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摘要

本論文的目的是研究歐幾里得空間中的傅立葉限制問題及其在法爾科納距離集猜

想中的應用。限制問題是調和分析領域中最知名的研究問題之一，且與其他研究

領域（如偏微分方程和幾何測度論）有著重要的聯繫。在本論文中，我們主要詳

細介紹已知的 Tomas-Stein 成果、雙線性限制估計以及 Bourgain 對法爾科納距離

猜想的結果。

關鍵字：傅立葉限制問題，福爾科納猜想，調和分析，幾何測度論，Tomas-

Stein 定理
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Abstract

The purpose of this dissertation is to study the Fourier restriction problems in Eu-

clidean spaces and their applications to Falconer’s distance set conjecture. Restric-

tion problems are one of the most known research problems in the area of Harmonic

analysis and have been found to have important connections to other research fields

such as partial differential equations and geometric measure theory. In this dis-

sertation, we mainly introduce in details the known Tomas-Stein results, bilinear

restriction estimates and Bourgain’s work on Falconer distance conjecture.

keywords:Fourier restriction problems, Falconer’s conjecture, harmonic analysis,

geometric measure theory, Tomas-Stein theorem
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1 Introduction

The restriction problems of Fourier transform was first purposed by C. Fefferman in

[5] in 1970. Given an appropriate function f on Rn, its Fourier transform is

f̂(ξ) =

∫
Rn

f(x)e−2πix·ξdx (1)

or the alternative form

f̂(ξ) =

∫
Rn

f(x)e−ix·ξdx

(we usually use the form (1)). And we give the definition of restriction estimate on

hypersurface.

Definition 1.1. Let S be a hypersurface with boundary, we denote the estimate

(∫
S

∣∣∣f̂(ξ)∣∣∣q dσ(ξ)) 1
q

=
∥∥∥f̂∥∥∥

Lq(S)
≲ ∥f∥p (2)

holds for all f ∈ S(Rn) by RS(p → q) for 1 ≤ p, q ≤ ∞, where dσ is the surface

measure of S.

Our question is when does RS(p → q) holds for S be the unit sphere Sn−1 in

Rn? Of course there are some variations of this problem. First we may think that

the norm is of whole Rn, which is

∥∥∥f̂∥∥∥
q
≲ ∥f∥p (3)

for all function f , we may assume f is a test function since C∞
0 (Rn) is dense in

Lp (Rn) for 1 ≤ p < ∞. There are now many well-known results of this question.

We can also consider S be some specific surfaces, for example, paraboloid, or the

bilinear form of the inequality, that is

∥∥∥f̂1dσ1f̂2dσ2∥∥∥
q
≲ ∥f1∥p ∥f2∥p ,

1
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where fi is supported on the surface Σi with the measure σi for i = 1, 2.

In this paper we will introduce the famous result of the standard restriction

problem, which is Tomas-Stein theorem.

Theorem 1.1 (Tomas-Stein restriction theorem). RS(p → 2) holds for 1 ≤ p ≤
2(n+ 1)

n+ 3
.

It is proved by Peter A. Tomas [14] for 1 ≤ p <
2(n+ 1)

n+ 3
, and the end point case

is proved by Elias M. Stein [12].

We also introduce a application of Fourier restriction, K.J. Falconer given a

conjecture of geometric measure theory in [4]:

Conjecture 1.1 (Falconer’s conjecture). For n ≥ 2 and a compact subset E of Rn,

define

∆(E) = {|x− y| : x, y ∈ E}.

Then dimH(E) >
n

2
⇒ |∆(E)| > 0. This is called the Falconer’s conjecture. We

say Falconer’s conjecture holds for constant C if dimH(E) > C ⇒ |∆(E)| > 0.

This problem is open in every dimension, Falconer proved n

2
is optimal and

showed this conjecture holds for n+ 1

2
in the same literature. In [1], Bourgain

improved the result in all n, especially in n = 2, it holds for 13

9
. Later, Wolff showed

a better result in [15], he showed it holds for 4

3
in Rn. Erdgan [3] use the bilinear

restriction estimate to improve the bound to n

2
+

1

3
for n ≥ 3. Recently, the bound

of R2 is improved to 5

4
in [6], and the authors of [2] proved that dim (E) >

n

2
+

1

4

suffices if n ≥ 4 is an even integer.

In Section 2, we will give some known results of restriction problem, and a

detail of proof of Theorem 1.1. In Section 3, we will go through the proof of [1]

for R2 and [3].

The following is the list of notation.

1. X ≲ Y : X ≤ CY for some constant C.

2. CT : the constant depends on T .

2
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3. X ≈ Y : X ≲ Y and Y ≲ X.

4. dimH(E) : the Hausdorff dimension of E.

5. |X| : the Lebesgue measure of X.

6. χE : the characteristic function of E.

7. B(x, r) := {y : |x− y| < r}.

8. AR(L) := {x ∈ Rn : ||x| − R| < L, where R,L ∈ R}.

9. Hs(E) : the s-dimensional Hausdorff measure of E.

10. M(E) := {µ : measure µ satisfies 0 < µ(E) <∞}.

11. S(E) : the set of all Schwartz function on E.

3



doi:10.6342/NTU202301952

2 Introduction of restriction problems and the re-

sults of Tomas and Stein

2.1 Some Known Results of Restriction Problem

First, we consider the problem in whole Rn. By Plancherel’s theorem, we get

∥∥∥f̂∥∥∥
2
= ∥f∥2 ,

and by the triangle inequality, we have

∥∥∥f̂∥∥∥
∞

≤ ∥f∥1

immediately. Using these two estimates with the interpolation, we obtain

∥∥∥f̂∥∥∥
p′
≤ ∥f∥p (4)

for all 1 ≤ p ≤ 2, and p′ is the Hölder conjugate exponent of p, which means it

satisfies
1

p
+

1

p′
= 1 for 1 < p ≤ 2,

and define p′ = ∞ if p = 1.

Moreover, the estimate (4) is the best possible.

Theorem 2.1. If (3) holds, then q = p′ and 1 ≤ p ≤ 2.

Proof. First, we prove that q needs to equal to p′. Consider

f(x) = ϕ
(x
t

)

for some Schwartz function ϕ and t > 0 can be varied. We can see that

f̂(ξ) = tnϕ̂ (tξ) ,

4
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so

∥∥∥f̂∥∥∥
q
= tn

(∫
Rn

∣∣∣ϕ̂ (tξ)∣∣∣q dξ) 1
q

= tn−
n
q

(∫
Rn

∣∣∣ϕ̂ (ξ)∣∣∣q dξ) 1
q

≈ tn−
n
q ,

∥f∥p ≈ t
n
p .

Then (3) becomes

tn−
n
q ≲ t

n
p .

It is only true if n− n

q
=
n

p
⇒ q = p′, since we can let t > 1 or 0 < t < 1.

For 1 ≤ p ≤ 2, since we assumed 1 ≤ p at first, we only need prove p ≤ 2. Given

a Schwartz function ψ supported on [0, 1]n and {ak}Nk=1 be i.i.d. random variables

with

P (ak = 1) = P (ak = −1) =
1

2

for all 1 ≤ k ≤ N . Then we choose function f be

f(x) =
N∑
k=1

akψ (x− ke1) ,

where e1 is the first vector of standard basis of Rn. We can easily see that

f̂ (ξ) =
N∑
k=1

akψ̂ (ξ) e2πikξ1

and

∥f∥p =

(∫ ∣∣∣∣∣
N∑
k=1

akψ (x− ke1)

∣∣∣∣∣
p

dx

) 1
p

≈
(
N

∫
|ψ(x)|p dx

) 1
p

≈ N
1
p . (5)

Next, by Khinchin’s inequality, we obtain

E
(∣∣∣f̂(ξ)∣∣∣p) 1

p

= E

(∣∣∣∣∣
N∑
k=1

akψ̂ (ξ) e2πikξ1

∣∣∣∣∣
p) 1

p

5
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≈

(
N∑
k=1

∣∣∣ψ̂ (ξ) e2πikξ1
∣∣∣2) 1

2

=

(
N∑
k=1

∣∣∣ψ̂(ξ)∣∣∣2) 1
2

since
∣∣e2πikξ1∣∣ = 1. Then raise the both side to the power of p, integrate with respect

to ξ and interchange the expectation and integral, we will get

E
(∥∥∥f̂∥∥∥q

q

)
≈

∥∥∥∥∥∥
(

N∑
k=1

∣∣∣ψ̂∣∣∣2) 1
2

∥∥∥∥∥∥
q

q

≈ N
q
2 .

Thus, by the definition of expectation, there is a choice of {ak}Nk=1 such that

N
q
2 ≲

∥∥∥f̂∥∥∥q
q
⇒ N

1
2 ≲

∥∥∥f̂∥∥∥
q
. (6)

According to the assumption, (5) and (6), we obtain

N
1
2 ≲

∥∥∥f̂∥∥∥
q
≲ ∥f∥p ≈ N

1
p ,

so we need p ≤ 2 if we let N tends to infinity.

Motivated by these elementary inequalities, the restriction problems are to study

the same kind of inequalities by replacing the left hand side by restricting f̂ on some

subset of Rn. These problems also play a very important role in many different

problems in PDE and geometric measure theory e.t.c.

Theorem 2.2. RS(p→ q) is equivalent to the following estimate:

∥∥∥f̂dσ∥∥∥
p′
≲ ∥f∥Lq′ (S) (7)

if dσ ∈M(Rn).

Proof. Suppose that RS(p→ q) holds, by the Riesz representation formula, we have

∥∥∥f̂dσ∥∥∥
p′
= sup

∥g∥p=1

∣∣∣∣∫
Rn

f̂dσ(x)g(x)dx

∣∣∣∣ = sup
∥g∥p=1

∣∣∣∣∫
Rn

f(x)ĝ(x)dσ(x)

∣∣∣∣ (8)

6
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for g a Schwartz function. Then

∣∣∣∣∫
Rn

f(x)ĝ(x)dσ(x)

∣∣∣∣ ≤ ∥ĝ∥Lq(S) ∥f∥Lq′ (S) ≲ ∥g∥p ∥f∥Lq′ (S)

by Hölder’s inequality and our assumption. Putting this estimate back to (8), we

obtain

sup
∥g∥p=1

∣∣∣∣∫
Rn

f(x)ĝ(x)dσ(x)

∣∣∣∣ ≲ sup
∥g∥p=1

∥g∥p ∥f∥Lq′ (S) ≤ ∥f∥Lq′ (S) .

For the other side, we can use the same method to get

∣∣∣∣∫
Rn

f̂(x)g(x)dσ(x)

∣∣∣∣ = ∣∣∣∣∫
Rn

f(x)ĝdσ(x)dx

∣∣∣∣ ≤ ∥f∥p
∥∥∥ĝdσ∥∥∥

p′
≲ ∥f∥p ∥g∥Lq′ (S) ,

so

∥f∥Lq(S) = sup
∥g∥

Lq′ (S)
=1

∣∣∣∣∫
Rn

f̂(x)g(x)dσ(x)

∣∣∣∣ ≲ sup
∥g∥

Lq′ (S)
=1

∥f∥p ∥g∥Lq′ (S) ≤ ∥f∥p .

Thus, we have shown these two statements are equivalent.

The Fourier transform of f restricted on Sn−1 may not always make sense for

arbitrary f ∈ Lp. First, for p = 1, we have f̂ is continuous and decays to zero as it

goes to infinity. Thus, it is meaningful of f̂ restricted on Sn−1, we can also see that

RS(1 → q) holds for q = ∞. From the Hölder’s inequality, we have

∥∥∥f̂∥∥∥
Lq(Sn−1)

≤
∥∥∥f̂∥∥∥

L∞(Sn−1)
· ∥1∥Lq(Sn−1) ≲

∥∥∥f̂∥∥∥
L∞(Sn−1)

≲ ∥f∥1

for all 1 ≤ q <∞ since Sn−1 is compact. Hence, RS(1 → q) holds for all 1 ≤ q ≤ ∞.

But for p = 2, let f be a L2 function, f̂ is also a L2 function by Plancherel’s theorem.

But f̂ is not meaningful on Sn−1 in general since it is a measure zero set.

Now we introduce the restriction conjecture.

Conjecture 2.1 (restriction conjecture). Given S = Sn−1 be the unit sphere in Rn

and 1 ≤ p, q <∞, then RS(p→ q) holds if and only if the following two inequalities

7
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hold.

p′ ≥ (n+ 1)q

n− 1
(9)

p <
2n

n+ 1
(10)

Why do we have this conjecture? Consider Σ be a surface with the form

Σ =
{
(x, ϕ (x)) : x ∈ Rn−1

}
,

where ϕ is a smooth function maps from Rn−1 to R. Without loss of generality, we

may assume ϕ(0) = ∇ϕ(0) = 0. Then we have the following property.

Property 2.1. Suppose ϕ(x) = O (|x|a) for a ≥ 2, then RS(p → q) holds only

possible if

p′ ≥ n+ a− 1

n− 1
q.

The proof is similar with part one of theorem 2.1. Thus, if Σ = S, we have

ϕ(x) = O
(
|x|2
)
, so the constraint of property above becomes (9). On the other

hand, if RS(p→ q) holds, by the duality (theorem 2.2), we have

∥∥∥f̂dσ∥∥∥
p′
≲ ∥f∥Lq′ (S)

for all f ∈ Lq
′
(S). In particular, choose f be the constant function 1, the this

inequality becomes ∥∥∥d̂σ∥∥∥
p′
≲ 1. (11)

Using the fact that ∣∣∣d̂σ (ξ)∣∣∣ ≲ |1 + ξ|
1−n
2 (12)

(see chapter 14.2 of [9]), we obtain

∥∥∥d̂σ∥∥∥
p′
≲
∫
Rn

|x|
1−n
2 dx =

∫ ∞

0

(1 + u)
1−n
2
p′+n−1du.

If we consider u is far from the origin, the term inside the integral is comparable

8
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with u
1−n
2
p′+n−1, so if we want it bounded by a constant, we need

1− n

2
p′ + n− 1 < −1 ⇒ p <

2n

n+ 1
. (13)

Consequently, these two inequalities are proved to be necessary conditions, and the

restriction conjecture says that they are also sufficient conditions.

The following theorem is an important result that proved by Peter A. Tomas

and Elias M. Stein. Their proofs are often called Tomas-Stein methods.

2.2 Proof of Tomas-Stein Restriction Theorem

Proof. First, if conjecture 2.1 is true, take q = 2, we have

p′ ≥ 2n+ 2

n− 1
⇒ 1− 1

p
≤ n− 1

2n+ 2
⇒ 1

p
≥ n+ 3

2(n+ 1)
⇒ p ≤ 2(n+ 1)

2n+ 3
.

It seems that the conjecture is somewhat believable.

We say that RS(p→ 2) holds means

∥∥∥f̂∥∥∥
L2(S)

≲ ∥f∥p ⇒
∫ ∣∣∣f̂(ξ)∣∣∣2 dσ(ξ) ≲ ∥f∥2p

⇒
∫
f̂(ξ) · f̂ (ξ)dσ(ξ) ≲ ∥f∥2p

⇒
∫
f̂(ξ) · f̂ ∗ d̂σ(ξ)dξ ≲ ∥f∥2p

⇒
∫
f(ξ) · f ∗ d̂σ(ξ)dξ ≲ ∥f∥2p (14)

by the Plancherel theorem. Next, by the Hölder’s inequality, we can see if

∥∥∥f ∗ d̂σ
∥∥∥
p′
≲ ∥f∥p (15)

holds, then (14) holds. Therefore, we transform the RS(p → 2) problem to the

some R(p → p′) type problem, and this transformation can be achieved because of

q = 2.

9
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To approach the estimation (15), we consider a radial bump function ϕ satisfies

ϕ = 1 for |x| ≤ 1,

ϕ = 0 for |x| ≥ 2

and has compact support. Then we define

ψk(x) = ϕ
(
2−kx

)
− ϕ

(
21−kx

)
, (16)

ψk is supported on the annulus of |x| ≈ 2k and is of size ≈ 1. Next, by the definition

of ϕ and ψ, we have the following two equations:

ψk(x) = ψ0

(
2−kx

)
(17)

and

1− ϕ(x) =
∞∑
k=1

ψk(x). (18)

(18) implies that

f ∗ d̂σ = f ∗
(
ϕd̂σ

)
+ f ∗

∞∑
k=1

ψkd̂σ

⇒
∥∥∥f ∗ d̂σ

∥∥∥
p′
≤
∥∥∥f ∗

(
ϕd̂σ

)∥∥∥
p′
+

∥∥∥∥∥
∞∑
k=1

f ∗
(
ψkd̂σ

)∥∥∥∥∥
p′

.

Consequently, we can estimate
∥∥∥f ∗

(
ϕd̂σ

)∥∥∥
p′

and
∥∥∥∥∥

∞∑
k=1

f ∗
(
ψkd̂σ

)∥∥∥∥∥
p′

separately

instead of
∥∥∥f ∗ d̂σ

∥∥∥
p′

.

For the first one, by the Young’s convolution inequality,

∥∥∥f ∗
(
ϕd̂σ

)∥∥∥
p′
≤ ∥f∥p

∥∥∥ϕd̂σ∥∥∥
p′
2

≲ ∥f∥p (19)

since ϕd̂σ is a bump function in C∞
0 .

10
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For the other one, first we observe that

∥∥∥∥∥
∞∑
k=1

f ∗
(
ψkd̂σ

)∥∥∥∥∥
p′

≤
∞∑
k=1

∥∥∥f ∗
(
ψkd̂σ

)∥∥∥
p′
,

so if we can show
∥∥∥f ∗

(
ψkd̂σ

)∥∥∥
p′
≲ 2−εk ∥f∥p for some ε > 0, we may easily conclude

that ∥∥∥∥∥
∞∑
k=1

f ∗
(
ψkd̂σ

)∥∥∥∥∥
p′

≲ ∥f∥p .

To show
∥∥∥f ∗

(
ψkd̂σ

)∥∥∥
p′
≲ 2−εk ∥f∥p, we use the interpolation of RS(1 → ∞)

and RS(2 → 2) with the restricted constants depend on some order of 2k.

First, for RS(∞ → 1), since ψk is supported on the annulus of |x| ≈ 2k, we get

∥∥∥f ∗
(
ψkd̂σ

)∥∥∥
∞

≲
∥∥∥ψkd̂σ∥∥∥

∞
∥f∥1 ≲ 2−

n−1
2
k ∥f∥1 (20)

by the Young’s convolution inequality and (12)

Next, for RS(2 → 2), we can see that

∥∥∥f ∗
(
ψkd̂σ

)∥∥∥
2
=
∥∥∥f̂ ·

(
ψ̂k ∗ dσ

)∥∥∥
2
≤
∥∥∥ψ̂k ∗ dσ∥∥∥

∞

∥∥∥f̂∥∥∥
2

(21)

by Plancherel’s theorem and Hölder’s inequality. Compute ψ̂k directly by its defi-

nition, we obtain

ψ̂k(x) = 2nkψ̂0

(
2kx
)
,

and we have ψ̂0 is a Schwartz function since ψ0 is also a Schwartz function. Thus,

ψ̂k(x) has the Schwartz decay:

∣∣∣ψ̂k(x)∣∣∣ = ∣∣∣2nkψ̂0

(
2kx
)∣∣∣ ≲ 2nk

(1 + 2k |x|)N
(22)

for all N > 0. Take N = n, we obtain the estimate

∣∣∣ψ̂k ∗ dσ∣∣∣ ≲ ∫
Sn−1

2nk

(1 + 2k |x− y|)n
dσ(y)

11
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=

∫
{y:|x−y|≤2−k}

2nk

(1 + 2k |x− y|)n
dσ(y)

+
∞∑

i=−k

∫
{y:2i<|x−y|≤2i+1}

2nk

(1 + 2k |x− y|)n
dσ(y)

≤2nk
∫
{y:|x−y|≤2−k}

1 · dσ(y) +
∞∑

i=−k

∫
{y:2i<|x−y|≤2i+1}

2nk

(1 + 2k+i)n
dσ(y)

≲2nk · 2−k(n−1) +
∞∑

i=−k

2nk · 2−(k+i)n · 2(i+1)(n−1)

=2k + 2n−1

∞∑
i=−k

2−i = 2k + 2n−1 · 2k+1 ≲ 2k. (23)

Hence, we have ∥∥∥ψ̂k ∗ dσ∥∥∥
∞

≲ 2k,

and (21) becomes ∥∥∥f ∗
(
ψkd̂σ

)∥∥∥
2
≲ 2k ∥f∥2 . (24)

As we mention above, using the interpolation by (20) and (24), we obtain

∥∥∥f ∗
(
ψkd̂σ

)∥∥∥
p′
≲ 2(1−θ)(

k(1−n)
2 ) · 2θk ∥f∥p = 2k(θ+

(1−n)(1−θ)
2 ) ∥f∥p

for
1

p
=
θ

2
+

1− θ

1
⇒ p =

2

2− θ
(25)

with 0 < θ < 1. As our desire, we want

2k(θ+
(1−n)(1−θ)

2 ) ≤ 2−εk ⇒ θ +
(1− n)(1− θ)

2
≤ −ε < 0 (26)

⇒ 2θ + (n− 1)θ + 1− n < 0 ⇒ θ <
n− 1

n+ 1
. (27)

Putting this back to (25), we have the range of p is

p =
2

2− θ
<

2

2− n−1
n+1

=
2(n+ 1)

n+ 3
. (28)

Therefore, we conclude that RS(p→ 2) if 1 ≤ p <
2(n+ 1)

n+ 3
.

12
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For the endpoint p = 2(n+ 1)

n+ 3
, Stein proved it by the similar method of Tomas

in 1975, he used the complex interpolation instead of the real interpolation.

As the proof above, it suffices to show that

∥∥∥∥∥
∞∑
k=1

f ∗
(
ψkd̂σ

)∥∥∥∥∥
p′

≲ ∥f∥p

for p =
2(n+ 1)

n+ 3
. If we use the same method of Tomas, we have ε = 0 and then

the sum will go to infinity. Thus, we prove the following two inequalities instead of

(20) and (24): ∥∥∥∥∥
∞∑
k=1

2(
n−1
2

+iy)kf ∗
(
ψkd̂σ

)∥∥∥∥∥
∞

≲ ∥f∥1 (29)

and ∥∥∥∥∥
∞∑
k=1

2(−1+iy)kf ∗
(
ψkd̂σ

)∥∥∥∥∥
2

≲ ∥f∥2 (30)

for all y ∈ R.

Similar with (20), we use the Young’s convolution inequality to get

∥∥∥∥∥
∞∑
k=1

2(
n−1
2

+iy)kf ∗
(
ψkd̂σ

)∥∥∥∥∥
∞

=

∥∥∥∥∥f ∗
∞∑
k=1

2(
n−1
2

+iy)k
(
ψkd̂σ

)∥∥∥∥∥
∞

≤

∥∥∥∥∥
∞∑
k=1

2(
n−1
2

+iy)k
(
ψkd̂σ

)∥∥∥∥∥
∞

∥f∥1 .

If we can prove ∥∥∥∥∥
∞∑
k=1

2(
n−1
2

+iy)k
(
ψkd̂σ

)∥∥∥∥∥
∞

≲ 1,

then (29) holds immediately. But this is easy because of (12) and

∞∑
k=1

2(
n−1
2

+iy)kψk(x) = O
(
|x|

n−1
2

)
,

since |x| ≈ 2k.

For (30), we need to use some estimate which is different from Tomas’. First,

13
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by the Young’s convolution inequality, it is sufficient to show

∥∥∥∥∥
∞∑
k=1

2(−1+iy)k
(
ψ̂k ∗ dσ

)∥∥∥∥∥
∞

≲ 1. (31)

We may ignore the imaginary term, so it is only need to prove

∞∑
k=1

2−k
∣∣∣ψ̂k ∗ dσ∣∣∣ ≲ 1. (32)

First, we show that

∣∣∣ψ̂k ∗ dσ∣∣∣ ≲

1 + 22kd(x, S), if d(x, S) ≤ 2(−1−ε)k,

2nk

(2kd(x, S))M
, if d(x, S) ≥ 2(−1+ε)k

(33)

for every ε > 0 and M > 0, where d(x, S) = ||x| − 1|, it means the distance between

x and the unit sphere. For d(x, S) ≥ 2(−1+ε)k, just use the same method of estimate

(23) and the fact that |x− y| ≥ ||x| − |y|| = d(x, S). For the other side, we can not

just use the same estimate, so we need to find another way to approach |ψk ∗ dσ|.

Consider

∇ψ̂k(x) = ∇2nkψ̂0(2
kx) = 2(n+1)k∇ψ̂0(2

kx) (34)

and ∇ψ̂0 is also a Schwartz function, so it has the Schwartz decay, too. Therefore,

we have

2−k
∣∣∣(∇ψ̂k) ∗ dσ∣∣∣ ≲ 2k ⇒

∣∣∣∇(ψ̂k ∗ dσ)∣∣∣ = ∣∣∣(∇ψ̂k) ∗ dσ∣∣∣ ≲ 22k

by (23). Write Fk(x) = ψ̂k ∗ dσ(x), we may assume |x| < 1, then

∣∣∣∣Fk(x)− Fk

(
x

|x|

)∣∣∣∣ ≤ sup
t∈[x, x

|x| ]
|∇Fk(t)| ·

∣∣∣∣x− x

|x|

∣∣∣∣ ≲ 22kd(x, S).

⇒ |Fk(x)| ≲
∣∣∣∣Fk ( x

|x|

)∣∣∣∣+ 22kd(x, S).

14
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If we can show
∣∣∣∣Fk ( x

|x|

)∣∣∣∣ is bounded, then we are done. By the rotational invariance

of dσ, we suppose x

|x|
= en be the last vector of basis, so

|Fk(en)| ≤
∫
|en−y|≤100

∣∣∣ψ̂k(en − y)
∣∣∣ dσ(y) + ∫

|en−y|>100

∣∣∣ψ̂k(en − y)
∣∣∣ dσ(y).

The second part is finite by the similar method of (23), For the first part, we write

y =

(
y,
(
1−

∣∣y∣∣2) 1
2

)
,

where y ∈ Rn−1. Thus, the integral becomes

∫
|y|≤R

∣∣∣∣ψ̂k (y, 1− (1− ∣∣y∣∣2) 1
2

)∣∣∣∣ · 1(
1−

∣∣y∣∣2) 1
2

dy ≲
∫
Rn−1

∣∣∣ψ̂k (y,O (∣∣y∣∣2))∣∣∣ dy
for some constant R. We now to show that this integral is comparable with

∫
Rn−1

∣∣∣ψ̂k (y, 0)∣∣∣ dy +O(1).

By the Schwartz decay, we obtain

∣∣∣ψ̂k (y,O (∣∣y∣∣2))− ψ̂k
(
y, 0
)∣∣∣ ≲ 2(n+1)k(

1 + 2k
∣∣y∣∣)N ·O

(∣∣y∣∣2)

for all N > 0, and then

∣∣∣ψ̂k (y,O (∣∣y∣∣2))∣∣∣ ≲ ∣∣∣ψ̂k (y, 0)∣∣∣+ 2(n+1)k(
1 + 2k

∣∣y∣∣)N ·O
(∣∣y∣∣2)

⇒
∫
Rn−1

∣∣∣ψ̂k (y,O (∣∣y∣∣2))∣∣∣ dy ≲
∫
Rn−1

∣∣∣ψ̂k (y, 0)∣∣∣ dy + ∫
Rn−1

2(n+1)kO
(∣∣y∣∣2)(

1 + 2k
∣∣y∣∣)N dy.

Consequently, we need to show the last integral is O(1). We use the method of

15
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estimate (23) again, we get

∫
Rn−1

2(n+1)k
∣∣y∣∣2(

1 + 2k
∣∣y∣∣)N dy

=

∫
{y:|y|≤2−k}

2(n+1)k
∣∣y∣∣2(

1 + 2k
∣∣y∣∣)N dy +

∞∑
i=1

∫
{y:2−k+i−1<|y|≤2−k+i}

2(n+1)k
∣∣y∣∣2(

1 + 2k
∣∣y∣∣)N dy

≲2(n+1)k

∫
{y:|y|≤2−k}

2−2kdy + 2(n+1)k

∞∑
i=1

∫
{y:2−k+i−1<|y|≤2−k+i}

22(−k+i) · 2−N(i−i)dy

≲2(n−1)k · 2−k(n−1) +
∞∑
i=1

2(n−N+1)i+N = 1 +
∞∑
i=1

2(n−N+1)i+N .

Taking N = n + 2, the summation converges, then this integral is O(1). Next, we

may choose suitable ϕ such that the integral

∫
Rn−1

∣∣∣ψ̂k (y, 0)∣∣∣ dy = 0.

Thus, we prove that
∣∣∣∣Fk ( x

|x|

)∣∣∣∣ is O(1), so (23) is true. According to this inequality,

we have

∞∑
k=1

2−k
∣∣∣ψ̂k ∗ dσ∣∣∣ ≲


∞∑
k=1

2−k + 2−εk, if d(x, S) ≤ 2(−1−ε)k,

∞∑
k=1

2(n−1−Mε)k, if d(x, S) ≥ 2(−1+ε)k.

(35)

The above one converges, the under one also converges if we choose M such that

n − 1 − Mε < 0. Therefore, by the limit argument, the sum is convergent and

bounded by some constant for all d(x, S). Then we prove that (32) holds. Finally,

using the Stein complex interpolation, we can finish the end point case of Tomas-

Stein theorem.

Theorem 2.3 (Stein complex interpolation theorem). Let Tz be an analytic family

of linear operators of admissible growth defined in the strip {z : 0 ≤ R(z) ≤ 1}.

16
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Suppose that 1 ≤ p1, p2, q1, q2 ≤ ∞, 1
pθ

= 1−θ
p1

+ θ
p2
, 1
qθ

= 1−θ
q1

+ θ
q2

with 0 ≤ θ ≤ 1 and

∥Tiy(f)∥q1 ≤ C1(y) ∥f∥p1 , ∥T1+iy(f)∥q2 ≤ C2(y) ∥f∥p2

with log |Ci(y)| ≤ Cea|y|, i = 1, 2 and a < π, then

∥Tθ(f)∥qθ ≲ ∥f∥pθ .

The proof and detailed definition is in [11]. To use this interpolation, we set

Tiy(f) =
∞∑
k=1

2(iy)kf ∗
(
ψkd̂σ

)
, we have p1 = 2, p2 = 1, normalize the interval[

−1,
n− 1

2

]
to have the length 1, the interval becomes

[
n− 1

n+ 1
,

−2

n− 1

]
. And then

∥T0(f)∥p′0 =

∥∥∥∥∥
∞∑
k=1

f ∗
(
ψkd̂σ

)∥∥∥∥∥
p′0

≲ ∥f∥p0 ,

where P0 satisfies

1

p0
=

n−1
n+1

− θ

2
+
θ − −2

n−1

1
⇒ p0 =

2(n+ 1)

n+ 3
.

So we finish the part of endpoint 2(n+ 1)

n+ 3
, and then completes the whole proof.

The theorem says that RS(p→ 2) is valid for 1 ≤ p ≤ 2(n+ 1)

2n+ 3
, next we use the

Knapp example to show the bound 2(n+ 1)

2n+ 3
is sharp. Let en = (0, 0, · · · , 1) be the

last unit vector of Rn, define

Aδ =
{
t ∈ Sn−1 : 1− en · t ≤ δ2

}
with 0 < δ < 1. Consider f = χAδ

, we have

∥f∥L2(Sn−1) ≈ δ
n−1
2 . (36)

17



doi:10.6342/NTU202301952

Next, using lemma 3.18 of [9] with c =
1

12n
, we have

∣∣∣f̂(ξ)∣∣∣ ≳ δn−1

for ξ ∈ Bδ, where

Bδ =
{
ξ = (ξ1, · · · , ξn) ∈ Rn : |ξi| ≤

c

δ
for i = 1, · · · , n− 1, |ξn| ≤

c

δ2

}
.

Then we can estimate the Lq norm of f̂ ,

∥∥∥f̂∥∥∥
q′
≳ δn−1 |Bδ|

1
q′ = δn−1

(
2ncnδ−n−1

) 1
q′ ≳ δ

n−1−n+1
q′ . (37)

Thus, combine (36), (37) and the dual form of restriction inequality, we get

δ
n−1−n+1

q′ ≲
∥∥∥f̂∥∥∥

q′
≲ ∥f∥L2(Sn−1) ≈ δ

n−1
2 ,

which implies that n− 1− n+ 1

q′
≥ n− 1

2
⇒ q′ ≥ 2(n+ 1)

n− 1
since 0 < δ < 1. Hence

the bound of q is q ≤ 2(n+ 1)

2n+ 3
, and it can not greater than 2(n+ 1)

2n+ 3
. That shows

the bound is sharp.

18
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2.3 Conclusion of Restriction Conjecture

In the Section 2.1, we give two necessary conditions of (7) for S = Sn−1. By

Tomas-Stein theorem, we have RS(p → q) holds for (p′, q′) =

(
2(n+ 1)

n− 1
, 2

)
, and

by a simple estimate

∣∣∣f̂dσ(ξ)∣∣∣ = ∣∣∣∣∫
Sn−1

f(x)e−2πix·ξdσ(x)

∣∣∣∣ ≤ ∫
Sn−1

|f(x)| dσ(x) = ∥f∥L1(S) ,

we have RS(p → q) holds for (p′, q′) = (∞, 1). Thus, we have RS(p → q) holds for(
1

p′
,
1

q′

)
on the line between

(
1

∞
, 1

)
and

(
n− 1

2(n+ 1)
,
1

2

)
using the interpolation

Next, if (7) holds for p′ and q′, then it also holds for p̃′ ≥ p′ and q̃′ ≥ q′ by Hölder’s

inequality. Combining all these conditions, we can draw a region of validity on(
1

q′
,
1

p′

)
-diagram. On the other hand, by the argument of (13), we know that d̂σ is

1
q′

1
p′

1

1

(
1
1
, 1
∞

)

(
1
2
, n−1
2(n+1)

)

region of validity

Figure 1

not a Lp′ function for p′ ≤ 2n

n− 1
. Because of the sharpness of Tomas-Stein theorem,

the best point can not exceed the line y =
n− 1

n+ 1
· (−x+1). Thus, we guess the best

possible point will be
(
n− 1

2n
,
n− 1

2n

)
. Also, we may impose a weaker conjecture

that to be
(

1
q
, 1
p′

)
=
(

1
∞ ,

n−1
2n

)
i.e. p′ = 2n

n−1
and q = ∞. However, it has been proven
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by Bourgain that they are equivalent.

1
q′

1
p′

1

1

(
1
1
, 1
∞

)

(
1
2
, n−1
2(n+1)

)

region of validity

(
n−1
2n
, n−1

2n

)
conjectured

Figure 2

There is a large gap from
(
1

2
,
n− 1

2(n+ 1)

)
to
(
n− 1

2n
,
n− 1

2n

)
. Back to the proof

of Tomas-Stein theorem, Due to the case we deal with is q = 2, we can easily

transform
∥∥∥f̂∥∥∥

L2(S)
≲ ∥f∥p into

∥∥∥f ∗ d̂σ
∥∥∥
p′

≲ ∥f∥p. In other cases, it would not

be such easy to get a clear form to estimate. Also we know that d̂σ will affect the

bound directly, so for the other surfaces, the best point will be different. That is why

restriction problem is a vast and fascinating field which is still activating nowadays.
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3 Connections between restriction problems and

geometric measure theory

3.1 The case for n = 2

Before going through the detail of [1], we need some lemmas first.

Lemma 3.1 (Frostman lemma). Given a Borel set E ⊂ Rn and 0 ≤ s ≤ n, then

Hs(E) > 0 if and only if there exists µ ∈M(E) satisfies

µ (B (x, r)) ≤ rs, ∀x ∈ Rn, r > 0. (38)

Proof. ( ⇐= )

Given a covering of balls {Bi} with radius r cover E and µ ∈ M(E) satisfies (38),

then ∑
i

(diam (Bi))
s =

∑
i

(r)s ≥
∑
i

µ (Bi)
s ≥ µ(A) > 0. (39)

So by the definition of Hs(E), we obtain Hs(E) > 0.

(⇒)

We only prove the version that E is compact. Assume E is compact and is contained

in a dyadic cube. Since Hs(E) > 0, there is a constant c > 0 such that

∑
j

diam(Ej)
s ≥ c > 0

for all covering {Ej} of E. Now consider a dyadic system, let

Dm =
{

all dyadic cubes of length 2−m
}
=

{
n∏
i=1

[
ki
2m
,
ki + 1

2m

)∣∣∣∣ (k1, · · · , kn) ∈ Zn
}
.

For all m > 0, define a measure µm,m on Rn by

µm,m

∣∣∣∣
Q

=


1

2ms
| · |Q
|Q|

, if E ∩Q ̸= ϕ,

0, if E ∩Q = ϕ

(40)
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for all Q ∈ Dm. Since E is compact, there exists a smallest km ∈ R such that

E ⊆ Q′ for some Q′ ∈ Dm−km . So for 0 ≤ k ≤ km − 1, we define

µm,m−k−1

∣∣∣∣
P

=


µm,m−k

∣∣∣∣
P

, if µm,m−k (P ) ≤ 1
2(m−k−1)s ,

1
2(m−k−1)s

µm,m−k

∣∣∣∣
P

µm,m−k(P )
, if µm,m−k (P ) >

1
2(m−k−1)s

(41)

for all P ∈ Dm−k−1. Let µm = µm,m−km , we can see that for each stages, the measure

of dyadic cubes is non-increasing since µm,m−k (P ) >
1

2(m−k−1)s
⇒ 1

2(m−k−1)s

1

µm,m−k(P )
<

1. So we have for 0 ≤ k ≤ km,

µm (Q) ≤ 1

2(m−k)s (42)

for all Q ∈ Dm−k. Next, for all x ∈ E and m ≥ 0, we can find a maximal dyadic

cube Q ∈ Dm−k for some k satisfies

µm(Q) =
1

2(m−k)s =
diam(Q)s

n
s
2

. (43)

Picking for each of x ∈ E the largest such Q, we obtain disjoint cubes Q1, · · · , Ql

with E ⊆
l⋃

i=1

Qi since E is compact. Then

µm(Rn) =
l∑

i=1

µm(Qi) =
l∑

i=1

diam(Qi)
s

n
s
2

≥ c

n
s
2

. (44)

Consider νm =
µm

µm(Rn)
, then νm(Rn) = 1 and

νm(Q) =
µm(Q)

c · n− s
2

≤ n
s
2

c · 2(m−k)s <∞ (45)

for Q ∈ Dm−k by (42) and (44). So by the theorem 1.23 in [8], {νm}∞m=1 possesses

a weakly convergent subsequence {νml
}∞l=1 with lim

l→∞
νml

= ν and ν ∈ M(E) with
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ν(E) ≤ ν(Rn) = 1. Finally, for x ∈ Rn, 0 < r < 1, we have

B(x, r) ⊆ int

(
2n⋃
i=1

Qi

)

with Qi ∈ Dp for some p such that diam(Qi) =
n

1
2

2p
≤ 4n

1
2 r. Then for m ≥ p, we

obtain

νm

(
2n⋃
i=1

Qi

)
≤

2n∑
i=1

2−ps · n
s
2

c
= 2n · 2−ps · n

s
2

c
≤ 2n (4r)s

2
s
2

c
=

(
2n+2s · n s

2

c

)
rs

by (45). So

ν (B (x, r)) ≤ ν

(
2n⋃
i=1

Qi

)
≤ lim inf

l→∞
νml

(
2n⋃
i=1

Qi

)
≤
(
2n+2s · n s

2

c

)
rs. (46)

Then the measure µ =

(
2n+2s · n s

2

c

)−1

ν is what we want.

Now given s > 0 and a Borel measure µ, we define the s-energy be

Is(µ) =

∫∫
|x− y|−s dµ(x)dµ(y) =

∫
(k ∗ µ) (x)dµ(x), (47)

where ks(x) is the Riesz kernel:

ks (x) = |x|−s , x ∈ Rn. (48)

We have the following proposition immediately.

Property 3.1. If µ has compact support and satisfies (38), then

Is(µ) <∞ ⇒ It(µ) <∞

for 0 < t < s.
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Proof. First we have

∫
|x− y|−s dµ(x) =

∫ ∞

0

µ
({
x : |x− y|−s ≥ u

})
du =

∫ ∞

0

µ
(
B(y, u−

1
s )
)
du

= s

∫ ∞

0

r−s−1µ(B(y, r))dr,

and then

It(µ) ≤ t

∫∫ diam(supp(µ))

0

µ (B (y, r))

rt+1
drdµ(y) ≤ t

∫∫ diam(supp(µ))

0

rs

rt+1
drdµ(y)

= tµ(Rn)

∫ diam(supp(µ))

0

rs−t−1dr <∞

since t, µ(Rn) diam(supp (µ)) are finite and s− t− 1 > −1.

If µ has compact support, then Is(µ) < ∞ ⇒
∫

|x− y|−s dµ(x) < ∞ for µ

almost y ∈ Rn. Thus, we can find 0 < M <∞ such that

A :=

{
y :

∫
|x− y|−s dµ(x) < M

}

has positive measure for µ. It means that for all x ∈ Rn and r > 0, we have

µ (A ∩ B(x, r)) =

∫
A∩B(x,r)

dµ(y) =

∫
A∩B(x,r)

|z − y|s |z − y|−s dµ(y)

≤ (2r)s
∫
A∩B(x,r)

|z − y|−s dµ(y) < M(2r)s,

where z ∈ A∩B(x, r). Then by Frostman’s lemma, if µ ∈M(A), we haveHs(A) > 0.

Moreover, we have

dimH(E) = sup {s : there is a µ ∈M(E) such that Is(µ) <∞} .

The two theorems show that Is(µ) can be expressed as some integral form of Fourier

transform of µ.

Theorem 3.1. For 0 < s < n, there is a constant 0 < Cn,s < ∞ such that
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k̂s = Cn,skn−s as tempered distribution, which means

∫
ksϕ̂ =

∫
Cn,skn−sϕ (49)

for all ϕ ∈ S (Rn).

Proof. First assume n

2
< s < n, then ks ∈ L1 + L2 :=

{
f1 + f2 : f1 ∈ L1, f2 ∈ L2

}
since 7 ∫

B(0,1)

ks <∞ and
∫
Rn\B(0,1)

k2s <∞.

So we can define the Fourier transform of such ks = f1 + f2 ∈ L1 + L2 as

k̂s = f̂1 + f̂2 ∈ L∞ + L2

by the duality. We can see that ks is radial, so k̂s is also radial. Also we have

kn−s (rξ) = kn−s(ξ)r
s−n

and

k̂s(rξ) =

∫
Rn

|x|−s e−2πix·rξdx =

∫
Rn

∣∣∣u
r

∣∣∣−s e−2πiu·ξdu · r−n

= rs−n
∫
Rn

|u|−s e−2πiu·ξdu = rs−nk̂s(ξ)

for r > 0. Fix ξ = ξ0, view these as functions of r, we obtain

k̂s (ξ0r) = k̂s (ξ0) r
s−n

and

kn−s (rξ0) = kn−s(ξ0)r
s−n =

kn−s (ξ0)

k̂s (ξ0)
k̂s (ξ0r) ,

25



doi:10.6342/NTU202301952

so k̂s = Cn,skn−s for n
2
< s < n. Then for any ϕ ∈ S(Rn),

∫
ksϕ̂ =

∫
k̂sϕ =

∫
Cn,sksϕ

by the Fubini’s theorem because ks ∈ L1 (B (0, 1)), ksϕ ∈ L1 (Rn \B (0, 1)).

For 0 < s <
n

2
, we have ̂̂f (x) = f(−x) and ks is radial, so

̂̂
ks(x) = ks(x).

And it is also true for tempered distribution by the Fubini’s theorem. Therefore,

k̂n−s(x) = Cn,sks(x) ⇒ kn−s(x) = Cn,sk̂s(x) ⇒ k̂s(x) = C−1
n,skn−s(x).

The first equality follows from the result above since n
2
< n− s < n.

Now for s = n

2
, by the Lebesgue dominated convergence theorem, we obtain

∫
kn

2
ϕ̂ = lim

s→n
2

∫
ksϕ̂ = lim

s→n
2

∫
Cn,skn−sϕ = lim

s→n
2

Cn,s

∫
kn

2
ϕ. (50)

Then if we show lim
s→n

2

Cn,s is finite, we complete the proof. Actually, we can find the

exact form of Cn,s. Consider ϕ(x) = e−π|x|
2

, we have

∫
|x|−s e−π|x|

2

dx =

∫ ∞

0

u−se−πu
2 · un−1du =

∫ ∞

0

un−s−1e−πu
2

du

=

∫ ∞

0

(
t

π

)n−s−1
2

e−t · 1

2π
·
(
t

π

)−1

dt

=
π

s−n
2

2

∫ ∞

0

t
n−s
2

−1e−tdt =
π

s−n
2

2
Γ

(
n− s

2

)
. (51)

Similarly, by replacing s with n− s, we obtain

∫
|x|−(n−s) e−π|x|

2

dx =
π− s

2

2
Γ
(s
2

)
(52)
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we know that ϕ̂ = ϕ. Then by (51) and (52),

∫
|x|−s e−π|x|

2

dx = Cn,s

∫
|x|s−n e−π|x|

2

dx

for s ̸= n

2
, which implies

Cn,s = πs−
n
2
Γ
(
n−s
2

)
Γ
(
s
2

) .

Since Gamma function is continuous,

lim
s→n

2

πs−
n
2
Γ
(
n−s
2

)
Γ
(
s
2

) = π0Γ
(
n
4

)
Γ
(
n
4

) = 1

which is finite. Hence we complete the proof of this theorem.

Theorem 3.2. Let µ ∈M(Rn) and 0 < s < n, then

Is(µ) =

∫∫
|x− y|−s dµ(x)dµ(y) = Cn,s

∫
|µ̂(x)|2 |x|s−n dx (53)

Proof. For the common function sense, we have

Is(µ) =

∫
ks ∗ µdµ =

∫
k̂s ∗ µ · ¯̂µ =

∫
k̂s · µ̂ · ¯̂µ

=

∫
k̂s |µ̂|2 = Cn,s

∫
kn−s |µ̂|2 = Cn,s

∫
|x|s−n |µ̂(x)|2 dx

by some basic formulas, Plancherel’s theorem and theorem 3.1. But k̂s only exists

in distribution sense. So we first give ψ ∈ S(Rn) be real valued, we can get

Is(ψ) =

∫
ks ∗ ψdψ =

∫∫
ks (x− y)ψ(y)ψ(x)dydx

=

∫∫
ks(z)ψ(x− z)ψ(x)dzdx =

∫
ks

(
ψ̃ ∗ ψ

)
,

where ψ̃(x) = ψ(−x). Moreover, we can see that

∣̂∣∣ψ̂∣∣∣2 = (̂ψ̂ · ¯̂ψ
)
=
̂̂
ψ ∗

̂̂̄
ψ = ψ̃ ∗ ψ (54)
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since ψ is real valued. So ψ̃ ∗ ψ is the Fourier transform of
∣∣∣ψ̂∣∣∣2, thus

Is(ψ) =

∫
ks

(
ψ̃ ∗ ψ

)
=

∫
ks

∣̂∣∣ψ̂∣∣∣2
=

∫
k̂s

∣∣∣ψ̂∣∣∣2 = Cn,s

∫
|x|s−n

∣∣∣ψ̂(x)∣∣∣2 dx.
Now for µ ∈M(Rn), we use

µε = ϕε ∗ µ

to approximate µ, where

ϕε(x) = ε−nϕ
(x
ε

)
(55)

with ϕ ∈ C∞
0 (Rn) and

∫
ϕ = 1, then µε ∈ S(Rn) and µε → µ weakly. Next, we see

that

∫∫
|x− y|−s ϕε(x− z)ϕε(y − w)dxdy =

∫∫
|ε(u− v) + z − w|−s ϕ(u)ϕ(v)dudv

by changing variable with u =
x− z

ε
, v =

y − w

ε
. Then since ϕ has compact support

and
∫
ϕ = 1,

|ε(u− v) + z − w|−s ≲ |z − w|−s <∞.

Therefore, by Lebesgue dominated convergence theorem, we have

∫∫
|ε(u− v) + z − w|−s ϕ(u)ϕ(v)dudv → |z − w|−s

as ε→ 0 if z ̸= w. Then we get

∫∫
|ε(u− v) + z − w|−s ϕ(u)ϕ(v)dudv ≲ |z − w|−s <∞ (56)

hence
∫
ϕ = 1. So

∫∫ (∫∫
|x− y|−s ϕε(x− z)ϕε(y − w)dxdy

)
µ(z)µ(w)dzdw
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=

∫∫
|x− y|−s

(∫
ϕε(x− z)µ(z)dz

)(∫
ϕε(y − w)µ(w)dw

)
dxdy

=

∫∫
|x− y|−s µε(x)µε(y)dxdy

=Is(µε) = Cn,s

∫
|x|s−n

∣∣∣µ̂(x)ϕ̂ε(x)∣∣∣2 dx = Cn,s

∫
|x|s−n |µ̂(x)|2

∣∣∣ϕ̂(εx)∣∣∣2 dx. (57)

The first equality because of Fubini’s theorem, which can be used since (56). The

last line follows from the conclusion above with ψ = µε and ϕ̂ε(x) = ϕ̂ (εx).

Now if Is(µ) =

∫
|z − w|−s µ(z)µ(w)dzdw < ∞,we can use the Lebesgue dom-

inated convergence theorem on the last term of (57) by (56), then it tends to

Cn,s

∫
|x|s−n |µ̂(x)|2 dx because ϕ̂(0) =

∫
ϕ = 1. On the other hand, if Is(µ) = ∞,

by Fatou’s lemma, we obtain

∞ = Is(µ) ≤ lim inf
ε→0

∫∫ (∫∫
|x− y|−s ϕε(x− z)ϕε(y − w)dxdy

)
µ(z)µ(w)dzdw

= lim inf
ε→0

Cn,s

∫
|x|s−n |µ̂(x)|2

∣∣∣ϕ̂(εx)∣∣∣2 dx = Cn,s

∫
|x|s−n |µ̂(x)|2 dx.

Then we complete the proof.

Now we can present the result of Bourgain.

Theorem 3.3. Given a Borel compact set E ⊂ R2, we have

dimH(E) >
13

9
⇒ |∆E| > 0.

Proof. Given a set E ⊂ R2 and take α < dimH(E), by property 3.1, we know there

is a probability measure µ (since we may assume µ(E) = 1) on E which satisfies

Iα(µ)

∫∫
|x− y|−α dµ(x)dµ(y) <∞.

Then by theorem 3.2, it becomes

∫
|µ̂(x)|2 |x|α−2 dx =

∫
|µ̂(x)|2

|x|2−α
dx <∞ (58)

29



doi:10.6342/NTU202301952

and implies that ∫
|x|>1

|µ̂(x)|2

|x|2−α
dx <∞. (59)

Consider a ball B with radius R in R2, then (59) implies

∫
B

|µ̂(x)|2 dx ≲ R2−α. (60)

This is trivial if B is contained in B(0, 100R), so if not, assume B = B(x0, R) and

consider a function ϕ with its Fourier transform is a bump function and satisfies

ϕ, ϕ̂ ≥ 0,

ϕ̂ ≈ 1 on B(0, R),

ϕ̂ = 0 out of B(0, 2R).

Hence, we can see that f(x) = (1− cos < x, x0 >)ϕ(x) ≥ 0 and

f̂(ξ) = ϕ̂(ξ)− 1

2

(
ϕ̂(ξ + x0) + ϕ̂(ξ − x0)

)

since cos x =
eix + e−ix

2
and the Fourier transform of f(x) here is

∫
f(x)eix·ξdx.

Then

0 ≤
∫
f(x)µ ∗ µ(x)dx =

∫
f̂(ξ)µ̂ ∗ µ(ξ)dξ =

∫
f̂(ξ) |µ̂(ξ)|2 dξ

=

∫
ϕ̂(ξ) |µ̂(ξ)|2 dξ − 1

2

∫ (
ϕ̂(ξ + x0) + ϕ̂(ξ − x0)

)
|µ̂(ξ)|2 dξ

≲
∫
B(0,2R)

|µ̂(ξ)|2 dξ −
∫
B

|µ̂(ξ)|2 dξ. (61)

The last line is because of ϕ̂(ξ + x0) is almost supported on B and ϕ̂ is symmetric

w.r.t. the origin. Therefore, we get

∫
B

|µ̂(ξ)|2 dξ ≲
∫
B(0,2R)

|µ̂(ξ)|2 dξ ≲ R2−α. (62)

Let σs be the arc length measure of S1(s). If we want to show that ∆(E) has positive
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measure, we need ∫ b

a

|< µ, µ ∗ σs >|2 ds <∞ (63)

for some 0 < a < b < ∞. This is called Mattila’s method. As its name, it is given

by Mattila in [7]. If the inequality above holds, it means the Fourier transform of

the push-forward measure µ×µ under the distance map is a L2 function. Hence it is

absolutely continuous with L2 density. Also we can see that the support of µ× µ is

contained in ∆(E). Combine these two results, we get |∆(E)| ≥ |supp (µ× µ)| > 0.

Then we first see that

< µ, µ ∗ σ > =

∫
µ(x)µ ∗ σ(x)dx =

∫
µ̂(ξ)µ̂(ξ)σ̂(ξ)dξ

≈
∫

|µ̂(ξ)|2 e
is|ξ|

|ξ|
1
2

dξ =

∫∫ ∣∣µ̂ (reiθ)∣∣ r 1
2 eisrdrdθ,

so if ∫ (∫ ∣∣µ̂ (reiθ)∣∣2 dθ)2

rdr <∞, (64)

then (63) holds. Now let

gµ(r) =

∫ ∣∣µ̂ (reiθ)∣∣2 dθ (65)

as a function of r as it tends to ∞, and we want to show that it can be bounded by

some order of r.

Consider F ≥ 0 be a convolution of µ which only depends on r and satisfying

∣∣∣F̂ (ξ)∣∣∣ ≤ |µ̂(ξ)|

and by (59) we have

∫
|F |2 =

∫ ∣∣∣F̂ ∣∣∣2 ≤ ∫ |µ̂|2 ≤ r2−α. (66)

Given a annulus Ar(1) on R2, we can consider {Ri} be a set of rectangles with
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dimensions 1× r
1
2 to be almost fill up Ar(1), and we have the amount of Ri is ≈ r

1
2 .

Thus,

gµ(r) ≈
∫ ∣∣∣F̂ (reiθ)∣∣∣2 dθ ≈ ∫ r+1

r

∫ ∣∣∣F̂ (ρeiθ)∣∣∣2 dθdρ, (67)

and by our construction above, this integral becomes

1

r

∫
A

∣∣∣F̂ (x)∣∣∣2 dx =
1

r

∫
F̂ (x) · F̂ (x)χA(x)dx =

1

r

∫
F (x) · F (x) ∗ χ̂A(x)dx (68)

≤ 1

r
∥F∥ 4

3

∥∥∥∥∥∑
i

(
F̂ · χRi

)∨∥∥∥∥∥
4

, (69)

by Hölder’s inequality. To estimate ∥F∥ 4
3
, since

∥F∥1 ≲ ∥µ∥1 = 1 and ∥F∥2 ≤ r1−
α
2 ,

the interpolation formula tells us

∥F∥ 4
3
≤ ∥F∥

1
2
1 ∥F∥

1
2
2 ≲ r

1
2
−α

4 . (70)

For the other one, by the square function equivalence,

∥∥∥∥∥∑
i

(
F̂χRi

)∨∥∥∥∥∥
4

≲

∥∥∥∥∥∥
(∑

i

∣∣∣∣(F̂χRi

)∨∣∣∣∣2
) 1

2

∥∥∥∥∥∥
4

=

∥∥∥∥∥∑
i

∣∣∣∣(F̂χRi

)∨∣∣∣∣2
∥∥∥∥∥

1
2

2

. (71)

Then define

ai =

∫ ∣∣∣∣(F̂χRi

)∨∣∣∣∣2 = ∫ ∣∣∣F̂χRi

∣∣∣2 = ∫
Ri

∣∣∣F̂ ∣∣∣2 (72)

and

bi =

∣∣∣∣(F̂χRi

)∨∣∣∣∣2
ai

. (73)

since Ri is with dimensions 1 × r
1
2 , it is contained in a ball Qi of radius r 1

2 . Then

we have

ai =

∫
Ri

∣∣∣F̂ ∣∣∣2 ≤ ∫
Bi

∣∣∣F̂ ∣∣∣2 ≤ ∫
Bi

|µ̂|2 ≲ r1−
α
2 (74)
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by (60) and
∣∣∣F̂ ∣∣∣ ≤ |µ̂|. Also, we can observe that

∑
i

ai =

∫
∪Ri

∣∣∣F̂ ∣∣∣2 ≤ ∫
A

∣∣∣F̂ ∣∣∣2 = r · gµ(r) (75)

Next, given ω ∈ S1, consider the maximal function

Mδf(ω) = sup
T

1

|T |

∫
T
f, (76)

where T is a rectangle with dimensions 1 × δ and the length 1 side is along the

direction ω. Given a function f with ∥f∥2 ≤ 1, then we have

〈∑
i

aibi, f

〉
≤
∑
i

aiM 1√
r
f(ωi) ≤

(∑
i

a2i

) 1
2
(∑

i

∣∣∣M 1√
r
f(ωi)

∣∣∣2) 1
2

(77)

= r
1
4

(∑
i

a2i

) 1
2
(∑

i

r−
1
2

∣∣∣M 1√
r
f(ωi)

∣∣∣2) 1
2

(78)

where {ωi} i = 1, ..., ⌊r
1
2 ⌋ is a τ separated set on S1 with τ ≈ r−

1
2 . Thus,

r
1
4

(∑
i

a2i

) 1
2
(∑

i

r−
1
2

∣∣∣M 1√
r
f(ωi)

∣∣∣2) 1
2

≈ r
1
4

(∑
i

a2i

) 1
2 ∥∥∥M 1√

r
f
∥∥∥
2
. (79)

Then use the result of Kakeya-type maximal operator (see [10], Theorem 9.1.2), we

get the inequality ∥∥∥M 1√
r
f
∥∥∥
L2(S1)

≲
(

log 1
1√
r

) 1
2

∥f∥2 , (80)

and then

(79) ≲ r
1
4

(∑
i

a2i

) 1
2

(log r)
1
2 ≤ r

1
4 (log r)

1
2

(
max
i
ai

) 1
2

(∑
i

ai

) 1
2

. (81)

Finally, by (67), (69), (70), (71), (74), (75) and (81), we obtain

gµ(r) ≲
1

r
· r

1
2
−α

4 · r
1
8 (log r)

1
4 r

1
4
−α

8 (r · gµ(r))
1
4 , (82)
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and we may conclude that

gµ(r) ≲ r−
α
2
+ 1

6
+ε (83)

for any ε > 0. Back to our main goal, we want (64) to be true. Since gµ(r) ≲ r
1
6
−α

2 ,

we have

∫ (∫ ∣∣µ̂ (reiθ)∣∣2 dθ)2

rdr ≲
∫
r−

α
2
+ 1

6

∫
r
∣∣µ̂(reiθ)∣∣2 dθdr =

∫
|µ̂(ξ)|2 |ξ|

1
6
−α

2 dξ.

(84)

Then by (59), if 1

6
− α

2
> 2− α ⇒ α >

13

9
, (84) will be finite. Hence we conclude

that if 13

9
< α < dimH(E), the distance set of E has the positive measure.
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3.2 The case for n ≥ 3

First we give a bilinear restriction proved by Tao in [13].

Theorem 3.4. Let n ≥ 2, Σ1,Σ2 be the compact subsets of Σ with d(Σ1,Σ2) > 1,

where Σ = {x = (x1, · · · , xn) ∈ Rn : xn = x21 + · · · + x2n−1}, and dσ be the surface

measure on Σ. Then for q > n+ 2

n
, we have

∥∥∥f̂1dσf̂2dσ∥∥∥
Lq(Rn)

≲q,n ∥f1∥L2(dσ) ∥f2∥L2(dσ)

for all f1 is supported in Σ1, f2 is supported in Σ2.

Basic on this theorem, we can consider a weighted type.

Theorem 3.5. For n ≥ 3, and α ∈ (0, n), given a function W : Rn → R satisfies


∥W∥∞ ≲ 1,∫
B(x,r)

|W (y)| dy ≲ rα, ∀x ∈ Rn, r > 0.

(85)

Then under the hypothesis of Theorem 3.4, we have the inequality

∥∥∥f̂1dσf̂2dσ∥∥∥
Lq(dW )

≲α,q,n ∥f1∥L2(dσ) ∥f2∥L2(dσ) (86)

holds for q > q0(α, n) := max
(
1,min

(
4α

n+ 2α− 2
,
n+ 2

n

))
.

We can first see that (86) holds for q > n+ 2

n
by Theorem 3.4 and (85), and

we will improve the lower bound of q from n+ 2

n
to q0 for α ≤ n+ 2

2
.

Proof. To prove this theorem, we need the following epsilon-removed lemma:

Lemma 3.2. Let n ≥ 2, and let Σ1 and Σ2 be compact hypersurfaces with boundary

in Rn, denote dσ1, dσ2 be their surface measure respectively. If

∣∣∣d̂σi∣∣∣ ≲ (1 + |x|)−N (87)
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for some M > 0, then for all 1 < q < 1 +
1

N
, R > 1, we have

∥∥∥f̂1dσ1f̂2dσ2∥∥∥
Lq(B(0,R),Wdξ)

≤ Cη,q,nR
η ∥f1∥L2(dσ1)

∥f2∥L2(dσ2)
(88)

holds implies (86) if 1

p

(
1 +

2η

N

)
<

1

q
+

η

1 +N
.

By this lemma, it is sufficient to show that

∥∥∥f̂1dσf̂1dσ∥∥∥
Lq0 (B(0,R),Wdξ)

≤ Cn,α,ηR
η ∥f1∥L2(dσ) ∥f2∥L2(dσ) (89)

for all η > 0 and R > 1 with the assumption in the Theorem 3.5. We prove this

by induction. First, using Young’s convolution inequality, we have

∥∥∥f̂1dσ∥∥∥
∞

=
∥∥∥f̂1 ∗ d̂σ∥∥∥

∞
≲
∥∥∥f̂1∥∥∥

2

∥∥∥d̂σ∥∥∥
2
= ∥dσ∥2 ∥f1∥2 ≲ ∥f1∥2 ,

and similarly, we have
∥∥∥f̂2dσ∥∥∥

∞
≲ ∥f2∥2. Then

∥∥∥f̂1dσf̂1dσ∥∥∥
Lq0 (B(0,R),Wdξ)

≲ ∥f1∥2 ∥f2∥2
∫
B(0,R)

|W (ξ)| dξ

≲ Rα ∥f1∥2 ∥f2∥2 ≲ Rη0 ∥f1∥L2(dσ) ∥f2∥L2(dσ)

for some η0 large enough, so (89) holds for η ≥ η0.

Next, we show that (89) holds if η = max ((1− δ)η0, Cδ)+Cε for all 0 < δ, ε < 1

and C is a constant which is independent of δ and ε. If this is true, we may choose

suitable δ and ε such that max ((1− δ)η0, Cδ) + Cε = η0 − C0η
2
0 < η0 for some

small constant C0, and then iterating this process, we will see that (89) holds for

all η > 0. Therefore, our goal becomes to prove

∥∥∥f̂1dσf̂1dσ∥∥∥
Lq0 (B(0,R),Wdξ)

≤ Cn,α,ηR
max((1−δ)η0,Cδ)+Cε ∥f1∥L2(dσ) ∥f2∥L2(dσ) . (90)
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We use the wave packet decomposition, then

f̂idσ(ξ) =
∑
Ti

CTiϕTi (ξ)

for ξ ∈ B(0, R) and i = 1, 2. Ti are R 1
2 -separated tubes with dimensions R × R

1
2 ×

· · ·×R
1
2 , CTi are constants, ϕTi are the functions satisfy ϕ∨

Ti
is supported in the dual

tube of Ti which contained in a O(R−1) neighborhood of Si and ϕTi is essentially

supported on Ti with the Schwartz decay away from Ti. And we have the following

properties:

∥ϕTi∥2 ≈ R
1
2 , (91)∑

Ti

|CTi |
2 ≲ ∥fi∥2L2(dσ) , (92)

∥∥∥∥∥∑
Ti

ϕTi

∥∥∥∥∥
2

2

≲
∑
Ti

∥ϕTi∥
2
2 . (93)

Moreover, we may assume CTi be either 0 or 1 by the pigeonholing. Hence, (90)

becomes

∥∥∥∥∥∑
T1∈T

∑
T2∈T ′

ϕT1ϕT2

∥∥∥∥∥
Lq0 (B(0,R),Wdξ)

≲ Rmax((1−δ)η0,Cδ)+Cε ∥f1∥L2(dσ) ∥f2∥L2(dσ) , (94)

Let T be the collection of T1 and T ′ be the collection of T2, since by (92), we have

(#T )
1
2 ≲ ∥f1∥L2(dσ) and (#T ′)

1
2 ≲ ∥f2∥L2(dσ). Thus, to prove (94), it is sufficient to

show

∥∥∥∥∥∑
T1∈T

∑
T2∈T ′

ϕT1ϕT2

∥∥∥∥∥
Lq0 (B(0,R),Wdξ)

≲ Rmax((1−δ)η0,Cδ)+Cε (#T )
1
2 (#T ′)

1
2 . (95)

Cover B(0, R) by a collection B, which is of ≈ O(RCδ) many finitely overlapping

balls with radius R1−δ, then we have the following lemma:
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Lemma 3.3. There exists a relation ∼ between B ∈ B and T̃ ∈ T ∪ T ′ such that

#
{
B ∈ B : T̃ ∼ B

}
≲ Rε (96)

for each T̃ ∈ T ∪ T ′, and

∥fB∥L2(B) ≲ RCε+Cδ−n−2
4 (#T )

1
2 (#T ′)

1
2 , (97)

where B̃ = {(T1, T2) ∈ T × T ′ : T1 is not ∼ B or T2 is not ∼ B}, and

fB(ξ) :=
∑

(T1,T2)∈B̃

ϕT1(ξ)ϕT2(ξ).

Now we can do the main part of the proof, using the rough estimate, we obtain

∥∥∥∥∥∑
T1∈T

∑
T2∈T ′

ϕT1ϕT2

∥∥∥∥∥
Lq0 (B(0,R),Wdξ)

≤
∑
B∈B

∥∥∥∥∥∑
T1∈T

∑
T2∈T ′

ϕT1ϕT2

∥∥∥∥∥
Lq0 (B,Wdξ)

≤
∑
B∈B

∥∥∥∥∥∑
T1∈T

∑
T2∈T ′

ϕT1ϕT2

∥∥∥∥∥
Lq0 (B,Wdξ)

+
∑
B∈B

∥∥∥∥∥∥
∑

(T1,T2)∈B̃

ϕT1ϕT2

∥∥∥∥∥∥
Lq0 (B,Wdξ)

.

For the first part, since B has radius R1−δ and ϕT1 , ϕT2 are supported on O
(
R−1

)
-

neighborhood of S1, S2, by the induction hypothesis, we have

∑
B∈B

∥∥∥∥∥∑
T1∈T

∑
T2∈T ′

ϕT1ϕT2

∥∥∥∥∥
Lq0 (B,Wdξ)

≲R−1R(1−δ)η0
∑
B∈B

∥∥∥∥∥∑
T1∼B

ϕT1

∥∥∥∥∥
2

∥∥∥∥∥∑
T2∼B

ϕT2

∥∥∥∥∥
2

≲R−1R(1−δ)η0
∑
B∈B

(∑
T1∼B

∥ϕT1∥
2
2

∑
T2∼B

∥ϕT2∥
2
2

) 1
2

≈R−1R(1−δ)η0
∑
B∈B

(∑
T1∼B

R
∑
T2∼B

R

) 1
2
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=R(1−δ)η0
∑
B∈B

(# {T1 ∈ T : T1 ∼ B}# {T2 ∈ T ′ : T2 ∼ B})
1
2

≲R(1−δ)η0

(∑
B∈B

# {T1 ∈ T : T1 ∼ B}

) 1
2
(∑
B∈B

# {T1 ∈ T : T1 ∼ B}

) 1
2

=R(1−δ)η0

(∑
T1∈T

# {B ∈ B : T1 ∼ B}

) 1
2
(∑
T2∈T ′

# {B ∈ B : T2 ∼ B}

) 1
2

≲R(1−δ)η0+ε (#T )
1
2 (#T ′)

1
2 .

The third and fourth line follows from (91) and (93), and the second last line follows

from (96).

For the second part, since q0 < 2 and

1
2

2−q0

+
1
2
q0

= 1,

using the Hölder’s inequality, we have

∥fB∥Lq0 (B,Wdξ) =

(∫
B

|fB(ξ)|q0 W (ξ)dξ

) 1
q0

≲
((∫

B

|fB(ξ)|q0·
2
q0 dξ

) q0
2
(∫

B

|W (ξ)|
2

2−q0 dξ

) 2−q0
2

) 1
q0

=

(∫
B

|fB(ξ)|2 dξ
) 1

2
(∫

B

|W (ξ)| dξ
) 1

q0
− 1

2

≲ ∥fB∥L2(B) ·R
(1−δ)α·

(
1
q0

− 1
2

)
≤ R

α
q0

−α
2 ∥fB∥L2(B)

because 2

2− q0
> 1 and W satisfies (85). Therefore, by (97), we obtain

∑
B∈B

∥∥∥∥∥∥
∑

(T1,T2)∈B̃

ϕT1ϕT2

∥∥∥∥∥∥
Lq0 (B,Wdξ)

≲
∑
B∈B

R
α
q0

−α
2 ∥fB∥L2(B)

≲ R
α
q0

−α
2

∑
B∈B

RCδ+Cε−n−2
4 (#T )

1
2 (#T ′)

1
2

≲ RCδ+Cε ·R
α
q0

−α
2
−n

4
+ 1

2 ·RCδ (#T )
1
2 (#T ′)

1
2

≲ RCδ+Cε (#T )
1
2 (#T ′)

1
2 .
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The last line follows from the definition of q0, since 1 <
n+ 2

n
, we have three

conditions,

4α

n+ 2α− 2
≤ 1 <

n+ 2

n
⇒ q0 = 1,

1 ≤ 4α

n+ 2α− 2
<
n+ 2

n
⇒ q0 =

4α

n+ 2α− 2
,

1 <
n+ 2

n
≤ 4α

n+ 2α− 2
⇒ q0 =

n+ 2

n
.

For the first case,
α

q0
− α

2
− n

4
+

1

2
=

2α− (n− 2)

4
< 0

since 1 >
4α

n+ 2α− 2
⇒ n− 2 > 2α. For the second case,

α

q0
− α

2
− n

4
+

1

2
= 0.

For the last case, because we fix α ≤ n+ 2

2
, n+ 2

n
≤ 4α

n+ 2α− 2
is only true for

the equality holds, so it is same as the case two. Then we have

R
α
q0

−α
2
−n

4
+ 1

2 ≤ R0 = 1.

Combine these two results, we may see that (95) holds, and then complete the

proof.

Definition 3.1. We say φ : B(0, 1) ⊂ Rn−1 → R is a (N, δ0)-elliptic phase if it

satisfies

(1) ∥φ∥∞ ≤ N ,

(2) φ(0) = ∇φ(0) = 0,

(3) all eigenvalues of the Heissan matrix Hi,j(x) lie in the interval [1− ε0, 1 + ε0].

And S is said to be a (N, δ0)-elliptic surface if

S = {(x, φ(x)) : (x, φ(x)) ∈ B(0, 1)× R ⊂ Rn},
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where φ is a (N, δ0)-elliptic phase.

There are two properties of (M, ε0)-elliptic phase.

Property 3.2. (1) If φ is a (N, δ0)-elliptic phase, then for a ball B(x0, r0) ⊂

B(0, 1), let

φ̃(x) :=
1

r20
(φ(xr0 + x0)− φ(x0)− r0x · ∇φ(x0)), x ∈ B(0, 1), (98)

it’s a (CnN, δ0)-elliptic phase.

(2) Let S be a smooth compact submanifold of Rn with strictly positive principal

curvatures. Then for any δ0 > 0 and for any s ∈ S, exists a neighborhood Us of

s and an affine bijection as of Rn s.t. as (Us) is an (N, δ0)-elliptic surface, with

M depends on n, ∥φ∥C∞ and the principal curvature at s. Furthermore, we can

use the partition of unity to write S as a union of affine images of finitely many

(N, δ0)-elliptic surfaces.

Now we can get the following theorem be the generalization of Theorem 3.5.

Theorem 3.6. Let n ≥ 3, α ∈ (0, n), and W satisfies (85). Then for any N > 0,

there exists δ0 > 0 such that the following holds.

Let Σ1,Σ2 be two compact subsets of diameter ≈ 1 of (N, δ0)-elliptic surface in

Rn with d (Σ1,Σ2) >
1

100
, σi be the Lebesgue measure on Σi, i = 1, 2. Then

∀q > q0(α, n), we have

∥∥∥f̂1dσ1f̂2dσ2∥∥∥
Lq(dW )

≲ ∥f1∥L2(Σ1,dσ1)
∥f2∥L2(Σ2,dσ2)

(99)

for all fi ∈ L2(dσ) is supported in Σi, i = 1, 2.

Definition 3.2. Let µ be a compactly supported probability measure, we say µ is an

α- dimensional measure if

µ (B(x, r)) ≲µ r
α, ∀x ∈ Rn, ∀r > 0.
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Consider ψ be a Schwartz bump function satisfies ψ(x) = 1 for |x| < 2,

ψ(x) = 0 for |x| > 4. For each ball B ⊂ Rn, take an affine bijection aB of Rn maps

B to B(0, 1), and define ψB(x) = ψ(aB(x)). Then we have the following lemma.

Lemma 3.4. Let µ be an α-dimensional measure in Rn, and B be a ball of radius

r in Rn. Define a function µB := |ψ∨
B| ∗ µ, we have

(1) ∥µB∥∞ ≲ rn−α,

(2) ∥µB∥1 ≲ 1,

(3)

∫
D

µB(y)dy ≲ sα for any ball D of radius s ≥ 1

r
.

Proof. (1) Since ψ is a Schwartz function, by the decay of Schwartz function, for

M ∈ N, we can write

|ψ∨
B(x)| = rn |ψ∨(rx)| ≲M,n r

n

∞∑
j=1

2−MjχB(0,2jr−1)(x).

So we obtain

0 ≤ µB(x) ≲ rn
∞∑
j=1

2−Mj

∫
χB(0,2jr−1)(x)dµ(y)

≲ rn
∞∑
j=1

2−Mj(2jr−1)α ≲ rn−α,

by using the definition of α-dimensional measure and taking M ≥ n.

(2) since ψ is Schwartz function, ψ∨
B is also a Schwartz function. Then we know

∥ψ∨
B∥1 ≲ 1, so by Young’s convolution inequality, ∥µB∥ ≲ ∥ψ∨

B∥1 ∥µ∥1 ≲ 1 since

µ is compactly supported probability measure.

(3)

∫
D

µB(y)dy ≲ rn
∞∑
j=1

2−Mj

∫∫
χD(y)χB(0,2jr−1)(y − u)dµ(u)dy

= rn
∞∑
j=1

2−Mj

∫∫
χD+B(0,2jr−1)(u)χB(0,2jr−1)(y − u)dydµ(u)
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≲ rn
∞∑
j=1

2−Mj
(
2jr−1

)n (
s+ 2jr−1

)α
≲

∞∑
j=1

2−Mj/2
(
s+ 2jr−1

)α ≲ sα

The second line follows from the Fubini’s theorem and for y ∈ D, y − u ∈

B(0, 2jr−1), we have u ∈ D + B(0, 2jr−1), and the last inequality because of

taking M large enough.

Corollary 3.1. Let µ be an α-dimensional measure, L > 0 and R, η satisfies

LR− 1
2 ≲ η ≲ 1. Consider I1, I2 be the subsets of AR(L) satisfies diam(I1), diam(I2)≈

Rη, d(I1, I2) ≈ Rη. Then for all q > q0(α, n), we have

∥∥∥f̂1f̂2∥∥∥
Lq(dµ)

≲ L (Rη)n−1−α
q η−

1
q ∥f1∥2 ∥f2∥2 . (100)

for all functions f1, f2 is supported on I1, I2 separately.

Proof. diam(I1), diam(I2) ≈ Rη, so f1 ∗f2 is contained in a ball B of radius r ≈ Rη.

Hence we have

∥∥∥f̂1f̂2∥∥∥
Lq(dµ)

=
∥∥∥(f̂1f̂2) ∗ ψ∨

B

∥∥∥
Lq(dµ)

=

(∫ ∣∣∣∣∫ f̂1(y)f̂2(y)ψ
∨
B(x− y)dy

∣∣∣∣q µ(x)dx) 1
q

≲
{∫ [(∫ ∣∣∣f̂1(y)f̂2(y)ψ∨

B(x− y)
1
q

∣∣∣q dy) 1
q

·
(∫ ∣∣∣ψ∨

B(y)
1
q′
∣∣∣q′ dy) 1

q′
]q
µ(x)dx

} 1
q

=

[∫ (∫ ∣∣∣f̂1(y)qf̂2(y)qψ∨
B(x− y)

∣∣∣ dy) ·
(∫

|ψ∨
B(y)dy|

q
q′

)
µ(x)dx

] 1
q

=

(∫∫ ∣∣∣f̂1(y)qf̂2(y)qψ∨
B(x− y)

∣∣∣ dyµ(x)dx) 1
q

· ∥ψ∨
B∥

1
q′
1

=

(∫ ∣∣∣f̂1(y)qf̂2(y)q∣∣∣ ∫ |ψ∨
B(x− y)|µ(x)dxdy

) 1
q

· ∥ψ∨
B∥

1
q′
1

=

(∫ ∣∣∣f̂1(y)qf̂2(y)q∣∣∣ |ψ∨
B| ∗ µ(y)dy

) 1
q

· ∥ψ∨
B∥

1
q

1

=
∥∥∥f̂1f̂2∥∥∥

Lq(|ψ∨
B|∗µ)

∥ψ∨
B∥

1
q′
1 ≲

∥∥∥f̂1f̂2∥∥∥
Lq(|ψ∨

B|∗µ)
,
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where q′ is the Hölder conjugate exponent. The first equality because of that ψB = 1,

the second last line because of ψD is radial, others follows from Hölder’s inequality

and Fubini’s theorem.

Next step we consider e be the unit vector in the direction of the center of mass of

I1 ∪ I2 and a orthonormal basis {e1 = e, e2, · · · , en}. Let T : Rn → Rn be a linear

transformation with

T (e1) =
1

Rη2
e1, T (ei) =

1

Rη
ei, for 2 ≤ i ≤ n.

Let C1 = T (I1), C2 = T (I2), we can see that Ci is contained in ≈ L

Rη2
-neighborhood

of an affine image of the surface Si that satisfies the assumption of Theorem 3.6

for i = 1, 2.

Consider gi(x) = fi(T
−1x), then gi is supported in Ci and f̂i(ξ) =

1

det(T ) ĝi(T
−1ξ) =

(Rη)n ηĝi(T
−1ξ). Then we obtain

∥∥∥f̂1f̂2∥∥∥
Lq(µD)

= (Rη)2n η2
(∫ ∣∣ĝ1 (T−1x

)
ĝ2
(
T−1x

)∣∣q µD(x)dx) 1
q

(101)

= (Rη)2n−
n
q η2−

1
q

(∫
|ĝ1 (x) ĝ2 (x)|q µD(Tx)dx

) 1
q

(102)

= (Rη)2n−
n
q η2−

1
q (Rη)

n−α
q ∥ĝ1ĝ2∥Lq(dW ) , (103)

where W (x) = (Rη)α−n µD(Tx). If we can say W satisfies (85), then by Theorem

3.6, we have

∥ĝ1ĝ2∥Lq(dW ) ≲
L

Rη2
∥g1∥2 ∥g2∥2 . (104)

The constant L

Rη2
because Ci is contained in ≈ L

Rη2
-neighborhood of affine image

of Si.

Now we check these conditions. For the infinity norm,

∥W∥∞ = (Rη)α−n ∥µD∥∞ ≲ (Rη)α−n (Rη)n−α = 1

by (1) of Lemma 3.4 and D is a ball of radius ≈ Rη.

44



doi:10.6342/NTU202301952

For the other one, given B (x, r),

∫
B(x,r)

|W (y)| dy =

∫
B(x,r)

(Rη)α−n |µD(Ty)| dy

= (Rη)α−n
∫
T (B(x,r))

(Rη)n η |µD(t)| dt

= (Rη)α η

∫
T (B(x,r))

|µD(t)| dt

≲ (Rη)α η

(
Rη

Rη2

)∫
D′

|µD(t)| dt = (Rη)α
∫
D′

|µD(t)| dt,

where D′ is a ball or radius ≈ r

Rη
. T scales one axis into 1

Rη2
long, others are 1

Rη

long, so T (B(x, r)) is covered by at most Rη

Rη2
many balls with radius r

Rη
. Then

using (3) of Lemma 3.4, if r

Rη
≥ 1

Rη
⇒ r ≥ 1, we have

∫
D′

|µD(t)| dt ≲
(
r

Rη

)α
.

So
∫
B(x,r)

|W (y)| dy ≲ (Rη)α·
(
r

Rη

)α
= rα. If r < 1,

∫
B(x,r)

|W (y)| dy ≲ ∥W∥∞ rn ≲

rα by (2) of Lemma 3.4.

Thus we have ∥ĝ1ĝ2∥Lq(dW ) ≲
L

Rη2
∥g1∥2 ∥g2∥2, and since gi(x) = fi(T

−1x),

∥gi∥2 = (Rη)−
n
2 η−

1
2 ∥fi∥2 (105)

for i = 1, 2. Finally, combine (103), (104), (105), we obtain

∥∥∥f̂1f̂2∥∥∥
Lq(µD)

≲ (Rη)2n−
n
q η2−

1
q (Rη)

n−α
q

(
L

Rη2

)
(Rη)−n η−1 ∥f1∥2 ∥f2∥2

= L (Rη)n−1−α
q η−

1
q ∥f1∥2 ∥f2∥2 .

Theorem 3.7. Let α ∈ (0, n), q > q0(α, n), ∀α-dimensional measure µ, R > 1, f

is supported in AR(1). Then

∣∣∣∣∫ f∨(x)dµ(x)

∣∣∣∣ ≤ Cq,µR
n−1
2

− α
2q ∥f∥2 (106)

Proof. W.L.O.G., we may assume∥f∥2 = 1. Since
(∫

|f∨| dµ
)2

≤
∫

|f∨|2 dµ by
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Cauchy-Schwartz inequality and µ has compactly support, we only need to prove

∥f∨∥L2(dµ) ≲ R
n−1
2

− α
2q .

Consider a dyadic decomposition of AR(1) into spherical caps I with dimensions

2× 2k × · · · × 2k for R 1
2 ≤ 2k ≤ R, we denote l(I) = 2k and define the parent of I

be the unique cap contained I with length 2k+1. Given two spherical caps I, J with

l(I) = 2k, we say I ∼ J if

1. l(I) = l(J),

2. I, J are not adjacent,

3. the parent of I and the parent of J ar adjacent.

Then let fI = f · χI , we have

(f∨)
2
(x) =

∑
√
R≪2k≪R

∑
l(I)=2k,I∼J

f∨
I (x)f

∨
J (x) + error, (107)

where the term has the bound

|error| ≲
∑
IE

|f∨
I (x)|

2
. (108)

I ∈ IE is the diagonal dyadic caps term with I ≈
√
R satisfies

∥∥∥∥∥∑
I∈IE

χI

∥∥∥∥∥
∞

≲ 1.

Combine (107) and (108), we obtain

∥f∨∥2L2(dµ) ≲
∑

√
R≪2k≪R

∑
l(I)=2k,I∼J

∥f∨
I f

∨
J ∥L1(dµ) +

∑
I∈IE

∥f∨
I ∥

2
L2(dµ) . (109)

First, we show that
∑
I∈IE

∥f∨
I ∥

2
L2(dµ) ≲ Rn−1−α

q . For I ∈ IE, since l(I) ≈
√
R, I is

contained in a ball D of radius C
√
R for some constant C. Then

|f∨
I (x)| = |f∨

I ∗ ψ∨
D(x)| =

∣∣∣∣∫ f∨
I (x− y)ψ∨

D(y)dy

∣∣∣∣
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=

∣∣∣∣∫ f∨
I (x− y) (ψ∨

D)
1
2 (y) (ψ∨

D)
1
2 (y)dy

∣∣∣∣
≲
(
|f∨
I |

2 ∗ |ψ∨
D|
) 1

2 ∥ψ∨
D∥

1
2
1 ≲

(
|f∨
I |

2 ∗ |ψ∨
D|
) 1

2
,

where ψD has defined above the Lemma 3.4, and the last line follows from Hölder’s

inequality. Using this, we get

∑
I∈IE

∥f∨
I ∥

2
L2(dµ) ≲

∫ (
|f∨
I |

2 ∗ |ψ∨
D|
)
dµ =

∫
|f∨
I (x)|

2
(µ ∗ |ψ∨

D|) (x)dx

≲ ∥f∨
I ∥

2
2 ∥µ ∗ |ψ∨

D|∥∞ ≲ ∥fI∥22 ·
(√

R
)n−α

= R
n−α
2 ∥fI∥22

by (2) of Lemma 3.4. Then

∑
I∈IE

∥f∨
I ∥

2
L2(dµ) ≲ R

n−α
2

∑
I∈IE

∥fI∥22 ≲ R
n−α
2 ∥f∥22 = R

n−α
2 ≲ Rn−1−α

q . (110)

The second inequality because of
∥∥∥∥∥∑
I∈IE

χI

∥∥∥∥∥
∞

≲ 1. And the last inequality follows

from α < n, q > q0 ≥
4α

n+ 2α− 2
, n ≥ 3.

For
∑

√
R≪2k≪R

∑
l(I)=2k,I∼J

∥f∨
I f

∨
J ∥L1(dµ), we prove

∥f∨
I f

∨
J ∥L1(dµ) ≤ Cα,q,nR

n−1−α
q ∥fI∥2 ∥fJ∥2 (111)

for I ∼ J, l(I) = 2k. Now by the similar method in the proof of Corollary 3.1, let

e be the unit vector in the direction of center of mass of I ∪ J , consider a rectangle

H with side lengths 100 × 100 · 2
k

R
× · · · × 100 · 2

k

R
, where the axis has side length

100 is in the direction e. We use H to tile Rn and assume aH be the affine bijection

maps H to the unit cube
[
−1

2
,
1

2

]n
. Let ψ be a Schwartz function satisfies

ψ(x) ≥ χB(0,1)(x) for x ∈ Rn , supp
(
ψ̂
)
⊂ B(0, 1).
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Let ψH = ψ ◦ aH and fI,H = f̂∨
I ψH , then we have

∥f∨
I f

∨
J ∥L1(dµ) =

∫
|f∨
I f

∨
J | dµ =

∑
H

∫
H

|f∨
I f

∨
J | dµ

≲
∑
H

∫ ∣∣f∨
I,Hf

∨
J,H

∣∣ (ψH) 1
q′ dµ ≲

∑
H

∥∥f∨
I,Hf

∨
J,H

∥∥
Lq(dµ)

∥ψH∥
1
q′

L1(dµ) (112)

since ψH ≥ 1 and q′ is the Hölder conjugate exponent of q. Let IH be the support

of fI,H , we have IH ⊆ I + supp
(
ψ̂H

)
= I + Hdual where Hdual is a rectangle with

side lengths 1

100
× R

100 · 2k
× · · · R

100 · 2k
centered at the origin. Then I +Hdual is

contained in a sperical cap of 10 × 11

10
2k × · · · × 11

10
2k in AR(10) which contains I.

We prove this later. By this fact, we have the diameter of IH , JH ≈ 2k and they are

contained in AR(10) with d (IH , JH) ≈ 2k. So byCorollary 3.1 with Rη = 2k, we

get

∥∥f∨
I,Hf

∨
J,H

∥∥
Lq(dµ)

≲ 10 · 2k(n−1−α
q )
(
2k

R

)− 1
q

∥fI,H∥2 ∥fJ,H∥2

≲ R
1
q 2k(n−1− 1

q
−α

q ) ∥fI,H∥2 ∥fJ,H∥2 . (113)

since R 1
2 ≪ 2k ≪ R ⇒ R− 1

2 ≪ 2k

R
≪ 1.

For ∥ψH∥L1(dµ), since 2jH is of dimensions 100 · 2j × 100 · 2
j2k

R
× · · · × 100 · 2

j2k

R
, it

can be covered by ≈ 100 · 2j
/

100 · 2j2k

R
=
R

2k
many balls of radius ≈ 2j2k

R
and ψH

is Schwartz function, given M large enough, we obtain

∥ψH∥L1(dµ) ≤
∞∑
j=1

2−Mj

∫
χ2jH(x)dµ(x)

≲
∞∑
j=1

2−Mj R

2k

(
2j2k

R

)α
≤

∞∑
j=1

2−
Mj
2 2k(α−1)R1−α ≲ 2k(α−1)R1−α. (114)
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Combine (112), (113) and (114), we get

∥f∨
I f

∨
J ∥L1(dµ) ≲

∑
H

∥∥f∨
I,Hf

∨
J,H

∥∥
Lq(dµ)

∥ψH∥
1
q′

L1(dµ)

≲
∑
H

(
R

1
q 2k(n−1− 1

q
−α

q ) ∥fI,H∥2 ∥fI,H∥2
) (

2kα−kR1−α) 1
q′

= R
1
q
+ 1

q′−
α
q′ 2

k
(
n−1− 1

q
−α

q
+ α

q′−
1
q′

)∑
H

∥fI,H∥2 ∥fI,H∥2

= R
1
q
+ 1

q′−
α
q′ 2k(n−2+α− 2α

q ) ∥fI,H∥2 ∥fI,H∥2

≲ R
1
q
+ 1

q′−
α
q′Rn−2+α− 2α

q

∑
H

∥fI,H∥2 ∥fI,H∥2

= Rn−1−α
q

∑
H

∥fI,H∥2 ∥fI,H∥

≲ Rn−1−α
q

(∑
H

∥fI,H∥22

) 1
2
(∑

H

∥fJ,H∥22

) 1
2

, (115)

since 2k ≲ R and q > q0 ≥
4α

n+ 2α− 2
⇒ n− 2 + α− 2α

q
>
n

2
− 1 > 0.

For ∥fI,H∥2, by Plancherel theorem and Schwartz decay of ψH , we have

∥fI,H∥22 =
∫
H

|fI,H |2 =
∫
H

∣∣∣f̂∨
I ψH

∣∣∣2
=

∫
H

|f∨
I |

2
ψ2
H ≲

∫
H

|f∨
I |

2
=

∫
H

|fI |2 .

So

(∑
H

∥fI,H∥22

) 1
2

≲
(∑

H

∫
H

|fI |2
) 1

2

=

(∫
|fI |2

) 1
2

= ∥fI∥2 .

Similarly, we have
(∑

H

∥fJ,H∥22

) 1
2

≲ ∥fJ∥2.

Then (111) follows from this and (115). Now by (109), (110) and (111), we have

∥f∨∥2L2(dµ) ≲
∑

√
R≪2k≪R

∑
l(I)=2k,I∼J

Rn−1−α
q ∥fI∥2 ∥fJ∥2 +Rn−1−α

q . (116)

For each I with l(I) = 2k, there are finitely many J such that I ∼ J . So there is a
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spherical cap I ′ with l(I ′) = C2k for some constant C contain I such that

∑
l(I)=2k,I∼J

∥fJ∥2 ≲ ∥fI′∥2 . (117)

And for each k, such I ′ are finitely overlapping. Therefore,

∑
l(I)=2k

∥fI∥22 ≲
∑

l(I)=2k

∥fI′∥22 ≈ ∥f∥22 . (118)

Then by (117), (118) and Cauchy-Schwartz inequality,

∑
l(I)=2k,I∼J

∥fI∥2 ∥fJ∥2 ≤

 ∑
l(I)=2k

∥fI∥22

 1
2
 ∑
l(I)=2k,I∼J

∥fJ∥22

 1
2

≲ ∥f∥2 · ∥f∥2 = ∥f∥22 = 1.

So (116) becomes

∥f∨∥2L2(dµ) ≲
∑

√
R≪2k≪R

Rn−1−α
q +Rn−1−α

q

≲ (logR)Rn−1−α
q . (119)

Since we can find another q̃ satisfies q > q̃ > q0 and all statements above, the

inequality becomes

∥f∨∥2L2(dµ) ≲ (logR)Rn−1−α
q̃ = (logR)Rα( 1

q
− 1

q̃ )Rn−1−α
q ≲ Rn−1−α

q .

This follows from logR ≲ Rl for all l > 0 and 1

q
<

1

q̃
. So we complete the proof.

Lemma 3.5. I +Hdual in proof of theorem 3.7 is contained in a spherical cap of

10× 11

10
2k × · · · 11

10
2k in AR(10) which contains I.

Proof. First we haveHdual is of dimensions 1

100
× 1

100
·R
2k

×· · ·× 1

100
·R
2k

. Let the short

axis being in the direction e, then for h ∈ Hdual, x ∈ I, the angle between p−⟨p, e⟩ e

and the hyperplane Ex which goes through the origin with normal vector x is less
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than 10 · 2
k

R
. Hence, Hdual is contained in the 1

10
-neighborhood of Ex ∩B(0, R

100·2k ).

Furthermore, we can see that x + (Ex ∩ B(0, r)) is contained in a spherical cap

containing x of dimensions ≈ 1× r× · · · × r in A|x|(1) if |x| ≈ R and r ≲ R
1
2 . Then

the statement we want is holds since R

100 · 2k
≲ 2k.

Finally, we use a variation of Mattila’s theorem(see [7]) to obtain the result.

Theorem 3.8 (Mattila’s theorem). Fix α ∈
[
n

2
,
n+ 1

2

]
and q0 ∈ [1, 2] such that

α

(
1 +

1

q0

)
≥ n. If for all α-dimensional measure µ, R > 1, and f is supported in

AR(1), we have ∣∣∣∣∫ f∨(x)dµ(x)

∣∣∣∣ ≤ Cq,µR
n−1
2

− α
2q ∥f∥2 (120)

holds for all q > q0, then Falconer’s conjecture holds for α.

Using Theorem 3.7, we can give a bound of α in Theorem 3.8. Since we need

α ∈
[
n

2
,
n+ 1

2

]
and

4α

n+ 2α− 2
=
n+ 2

n
⇔ α =

n+ 2

2
,

we have q0 = min
(
1,

4α

n+ 2α− 2

)
. Also, we can see that q0 ∈ [1, 2] because n ≥ 2.

Therefore, to accord the inequality, if q0 = 1, it is trivial. If q0 =
4α

n+ 2α− 2
,

α

(
1 +

1

q0

)
≥ n⇔ n+ 2α− 2

4α
≥ 3n− 2

3n+ 2

⇔ 3n2 − 4n− 4 ≥ 6nα− 12α ⇔ α ≤ n

2
+

1

3
.

So we obtain Falconer’s conjecture holds for n
2
+

1

3
.
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