
國立臺灣大學電機資訊學院電子工程學研究所

碩士論文

Graduate Institute of Electronics Engineering

College of Electrical Engineering and Computer Science

National Taiwan University

Master Thesis

利用可調整內插法計算邏輯無關項

Don’t-Care Computation via Adjustable Interpolation

陳一心

I-Hsin Chen

指導教授：江介宏 博士

Advisor: Jie-Hong Jiang, Ph.D.

中華民國 98 年 6 月

June, 2009

 i

Acknowledgements

First, I would like to thank my advisor, Dr. Jie-Hong Roland Jiang. Without his

patience and enthusiasm for students, I could not learn so much about academic study

and theoretical research. He never hesitates to give his students valuable advice and

helpful direction. From him, I saw what an esteemed teacher is.

Second, I would like to thank all the members in ALCom Lab. For Hong-Yuan Lin,

Chung-Min Li, Wei-Lun Hung, Wei-Chieh Wang, and Sz-Cheng Huang, we had

delighted period in the building EE-II. For Hsuan-Po Lin and Ruei-Rung Lee, we had

memorable time both in study and life. Also, Chih-Fan Lai, Fu-Rong Wu, Meng-Yan

Li, Jane-Chi Lin, and Chia-Chao Kan, are excellent companions and friends. Without

them, I could not have such grateful and wonderful experience in these years.

Especially, I would like to thank all the other friends who stood with me, no matter in

the cheerful hours or the difficult moments.

Finally, I would like to thank my parents, my sister, and my girl friend. For the

every step in my life, they are always fully behind me and support me, thank you.

To them, I dedicate this thesis.

I-Hsin Chen

National Taiwan University

June 2009

 ii

摘要

近年來在邏輯合成與驗證的領域中，內插法的應用與日俱增，相關範疇包括

函數相依、二元分解、亞氏分解等。本研究係利用內插法針對多層次電路之節點

計算邏輯無關項。

傳統上，內插可藉由可滿足性問題求解器產生之反證求得，並可利用改寫反

證之結構對內插大小進行調整。但我們在研究過程發現，大部分狀況中，調整可

滿足性問題求解器產生反證後所求得之內插並無太大的改變，內插法的效能因而

受限。

本論文中，我們提出利用可滿足性問題求解之演算法來計算邏輯無關項，並

發展出一套針對可滿足性問題求解器改變內插大小的技巧，包括調整初始變數優

先序及改變布林初始值，同時利用電路結構簡化問題模型以加快求解速度。實驗

結果顯示，該改變內插大小的方法讓求解邏輯無關項之演算法在可接受的時間

內，較未使用該方法時求出更多的邏輯無關項。

關鍵詞：內插法、邏輯網路、邏輯無關項、可滿足性問題求解、可調整內插

 iii

Abstract

In recent years, there have been a variety of applications of interpolation in logic

synthesis and verification, such as functional dependency, bi-decomposition, and

Ashenhurst decomposition. The goal of this research is to compute don’t-cares for a

given node in a multi-level network by using interpolation.

Traditionally, an interpolant can be derived from a refutation proof given by a SAT

solver, and its onset can be adjusted via rewriting the structure of the refutation proof.

However, in most cases, the interpolant derived by the refutation proof generated by a

SAT solver can not be adjusted too much. As a result, the application of interpolation is

limited.

In this thesis, we propose SAT-based don’t-care computation algorithms via

interpolation. In addition, a set of techniques has been developed for a SAT solver to

adjust the solution space of the interpolant. The methods include setting the initial

variable activities and altering the Boolean initial values. The circuit structure has also

been utilized to simplify the problem to accelerate SAT solving. Experiments show that

the algorithms can get more don’t-cares while applying the interpolation sizing method

to the algorithms.

Keywords: Craig interpolation, logic network, don’t-care, SAT solving, adjustable

interpolant

 iv

Contents

Acknowledgements ..i

摘要 .. ii

Abstract.. iii

Contents ..iv

List of Figures...vi

List of Tables ... viii

Chapter 1 Introduction..1

1.1 The Origin of Don’t-Cares..1

1.2 Previous Work...3

1.3 Our Contributions ...5

1.4 Organization of the Thesis..6

Chapter 2 Preliminaries ..7

2.1 Boolean Network and Function..7

2.2 Satisfiability Problem and Solver ...8

2.3 Resolution and Refutation Proof ..9

2.4 Craig Interpolation Theorem ..10

2.4.1 Interpolant Strengthen ...12

2.5 Circuit to CNF Conversion...14

Chapter 3 Don’t-Care Computation Algorithms ..15

3.1 CDC Computation Method 1 (CDCC1) ...16

 v

3.2 CDC Computation Method 2 (CDCC2) ...18

3.3 CNF Simplification...20

3.4 Adjustable Interpolation ...21

3.4.1 Swap Rules..21

3.4.2 Initial Variable Activities...26

3.4.3 Boolean Initial Values ...28

3.5 Verification ...28

3.5.1 Combinational Equivalence Checking..28

3.5.2 Absorbing Checking..29

Chapter 4 Experimental Results ...30

4.1 Variable Decision Order ...30

4.2 Adjustable Interpolation on CDCC1 ..33

4.3 Adjustable Interpolation on CDCC2 ..40

Chapter 5 Conclusions and Future Work..46

Bibliography ..47

 vi

List of Figures

Figure 1.1: An example of SDCs and ODCs. ..2

Figure 1.2: Mishchenko proposed the miter charactering the care-set..............................4

Figure 2.1: A Boolean network and the corresponding DAG. ...7

Figure 2.2: There are three clauses, four variable, and six literals in the CNF..................8

Figure 2.3: The interpolant P is an approximation of A, and disjoints B.10

Figure 2.4: The ITP computation...11

Figure 2.5: The mapping of refutation proof and the interpolant.12

Figure 2.6: There could be more than one interpolant in different strength....................12

Figure 2.7: Two swap rules used to adjust the interpolant. ...13

Figure 2.8: An AND gate transfers to a CNF representation...14

Figure 3.1: Example of SDCs and ODCs. ...15

Figure 3.2: The miter of CDCC1 algorithm. ...16

Figure 3.3: Algorithm of method 1..17

Figure 3.4: The miter of CDCC2 algorithm. ...18

Figure 3.5: Algorithm of CDCC2. ...19

Figure 3.6: The illustration of target node, TFO and TFOI. ..20

Figure 3.7: The nodes in the TFOI area share the same variables...................................21

Figure 3.8: The relation between (a) swap rule 1 and (b) the corresponding refutation

proof structure...22

Figure 3.9: The solution space of (a) original interpolant, if we use rule 1, then (b) a

 vii

stronger interpolant can be gotten. ...23

Figure 3.10: The relation between (a) swap rule 2 and (b) the corresponding refutation

proof structure...24

Figure 3.11: The illustration of swap rule 1 with multiple fanouts.25

Figure 3.12: The illustration of swap rule 2 with multiple fanouts.26

Figure 3.13: Decision and learned clause in a refutation proof.......................................27

Figure 3.14: The miter for don’t-care verification...29

Figure 4.1: Original variable count vs. levels in refutation proof in MiniSat.31

Figure 4.2: Variable count vs. levels by small variable ID decision first.31

Figure 4.3: Variable count vs. levels by large variable ID decision first.........................32

Figure 4.4: Interpolant on set changing by CDCC1 + M on benchmark ISCAS-85.......38

Figure 4.5: Interpolant on set changing by CDCC1 + I + D on benchmark ISCAS-85. .38

Figure 4.6: Interpolant on set changing by CDCC1 + M on benchmark ISCAS-89.......39

Figure 4.7: Interpolant on set changing by CDCC1 + I + D on benchmark ISCAS-89. .39

Figure 4.8: Interpolant on set changing by CDCC2 + M on benchmark ISCAS-85.......44

Figure 4.9: Interpolant on set changing by CDCC2 + I + D on benchmark ISCAS-85. .44

Figure 4.10: Interpolant ons et changing by CDCC2 + M on benchmark ISCAS-89.....45

Figure 4.11: Interpolant on set changing by CDCC2 + I + D on benchmark ISCAS-89.45

 viii

List of Tables

Table 4.1: McMillan adjustable method (CDCC1 + M)..34

Table 4.2: Our adjustable method (CDCC1 + I + D). ...34

Table 4.3: McMillan adjustable method (CDCC1 + M)..35

Table 4.4: Our adjustable method (CDCC1 + I + D). ...36

Table 4.5: The optimal ratio of don’t-care computation via adjustable interpolation.41

Table 4.6: McMillan adjustable method (CDCC2 + M)..41

Table 4.7: Our adjustable method (CDCC2 + I + D). ...41

Table 4.8: McMillan adjustable method (CDCC2 + M)..42

Table 4.9: Our adjustable method (CDCC2 + I + D). ...43

 1

Chapter 1

Introduction

 As the focus of logic synthesis and verification shifted to multi-level networks,

computing don’t-cares of a given node in a Boolean network becomes more and more

important. Such don’t-care information can be used to provide additional flexibility to

simplify a Boolean expression. In addition, using don’t-cares for technology

independent logic synthesis of multi-level networks has been a major technique in the

area of logic optimization. As a result, efficient methods to compute don’t-cares are

necessary for these logic manipulations. In this chapter, we first give the introduction to

don’t-cares and exam previous work related to don’t-care computation. We then

summarize our contributions, and finally, outline this thesis.

1.1 The Origin of Don’t-Cares

 Don’t-cares allow a node in a logic network to have a flexible output value either 0

or 1 under an input assignment. Moreover, such don’t-care conditions are the

combinations of external don’t-cares (XDCs), observability don’t-cares (ODCs) and

satisfiability don’t-cares (SDCs). External don’t-cares are given by assigning the

minterms at the primary input. For instances, the values 1010 through 1111 in binary, or

10 through 15 in decimal, never happen on a binary coded decimal (BCD) [18] function.

Therefore, those values are the external don’t-cares for a function in the binary coded

 2

decimal system.

 Unlike external don’t-cares, observability and satisfiability don’t-cares exist due to

the multi-level network structures. In other words, the input assignments of an internal

node depend on the primary inputs, but not all the combination of assignments can be

generated at the internal node. Accordingly, those assignments which never appear at

the node form the satisfiability don’t-cares. On the other hand, observability don’t-cares

arise under the conditions that the output value of a node does not affect the primary

outputs. Hence, they compose the observability don’t-cares. Below we give an example

of the satisfiability and observability don’t-cares.

Figure 1.1: An example of SDCs and ODCs.

In Figure 1.1, the node A has a satisfiability don’t-cares with (m1, m2) equal to (1, 0).

For the node A, if we want m1 to be one, this requires X2 to be one. For m2 to be zero, in

the other side, this requires X2 to be zero. X2 could not be different values

simultaneously. As a consequence, the combination (1, 0) never appears at (m1, m2) and

this becomes the satisfiability don’t-care. In addition, the node C has observability

don’t-cares in the global space with X1 or X2 equals to zero. While X1 or X2 equals to

zero, it leads m1 to be zero. Zero is the controlling values of AND-gate, so Y1 is also

zero whatever the value m2 is. As a result, (0, 0) and (0, 1) form the observability

 3

don’t-cares of node C in the global space (X2, X3).

 Satisfiability and observability don’t-cares are together called complete don’t-cares

(CDCs) [8]. Complete don’t-cares form a superset of the compatible observability

don’t-cares (CODCs) [7]. Compatible observability don’t-cares and satisfiability

don’t-cares conventionally are the forms used in logic optimization [1]. Furthermore,

the amount of don’t-cares computed for complete don’t-cares is larger than for

compatible observability don’t-cares. Moreover, substituting a node’s function by a

completely specified function compatible with its complete don’t-cares does not change

the network’s output. Therefore, complete don’t-cares are important for logic

optimization.

1.2 Previous Work

 There are some previous efforts which present circuit optimization using the

don’t-cares. The strategies of these methods include the image computation via binary

decision diagrams (BDDs), quantifier elimination through SAT-based algorithm, and

image approximation utilizing clause limited to fixed length. We summarize them as

follow.

 First, observability don’t-cares are often too large to be efficiently computed in the

optimization process. Therefore, Savoj and Brayton [1] used compatible observability

don’t-cares (CODCs) instead of observability don’t-cars to avoid the computation on

redundant observability don’t-cares.

 Second, Savoj and Brayton [2] computed don’t-care information using an image

computation approach based on binary decision diagrams. This method computes

compatible observability don’t-care sets, which allow simultaneous modification on

 4

multiple nodes. However, it sacrifices the optimization flexibility.

 Furthermore, Mishchenko and Brayton [8] proposed the concepts of complete

don’t-cares (CDCs), a superset of compatible observability don’t-cares. They showed

that the complete don’t-cares computation is comparable to compatible observability

don’t-cares in runtime and memory consumption, and the number of don’t-cares is

larger than that of compatible observability don’t-cares. The work used Boolean

satisfiability solvers instead of binary decision diagrams to avoid the memory explosion

problem, which often happens in BDD-based algorithms. They also introduced a

windowing technique which restricts the environment to a local subset of the entire

circuit to achieve don’t-care approximation. This restriction makes it feasible to

evaluate the care-set of every node independently, and avoids the need for compatible

observability don’t-cares. They also introduced the use of SAT-based quantifier

elimination combined with random sampling. The idea is established on constructing a

miter to characterize the care-set of the node, as shown in Figure 1.2. Therefore, they

can obtain the complete don’t-cares of the node by complement.

Figure 1.2: Mishchenko proposed the miter charactering the care-set.

Besides, they showed such construction is more robust than the BDD-based

 5

quantifier elimination if the number of node inputs is less than about ten. However,

because this method enumerates the minterms of the care-set, it cannot be applied to

nodes with a large number of inputs. Our experience suggests that it is not scalable to

large-scale circuits without the windowing technique.

 McMillan [9] proposed a method of approximate quantifier elimination to compute

the strongest over-approximation. This method uses a Boolean satisfiability solver in the

machine-learning framework with clauses confined to a given length. The advantage of

this approach is that it does not require enumerating the minterms of the care-set. For

that reason, it can be applied when the number of node inputs is relatively large. They

showed it remains robust in some cases while the BDD-based image computation and

minterm enumeration methods fail. However, the restriction of the clause length lost the

precision for the computation results.

1.3 Our Contributions

 In this thesis, we present two novel algorithms. Different from prior work, our

work brings the following distinct features.

 - The algorithms are based on SAT solving, but take advantage of the efficiency

and scalability of interpolation.

 - The computation results of complete don’t-cares can be further enhanced through

the adjustable interpolation algorithms.

 - This is the first work considering the adjustability of interpolation in the early

stage of Boolean satisfiability solving processes.

To summarize, our work is based on the Boolean satisfiability solving. Unlike prior

methods, we take advantage of interpolation to enhance the scalability of don’t-care

 6

computation while maintaining efficiency. Further, we propose practical solutions to

adjust interpolation to gain better results on don’t-care computation. Our proposed

methods including setting initial variable activities and altering the Boolean initial

values are useful to modify the solution space of the interpolant. These methods raise

the capacity of adjustable interpolation algorithms, and then benefit those algorithms

based on interpolation.

1.4 Organization of the Thesis

 The rest of the thesis is structured as follows. Chapter 2 provides the required

preliminaries and background, including Boolean network and functions, don’t-cares,

Boolean satisfiability solving, and Craig interpolation. Chapter 3 describes our

don’t-care computation methods and the adjustable interpolation algorithms. Chapter 4

reports the experimental results, and Chapter 5 concludes the thesis and outlines future

work.

 7

Chapter 2

Preliminaries

2.1 Boolean Network and Function

 A Boolean network or a circuit is a directed acyclic graph (DAG), where nodes

correspond to logic gates and directed edges correspond to wire connections between

the gates. A node has zero or more fanins. Fanins of a node are other nodes that driving

this node. A node has zero or more fanouts. Fanouts of a node are other nodes that

driven by this node. The nodes without fanins are called primary inputs (PIs). The nodes

without fanouts are called primary outputs (POs). For registers in a sequential circuit,

their inputs and outputs are treated as additional POs and PIs. For instance, a Boolean

network and its corresponding DAG drawn by ABC [13] are shown in Figure 2.1.

Figure 2.1: A Boolean network and the corresponding DAG.

 8

 Boolean function is composed of Boolean variables. A completely Boolean

function has the definition as follow.

Definition. A completely specified Boolean function (CSF) is a mapping from

n-dimensional (0)n ≥ Boolean space into a single-dimensional one: { } { }0,1 0,1n →

[8].

 If a function with at least one input combination such that the output function is a

don’t-care, it is an incompletely specified Boolean function (ISF).

2.2 Satisfiability Problem and Solver

 The Boolean satisfiability problem, known as SAT, is determining if there exists a

satisfying variable assignment for a given Boolean formula. We begin with required

definitions. Let { }1,..., kV v v= be a finite set of Boolean variables. A literal is a

variable iv or its negation iv¬ . A clause c is a disjunction of literals. We assume

that all the clauses are non-tautological so that there would never be a variable and its

negation in a same clause and produce a true. A SAT instance is a conjunction of clauses,

or a conjunctive normal form (CNF). For instance, Figure 2.2 shows a conjunctive

normal form with three clauses, four variables, and six literals.

()()()a b c b c d+ + +¬ ¬

Figure 2.2: There are three clauses, four variable, and six literals in the CNF.

 A solver for the Boolean satisfiability problem is called a SAT solver. When

solving a problem, a SAT solver assigns Boolean values to those variables in turn if they

 9

were not assigned until a satisfiable instance occurs or the unsatisfiability happens. In

some modern SAT solvers, such as MiniSat [11], heuristics such as variable activity are

used to choose variable for assigning value. Activity heuristic is a dynamic variable

ordering mechanism. Each variable comes with a value called activity, and the activity

varies upon the frequency of variable appearing in the conflict clauses.

 A SAT solver gives a satisfying assignment when the given clause set is satisfiable,

otherwise it is unsatisfiable. Some modern SAT solvers produce a refutation proof when

the problem is unsatisfiable. The refutation proof proves the problem is unsatisfiable,

and it can be used to generate interpolants.

2.3 Resolution and Refutation Proof

 Resolution is a rule of inference leading to a refutation proof. In propositional logic,

the resolution rule is a single valid inference rule. It produces a new clause implied by

two clauses containing complementary literals. The new clause produced by the

resolution rule is called the resolvent of the input clauses. A resolvent of two clauses

1c v A= ∨ and 2c v B= ¬ ∨ is the clause A B∨ , provided that A B∨ is

non-tautological. We call v the pivot variable of c1 and c2. In fact, if there exists a

resolvent of c1 and c2, we can write the resolvent as the form 1 2()c c∃ ∧ .

 Then we have the definition of an unsatisfiability refutation proof ∏ . Given the

set of clauses C, ∏ is a directed acyclic graph (,)V E∏ ∏ , where V∏ is a set of clauses.

For every vertex c V∏∈ , it must be one of the following conditions: (1) c C∈ ⇒ c is

a root, or (2) c has exactly two predecessors, c1 and c2 ⇒ c is the resolvent of c1 and c2,

and (3) the empty clause is the unique leaf. Following the refutation proof, we can get

the empty clause by resolution rule, and prove the unsatisfiability of the clause set C.

 10

2.4 Craig Interpolation Theorem

 We describe the definition of an interpolant. It was proposed by Craig in 1957 [4].

An interpolant for the unsatisfiable pair (A, B) is a formula P with the following three

properties:

– A implies P

– P B∧ is unsatisfiable

– P refers only to the common variables of A and B

Figure 2.3: The interpolant P is an approximation of A, and disjoints B.

Figure 2.3 illustrates the concept of interpolant. In fact, we can consider the

interpolant as an over-approximation of formula A, while P maintains the feature that

disjoints with B. There is an intuition to stats the existence of interpolants. That is, the

smallest interplant is ()cx A∃ , where cx stands for those variables appear in A but not

appear in B. In the other way, the largest interplant is ()cy B∀ , where cy stands for those

variables appear in B but not appear in A.

Pudlak [14] and Krajiček [15] proposed methods that if given a proof of

unsatisfiability of A B∧ , P can be derived in linear time. Multiplexers are used to

generator the interpolant. Here we use the method proposed by McMillan in 2005 [5].

 11

We divide the clauses into two sets, namely A and B, and then we obtain the

refutation proof ∏ of A B∧ via SAT solving. We say a variable is global if it

appears both in A and B, and a variable is local to A if it appears only in A. Here we use

g(c) to denote the disjunction of the global literals in a clause c and use l(c) to denote

the disjunction of the literals local to A in a clause c.

 Let (A, B) be the division of clause sets and ∏ be a refutation proof of its

unsatisfiability and the leaf vertex is given FALSE. Let p(c) be a Boolean formula

where c is any vertices in V∏ , and then ITP-Function is defined in Figure 2.4.

ITP-Function()
1 for each v V∏∈
2 do if c is a root
3 then if c A∈
4 then () ()p c g c←
5 e lse ()p c TRUE←
6 else if v is local to A
7 then 1 2() () ()p c p c p c← ∨
8 e lse 1 2() () ()p c p c p c← ∧

Figure 2.4: The ITP computation.

 Note that c1 and c2 are two predecessors of c, and v is the pivot variable. Thus the

∏ -interpolant of (A, B) is p(FALSE). McMillan gave the detail proof about this method

[16]. In the other way, interpolant indeed is a circuit following the structure of the

refutation proof. Figure 2.5 gives an example of such interpolant.

 12

Figure 2.5: The mapping of refutation proof and the interpolant.

 This approach directs us a way to compute interpolant simply. However, the

interpolants derived by this method are usually weak and may not be good enough in

practice, especially for our applications in computing don’t-cares.

2.4.1 Interpolant Strengthen

In our algorithms, we need a process to derive different strength interpolants. For

example in Figure 2.6, P and P’ are implied by A, and both are unsatisfiable with B, but

they have different strength.

Figure 2.6: There could be more than one interpolant in different strength.

 13

 In other words, a method to adjust the interpolant to generator interplant with

difference strength, or different solution space is necessary.

Jhala and McMillan [3] presented a method to compute strong interpolants. This

method is mainly using swap rules to rewrite the refutation proof to derived different

strength interpolant.

Overall, to strengthen the interpolant, we would better move the local resolutions

toward the hypothesis in a refutation proof; meanwhile, the global resolutions go

downward to the conclusion. In such way we move the OR gates toward the inputs of

the interpolant circuit and the AND gates toward the output, thus we strengthen the

interpolant. To achieve this, two rules in Figure 2.7 are applied to rewrite the refutation

proof.

1 31 2
23

1 31 2

1 2 3 1 2 3

p q qp q p pq
pq

θ θθ θ θθ
θ θθ θ

θ θ θ θ θ θ

∨¬ ∨ ∨∨¬ ∨ ¬ ∨ ¬ ∨∨
∨ ∨¬ ∨ ∨ →

∨ ∨ ∨ ∨

　 　
　　　　

　　 　　

(1)

1 3 2 31 2
3

1 3 2 31 2

1 2 3 1 2 3

p q q p q qp q p q q
p pq

θ θ θ θθ θ θ
θ θ θ θθ θ

θ θ θ θ θ θ

∨ ¬ ∨ ∨ ¬ ∨ ¬ ∨ ∨∨ ¬ ∨ ¬ ∨ ¬ ∨ ∨
∨ ∨ ¬ ∨ ∨¬ ∨ ∨ →

∨ ∨ ∨ ∨

　 　 　
　　　　

　　 　　

(2)

Figure 2.7: Two swap rules used to adjust the interpolant.

 Applying these two rules throughout the refutation proof structure, we can

basically raise the resolutions with local pivot variables to the top of the refutation proof,

and the resolutions with global pivot variables to the bottom. But the price is that it may

expand the size of the refutation proof exponentially. Instead, Jhala and McMillan

adopted a limited approach to keep the size of refutation proof linear.

 14

 First, mark all the resolution steps in the refutation proof whose consequent is used

as the antecedent in more than one subsequent step. Then, traverse the refutation proof

from antecedents to consequents topologically, and apply the rewrite rules on every

local atoms q until meet the marked steps or hypothesis. Although this approach do

increase the size of the refutation proof every time when the second rewrite rule is

applied, the final number of occurrences of a step s is bounded by the number of

occurrences of q¬ in the original refutation proof that were resolved by s. As a result,

the number of resolutions we obtain after raising all the resolutions on local atoms is

linear in the size of the original refutation proof, so as the interpolant. However, our

experiments show that such method has its limitation. In Section 3.4, we explore the

reason and present our heuristic to achieve effective adjustable interpolation.

2.5 Circuit to CNF Conversion

 Given a circuit netlist, it can be converted to a CNF formula by a way preserving

the satisfiability. The conversion is achievable in linear time by introducing extra

intermediate variables [10]. In the consequence, we shall assume that the clause set of a

Boolean formula is available from such conversion. Figure 2.8 shows the transformation

of an AND gate to a CNF representation.

()
()()
(())(())
()()()

c ab
c ab
c ab ab c

c ab ab c
c a c b a b c

=
⇒ ↔
⇒ → →
⇒ ¬ + ¬ +
⇒ ¬ + ¬ + ¬ +¬ +

Figure 2.8: An AND gate transfers to a CNF representation.

 15

Chapter 3

Don’t-Care Computation Algorithms

 This chapter presents two novel algorithms based on interpolation to compute

complete don’t-cares (CDCs). We fast review that complete don’t-cares consist of

satisfiability don’t-cares and observability don’t-cares. Satisfiability don’t-cares are

terms that never appear at the inputs of a node, and observability don’t-cares are terms

for which changes to a node’s inputs are not observable in the primary outputs. Figure

3.1 shows an example where (x, y) equals (0, 1) of F is a satisfiability don’t-care, and all

input assignments of G are observability don’t-cares if (a, b) equals to (1, 1).

Figure 3.1: Example of SDCs and ODCs.

 Traditional way to compute complete don’t-cares usually involves image

computation. The process of image computation is often slow. In this chapter, we

introduce the algorithms using interpolation to compute complete don’t-cares.

 16

3.1 CDC Computation Method 1 (CDCC1)

 As introduced in Chapter 2, interpolant of (A, B) is an over-approximation of set A.

Therefore, if an over-approximate care-set is available, an under-approximate complete

don’t-cares can be derived by complement.

 The strategy of method 1 is to construct a miter that characterizes the on set of the

care-set, as the left-hand side shown in Figure 3.2. On the other hand, another miter is

constructed to characterize the off set of the care-set, as the right-hand side shown in

Figure 3.2. Since the on set and off set of the care-set are disjoint to each other, the final

network shown in Figure 3.2 must be unsatisfiable.

 Thus the interpolation algorithm can simply treat the clauses of left-hand side

network belong to A, other clauses belong to B. A and B are unsatisfiable. Then

interpolant of (A, B) is an over approximate on set of the care-set. In similar way, an

over approximate off set of the care-set can also be obtained. Consequently, we obtain

the under approximate complete don’t-cares.

Figure 3.2: The miter of CDCC1 algorithm.

 17

 Note that if only basic interpolant is used, the computed on set and off set of the

care-set could be complement to each other, and the computed complete don’t-cares are

empty. Therefore, CDCC1 requires a process to derive different strength interpolants.

We introduce the rewrite rules and our proposed methods to get strong interpolants in

Section 3.4. Finally, Figure 3.3 summarizes the algorithm of CDCC1.

CDC Computation Method 1 ()

1. Construct the network

2. A←clauses of left-hand side network

3. B←other clauses in the network

4. onset← interpolant of (A, B)

5. A’←clauses of right-hand side network

6. B’←other clauses in the network

7. offset← interpolant of (A’, B’)

8. return ()onset offset∪

Figure 3.3: Algorithm of method 1.

 18

3.2 CDC Computation Method 2 (CDCC2)

 The CDCC1 proposed in previous section runs in good speed, however, the

experiments do not show promising results. The amount of computed don’t-cares is less.

Hence, we developed the other similar algorithm, and we call it the CDCC2.

 Our strategy in CDCC2 is similar to that in CDCC1. First, we construct a miter that

characterizes the care-set followed by a miter that characterizes don’t-care set and

probably some overlap with care-set. Figure 3.4 shows the final network.

Figure 3.4: The miter of CDCC2 algorithm.

 In Figure 3.4, X is global care-set, and X’ is global don’t-care set. Although x and

x’ are different, but they could generate the same value at y and y’. As a result, the

overlapping occurs. Since the left-hand side network may overlap the right-hand side

network in y. the whole network may be satisfiable. To make use of the interpolation

algorithm, the overlap part must be excluded. This can be simply done by iteratively

adding the overlap instances as conflict clauses to the solver. In practice, the overlap

 19

part rarely happens, thus this process can be done efficiently.

 As soon as the miter is unsatisfiable, the interpolation algorithm can treat the

clauses of the left-hand side network belong to A, other clauses belong to B. Then we

get the interpolant of (A, B) as an approximate care-set. As a result, approximate

complete don’t-cares can be obtained.

 Note that in the process of overlap instances exclusion, some don’t-care set

instances are excluded from the network, thus the approximate care-set obtained by

interpolation algorithm could be an over-approximation of the exact care-set. Thus

completed don’t-cares obtained by CDCC2 could be an under-approximation. Figure

3.5 summarizes the algorithm of CDCC2.

CDC Computation Method 2 ()

1. Construct the network

2. A←clauses of left-hand side network

3. B←other clauses in the network

4. F← A B∧

5. S φ←

6. while (i∈SAT instance of F φ≠)

7. do S S i← ∪

 F F i← ∪

8. careset← interpolant of (A, B S∪)

9. return careset
Figure 3.5: Algorithm of CDCC2.

To summarize, CDCC1 needs two SAT solving and interpolation, and CDCC2 may

need to run SAT solving several times.

 20

3.3 CNF Simplification

 The time needed to solve a Boolean satisfiability problem depends on the

complexity of the problem. It has been shown that minimizing the size of the CNF

representation and removing unnecessary variables effectively improve SAT run time

[12]. We utilize the symmetric structure of the miter to simplify the CNF representation

in our algorithms. When constructing the CNF representation, we do following two

rules, elimination and sharing variable to minimize the CNF representation.

 First we define some terms. Target node is the node which we compute the

don’t-cares. The effective node set Neff is a set of nodes that affect the don’t-care

computation result of the target node. The union set of node set NTFO and NTFOI is Neff,

where NTFO are the nodes in the transitivity fanout of the target node, and NTFOI are the

nodes in the transitivity fanin of nodes in NTFO. There are the illustrations in Figure 3.6.

The red circle is the target node, and the blue area is TFO, while the pink area is TFOI.

Figure 3.6: The illustration of target node, TFO and TFOI.

– Elimination: We eliminate those nodes not in Neff from CNF representation,

 21

– Sharing variable: For the nodes in Neff but not in NTFO, they share variables

with the repeat part in the miter.

For the nodes not in effective network Neff, that is, the nodes in the white area in the

Figure 3.6 are dropped from the CNF representation.

Figure 3.7: The nodes in the TFOI area share the same variables.

Thus, the size of CNF presentation is reduced dramatically, and the run time

improves considerably.

3.4 Adjustable Interpolation

 In Chapter 2, we described the fundamental of interpolation and the theorem to

strengthen the interpolant. Here we present the techniques used for computing strong

interpolants obtained from a refutation proof in this thesis.

3.4.1 Swap Rules

 As McMillan mentioned [3], we can use rule (1) and rule (2) in Figure 2.7 to

 22

strengthen the interpolant. We give the detail descriptions here. For the clarity, we

re-express the rule 1 with the same notation used here in Figure 3.8 (a).

2 31 2
13

2 31 2

1 2 3 1 2 3

g l lg l gl
gl
θ θθ θ θθ
θ θθ θ

θ θ θ θ θ θ

∨ ∨ ¬ ∨¬ ∨ ∨ ∨ ¬ ∨¬ ∨
∨ ∨∨ ∨ →

∨ ∨ ∨ ∨

　 　 g
　　　　

　　 　　

(a)

1 2

4 3

5

﹁g+θ1 g+l+θ2

﹁l+θ3

g

l

l+θ1+θ2

θ1+θ2+θ3

32

4'1

5

﹁l+θ3g+l+θ2

﹁g+θ1

l

g

g+θ2+θ3

θ1+θ2+θ3

Rule 1

(b)

Figure 3.8: The relation between (a) swap rule 1 and (b) the corresponding refutation

proof structure.

Figure 3.8 (b) is a direct acyclic graph representing a part of a refutation proof. The

nodes represent the clauses which could be a root or a resolvent. Under each node, a

CNF represents the content of the resolvent. The orange word represents the pivot

variable used to derive the resolvent. One should be noticed that the node 4 is destroyed

after swapping. A new node 4’ replaces the original node with different resolvent.

 23

M N K

MN + K(a) (b)

M N K

MN + MK

Figure 3.9: The solution space of (a) original interpolant, if we use rule 1, then (b) a

stronger interpolant can be gotten.

 Figure 3.9 shows the effect of rule 1. The circuit in Figure 3.9 (a) is the original

interpolant derived by the refutation proof structure of the left part in Figure 3.8, assume

the function corresponding to node 1 is M, and node 2 is N, and node 3 is K. The

resolvent resolving on global variable is replaced with an AND-gate; the one resolving

on local variable is replaced by an OR-gate. As a result, the function of the interpolant is

MN + K. The minterm number of the space is six, for the (M, N, K) pair equals to (110),

(111), (001), (011), (101), and (111). In the other way, the interpolant in Figure 3.9 (b) is

MN + MK, the corresponding minterms are (110), (101), and (111). Thus, after applying

the rule 1, the solution space of the interpolant shrinks from six to three.

 For the clarity, we also re-expressed rule 2 and the corresponding refutation proof

structure in Figure 3.10.

 24

1 3 2 31 2
3

1 3 2 31 2

1 2 3 1 2 3

g l l g l lg l g l l
g gl
θ θ θ θθ θ θ
θ θ θ θθ θ

θ θ θ θ θ θ

¬ ∨ ∨ ¬ ∨ ∨ ∨ ¬ ∨¬ ∨ ∨ ∨ ∨ ¬ ∨
¬ ∨ ∨ ∨ ∨∨ ∨ →

∨ ∨ ∨ ∨

　 　 　
　　　　

　　 　　

(a)

(b)

Figure 3.10: The relation between (a) swap rule 2 and (b) the corresponding refutation

proof structure.

Figure 3.10 (b) is a direct acyclic graph representing a part of a refutation proof.

Different from rule 1, rule 2 is used when the node 1 and node 2 have the same local

variable l simultaneously. At the process of raising a local variable, an extra node need

to be generator in order to ensure the resolvent remain the same at node 5. Also, node 4

is destroyed and new node 4’ and node 4’’ are generated.

A problem occurs if the resolvent of the original node 4 were used in other

resolution step. In other words, the node 4 is a multiple fanout node. When encountering

multiple fanout in the refutation proof, McMillan adopts a method that marking the

multiple fanout nodes and skipping those marked nodes. By such strategy, they avoid

 25

the possible exponential expansion of the refutation proof size but sacrifice the

interpolation adjustability.

In our cases, we proposed a different way. We partial duplicate the structure of

multiple fanout nodes. We copy only the parent nodes of the multiple fanout nodes in

the refutation proof. In Figure 3.11, we preserve the original node 4 in the new structure,

and keep the connection to the other nodes.

11 2

3

5

﹁g+θ1 g+l+θ2

﹁l+θ3

g

l

θ1+θ2+θ3

32

4'4

5

﹁l+θ3g+l+θ2

l+θ1+θ2

l

g

g+θ2+θ3

θ1+θ2+θ3

Rule 1

4
l+θ1+θ2

Multiple-Fanout!

﹁g+θ1

g

Figure 3.11: The illustration of swap rule 1 with multiple fanouts.

For the rule 2, the same thought is adopted. Figure 3.12 describes the swapping for

the multiple output case for rule 2.

Thus, for single output node in rule 1, no new node will be added. For single

output node in rule 2, one new node will be added. For the multiple output cases, rule 1

and rule 2 increase one and two new nodes, respectively.

 26

Figure 3.12: The illustration of swap rule 2 with multiple fanouts.

 However, the two rules both fail if the global pivot variable appears in the node 3.

The failure arises because the appearance of global variable changes the resolvent

content of the node 5. As a consequence, the different content destroys the refutation

proof correctness. This condition happens often and largely decreases the effect of

strengthening interpolants.

3.4.2 Initial Variable Activities

 We known the way to strengthen the interpolant is letting local variable appears

early in the refutation proof. From previous section, it shows difficulty to adjust the

interpolant via rewriting the refutation proof because the rules fail often. Instead of

rewriting the refutation proof already generated, we propose a heuristic algorithm to

affect the Boolean satisfiability solver to produce a good refutation proof in advance.

 As introduced, MiniSat, the modern SAT solver, makes decision by considering

variable activity heuristics. In the other way, if a variable were decided earlier in the

process of SAT solving, it appears later in the refutation proof. This can be shown from

 27

the production of the conflict clauses [17]. Figure 3.13 give an explanation. For the

conjunction normal form ()()()()a b a b a b a b+ +¬ ¬ + ¬ +¬ , if we make decision on

variable a by assigning it to be 0, then we produce clauses ()()b b¬ and generate an

unsatisfiability. Thus we learn a conflict clause ()a , which means assigning a to be 0

produces an unsatisfiability. However, the production of this conflict clause in the

refutation proof is derived by resolving on the pivot variable b, and the resolution on

variable a appears later than b. As a result, if the variable is decided earlier, it resolves

later.

Figure 3.13: Decision and learned clause in a refutation proof.

Thus, by controlling the variable activities in the MiniSat, somehow we affect the

variable appearing in the refutation proof in proper order. At the beginning, we changed

the decay ratio of local variable in MiniSat, but the results were not good. Hence, we

decided to set higher initial variable activities for the local variable before the SAT

solving starts. We found that this heuristic worked effective and had good results.

 28

3.4.3 Boolean Initial Values

 We have known that affecting the Boolean satisfiability problem solver by proper

ways help produce better refutation proof. The structure of the refutation proof depends

on the internal procedures of the SAT solver, such as decision order and Boolean

constraint propagation. Thus, we try to change the Boolean value when a decision is

made. In MiniSat, the decision of a variable always is false then true. We change the

decision order by trying true first then false. An interesting thing is that this heuristic

dose work. The detail research and the reason why will be our future work. It is sure

that different decision generates different implication graph, and somehow this strategy

help the SAT solver generate better refutation proof.

3.5 Verification

 The derived don’t-cares appear as a form of Boolean function with a single

primary output. Where the inputs are the node fanins and the only output is one when

the input combinations are the don’t-care sets of the node. For such don’t-cares form,

we propose a method to verify its correctness.

3.5.1 Combinational Equivalence Checking

 When getting the circuit representing the don’t-care terms, we do formal

verification on the don’t-care terms to make sure the result is correct. Our method is to

construct a miter to check the correctness of don’t-cares. The first part of the miter is the

original circuit. The second part of the miter is the modified circuit where the target

node is replaced by an exclusive OR gate. The two fanins of the exclusive OR gate are

the target node and the primary output of the don’t-care circuit. The miter is shown in

 29

Figure 3.14. When the input of the node is a don’t-care, the output of the don’t-care

circuit is 1. Further, the exclusive OR gate inverts the original node output. This makes

the two circuits have different value on the target node. If they are equivalence, the

input of the node must be a don’t-care, and the correctness of the don’t-care circuit is

proved.

Figure 3.14: The miter for don’t-care verification.

3.5.2 Absorbing Checking

 Another way we call absorbing checking. After we checked the don’t-care

correctness by combinational equivalence checking, we get the correct don’t-care

libraries. After that, each time when we need to check our computation results, we just

check if the circuit is absorbed by the don’t-care library. This reduces the verification

process.

 30

Chapter 4

Experimental Results

 Our experiments were implemented using C++ in ABC, a system for sequential

synthesis and verification [13]. The proof-logging version of MiniSat was used as the

underlying solver [11]. All experiments were performed on a workstation with Xeon

3.4GHz CPUs and 6 GB RAM. The benchmark circuits were ISCAS 85 and ISCAS 89.

4.1 Variable Decision Order

 A preliminary experiment targets for discussing the relation between variable

decision order and the resolution order, as mentioned in Section 3.4.2. Five CNFs were

chosen as the benchmarks. In the following figures, each line represents the variable

counts in the corresponding level. For the refutation proofs have different number of

levels, we normalized the number of levels from one to ten. When no extra constraints

were set, as shown in Figure 4.1, there is no trend of the variable counts in the refutation

proof levels. However, in Figure 4.2, we let variables with small ID have higher priority

when solver makes the decision. We found those variables appear more frequently in the

higher level, as our expectation. In contrast, variables with large ID rise in the lower

level. In Figure 4.3, we did the reverse setting for the variables, and the situation of

variable counts was opposite to those in Figure 4.2. Variables with small id are decided

later, and the result shows they appear in the early levels, as our expectation.

 31

Figure 4.1: Original variable count vs. levels in refutation proof in MiniSat.

Figure 4.2: Variable count vs. levels by small variable ID decision first.

 32

Figure 4.3: Variable count vs. levels by large variable ID decision first.

 33

4.2 Adjustable Interpolation on CDCC1

 The experiments are designed to show following features via the don’t-care

computation algorithm.

1. The scalability and capability of interpolation algorithm.

2. The efficiency of our methods to adjust the interpolation.

 For each don’t-care computation algorithm, we ran two different settings, the

algorithm combined with McMillan’s rewriting rules (CDCC + M), and the one

combined with our sizing algorithms (CDCC + I + D), both results are compared with

the basic algorithm (CDCC) without using the interpolant sizing algorithms. The

don’t-care computation algorithms are designed for an arbitrary node in networks. For

each network, we reported the average runtime and memory usage per node, and

recorded the maximum value of each term among all the nodes. We also set a fifteen

seconds time out for the Boolean satisfiability solver.

First, we present the results of CDCC1 algorithm on benchmark ISCAS-85 and

ISCAS-89.

Table 4.1 shows the results of the basic CDCC1 algorithm without applying any

sizing interpolant method. In the title of the tables, “M” stands for the McMillan’s swap

rules, and “I” represents our initial variable activity heuristic, while “D” describes as

our decision value heuristic.

 34

Table 4.1: McMillan’s adjustable method (CDCC1 + M).

Time Mem(Mb) Time Mem(Mb)
 C17 6 0.05 7.94 0.16 7.94
 C432 160 0.04 8.93 0.20 8.96
 C499 202 0.05 9.16 0.20 9.18
 C880 383 0.04 9.46 0.22 9.52
 C1355 546 0.06 10.47 0.26 10.51
 C1908 880 0.09 11.32 0.17 11.62
 C2670 1253 0.09 12.62 0.19 12.74
 C3540 1669 0.17 14.31 0.31 14.42
 C5315 2297 0.10 16.35 0.39 16.79
 C6288 2416 0.32 17.76 0.58 18.23
 C7552 3510 0.16 21.84 0.66 22.14

0.11 12.74 0.30 12.91

Maximum

Average

Name #Node
Average

Table 4.2: Our adjustable method (CDCC1 + I + D).

Time Mem(Mb) Time Mem(Mb)
 C17 6 0.02 7.81 0.03 7.94
 C432 160 0.04 8.92 0.09 8.97
 C499 202 0.05 9.16 0.07 9.20
 C880 383 0.04 9.46 0.07 9.55
 C1355 546 0.06 10.50 0.11 10.59
 C1908 880 0.10 11.39 0.17 11.71
 C2670 1253 0.10 12.63 0.20 12.96
 C3540 1669 0.18 14.31 0.31 14.62
 C5315 2297 0.10 16.36 0.39 16.89
 C6288 2416 0.32 17.77 0.58 18.28
 C7552 3510 0.18 21.84 0.67 22.04

0.11 12.74 0.24 12.98

Maximum

Average

Name #Node
Average

 35

Table 4.3: McMillan’s adjustable method (CDCC1 + M).

Time Mem(Mb) Time Mem(Mb)
s27 10 0.02 7.86 0.02 7.93

s208 104 0.02 8.26 0.03 8.38
s298 119 0.02 8.37 0.03 8.48
s344 160 0.03 8.35 0.05 8.74
s349 161 0.03 8.44 0.05 8.65
s382 158 0.03 8.75 0.05 8.80
s386 159 0.03 8.63 0.06 8.95
s400 162 0.03 8.58 0.06 8.84

s420.1 218 0.03 8.56 0.05 8.74
s444 181 0.03 8.84 0.06 8.87
s499 152 0.03 8.91 0.07 9.14
s510 211 0.03 8.72 0.07 8.99
s526 193 0.03 8.50 0.06 8.69
s526n 194 0.03 8.50 0.06 8.67
s635 286 0.04 9.43 0.08 9.77
s641 380 0.04 9.63 0.09 9.74
s713 393 0.04 9.76 0.11 9.91
s820 289 0.03 9.26 0.08 9.95
s832 287 0.03 9.30 0.09 9.82

s838.1 446 0.04 9.43 0.08 9.61
s938 446 0.03 9.34 0.08 9.60
s953 395 0.03 9.68 0.07 9.91
s967 394 0.03 9.61 0.07 9.91
s991 519 0.05 10.29 0.14 10.92
s1196 529 0.05 10.14 0.12 10.25
s1238 508 0.05 9.91 0.12 10.27
s1269 569 0.06 10.15 0.14 10.83
s1423 657 0.05 10.90 0.15 11.07
s1488 653 0.03 10.35 0.08 11.26
s1494 647 0.03 11.00 0.08 11.21
s1512 780 0.03 10.98 0.08 11.76
s3271 1573 0.03 11.51 0.06 11.96
s3330 1789 0.04 13.37 0.14 14.13
s3384 1702 0.04 12.36 0.09 12.57
s4863 2374 0.08 14.51 0.22 15.06
s5378 2794 0.06 15.52 0.17 15.52
s6669 3148 0.11 15.86 0.26 16.92

s9234.1 5597 0.11 23.59 0.69 24.98
s13207 8027 0.09 25.90 0.39 27.24
s15850 9786 0.12 33.35 0.63 36.27
s35932 16065 0.13 38.81 0.48 42.39
s38417 22397 0.20 48.02 0.62 52.77
s38584 19407 0.20 59.41 2.49 76.11

0.05 13.97 0.20 14.97Average

#Node
Average Maximum

Name

 36

Table 4.4: Our adjustable method (CDCC1 + I + D).

Time Mem(Mb) Time Mem(Mb)
s27 10 0.01 7.86 0.02 7.93

s208 104 0.02 8.27 0.02 8.38
s298 119 0.02 8.37 0.03 8.48
s344 160 0.03 8.35 0.05 8.68
s349 161 0.03 8.44 0.05 8.66
s382 158 0.03 8.75 0.05 8.84
s386 159 0.03 8.63 0.07 8.95
s400 162 0.03 8.58 0.06 8.87

s420.1 218 0.03 8.58 0.05 8.76
s444 181 0.03 8.84 0.06 8.90
s499 152 0.03 8.92 0.06 9.16
s510 211 0.03 8.72 0.06 9.02
s526 193 0.03 8.50 0.06 8.72
s526n 194 0.03 8.50 0.05 8.70
s635 286 0.04 9.44 0.09 9.79
s641 380 0.04 9.63 0.11 9.76
s713 393 0.05 9.76 0.11 9.96
s820 289 0.03 9.27 0.08 10.00
s832 287 0.03 9.30 0.09 9.86

s838.1 446 0.04 9.43 0.08 9.72
s938 446 0.04 9.35 0.09 9.73
s953 395 0.03 9.69 0.07 9.91
s967 394 0.03 9.61 0.09 9.91
s991 519 0.05 10.31 0.14 10.96
s1196 529 0.05 10.15 0.12 10.35
s1238 508 0.05 9.92 0.12 10.35
s1269 569 0.06 10.16 0.14 10.91
s1423 657 0.05 10.90 0.16 11.20
s1488 653 0.03 10.36 0.08 11.32
s1494 647 0.03 11.00 0.08 11.28
s1512 780 0.04 10.99 0.08 11.57
s3271 1573 0.04 11.52 0.07 12.06
s3330 1789 0.05 13.37 0.14 14.56
s3384 1702 0.05 12.37 0.10 13.07
s4863 2374 0.09 14.52 0.18 15.11
s5378 2794 0.07 15.52 0.21 15.98
s6669 3148 0.12 15.87 0.28 16.92

s9234.1 5597 0.13 23.60 0.72 25.46
s13207 8027 0.12 25.90 0.56 28.92
s15850 9786 0.17 33.37 0.66 37.50
s35932 16065 0.22 38.82 0.53 42.39
s38417 22397 0.32 48.03 0.75 54.18
s38584 19407 0.30 59.42 2.54 79.65

0.06 13.97 0.21 15.22Average

#Node
Average Maximum

Name

 37

Table 4.1 and Table 4.2 show that for the ISCAS-85 benchmark, most of the nodes

can be conquered within 0.5 second and the average memory usage is within 13 Mb.

Table 4.3 and Table 4.4 show that for the ISCAS-89 benchmark, most of the nodes can

be conquered within 1 second and the average memory usage is within 15 Mb. The

short runtime shows the efficiency of the interpolation algorithms.

We compared the effect of adjustable interpolation by evaluating the solution space

of don’t-cares. From Figure 4.4 to Figure 4.7, the value is a normalized don’t-care

minterm number which ranges from 0 to 1. While 1 means the don’t-care computed at

the node is the optimal value, 0 means the algorithm dose not get any result due to

timeout or the intrinsic limitation. The Y axis is the basic don’t-care computation

algorithm, while the X axis represents the algorithm combined with the adjustable

interpolation algorithm.

As the results show, although the algorithm runs with high efficiency, fewer nodes

were influenced by the sizing algorithms. Whatever the McMillan’s method or our

proposed algorithms do not get ideal results. As a consequence, we proposed CDCC2

algorithm.

 38

Figure 4.4: Interpolant on set changing by CDCC1 + M on benchmark ISCAS-85.

Figure 4.5: Interpolant on set changing by CDCC1 + I + D on benchmark ISCAS-85.

 39

Figure 4.6: Interpolant on set changing by CDCC1 + M on benchmark ISCAS-89.

Figure 4.7: Interpolant on set changing by CDCC1 + I + D on benchmark ISCAS-89.

 40

4.3 Adjustable Interpolation on CDCC2

 In order to gain better results on don’t-care computation, we proposed CDCC2 in

Section 3.2. Following are the experiments of CDCC2. The environment is identical to

the setting in CDCC1.

 For the ISCAS-85 benchmark, the average runtime and memory usage of our

method (CDCC2 + I +D) are 0.16 seconds and 15.97 Mb, while McMillan’s swap rules

(CDCC2 + M) need 0.19 seconds and 15.92 Mb. For the ISCAS-89 benchmark, our

values are 0.21 seconds and 11.09Mb, while the McMillan ones are 0.27 seconds and

11.02 Mb in average. At the aspect of adjustable interpolation algorithm, for the

ISCAS-85 circuits, no node can be improved by the McMillan method among the all

13,322 nodes. However, by our methods, there are 296 nodes improved with 153 nodes

becoming worse. Moreover, for the cases in ISCAS-89 circuits, there are 1667 nodes

being improved by our methods among the 105,019 nodes with 329 bad nodes, while

only 16 nodes have improvement by McMillan method.

Finally, we summarize the ratio of amount of optimal nodes to the amount of all

nodes computed by proposed method with different adjustable interpolation algorithms

in Table 4.5. It should be noticed that for some nodes, CDCC2 did not get optimal

results. This is because that the constructed don’t-care set miter is naturally unsatisfiable,

such as the case at primary output node. Sometimes the miter becomes unsatisfiable

after adding the overlapping part as the conflict clauses.

 41

Table 4.5: The optimal ratio of don’t-care computation via adjustable interpolation.

Bench Method B M I+D

1 55.8% 55.8% 55.8%

2 83.4% 83.4% 84.2%

1 71.8% 71.8% 71.8%

2 92.8% 92.8% 94.1%

1 70.0% 70.0% 70.0%

2 91.7% 91.7% 92.9%

ISCAS-85

ISCAS-89

Overall

B: Basic algorithms, M: McMillan’s methods, I+D: Our methods.

Table 4.6: McMillan’s adjustable method (CDCC2 + M).

Time Mem(Mb) Time Mem(Mb)
 C17 6 0.01 7.74 0.01 7.86
 C432 160 0.02 9.02 0.08 9.21
 C499 202 0.02 9.09 0.12 9.29
 C880 383 0.02 9.10 0.84 9.11
 C1355 546 0.06 12.69 0.56 12.74
 C1908 880 0.10 11.00 1.39 15.08
 C2670 1253 0.04 10.27 0.23 11.83
 C3540 1669 0.14 12.93 24.54 14.37
 C5315 2297 0.05 11.25 0.97 14.20
 C6288 2416 1.59 69.77 105.04 348.83
 C7552 3510 0.09 12.31 1.30 17.87

0.19 15.92 12.28 42.76

Maximum

Average

NAME #NODE
Average

Table 4.7: Our adjustable method (CDCC2 + I + D).

Time Mem(Mb) Time Mem(Mb)
 C17 6 0.01 7.74 0.01 7.86
 C432 160 0.02 9.02 0.09 9.21
 C499 202 0.02 9.09 0.05 9.29
 C880 383 0.02 9.10 0.29 9.11
 C1355 546 0.04 12.69 0.14 12.74
 C1908 880 0.06 10.99 0.37 15.23
 C2670 1253 0.05 10.36 0.21 12.20
 C3540 1669 0.10 12.94 3.21 13.76
 C5315 2297 0.05 11.40 0.40 14.21
 C6288 2416 1.34 69.78 144.03 348.83
 C7552 3510 0.10 12.52 0.67 17.70

0.16 15.97 13.59 42.74Average

#Node
Average Maximum

Name

 42

Table 4.8: McMillan’s adjustable method (CDCC2 + M).

Time Mem(Mb) Time Mem(Mb)
s27 10 0.01 7.87 0.01 7.93

s208 104 0.01 8.20 0.02 8.28
s298 119 0.01 8.24 0.02 8.29
s344 160 0.01 8.26 0.03 8.33
s349 161 0.01 8.43 0.04 8.49
s382 158 0.01 8.38 0.02 8.68
s386 159 0.01 8.38 0.02 8.68
s400 162 0.01 8.34 0.02 8.72

s420.1 218 0.01 8.27 0.02 8.49
s444 181 0.01 8.82 0.03 8.83
s499 152 0.01 8.45 0.04 8.72
s510 211 0.01 8.43 0.03 8.59
s526 193 0.01 8.43 0.03 8.46
s526n 194 0.01 8.55 0.03 8.57
s635 286 0.02 9.25 0.05 9.27
s641 380 0.03 8.58 0.14 9.34
s713 393 0.03 8.63 0.14 10.29
s820 289 0.02 9.12 0.05 9.16
s832 287 0.01 8.58 0.04 9.18

s838.1 446 0.02 8.63 0.07 9.20
s938 446 0.03 8.64 0.06 9.05
s953 395 0.02 8.89 0.10 9.33
s967 394 0.02 9.34 0.06 9.34
s991 519 0.04 9.68 0.11 10.21
s1196 529 0.03 8.81 0.19 10.19
s1238 508 0.04 9.47 0.14 9.62
s1269 569 0.05 10.14 0.40 10.66
s1423 657 0.05 10.86 0.84 11.89
s1488 653 0.03 9.36 0.21 10.46
s1494 647 0.03 10.32 0.19 10.47
s1512 780 0.03 9.23 0.19 10.66
s3271 1573 0.03 9.76 0.35 11.73
s3330 1789 0.04 10.37 0.29 12.39
s3384 1702 0.05 10.39 2.12 11.71
s4863 2374 3.83 11.96 1848.54 19.39
s5378 2794 0.05 12.56 0.65 13.16
s6669 3148 5.88 13.46 927.92 2361.00

s9234.1 5597 0.11 13.65 60.05 37.48
s13207 8027 0.14 16.47 90.03 41.28
s15850 9786 0.25 19.12 360.95 61.45
s35932 16065 0.20 26.01 2.75 29.19
s38417 22397 0.27 27.59 2.06 32.59
s38584 19407 0.29 28.04 154.47 60.55

0.27 11.02 80.31 69.29Average

#Node
Average Maximum

Name

 43

Table 4.9: Our adjustable method (CDCC2 + I + D).

Time Mem(Mb) Time Mem(Mb)
s27 10 0.01 7.87 0.01 7.93

s208 104 0.01 8.20 0.02 8.28
s298 119 0.01 8.24 0.02 8.29
s344 160 0.01 8.26 0.02 8.35
s349 161 0.01 8.43 0.02 8.49
s382 158 0.01 8.38 0.02 8.57
s386 159 0.01 8.38 0.03 8.68
s400 162 0.01 8.35 0.02 8.68

s420.1 218 0.01 8.29 0.02 8.50
s444 181 0.01 8.82 0.02 8.83
s499 152 0.01 8.46 0.04 8.73
s510 211 0.01 8.43 0.03 8.61
s526 193 0.02 8.43 0.04 8.46
s526n 194 0.01 8.55 0.03 8.57
s635 286 0.02 9.25 0.05 9.28
s641 380 0.03 8.61 0.08 9.17
s713 393 0.03 8.65 0.17 9.24
s820 289 0.02 9.12 0.06 9.20
s832 287 0.02 8.60 0.03 9.21

s838.1 446 0.02 8.66 0.06 9.18
s938 446 0.03 8.66 0.06 9.14
s953 395 0.03 8.89 0.08 9.34
s967 394 0.02 9.34 0.07 9.34
s991 519 0.04 9.69 0.15 10.20
s1196 529 0.03 8.87 0.10 10.20
s1238 508 0.04 9.47 0.10 9.67
s1269 569 0.05 10.14 0.53 10.66
s1423 657 0.05 10.87 0.31 11.53
s1488 653 0.03 9.37 0.11 10.50
s1494 647 0.03 10.32 0.22 10.51
s1512 780 0.03 9.28 0.13 10.70
s3271 1573 0.04 9.90 0.19 11.23
s3330 1789 0.04 10.43 0.21 12.50
s3384 1702 0.05 10.45 0.39 11.80
s4863 2374 2.77 12.21 689.77 19.39
s5378 2794 0.06 12.57 0.26 13.59
s6669 3148 3.89 12.43 792.86 16.32

s9234.1 5597 0.12 14.08 0.88 25.73
s13207 8027 0.11 16.82 2.26 36.78
s15850 9786 0.20 19.45 7.81 35.42
s35932 16065 0.25 26.24 2.36 32.05
s38417 22397 0.37 29.25 1.73 40.25
s38584 19407 0.35 28.16 9.64 68.38

0.21 11.09 35.14 14.17Average

#Node
Average Maximum

Name

 44

Figure 4.8: Interpolant on set changing by CDCC2 + M on benchmark ISCAS-85.

Figure 4.9: Interpolant on set changing by CDCC2 + I + D on benchmark ISCAS-85.

 45

Figure 4.10: Interpolant on set changing by CDCC2 + M on benchmark ISCAS-89.

Figure 4.11: Interpolant on set changing by CDCC2 + I + D on benchmark ISCAS-89.

 46

Chapter 5

Conclusions and Future Work

 The primary distinctive aspects of our work are providing solutions for the

adjustable interpolation and developing two novel algorithms for the don’t-care

computation. As compared with the previous work, which adopts strengthening the

interpolant after the creation of a refutation proof, our algorithms direct the solver to

generate desired one in the early stage of Boolean satisfiability solving. Such adjustable

interpolation techniques effectively help the computation gain much more don’t-care

minterms far beyond the capability of prior methods. Experimental results demonstrate

that among all the nodes, our algorithms improve 1,936 nodes while previous method

only has 16 nodes improved. In addition, CDCC2 is able to get optimal solutions for

92.9% of all nodes. Furthermore, our approach is scalable to large designs without

losing efficiency. To conclude, our developments may benefit several areas of logic

synthesis and verification, especially for those methods utilizing interpolation

algorithms.

Future work includes integrating our technique in logic synthesis and generalizing

it for other applications. Such as functional decomposition with don’t-cares is a good

topic. Also, exploring new applications of our adjustable interpolation algorithm is a

potential subject.

 47

Bibliography

[1] Hamid Savoj and Robert K. Brayton, “The use of observability and external don’t

cares for the simplification of multi-level networks,” in Proceedings of

IEEE/ACM Design Automation Conference, pp. 297-301, 1990.

[2] Hamid Savoj, Robert K. Brayton and Hervé J. Touati, “Extracting local don’t

cares for network optimization, ” in Proceedings of IEEE/ACM International

Conference on Computer-Aided Design, pp. 514-517, 1991.

[3] Ranjit Jhala and Ken L. McMillan, “Interpolant-based transition relation

approximation,” in Proceedings of IEEE/ACM International Conference on

Computer Aided Verification, pp. 39-51, 2005.

[4] William Craig, “Linear reasoning. A new form of the herbrand-gentzen theorem,”

The Journal of Symbolic Logic, 22(3), pp250-268, 1957.

[5] Ken L. McMillan, “Interpolation and sat-based model checking,” in Proceedings

of IEEE/ACM International Conference on Computer Aided Verification, pp. 1-13,

2003.

[6] Alan Mishchenko and Robert K. Brayton, “Simplification of Non-Deterministic

Multi-Valued Networks”, in Proceedings of IEEE/ACM International Conference

on Computer-Aided Design, pp557-562, 2002.

[7] Alan Mishchenko and Robert K. Brayton, “A theory of non-deterministic

networks”, in Proceedings of IEEE/ACM International Conference on

Computer-Aided Design, pp709-716, 2003.

 48

[8] Alan Mishchenko and Robert K. Brayton, “SAT-Based Complete Don’t-Care

Computation for Network Optimization”, in Proceedings of Design, Automation

and Test in Europe Conference, pp412-417, 2005.

[9] Ken L. McMillan, “Don’t-care computation using k-clause approximation”, in

Proceedings of Internal Workshop on Logic Synthesis, 2005.

[10] G. S. Tseitin, “On the complexity of derivation in propositional calculus,” Studies

in Constructive Mathematics and Mathematical Logic, pp.466-483, 1970.

[11] Niklas Eẻn and Niklas Sörensson, “An extensible SAT-solver”, in Proceedings of

International conference on Theory and Applications of Satisfiability Testing, pp.

502-518, 2003.

[12] Niklas Eẻn and Armin Biere, “Effective Preprocessing in SAT through variable

and clause elimination”, in Proceedings of International conference on Theory

and Applications of Satisfiability Testing, volume 3569 of LNCS, 2005.

[13] Berkeley Logic Synthesis and Verification Group, “ABC: A system for sequential

synthesis and verification”, http://www.eecs.berkeley.edu/~alanmi/abc/

[14] Pavel Pudlăk, “Lower bounds for resolution and cutting plane proofs and

monotone computations”, Journal of Symbolic Logic, Volume 62, Number 3,

September, 1997.

[15] Jan Krajiček, “Interpolation theorems, lower bounds for proof systems, and

independence results for bounded arithmetic,” The Journal of Symbolic Logic,

62(2), pp457-486, 1997.

[16] Ken L. McMillan, “An interpolating prover,” Theoretical Computer Science,

Volume 345, Issue 1, pp 101-121, November 2005.

[17] Paul Beanie, Henry Kautz and Ashish Sabharwal, “Understanding the Power of

Clause Learning”, in Proceedings of the International Joint Conference on

 49

Artificial Intelligence, pp. 1194-1201, 2003.

[18] M. Morris Mano, Digital Design third edition, Prentice Hall, pp 17-21, 2002

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

