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Abstract

The purpose of this dissertation is to study the Fourier restriction problems in Eu-
clidean spaces and their applications to Falconer’s distance set conjecture. Restric-
tion problems are one of the most known research problems in the area of Harmonic
analysis and have been found to have important connections to other research fields
such as partial differential equations and geometric measure theory. In this dis-
sertation, we mainly introduce in details the known Tomas-Stein results, bilinear

restriction estimates and Bourgain’s work on Falconer distance conjecture.

keywords:Fourier restriction problems, Falconer’s conjecture, harmonic analysis,

geometric measure theory, Tomas-Stein theorem
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1 Introduction

The restriction problems of Fourier transform was first purposed by C. Fefferman in

5l in 1970. Given an appropriate function f on R", its Fourier transform is
pprop )

f&) = | flaenida (1)

or the alternative form

~

flor= | s

(we usually use the form @)) And we give the definition of restriction estimate on

hypersurface.

Definition 1.1. Let S be a hypersurface with boundary, we denote the estimate

(/] <5>\qd"<f>)é =7, 145 o)

holds for all f € S(R™) by Rs(p — q) for 1 < p,q < oo, where do is the surface

measure of S.

Our question is when does Rg(p — ¢) holds for S be the unit sphere S" ' in
R"? Of course there are some variations of this problem. First we may think that

the norm is of whole R", which is

17l = 07, 3)

for all function f, we may assume f is a test function since C5° (R") is dense in
LP (R"™) for 1 < p < oo. There are now many well-known results of this question.
We can also consider S be some specific surfaces, for example, paraboloid, or the

bilinear form of the inequality, that is

Fido fados

S Al 2,
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where f; is supported on the surface ¥; with the measure o; for i =1, 2.
In this paper we will introduce the famous result of the standard restriction
problem, which is Tomas-Stein theorem.
Theorem 1.1 (Tomas-Stein restriction theorem). Rg(p — 2) holds for 1 < p <
2(n+1)
n+3

2(n+1)

It is proved by Peter A. Tomas [14] for 1 <p < T3

, and the end point case
is proved by Elias M. Stein [12].
We also introduce a application of Fourier restriction, K.J. Falconer given a

conjecture of geometric measure theory in [4]:

Conjecture 1.1 (Falconer’s conjecture). Forn > 2 and a compact subset E of R",
define
A(E) ={lz —yl: 2,y € E}.

Then dimy(E) > g = |A(E)| > 0. This is called the Falconer’s conjecture. We

say Falconer’s conjecture holds for constant C' if dimy(E) > C = |A(E)| > 0.

n
This problem is open in every dimension, Falconer proved 5 is optimal and

in the same literature. In [l], Bourgain

showed this conjecture holds for
improved the result in all n, especially in n = 2, it holds for %3 Later, Wolff showed
a better result in [15], he showed it holds for g in R". Erdgan [3] use the bilinear
restriction estimate to improve the bound to g + % for n > 3. Recently, the bound
of R? is improved to % in [6], and the authors of [2] proved that dim (E) > g + i
suffices if n > 4 is an even integer.

In Section , we will give some known results of restriction problem, and a
detail of proof of Theorem ll:ll In Section , we will go through the proof of [1]
for R? and [3).

The following is the list of notation.

1. X <Y : X <CY for some constant C'.

2. Cr : the constant depends on 7.

2 d0i:10.6342/NTU202301952



10.

11.

 X~Y : X<YandVY < X.

. dimgy (E) : the Hausdorff dimension of E.

| X| : the Lebesgue measure of X.

. X : the characteristic function of E.

B(z,r) ={y: |z —y| <r}.

Agr(L) :={z € R": ||z] = R| < L, where R, L € R}.

H?*(E) : the s-dimensional Hausdorff measure of E.
M(FE) := {u : measure p satisfies 0 < u(E) < oo}.

S(F) : the set of all Schwartz function on E.

d0i:10.6342/NTU202301952



2 Introduction of restriction problems and the re-

sults of Tomas and Stein

2.1 Some Known Results of Restriction Problem

First, we consider the problem in whole R™. By Plancherel’s theorem, we get

|7, = s

and by the triangle inequality, we have

17 = e,

immediately. Using these two estimates with the interpolation, we obtain

7

<
<1,

(4)

for all 1 < p < 2, and p’ is the Holder conjugate exponent of p, which means it

satisfies

1 1
-+ —-=1for1<p<2
p p

and define p’ = oo if p = 1.

Moreover, the estimate (@) is the best possible.
Theorem 2.1. If (B) holds, then ¢ =p' and 1 < p < 2.

Proof. First, we prove that ¢ needs to equal to p’. Consider

for some Schwartz function ¢ and t > 0 can be varied. We can see that

F(&) = t"p (16),
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SO

1 1

$<t5>\qd5)q=t“3 (/ 3

I, = (L.

LfIl, ~= 27

Then () becomes

Q3
33

" <t

n o n
It is only true if n — — = — = g =p', since we can let t > 1 or 0 <t < 1.
qg P

For 1 < p <2, since we assumed 1 < p at first, we only need prove p < 2. Given
a Schwartz function ¢ supported on [0,1]" and {az}r_, be i.i.d. random variables

with
1
IP’(ak = 1) :[P’(ak. = —1) = 5
for all 1 < k < N. Then we choose function f be

f@) =" aw (z — key),

where e; is the first vector of standard basis of R". We can easily see that

and

171, = ( / pdm>; ~ (v |w<x>|pdx)’l’ ~NE )

Next, by Khinchin’s inequality, we obtain
P) %

1
PN\ p
) - E(
5 d0i:10.6342/NTU202301952
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N
(o
k=1

2mik&1

since ‘e { = 1. Then raise the both side to the power of p, integrate with respect

to £ and interchange the expectation and integral, we will get

q v
=(J7]) = (;M) N

Thus, by the definition of expectation, there is a choice of {ak}fcvzl such that

Vs

= Vs

q

According to the assumption, (B) and (B), we obtain
NEZ|F| S0, ~ N

so we need p < 2 if we let N tends to infinity. O

Motivated by these elementary inequalities, the restriction problems are to study
the same kind of inequalities by replacing the left hand side by restricting onn some
subset of R". These problems also play a very important role in many different

problems in PDE and geometric measure theory e.t.c.

Theorem 2.2. Rg(p — q) is equivalent to the following estimate:

[Fao| <0 0us (")

if do € M(R"™).

Proof. Suppose that Rg(p — ¢) holds, by the Riesz representation formula, we have

= sup
lgll,=1

= sup
llgll,=1

s

| Faat@yg(ais

f(x)g(z)do(x)

(8)

/

P Rn
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for g a Schwartz function. Then

< HaHLq(S) HfHLq’(S) S Hng HfHLq’(S)

[ f@i()do(x)

by Holder’s inequality and our assumption. Putting this estimate back to (E), we

obtain

f(x)g(x)do(x)

]Rn

sup
llgll,=1

S S g lly 1A sy < 1Al s
gll,=

For the other side, we can use the same method to get

[ Fwyw)o(@)| = || f()gdo(z)az| < 111, [ada]| < 151, lollois)
SO
[fllgagsy = sup f@)g(@)do(z)| < sup  |[fl, lgllre s < 1],
gl o =1 I/ R" gl o (=1
Thus, we have shown these two statements are equivalent. [

The Fourier transform of f restricted on S™ ' may not always make sense for
arbitrary f € LP. First, for p = 1, we have fis continuous and decays to zero as it
goes to infinity. Thus, it is meaningful of frestricted on S, we can also see that

Rs(1 — ¢) holds for ¢ = co. From the Hélder’s inequality, we have

|7

for all 1 < ¢ < oo since "' is compact. Hence, Rg(1 — ¢) holds for all 1 < ¢ < co.

< Whanisey S S
NS 1 Y 1 PYete] 1 T 1y

But for p = 2, let f be a L? function, fis also a L? function by Plancherel’s theorem.
But J?is not meaningful on S™"~! in general since it is a measure zero set.

Now we introduce the restriction conjecture.

Conjecture 2.1 (restriction conjecture). Given S = S"! be the unit sphere in R

and 1 < p,q < oo, then Rs(p — q) holds if and only if the following two inequalities

7 d0i:10.6342/NTU202301952



hold.

+ 1)q
/>(n 9
Pz (9)
2n
< 10
P n—+1 ( )

Why do we have this conjecture? Consider X be a surface with the form

Y={(z,0():zeR},

where ¢ is a smooth function maps from R™ ™' to R. Without loss of generality, we

may assume ¢(0) = V¢(0) = 0. Then we have the following property.

Property 2.1. Suppose ¢(x) = O (|x|*) for a > 2, then Rg(p — q) holds only
possible if

,>n+a—1

p =z q.

n—1

The proof is similar with part one of theorem @ Thus, if ¥ = S, we have
o(z) = O (|x|2), so the constraint of property above becomes (E) On the other
hand, if Rs(p — ¢) holds, by the duality (theorem @), we have

|Fdol| < fllws

for all f € Lq/(S). In particular, choose f be the constant function 1, the this

inequality becomes

HEE <1 (11)
p/
Using the fact that
do ()] s+el (12)

(see chapter 14.2 of [9]), we obtain

|

5/ |x|12ndx:/ (1+u) 27t 1y,
P’ n 0

If we consider u is far from the origin, the term inside the integral is comparable

8 d0i:10.6342/NTU202301952



with ul_Tnpur”_l, so if we want it bounded by a constant, we need

1—71,+ 1< 2n
n — .
5 P n+1

(13)

Consequently, these two inequalities are proved to be necessary conditions, and the
restriction conjecture says that they are also sufficient conditions.
The following theorem is an important result that proved by Peter A. Tomas

and Elias M. Stein. Their proofs are often called Tomas-Stein methods.

2.2 Proof of Tomas-Stein Restriction Theorem

Proof. First, if conjecture El! is true, take ¢ = 2, we have

,Z2n+2:>1_1§n—1:>12 n+3 ng(n—l—l)'
n—1 p - 2n+2 p = 2(n+1) 2n +3

It seems that the conjecture is somewhat believable.

We say that Rg(p — 2) holds means

I

~ 2 9

s S, = [ [F0] ao©) 5 1112
= [T @art) < 1512
~ /f S Do S 11

= [ 1) 7o) S 151 (14)
by the Plancherel theorem. Next, by the Holder’s inequality, we can see if
|reaa| <1, (15)

holds, then (@) holds. Therefore, we transform the Rg(p — 2) problem to the
some R(p — p') type problem, and this transformation can be achieved because of

q=2.

9 d0i:10.6342/NTU202301952



To approach the estimation (@), we consider a radial bump function ¢ satisfies

¢=1for |z| <1,

¢ =0 for |z| >2
and has compact support. Then we define
Ur(z) = ¢ (2”“:6) — ¢ (21’%) , (16)

Yy, is supported on the annulus of || = 2 and is of size = 1. Next, by the definition

of ¢ and 1), we have the following two equations:

Ur(x) = 1o (27") (17)

and

L—g(x) = > tn(x). (18)
k=1

(@) implies that

frido = £ (0) + F 3 o

k=1

= o], < 7« (o) ], + |35 1+ ()
P P k=1 P’
Consequently, we can estimate H f = (@5) H and Z f* <wk3<;> separately
v k=1 p’
instead of Hf «do
pl
For the first one, by the Young’s convolution inequality,
| = (edo)| < sl ||ode]], < 1s1, (19)

since ¢do is a bump function in Cj°.

10 d0i:10.6342/NTU202301952



For the other one, first we observe that

p”

S| (u)

/ k=1

> 7+ (vudo)
k=1

p

so if we can show Hf * (1%35) H <27k || f]|,, for some & > 0, we may easily conclude
p/

that

S AL -

/

if * <¢k6/ig>
k=1

P
To show Hf * (@bk@) H < g7k | f]l,, we use the interpolation of Rs(1 — o00)
p/
and Rg(2 — 2) with the restricted constants depend on some order of 2".

First, for Rg(oo — 1), since ¢y, is supported on the annulus of |z| ~ 2%, we get

| £+ (edo)||_ < [endo| 10275 100, (20)

by the Young’s convolution inequality and ()

Next, for Rg(2 — 2), we can see that

e (0@, =17 G so)] <[l [, e

by Plancherel’s theorem and Holder’s inequality. Compute @ directly by its defi-

nition, we obtain

Uil(e) = 2%, (2%2)

and we have % is a Schwartz function since 1) is also a Schwartz function. Thus,

@(x) has the Schwartz decay:

2nk

nk, 1~ (ok <
2 ¢0(2 l’)) (1+2k|x|>N

nl)| = < (22)

for all N > 0. Take N = n, we obtain the estimate

o 2nk:
‘w’“ N~ Jos Wt 267 — ) o(y)

11 d0i:10.6342/NTU202301952




2nk
B /{y:x—y|szk} (1+2F|z — y|)”d"<y)

o 2nk
+ / wdo(y)
im—k J y2i<|z—y|<2iT1} (1 + 2% ’33 - ?/D

§2"’“/ 1-do(y) +
{y:\w—y\§2*k}

<2nk . 2—k(n—1) + Z 2nk . 2—(k+i)n . 2(i+1)(n—1)
i=—k

=2F 2771 Y 27 = ok ontt ot ok
i=—k

Hence, we have
U do|| <2
k * g ~Y Y
oo

and (@) becomes

|7+ (wndo) || 528171

S 2nk
i=—k /{y:21<|z—y§2¢+1} (1 + 2k+i)n

do(y)

(24)

As we mention above, using the interpolation by (@) and (@), we obtain

- ( (1-n)1-6) n)(l 6)
| # (wnda )| <2075 2 g, = 22O
for
L_0 . 1-0_ 2
p 21 P79y

with 0 < 8 < 1. As our desire, we want

< —e<0

-1
:>29+(n—1)0+1—n<0:>6’<n—.
n—+1

Putting this back to (@), we have the range of p is

2 2 2n + 1)
p= < — = .
2—-0 2_Z+1 n+3

2 1
Therefore, we conclude that Rg(p — 2) if 1 <p < %
n

12

(28)

d0i:10.6342/NTU202301952



2 1
M, Stein proved it by the similar method of Tomas

For the endpoint p =
in 1975, he used the complex interpolation instead of the real interpolation.

As the proof above, it suffices to show that

[e.9]

Zf * (¢k6/la>

k=1

S,

/

p

2(n+1)
n—+3
the sum will go to infinity. Thus, we prove the following two inequalities instead of

(20) and (24):

for p = . If we use the same method of Tomas, we have ¢ = 0 and then

o0

|3 -a0st oy ()

k=1

S Il (29)

o0
and

S 1l (30)

2

(—1+iy) -
3 Ltigh f <¢kd0>

for all y € R.

Similar with (@), we use the Young’s convolution inequality to get

io: L <r¢]kd0'> = ||f * i? i)k (@bkd/;)
1 00 k=1 o]
< [S2Cs (6@ | 151,
k=1 oo

If we can prove

<1

Yol (ud) | <1,

k=1

o0

then (@) holds immediately. But this is easy because of () and

> 2T My (a) = 0 (2"

o
k=1
since |z| ~ 2",

For (@), we need to use some estimate which is different from Tomas’ First,

13 d0i:10.6342/NTU202301952



by the Young’s convolution inequality, it is sufficient to show

<1 (31)

o

Zz(flJriy)k (@ N do)
k=1

We may ignore the imaginary term, so it is only need to prove

22*’“‘@*@‘ <1. (32)
k=1
First, we show that

. 1+ 2%d(x,S), ifd(x,S) <2019k

Gerdo| S8 o (33)
—— ifd(z,S5) > 21k
(2kd(z,5))

for every € > 0 and M > 0, where d(z, S) = ||z| — 1|, it means the distance between
x and the unit sphere. For d(z,S) > 2(=1+9)k iust use the same method of estimate
() and the fact that |x — y| > ||| — |y|| = d(x, S). For the other side, we can not
just use the same estimate, so we need to find another way to approach |¢y * do|.
Consider

Vibn(z) = V2™ (2F2) = 20+ DR w0 (28 2) (34)

and V@/bg is also a Schwartz function, so it has the Schwartz decay, too. Therefore,

we have
2_'“’(V1//);> *da‘ <ok = ‘V(@*da)’ = ‘(V@) *do‘ < 9%

by (@) Write Fy(x) = Uy do(z), we may assume |z| < 1, then

Fie) = F ()| < swp [VE@)]- |z — | S 2%d(, S).
|z tefo ] ||
= |Fu(2)| < | (%)' +2%d(z, S).

14 d0i:10.6342/NTU202301952



If we can show is bounded, then we are done. By the rotational invariance

()

of do, we suppose — = e,, be the last vector of basis, so

|

A< [ e —oaow + [

en—y|>100

nlen = y)| dorty)
The second part is finite by the similar method of (@), For the first part, we write

y= (g, (1- Igf);)»

where y € R""!. Thus, the integral becomes

o _ 2 3 . 1
ol (2= 0= 1)) (1»gl2)5dg§/ﬂ%“

for some constant R. We now to show that this integral is comparable with

By the Schwartz decay, we obtain

(2.0 ([uf"))

@ (g, 0) ‘ dy + O(1).

— 9 _— (n+1)k 9
0 (0 (1u*)) — o (w.0)| 2 OLW-O(M )

for all N > 0, and then

7 (5.0 ()] £ 7 0) |+ s -0 (o)

(1+25 [y
o(n+1)k() (’y‘Q)

5 (o ()|as [ |7 wo|a- [

=
weo (1426 [y])"
Consequently, we need to show the last integral is O(1). We use the method of

Rn—1

15 d0i:10.6342/NTU202301952



estimate () again, we get

n+1
/ *yl” _dy
Rn—1 (1+2k|y\ -
n+1 ‘y}

n+1
Ny 2
{ufl+} (142 [y)" T e N O )

52(n+1)k/ 9—2k y n+1)k Z/ 22(—k+i) . 27N(i7i)dg
{uluf<2+) 2 ki)

52(71 1) 2 k:(n 1)+Z2n N+1)Z+N 1+22(n*N+1)i+N.
i=1 i=1

Taking N = n + 2, the summation converges, then this integral is O(1). Next, we

may choose suitable ¢ such that the integral

Anl

is O(1), so (@) is true. According to this inequality,

@(g,o)’dgzo.

Thus, we prove that

w (1)

we have

o0

27k 427k if d(x, S) < 2(-1-9)k

sz‘¢k*dg’< b=l (35)
Z (n 1— Ma)k’ if d(.ﬁE, S) > o(—1+e)k

The above one converges, the under one also converges if we choose M such that
n —1— Me < 0. Therefore, by the limit argument, the sum is convergent and
bounded by some constant for all d(x, S). Then we prove that (@) holds. Finally,
using the Stein complex interpolation, we can finish the end point case of Tomas-

Stein theorem.

Theorem 2.3 (Stein complex interpolation theorem). Let T, be an analytic family

of linear operators of admissible growth defined in the strip {z:0 < R(z) < 1}.

16 d0i:10.6342/NTU202301952



Suppose that 1 < py1,pa, q1,q2 < 00, + =1=2 4 0 izﬂ—i—% with 0 <60 <1 and

’ pe p1 P2’ qo q1

Ty (Nl < Cr) 11, > N Ta4iy (), < Caly) 1111,
with log |Cs(y)| < Ce™!, i =1,2 and a < 7, then

ITo(Mgy S N F 1, -

The proof and detailed definition is in [11]. To use this interpolation, we set

Ty (f) = ZQ(iy)kf * <¢kgl;>, we have p; = 2, po = 1, normalize the interval
k=1

—1 -1 =2
-1, n to have the length 1, the interval becomes n , . And then
2 n+1 n-—1
ITo(Dlly, = | D2 F « (ado) | S 151,
k=1 v}
where P, satisfies
I A A 2(n +1
1 _wa n n—1 ij:M_
Po 2 1 n+3
: . 2(n+1)
So we finish the part of endpoint “nr3 and then completes the whole proof. [
n
‘ ' 2(n+1)
The theorem says that Rg(p — 2) is valid for 1 < p < on 13’ next we use the
n
2(n+1) .
Knapp example to show the bound ———= is sharp. Let e, = (0,0,--- ,1) be the

2n + 3
last unit vector of R", define

As={tesS" ' :1—e, -t <6}
with 0 < 6 < 1. Consider f = x4,, we have

n—1
11l z2(gn1y 072 (36)

17 d0i:10.6342/NTU202301952



1
Next, using lemma 3.18 of [9] with ¢ = o e have
n

for £ € Bs, where
n c _ c
Bﬁz{£:<£1>“' 7§n)€R ’£Z| ngOI‘Z:l,"' 7n_17 |€n’ §5_2}
Then we can estimate the L? norm of ]?,

1 n+1
7

Hf/\qu z 5n71 |B§‘$ — 6n71 <2ncn67nfl)q Z 671—1— ra (37)

Thus, combine (@), (@) and the dual form of restriction inequality, we get

s

n—1
y S Ml p2gn-ry =072,

1 —1 2 1
which implies that n — 1 — n—i; > n 5 =q > (n——i_l) since 0 < 0 < 1. Hence
q n—
2(n+1) 2(n+1)

the bound of ¢ is ¢ < , and it can not greater than 3 That shows

2n+3
the bound is sharp.
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2.3 Conclusion of Restriction Conjecture

In the Section Ell, we give two necessary conditions of (B) for Sh=(1%2 1| By
2 1
Tomas-Stein theorem, we have Rg(p — ¢) holds for (p/,¢') = ((71——}-1)72) and
n -
by a simple estimate

(z)e ™" do(z)

Fdo(&)] =

< [ @I = Wl

Sn—1

we have Rg(p — ¢) holds for (p',¢') = (00,1). Thus, we have Rs(p — ¢) holds for

11 1 -1 1
—,— | on the line between [ —,1 ) and n—’ — | using the interpolation
' q 00 2(n+1)" 2

Next, if (B) holds for p’ and ¢/, then it also holds for p/ > p’ and ¢’ > ¢’ by Holder’s

inequality. Combining all these conditions, we can draw a region of validity on

11 —~
(—,, —/) -diagram. On the other hand, by the argument of ()7 we know that do is
qa p

1

p/

(b2
27 2(n+0)

region of validity

ZamN
==
8=
~—

Q|

Figure 1

/ 2n
not a L” function for p’ < 1 Because of the sharpness of Tomas-Stein theorem,
n JR—

the best point can not exceed the line y = n——i—l -(—z+1). Thus, we guess the best
n

n—1n-—1
on = 2n

that to be (l i) = ( L ”—_1) ie. p = 2”1 and ¢ = co. However, it has been proven

q’p x’ 2n n—

possible point will be ( ) Also, we may impose a weaker conjecture
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by Bourgain that they are equivalent.

p
1 1
(n_4 n_4)
. 1 n-1
CODJeCtured .............................. .\. (5’ 2(n+1))
region of validity
11
(1:%)
. 1
1 q
Figure 2

1 -1 —1 n-1
There is a large gap from <§, h) to (%, n2n ) Back to the proof

of Tomas-Stein theorem, Due to the case we deal with is ¢ = 2, we can easily

transform H ﬂ

< ||f]l, into Hf * @H < If]l,- In other cases, it would not
L2(s) p 1% p
be such easy to get a clear form to estimate. Also we know that do will affect the

bound directly, so for the other surfaces, the best point will be different. That is why

restriction problem is a vast and fascinating field which is still activating nowadays.
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3 Connections between restriction problems and

geometric measure theory

3.1 The case for n =2

Before going through the detail of [1}, we need some lemmas first.

Lemma 3.1 (Frostman lemma). Given a Borel set E C R" and 0 < s < n, then

H*(E) > 0 if and only if there exists p € M(E) satisfies
w(B(z,r)) <r® Ve eR", r>0. (38)

Proof. (<)
Given a covering of balls {B;} with radius r cover E and u € M (E) satisfies (@),

then

> (diam (By)) =3 (1) = 3 p(Bi)’ = p(A) > 0. (39)

So by the definition of H*(E), we obtain H*(E) > 0.
(=)
We only prove the version that E is compact. Assume F is compact and is contained

in a dyadic cube. Since H*(E) > 0, there is a constant ¢ > 0 such that
Zdiam(Ej)S >c>0

for all covering {E;} of E. Now consider a dyadic system, let

“r ki ki+1
D,, = {all dyadic cubes of length 2_m} = {H [2_7”’ + )‘ (ky,-- k) € Z"} )

2m
=1

For all m > 0, define a measure i, ,, on R" by

Llde
_ ) 2ms Q| HeEne#oe (40)

“ o, fENQ =6

Hm,m
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for all Q € D,,. Since F is compact, there exists a smallest k,, € R such that

E C @ for some Q' € D,,_4,.. So for 0 < k < k,,, — 1, we define

: 1
tmom—k| if tmm—r (P) < sem=1s
P
Mm,m—k—1 = (41>
P Hm m—k
1 : 1
2tm—k—Ds 1, m—k(;;)’ if fmm—k (P) > Sm—k—1)s

for all P € D,,_k_1. Let pt, = fbn,m—r,,, We can see that for each stages, the measure
1 1 1
9(m—k—1)s = 2(m—k—1)s /flm,mfk(P)

of dyadic cubes is non-increasing since fiy, m—x (P) > <

1. So we have for 0 < k < k,,,

1 (Q) < 5 (42)

for all Q € D,,_;. Next, for all x € F and m > 0, we can find a maximal dyadic

cube Q € D,,_;, for some k satisfies

1 diam(Q)°

S
n2

Picking for each of x € F the largest such (), we obtain disjoint cubes Q1,--- ,Q;
1

with £ C U Q; since E is compact. Then
i=1

i (R") = Zﬂm(Qi) => M > (44)

. Hm
Consider v,,, = , then v,,(R") =1 and
Nm(Rn> ( )

(@) =Y <o (45)

for Q) € D,,—i by () and (@) So by the theorem 1.23 in [8], {v), },-_, possesses

a weakly convergent subsequence {v,, },~, with llim VUm, = v and v € M(E) with
—00
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v(E) <v(R") = 1. Finally, for x € R", 0 <r < 1, we have

B(x,r) Cint <U Qz>

i=1

with @; € D, for some p such that diam(Q;) = ne
obtain

2n 2n s
Vin (U@) <) o % —
=1 =1
by (43). So

& 2z on+2s %
V(B ) <v (U Qz‘) < liminfu, (U Qi> < (—) .
i=1 i=1

46
. (46)
2n+23 . n% -1
Then the measure p = ( ) v is what we want. [
c
Now given s > 0 and a Borel measure p, we define the s-energy be
L(p) = // |z =y dp(x)duy) Z/(k‘*u) (@)dp(z), (47)

where ks(x) is the Riesz kernel:

ks (x)=|z|°, x € R™ (48)

We have the following proposition immediately.

Property 3.1. If u has compact support and satisfies (BR), then

I(p) <00 = Ii(pn) < oo

for0 <t <s.
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Proof. First we have

/\m —y| " dp(r) = /Ooou ({z: |z =yl > u}) du= /Ooou (B(yvu‘%)) du

s/ By, )r,

and then

diam(supp(p B ( )) diam(supp(p)) rs
) < t// o ——2 drdu(y) < //0 mdrdu(y)

diam (supp(u))
= tu(R )/ r T dr < 0o
0

since t, u(R™) diam(supp (p)) are finite and s —¢t —1 > —1. H

If © has compact support, then I(n) < oo = /|m—y|_s du(x) < oo for p

almost y € R"™. Thus, we can find 0 < M < oo such that

A= {yr/lx—yl_sdu(fff) <M}

has positive measure for p. It means that for all z € R™ and r > 0, we have
pAnBe) = [ )= [ ey = ol dut)
ANB(z,r) ANB(z,r)
<@ [ el ) < M2
ANB(z,r)

where z € ANB(z,r). Then by Frostman’s lemma, if 4 € M(A), we have H*(A) > 0.

Moreover, we have
dimpy(E) = sup{s : there is a y € M(FE) such that I;(u) < oo} .

The two theorems show that () can be expressed as some integral form of Fourier

transform of .

Theorem 3.1. For 0 < s < n, there is a constant 0 < C,, < oo such that
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k:AS = Oy skn—s as tempered distribution, which means

/ kb = / G ekns) (19)

for all p € S(R").

Proof. First assume g <s<mn,then k, € L' + L* = {f1 +fo:fiell fye L2}

since 7

/ ks<ooand/ k2 < oo.
B(0,1) R™\B(0,1)

So we can define the Fourier transform of such k, = f; + fo € L' + L? as
ky=fi+ foe L®+ L°

by the duality. We can see that k; is radial, so l;:; is also radial. Also we have
kin—s (r§) = kn—s(Er*™"

and

e 2mu~§du L

600 = [ ol s = [

— Tsn/ ‘U,|_S 6727riu-£du — 7’87”];7\5(5)

u)—s _
r

for r > 0. Fix £ = &, view these as functions of r, we obtain

ks (o) = ks (€0) 757"

and

Fon—s (réo) = kn—s(&)r* ™" = ———=
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S0 ky = Ch, skn—s for g < s < n. Then for any ¢ € S(R"),

/ kb = / Fuo = / Cpakats

by the Fubini’s theorem because k, € L' (B (0,1)), ksp € L' (R™\ B(0,1)).

For 0 < s < g, we have f (2) = f(—x) and k, is radial, so

And it is also true for tempered distribution by the Fubini’s theorem. Therefore,

~

Fos() = Cosky(x) = k(@) = Cop k(@) = ky(z) = CF 1k o(2).

The first equality follows from the result above since g <n-—s<n.

n
Now for s = 5 by the Lebesgue dominated convergence theorem, we obtain

/ kop=lim [ ko = lim / Crshin—s¢p = lim C, / kn . (50)
sy sy

n
5=

Then if we show lim ), ; is finite, we complete the proof. Actually, we can find the

55

—la|?

exact form of C,, ;. Consider ¢(x) =e , we have

7.(_5;” © n—s_l ¢ ’ﬂ—szn n—s
() @

Similarly, by replacing s with n — s, we obtain

—(n—s) —7r\w|2d :EF (f) 52
Jlal o e = T (5 (52)
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we know that ¢ = ¢. Then by (@) and ()7

/ || e g = C’ms/ 2> e 4y

for s # g, which implies

Ch.s :WS*%F( g )
r(3)
Since Gamma function is continuous
o (252 L

hn}lﬂ_sf (i):ﬂ.O (i)zl

% r'(3) (%)
which is finite. Hence we complete the proof of this theorem O
Theorem 3.2. Let € M(R") and 0 < s < n, then

(53)

t/'|x-—y| du()duly) = 7%i/1u )2 el do

Proof. For the common function sense, we have

= [ = Co [ sl = Co [ Jal " o) d

~ —
-~ ~

ks - p

by some basic formulas, Plancherel’s theorem and theorem EI But ks only exists

in distribution sense. So we first give ¢ € S(R"™) be real valued, we can get

15<¢>:/k5*¢d¢=//k5
// x—zw(x)dzda::/ks<l/~1*¢>a

(y)i(x)dydze

). Moreover, we can see that

where (z) = (-
(54)
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2
, thus

since 1 is real valued. So 1) 1) is the Fourier transform of ‘12)\

L) = [k (3xv) = [ 13
~ o] = cus [ el |30 o
Now for 1 € M(R™), we use
Pe = Gc *
to approximate y1, where
6:(x) =79 (2) (55)

with ¢ € C3° (R") and /gb =1, then p. € S(R") and p. — p weakly. Next, we see

that

/ |z —y| " ¢ (x — 2) 9 (y — w)dxdy = / le(u —v) + 2 — w| ™’ ¢(u)p(v)dudv

by changing variable with u = - Z, v="2"

€ €
and/gb:l,

Therefore, by Lebesgue dominated convergence theorem, we have

. Then since ¢ has compact support

le(u—v)+z—w| S|z —wl ™’ <.

/ le(u —v) + 2z —w| * d(u)p(v)dudv — |z — w|™°
as € — 0 if z # w. Then we get
// le(u —v) + 2z —w| 7 d(u)p(v)dudv < |z — w]™° < o0 (56)

hence /¢: 1. So

// (// 'fﬁ—y's¢e<w—z>¢a<y—w>dmdy) (=) p(w)dzdw
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= [[ 1o =t ([ ot = 2mtera) ([ .t = whatwra ) asty

:/ 2 — Y|~ pe () pe (y) daxdy
L) = Cos [ 1ol @)@ do = Cos [ 1ol (e [0 o (57

The first equality because of Fubini’s theorem, which can be used since (@) The
last line follows from the conclusion above with 1) = . and ¢.(z) = ¢ (cz).
Now if I4( /|z —w|? p(z)p(w)dzdw < oo,we can use the Lebesgue dom-
inated convergence theorem on the last term of (@) by (@) then it tends to
C’n,s/|x|5"|ﬁ( )2 dz because ¢(0 /gb = 1. On the other hand, if I,(u) = oo,

by Fatou’s lemma, we obtain

oo = 1,60 < gt [ ( [[1e =07 6.0 = 6.0 - witsay) etz

—limiOnfC’ms/]m\s_"m(x)\Q‘cb(ax)‘ dx—cn,s/\x|s—"m(x)\2dx.
e—

Then we complete the proof. [
Now we can present the result of Bourgain.

Theorem 3.3. Given a Borel compact set E C R?, we have
. 13
dimy(E) > g |AE| > 0.

Proof. Given aset E C R? and take a < dimy(FE), by property @, we know there

is a probability measure p (since we may assume p(E) = 1) on E which satisfies

") / 1 — ™ du(z)du(y) < oo

Then by theorem , it becomes

/\ﬁ(:c)|2 2|72 d = / ||Z(\Q‘|”‘ dz < 50 (58)

29 d0i:10.6342/NTU202301952




and implies that

/ |ﬁ(5§)(|j dx < oo. (59)
|

z|>1 |z

Consider a ball B with radius R in R?, then (@) implies

/B AP de < R (60)

This is trivial if B is contained in B(0,100R), so if not, assume B = B(zy, R) and

consider a function ¢ with its Fourier transform is a bump function and satisfies

6,620
¢~1 on B(0,R),

¢ =0 out of B(0,2R).
Hence, we can see that f(x) = (1 —cos < z,x¢ >) ¢(z) > 0 and
. . 1 /~ -
F(©) = 3(6) = 5 (B(6 +30) + 6(§ — 0))

since cosz = % and the Fourier transform of f(z) here is / f(z)e™ da.

Then

0</f o) p(x dx—/f §)dé = /f ) (&) de

- [a@mora-; [ (¢<§ + o) + 36— 20)) [B(O de

< /B INCGIS /B A de. (61)

The last line is because of ngﬁ(f + x¢) is almost supported on B and gg is symmetric

w.r.t. the origin. Therefore, we get

/ A de < / A de < B> (62)
B B(0,2R)

Let o, be the arc length measure of S'(s). If we want to show that A(E) has positive
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measure, we need

b
/ |< p, ppx o5 >7ds < 00 (63)

for some 0 < a < b < oco. This is called Mattila’s method. As its name, it is given
by Mattila in [[7]. If the inequality above holds, it means the Fourier transform of
the push-forward measure p x p under the distance map is a L? function. Hence it is
absolutely continuous with L? density. Also we can see that the support of p x p is
contained in A(E). Combine these two results, we get |A(E)| > [supp (u x w)| > 0.

Then we first see that

<mpro>= [uapEatod = [FOREOFEE

~ / 7€) QT;'&df / / 7 (re®)| r2 e drdo,
/(/}ﬁ(r6i9)|2d9)2rdr<oo, (64)

then (B3) holds. Now let

so if

- / |7 (re)|* do (65)

as a function of r as it tends to oo, and we want to show that it can be bounded by
some order of r.

Consider I’ > 0 be a convolution of x which only depends on r and satisfying

and by (@) we have

[iee = [18] < e < (66)

Given a annulus A,(1) on R? we can consider {R;} be a set of rectangles with
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dimensions 1 x 72 to be almost fill up A,(1), and we have the amount of R; is & 2.

Thus,

() ~ / ‘ﬁ(rew) S0 ~ / i / ‘F\(pew)rdgdp, (67)

and by our construction above, this integral becomes

[l

* o = % / Fla) - Fla)xa(z)de % / F() Fz)* Ci(z)dz  (68)

> ()

(2

, (69)

1
< = [|Fl
r 3

by Holder’s inequality. To estimate || F ||%, since
1], < lally = 1 and [ FYl, <%,

the interpolation formula tells us

N[}
—~
EN|
[a)
S~—

L L 1_
IFls < IFIFIF(5 < rzs.

For the other one, by the square function equivalence,

1
. \/2 2
CONIE
4

I = /R )ﬁr (72)

2

(71)

1
2
2

> ()

%

5| (Fra)’

%

A&

Then define

and

b =121 (73)

. o . . 1. . . . 1
since R; is with dimensions 1 x r2, it is contained in a ball Q); of radius 2. Then

—~12 —~
ai:/ (F g/ ‘F
R; B;
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by (@) and ‘ﬁ ‘ < |jz]. Also, we can observe that

~|2 ~
Zai:/ ’F g/ (75)
i UR; A
Next, given w € S*, consider the maximal function
My () = s [ . (76)
T

where 7 is a rectangle with dimensions 1 x § and the length 1 side is along the

direction w. Given a function f with || f||, < 1, then we have

=

<Zab f> <> M flw) < (Za3> (Z‘Mf Flw:) ) (77)
(Za?) (Zr—% M f(wi) ) (78)

where {w;} i =1, ..., Lréj is a T separated set on S! with 7 &~ r~2. Thus,

A (;ag)é(zr : )% 1(2@);‘]‘4#2' )

Then use the result of Kakeya-type maximal operator (see [10], Theorem 9.1.2), we

M fw,

get the inequality

1
1 2
M| < log +—
(oW, LQ(SI)N<og%> £ (80)

and then

@ <rt () ot < st () (S -
Finally, by (67), (69), (7d), (71)), (4), (5) and (B1)), we obtain

ﬁ
ol
e
oo\H
=
N
=

rs (logr)ir

*3|>—t

T8 (regu(n)t, (82)

gu()S
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and we may conclude that

gu(r) Srostate (83)

[N

for any € > 0. Back to our main goal, we want (@) to be true. Since g, (r) Sre- 2,

we have
2

[ ([ 1atenfa) vars [r55 [riaeenPasar = [iaepii? ae

(81)

1 o

Then by (59), if -3

13
that if 9 < a < dimg(F), the distance set of F has the positive measure. ]

13
>2—-a=a> 9 (@) will be finite. Hence we conclude
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3.2 The case for n > 3

First we give a bilinear restriction proved by Tao in [[13].

Theorem 3.4. Let n > 2, X1, % be the compact subsets of ¥ with d(Xq1,35) > 1,

where ¥ = {x = (21, - ,2,) € R" : 2, = 2] +--- +22_,}, and do be the surface

n+ 2
measure on . Then for ¢ > ——, we have
n

for all f1 is supported in Xv, fo is supported in Y.

Fudofadol| | San 1l | ol 20

Basic on this theorem, we can consider a weighted type.

Theorem 3.5. Forn > 3, and o € (0,n), given a function W : R™ — R satisfies

Wil <1
(85)
/ (W (y)|dy < r*, Ve € R",r > 0.
B(z,r)
Then under the hypothesis of Theorem , we have the inequality
|fidorods|),, . Soan | Alizgo 1ol (86)

4o n+ 2
hold. = 1, mi .
olds for q > qo(a,n) max< ’mm(n—l—Qa—Q’ - ))

2
We can first see that (@) holds for ¢ > nxe by Theorem @ and (@), and
n

n+2

+2
we will improve the lower bound of ¢ from r to qo for a < —

Proof. To prove this theorem, we need the following epsilon-removed lemma:

Lemma 3.2. Letn > 2, and let X1 and X5 be compact hypersurfaces with boundary

in R", denote doy, doy be their surface measure respectively. If

dor| S (1 Ja) ™ (87)
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1
for some M > 0, then for all1 < g <1+ N’ R > 1, we have
2n

1 1
holds implies if — (1 + —) < -+
(EG) , N) <3

f1d01f2d02

Y
La(B(0,R),Wd¢) = C”’q’"R HleL2(do'l) HfQHLQ(dag) (88)

_n
14+ N’

By this lemma, it is sufficient to show that

for all n > 0 and R > 1 with the assumption in the Theorem @ We prove this

o i

U
oo g, < Cron B 1z [ ol sz (59

by induction. First, using Young’s convolution inequality, we have

|fido|| = |Fiwdal| <A @], = tdotl 10 S 1AM,

and similarly, we have H ECBH S I f2lly. Then

o

S Al el / W(E)| de

L0 (B(0,R),Wd¢ B(0,R)

S B Al 1flly S B 1 fill 2oy 120l 2 (o)

for some 7y large enough, so (@) holds for n > n,.

Next, we show that (@) holds if n = max ((1 — 6)ny, C0)+Ce forall 0 < §,e < 1
and C' is a constant which is independent of § and e. If this is true, we may choose
suitable 6 and ¢ such that max ((1 — §)ng, C8) + Ce = ny — Cong < 1o for some
small constant Cy, and then iterating this process, we will see that (@) holds for

all n > 0. Therefore, our goal becomes to prove

o |

max((1—8)no,C)+Ce
L0 (B(0.R).Wde) S Cn,oz,nR ||f1 ||L2 (do) ||f2 ”Lz(da) : (90)
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We use the wave packet decomposition, then
fido(§) = Cror, (€)
T;

for £ € B(0,R) and i = 1,2. T; are R%—separated tubes with dimensions R x R2 x
s X R%, Cr, are constants, ¢, are the functions satisty gz%_ is supported in the dual
tube of T; which contained in a O(R™') neighborhood of S; and ¢r, is essentially
supported on T; with the Schwartz decay away from T;. And we have the following

properties:

1
lénll, ~ B3, (01)

> 1CH P S il 7o) - (92)

T
2

d on| <D lon
T; s T

2- (93)

Moreover, we may assume Cp, be either 0 or 1 by the pigeonholing. Hence, (@)

becomes

Z Z qul ¢T2

T eT Ty eT’

S RO | ol (94)

L9 (B(0,R),Wd¢)

Let T be the collection of T} and 7" be the collection of T, since by (), we have
(#T)% S Ifillz2 40y and (#T’)% < /2l 2(40)- Thus, to prove (@), it is sufficient to

show

S Rmax((1—5)770705)+06 (#T)% (#T’)% . (95)

L0 (B(0,R),Wde)

SN bnom

TheT ToeT’

Cover B(0,R) by a collection B, which is of ~ O(R®®) many finitely overlapping

balls with radius R'~, then we have the following lemma:
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Lemma 3.3. There exists a relation ~ between B € B and T € T UT' such that
#{BGB:TNB}gRE (96)
for each T € TUT', and

n—2 1 1
1Bl r2m) S ROFOOTIT (HT)2 (#T7)?

—
©
3

N—

where B = {(Ty,Ty) € T x T" : T} is not ~ B or Ty is not ~ B}, and

&)= D on()on(s).

(T1,T»)eB

Now we can do the main part of the proof, using the rough estimate, we obtain

Z Z o, ¢, < Z

Ti€T ToeT" L9 (B(0,R),Wds) ~ BEB

< Z Z Z o1, o, + Z Z P01,

BeB ||T1€T T>eT' L90 (B,Wdf) BeB (leTz)eé

SN onomn

ThWeT Ty cT’

L9 (B,Wd¢)

L9 (B,Wde€)

For the first part, since B has radius R*~° and ¢r,, ¢7, are supported on O (Ril)—

neighborhood of 57, S, by the induction hypothesis, we have

D

BeB

Y bnon

T eT T cT’

<RI RA=8)m0 Z

BeB

L9 (B,Wd¢)

S on|l D on

Th~B To~B

2

SRIR0Im Y - (Z lomnlls D |!¢T2H3>

BeB \T1~B To~B

~RTRITM N (Z RY R) 2

BeB T~B To~B

2
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N

=RUINN(H#{TL €T : Ty ~ By #{Tr € T' : Ty ~ B})

BeB
3 3
<RO-9mo <Z #{T €T Ty~ B}) (Z #{D €T Ty~ B})
BeB BeB

— R(1=9)mo <Z #{BGB;TINB}>2 (Z #{BEB:TQNB}>2

T1 eT To cT’

SRU-Ome (UT)3 (HT7)2 |

The third and fourth line follows from (@) and (@)7 and the second last line follows

from (@)

For the second part, since ¢y < 2 and

using the Holder’s inequality, we have

1

15l o vy = ( JZCE W(f)ds) g

< (( JREG dé)qg ( | W dg) )
-(/ %(g)ﬁd&)é ([wenae)”

1—-8a- (L -1 a_a
Sl - B @8 < R 5 | oo,

1 _1
qQ 2

because

5 > 1 and W satisfies (@) Therefore, by (@), we obtain
— 9o

SIS énon SRR ol

BeB ||(1y,T»)eB La0 (B, W de) BeB

S R~ %y ROVCEIEE ()2 (4T
BeB

(NI

o n

< ROO+Ce . Ras—5-it3 . ROs (#T)% (#T")

< ROPHCE (T3 (#T)?
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n+ 2

The last line follows from the definition of ¢g, since 1 < ——, we have three
n

conditions,

4o ] n—+ 2 ]

n+2a—2 "~ = n — =5

1 %" n+2 4o
n+2a—2< n qo_n+204—2’
n+2 %" n+2

1 do =

For the first case,

— =4 =-= <0
qo 2 4 4
. 4o
since 1 > ———— = n — 2 > 2a. For the second case,
n+2a—2
a o n 1
Bt S T
Qo 2 17

n—+2 n+2< 4o

For the last case, because we fix a < ,

the equality holds, so it is same as the case two. Then we have

n T n+2a—2

is only true for

Combine these two results, we may see that (@) holds, and then complete the

proof.

]

Definition 3.1. We say ¢ : B(0,1) € R"™ — R is a (N, &)-elliptic phase if it

satisfies

(1) llellee < N,

(2) »(0) = Vg(0) =0,

(3) all eigenvalues of the Heissan matriz H; ;(x) lie in the interval [1 — g, 1 + &o].

And S is said to be a (N, dy)-elliptic surface if

S ={(z,p(x)): (x,p(x)) € B(0,1) x R C R"},

40
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where v s a (N, dy)-elliptic phase.
There are two properties of (M, €g)-elliptic phase.

Property 3.2. (1) If ¢ is a (N,dy)-elliptic phase, then for a ball B(xzg,19) C
B(0,1), let

1

2

ple) = E(@(Wo +x0) = ¢(x0) — 102 - Vp(20)), © € B(0,1),  (98)

it’s a (C,N, d)-elliptic phase.

(2) Let S be a smooth compact submanifold of R™ with strictly positive principal
curvatures. Then for any dg > 0 and for any s € S, exists a neighborhood Uy of
s and an affine bijection as of R™ s.t. as (Us) is an (N, dg)-elliptic surface, with
M depends on n, ||¢||ow and the principal curvature at s. Furthermore, we can
use the partition of unity to write S as a union of affine images of finitely many

(N, do)-elliptic surfaces.
Now we can get the following theorem be the generalization of Theorem @

Theorem 3.6. Let n > 3, € (0,n), and W satisfies (88). Then for any N > 0,
there exists 0g > 0 such that the following holds.

Let ¥1,%5 be two compact subsets of diameter =~ 1 of (N,d)-elliptic surface in
R™ with d(3q,%,) >

o; be the Lebesgue measure on ¥;, 1 = 1,2. Then

1
100’ ’
Yq > qo(a,n), we have

Hf1d01f2d02HL S il 2o 121l 22 (55 o) (99)

a(dw)
for all f; € L*(do) is supported in ¥, i = 1,2.

Definition 3.2. Let u be a compactly supported probability measure, we say p is an

a- dimensional measure if

p(B(x,r)) S, r®, Yee R, Vr > 0.
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Consider 1 be a Schwartz bump function satisfies ¢(z) = 1 for |z] < 2,
() = 0 for |z| > 4. For each ball B C R", take an affine bijection ap of R” maps

B to B(0,1), and define ¢¥p(x) = ¢ (ap(z)). Then we have the following lemma.

Lemma 3.4. Let p be an a-dimensional measure in R", and B be a ball of radius

r in R™. Define a function up := [}| * u, we have
(1) el S 7™,

2) llpsll, S 1,

1

” .

(3) / up(y)dy < s for any ball D of radius s >
D

Proof. (1) Since 1 is a Schwartz function, by the decay of Schwartz function, for

M € N, we can write
[Wh(@)] = 1" [V (ra)| Sapa ™Y 27 X g0 (@).
j=1
So we obtain

0<pup(z)Sr" ZQ*MJ' /XB(O,ijl)@?)d/i(y)
=1

00
SJ T’nZQ_Mj(2jT_1)a 5 ,r,n—a’
j=1

by using the definition of a-dimensional measure and taking M > n.

(2) since v is Schwartz function, 1}, is also a Schwartz function. Then we know
[l S 1, 50 by Young’s convolution inequality, [lusl| < 631, lall, S 1 since

1 is compactly supported probability measure.

(3)

/ pa(y)dy Sy 27 M / / Xp(Y)XB(0,210-1)(y — w)dp(u)dy
D =

= Z 27 // XD+B(0,2i0—1) (W)X B0,25r—1) (Y — u)dydp(u)
j=1
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oo

<t Z 2—Mj (er_l)n (s + 2jr_1)a

22 M]/Z +2j7’_1)a§3“
7j=1

The second line follows from the Fubini’s theorem and for y € D,y —u €
B(0,27r71), we have u € D + B(0,2r™ '), and the last inequality because of
taking M large enough.

O

Corollary 3.1. Let p be an a-dimensional measure, L > 0 and R,n satisfies
LR 2 <n < 1. Consider I, I, be the subsets of Ar(L) satisfies diam(Iy), diam(I2)~
Rn, d(Iy, 1) = Rn. Then for all ¢ > qo(a,n), we have

S LB Al 1 falls - (100)

La(dp)
for all functions fi, fs is supported on I, Iy separately.

Proof. diam(I), diam(Iy) ~ Rn, so fi* fo is contained in a ball B of radius r ~ Rpn.

Hence we have

q

|7

o= VEE il = (| B it =] o)
{1 dy)"-(/ dy)'] |
- [ ([ | rese -] a) (/WB iyl ) (o) }

R Ryl - )] dyu(x)dx) gl

/ A By

@) faly)e

L

5Y)7

AN

fLy) By)us(e —y)a

| [ Wbte — wluteydsd) - Jogli

vl*ﬁdy>dy) gl

fifa

~ 5
i leslly s |

Y

D D
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where ¢’ is the Holder conjugate exponent. The first equality because of that ¥ p = 1,
the second last line because of ¢ p is radial, others follows from Hélder’s inequality
and Fubini’s theorem.

Next step we consider e be the unit vector in the direction of the center of mass of
I; U I and a orthonormal basis {e; = e,eq, -+ ,e,}. Let T : R" — R" be a linear

transformation with

1

1
= m@l, T(el) = —¢€, for 2 S 1 S n.
Ui

T(e1) R

L
Let Cy = T(I1),Cy = T'(I3), we can see that C; is contained in ~ ﬁ—neighborhood
n

of an affine image of the surface S; that satisfies the assumption of Theorem @

for i =1,2.
1
~ det(T)

Consider g;(z) = f;(T '), then g; is supported in C; and f;(€) G(T71¢) =

(Rn)" ngi(T~*¢). Then we obtain

o~ o~

fife

Li(up)

= (Rnp)™" n’ (/ 3 (T7'2) g (T7'2)|* ,up(x)dx) (101)

— (Ry)™ ( [ 1@ a@r uD<Tx>dx)3’ (102)

= (B)™ "5 (Rn) @ (19122l poaw - (103)

where W (z) = (Rn)* " up(Tx). If we can say W satisfies (@), then by Theorem

@, we have

N L
19192 agaw) S gz lonllz Nlgallz (104)

L L
The constant — because C; is contained in &~ ——=-neighborhood of affine image
Rn? Rn?

of S,L

Now we check these conditions. For the infinity norm,
IWile = (Bn)" " [lupllo S (B)* " (Rn)"* =1

by (1) of Lemma @ and D is a ball of radius ~ Rn.
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For the other one, given B (x,r),

/ W ()| dy = / (R)*™ |un(Ty)| dy
B(:B’T) B(z,r)
— (Ry)e / (R)" 1 [ (0)] dt
T(B(x,r))

SY N OIL
s () [ wntolde =@ [ luoto)ar

1 1
where D’ is a ball or radius =~ o scales one axis into — long, others are —
Rn Rip? Rn

R
long, so T'(B(z,)) is covered by at most R—Z many balls with radius RL Then

using (3) of Lemma @ f — > — =7 > 1, we have lup(t)|dt < (L) )
i Rn D Rn
.
So [ Wiy S (R (—) s ttr<t [ Wl S WLt
B(z,r) RT] B(z,r)

r“ by (2) of Lemma

PO L . -
Thus we have |55 oy S =g 911l [92ll,, and since gi(x) = fi(T "),
@W) ~ Ry
lgill, = (Bn) > n= [|fill, (105)

for i = 1,2. Finally, combine (I103|)7 (|104J), (|105|)7 we obtain

o~ o~

fif2

n 1 n—a L —-n _
< (Ro)™ 5 oS (Ry)"5° (ﬁ) By 0 il 1ol

Li(up) "~

n—l—« _1
=L(Rn)"" " e | filly I foll, -

]

Theorem 3.7. Let a € (0,n), ¢ > qo(a,n), Ya-dimensional measure pn, R > 1, f

is supported in Ar(1). Then

\ [ @ino

2
Proof. W.L.O.G., we may assume| f|l, = 1. Since (/]f\/]du> < /\fVIQ du by

n—1_ o
< Cq,uR . ||f||2 (106)
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Cauchy-Schwartz inequality and g has compactly support, we only need to prove

1

£ oy S B 72

Consider a dyadic decomposition of Ag(1) into spherical caps I with dimensions
2 x 2% x -+ x 2 for Rz < 2F < R, we denote I[(I) = 2% and define the parent of [
be the unique cap contained I with length 2**!. Given two spherical caps I, J with

I(I) = 2% wesay I ~ Jif

2. I, J are not adjacent,
3. the parent of I and the parent of J ar adjacent.

Then let fr = f - x7, we have

) @)= ) > @) f) (@) +error, (107)

VR<2F<RII)=2F I~J

where the term has the bound

jerror| £ ) 1F (@)I. (108)
Ig
I € Iy is the diagonal dyadic caps term with I ~ /R satisfies Z xr|l S 1.
Ielg 0o
Combine () and (), we obtain
2 2
1A ey S D > M iy + D 17 e - (109)

VR<2k < RI(I)=2k I~J Iely

First, we show that Z I ||L2(d# < R4, For I € Iy, since I(I) = VR, I is
Ielp
contained in a ball D of radius Cv/R for some constant C'. Then

@) = 1Y * o) = ] [ 5= bty
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[NIE

-| -

S (52 10sl) sl s (1771 < o)

) @) )y

where 1 p has defined above the Lemma @, and the last line follows from Hoélder’s

inequality. Using this, we get

1 i % S [ (87 e 1wpl) du= [ 15 @ o) (@)da

SIA U s bl S 103 (VR) ™ = R 11 £all

by (2) of Lemma @ Then

2 n—a 2 n—a 2 n—a nol_«
S A gy SR A SR Ifl; =R™=" SR (110)

Ielp Ielg

The second inequality because of

ZX{

Ielg

< 1. And the last inequality follows

o0

f < o> >3
rom o < n, > ——n > 3.
7~ % n+20—2

For > D> I f i, we prove

VR<2F< RI(I)=2F I~J

LA Ny S Canan B3 1l 1l (111)

for I ~ J, I(I) = 2*. Now by the similar method in the proof of Corollary @, let

e be the unit vector in the direction of center of mass of I U J, consider a rectangle
2k 2k
H with side lengths 100 x 100 - 7 X +++ x 100 - i where the axis has side length

100 is in the direction e. We use H to tile R" and assume ay be the affine bijection
11

maps H to the unit cube {—5, 5} . Let ) be a Schwartz function satisfies

Y(x) > xBo)(x) for x € R" | supp (@) C B(0,1).
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Let Yy =1 oay and fr g = ﬁ@/}\H, then we have
7 85 i = [ 15755 =3 [ 185851
H

nl
SZ/‘f}/,HfL\]/,H’(77Z)H>ql/dMSJZHfI\/,Hf}fHHLq(du) ||1/}H||zl(d#) (112)
H H

since 1y > 1 and ¢ is the Holder conjugate exponent of q. Let Iy be the support

of fru, we have Iy C I + supp (@) = I + Hguy where Hg,, is a rectangle with

1 R
side lengths — X ———— X -+ ——— centered at the origin. Then I + H g,y is
100 100 - 2% 100 - 2% 1
contained in a sperical cap of 10 x 1—02k - X EQk in Ar(10) which contains I.

We prove this later. By this fact, we have the diameter of I, Jy ~ 2% and they are
contained in Ag(10) with d (15, Ji) =~ 2¥. So byCorollary @ with Ry = 2%, we

get

ey (27
Hfl\/,Hf}/,HHLCI(d $10-2 (n _7) (E) ||fIHH2 ||fJH||2
< ROl 1l (113)

2k
smﬂﬁ<ﬂh<R¢R%<g§<L

A A 272k 202%
For H¢H||L1(du)’ since 2 H is of dimensions 100 - 27 x 100 - T X -+ x 100 - T it
- /100-272F R 219k
can be covered by ~ 100 - 2’ / — 5 % many balls of radius &~ and Yy
is Schwartz function, given M large enough, we obtain
ol < 32 [ xonle)duta)
j=1
- R [272F\
M
<25 (%)
j=1
< Z TJ a—l)Rl—a 5 2k(a—1)Rl—a' (114)
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Combine (112), (113) and (114), we get

1
LY A S D WY gy 100
H

1
7

S (R0 ) (2 R)

H
— gityo i) leffH“ |7zl
— Rt a2 ) |yl | ol
SETIRTIE S Wl Vil
=R el L frall

SR 1‘( ||f1,H||§> (ZHfJ,HHi) : (115)
H

4 2
sinceZkrSRandq>q02—a:>n—2+oz——a>ﬁ—1>0.
n+2a—2 q 2

For || f1,ul|,, by Plancherel theorem and Schwartz decay of 5, we have

) ) —
I frull= [ |fiul”= Yn
H H

= [uiras e = [ 16,

So

(;m,m;)% < (; / f12>; -(/ |fz|2)% il

2

Similarly, we have Z HfJHH; Sl

Then () follows fr(l){m this and () Now by (@), () and (), we have

I ey S D > Rl llfally + R (116)

VR<2k<RI(I)=2F 1~J
For each I with I(I) = 2", there are finitely many .J such that I ~ .J. So there is a
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spherical cap I’ with I(I') = C2" for some constant C' contain I such that

> Il S el (117)

I(I)=2k I~J

And for each k, such I’ are finitely overlapping. Therefore,

Z Ifll5 < Z Lfrllz = I1£15- (118)

()=

Then by ()7 () and Cauchy-Schwartz inequality,

SIS

1
2

> Ml il < leff\lz > Il

I(I)=2F I~ I(I)= UI)=2FI~J

Sl 1F 1, = 1115 = 1.
So () becomes

2 n—1—-< n—1—<
I gy S D>, RV 4HRTE

VR<2F <R

< (logR)R"'" 4, (119)

Since we can find another ¢ satisfies ¢ > ¢ > ¢p and all statements above, the

inequality becomes
1Y 2 S (log R) R*F = (log R) R*G-3) R"175 < 1%,

1 1
This follows from log R < R' for all [ > 0 and — < =. So we complete the proof. [

qa g
Lemma 3.5. I + H g,y in proof of theorem is contained in a spherical cap of
11 11
10 x —2% x ... —2% in AR(10) which contains I.
10 10
Proof. First we have H g, is of di i 1><1R L Let the short
roof. First we have H gy, is of dimensions — X —-— x- - -xX ——-—. Let the shor
WO HATE Hdual 100100 2F 100 2

axis being in the direction e, then for h € Hy,q, « € I, the angle between p— (p, e) e
and the hyperplane E, which goes through the origin with normal vector z is less
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2k 1
than 10 - 7 Hence, H g, is contained in the 1—O—neighborhood of B, NB(0, ﬁ).

Furthermore, we can see that = + (E, N B(0,7)) is contained in a spherical cap
containing x of dimensions ~ 1 x r x -+ x 7 in A (1) if |z| = R and r S Rz. Then

< 9k,
00 - 2k ~

the statement we want is holds since ]

Finally, we use a variation of Mattila’s theorem(see [[7]) to obtain the result.

1
Theorem 3.8 (Mattila’s theorem). Fiz o € [g, n—21—

] and qo € [1,2] such that

1
Q@ (1 + —) > n. If for all a-dimensional measure p, R > 1, and f is supported in
do

Agr(1), we have

\ [ £ @) < Gk |11, (120)

holds for all ¢ > qo, then Falconer’s conjecture holds for .

Using Theorem @, we can give a bound of o in Theorem @ Since we need

n n+1
o€ |-, and
27 2
dav - n+2 - n+2
n+2a—-2 n 2
. 4o
we have g = min [ 1, ————— ). Also, we can see that gy € [1, 2] because n > 2.
n—+2a—2
4
Therefore, to accord the inequality, if go = 1, it is trivial. If gy = —a’
n+2a—2

1 n+ 2o — 2 3n — 2
all+— | >n<e >
qo %Y 3n +2
1

<:>3n2—4n—426noz—1204<:>a§g+§.

1
So we obtain Falconer’s conjecture holds for g + 3
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