provides

cloud computing functionalities and an IT service environment at the network’s periphery.

1
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This system enables the agile and rapid rollout of innovative applications and services tai-

lored to clients. It is designed for implementation at cellular base stations or other edge

nodes. UsingMEC, it positions content, including but not limited to movies, video games,

Virtual Reality (VR) / Augmented Reality (AR) applications, and other multimedia ma-

terials, nearer to the user at the fringe of the network. This approach reduces latency and

lessens bandwidth demands by preventing the delay associated with application traffic

that typically needs to traverse multiple internet hops to reach its endpoint. As a result,

customers can fully capitalize on the benefits of 5G networks.

It is recognized that both public clouds andmobile operators bring their unique advan-

tages to the table. Public clouds are exceptionally proficient in delivering comprehensive

Platform as a Service (PaaS) capabilities. This encompasses many services, including In-

ternet of Things (IoT), Artificial Intelligence (AI), big data, middleware, video services,

and a fully developed suite of technology stacks. Mobile operators excel in their unique

network resource advantages. If the two are combined, it will be an exciting development

and a complementary, win-win situation. MEC is an emerging and evolving computing

paradigm that can combine the strength of public clouds and mobile operators. It is ex-

pected to mitigate the challenges mentioned above, including relieving the pressure that

ultra-high bandwidth requirements put on the backbone network, satisfying applications’

ultra-low latency requirements, and ease of management of such a vast and complex sys-

tem.

An example of MEC is Nokia’s partnership with Amazon Web Services (AWS) to

deploy Greengrass on MEC, combining AWS’s edge computing with Nokia’s propri-

etary mobile network solutions. By integrating AWS’s Greengrass, machine learning,

and Nokia’s MEC and IoT smart management platform (IMPACT), they aim to seize the

2
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emerging IoT market. Another example of MEC is Verizon’s partnership with Amazon,

which puts AWS’s WaveLength technology at the edge of the 5G network, which is closer

to mobile users’ devices. According to Amazon, it can deliver single-digit millisecond

latency to users. Amazon also works with global partners like Vodafone, KDDI, and SK

Telecom.

In a typical MEC system, mobile users can offload their applications to the system,

requiring both wireless channel resources and computing resources for the applications to

complete their execution. Wireless channel resources are provided by a mobile operator

such as Verizon AT&T, and the mobile operator also provides computing resources by

establishing a partnership with an edge computing company such as AWS. Since comput-

ing resources are limited and wireless channel resources are scarce, there can be frequent

competition among mobile users over these resources. Furthermore, the mobile operator

and users can behave according to their own needs/benefits only. For example, the mobile

operator will provide resources to consumers only when there is potential economic profit,

and the mobile users will offload their applications to the mobile operator only when the

application’s requirements can be satisfied. Thus, an incentive-based resource allocation

scheme is needed to allocate both types of resources to mobile users effectively. Finally,

it is essential to note that the effectiveness of a MEC system largely relies on the resource

distribution strategy. Any shortcomings in the resource allocation process could result in

diminished Quality of Service (QoS) for mobile users and escalated operational expenses

for the mobile service provider.

Auction theory is outstanding in its allocation efficiency since it provides incentives

for both sellers and buyers who participate in the auction, and it also guarantees mutual

satisfaction for both parties while achieving an optimal allocation strategy. Auction theory

3
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has long been used for resource allocation in cloud computing. However, it is still at the

beginning stage of MEC, and studying the performance issue of using auction theory on

resource allocation in aMEC has attractedmuch attention from researchers in recent years.

Most existing works that apply auction mechanisms for resource allocation in a MEC

environment only consider computing resources, where the competition and allocation of

wireless channel resources are ignored, which is not practical for the real-world scenario

in which wireless bandwidth is limited, and transmission delay affects the overall comple-

tion time delay for an offloaded application. Ignoring the allocation of wireless channel

resources may lead to the exposure problem [1] for mobile users, which results in an in-

efficient allocation. The exposure problem is defined as follows: bidders intend to secure

multiple items in an auction, yet they risk acquiring fewer than desired due to unexpect-

edly intense competition for specific items. For example, suppose there are two mobile

users, A & B. Amay win the auction and get the computing resources he wants. However,

B may take the wireless channel resources needed for A’s application offloading due to the

competitiveness over limited wireless channel resources. Now, A lacks the wireless chan-

nel resources to offload his application for further computing. The computing resources

he wins become useless to him or even considered a liability since he paid for them.

One salient drawback of the exposure problem lies in the potential risk of overpay-

ment. Bidders could land in situations where they secure, and thus pay for, certain items

but not the entire set that they initially desired. If the individual items’ value pales com-

pared to the entire set, bidders might end up overpaying for something that offers little

value in isolation.

Adding to the complexity is how the exposure problem can convolute a bidder’s

4
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strategy formulation. Bidders often have to incorporate a risk assessment mechanism into

their bidding strategy to account for the probability of only partially fulfilling their desired

item set. To mitigate potential exposure, they might strategically lower their bids, which

can unintentionally induce inefficiencies within the auction process.

Potential bidder participation can also take a hit due to the exposure problem. High

exposure risk can deter engagement from bidders who assign a higher value to the com-

plete set of items than individual ones. The subsequent reduction in active participation

can deflate competition and ultimately pull down the final bid prices.

Lastly, the exposure problem can lead to inefficiency in the allocation of resources.

In scenarios where the bidders who assign the highest value to a complete set of items

do not secure all the items due to exposure, an inefficient distribution of goods is likely.

This inefficiency denotes that the goods do not end up with the bidders with the highest

valuation.

Aside from ignoring the allocation of wireless channel resources, most existingworks

that apply auctionmechanisms for resource allocation neglect fairness-related issues, lead-

ing to the bidder dropout problem [2], especially in a recurrent auction environment. A

recurrent auction is when the same or similar goods or services are auctioned off repeatedly

over time. The bidder dropout problem is defined as follows: within a recurring auction

framework, applying conventional auction mechanisms, for instance, English or Vick-

ery [3], may inadvertently lead to a persistent resource shortage for specific customers.

This could prompt the impacted customers to abstain from participating in future auction

rounds, reducing the long-term demand for the resource provider.

The bidder drop problem can have significant implications for auction outcomes and

5
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efficiency. In a typical auction, bidders compete by placing bids to acquire the auction

item. However, in some cases, biddersmay drop out of the auction for various reasons. For

example, bidders drop out if they perceive the auction rules or conditions as unfavorable,

believe their chances of winning are low, or face budget limitations. The bidder dropout

problem can lead to suboptimal auction outcomes. When bidders drop out, the auction

may result in lower competition, reduce the final market price, and result in low social

welfare.

In a MEC system, where there are different types of mobile users based on their

willingness and capability to pay for the offload services, they have limited patience. They

might leave this MEC system either because they do not get the service requested for too

long or because the Quality of Experience(QoE) did not meet their expectations. When

applying auction mechanisms for resource allocation in a MEC environment, the bidder

drop problem will cause mobile users to leave the MEC system. Users leaving the system

will decrease the goodwill or, as is commonly known, the business reputation of themobile

operator. Furthermore, once the percentage of users left exceeds a certain threshold, the

remaining users are given the power to form an oligopolymarket in the auctionmechanism

used by the mobile operator. They can lower their bid due to the asymmetric balance of

negotiation power between the mobile operator and the remaining users.

1.2 Research Objective

This research addresses the abovementioned problems, including the exposure and

dropout problems of mobile users. We considered aMEC systemwith onemobile operator

in partnership with an edge computing company, where multiple pairs of base stations and

6
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edge servers are deployed at the edge of the radio access network. Each pair of them

jointly provides both types of resources to mobile users. We denote this base station and

edge server pair as an Edge Node (EN). We also assumed that many mobile users need

to offload their applications to this MEC system. They compete for this system’s limited

computing and wireless channel resources.

In this research, we use auction theory for resource allocation, where every edge

node acted as a seller in the auction, and mobile users acted as buyers. The seller sells

computing and wireless channel resources as bundles, and buyers bid for these resource

bundles. A trusted third-party acts as the auctioneer to host this centralized auction.

First, to address the exposure problem for mobile users, a one-round auction mecha-

nism is proposed, which jointly allocates computing and wireless channel resources from

the edge nodes to mobile users while maximizing social welfare under mobile users’ of-

floaded applications’ deadline constraint. In other words, the computing and wireless

resources are sold as bundles, similar to Amazon EC2 [4]. This resource allocation prob-

lem is modeled as an integer linear programming problem. Since the problem is NP-hard,

a greedy approximation algorithm is proposed.

Extensive simulations were conducted, and the results are compared with two other

baselines: when computing and wireless channel resources are sold separately, and results

obtained by CPLEX [5], a commercial solver. We chose three evaluation metrics: social

welfare, served user percentage, and execution time. Simulation results showed that the

proposed algorithm significantly improved social welfare and served user percentage over

the case where resources are sold separately. While the results were near-optimal com-

pared to that of CPLEX, the execution time of the proposed algorithm was significantly

7
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lower.

Second, to address the bidder dropout problem, a fairness-aware auction mechanism

based on the aforementioned one-round auction is proposed. This fair resource allocation

mechanism is powerful when resources are insufficient. It can reduce the mobile user’s

dropout rate, increase overall fairness among all mobile users, prevent low social welfare,

and ensure the long-term profitability of the mobile operator.

Extensive simulations were conducted, and we compared the results of the fairness-

aware auction mechanism and those of the non-fairness-aware multi-round auction mech-

anism in a recurrent auction environment. We chose three evaluationmetrics: user dropout

rate, fairness index value, and social welfare. Simulation results showed that the proposed

fairness-aware multi-round auction mechanism could prevent bidders from dropping out

of the auction; in doing so, the bidder dropout problem can be averted, as well as the

uneven distribution of negotiating power between the mobile operator and the remaining

mobile users, which would otherwise reduce social welfare. This approach also prevents

the potential reduction of the mobile operator’s long-term profits due to an oligopolistic

market condition.

1.3 Thesis Organization

The remainder of this study is structured as follows: Section 2 reviews various auc-

tion mechanisms and related works in auction-based resource allocation. Section 3 details

the proposed auction mechanism and network models and frames the resource allocation

problem alongside its resolution techniques. Section 4 presents a fairness-oriented auc-

tion mechanism. Section 5 elucidates the dataset utilized for simulations, the execution of
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these simulations, and the evaluation of results generated by our proposal. Finally, Section

6 concludes the research and outlines potential areas for future exploration.
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Chapter 2 Related Work

2.1 Auction Mechanism

Within the framework of MEC, traditional static methods of resource allocation fall

short in optimizing the use of edge resources, particularly when edge services require

adaptive, on-demand, and real-time provisioning to users. Conversely, strategies rooted in

economics and businessmanagement are considerablymore effective, given their dynamic

nature and efficiency in resource allocation [6].

Auction theory [7], a well-established economic approach, has seen widespread ap-

plication in Cloud Computing and presents itself as a viable solution for resource alloca-

tion in MEC. This is primarily because it allows for a reasonable and efficient distribution

of limited provider resources to customers through a competitive pricing structure in a

trade-like scenario. Furthermore, it can encapsulate the bidirectional interactions between

resource providers and customers [8].

A well-designed auction mechanism strikes a good balance among performance in

terms of social welfare, dominant-strategy incentive-compatible for bidders, and compu-

tational efficiency [9].

Incentive compatibility is a crucial concept in the arena of auction theory, playing a
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significant role in shaping bidder behavior and the ultimate outcomes of auctions. An auc-

tion is deemed incentive-compatible (IC) when each participant’s optimal strategy aligns

with bidding their true valuation for the auctioned goods or services. The strength of an IC

auction lies in its propensity to promote truthful bidding. This eliminates strategic com-

plexity for bidders and substantially enhances the efficiency of the auction mechanism.

Moreover, incentive compatibility can foster a trustworthy and predictable auction envi-

ronment, boosting credibility and prompting increased bidder participation. Despite these

advantages, implementing an incentive-compatible design is challenging. For instance,

achieving incentive compatibility might be challenging in complex auction scenarios with

multiple heterogeneous items.

As in single-item environments, First-Price Auction [10], also referred to as a First

Price Sealed Bid Auction (FPSBA), is a type of auction mechanism where bidders simul-

taneously submit sealed bids, unaware of the bids offered by other competing bidders. The

essential characteristic of this mechanism is that the highest bidder secures the item for sale

and pays the exact price of his or her bid. In contrast to other auction formats, such as the

Second Price Auction [3] where the highest bidder pays the amount of the second-highest

bid, the First Price Auction inherently invites strategic bidding. Bidders are incentivized

to shade their bids, bidding less than their actual valuation, to avoid the ”winner’s curse,”

in which the winner overpays for the item. The First Price Auction format is widely used

in various contexts, from online advertising to government procurement contracts. Its

strategic nature prompts bidders to consider their valuation, potential competition, and

risk tolerance when determining their bids. Notably, in a First Price Auction, no domi-

nant bidding strategy exists, hence making the process dynamic and context-dependent.

Nevertheless, this format may not always lead to efficient outcomes, where the item goes
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to the bidder with the highest valuation. This potential inefficiency is a trade-off for the

simplicity and straightforwardness of the First Price Auction structure.

In contrast to the First-Price Auction, Vickrey auction [3], a Sealed Second-Price

Auction, has been proven that it can maximize social welfare while guaranteeing bidders’

dominant strategy is incentive-compatible [11]. The auction procedure runs in polynomial

time. In a Vickrey auction, each participant submits a bid without knowledge of the bids

proposed by other participants, thereby maintaining the sealed nature of the bids. Once

all bids are submitted, they are opened simultaneously. The participant who has made the

highest bid wins, yet the price they pay corresponds to the second-highest bid. This unique

approach to pricing insulates bidders from the risk of the ”winner’s curse,” which is the

possibility of overpaying. A crucial feature of the Vickrey auction is that it is incentive

compatible, providing a dominant strategy for bidders to bid their true valuation. This

mechanism encourages truthful bidding, as the final payment does not depend on the bid-

der’s bid but rather the bid of others. Regardless of the other bids, a bidder can maximize

their payoff by bidding their true valuation, leading to an efficient outcome. Despite these

advantages, Vickrey auctions also present specific challenges, including vulnerability to

collusion and a general lack of familiarity and intuitive understanding among participants

compared to other auction formats.

As in multi-item environments, the same goal for maximizing social welfare and

guaranteeing bidders’ dominant strategy is incentive-compatible can be achieved byVickrey-

Clarke-Groves (VCG) auction [12] [13], a combinatorial auction. The Vickrey-Clarke-

Groves (VCG) auction is an influential mechanism within economics and game theory,

known for its robustness in achieving efficiency and incentive compatibility in multi-item

auctions. It is a generalization of the Vickrey auction to situations involving allocating
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multiple heterogeneous items. The VCG auction operates on the principle of social opti-

mality, aiming to allocate goods to maximize total societal value. Each bidder submits a

bid for different combinations of goods, elucidating their valuations. The auctioneer then

assigns the goods to maximize the sum of these stated valuations. The payment rule in

a VCG auction is unique. Although the items are assigned to maximize total value, the

price paid by each winning bidder is based on the external cost their winning imposes

on other bidders. Specifically, a winning bidder pays an amount equal to the reduction

in total value to other bidders caused by their winning the items rather than paying their

bid. This mechanism discourages participants from misrepresenting their true valuations,

thereby achieving incentive compatibility. The VCG auction’s principal advantages are

its ability to lead to an efficient outcome (where goods are allocated to those who value

them most) and its incentive compatibility. However, while the VCG auction mechanism

is excellent in theory and guarantees truthful bidding, it has drawbacks such as low or even

zero revenue for sellers, making it impractical in the real world.

On the other hand, Generalized Second Price (GSP) auction mechanism [14] [15]

does not guarantee truthful bidding, but it guarantees a locally-envy free equilibrium. It

is used mainly in the context of keyword auctions [16], where sponsored search slots are

sold on an auction basis. The Generalized Second Price (GSP) auction is an instrumental

mechanism that has been extensively adopted in search engine advertising. This auc-

tion model, which is non-truthful, underpins the functionality of widely-used advertising

platforms, including Google AdWords.In a GSP auction, advertisers submit bids for key-

words. When a user executes a search that includes one of these keywords, the bidding

advertisers are ranked according to their bid amounts. The highest bidder is awarded the

most prominent advertisement position, generally at the top of the search results page; the
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second-highest bidder receives the next most visible position, and so on. The number of

advertisement slots is typically limited; hence not all biddersmay receive an advertisement

position. The payment structure in GSP auctions is distinct. Although the advertisement

slots are assigned based on the bid amounts, the cost per click each advertiser pays if their

ad is clicked is determined by the advertiser’s bid ranked directly below them. In other

words, the highest-ranking advertiser pays the bid amount of the second-highest bidder

per click; the second-highest pays the bid amount of the third-highest, and so forth. GSP

auctions effectively strike a balance between the efficiency of allocating advertisement

slots to those advertisers who value them the most and revenue generation for the search

engine platform. However, the strategic complexity of bidding in a GSP auction, where

truthful bidding is not always the best strategy, remains a challenge for advertisers. De-

spite this, the widespread adoption of GSP auctions in digital advertising signifies their

practical utility and effectiveness in the rapidly evolving online marketplace.

2.2 Auction-basedResourceAllocation andPricingMech-

anism

So far, the application of auction theory in edge cloud environments has attracted

significant attention in recent years.

Gao et al.[17] model the computing resource allocation problem in distributed edge

cloud as an n-to-one weighted bipartite graph matching problem, with the computing re-

source capacity of edge cloud and task deadline as constraints, the utility of provider is

maximized. In the proposed system, edge cloud nodes act as resource providers and mo-

bile users as consumers. A one-round Vickrey auction-based mechanism, alongside a
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greedy approximation algorithm, is proposed to solve the allocation and payment deter-

mination problem between providers and consumers, which obtains near-optimal social

welfare while satisfying multiple properties of the auction mechanism, e.g., truthful, indi-

vidual rationality, and computational efficiency.

Similar to [17], Liu et al. [18] model the computing resource allocation problem in

distributed edge cloud as an n-to-one weighted bipartite graph matching problem, with

the computing resource capacity of edge cloud, task deadline and energy consumption

as constraints, the utility of provider is maximized. A deep learning-based one-round

optimal auction is proposed to solve the allocation and payment determination problem,

which can effectively improve the utility of the edge provider while preventing mobile

users from making unrealistic bids and unfairly influencing the allocation.

Bahreini et al. [19] model the computing resources allocation problem in Mobile

Edge Computing (MEC) systems where users have heterogeneous demands as a Mixed-

Integer Linear Program (MILP). MILP is solved by a General Second Price (GSP) [14]

based combinatorial auction mechanism with a greedy approximation algorithm, while

social welfare is maximized. The auction mechanism proposed can obtain near-optimal

social welfare compared to that obtained by CPLEX [5]. However, while individual ra-

tionality and computational efficiency are ensured, the property of truthfulness cannot be

guaranteed.

Wang et al. [20] addressed the incentive profit maximization ofMEC service providers

in both non-competitive and competitive scenarios using market pricing and auction mod-

els. For the non-competitive case, a non-linear optimization problem is formed, where the

utility of providers is maximized, with the Quality of Experience (QoE) of mobile users
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as constraints. By using the KKT conditions, the optimal price of computing resources

is found. The competitive case uses the results of the non-competitive case as a baseline.

Since computing resource is limited in this case, a profit maximization problem is formed,

where the utility of providers is maximized, with the capacity of computing resource as

a constraint. The optimal price of computing resources is solved by a Vickrey auction-

based online profit maximization multi-round auction (PMMRA) mechanism alongside

a greedy approximation algorithm. While the utility of providers is maximized, proper-

ties of auction mechanisms such as truthfulness, individual rationality, and computational

efficiency are also satisfied.

Zhang et al. [21] studied the matching problem between the MEC service providers

and user equipment (UE) in a multi-MEC and multi-UE scenario. While social welfare is

maximized, with both computing and wireless resources considered, a 2-dimensional 0-1

knapsack problem is formed and solved by two separate Vickrey auction-based mecha-

nisms alongside Dynamic Programming, in which the computing and wireless resources

are sold jointly. Furthermore, the auction mechanism proposed is extended to a multi-

round auction. Although the proposed resource allocation and pricing problem guaran-

tees essential properties such as truthfulness, individual rationality, and computational

efficiency, it must be noted that the implementation of Dynamic Programming (DP) as a

solution strategy results in pseudo-polynomial time complexity. This temporal complex-

ity, inherent in the application of DP, often renders it impracticable in real-world scenarios

where computational resources and time are limited. Consequently, the expeditious allo-

cation and pricing, typically required in dynamic and competitive markets, may be hin-

dered, underscoring a need for the exploration of more efficient computational approaches

to effectively manage this problem in practical contexts.
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As evidenced in Table 2.1, to the best of our knowledge, no extant study has pro-

posed a fairness-aware auction mechanism that simultaneously sells computing and wire-

less resources as an integrated package to mobile users in MEC systems. A gap exists

in the literature for an auction mechanism that jointly allocates these resources and un-

derpins fairness in recurrent auction environments. A recurrent auction, characterized by

repeated bidding rounds over time, aptly mirrors real-world scenarios wherein resources

are persistently traded in dynamic markets. Additionally, such a mechanism would need

to perform these allocations with an expedient and pragmatic speed. This feature is es-

sential given the dynamic and real-time nature of resource demand in MEC systems. This

underscores a critical research gap that warrants rigorous scholarly exploration, aiming

to develop an auction framework that encapsulates fairness, joint resource allocation, and

practical execution speed in the context of MEC systems.
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Ref. Scenarios1 Constraints2 Commodity3 Solving Technique4 Package5 Fairness6

[17] EC CR, D CR Greedy - N

[18] EC CR, EL, D CR Deep Learning - N

[19] EC CRs CRs Greedy Y N

[20] MEC CR CR Greedy - N

[21] MEC CR, WR CR, WR DP N N

This Research MEC CR, WR CR, WR Greedy Y Y

1 Scenarios is the context of resource allocation, which includes edge cloud (EC) and Mobile Edge

Computing (MEC).
2 Constraints of the corresponding resource allocation problem, including the capacity of computing

resource(s) (CR(s)), energy consumption limit (E), and the deadline of offloaded tasks (D).
3 Commodity is what buyers bid for in an auction. Multiple types of resources can be jointly consid-

ered, including computing resources (CR) and wireless resources (WR). Examples of computing

resources include Virtual Machine (VM), CPU cycle, memory, and disk, and examples of wireless

resources include resource block (RB) and sub-channels.
4 Solving Technique is the solution to the proposed problem. Greedy represents the greedy approx-

imation algorithm, while DP represents Dynamic Programming.
5 Package denotes whether the commodities, if there exists multiple of them, are sold as a bundle

(Y) or sold separately (N).
6 Whether fairness is considered in the auction mechanism, Y means yes, and N means no.

Table 2.1: Comparison of Researches on Auction-based Resource Allocation
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Chapter 3 Auction-based Resource

Allocation and Pricing

Model

3.1 System Model

For the following description of the proposed system model, definitions of notations

are in Appendix 6.2. The illustration diagram of the proposed mobile edge computing

system is in Figure 3.1.

Consider a Mobile Edge Computing (MEC) environment in an urban area, where

one mobile operator partners with an edge computing provider to provide computing and

wireless resources tomobile users. Themobile operator is assumed to haveN base stations

deployed in this network, in whichN is a fixed positive integer. Each base station is paired

with an edge server which forms an edge node, and the edge computing provider provides

the edge servers. Each base station is used to serve as a microcell. The circle in Figure

3.1 is the microcell’s serving area. Mobile users are assumed to be with low moving

speeds. Thus the handover issue is not considered. The edge server provides computing

resources in the form of central processing unit (CPU) cycle. The base station provides
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Figure 3.1: A illustration diagram of the proposed mobile edge computing system

wireless resources in the form of resource block (RB) to connected mobile users. We

assume that the orthogonal frequency division multiple access (OFDMA) 1 is used for

uplink and downlink transmission, and each resource block consists of NRB sub-carriers.

Following the 5G standards, NRB is set to 12 in this study.

The system is assumed to haveM mobile users, whereM is a fixed positive integer.

Themobile users connect with the base stations throughwireless connections, and the base

station connects with the edge server through a high-speed ethernet-like fiber connection.

Since both types of resources (wireless & edge computing) are limited, the mobile

1Other than OFDMA, Non-Orthogonal Multiple Access (NOMA) in 5G or Beyond 5G environments
can be considered for further research. When designing an auction model for resource allocation in MEC,
especially wireless resources, the characteristics of NOMA need to be considered.
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operator assigns a trusted third party in the network to serve as an auctioneer, who uses

an auction-based mechanism to determine the allocation and pricing for these resources,

fulfilling users’ demands dynamically. The auctioneer connects with edge nodes through

ethernet-like fiber connections. The auctioneer is in charge of the auction and is respon-

sible for processing the control signals flow. Figure 3.1 presents the control flow as a

hollow arrow. The solid arrow in Figure 3.1 is the data flow, which represents the flow of

application tasks that mobile users offloaded and their execution results.

Inspired by Amazon’s Elastic Compute Cloud (EC2) spot pricing [4], computing and

wireless resources in this study are sold together as resource packages. Similar to [17]

[19] [20] [21], the system structure of our proposed model is described down below.

This system has N edge nodes; each edge node is a tuple of a base station and an

edge server. We denoted edge node i as

Ei = (Si,Wi), i = 1, 2, · · · , N (3.1)

where

Si = (s1i , s
2
i , · · · , ski ) (3.2)

szi = (cz, wz), ∀z ∈ (1, 2, · · · , k) (3.3)

Qi = (q1i , q
2
i , · · · , qki ) (3.4)

(3.5)

For each edge node i, Ei = (Si,Wi) in (3.1) is a fixed tuple, where Si in ( 3.2) is

the set of resource packages, each of which is defined to be a pair of CPU frequency and
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the number of resource blocks this resource package provides. We denoteWi as the total

number of resource blocks of edge node i.

There is a total of k types of unique resource packages. For a type-z resource package,

denoted as szi = (cz, wz) in (3.3), cz is the CPU frequency this resource package offers

and wz is the number of resource blocks it provides. Qi in ( 3.4) is the set of resource

package’s capacity, where qzi represents the total number of szi edge node i has.

Since the total amount of wireless resources allocated to mobile users cannot exceed

the edge node’s total capacity of the wireless resource, denote Wi as the total number of

wireless resource blocks of edge node i, we have

k∑
z=1

wz = Wi, i = 1, 2, · · · , N (3.6)

Assume that M mobile users compete for computing and wireless resources in this

system. Each mobile user act as a buyer in the auction, and each buyer will submit a bid

request to the auctioneer, requesting resource packages from edge nodes. Only if a user is

within an edge node’s serving area can this user submit a bid request for this edge node’s

resource package.

Different users operate under diverse tariff plans, introducing a level of heterogeneity

that accurately reflects the variability found in real-world settings. In this scenario, a

user’s bid request is not manually generated but is the product of an automated auction

agent. This agent removes the burden of active participation from the user, streamlining

the auction process and enhancing its speed and efficiency.

The automated auction acts as a compact operating system within a user’s mobile
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device, and it is activated whenever an application task requires offloading. Under such

circumstances, this agent is responsible for generating a bid request. With access to the

user’s tariff plan details, the automated auction agent generates a quota-like bid under the

user’s assigned plan. Each tariff plan corresponds to a specific range, within which the

automated auction agent randomly generates bid values. This bid generation is governed

by a pre-determined probability distribution, introducing a dimension of randomness into

the bidding process yet remaining within the constraints defined by the user’s specific

tariff plan. This stochastic approach cultivates a range of bid values, fostering a dynamic

and unpredictable auction environment.

In the context of this study, we assume that the pre-determined probability distribu-

tion adheres to a uniform distribution. However, the model’s flexibility allows for replac-

ing this distribution in future studies. Other distributions, such as exponential or Gaussian,

can broaden the model’s applicability and adaptability to different bidding behaviors and

auction scenarios.

For buyer j, its bid request rj is denoted as

rj = (bj; gj, fj, sj, t
d
j ), j = 1, 2, · · · ,M (3.7)

where bj is the value of its bid, gj is the type number of resource package it is bidding

for, fj is the CPU cycle required for the offloaded task to complete, sj is the size of the

offloaded task, and tdj is the deadline of the offloaded task. It is assumed that fj, sj, tdj are

generated following a uniform distribution.

Leveraging the variables fj, sj , and tdj , the automated auction agent selects a resource
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package that appears most conducive to the timely completion of the offloaded applica-

tions. In other words, the agent targets those resource packages that ensure the total com-

pletion delay remains less than tdj . The automated auction agent employs a random se-

lection strategy in scenarios where multiple resource packages meet the requisite criteria.

The type of chosen resource package is denoted as gj .

Once the type of resource package has been selected, the automated auction agent

proceeds to generate its bid. This bid generation process is conducted following (3.8).

bj = uj ·
fj
cgj
· wgj , j = 1, 2, · · · ,M (3.8)

where uj is the unit bid of user j, and its generation follows uniform distribution.

Definition 3.1.1 (Social Welfare). The social welfare V is the sum of all winning bids,

i.e., V =
∑N

i=1

∑M
j=1 xi,jbj .

Given the definition mentioned above of social welfare, represented as V , we estab-

lish our objective function as V .

3.2 Network Model

Total bandwidth allocated from edge node i to mobile user j can be denoted as fol-

lows:

wi,j = wgj ·NRB ·∆f (3.9)
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where NRB is the number of sub-carriers each resource block consists of, and ∆f is the

sub-carrier spacing.

This research uses the path loss model [22] to describe the wireless channel between

mobile users and edge nodes while neglecting fading and shadowing effects. Based on this

assumption, we can get the data rate ai,j between edge node i and mobile user j according

to Shannon Capacity Formula [23] as follows:

ai,j = wi,j · log2(1 +
Pjhi,j

N0

) (3.10)

where Pj is the transmission power of user j’s mobile device, and hi,j = d−H
i,j [22] rep-

resents the channel gain between mobile user j and edge node i, with di,j denotes the

distance between the two, and H denotes the channel gain constant. Finally, N0 is the

background noise power.

The completion delay tTj of an offloaded task includes transmission tti,j , propagation

tpi,j , and execution delay tei,j . Denote ow as the speed of light, and di,j as the distance

between mobile user j and edge node i, the completion delay tTj for task offloaded is

tTj = tti,j + tpi,j + tei,j (3.11)

tti,j =
sj
ai,j

(3.12)

tpi,j =
di,j
ow

(3.13)

tei,j =
fj
cgj

(3.14)
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Since the size of the computing result is usually relatively small, we ignore downlink

transmission and propagation delay.

3.3 Procedure of a Centralized Single Round Auction

We abstract the system mentioned above (Section 3.1) into an auction model for fur-

ther study. One base station and edge server form a pair and act as one edge node. Edge

nodes provide both types of resources. One mobile user acted as one bidder, and a trusted

third party within the mobile operator network was the auctioneer hosting this central-

ized auction. The auctioneer takes bid requests from mobile users, collects edge nodes’

resource availability state information, broadcasts information to mobile users, runs a re-

source allocation algorithm, and delivers allocation outcomes to mobile users and edge

nodes.

As illustrated in Figure 3.2, we first focus on a single-round, centralized auction

procedure.

Every auction round allocates available resource packages from every edge node to

its bidders. A resource package is defined as a pair of CPU frequency and the number

of resource blocks this resource package provides. One mobile user can only bid on one

resource package at a time, i.e., one bidder can only get resources from at most one edge

node, while an edge node can serve many mobile users simultaneously.
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Figure 3.2: Auction Flow chart of a single round auction

In a single-round auction, the edge nodes and mobile users are viewed as sellers and

buyers of computing andwireless resource, respectively. The following aremore thorough

processes for a single round of auction :

Step 1: The auctioneer requests resource status information from edge nodes.

Step 2: Resource availability status state information of edge nodes is sent back to the auc-

tioneer and updated, which includes the number of available resource packages.

Step 3: Resource availability state information of each edge node is broadcasted to their

connected mobile users, respectively.

Step 4: Mobile users decide which resource package they want to bid for based on the in-

formation they receive. Then they submit their bid requests, which include their bid

value, type number of the bidding resource package, and the characteristic of the
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offloaded task, to the auctioneer.

Step 5: The auctioneer runs a single round of auction to determine resource allocation and

pricing using a pre-determined resource allocation algorithm, and this algorithm is

replaceable. Finally, the auctioneer returns the results to the mobile users and edge

nodes.

Step 6: Mobile users submit their corresponding payments to the edge nodes and then up-

load their application task to edge nodes. Finally, edge nodes start executing appli-

cation tasks.

Step 7: The task execution results are sent back to the mobile users.

From a single mobile user’s perspective, the following are detailed processes for a

single round of auction:

Step 1: The resource availability state information of edge nodes whose serving range cov-

ers mobile user i is sent to mobile user i by the auctioneer.

Step 2: Mobile user i decides which resource package it wants to bid for based on the infor-

mation it receives. Then it submits its bid requests, which include their bid value,

type number of the bidding resource package, and the characteristic of the offloaded

task, to the auctioneer.

Step 3: The auction result is returned to mobile user i by the auctioneer.

Step 4: If mobile user i wins the resource package it bids for in the auction, it submits its

payment and uploads its application task to the corresponding edge node.

Step 5: The task execution results are returned to mobile user i.
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3.4 Mobile EdgeComputingResourceAllocation andPric-

ing Problem

Considering the auction model mentioned above, two problems need to be solved,

the first one is the resource allocation problem, and the other is the payment determination

problem. This study aims to maximize social welfare, as defined in Definition 3.1.1.

We choose to maximize social welfare for multiple reasons. First, social welfare

constitutes a fundamental objective function relevant to numerous real-world scenarios.

For example, welfare maximization is positioned as the principal objective in government-

held auctions that sell wireless spectrum. While revenue generation carries significance,

it is typically subordinate to welfare maximization. In addition, sellers are commonly

advised to prioritize welfare maximization within the framework of competitive markets.

The reasoning is that neglecting to do so may create an opportunity for competitors to fill

that gap, potentially losing customers. Third, economic efficiency stands as a fundamental

component in this discourse. Social welfare maximization ensures that the resources are

allocated to those who value them the most, and this is an efficient outcome from an

economic perspective. Finally, If the auction is designed to maximize social welfare, it

can incentivize participants to bid their true valuations, leading to more accurate price

discovery. Based on the reasons mentioned above, in this study, we choose to maximize

social welfare.

Based on the definition of social welfare V , the Mobile Edge Computing Resource

Allocation and Pricing Problem can be formulated as an integer linear program (ILP)

called MECRAPP-ILP in the rest of this study.
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MECRAPP-ILP:

max
xi,j

V =
N∑
i=1

M∑
j=1

xi,jbj (3.15)

subject to:
M∑
j=1

gj,z · xi,j ≤ qzi , ∀z ∈ K, ∀i ∈ N (3.16)

tTj xi,j ≤ tdj , ∀j ∈M (3.17)

xi,jhi,j ≤ Di, ∀i, ∀j (3.18)
N∑
i=1

xi,j ≤ 1, ∀j ∈M (3.19)

xi,j ∈ {0, 1}, ∀i ∈ N, ∀j ∈M (3.20)

where xi,j is binary decision variable, it is equal to 1 if mobile user j wins the auction and

offload its task to edge node i, and is equal to 0 if he lose. gj,z is a binary variable; it is

equal to 1 if user j decides to bid for type z resource package; otherwise, it is equal to zero.

(3.16) ensures that a resource package can only be allocated to one mobile user. (3.17)

guarantees that the offloaded task can be completed before its deadline. (3.18) make sure

that every mobile user can only get resources from its serving base station, where hi,j is

the distance between user j and edge node i,Di is the serving radius of edge node i. (3.19)

guarantees that each mobile user can only offload a task to, at most, one edge node. (3.20)

guarantees the integrality of the decision variables.

Since the MECRAPP-ILP is a knapsack-liked problem, in the sense that each re-

source package sold by edge node is a 0-1 knapsack problem. It is well known that the

0-1 knapsack problem is NP-Complete, thus making the MECRAPP-ILP NP-hard.

Greedy approximation algorithms are commonly used for solving NP-hard problems
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because they provide a trade-off between efficiency and optimality. It is well known that

NP-hard problems are a class of computational problems for which no known efficient

algorithm exists to find an optimal solution in polynomial time.

When faced with NP-hard problems, finding an optimal solution within a reasonable

time becomes impractical or impossible. In such cases, approximation algorithms often

come into play. Approximation algorithms usually aim to find solutions that are close to

optimal, although not necessarily the absolute best.

Greedy approximation algorithms are desirable because they are often simple to im-

plement and have low time complexity. They make decisions based on the local optimal

choice, allowing for efficient computation. While these algorithms do not guarantee to

find the globally optimal solution, they can provide reasonably good solutions that are

close to the optimal solution.

By using greedy approximation algorithms, one can strike a balance between com-

putational feasibility and obtaining solutions that are close to optimal. While the solutions

may not be perfect, they are often sufficient in practice and can provide valuable insights

or approximate solutions to complex problems.

Thus, in this study, to solve MECRAPP-ILP, an NP-hard problem, a greedy heuristic

algorithm is proposed in section 3.5.
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3.5 A Greedy Heuristic Algorithm for Resource Alloca-

tion

Since MECRAPP-ILP is NP-hard, we designed a greedy heuristic algorithm called

Algorithm 1 to solve this problem in reasonable polynomial time. The pseudo-code for

Algorithm 1 is illustrated in Figure 3.3. First, the auctioneer gets requests sent by mobile

users and then deletes requests whose tasks’ deadlines cannot be satisfied, i.e., for those

users with tdj > tTj . After deletion, the remaining requests are sorted based on bid heuristic

Bj in non-increasing order. The bid heuristic is defined as

Bj =
bj

tei,jwi,j

, ∀j ∈M (3.21)

where tci,j represents the execution time needed. Bj represents the bid value per unit re-

source for mobile user j. Once sorting is done, the auctioneer starts allocating resources

of edge nodes to its connected mobile users by processing the sorted requests list from the

start until there are no available resources left or all requests are processed. In scenarios

where a mobile user is located within the service areas of multiple edge nodes and requests

a specific resource package, denoted as k, the selection process becomes pivotal. We as-

sign the user to the edge node that has the most ample supply of the requested resource

package k. This ensures that the user is served by an edge node that is not only within

their proximity but also capable of meeting their requirements most effectively. Finally,

the payment and social welfare are calculated based on the allocation results.
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Require: requests R(r1, r2, · · · , rM ), resources’ capacity Q(Q1, Q2, · · · , QN )
Ensure: Allocation Matrix X, Social Welfare V, Payment Matrix P
1: X ← 0
2: V ← 0
3: P ← 0
4: Delete request rj in R if tdj > tTj , ∀j ∈ 1, 2, · · · ,M
5: Bj ← bj

tei,jwi,j
, ∀j ∈ 1, 2, · · · ,M

6: Sort R in non-increasing order of Bj

7: i← 1
8: while Q ̸= 0 and i ≤M do
9: pop rj from the head of sorted requests vector
10: find the edge node in range formobile user j that has themost gj resource packages

left, denoted this edge node as i
11: if resource package gj’s capacity of edge node i is greater than zero then
12: V ← V + bi
13: q

gj
i ← q

gj
i − 1

14: Xi,j ← 1
15: Write the winning bid price, denoted as bj , for the resource package gj in edge

node i, to the corresponding entry in P
16: else
17: update the k+1 highest price for resource package gj in edge node i using bj ,

write the result to P . k is the current number of resource package gj that are occupied
18: end if
19: i← i+ 1
20: end while
Figure 3.3: Algorithm 1 - The pseudo-code of resource allocation in a single round of
auction mechanism
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Definition 3.5.1 (Computational Efficiency). An auction mechanism satisfies computa-

tional efficiency if its allocation rule can be computed in polynomial time efficiently.

Theorem 3.5.1. Algorithm 1 is computationally efficient

Proof. In Algorithm 1, the request sorting takes O(M logM). The while loop, which

starts at line 8, will iterate at mostM times, and the execution procedure to find the base

station with the most desired resource packages left (line 10) is an O(NK) operation.

Therefore the time complexity of Algorithm 1 is O(M logM +MNK). We assume the

ratio of the number of serving edge nodes and the number of mobile users as a constant

α, i.e., α = N
M
, and assume that the total number of unique resources packages K is

constant. With these assumptions, the time complexity of Algorithm 1 can be simplified

as O(M logM +MNK) = O(M logM +M2K) = O(M2), which is polynomial.

3.6 Payment Rule

After the resource allocation problem is solved, each winning mobile user’s payment

in the auction must be determined. We assume that mobile users have quasi-linear utilities

(i.e., ui = vi − pi), and all of them are rational, where ui is the utility of user i, vi is the

true valuation user has toward the item he bids, and pi is the price he has to pay if he wins

the item. Here we assume that they are rational, meaning their goal is maximizing their

utility.

The payment rule will determine whether the auction mechanism can satisfy some

desired properties, such as Truthfulness, Individual Rationality, which are defined in the

following:
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Definition 3.6.1 (Truthfulness). An auction mechanism satisfies truthfulness if all agents

bid truthfully, i.e., bi = vi is a dominant strategy for each bidder: xivi−pi is maximized by

bidding their true valuation. Where for bidder i, bi is the bid value, vi is the true valuation,

xi is 1 when bidder i wins, and is set to 0 vice versa, and pi is the payment that bidder i

has to pay if he wins.

Definition 3.6.2 (Individual Rationality). An auction mechanism satisfies individual ra-

tionality if for every agent i: pi ≤ vi, i.e., nobody is ever asked to pay more than their true

valuation for the outcome. For bidder i, bi is the bid value, vi is the true valuation, and pi

is the payment that bidder i has to pay if he wins.

There are a total of qki of the type-k resource package in edge node i (3.4). It is

assumed that a total of x, x > qki mobile users are attending the auction for this type-k

resource package in edge node i. After the resource allocation is determined, qki mobile

users are allocated with a type-k resource package. The necessary and sufficient condition

for a mobile user j to be allocated with type-k resource package is that its bid bj is higher

than the critical bid b∗i,k of this type-k resource package, which is qki + 1th highest bid

among all x mobile users.

Denote pi,j,k as the payment that mobile user j has to pay for resource package k in

edge node i. The payment rule follows Vickrey Philosophy [3], and is given by

pi,j,k = b∗i,k (3.22)

The proof of this payment rule is given in Appendix 6.2.

Definition 3.6.3 (Monotone Allocation Rule). An allocation rule x for a single-parameter
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environment is monotone if for every bidder i and bids b−i by the other bidders, the allo-

cation xi(z, b−i) to i is non-decreasing in its bid z.

Theorem 3.6.1. The proposed auction mechanism is truthful

Proof. In Algorithm 1, the requestsR are sorted in non-increasing order ofBj; thus, for an

arbitrary request ri ∈ R, if the bid bj wins, then a larger bid b
′
j ≥ bj must win, whichmeans

that this allocation rule follows Definition 3.6.3. According to Myerson’s Lemma [11], if

an auction’s allocation rule is monotone, then there exists a unique payment rule (3.22),

and the auction mechanism that uses this allocation rule and payment rule is truthful.

Theorem 3.6.2. The proposed auction mechanism is individual-rational

Proof. By Theorem 3.6.1, the proposed auction mechanism is truthful, i.e., vi = bi for

each bidder i, i ∈ M , and second-price payment is adopted, plus the greedy heuristic

allocation rule. Thus, for each bidder i, its payment pi must be smaller than bi, thus,

pi ≤ bi ≤ vi ⇒ pi ≤ vi.

In summary, the proposed auction mechanism and its payment rule incentivize bid-

ders to bid truthfully and guarantee individual rationality.

3.7 Concluding Remark

This chapter proposes a single-round auction-based resource allocation and pricing

mechanism. While Zhang et al. [21] also jointly considered the allocation of comput-

ing and wireless resources, the payment rule they proposed forces mobile users to attend

two separate auctions, one for computing resources and one for wireless resources. This
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can convolute a mobile user’s bidding strategy and put them at the potential risk of over-

payment. On the contrary, our proposed mechanism can efficiently and jointly allocate

computing and wireless resources as resource packages from edge nodes to mobile users;

this alleviates mobile users from the need to develop complex bidding strategies and the

risk of overpayment. The proposed auction mechanism solves the exposure problem for

mobile users, ensuring a user will either get both types of resources or none while maxi-

mizing social welfare.

Second, Myerson’s Lemma [11] can not be directly applied to an auction where the

item being auctioned has a capacity over one, and Zhang et al. [21] did not provide proof

to support the payment rule they proposed, which makes the auction model they proposed

untruthful. In contrast, we provide direct proof for our proposed payment rule, making

the proposed auction model truthful; this gives users incentives to bid truthfully.

Last but not least, Zhang et al. [21] use Dynamic Programming to solve the knapsack-

liked resource allocation problem, which has exponential time complexity, which is not

practical in real-world MEC scenarios. Conversely, our proposed greedy approximation

algorithm (Algorithm 1) has linear time complexity, which is significantly lower than that

of the algorithm Zhang et al. [21] proposed, which makes Algorithm 1 the better choice

for real-world MEC environments.

In the next chapter, we extend this single-round mechanism with a fairness mecha-

nism since fairness-issue in a recurrent auction environment need to be dealt with to avoid

the bidder dropout problem.
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Chapter 4 Fairness-aware Resource

Allocation and Pricing

Model

4.1 Fairness Issue in Recurrent Auction Environments

As stated in [24], fairness is a research topic that spans various disciplines and is

often associated with allocating resources. The notion of fairness permeates every aspect

of our lives. In economics, the equitable distribution of revenues among shareholders,

providing economic assistance to those in need, and sharing resources within a society

are typical areas that require consideration of fair allocation. In computer architecture,

the fair distribution of computing resources among various processes and their threads

is essential. In contrast, in computer network research, nodes are expected to receive

equitable bandwidth shares and quality of service (QoS).

Most of the works that studied auction-based resource allocation focus on maximiz-

ing social welfare, which is the aggregated payoff of all agents involved in the auction.

Such an approach works well when the auction is only held for one round. While the

auction is being held for multiple rounds, this utilitarian view of social welfare will cause
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problems such as bidder drop problem [25] and the asymmetric balance of negotiation

power [26].

The bidder dropout problem in auctions refers to the situation where bidders who are

interested in an item drop out of the auction before it ends, and this leads to the asymmetric

balance of negotiation power between the remaining bidders and the sellers, which can

result in the lower final price when compared with the case that all bidders had stayed

in the auction. The bidder drop problem can happen for various reasons, such as bidders

losing interest or becoming discouraged by high bids from competitors.

In this research, for simplicity, we assume that there are two types of mobile users,

type 1 and type 2. They follow different tariff plans. Type 1 users are powerful, resource-

ful, and wealthy. They can bid for a resource package at a higher price, while type 2 users

are less wealthy and resourceful. They cannot afford to bid at such a high price in the long

run.

The first problem is the bidder dropout problem, which arises due to the nature of the

auctionmodel, where bidders (type 1 users) with a higher bid havemore chance towin than

bidders (type 2 users) with a lower bid. In the recurrent auction scenario, bidders with less

wealth to bid may need help getting the resources they want in a limited auction round,

i.e., they will continue losing because of the capability of wealthier bidders submitting

bids with higher value. Once the dissatisfaction accumulates and the losers’ patience runs

out, they may consider dropping out of the auction, which leads to the second problem,

i.e., the asymmetric balance of negotiation power. After the losers drop out of the auction,

the wealthier bidders remain in the auction and can form an oligopoly due to a lack of

competitors. They can control the market price and lower their bidding price, which can
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cause bankruptcy for the auctioneer.

Thus, we aim to design a fairness-aware auction model to mitigate the abovemen-

tioned problems, prevent type 2 users from dropping out of the auction, and maintain the

market’s competitiveness. Ultimately, more bidders mean greater competition, leading

the market to healthier conditions.

4.2 Fairness Weight and F-index

To build a fairness-aware auction model, inspired by [25] [27], each mobile user is

given a fairness weight, for user i, denote its fairness weight wi as

wi = 1− max(0, Lmax − Li)

Lmax

(4.1)

Where wi is the fairness weight for user i, wi ranges from 0 to 1, and the higher the weight

of the user, the higher consecutive lost auctions and its probabilities of leaving the market.

A higher wi means user i is given more chance to win the auction, and vice versa. Lmax

is the maximum losing streak a user can take, and it is assumed that if a user keeps losing

for a number greater than Lmax rounds, this user will quit participating in the following

auction rounds. Li is the current losing streak of user i. When user i won in the last round

of auction, Li is reset to 0, which makes wi become 0. If user i keeps losing, then Li will

be closed to Lmax, making wi approach 1.

By the definition of wi, the greedy resource allocation algorithm (Algorithm 1) men-

tioned in Chapter 3 needs the following modification: in the original context, at line 6, the

users’ requests R are sorted in non-increasing order of Bj , ∀j ∈ 1, 2, · · · ,M . Now we
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first sort the requests based on the fairness weight in non-increasing order and then sort

the requests again based on bj in non-increasing order. After the sorting part is done, we

begin the resource allocation and pricing determination process. Finally, the losing streak

for all users must be recorded and updated at the end of each auction round. The complete

pseudo-code is called Algorithm 2, and it is illustrated in Figure 4.1.

With Algorithm 2, the auctioneer can improve the system’s fairness when resources

are insufficient.

Users’ fairness can be improved by using the fairness weight, but a fairness index

is needed to quantify the level of fairness. Since our goal is to make sure the maltreated

users will not leave the system due to a lack of patience, in this research, we consider

fairness from a user-oriented perspective. Thus, instead of using QoS as our evaluating

metrics, we use F-index (4.4), which is a QoE fairness index proposed in [28]. While Jain’s

index satisfies many desired properties such as population size independence, scale, and

metric independence, it does not satisfy deviation symmetric, i.e., Jain’s index is not at its

minimum when the users’ experience is maximally different. On the other hand, F-index

satisfies deviation symmetric, reflecting the system perspective of fairness and quantifying

fairness of the entire system across all users.

Inspired by [29], we defined the mapping model from QoS to QoE as follows (4.3).

The QoS index is defined as the number of rounds a user has to wait before he gets the

resource he requested in the recurrent auction, i.e., the consecutive number of rounds lost

for a user. The QoS index and QoE index are evaluated once per auction round. Q(x) is

the mapping function from the QoS index to the QoE fairness index, L,H is the lower

bound and upper bound of the QoE index, in this search, L equals 0, and H equals to
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Require: requests R(r1, r2, · · · , rM ), resources’ capacity Q(Q1, Q2, · · · , QN ), Losing
Streak Vector L(L1, L2, · · · , LM )

Ensure: Allocation Matrix X, Social Welfare V, Payment Matrix P
1: X ← 0
2: V ← 0
3: P ← 0
4: Delete request rj in R if tdj > tTj , ∀j ∈ 1, 2, · · · ,M
5: wj ← 1− max(0,Lmax−Lj)

Lmax
, ∀j ∈ 1, 2, · · · ,M

6: Sort R in non-increasing order of wj

7: Sort R in non-increasing order of bj
8: i← 1
9: while Q ̸= 0 and i ≤M do
10: pop rj from the head of sorted requests vector
11: find the edge node with the most gj packages left, denoted this edge node as i
12: if package gj’s capacity of edge node i is greater than zero then
13: V ← V + bi
14: q

gj
i ← q

gj
i − 1

15: Xi,j ← 1
16: Lj ← 0
17: Write the winning bid price, denoted as bj , for the resource package gj in edge

node i, to the corresponding entry in P
18: Schedule a resource release event of package gj from edge node i in the cor-

responding time index in E using tTj
19: else
20: Lj ← Lj + 1
21: end if
22: i← i+ 1
23: end while
Figure 4.1: Algorithm 2 - The pseudo-code of resource allocation in a single round of
fairness-aware auction model
ˇ
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Lmax. σ is the standard deviation of all users’ QoE index in a given round. At the same

time, σmax is the maximum value possible of the standard deviation, which happens when

half of the users have the maximum QoE index value (H), and the other half have the

minimum (L), so σmax, in this case, is equal to H−L
2
.

Q : x→ y = Q(x) ∈ [L,H] (4.2)

Q(x) = (H − L) · e−βx + L (4.3)

F = 1− σ

σmax

= 1− 2σ

H − L
(4.4)

Figure 4.2 is an example bar chart of the mapping function (Equation 4.3) when

H = 40, L = 0, and β = 0.07. The decline of QoE as the QoS increases characterizes the

decrease in patience for mobile users when they experience consecutive losses in recurrent

auction scenarios. One can adjust the β parameter to simulate different loss tolerance

levels of mobile users.
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Figure 4.2: An Example Bar Chart of the QoS to QoE Mapping Function, where H =
40, L = 0, β = 0.07

Using the F-index, the fairness of each single auction round can be quantified and

evaluated.

4.3 Payment Rule

Let pi,j,k denote the payment required from user j if said user is victorious in obtaining

resource package k of edge node i. The payment rule for the fairness-awarded auction

model proposed herein is dictated by the principles of the First-Price Auction [10]. In this

model, the winner of resource package k is obligated to remit payment equivalent to its

original bid bj . This can be encapsulated in the following mathematical representation:

pi,j,k = bj (4.5)
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Despite its apparent simplicity, it is crucial to note that this payment scheme fails to

uphold truthfulness. According to Myerson’s Lemma [11], truthfulness is preserved only

when the allocation rule displaysmonotonicitywithin the confines of a single-environment

auction. However, in the fairness-aware auction mechanism proposed, our allocation rule

noticeably lacks this monotonicity. This deviation primarily stems from the fact that the

allocation of resource packages also incorporates the fairness weight. To put it succinctly,

this implies a deliberate trade-off between the assurance of incentive compatibility and

the pursuit of fairness.

4.4 Procedure of a Centralized recurrent Auction

This section explains the procedure of a centralized recurrent auction in detail. The

Auction Round Span is the duration of a single-round auction. In this research, we con-

sider a discrete-time system for simplicity. In each round, as depicted in Figure 4.4, the

procedure of each round is the same as the procedures described in Section 3.3, except

that now every task that gets dispatched by edge nodes will be released and be free to

be used by mobile users in future rounds. For all tasks that finish their execution before

Resources Information Update in round n + 1, resource packages they occupied will be

available for use at round n + 1. Its corresponding update event will be processed at the

beginning of auction round n + 1, and the edge node’s resource capacity will be updated

correspondingly. Take Figure 4.4 as an example; application task 1 and 2 are not available

at round n+ 1, while task 1 is available.

48



doi:10.6342/NTU202302400

Figure 4.3: The relation between consecutive auction rounds

In this recurrent auction model, the arrival of a user’s bid submission is modeled as a

Poisson Process. Since a discrete-time system is assumed, it can be proved that the Poisson

process is equivalent to a continuous-time version of the Bernoulli trials process. There-

fore, the number of arrivals in a single round of auction is the sum of a set of Bernoulli

random variables. i.e., whether a user submits a bid request in each auction round is mod-

eled as a single Bernoulli trial. The decision flow chart for a user i in each round of auction

is presented in Figure 4.4.

After users submit their bid request to the auctioneer, the auctioneer runs Algorithm

2 to determine the resource allocation results, calculates the fairness index value, and

updates the fairness weight for each user for the next auction round.

The detailed procedure of a round in the recurrent auction is as follows.

Step 1: Process all resource update events for this round r, the resource update events con-

sists of resource packages that are being used to execute the offload tasks and the

execution finished after the beginning of the last round r− 1 and before the start of

this round r. For each package, the corresponding edge node’s capacity is updated.
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Step 2: Mobile users employ edge nodes’ resource capacity information to generate their

bid requests based on the procedure illustrated in Figure 4.4.

Step 3: The auctioneer collects all the requests submitted and runs Algorithm 2 to determine

resource allocation and pricing. Finally, the losing record is updated for each user

that attends this auction round.

Step 4: The fairness weight for each mobile user is updated based on its losing record.

Step 5: Auction round r ends, and the system enters round r + 1.

Figure 4.4: Flow Chart of a single mobile user to generate its request in an auction round
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4.5 Concluding Remark

In this chapter, a fairness-aware auction model is proposed. It is built on top of the

single-round auction model proposed in chapter 3. While Wang et al. [20] and Zhang

et al. [21] both proposed the use of the multi-round auction model, they did not consider

fairness when it comes to resource allocation, leading to bidder dropout in the long run. In

this thesis, our proposed fairness-aware auction model focuses on fair resource allocation,

which can effectively solve the bidder dropout problem. For simplicity, we assumed only

two types of mobile users: type 1 users are wealthier than type 2 users. The proposed

model is expected to prevent type 2 users from dropping out of the auction in a recurrent

auction environment, avoiding the bidder drop problem from arising, and further prevent-

ing the asymmetric balance of negotiation power between the mobile operator and type

1 users. In other words, our work can prevent the oligopoly market from arising, thus

protecting the mobile operator’s profit in the long run.
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Chapter 5 Simulation Analysis

5.1 Dataset Description

Figure 5.1: Edge nodes with their coverages and end-users positions inMelbourne central
business district(CBD)

Because real users request data and their locations have not been publicly released

by mobile operators yet, we adopt a widely-used dataset called EUA Datasets [30] in our

53



doi:10.6342/NTU202302400

simulations, which only contains the geographic location of 125 base stations (Figure 5.1)

located at Melbourne Metropolitan area in Australia, where the circle represents each base

stations coverage, and the dots are mobile users’ geographic locations generated. The total

area of this polygon, representing the Melbourne Metropolitan region, is 1.755036 square

kilometers.

For mobile users, we uniformly distribute their location in the polygon formed by

the frontier of the base stations as mentioned above, as illustrated by Figure 5.2, where

the dots are mobile users, the lines are the frontier formed by base stations, and the x and

y-axis represent longitude and latitude, respectively.

Figure 5.2: Uniformly generated mobile users in the polygon formed by the frontier of
base stations
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5.2 Simulation Settings

5.2.1 Single Round Auction

The distance between two base stations typically ranges from 0.5 to 1 km. Hence the

cell radius for each base station is set to 300 meters in this simulation.

Similar to [21], we set the task deadline to be uniformly distributed from 1 second

to 5 seconds, and referring to [20] [21], the task size is uniformly distributed from 10

KB to 1 MB, CPU cycle requested by consumer is uniformly distributed from 200 Mega

cycles to 1000 Mega cycles, the transmission power of user’s mobile device is uniformly

distributed from 257 mW to 326 mW, noise constant is set to -50 dBm. The channel gain

constant is set to 4 [22], since the environment we considered is an urban area similar to

the Melbourne Metropolitan area in Australia.

Similar to 5G band n78 owned by Chunghwa Telecom [31], assume Time Division

Duplex (TDD) and a 90 MHz channel are used, with a total number of resource blocks

equal to 246. The resources package are formed into the following format, which is similar

to that of Amazon EC2 [4]: for computing resource, the CPU frequency cz is set to 2.4

and 3.3 GHz, and for wireless resource, the number of resource block is set to 11, 16, 32,

64. Thus each edge node Ei has 8 kinds of unique package, i.e. Si = (s1, s2, · · · , s8),

with each package’s capacity equals 1, i.e. q1i = q2i = · · · = q8i = 1. With this setting, the

theoretical data rate ranges from roughly 100 to 750 Mbps, which fits the mobile service

data rate in Taiwan, according to a survey conducted by OPENSIGNAL in December of

2022 [32], where the average data rate of downlink transmission for mobile users ranges

from 107 to 374 Mbps.
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As for the bid value of mobile users, in a single round auction, for user j, its bid

generation follows (3.8).

5.2.2 Recurrent Auction Environments

As for the settings of recurrent auction environments, some additional parameters

exist to set up.

First, the percentage of type 1 users is set to 20 percent, and 80 percent for type 2

users. Their bid value is generated the same way using (3.8), except that the unit bid for

type 1 and type 2 users are denoted as u1
j and u2

j , respectively, in which the lower bound of

u1
j is always greater than that of u2

j . The maximum losing streakLmax is set to 100 inspired

by [27]. Since the average of the user’s offloaded job’s total execution time is around 0.1

seconds, we set the auction round span to 0.01 seconds, i.e., the auctioneer hosts a single

round of auction every 0.01 seconds. Besides, the auction’s resource allocation algorithm

(Algorithm 2) maximum execution time is around 0.0003 seconds, so this setup is feasible.

We use X ∼ [a, b] to denote a uniform distribution for a variable X in Table 5.1.

The following simulations are implemented in Python and conducted on an Apple

M1 system with 16 GB RAM.
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Parameter value

Cell radius 300(m)

Task deadline tdj [1s, 5s]

Task size sj [10KB, 1MB]

CPU cycle requested fj [200M, 1000M]

Transmission power Pj [257mW, 325mW]

Noise constant N0 -50dBm

Channel gain constant H 4

Light speed ow 299792.458 (Km/s)

Sub-carrier spacing 30 KHz

Resource block capacityWi 246

CPU frequency cz 2.4, 3.3 GHz

Resource block wz 11, 16, 32, 64

Unit bid uj [1, 10]

Type 1 user’s unit bid u1
j [2, 4]

Type 2 user’s unit bid u2
j [1, 3]

Auction round span 1 millisecond

Maximum losing streak Lmax 100

Table 5.1: Simulation parameter settings

5.3 Simulation Results of the Single Round Auction

5.3.1 Target of Comparison

When a user is limited to offloading its application to a singular edge node, it ne-

cessitates the acquisition of both computing and wireless resources from that same edge

node. When an edge node sells its computing and wireless resources separately, a user

must procure these complementary resources sequentially. Under these conditions, a user
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can first attempt to secure and bid for computing resources. Following the successful pro-

curement of computing resources, the user can subsequently strive to acquire and bid for

wireless resources or take the inverse approach.

In this research, we introduce the metric of ”Exposure Percentage,” which represents

the fraction of users who can acquire either computing or wireless resources upon the

conclusion of the auction.

The targets for comparison in our analysis are as follows:

1. CPLEX: A high-performance mathematical programming solver provided by IBM

ILOG CPLEX optimization studio for academics initiative [5] that can solve linear

programming. This solver represents a robust, industry-standard, state-of-the-art

approach.

2. Computing Resources First (CRF): Under this strategy, users bid for computing re-

sources first; if successful, they bid for wireless resources. This provides a sequen-

tial, resource-specific bidding process that can be used as a baseline for comparison.

3. Wireless Resources First (WRF): Conversely, under this approach, users bid for

wireless resources first and, if successful, subsequently bid for computing resources.

This strategy offers a variant perspective on the bidding sequence for the comple-

mentary resources.

For Figure 5.3 and Figure 5.4, we ran simulations for different numbers of mobile

users, ranging from 100 to 2000. The simulation process is repeated for 20 times, and

then the average results are presented. In assessing the incoming traffic, we implement a

three-tier classification system based on the number of users. We designate the incoming
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traffic as ”low” when the user count is below 500. As the number of users falls between

500 to 1250, we categorize the incoming traffic as ”high.” Lastly, when the number of

users exceeds 1250, we classify the traffic as ”overloaded.”

5.3.2 Comparison of Served User Percentage

First and foremost, we set the percentage of served users obtained by CPLEX to 1,

i.e., 100%, as a baseline.

Figure 5.3: Comparison of the percentage of served mobile users.

As illustrated in Figure 5.3, our proposed algorithm (Algorithm 1) achieves near-

optimal results across all traffic scenarios. During periods of low incoming traffic, the

performance of Algorithm 1 aligns precisely with that of the CPLEX solver. In contrast,

the Computing Resources First (CRF) and Wireless Resources First (WRF) strategies fall

short of the 100% benchmark.

In the context of high incoming traffic, Algorithm 1 surpasses CRF and WRF, reach-
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ing a maximum performance margin of 20%. As the system becomes overloaded with

incoming traffic, our proposed mechanism maintains a served user percentage over 50%,

mirroring the performance of CPLEX. In contrast, CRF and WRF strategies trail CPLEX

by a minimum of 10%.

These outcomes suggest that Algorithm 1 is capable of achieving near-optimal re-

sults with significantly less execution time compared to CPLEX. Notably, Algorithm 1

outshines CRF and WRF during periods of low incoming traffic, and this performance

gap further widens as the incoming traffic escalates and overloads the system.

For the exposure percentage for both the CRF and WRF, they initially ascend during

periods of low incoming traffic, subsequently peaking as the incoming traffic escalates.

Ultimately, these percentages stabilize at a steady ratio when the system is inundated with

incoming traffic or, in other words, when the traffic load becomes overloaded. This dy-

namic can be attributed to the intensifying competition for resources. As this competition

amplifies, the exposure percentage increases, reducing the served user percentage. How-

ever, once the traffic load reaches overload status and competition becomes extreme, the

exposure percentage declines to a comparably low ratio.

Regarding scenarios where the exposure percentage for CRF exceeds that of WRF,

translating to a lower served user percentage for CRF compared to WRF, a logical expla-

nation can be derived from our simulation parameters. Specifically, the resource packages

are constituted as follows: for computing resources, CPU frequency cz is set at either 2.4

or 3.3 GHz, and for wireless resources, the number of resource blocks is configured at

11, 16, 32, or 64. These parameters yield eight distinct packages and double to sixteen

when both types of resources are sold separately. Given that there are only two potential
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CPU frequencies but four possible quantities of resource blocks, resource block packages

are in scarcer supply than those offering CPU frequency when computing and wireless

resources are sold separately. Consequently, a user is statistically more likely to secure

both resources when first securing a resource block package. This circumstance elucidates

why the served user percentage is higher for WRF.

5.3.3 Comparison of Social Welfare

Figure 5.4: Comparison of the Relative Ratio of Social Welfare.

Secondly, establishing the social welfare generated by CPLEX as the baseline at

100%, we observe from Figure 5.4 that our proposed Algorithm 1 consistently maintains a

relatively high ratio of 95% across all traffic conditions. During periods of low incoming

traffic, both CRF and WRF strategies manage to uphold ratios exceeding 95%. However,

with the escalation of incoming traffic, the ratios for CRF andWRF begin to fall, dropping

below 90% and 95%, respectively. As the traffic influx reaches the point of system over-

61



doi:10.6342/NTU202302400

load, CRF dwindles further to less than 80%, while WRF dips below 90%. The generated

social welfare is directly linked to the served user percentage, with increased user service

leading to greater social welfare.

The reason behind the higher social welfare ratio for WRF compared to CRF is again

derived from the specifics of our simulation parameters. Specifically, the structure of

resource packages is as follows: for computing resources, the CPU frequency is set at

either 2.4 or 3.3 GHz, whereas for wireless resources, the number of resource blocks is

set at 11, 16, 32, or 64. These settings result in eight packages and double to sixteen when

both types of resources are sold separately.

Considering only two possible CPU frequencies but four potential quantities of re-

source blocks, resource block packages are inherently scarcer than those offering CPU fre-

quency when the resources are sold separately. Hence, users are statistically more likely

to secure both resources when they first secure a resource block package. This scenario

provides a clear explanation of why the served user percentage and, consequently, the

social welfare ratio tends to be higher for the WRF strategy.

5.3.4 Concluding Remark

The simulation results show that our proposed one-round auction mechanism can ob-

tain near-optimal results, effectively avoid the exposure problem, and allocate both types

of resources from edge nodes to mobile users with a low execution time of around 0.0003

seconds, which is practical in real-world scenarios.

One thing to be noted is that our proposed mechanism not only performs well when

the incoming traffic is low, but it also performs exceptionally well when the incoming
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traffic is high and overloads the system.

5.4 Simulation Results of Fairness-Aware AuctionModel

in Recurrent Auction Scenario

As stated in section 5.6, the proposed fairness-aware multi-round auction mechanism

is expected to prevent type 2 users from dropping out of the auction and avoid the bidder

drop problem.

5.4.1 Target of Comparison

The targets for comparison in this analysis are as follows:

1. Fairness-Aware Auction Model (FAAM): Auction Model proposed in chapter 4,

using Algorithm 2 to determine resource allocation and pricing in a single auction

round.

2. Non-Fairness-Aware Auction Model (NFAAM): Auction Model proposed in chap-

ter 3, using Algorithm 1 to determine resource allocation and pricing in a single

auction round.

Firstly, we observe the influence of the proposed fairness mechanism under condi-

tions of a fixed arrival rate. Secondly, we examine the impact of this mechanism under

varying arrival rates. As explicated in section 4.4, the process of a user submitting a bid

request in each auction round is modeled as a Bernoulli trial.
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In the scenario with a fixed rate, the success probability for the Bernoulli trial is es-

tablished at 0.2. In the multiple rates scenario, the arrival rate is adjusted between 0.01

and 0.26 with a gap of 0.01 for analysis. The total number of mobile users in both sce-

narios is set to 1,000. The total number of auction rounds conducted is fixed at 1,500.

The entire simulation is replicated 20 times to ensure robustness, with the average results

subsequently reported.

There are three target metrics we want to observe, the first is the dropout percentage

for both type 1 and type 2 users under FAAM and NFAAM, the second is the fairness

index value for both types of users under FAAM and NFAAM, and the third is the social

welfare ratio of FAAM to NFAAM.

5.4.2 Comparison of Fixed Arrival Rate in Recurrent Auction Sce-

nario

Figure 5.5: The effect of Fairness Mechanism on User’s Drop Out Percentage
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From Figure 5.5, it is observable that within the Non-Fairness-Aware Auction Model

(NFAAM), the dropout percentage for type 2 users sharply escalates as the auction round

approaches 400 rounds, eventually surging to 42% by the time the auction round culmi-

nates at 1500 rounds. In contrast, the dropout percentage for type 1 users within NFAAM

remains nearly stagnant at 0%. This is expected due to the inherent structure of auctions

that favor bidders who propose higher bids.

In the case of our proposed Fairness-Aware Auction Model (FAAM), it effectively

curtails the dropout percentage for type 2 users to around 16% while concurrently main-

taining the dropout percentage for type 1 users at a mere 2.5%. Consequently, the total

dropout percentages for NFAAM and FAAM are 42% and 18%, respectively.

These findings substantiate the effectiveness of our proposed FAAM in significantly

reducing the dropout percentage for type 2 users and, in turn, the total dropout percentage.

This result highlights the importance of incorporating fairness considerations into auction

models, particularly in recurrent auction environments with diverse types of participants.

Figure 5.6: The effect of Fairness Mechanism on Fairness Index Value
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As depicted in Figure 5.6, the fairness index values for the FAAM and NFAAM

decrease as the auction proceeds. However, the decline in the fairness index is notably

more rapid and pronounced for NFAAM, with the disparity between NFAAM and FAAM

widening as the recurrent auction continues. The maximum margin observed is around

20%. This trend is intuitive, given that the total dropout percentage for NFAAM is con-

siderably higher than FAAM’s.

These findings underscore the importance of fairness considerations in auction mod-

els. While both models experience a decline in fairness over time due to the inherent

dynamics of auctions, the proposed FAAM demonstrates significantly improved sustain-

ability of fairness compared to its non-fairness-aware counterpart. This has crucial impli-

cations for long-term user engagement and overall system performance.

5.4.3 Comparison of Multiple Arrival Rates in Recurrent Auction

Scenario

In this subsection, the effectiveness of the fairness-aware auction model is evaluated

under a range of different arrival rates. The arrival rates assessed span from 0.01 to 0.25

with increments of 0.01, yielding 26 distinct arrival rates. Arrival rates below 0.05 are

classified as low incoming traffic, rates between 0.05 and 0.2 are deemed high, and rates

exceeding 0.2 are characterized as overloaded.

For each arrival rate, the auction is executed for 1,500 rounds, with the results of the

1,500th round serving as the outcome. The simulation is replicated 20 times to enhance

the robustness of the findings, with the average results subsequently reported.

By testing the model across this range of arrival rates, we aim to provide a compre-
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hensive understanding of its performance under various levels of incoming traffic. This

analysis will shed light on the scalability and adaptability of the fairness-aware auction

model in handling diverse operational scenarios.

Figure 5.7: Comparison of Users’ Drop Out Percentage of Multiple Arrival Rates

As depicted in Figure 5.7, it is evident that our proposed Fairness-Aware Auction

Model (FAAM) can notably reduce the overall dropout percentage compared to the Non-

Fairness-Aware Auction Model (NFAAM) under all tested conditions.

In situations of low incoming traffic, no users, regardless of type, drop out from the

auction under either FAAM or NFAAM.

During periods of high incoming traffic, type 2 users experience a dropout percent-

age of up to 43% under NFAAM, compared to a substantially lower 15% under FAAM.

For type 1 users, the dropout rate under NFAAM is virtually 0%, while under FAAM, it

increases slightly to 2.7%. The total dropout rate for NFAAM is 43%, whereas, under

FAAM, it decreases to 17.7%.
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When incoming traffic becomes overloaded, the dropout percentage for type 2 users

can escalate to 56% under NFAAM, yet effectively halved to 28% under FAAM. For

type 1 users, the dropout rate under NFAAM remains negligible at nearly 0%, while it

rises modestly to 5.5% under FAAM. The overall dropout rate for NFAAM reaches 56%,

whereas, under FAAM, it is significantly mitigated to 33.5%.

These results underscore the power of our proposed FAAM. Not only does it sub-

stantially reduce the dropout percentage of type 2 users, which represent the group we

specifically aim to support, but it also achieves this with only a marginal increase in the

dropout percentage of type 1 users. This beneficial mechanism is effective across all

incoming traffic levels, demonstrating exceptional resilience, particularly under system-

overload conditions.

Figure 5.8: Comparison of Fairness Index Value of Multiple Arrival Rates

The fairness index results are presented in Figure 5.8. When incoming traffic is low,

there is no discernible difference between the fairness index of FAAM and NFAAM.How-
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ever, as incoming traffic increases, FAAMmaintains a notable advantage, showing an over

20% margin compared to NFAAM. This indicates greater fairness in resource allocation

during high-traffic periods under the FAAM model.

Interestingly, as the system transitions to an overloaded state due to high traffic vol-

umes, the gap between the fairness indices of FAAMandNFAAMnarrows to around 10%.

Even in these extreme conditions, FAAM maintains a relative advantage, demonstrating

its robust capability to preserve fairness in resource allocation.

Despite this diminishing gap under maximum traffic load, it does not diminish the

efficacy of FAAM. It underscores FAAM’s resilience and adaptability under various de-

grees of system load. Most notably, FAAM exhibits strong performance under high and

overloaded traffic conditions. These findings underscore the strength of the FAAM in

promoting equitable resource allocation, particularly under challenging operational sce-

narios.

Figure 5.9: Social Welfare Relative Ratio for Fairness-Aware and Non-Fairness-Aware
Auction Mechanism
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Figure 5.9 reveals the trade-off enacted by FAAM. Although the overall dropout per-

centage is reduced under FAAM, it is achieved at the expense of a higher dropout per-

centage among type 1 users. These type 1 users are generally willing to pay more for the

packages they bid on, contributing significantly to the overall social welfare. However,

this compromise can be seen as a strategic and beneficial trade-off in the long run.

The rationale for this trade-off becomes apparent when considering the potential im-

plications of NFAAM’s approach. As shown in Figure 5.7, the dropout percentage for type

2 users under NFAAM can soar to as high as 56 percent. This exceedingly high dropout

rate threatens to erode the market diversity, potentially enabling type 1 users to establish

an oligopolistic market once type 2 users abandon the auction.

In contrast, by preventing such an extreme scenario, FAAM safeguards the diversity

and competitiveness of the market. The slightly reduced contribution to the overall so-

cial welfare of type 1 users is a worthwhile sacrifice to preserve a healthy, inclusive, and

competitive auction environment. This strategy ensures the longevity and sustainability

of the auction mechanism, preventing potential market distortion and the formation of a

user oligopoly.

5.5 Concluding Remark

Extensive simulations have indeed verified the effectiveness of the proposed Fairness-

Aware Auction Model (FAAM). Results consistently demonstrate that FAAM deters type

2 users from exiting the auction. This approach mitigates the bidder dropout issue and

precludes the development of an asymmetrical balance of bargaining power between the

mobile operator and type 1 users.
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Such an asymmetrical power dynamic would potentially decrease social welfare over

time. Moreover, it could lead to an oligopoly market that could ultimately reduce the

mobile operator’s profit in the long term. Therefore, the FAAM’s ability to maintain a

diverse and competitive bidder pool is crucial to the sustainability of the mobile resource

auction ecosystem.

The effectiveness of our proposed model is not limited to a specific traffic condition.

The FAAM has proven to perform efficiently under various levels of incoming traffic.

Whether the incoming traffic is classified as low, high, or even overloaded, FAAM con-

sistently maintains its ability to prevent type 2 user dropout, thus fostering an inclusive

and balanced auction environment. This highlights the robustness and versatility of the

FAAM in managing different traffic loads while upholding the principle of fairness.
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Chapter 6 Conclusion and Future

Work

6.1 Conclusions

Auction-basedmodels have been recognized as a highly efficient method for resource

allocation inMobile Edge Computing (MEC) systems. These systems often comprise mo-

bile users offloading applications that require wireless channels and computing resources.

Regrettably, most extant auction-based models primarily focus on allocating computing

resources, often overlooking the crucial task of wireless channel resource allocation. Fur-

thermore, the prevalent characterization of these models as single-round auctions leaves

much to be desired in discussing fairness-related concerns within recurring auction envi-

ronments. This study addresses these gaps, proposing an auction-based model designed to

jointly allocate wireless channel and computing resources while maintaining fair resource

allocation.

The research contemplates a MEC system with multiple edge nodes to which mobile

users offload their applications. For an offloaded application to execute, computing and

wireless resources are necessary. Subdivided into fractions, these resources are combined

and offered as packages to mobile users via an auction model. For ease of analysis, the
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study assumes two types of mobile users, types 1 and 2, each with distinct tariff plans.

Mobile users in our system are equipped with automated auction agents responsible for

generating bid requests on their behalf. These agents operate according to the user’s spe-

cific tariff plan, thus accurately reflecting the bidding capacity of each user in the auction

process. Type 1 users, powerful and wealthy, can bid at higher prices for resource pack-

ages. Conversely, type 2 users, less affluent and resourceful, lack the financial stamina

for sustained high bidding. We proposed a fairness-aware auction model to prevent type

2 users from early auction withdrawal. While Wang et al. [20] and Zhang et al. [21] both

proposed the use of the multi-round auction model, they did not consider fairness when

it comes to resource allocation, leading to bidder dropout in the long run. In this thesis,

our proposed fairness-aware auction model focuses on fair resource allocation, which can

effectively solve the bidder dropout problem.

Simulation results reveal that our proposed model excels in tackling the exposure

problem for mobile users, dramatically enhancing allocation efficiency. Additionally, it

significantly reduces the bidder dropout rate, ensuring fair resource allocation within a

recurrent auction scenario. Presently, our model supports at least 2000 mobile users and

125 base stations. During a single-round auction, the proposed model attains a maximum

performance margin of 20% over comparison targets in terms of served user percentage

and social welfare. Furthermore, in recurrent auctions, it slashes the total bidder dropout

percentage from 56% to 28%. It records a 20% increase in fairness index value while re-

taining 80% of the original social welfare compared to a non-fairness-aware multi-round

auction model. Remarkably, our model thrives when incoming traffic surges and over-

loads the system, distinguishing it from other models and making it an optimal choice for

resource allocation in resource-deficient scenarios, a common feature of typical real-world
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MEC systems.

In summary, the chief contribution of our research is that we proposed an effective

and efficient mechanism for jointly and fairly allocating computing and wireless resources

to mobile users. This is achieved via a fairness-aware auction model within a resource-

competitive MEC environment.

6.2 Future Work

The main goal of selling both types of resources as packages is to solve the exposure

problem when computing and wireless resources complement mobile users’ offloaded ap-

plications. This prevents bidders who want bundles of resources from placing aggressive

bids. The predefined package should be intricately designed to meet the actual needs of

mobile users while being structured sufficiently to accommodate specific allocation and

payment rules equitably. The major problem with predefined package bids is that, when

they are poorly aligned with bidders’ objectives, they may cause more harm than good.

Thus, the optimal way of dividing resources into packages according to real-world mobile

users’ objectives can be further studied.

Second, other than OFDMA, Non-Orthogonal Multiple Access (NOMA) in 5G or

Beyond 5G environments can be considered for further research. When designing an

auction model for resource allocation in MEC, especially wireless resources, the charac-

teristics of NOMA need to be considered.

Furthermore, in the proposed fairness-aware auction model, the bidding strategies of

participants can significantly influence the auction outcomes. Over time, under the pro-

tection of the fairness mechanism, mobile users could potentially manipulate their bidding
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strategies by exploiting the auctioneer’s resource allocation scheme, specifically its pri-

ority setting. For instance, mobile users could artificially boost their resource acquisition

priority by submitting low-value false bids, thereby intentionally losing. This introduces

a degree of strategic complexity that could potentially undermine the effectiveness of the

fairness mechanism. As such, future research should investigate the incentive compati-

bility of the fairness-aware auction model to address potential strategic bid manipulation

and ensure fair and effective resource allocation.

Lastly, future studies could explore the feasibility of dynamically activating the fair-

ness mechanism better to accommodate the variable traffic rates characteristic of real-

world conditions. Such adaptability could bolster the system’s robustness and resilience to

fluctuations, fostering a more stable and efficient resource allocation environment within

the MEC system.
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Appendix A — Notations

N Number of edge node

M Number of mobile user

Wi Capacity of resource block of Ei

NRB Number of sub-carriers per resource blocks

Ei Edge Node i

Si Set of szi , ∀z ∈ (1, 2, · · · , k)

szi Type z package in Si

Qi Set of qzi , ∀z ∈ (1, 2, · · · , k)

qzi Capacity of szi

cz CPU frequency provided in type z package

wz Number of resource block provided in type z package

k Number of unique resource packages

rj Request of mobile user j

bj Bid value of user j

gj Package type number user j bid for

fj CPU cycle required for user j’s offloaded task

sj Size of user j’s offloaded task

tdj Deadline of user j’s offloaded task

xi,j, gj,z Binary decision variable

Table A.1: Notations of System Structure

81



doi:10.6342/NTU202302400

wi,j Bandwidth between user j and base station i

ai,j Data rate between user j and base station i

Pj Transmission power of user j’s mobile device

hi,j Channel gain between user j and base station i

Di Serving range for base station i

di,j Distance between user j and base station i

N0 Background noise constant

H Channel gain constant

tTj Total completion time for user j’s offloaded task

tci,j Execution time needed for user j’s offloaded task on edge node i

ow Speed of light

Table A.2: Notations of Network Model

wi Fairness weight of user i

Lmax Maximum losing streak for a user before his dropout

Li Current losing streak for user i

Table A.3: Notations of Fairness-Aware Auction Model
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Appendix B — Proof of Equation 3.22

in Section 3.6

We first present the proof of Myerson’s Lemma [11], then use Myerson’s Lemma to

prove Equation 3.22.

Definition B.0.1 (Monotone Allocation Rule). An allocation rule x for a single-parameter

environment is monotone if for every bidder i and bids b−i by the other bidders, the allo-

cation xi(z, b−i) to i is non-decreasing in its bid z.

Definition B.0.2 (Truthfulness). An auction mechanism satisfies truthfulness if all agents

bid truthfully, i.e., bi = vi is a dominant strategy for each bidder: xivi−pi is maximized by

bidding their true valuation. Where for bidder i, bi is the bid value, vi is the true valuation,

xi is 1 when bidder i wins, and is set to 0 vice versa, and pi is the payment that bidder i

has to pay if he wins.

Theorem B.0.1 (Myerson＇s Lemma [11]). For a single-parameter environment with an

auction mechanism A = (x, p), where x is the allocation rule, and p is the payment rule.

For every bidder i and bids b−i by the other bidders, denote xi(z, b−i) as the allocation

and pi(z, b−i) as the payment of bidder i when it bids z. The following three claims hold.

1. A allocation rule is implementable if and only if it is monotone.
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2. If an allocation rule is monotone, thenwithout loss of generality, assume that pi(0, b−i) =

0, there exists a unique payment rule p, such that the sealed-bid auction mechanism

A = (x, p) is truthful.

3. The payment rule p is given by

pi(bi, b−i) = bi · xi(bi, b−i)−
∫ bi

0

xi(z, b−i) dz

Proof. Consider an auction with a single item, and with an allocation rule x, assume bid-

ders bid truthfully, and consider y, z, where 0 ≤ y < z, z = y + h, h > 0. For bidder

i, if it has a private valuation of z towards the item, it submits a bid y. The truthfulness

property demands that

z · xi(z, b−i)− pi(z, b−i) ≥ z · xi(y, b−i)− pi(y, b−i) (B.1)

and, when bidder i has a private valuation of y towards the item, and it submits a bid

z, the truthfulness property demands that

y · xi(y, b−i)− pi(y, b−i) ≥ z · xi(z, b−i)− pi(z, b−i) (B.2)

Combine B.1 and B.2, we have

z(xi(z, b−i)− xi(y, b−i)) ≥ pi(z, b−i)− pi(y, b−i) ≥ y(xi(z, b−i)− xi(y, b−i)) (B.3)

The partial result of B.3 is
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z(xi(z, b−i)− xi(y, b−i)) ≥ y(xi(z, b−i)− xi(y, b−i))

⇒(z − y) · (xi(z, b−i)− xi(y, b−i)) ≥ 0

(B.4)

, which implies the monotonicity of the allocation rule.

By dividing B.3 by z − y, we have

z
(xi(z, b−i)− xi(y, b−i))

z − y
≥ pi(z, b−i)− pi(y, b−i)

z − y
≥ y(xi(z, b−i)− xi(y, b−i))

z − y
(B.5)

By replacing z with y + h

(y+h)·(xi(y + h, b−i)− xi(y, b−i))

h
≥ pi(y + h, b−i)− pi(y, b−i)

h
≥ y·(xi(y + h, b−i)− xi(y, b−i))

h

(B.6)

Fix z and take the limit y → z, i.e., taking h → 0+, and since x is monotone, we

have

p
′

i(z, b−i) = y · x′

i(z, b−i) (B.7)

By integrating from y = 0, using integration by parts, we have

pi(bi, b−i) = bi · xi(bi, b−i)−
∫ bi

0

xi(z, b−i) dz (B.8)
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We can prove that B.8 is truthful. Under this payment rule, the utility of a user i is

ui(bi, b−i) = vi · bi − pi(bi, b−i)

= (vi − bi) · xi(bi, b−i) +

∫ bi

0

xi(z, b−i) dz

(B.9)

If bi ≤ vi,

ui(bi, b−i)− ui(vi, b−i) = (vi − bi)xi(bi, b−i) +

∫ bi

0

xi(z, b−i) dz −
∫ vi

0

xi(z, b−i) dz

= (vi − bi)xi(bi, b−i)−
∫ vi

bi

xi(z, b−i) dz

≤ (vi − bi)xi(bi, b−i)−
∫ vi

bi

xi(bi, b−i) dz = 0

(B.10)

If bi ≥ vi

ui(bi, b−i)− ui(vi, b−i) = (vi − bi)xi(bi, b−i) +

∫ bi

0

xi(z, b−i) dz −
∫ vi

0

xi(z, b−i) dz

= (vi − bi)xi(bi, b−i) +

∫ bi

vi

xi(z, b−i) dz

≤ (vi − bi)xi(bi, b−i) +

∫ bi

vi

xi(bi, b−i) dz = 0

(B.11)

Combine B.10 and B.11, we have

ui(bi, b−i) ≤ ui(vi, b−i) (B.12)
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, which means bidding truthfully is the dominant strategy for every bidder i. Thus,

the payment rule is truthful.

By B.0.1, we know that the payment rule is

pi(bi, b−i) = bi · xi(bi, b−i)−
∫ bi

0

xi(z, b−i) dz

In an auction with a single item, the winner has to pay the second highest price, also known

as the critical bid b∗, which can be derived through the payment rule

pi(bi, b−i) = bi · xi(bi, b−i)−
∫ bi

0

xi(z, b−i) dz

= bi · 1− (

∫ b∗

0

0 dz +

∫ bi

b∗
1 dz)

= bi − (bi − b∗)

= b∗

(B.13)

In an auction with k identical items, the result of the single-item case can be gen-

eralized. The winners in this auction have to pay the k+1-th highest price, denoted as

b∗k+1

pi(bi, b−i) = bi · xi(bi, b−i)−
∫ bi

0

xi(z, b−i) dz

= bi · 1− (

∫ b∗k+1

0

0 dz +

∫ bi

b∗k+1

1 dz)

= bi − (bi − b∗k+1)

= b∗k+1

(B.14)

Thus, by B.0.1, we can prove that in an auction with k identical items, where the
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allocation rule is monotone, and the winners pay the k+1-th highest price, is truthful.
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