
國立臺灣大學電機資訊學院電子工程學研究所 

碩士論文 

Graduate Institute of Electronics Engineering 

College of Electrical Engineering and Computer Science 

National Taiwan University 

Master Thesis 

 

利用可調整內插法計算邏輯無關項 

Don’t-Care Computation via Adjustable Interpolation 

 

 

 

陳一心 

I-Hsin Chen 

 

指導教授：江介宏 博士 

Advisor: Jie-Hong Jiang, Ph.D. 

 

中華民國 98 年 6 月 

June, 2009



 i

 

Acknowledgements 

 

First, I would like to thank my advisor, Dr. Jie-Hong Roland Jiang. Without his 

patience and enthusiasm for students, I could not learn so much about academic study 

and theoretical research. He never hesitates to give his students valuable advice and 

helpful direction. From him, I saw what an esteemed teacher is. 

Second, I would like to thank all the members in ALCom Lab. For Hong-Yuan Lin, 

Chung-Min Li, Wei-Lun Hung, Wei-Chieh Wang, and Sz-Cheng Huang, we had 

delighted period in the building EE-II. For Hsuan-Po Lin and Ruei-Rung Lee, we had 

memorable time both in study and life. Also, Chih-Fan Lai, Fu-Rong Wu, Meng-Yan 

Li, Jane-Chi Lin, and Chia-Chao Kan, are excellent companions and friends. Without 

them, I could not have such grateful and wonderful experience in these years. 

Especially, I would like to thank all the other friends who stood with me, no matter in 

the cheerful hours or the difficult moments. 

Finally, I would like to thank my parents, my sister, and my girl friend. For the 

every step in my life, they are always fully behind me and support me, thank you. 

To them, I dedicate this thesis. 

 

I-Hsin Chen 

 

National Taiwan University 

June 2009 

 

 

 

 



 ii

 

摘要 

 

近年來在邏輯合成與驗證的領域中，內插法的應用與日俱增，相關範疇包括

函數相依、二元分解、亞氏分解等。本研究係利用內插法針對多層次電路之節點

計算邏輯無關項。 

傳統上，內插可藉由可滿足性問題求解器產生之反證求得，並可利用改寫反

證之結構對內插大小進行調整。但我們在研究過程發現，大部分狀況中，調整可

滿足性問題求解器產生反證後所求得之內插並無太大的改變，內插法的效能因而

受限。 

本論文中，我們提出利用可滿足性問題求解之演算法來計算邏輯無關項，並

發展出一套針對可滿足性問題求解器改變內插大小的技巧，包括調整初始變數優

先序及改變布林初始值，同時利用電路結構簡化問題模型以加快求解速度。實驗

結果顯示，該改變內插大小的方法讓求解邏輯無關項之演算法在可接受的時間

內，較未使用該方法時求出更多的邏輯無關項。 

 

 

關鍵詞：內插法、邏輯網路、邏輯無關項、可滿足性問題求解、可調整內插 
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Abstract 

 

In recent years, there have been a variety of applications of interpolation in logic 

synthesis and verification, such as functional dependency, bi-decomposition, and 

Ashenhurst decomposition. The goal of this research is to compute don’t-cares for a 

given node in a multi-level network by using interpolation. 

Traditionally, an interpolant can be derived from a refutation proof given by a SAT 

solver, and its onset can be adjusted via rewriting the structure of the refutation proof. 

However, in most cases, the interpolant derived by the refutation proof generated by a 

SAT solver can not be adjusted too much. As a result, the application of interpolation is 

limited. 

In this thesis, we propose SAT-based don’t-care computation algorithms via 

interpolation. In addition, a set of techniques has been developed for a SAT solver to 

adjust the solution space of the interpolant. The methods include setting the initial 

variable activities and altering the Boolean initial values. The circuit structure has also 

been utilized to simplify the problem to accelerate SAT solving. Experiments show that 

the algorithms can get more don’t-cares while applying the interpolation sizing method 

to the algorithms. 

 

Keywords:  Craig interpolation, logic network, don’t-care, SAT solving, adjustable 

interpolant 
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Chapter 1  

Introduction 

 

 As the focus of logic synthesis and verification shifted to multi-level networks, 

computing don’t-cares of a given node in a Boolean network becomes more and more 

important. Such don’t-care information can be used to provide additional flexibility to 

simplify a Boolean expression. In addition, using don’t-cares for technology 

independent logic synthesis of multi-level networks has been a major technique in the 

area of logic optimization. As a result, efficient methods to compute don’t-cares are 

necessary for these logic manipulations. In this chapter, we first give the introduction to 

don’t-cares and exam previous work related to don’t-care computation. We then 

summarize our contributions, and finally, outline this thesis. 

 

1.1 The Origin of Don’t-Cares 

 Don’t-cares allow a node in a logic network to have a flexible output value either 0 

or 1 under an input assignment. Moreover, such don’t-care conditions are the 

combinations of external don’t-cares (XDCs), observability don’t-cares (ODCs) and 

satisfiability don’t-cares (SDCs). External don’t-cares are given by assigning the 

minterms at the primary input. For instances, the values 1010 through 1111 in binary, or 

10 through 15 in decimal, never happen on a binary coded decimal (BCD) [18] function. 

Therefore, those values are the external don’t-cares for a function in the binary coded 
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decimal system. 

 Unlike external don’t-cares, observability and satisfiability don’t-cares exist due to 

the multi-level network structures. In other words, the input assignments of an internal 

node depend on the primary inputs, but not all the combination of assignments can be 

generated at the internal node. Accordingly, those assignments which never appear at 

the node form the satisfiability don’t-cares. On the other hand, observability don’t-cares 

arise under the conditions that the output value of a node does not affect the primary 

outputs. Hence, they compose the observability don’t-cares. Below we give an example 

of the satisfiability and observability don’t-cares. 

 

 

Figure 1.1: An example of SDCs and ODCs. 

 

In Figure 1.1, the node A has a satisfiability don’t-cares with (m1, m2) equal to (1, 0). 

For the node A, if we want m1 to be one, this requires X2 to be one. For m2 to be zero, in 

the other side, this requires X2 to be zero. X2 could not be different values 

simultaneously. As a consequence, the combination (1, 0) never appears at (m1, m2) and 

this becomes the satisfiability don’t-care. In addition, the node C has observability 

don’t-cares in the global space with X1 or X2 equals to zero. While X1 or X2 equals to 

zero, it leads m1 to be zero. Zero is the controlling values of AND-gate, so Y1 is also 

zero whatever the value m2 is. As a result, (0, 0) and (0, 1) form the observability 
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don’t-cares of node C in the global space (X2, X3). 

 Satisfiability and observability don’t-cares are together called complete don’t-cares 

(CDCs) [8]. Complete don’t-cares form a superset of the compatible observability 

don’t-cares (CODCs) [7]. Compatible observability don’t-cares and satisfiability 

don’t-cares conventionally are the forms used in logic optimization [1]. Furthermore, 

the amount of don’t-cares computed for complete don’t-cares is larger than for 

compatible observability don’t-cares. Moreover, substituting a node’s function by a 

completely specified function compatible with its complete don’t-cares does not change 

the network’s output. Therefore, complete don’t-cares are important for logic 

optimization. 

 

1.2 Previous Work 

 There are some previous efforts which present circuit optimization using the 

don’t-cares. The strategies of these methods include the image computation via binary 

decision diagrams (BDDs), quantifier elimination through SAT-based algorithm, and 

image approximation utilizing clause limited to fixed length. We summarize them as 

follow. 

 First, observability don’t-cares are often too large to be efficiently computed in the 

optimization process. Therefore, Savoj and Brayton [1] used compatible observability 

don’t-cares (CODCs) instead of observability don’t-cars to avoid the computation on 

redundant observability don’t-cares. 

 Second, Savoj and Brayton [2] computed don’t-care information using an image 

computation approach based on binary decision diagrams. This method computes 

compatible observability don’t-care sets, which allow simultaneous modification on 
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multiple nodes. However, it sacrifices the optimization flexibility. 

 Furthermore, Mishchenko and Brayton [8] proposed the concepts of complete 

don’t-cares (CDCs), a superset of compatible observability don’t-cares. They showed 

that the complete don’t-cares computation is comparable to compatible observability 

don’t-cares in runtime and memory consumption, and the number of don’t-cares is 

larger than that of compatible observability don’t-cares. The work used Boolean 

satisfiability solvers instead of binary decision diagrams to avoid the memory explosion 

problem, which often happens in BDD-based algorithms. They also introduced a 

windowing technique which restricts the environment to a local subset of the entire 

circuit to achieve don’t-care approximation. This restriction makes it feasible to 

evaluate the care-set of every node independently, and avoids the need for compatible 

observability don’t-cares. They also introduced the use of SAT-based quantifier 

elimination combined with random sampling. The idea is established on constructing a 

miter to characterize the care-set of the node, as shown in Figure 1.2. Therefore, they 

can obtain the complete don’t-cares of the node by complement. 

 

 

Figure 1.2: Mishchenko proposed the miter charactering the care-set. 

Besides, they showed such construction is more robust than the BDD-based 
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quantifier elimination if the number of node inputs is less than about ten. However, 

because this method enumerates the minterms of the care-set, it cannot be applied to 

nodes with a large number of inputs. Our experience suggests that it is not scalable to 

large-scale circuits without the windowing technique. 

 McMillan [9] proposed a method of approximate quantifier elimination to compute 

the strongest over-approximation. This method uses a Boolean satisfiability solver in the 

machine-learning framework with clauses confined to a given length. The advantage of 

this approach is that it does not require enumerating the minterms of the care-set. For 

that reason, it can be applied when the number of node inputs is relatively large. They 

showed it remains robust in some cases while the BDD-based image computation and 

minterm enumeration methods fail. However, the restriction of the clause length lost the 

precision for the computation results. 

 

1.3 Our Contributions 

 In this thesis, we present two novel algorithms. Different from prior work, our 

work brings the following distinct features. 

 - The algorithms are based on SAT solving, but take advantage of the efficiency 

and scalability of interpolation. 

 - The computation results of complete don’t-cares can be further enhanced through 

the adjustable interpolation algorithms. 

 - This is the first work considering the adjustability of interpolation in the early 

stage of Boolean satisfiability solving processes. 

To summarize, our work is based on the Boolean satisfiability solving. Unlike prior 

methods, we take advantage of interpolation to enhance the scalability of don’t-care 
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computation while maintaining efficiency. Further, we propose practical solutions to 

adjust interpolation to gain better results on don’t-care computation. Our proposed 

methods including setting initial variable activities and altering the Boolean initial 

values are useful to modify the solution space of the interpolant. These methods raise 

the capacity of adjustable interpolation algorithms, and then benefit those algorithms 

based on interpolation. 

 

1.4 Organization of the Thesis 

 The rest of the thesis is structured as follows. Chapter 2 provides the required 

preliminaries and background, including Boolean network and functions, don’t-cares, 

Boolean satisfiability solving, and Craig interpolation. Chapter 3 describes our 

don’t-care computation methods and the adjustable interpolation algorithms. Chapter 4 

reports the experimental results, and Chapter 5 concludes the thesis and outlines future 

work. 
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Chapter 2  

Preliminaries 

 

2.1 Boolean Network and Function 

 A Boolean network or a circuit is a directed acyclic graph (DAG), where nodes 

correspond to logic gates and directed edges correspond to wire connections between 

the gates. A node has zero or more fanins. Fanins of a node are other nodes that driving 

this node. A node has zero or more fanouts. Fanouts of a node are other nodes that 

driven by this node. The nodes without fanins are called primary inputs (PIs). The nodes 

without fanouts are called primary outputs (POs). For registers in a sequential circuit, 

their inputs and outputs are treated as additional POs and PIs. For instance, a Boolean 

network and its corresponding DAG drawn by ABC [13] are shown in Figure 2.1. 

  

Figure 2.1: A Boolean network and the corresponding DAG. 
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 Boolean function is composed of Boolean variables. A completely Boolean 

function has the definition as follow. 

Definition. A completely specified Boolean function (CSF) is a mapping from 

n-dimensional ( 0)n ≥  Boolean space into a single-dimensional one: { } { }0,1 0,1n →  

[8]. 

 If a function with at least one input combination such that the output function is a 

don’t-care, it is an incompletely specified Boolean function (ISF). 

 

2.2 Satisfiability Problem and Solver 

 The Boolean satisfiability problem, known as SAT, is determining if there exists a 

satisfying variable assignment for a given Boolean formula. We begin with required 

definitions. Let { }1,..., kV v v=  be a finite set of Boolean variables. A literal is a 

variable iv  or its negation iv¬ . A clause c  is a disjunction of literals. We assume 

that all the clauses are non-tautological so that there would never be a variable and its 

negation in a same clause and produce a true. A SAT instance is a conjunction of clauses, 

or a conjunctive normal form (CNF). For instance, Figure 2.2 shows a conjunctive 

normal form with three clauses, four variables, and six literals. 

 

( )( )( )a b c b c d+ + +¬ ¬  

 

Figure 2.2: There are three clauses, four variable, and six literals in the CNF. 

 

 A solver for the Boolean satisfiability problem is called a SAT solver. When 

solving a problem, a SAT solver assigns Boolean values to those variables in turn if they 
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were not assigned until a satisfiable instance occurs or the unsatisfiability happens. In 

some modern SAT solvers, such as MiniSat [11], heuristics such as variable activity are 

used to choose variable for assigning value. Activity heuristic is a dynamic variable 

ordering mechanism. Each variable comes with a value called activity, and the activity 

varies upon the frequency of variable appearing in the conflict clauses. 

 A SAT solver gives a satisfying assignment when the given clause set is satisfiable, 

otherwise it is unsatisfiable. Some modern SAT solvers produce a refutation proof when 

the problem is unsatisfiable. The refutation proof proves the problem is unsatisfiable, 

and it can be used to generate interpolants. 

 

2.3 Resolution and Refutation Proof 

 Resolution is a rule of inference leading to a refutation proof. In propositional logic, 

the resolution rule is a single valid inference rule. It produces a new clause implied by 

two clauses containing complementary literals. The new clause produced by the 

resolution rule is called the resolvent of the input clauses. A resolvent of two clauses 

1c v A= ∨  and 2c v B= ¬ ∨  is the clause A B∨ , provided that A B∨  is 

non-tautological. We call v the pivot variable of c1 and c2. In fact, if there exists a 

resolvent of c1 and c2, we can write the resolvent as the form 1 2( )c c∃ ∧ . 

 Then we have the definition of an unsatisfiability refutation proof ∏ . Given the 

set of clauses C, ∏  is a directed acyclic graph ( , )V E∏ ∏ , where V∏  is a set of clauses. 

For every vertex c V∏∈ , it must be one of the following conditions: (1) c C∈  ⇒  c is 

a root, or (2) c has exactly two predecessors, c1 and c2 ⇒  c is the resolvent of c1 and c2, 

and (3) the empty clause is the unique leaf. Following the refutation proof, we can get 

the empty clause by resolution rule, and prove the unsatisfiability of the clause set C. 
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2.4 Craig Interpolation Theorem 

 We describe the definition of an interpolant. It was proposed by Craig in 1957 [4]. 

An interpolant for the unsatisfiable pair (A, B) is a formula P with the following three 

properties: 

– A implies P 

– P B∧  is unsatisfiable 

– P refers only to the common variables of A and B 

 

 

Figure 2.3: The interpolant P is an approximation of A, and disjoints B. 

 

Figure 2.3 illustrates the concept of interpolant. In fact, we can consider the 

interpolant as an over-approximation of formula A, while P maintains the feature that 

disjoints with B. There is an intuition to stats the existence of interpolants. That is, the 

smallest interplant is ( )cx A∃ , where cx  stands for those variables appear in A but not 

appear in B. In the other way, the largest interplant is ( )cy B∀ , where cy  stands for those 

variables appear in B but not appear in A.  

Pudlak [14] and Krajiček [15] proposed methods that if given a proof of 

unsatisfiability of A B∧ , P can be derived in linear time. Multiplexers are used to 

generator the interpolant. Here we use the method proposed by McMillan in 2005 [5]. 
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We divide the clauses into two sets, namely A and B, and then we obtain the 

refutation proof ∏  of A B∧  via SAT solving. We say a variable is global if it 

appears both in A and B, and a variable is local to A if it appears only in A. Here we use 

g(c) to denote the disjunction of the global literals in a clause c and use l(c) to denote 

the disjunction of the literals local to A in a clause c. 

 Let (A, B) be the division of clause sets and ∏  be a refutation proof of its 

unsatisfiability and the leaf vertex is given FALSE. Let p(c) be a Boolean formula 

where c is any vertices in V∏ , and then ITP-Function is defined in Figure 2.4.  

 
ITP-Function( ) 
1 for each v V∏∈  
2 do if c is a root 
3     then if c A∈  
4         then ( ) ( )p c g c←  
5         e lse ( )p c TRUE←  
6     else if v is local to A 
7         then 1 2( ) ( ) ( )p c p c p c← ∨  
8         e lse 1 2( ) ( ) ( )p c p c p c← ∧  

Figure 2.4: The ITP computation. 

 

 Note that c1 and c2 are two predecessors of c, and v is the pivot variable. Thus the 

∏ -interpolant of (A, B) is p(FALSE). McMillan gave the detail proof about this method 

[16]. In the other way, interpolant indeed is a circuit following the structure of the 

refutation proof. Figure 2.5 gives an example of such interpolant. 
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Figure 2.5: The mapping of refutation proof and the interpolant. 

 

 This approach directs us a way to compute interpolant simply. However, the 

interpolants derived by this method are usually weak and may not be good enough in 

practice, especially for our applications in computing don’t-cares. 

 

2.4.1 Interpolant Strengthen 

In our algorithms, we need a process to derive different strength interpolants. For 

example in Figure 2.6, P and P’ are implied by A, and both are unsatisfiable with B, but 

they have different strength. 

 

Figure 2.6: There could be more than one interpolant in different strength. 



 13

 In other words, a method to adjust the interpolant to generator interplant with 

difference strength, or different solution space is necessary. 

Jhala and McMillan [3] presented a method to compute strong interpolants. This 

method is mainly using swap rules to rewrite the refutation proof to derived different 

strength interpolant. 

Overall, to strengthen the interpolant, we would better move the local resolutions 

toward the hypothesis in a refutation proof; meanwhile, the global resolutions go 

downward to the conclusion. In such way we move the OR gates toward the inputs of 

the interpolant circuit and the AND gates toward the output, thus we strengthen the 

interpolant. To achieve this, two rules in Figure 2.7 are applied to rewrite the refutation 

proof. 

 

1 31 2
23

1 31 2

1 2 3 1 2 3

p q qp q p pq
pq

θ θθ θ θθ
θ θθ θ

θ θ θ θ θ θ

∨¬ ∨ ∨∨¬ ∨ ¬ ∨ ¬ ∨∨
∨ ∨¬ ∨ ∨ →

∨ ∨ ∨ ∨

　 　 
　　　　

　　 　　  

(1) 

1 3 2 31 2
3

1 3 2 31 2

1 2 3 1 2 3

p q q p q qp q p q q
p pq

θ θ θ θθ θ θ
θ θ θ θθ θ

θ θ θ θ θ θ

∨ ¬ ∨ ∨ ¬ ∨ ¬ ∨ ∨∨ ¬ ∨ ¬ ∨ ¬ ∨ ∨
∨ ∨ ¬ ∨ ∨¬ ∨ ∨ →

∨ ∨ ∨ ∨

　 　 　 
　　　　

　　 　　

(2) 

Figure 2.7: Two swap rules used to adjust the interpolant. 

 

 Applying these two rules throughout the refutation proof structure, we can 

basically raise the resolutions with local pivot variables to the top of the refutation proof, 

and the resolutions with global pivot variables to the bottom. But the price is that it may 

expand the size of the refutation proof exponentially. Instead, Jhala and McMillan 

adopted a limited approach to keep the size of refutation proof linear. 
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 First, mark all the resolution steps in the refutation proof whose consequent is used 

as the antecedent in more than one subsequent step. Then, traverse the refutation proof 

from antecedents to consequents topologically, and apply the rewrite rules on every 

local atoms q until meet the marked steps or hypothesis. Although this approach do 

increase the size of the refutation proof every time when the second rewrite rule is 

applied, the final number of occurrences of a step s is bounded by the number of 

occurrences of q¬  in the original refutation proof that were resolved by s. As a result, 

the number of resolutions we obtain after raising all the resolutions on local atoms is 

linear in the size of the original refutation proof, so as the interpolant. However, our 

experiments show that such method has its limitation. In Section 3.4, we explore the 

reason and present our heuristic to achieve effective adjustable interpolation.  

 

2.5 Circuit to CNF Conversion 

 Given a circuit netlist, it can be converted to a CNF formula by a way preserving 

the satisfiability. The conversion is achievable in linear time by introducing extra 

intermediate variables [10]. In the consequence, we shall assume that the clause set of a 

Boolean formula is available from such conversion. Figure 2.8 shows the transformation 

of an AND gate to a CNF representation. 

 

 

( )
( )( )
( ( ))( ( ) )
( )( )( )

c ab
c ab
c ab ab c

c ab ab c
c a c b a b c

=
⇒ ↔
⇒ → →
⇒ ¬ + ¬ +
⇒ ¬ + ¬ + ¬ +¬ +

Figure 2.8: An AND gate transfers to a CNF representation. 
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Chapter 3  

Don’t-Care Computation Algorithms 

 

 This chapter presents two novel algorithms based on interpolation to compute 

complete don’t-cares (CDCs). We fast review that complete don’t-cares consist of 

satisfiability don’t-cares and observability don’t-cares. Satisfiability don’t-cares are 

terms that never appear at the inputs of a node, and observability don’t-cares are terms 

for which changes to a node’s inputs are not observable in the primary outputs. Figure 

3.1 shows an example where (x, y) equals (0, 1) of F is a satisfiability don’t-care, and all 

input assignments of G are observability don’t-cares if (a, b) equals to (1, 1). 

 

 

Figure 3.1: Example of SDCs and ODCs. 

 

 Traditional way to compute complete don’t-cares usually involves image 

computation. The process of image computation is often slow. In this chapter, we 

introduce the algorithms using interpolation to compute complete don’t-cares. 
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3.1 CDC Computation Method 1 (CDCC1) 

 As introduced in Chapter 2, interpolant of (A, B) is an over-approximation of set A. 

Therefore, if an over-approximate care-set is available, an under-approximate complete 

don’t-cares can be derived by complement. 

 The strategy of method 1 is to construct a miter that characterizes the on set of the 

care-set, as the left-hand side shown in Figure 3.2. On the other hand, another miter is 

constructed to characterize the off set of the care-set, as the right-hand side shown in 

Figure 3.2. Since the on set and off set of the care-set are disjoint to each other, the final 

network shown in Figure 3.2 must be unsatisfiable. 

 Thus the interpolation algorithm can simply treat the clauses of left-hand side 

network belong to A, other clauses belong to B. A and B are unsatisfiable. Then 

interpolant of (A, B) is an over approximate on set of the care-set. In similar way, an 

over approximate off set of the care-set can also be obtained. Consequently, we obtain 

the under approximate complete don’t-cares. 

 

 

Figure 3.2: The miter of CDCC1 algorithm. 
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 Note that if only basic interpolant is used, the computed on set and off set of the 

care-set could be complement to each other, and the computed complete don’t-cares are 

empty. Therefore, CDCC1 requires a process to derive different strength interpolants. 

We introduce the rewrite rules and our proposed methods to get strong interpolants in 

Section 3.4. Finally, Figure 3.3 summarizes the algorithm of CDCC1. 

 

CDC Computation Method 1 ( ) 

1. Construct the network 

2. A←clauses of left-hand side network 

3. B←other clauses in the network 

4. onset← interpolant of (A, B) 

5. A’←clauses of right-hand side network 

6. B’←other clauses in the network 

7. offset← interpolant of (A’, B’) 

8. return ( )onset offset∪  

Figure 3.3: Algorithm of method 1. 
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3.2 CDC Computation Method 2 (CDCC2) 

 The CDCC1 proposed in previous section runs in good speed, however, the 

experiments do not show promising results. The amount of computed don’t-cares is less. 

Hence, we developed the other similar algorithm, and we call it the CDCC2.  

 Our strategy in CDCC2 is similar to that in CDCC1. First, we construct a miter that 

characterizes the care-set followed by a miter that characterizes don’t-care set and 

probably some overlap with care-set. Figure 3.4 shows the final network.  

 

 

Figure 3.4: The miter of CDCC2 algorithm. 

 In Figure 3.4, X is global care-set, and X’ is global don’t-care set. Although x and 

x’ are different, but they could generate the same value at y and y’. As a result, the 

overlapping occurs. Since the left-hand side network may overlap the right-hand side 

network in y. the whole network may be satisfiable. To make use of the interpolation 

algorithm, the overlap part must be excluded. This can be simply done by iteratively 

adding the overlap instances as conflict clauses to the solver. In practice, the overlap 
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part rarely happens, thus this process can be done efficiently. 

 As soon as the miter is unsatisfiable, the interpolation algorithm can treat the 

clauses of the left-hand side network belong to A, other clauses belong to B. Then we 

get the interpolant of (A, B) as an approximate care-set. As a result, approximate 

complete don’t-cares can be obtained. 

 Note that in the process of overlap instances exclusion, some don’t-care set 

instances are excluded from the network, thus the approximate care-set obtained by 

interpolation algorithm could be an over-approximation of the exact care-set. Thus 

completed don’t-cares obtained by CDCC2 could be an under-approximation. Figure 

3.5 summarizes the algorithm of CDCC2. 

CDC Computation Method 2 ( ) 

1. Construct the network 

2. A←clauses of left-hand side network 

3. B←other clauses in the network 

4. F← A B∧  

5. S φ←  

6. while (i∈SAT instance of F φ≠ ) 

7. do S S i← ∪  

   F F i← ∪  

8. careset← interpolant of (A, B S∪ ) 

9. return careset  
Figure 3.5: Algorithm of CDCC2. 

 

To summarize, CDCC1 needs two SAT solving and interpolation, and CDCC2 may 

need to run SAT solving several times. 
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3.3 CNF Simplification 

 The time needed to solve a Boolean satisfiability problem depends on the 

complexity of the problem. It has been shown that minimizing the size of the CNF 

representation and removing unnecessary variables effectively improve SAT run time 

[12]. We utilize the symmetric structure of the miter to simplify the CNF representation 

in our algorithms. When constructing the CNF representation, we do following two 

rules, elimination and sharing variable to minimize the CNF representation.  

 First we define some terms. Target node is the node which we compute the 

don’t-cares. The effective node set Neff is a set of nodes that affect the don’t-care 

computation result of the target node. The union set of node set NTFO and NTFOI is Neff, 

where NTFO are the nodes in the transitivity fanout of the target node, and NTFOI are the 

nodes in the transitivity fanin of nodes in NTFO. There are the illustrations in Figure 3.6. 

The red circle is the target node, and the blue area is TFO, while the pink area is TFOI. 

 

 

Figure 3.6: The illustration of target node, TFO and TFOI. 

 

– Elimination: We eliminate those nodes not in Neff from CNF representation, 
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– Sharing variable: For the nodes in Neff but not in NTFO, they share variables 

with the repeat part in the miter. 

For the nodes not in effective network Neff, that is, the nodes in the white area in the 

Figure 3.6 are dropped from the CNF representation. 

 

Figure 3.7: The nodes in the TFOI area share the same variables. 

 

Thus, the size of CNF presentation is reduced dramatically, and the run time 

improves considerably. 

 

3.4 Adjustable Interpolation 

 In Chapter 2, we described the fundamental of interpolation and the theorem to 

strengthen the interpolant. Here we present the techniques used for computing strong 

interpolants obtained from a refutation proof in this thesis. 

 

3.4.1 Swap Rules 

 As McMillan mentioned [3], we can use rule (1) and rule (2) in Figure 2.7 to 
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strengthen the interpolant. We give the detail descriptions here. For the clarity, we 

re-express the rule 1 with the same notation used here in Figure 3.8 (a). 

 

2 31 2
13

2 31 2

1 2 3 1 2 3

g l lg l gl
gl
θ θθ θ θθ
θ θθ θ

θ θ θ θ θ θ

∨ ∨ ¬ ∨¬ ∨ ∨ ∨ ¬ ∨¬ ∨
∨ ∨∨ ∨ →

∨ ∨ ∨ ∨

　 　 g
　　　　

　　 　　  

(a) 

1 2

4 3

5

﹁g+θ1 g+l+θ2

﹁l+θ3

g

l

l+θ1+θ2

θ1+θ2+θ3

32

4'1

5

﹁l+θ3g+l+θ2

﹁g+θ1

l

g

g+θ2+θ3

θ1+θ2+θ3

Rule 1

 

(b) 

Figure 3.8: The relation between (a) swap rule 1 and (b) the corresponding refutation 

proof structure. 

 

Figure 3.8 (b) is a direct acyclic graph representing a part of a refutation proof. The 

nodes represent the clauses which could be a root or a resolvent. Under each node, a 

CNF represents the content of the resolvent. The orange word represents the pivot 

variable used to derive the resolvent. One should be noticed that the node 4 is destroyed 

after swapping. A new node 4’ replaces the original node with different resolvent. 
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M N K

MN + K(a)           (b)

M N K

MN + MK  

Figure 3.9: The solution space of (a) original interpolant, if we use rule 1, then (b) a 

stronger interpolant can be gotten. 

 

 Figure 3.9 shows the effect of rule 1. The circuit in Figure 3.9 (a) is the original 

interpolant derived by the refutation proof structure of the left part in Figure 3.8, assume 

the function corresponding to node 1 is M, and node 2 is N, and node 3 is K. The 

resolvent resolving on global variable is replaced with an AND-gate; the one resolving 

on local variable is replaced by an OR-gate. As a result, the function of the interpolant is 

MN + K. The minterm number of the space is six, for the (M, N, K) pair equals to (110), 

(111), (001), (011), (101), and (111). In the other way, the interpolant in Figure 3.9 (b) is 

MN + MK, the corresponding minterms are (110), (101), and (111). Thus, after applying 

the rule 1, the solution space of the interpolant shrinks from six to three. 

 For the clarity, we also re-expressed rule 2 and the corresponding refutation proof 

structure in Figure 3.10. 
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(a) 

 

(b) 

Figure 3.10: The relation between (a) swap rule 2 and (b) the corresponding refutation 

proof structure. 

 

Figure 3.10 (b) is a direct acyclic graph representing a part of a refutation proof. 

Different from rule 1, rule 2 is used when the node 1 and node 2 have the same local 

variable l simultaneously. At the process of raising a local variable, an extra node need 

to be generator in order to ensure the resolvent remain the same at node 5. Also, node 4 

is destroyed and new node 4’ and node 4’’ are generated. 

A problem occurs if the resolvent of the original node 4 were used in other 

resolution step. In other words, the node 4 is a multiple fanout node. When encountering 

multiple fanout in the refutation proof, McMillan adopts a method that marking the 

multiple fanout nodes and skipping those marked nodes. By such strategy, they avoid 
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the possible exponential expansion of the refutation proof size but sacrifice the 

interpolation adjustability.  

In our cases, we proposed a different way. We partial duplicate the structure of 

multiple fanout nodes. We copy only the parent nodes of the multiple fanout nodes in 

the refutation proof. In Figure 3.11, we preserve the original node 4 in the new structure, 

and keep the connection to the other nodes. 

 

11 2

3

5

﹁g+θ1 g+l+θ2

﹁l+θ3

g

l

θ1+θ2+θ3

32

4'4

5

﹁l+θ3g+l+θ2

l+θ1+θ2

l

g

g+θ2+θ3

θ1+θ2+θ3

Rule 1

4
l+θ1+θ2

Multiple-Fanout!

﹁g+θ1

g

 

Figure 3.11: The illustration of swap rule 1 with multiple fanouts. 

 

For the rule 2, the same thought is adopted. Figure 3.12 describes the swapping for 

the multiple output case for rule 2. 

Thus, for single output node in rule 1, no new node will be added. For single 

output node in rule 2, one new node will be added. For the multiple output cases, rule 1 

and rule 2 increase one and two new nodes, respectively.  
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Figure 3.12: The illustration of swap rule 2 with multiple fanouts. 

 

 However, the two rules both fail if the global pivot variable appears in the node 3. 

The failure arises because the appearance of global variable changes the resolvent 

content of the node 5. As a consequence, the different content destroys the refutation 

proof correctness. This condition happens often and largely decreases the effect of 

strengthening interpolants. 

 

3.4.2 Initial Variable Activities 

 We known the way to strengthen the interpolant is letting local variable appears 

early in the refutation proof. From previous section, it shows difficulty to adjust the 

interpolant via rewriting the refutation proof because the rules fail often. Instead of 

rewriting the refutation proof already generated, we propose a heuristic algorithm to 

affect the Boolean satisfiability solver to produce a good refutation proof in advance. 

 As introduced, MiniSat, the modern SAT solver, makes decision by considering 

variable activity heuristics. In the other way, if a variable were decided earlier in the 

process of SAT solving, it appears later in the refutation proof. This can be shown from 
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the production of the conflict clauses [17]. Figure 3.13 give an explanation. For the 

conjunction normal form ( )( )( )( )a b a b a b a b+ +¬ ¬ + ¬ +¬ , if we make decision on 

variable a by assigning it to be 0, then we produce clauses ( )( )b b¬  and generate an 

unsatisfiability. Thus we learn a conflict clause ( )a , which means assigning a to be 0 

produces an unsatisfiability. However, the production of this conflict clause in the 

refutation proof is derived by resolving on the pivot variable b, and the resolution on 

variable a appears later than b. As a result, if the variable is decided earlier, it resolves 

later.  

 

 

Figure 3.13: Decision and learned clause in a refutation proof. 

 

Thus, by controlling the variable activities in the MiniSat, somehow we affect the 

variable appearing in the refutation proof in proper order. At the beginning, we changed 

the decay ratio of local variable in MiniSat, but the results were not good. Hence, we 

decided to set higher initial variable activities for the local variable before the SAT 

solving starts. We found that this heuristic worked effective and had good results. 
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3.4.3 Boolean Initial Values 

 We have known that affecting the Boolean satisfiability problem solver by proper 

ways help produce better refutation proof. The structure of the refutation proof depends 

on the internal procedures of the SAT solver, such as decision order and Boolean 

constraint propagation. Thus, we try to change the Boolean value when a decision is 

made. In MiniSat, the decision of a variable always is false then true. We change the 

decision order by trying true first then false. An interesting thing is that this heuristic 

dose work. The detail research and the reason why will be our future work. It is sure 

that different decision generates different implication graph, and somehow this strategy 

help the SAT solver generate better refutation proof.  

 

3.5 Verification 

 The derived don’t-cares appear as a form of Boolean function with a single 

primary output. Where the inputs are the node fanins and the only output is one when 

the input combinations are the don’t-care sets of the node. For such don’t-cares form, 

we propose a method to verify its correctness. 

 

3.5.1 Combinational Equivalence Checking 

 When getting the circuit representing the don’t-care terms, we do formal 

verification on the don’t-care terms to make sure the result is correct. Our method is to 

construct a miter to check the correctness of don’t-cares. The first part of the miter is the 

original circuit. The second part of the miter is the modified circuit where the target 

node is replaced by an exclusive OR gate. The two fanins of the exclusive OR gate are 

the target node and the primary output of the don’t-care circuit. The miter is shown in 
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Figure 3.14. When the input of the node is a don’t-care, the output of the don’t-care 

circuit is 1. Further, the exclusive OR gate inverts the original node output. This makes 

the two circuits have different value on the target node. If they are equivalence, the 

input of the node must be a don’t-care, and the correctness of the don’t-care circuit is 

proved. 

 

 

Figure 3.14: The miter for don’t-care verification.  

 

3.5.2 Absorbing Checking 

 Another way we call absorbing checking. After we checked the don’t-care 

correctness by combinational equivalence checking, we get the correct don’t-care 

libraries. After that, each time when we need to check our computation results, we just 

check if the circuit is absorbed by the don’t-care library. This reduces the verification 

process. 
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Chapter 4  

Experimental Results 

 

 Our experiments were implemented using C++ in ABC, a system for sequential 

synthesis and verification [13]. The proof-logging version of MiniSat was used as the 

underlying solver [11]. All experiments were performed on a workstation with Xeon 

3.4GHz CPUs and 6 GB RAM. The benchmark circuits were ISCAS 85 and ISCAS 89.  

 

4.1 Variable Decision Order 

 A preliminary experiment targets for discussing the relation between variable 

decision order and the resolution order, as mentioned in Section 3.4.2. Five CNFs were 

chosen as the benchmarks. In the following figures, each line represents the variable 

counts in the corresponding level. For the refutation proofs have different number of 

levels, we normalized the number of levels from one to ten. When no extra constraints 

were set, as shown in Figure 4.1, there is no trend of the variable counts in the refutation 

proof levels. However, in Figure 4.2, we let variables with small ID have higher priority 

when solver makes the decision. We found those variables appear more frequently in the 

higher level, as our expectation. In contrast, variables with large ID rise in the lower 

level. In Figure 4.3, we did the reverse setting for the variables, and the situation of 

variable counts was opposite to those in Figure 4.2. Variables with small id are decided 

later, and the result shows they appear in the early levels, as our expectation. 
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Figure 4.1: Original variable count vs. levels in refutation proof in MiniSat. 

 

 

 

Figure 4.2: Variable count vs. levels by small variable ID decision first. 
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Figure 4.3: Variable count vs. levels by large variable ID decision first. 
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4.2 Adjustable Interpolation on CDCC1 

 The experiments are designed to show following features via the don’t-care 

computation algorithm. 

 

1. The scalability and capability of interpolation algorithm. 

2. The efficiency of our methods to adjust the interpolation. 

 

 For each don’t-care computation algorithm, we ran two different settings, the 

algorithm combined with McMillan’s rewriting rules (CDCC + M), and the one 

combined with our sizing algorithms (CDCC + I + D), both results are compared with 

the basic algorithm (CDCC) without using the interpolant sizing algorithms. The 

don’t-care computation algorithms are designed for an arbitrary node in networks. For 

each network, we reported the average runtime and memory usage per node, and 

recorded the maximum value of each term among all the nodes. We also set a fifteen 

seconds time out for the Boolean satisfiability solver.  

First, we present the results of CDCC1 algorithm on benchmark ISCAS-85 and 

ISCAS-89.  

Table 4.1 shows the results of the basic CDCC1 algorithm without applying any 

sizing interpolant method. In the title of the tables, “M” stands for the McMillan’s swap 

rules, and “I” represents our initial variable activity heuristic, while “D” describes as 

our decision value heuristic. 
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Table 4.1: McMillan’s adjustable method (CDCC1 + M). 

Time Mem(Mb) Time Mem(Mb)
   C17 6 0.05 7.94 0.16 7.94
  C432 160 0.04 8.93 0.20 8.96
  C499 202 0.05 9.16 0.20 9.18
  C880 383 0.04 9.46 0.22 9.52
 C1355 546 0.06 10.47 0.26 10.51
 C1908 880 0.09 11.32 0.17 11.62
 C2670 1253 0.09 12.62 0.19 12.74
 C3540 1669 0.17 14.31 0.31 14.42
 C5315 2297 0.10 16.35 0.39 16.79
 C6288 2416 0.32 17.76 0.58 18.23
 C7552 3510 0.16 21.84 0.66 22.14

0.11 12.74 0.30 12.91

Maximum

Average

Name #Node
Average

 

 

 

 

Table 4.2: Our adjustable method (CDCC1 + I + D). 

Time Mem(Mb) Time Mem(Mb)
   C17 6 0.02 7.81 0.03 7.94
  C432 160 0.04 8.92 0.09 8.97
  C499 202 0.05 9.16 0.07 9.20
  C880 383 0.04 9.46 0.07 9.55
 C1355 546 0.06 10.50 0.11 10.59
 C1908 880 0.10 11.39 0.17 11.71
 C2670 1253 0.10 12.63 0.20 12.96
 C3540 1669 0.18 14.31 0.31 14.62
 C5315 2297 0.10 16.36 0.39 16.89
 C6288 2416 0.32 17.77 0.58 18.28
 C7552 3510 0.18 21.84 0.67 22.04

0.11 12.74 0.24 12.98

Maximum

Average

Name #Node
Average
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Table 4.3: McMillan’s adjustable method (CDCC1 + M). 

Time Mem(Mb) Time Mem(Mb)
s27 10 0.02 7.86 0.02 7.93

s208 104 0.02 8.26 0.03 8.38
s298 119 0.02 8.37 0.03 8.48
s344 160 0.03 8.35 0.05 8.74
s349 161 0.03 8.44 0.05 8.65
s382 158 0.03 8.75 0.05 8.80
s386 159 0.03 8.63 0.06 8.95
s400 162 0.03 8.58 0.06 8.84

s420.1 218 0.03 8.56 0.05 8.74
s444 181 0.03 8.84 0.06 8.87
s499 152 0.03 8.91 0.07 9.14
s510 211 0.03 8.72 0.07 8.99
s526 193 0.03 8.50 0.06 8.69
s526n 194 0.03 8.50 0.06 8.67
s635 286 0.04 9.43 0.08 9.77
s641 380 0.04 9.63 0.09 9.74
s713 393 0.04 9.76 0.11 9.91
s820 289 0.03 9.26 0.08 9.95
s832 287 0.03 9.30 0.09 9.82

s838.1 446 0.04 9.43 0.08 9.61
s938 446 0.03 9.34 0.08 9.60
s953 395 0.03 9.68 0.07 9.91
s967 394 0.03 9.61 0.07 9.91
s991 519 0.05 10.29 0.14 10.92
s1196 529 0.05 10.14 0.12 10.25
s1238 508 0.05 9.91 0.12 10.27
s1269 569 0.06 10.15 0.14 10.83
s1423 657 0.05 10.90 0.15 11.07
s1488 653 0.03 10.35 0.08 11.26
s1494 647 0.03 11.00 0.08 11.21
s1512 780 0.03 10.98 0.08 11.76
s3271 1573 0.03 11.51 0.06 11.96
s3330 1789 0.04 13.37 0.14 14.13
s3384 1702 0.04 12.36 0.09 12.57
s4863 2374 0.08 14.51 0.22 15.06
s5378 2794 0.06 15.52 0.17 15.52
s6669 3148 0.11 15.86 0.26 16.92

s9234.1 5597 0.11 23.59 0.69 24.98
s13207 8027 0.09 25.90 0.39 27.24
s15850 9786 0.12 33.35 0.63 36.27
s35932 16065 0.13 38.81 0.48 42.39
s38417 22397 0.20 48.02 0.62 52.77
s38584 19407 0.20 59.41 2.49 76.11

0.05 13.97 0.20 14.97Average

#Node
Average Maximum

Name
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Table 4.4: Our adjustable method (CDCC1 + I + D). 

Time Mem(Mb) Time Mem(Mb)
s27 10 0.01 7.86 0.02 7.93

s208 104 0.02 8.27 0.02 8.38
s298 119 0.02 8.37 0.03 8.48
s344 160 0.03 8.35 0.05 8.68
s349 161 0.03 8.44 0.05 8.66
s382 158 0.03 8.75 0.05 8.84
s386 159 0.03 8.63 0.07 8.95
s400 162 0.03 8.58 0.06 8.87

s420.1 218 0.03 8.58 0.05 8.76
s444 181 0.03 8.84 0.06 8.90
s499 152 0.03 8.92 0.06 9.16
s510 211 0.03 8.72 0.06 9.02
s526 193 0.03 8.50 0.06 8.72
s526n 194 0.03 8.50 0.05 8.70
s635 286 0.04 9.44 0.09 9.79
s641 380 0.04 9.63 0.11 9.76
s713 393 0.05 9.76 0.11 9.96
s820 289 0.03 9.27 0.08 10.00
s832 287 0.03 9.30 0.09 9.86

s838.1 446 0.04 9.43 0.08 9.72
s938 446 0.04 9.35 0.09 9.73
s953 395 0.03 9.69 0.07 9.91
s967 394 0.03 9.61 0.09 9.91
s991 519 0.05 10.31 0.14 10.96
s1196 529 0.05 10.15 0.12 10.35
s1238 508 0.05 9.92 0.12 10.35
s1269 569 0.06 10.16 0.14 10.91
s1423 657 0.05 10.90 0.16 11.20
s1488 653 0.03 10.36 0.08 11.32
s1494 647 0.03 11.00 0.08 11.28
s1512 780 0.04 10.99 0.08 11.57
s3271 1573 0.04 11.52 0.07 12.06
s3330 1789 0.05 13.37 0.14 14.56
s3384 1702 0.05 12.37 0.10 13.07
s4863 2374 0.09 14.52 0.18 15.11
s5378 2794 0.07 15.52 0.21 15.98
s6669 3148 0.12 15.87 0.28 16.92

s9234.1 5597 0.13 23.60 0.72 25.46
s13207 8027 0.12 25.90 0.56 28.92
s15850 9786 0.17 33.37 0.66 37.50
s35932 16065 0.22 38.82 0.53 42.39
s38417 22397 0.32 48.03 0.75 54.18
s38584 19407 0.30 59.42 2.54 79.65

0.06 13.97 0.21 15.22Average

#Node
Average Maximum

Name
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Table 4.1 and Table 4.2 show that for the ISCAS-85 benchmark, most of the nodes 

can be conquered within 0.5 second and the average memory usage is within 13 Mb. 

Table 4.3 and Table 4.4 show that for the ISCAS-89 benchmark, most of the nodes can 

be conquered within 1 second and the average memory usage is within 15 Mb. The 

short runtime shows the efficiency of the interpolation algorithms. 

We compared the effect of adjustable interpolation by evaluating the solution space 

of don’t-cares. From Figure 4.4 to Figure 4.7, the value is a normalized don’t-care 

minterm number which ranges from 0 to 1. While 1 means the don’t-care computed at 

the node is the optimal value, 0 means the algorithm dose not get any result due to 

timeout or the intrinsic limitation. The Y axis is the basic don’t-care computation 

algorithm, while the X axis represents the algorithm combined with the adjustable 

interpolation algorithm. 

As the results show, although the algorithm runs with high efficiency, fewer nodes 

were influenced by the sizing algorithms. Whatever the McMillan’s method or our 

proposed algorithms do not get ideal results. As a consequence, we proposed CDCC2 

algorithm. 
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Figure 4.4: Interpolant on set changing by CDCC1 + M on benchmark ISCAS-85. 

 

Figure 4.5: Interpolant on set changing by CDCC1 + I + D on benchmark ISCAS-85. 
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Figure 4.6: Interpolant on set changing by CDCC1 + M on benchmark ISCAS-89. 

 

Figure 4.7: Interpolant on set changing by CDCC1 + I + D on benchmark ISCAS-89. 
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4.3 Adjustable Interpolation on CDCC2 

 In order to gain better results on don’t-care computation, we proposed CDCC2 in 

Section 3.2. Following are the experiments of CDCC2. The environment is identical to 

the setting in CDCC1. 

 For the ISCAS-85 benchmark, the average runtime and memory usage of our 

method (CDCC2 + I +D) are 0.16 seconds and 15.97 Mb, while McMillan’s swap rules 

(CDCC2 + M) need 0.19 seconds and 15.92 Mb. For the ISCAS-89 benchmark, our 

values are 0.21 seconds and 11.09Mb, while the McMillan ones are 0.27 seconds and 

11.02 Mb in average. At the aspect of adjustable interpolation algorithm, for the 

ISCAS-85 circuits, no node can be improved by the McMillan method among the all 

13,322 nodes. However, by our methods, there are 296 nodes improved with 153 nodes 

becoming worse. Moreover, for the cases in ISCAS-89 circuits, there are 1667 nodes 

being improved by our methods among the 105,019 nodes with 329 bad nodes, while 

only 16 nodes have improvement by McMillan method. 

Finally, we summarize the ratio of amount of optimal nodes to the amount of all 

nodes computed by proposed method with different adjustable interpolation algorithms 

in Table 4.5. It should be noticed that for some nodes, CDCC2 did not get optimal 

results. This is because that the constructed don’t-care set miter is naturally unsatisfiable, 

such as the case at primary output node. Sometimes the miter becomes unsatisfiable 

after adding the overlapping part as the conflict clauses. 
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Table 4.5: The optimal ratio of don’t-care computation via adjustable interpolation. 

Bench Method B M I+D

1 55.8% 55.8% 55.8%

2 83.4% 83.4% 84.2%

1 71.8% 71.8% 71.8%

2 92.8% 92.8% 94.1%

1 70.0% 70.0% 70.0%

2 91.7% 91.7% 92.9%

ISCAS-85

ISCAS-89

Overall
 

B: Basic algorithms, M: McMillan’s methods, I+D: Our methods. 

 

Table 4.6: McMillan’s adjustable method (CDCC2 + M). 

Time Mem(Mb) Time Mem(Mb)
   C17 6 0.01 7.74 0.01 7.86
  C432 160 0.02 9.02 0.08 9.21
  C499 202 0.02 9.09 0.12 9.29
  C880 383 0.02 9.10 0.84 9.11
 C1355 546 0.06 12.69 0.56 12.74
 C1908 880 0.10 11.00 1.39 15.08
 C2670 1253 0.04 10.27 0.23 11.83
 C3540 1669 0.14 12.93 24.54 14.37
 C5315 2297 0.05 11.25 0.97 14.20
 C6288 2416 1.59 69.77 105.04 348.83
 C7552 3510 0.09 12.31 1.30 17.87

0.19 15.92 12.28 42.76

Maximum

Average

NAME #NODE
Average

 

Table 4.7: Our adjustable method (CDCC2 + I + D). 

Time Mem(Mb) Time Mem(Mb)
   C17 6 0.01 7.74 0.01 7.86
  C432 160 0.02 9.02 0.09 9.21
  C499 202 0.02 9.09 0.05 9.29
  C880 383 0.02 9.10 0.29 9.11
 C1355 546 0.04 12.69 0.14 12.74
 C1908 880 0.06 10.99 0.37 15.23
 C2670 1253 0.05 10.36 0.21 12.20
 C3540 1669 0.10 12.94 3.21 13.76
 C5315 2297 0.05 11.40 0.40 14.21
 C6288 2416 1.34 69.78 144.03 348.83
 C7552 3510 0.10 12.52 0.67 17.70

0.16 15.97 13.59 42.74Average

#Node
Average Maximum

Name
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Table 4.8: McMillan’s adjustable method (CDCC2 + M). 

Time Mem(Mb) Time Mem(Mb)
s27 10 0.01 7.87 0.01 7.93

s208 104 0.01 8.20 0.02 8.28
s298 119 0.01 8.24 0.02 8.29
s344 160 0.01 8.26 0.03 8.33
s349 161 0.01 8.43 0.04 8.49
s382 158 0.01 8.38 0.02 8.68
s386 159 0.01 8.38 0.02 8.68
s400 162 0.01 8.34 0.02 8.72

s420.1 218 0.01 8.27 0.02 8.49
s444 181 0.01 8.82 0.03 8.83
s499 152 0.01 8.45 0.04 8.72
s510 211 0.01 8.43 0.03 8.59
s526 193 0.01 8.43 0.03 8.46
s526n 194 0.01 8.55 0.03 8.57
s635 286 0.02 9.25 0.05 9.27
s641 380 0.03 8.58 0.14 9.34
s713 393 0.03 8.63 0.14 10.29
s820 289 0.02 9.12 0.05 9.16
s832 287 0.01 8.58 0.04 9.18

s838.1 446 0.02 8.63 0.07 9.20
s938 446 0.03 8.64 0.06 9.05
s953 395 0.02 8.89 0.10 9.33
s967 394 0.02 9.34 0.06 9.34
s991 519 0.04 9.68 0.11 10.21
s1196 529 0.03 8.81 0.19 10.19
s1238 508 0.04 9.47 0.14 9.62
s1269 569 0.05 10.14 0.40 10.66
s1423 657 0.05 10.86 0.84 11.89
s1488 653 0.03 9.36 0.21 10.46
s1494 647 0.03 10.32 0.19 10.47
s1512 780 0.03 9.23 0.19 10.66
s3271 1573 0.03 9.76 0.35 11.73
s3330 1789 0.04 10.37 0.29 12.39
s3384 1702 0.05 10.39 2.12 11.71
s4863 2374 3.83 11.96 1848.54 19.39
s5378 2794 0.05 12.56 0.65 13.16
s6669 3148 5.88 13.46 927.92 2361.00

s9234.1 5597 0.11 13.65 60.05 37.48
s13207 8027 0.14 16.47 90.03 41.28
s15850 9786 0.25 19.12 360.95 61.45
s35932 16065 0.20 26.01 2.75 29.19
s38417 22397 0.27 27.59 2.06 32.59
s38584 19407 0.29 28.04 154.47 60.55

0.27 11.02 80.31 69.29Average

#Node
Average Maximum

Name
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Table 4.9: Our adjustable method (CDCC2 + I + D). 

Time Mem(Mb) Time Mem(Mb)
s27 10 0.01 7.87 0.01 7.93

s208 104 0.01 8.20 0.02 8.28
s298 119 0.01 8.24 0.02 8.29
s344 160 0.01 8.26 0.02 8.35
s349 161 0.01 8.43 0.02 8.49
s382 158 0.01 8.38 0.02 8.57
s386 159 0.01 8.38 0.03 8.68
s400 162 0.01 8.35 0.02 8.68

s420.1 218 0.01 8.29 0.02 8.50
s444 181 0.01 8.82 0.02 8.83
s499 152 0.01 8.46 0.04 8.73
s510 211 0.01 8.43 0.03 8.61
s526 193 0.02 8.43 0.04 8.46
s526n 194 0.01 8.55 0.03 8.57
s635 286 0.02 9.25 0.05 9.28
s641 380 0.03 8.61 0.08 9.17
s713 393 0.03 8.65 0.17 9.24
s820 289 0.02 9.12 0.06 9.20
s832 287 0.02 8.60 0.03 9.21

s838.1 446 0.02 8.66 0.06 9.18
s938 446 0.03 8.66 0.06 9.14
s953 395 0.03 8.89 0.08 9.34
s967 394 0.02 9.34 0.07 9.34
s991 519 0.04 9.69 0.15 10.20
s1196 529 0.03 8.87 0.10 10.20
s1238 508 0.04 9.47 0.10 9.67
s1269 569 0.05 10.14 0.53 10.66
s1423 657 0.05 10.87 0.31 11.53
s1488 653 0.03 9.37 0.11 10.50
s1494 647 0.03 10.32 0.22 10.51
s1512 780 0.03 9.28 0.13 10.70
s3271 1573 0.04 9.90 0.19 11.23
s3330 1789 0.04 10.43 0.21 12.50
s3384 1702 0.05 10.45 0.39 11.80
s4863 2374 2.77 12.21 689.77 19.39
s5378 2794 0.06 12.57 0.26 13.59
s6669 3148 3.89 12.43 792.86 16.32

s9234.1 5597 0.12 14.08 0.88 25.73
s13207 8027 0.11 16.82 2.26 36.78
s15850 9786 0.20 19.45 7.81 35.42
s35932 16065 0.25 26.24 2.36 32.05
s38417 22397 0.37 29.25 1.73 40.25
s38584 19407 0.35 28.16 9.64 68.38

0.21 11.09 35.14 14.17Average

#Node
Average Maximum

Name
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Figure 4.8: Interpolant on set changing by CDCC2 + M on benchmark ISCAS-85. 

 

Figure 4.9: Interpolant on set changing by CDCC2 + I + D on benchmark ISCAS-85. 
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Figure 4.10: Interpolant on set changing by CDCC2 + M on benchmark ISCAS-89. 

 

Figure 4.11: Interpolant on set changing by CDCC2 + I + D on benchmark ISCAS-89. 
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Chapter 5  

Conclusions and Future Work 

 

 The primary distinctive aspects of our work are providing solutions for the 

adjustable interpolation and developing two novel algorithms for the don’t-care 

computation. As compared with the previous work, which adopts strengthening the 

interpolant after the creation of a refutation proof, our algorithms direct the solver to 

generate desired one in the early stage of Boolean satisfiability solving. Such adjustable 

interpolation techniques effectively help the computation gain much more don’t-care 

minterms far beyond the capability of prior methods. Experimental results demonstrate 

that among all the nodes, our algorithms improve 1,936 nodes while previous method 

only has 16 nodes improved. In addition, CDCC2 is able to get optimal solutions for 

92.9% of all nodes. Furthermore, our approach is scalable to large designs without 

losing efficiency. To conclude, our developments may benefit several areas of logic 

synthesis and verification, especially for those methods utilizing interpolation 

algorithms. 

Future work includes integrating our technique in logic synthesis and generalizing 

it for other applications. Such as functional decomposition with don’t-cares is a good 

topic. Also, exploring new applications of our adjustable interpolation algorithm is a 

potential subject. 
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