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Abstract

The random field theory of soil has gained attention and become a well-developed ap-
proach for characterizing soil spatial variability. The random finite element method, em-
ployed in slope reliability analysis, effectively evaluates slope failure probability. How-
ever, this method commonly incorporates Monte Carlo analysis, which may have draw-

backs due to its time-consuming process and the computational resources required.

Artificial intelligence is a powerful tool that can potentially eliminate the need for
performing numerous random finite element analyses to determine slope failure probabil-
ities. Machine learning and deep learning are becoming increasingly popular and more
efficient as technology advances and computer calculations. Convolutional neural net-
works (CNNs) are a class of artificial intelligence that can be used to assess geotechnical
engineering predictions. Among the advantages of CNN models is its ability to analyze
visual imagery. It has been found that a CNN model can be trained to predict slope stabil-
ity using a series of random fields of slopes as input data and random finite element results,
including the factor of safety or slip surface predictions, from strength reduction analyses
as output labels. However, the performance differences and generalization abilities of the

CNNss in predicting unknown datasets have not yet been examined.
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Therefore, this study uses CNN models to evaluate slope stability predictions by

learning from images of 30° and 50° random field slopes in two parts: the safety factor

and failure slip surface. Firstly, for predicting the safety factors, a conventional shallow

CNN model is employed to predict the slope stability of a 40° random field slope. The con-

ventional CNN model and this model incorporating residual neural network (ResNet) are

compared to see the improvement, performance, and generalization ability. Additionally,

the generalization ability of the CNN models is evaluated under various combinations

of the coefficient of variation and correlation length. Secondly, another CNN model is

trained to predict failure slip surfaces.

The results demonstrate that the CNN models exhibit excellent predictive capabilities

for the safety factor and slope failure slip predictions when the training and testing data

share the same random field source. However, when the random field sources differ, the

ResNet model outperforms the conventional shallow CNN for safety factor prediction.

Regarding predicting slope failure surfaces, the CNN model used in this study is currently

limited to making predictions only for known slope angles included in the training data;

it is not yet capable of predicting failure surfaces for slopes with unknown angles. As

a result, the CNN model’s ability to predict slope failure surfaces with unknown angles

remains to be determined.

Keywords: Random field, random finite element, slope stability prediction, convolu-

tional neural network, residual neural network
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Upy = E/Az u(z)dz (2.3)

Up, 2 RIFERP > I MABEZF TSP S s ul iR B 3 ¥
FAz=0pF> 3B TEPun, FREL - BR F LRI Gk 5 1> W
[200)=1; @ % Az @220 » T 3B R % B il A 3t (3 B 02.3) -
ML ERE S AH BT A2 R EREF L IR FEHRL IR e v Ry

%' -
°

Raw data, X(¢)
21 Moving averaged data, X;(%)
1 .
< 01
=
71 4
72 4
—3 1 . T - T
0 50 100 150 200 250

Times

Figure 2.1: 1% $-8c X (¢) >t B & T 152 5 {8 2.

221 HMBERE

B Bt £ B (scale of fluctuation, SOF; or correlation length) & * & 5 it 2 3 4
Faimd aqpiaR @ lmis > 24 LARTFTEaithd - Biag £ 2

oo ML RARS > B L RN HMAPMIEAR S F 278 BT

8 doi:10.6342/NTU202301805


http://dx.doi.org/10.6342/NTU202301805

PR AREATE FAET ARSI AEL R AT AHERI L BB
EREr AP REEEFRELE ST BRa g - 2552 FORe CPT

FoRY R E ML R o 54oSpry etal. (1988) 3% 1 g2 B - i 122 4B %

&

AR TFERRAELTE LRk 08 EF sl L R (rF22) B
* A # £ %32 (method of moments) ~ & % 12 2% % 2+ (maximum likelihood) ~ E.
X 4 15 (Bayesian analysis) B #37# k4pg ¥ % 03 22— S HY 5 HF GE A
ML RO RRN B WREF 2T OB EEE RRHE Sk
poARRE 0 B (2.2.2) B AR F TR 0 FIt R ARGL AR AP M S S Bl B S Ry
2 3 4% (Cami et al., 2020) o ¥ ¢F > BEEIEE R ans ] L BHRE R EEL LAPRE
GoF BB | 2032 2 R PR B R R R R 1 R R R 2 B

s+ £ & (DeGroot and Baecher, 1993) -

-10
|
X

Depth

[
4 6 8 10 12 14 16
Field Value

Figure 2.2: 1 5% i B RB~B B4 £ & (Brigid et al., 2020)

Phoon et al. (1995) {34} 4 + fr LA 1200 2 3 S M bk T o B2 8 b 1 i
BB E R~ ARART A BRAKRT eI LE RO Al 2R R
N L B ERPE AR ORREPN A e P B R R E

FAHLLEIRBRIPERMY > aigs FRIARTFERDRE c AFFF ¢ T RIS
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T EMIEE L R FRAER KA YUERS o Tl B RRBIAT BEER

LTS ST

-3‘1%,

222 BHEHBEREK

B 4p B 1+ 3 #c (auto-correlation function) % 22 % FF ¢ & 2L $HEE4E < | X B BE
MR Jfic 2 aBhH D REIEN TR R HRASLRR
PR E  Fpt > BEFRAN I~ 12 F - pARRM S s 3F 5
¥ 4o 8 4p #cA)] (single exponential) ~ 4 3% 35 #c ] (cosine exponential) ¥ % (Ching

and Phoon, 2019) » # ¥ $#iciric® N7 A w0 T 53 2 &

p(A.) = exp {—2 (‘?')} (2.4)

p(A.) = exp {— |§Zz| } cos <|?:|> (2.5)

F245 Hip# A chp p M M andic > S255 A M S AL B E

BB 2 e PRV FEHIER ), 5 22w OB ER o MEBEE R

S ERFp ML T > B ETARTER G PRSI BRI F T %D

Pl
3

A

- [ pagas.) 2.6)

—00

MR RGP pAPM IS T 26 ffAEL > 2 R LAk S SRS
Tl U EARM I FIER23Y T gl - A BEHRERT

SOF=1 p&enf Bt p (A,) € v SOF=0.5 pFenhd 2B~ o
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1.0 7

—— SOF=0.5
— SOF=1
0.8 1
0.6 1
N
g
a
0.4 1
0.2
0.0

Az

Figure2.3: 2 F B E B T2 H 4n #cp AP RS BB

2.2.3 Whittle-Matérn £ &

Whittle-Matémn #-3] £ - B pApM o8l - v e 7713 BERNSH A
) & T 54 (smoothness parameter) % B B {+ £ & - Ching and Phoon (2019) 45 !
BF IV AARMNEY > MBPELERTANG IAL R D% Ra &R0 TR
{2 ek "Rk B S Bk (limit-state function) . F = 23 d 7 FT ¥ E > AL 7 L
BREALY > fAPM LS BcinE f § AT SE A4 £ X B o B24AK T 1k iR
BIHMIPEER AT R H Slicp A S8 2 i AR (sample
path); 29 Fdhz 3 FFR > e izl re(z) 528z M2 2R EBAR L
& (depth-dependent spatially variable residual, 2 2.2.5-] & 3% % 2_ w(z) & #cip ) >
TR ERG LM SRS SR ARG fekk 7 L RIRT R -
Ching and Phoon (2019) 3/ 7 e A2 & 97 b 384 ~ & 12K 357 2R ¢ B

BORAB S Al R T R M S ehE B EA TR S T ¥R g

AR RS Bl AR R T R Sy ARG - BEMBPELE AR - RE Rl

AR L BRI E R E B A S8ch 0B S (Ao 2.4~ 82.5)
Whittle-Matérn #-3) b P g 7 T F Sl B HBHEER > FINVEEAETF 4

Bk e e kkAe A o ¢ Whittle-Matérn p 4p B 1% 3 8 B3] 58 F 403427 (Ching and
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Phoon, 2019):

p(Az) = ff(y) x (*@j 'AZ') K, (M) 27)
)
=t 2.5)
V21 xT(v+0.5)
W) = ) 2.9)

27559 v i T tedi s s 5 vt b S8k (scale parameter) » B 2 MBI E R 0 &
c(v) S ¥ (382.8) gt i@ 5 ' B 5 3§ S e (gamma function) 5 K, 5 @ & eh% = #F
Bessel & #c (modified Bessel function of the second kind) - Ching and Phoon (2019) %
B B H Sedip AP B S licdest 247 o B dp Bciic 3] et 5] F] 5 (scale) s = /2
PPEEs e SAEE S - B EE R ® & Whittle-Matérn #-3] ¢ > §/s i - B¥ d T
F Byl ah Y e (382.9) F T SEER T O 0 pAPK Sl R B E R
Poo AR AR F 2 0 F RS ERT RS P p AR S iR AR R
AR T - ;T‘ui?’u » TR BT LA B AP M S iAo dk AR T e
£ Bl4e s v = 0.5 pF > Whittle-Matérn $-3) 4 e p 4p B2 S0 2 5 45 83 p o 4p
Pl S0 (r2.4) s v =00 FF > RIS T B #73] p 40 B 1+ 0 #ic (Gaussian or squared
exponential) (Cami et al., 2020) o p 4p b # S0 B * #2301 W PR enL 7 4p 5 £
T RA o P ROFERE AN P IRIRE A G T B F L
WEDTF Sl E Ao e AT OB E R & T F 48k (Ching and

Phoon, 2019) -

mat e A & AR EE R 2 A TR IREF MBS ORRS 2

B IEAT A Y 2 2 B HESH L B RS S F12 Whittle-Matérn

12 doi:10.6342/NTU202301805



QExp

SMK

Figure 2.4: 7 [ p 4p B £ S0 ™ ch R 3918 "L 3 3% » $2 /% (Ching and Phoon, 2019)

A WA kFerE 2 2R ORI Ry PR TR R PR S S

B o

224 BEHF

TR R R AR T2 T LR St T s R R

\4

AEREIRATE(REN AT - HIAF BT AL EE o pE
RE S pAPM S Y S 2 2 M A WAES SRR R AR R A S T
LB BT R S E A TF > AT EA T I ST KRS Es F R
A MK BATF SBHI - 5 A (skewed distribution) > AL & b A F
PehfE it B AlcERMA A 2 BT REL S JREE RSP SRR
Fd o Rl EHEAF I RERI AT DEY A0 i gEa S H
FHET Y R Bl Flt s BF R L RFAFELSF IR HAF

WAFTFEGT 4ot s PV NI MHMEAERIEGEFL S EEN Y RF] A

-
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TEH R A Y AT R P T A L

ELEPBRE X 2 HEFIRAEN BT o DR T R RN B4
ool X~ LN(u,0) 257 5 B9 p 5T 30E 0 5 HE% B k- BR Z 5
BEFEAT L L Z S TBE 5 1 WL 025 A7 5 pIsEY &2

X VARTE S

X = ento? (2.10)
]
s =+/In (14 §2) (2.12)

He 5 4201~ 22129 ehm o~ s A W 5 KT HE o2 FEcg R R#ko

R P LTS P

225 MY

Phoon and Kulhawy (1999) 45 1 » = 4 142 ¢ 2 3 en® B2 4p 4 47 520 2%
FrAEIM > B VRMES S A mEdt o B A B G ERA G % R (inherent
soil variability) ~ B| & % B~ R 2 FAL > M E R FTHE D ST HEAIF L T
Mo AL P AWM LB ERAHE Y ETFTF ¥ L - Phoon and
Kulhawy (1999) 3P » 2 Bz BB R P7 ua Ao sm £ o6l o T
% 1t en4g 4t & e (trend function, £(z2)) > ™1 2 — Bk # 74 £ (deviation from trend,

w(z)) e B2.55 2 F 0T (2.13)
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E(z) =t(z) + w(z) (2.13)

ELAMBIT 2R 5ER B s w(e) AR AR T L I BAG PR
B 4 g 2 SRR A

//Ground surface

—
Layer |
ZI g

Layer i
e;
. Layer j -
-' §Scale of fluctuation, 8
Y Deviation from trend, w(z)
0 Trend, t (2)

—— Soil property, & (z)

Figure 2.5: 2 3 %5 % £ 1% (Phoon and Kulhawy, 1999)

BOEMATSER  BRIEHF FE LI Y BEXE S B F (homogeneous)
e & 4% & 1% ¥ (wide-sense stationary random field) © F]u* > w(z) S § 2 = 4
TS FAGER S - R w(k) T e SR RAFE BRI 2 Y
B a % F - EIEF D) ARSI ET TS B G HER g 5 ik
o nEA BT GHTE G M o AR ERT ML
I RE I v - Rl s B OBLRN S HHEEHE (30324 0 25850277 hp(Az) ¢
ST 0 pARBE RS p(A2) BN G IR |Az| § B2 3B e ¥ b d 3 w(2)
Lo FARE (trend) B chA B 0 F i F Bk w(z) chTE L 00 R B
®oF P w(z) R E B R %H# (COV) s Tz d p Phoon and Kulhawy

(1999) :
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[w(z)] (2.14)

cov =2 (2.15)
7

orw(z) kR EL > P FEX wz) THEEL 0 #2147 2T 3 38 8 &
w(z) 27 3 COV 3 %8 filic> HBEH R ETFHTI0E & GFE Gdfi
PR EE > JHEREBFEFIF £ LR ko

B w(z) 732 3 3F 54 bldekh 38T 2@ 4 2 (local average subdivision,
Fenton and Vanmarcke (1990)) ~ & * # & #c;*# (Jha and Ching, 2013) ~ K-L & F¥
# (Karhunen-Loeve expansion, Phoon et al. (2005)) 14 2 Cholesky 4 f#;* (Colesky
decomposition technique, Suchomel and Masin (2010)) & % ; @ Cholesky 4 f% A& *
tREHE Y FEAELL ARG 0 T A8 7 P P Cholesky A & 1F 5 i
Fwz) i o AR HE S FEBE AR E  BIRFAF R L et
¥t Cholesky A f2 ¢ i3 = 3~ f#E2 dp g TR > P pFi * 2 ¥ s i ¢ g
& (Ching and Phoon, 2019) > * & = ¥ s iz cn¥ - BIRELRI I 4 2 %[ 7 2

EHH- 2 0 4p ¥ Cholesky = 2 &3 BT o

22,6 A

SR FAEY o d RIS FNEPMA 0 FIR B R ST AR A

F_&

FF&F > TUFE AR BRI RN AP ERRB I N
2. ¥ #. A& - Haldar and Babu (2008) 12 % £t-K3E 3 S48 3 H ] e 4o oz 3R
fJ,g67ﬁ$?4ﬁ&S@éiQi%%?&’ﬂ@%&%%ﬂﬁ&‘%%ﬁ
EREREABNMNAR S L eEZ 22 RAEHE Y RPIRBBLF R PR

BT 100 K enF e F R R BRI AP ST > PR RBT KL LFF4 4
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FOERGR GHREIFR S v OM I RS L LM o F ¥ P Gkt ® B
PERAL L BRI DREE AL S 0 2 RARL B AT g
Mg R < MR R fh2 B RS B § R

Wang et al. (2020) 72 3 = 48 % & cht-k &2 2 R d > TR L E N
(deterministic) $-#icerf B B AE S FH 2 e > F F RiEs By A ENE
WHEH 2 % 20 P2 BEN BB oY G U R R RITREEF R

* 2 A =25 Mohr-Coulomb #-73] » 2 35 & S ¥c¥ s 7 AR 4 2 REHL ¥
REAS L AR Sl AU A TR SRR Y > ik 0 F
FHir 11000 e FAFE F Radrd S AP o RpoRBE g bl¢ 0 TS
BH 2T R ET 65% 3 % F LR @ H R % 2l AR Rk
#H 2 Fh)P o g 2 % >l B iE 92.6% ¥l e m s a4 A2
F >l gy FipinE - @l ESEAL2EREEY ) 323 E B8R

B v SRR € R £

Hu gy fu 2 g* 4pg 7 o Tabarrokietal. 2013) % ¥ o * F % 8 %
B ZMEEER SRS T A EORALY FH P BRI R TR
SRATRANE SRR M W Y 2 % > %80t o Zhou etal. (2019) @
RIS AR S A B R B T R P MR R SRR S 2
Mk FFR R ML R < P JH BRI S FE PP
% o Jha and Ching (2013) ¥+ 34 B B X 0| S WHFEHE TV LR A7 0 B
wdp N E MR REBER LR EHER I F AT 28R AP
B @8 o Linetal (2018) #-“E 18 35 B " >0 = A7 2R SER 2 7 L& 2 47
TRERUERE L ToEE 2 2 s B T 2 GRES T A Kk
B2 E % > %Ek &2 Wangetal. (2020) 2. %3 49 F ° Ching and Phoon
(2013) 45 2130 5 P~ B A 47 AR B Tl 2 SRR S0 AT 0 A o B2

RPN EmAZSpE BF A LRI ISR T 5% F o Huang
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etal. (2017a) 4% 41 - &% & + B} ## (subset simulation) £ 3 *L L A 452 2 2 kB

n\
4

RER T RRE%R > 22 ZFEA 20TV EESRY - B3 FHREFY LA
AT AR BAES S A ARH R AT o B 2B T R SRS i
¥ JL& 4 17 > Huangetal. (2017b) 1 #c i 6]+ 2 B F e Fap B 2 B d 2t
B4 TAGAERE i F 2 0 2 RS B GES SRR T
FHPE 0 T Rt T oE - R Gl MBI ERE Sl H 2 AR EE

EWSTIE G RR Rongdd > U R e B s S5 4
¥ {;gﬁé%k%ﬁ‘l.ﬂﬁ}%’zﬁfdj_)’é,ﬂ}—’xkilﬁiéﬁii‘iﬂ oW RABRK S K
PREZEBEOICERE CRAHFCFHEE PV RS E AT TR
R AR R ST B e T Bt RV A A ERE o BRI 2

SRRTAEY N B GEREMBEE R A | F E M FH PSR

f
Ra oo PR endiEa S o KORE EEH A ERE B ML R T

- TR GEE A ENEEER A S PR S o vh uEe R
RETRRANS FEREFRE P TRT RO AR Z 2 BT
P * 100 =t F » + BiEs%k (Wangetal, 2020) > X/ 5 5 - * 3 B 3EH BORS 5

G+ % (Lietal,

M

fE ol Bl EE R IR e 43
2016; Jiang and Huang, 2016) o ]t » 5 7 fEd-+ £ 5 + Bk FORILE RAL
% 7 % Huangetal. (2017a) 4% d12 jBi2 ¢h » AFFF ¥ st ¥ B BE Y 2 3 2

RIESES Y H AT RS B2 A RGER L B R T R e

EEV ik -

A

23 BuREF

& kA 1A E (artificial intelligence, AI) & P+ R FE > 4 - f&
WBE TR E PR E A A El’?‘éf‘f"‘m—ﬁ:}iﬁh" AR IR EESFY s

‘ﬁu

&4

|\

BE IR e o ELEY (machine learning, ML) B| &_Al eh— B 3 Af & »

—
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B3 F'—?H _;,__‘ﬁf\ ﬁkgggss ,_‘g gi—;%;»;ugsgs ‘;L;_E:;E»;tgsﬁs ‘gg:;%f»;tgaﬂsﬂ}jr

=

-

{

CEYEARD G UTRGE AL

4
152

CERAEV I VABENUNLFEVE FHT SFRT T RRA
(label) » PIALS 5 EFNEY o Tt EHENEV By bo wlLES > 1

ARy R T B B NRSES S P E LA E

CALFAEY CHDFAEVRE O ALFREV Y ATHREG B R Ei
Tdloo Pt > BEBEA L L RGBT IR AR T PR ]
A s B AELIE R o

c XEANEY CXEASEFY A RATE  RE YV Y-S EA
Tiochlicdy « LRAEY S 2B E S EARR BB RHB TN Y g0k
oo el e A e By KRB IR R o @ ¥ SRR
B A R 0 &3 B foniEA T L B pEE 1Y K fRe dicdk
EEEY o BB I PRRIRA -

e SV EY R EY I SEFETY RVRPBERA X AFTRE TR

Fd o P g IR mﬁf}@d o fip it E Y P W EHEA G BT A - B3

MrREP et ¥ B EHF T 2 P ERIHRP- BEE Iﬁih‘?‘.ﬁg‘/\?% F
& (BR AT R EREMFL I fa R ARDER {4 f &k
ARG E W R FY Y O BEWIUT L AE YV SR FRAT
SR R R B S KT o Y e A AL ¥

zenig * b3+ 5 AlphaGO o

A F Y (deep learning, DL) P &4 EH ¥ chd 478 > iR % 4 14 (SRR
L D A et Sk & B LUEIE S TR

it endp e o W@ LS Y B iR 0 TR (A S enlB B oM B - 2
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FADABBEYRAAREE S DER  FEAE YR AN RE Y S 2
TABRE . F T AT BRI, T P BT Y N4 i ARILR B
ey s R EFETRGIFEEE A Y FRAE YA A 1A SRR
(ANN) ~ & 4 555 (CNN) ~ #hiw 4 5 (RNN) > & 4 3 e i (GAN) £

Al 2 RGN RIRRERL o NTRFEAR

o A 1A g g (artificial neural network, ANN) @ A 1 4 5 it 8 - A7 4
PHGRRSHE P DA o d S BRI BRSPS B0 & B
B O R X BAF AR R R AT o F R Aol s~ B AR AR

ERRTREE

* B f A 5B (convolutional neural network, CNN) : % 4 i & 4 1

ARG RAFE DM SRR BELE N IRl 7 BT

(e

HL o Glho B e o~ B s B BideR > HIE BuEE .

o vfiw AY 1T % B (recurrent neural network, RNN) @ vk 49 & e 35 £ A g2 5 7))
By v EGFARROEH TN bR B P B PR T R T AR e
LooRp s R RN o bldep A3ET B A A4
M crlichy % % o & 28 35 % B (long short-term memory, LSTM) ~ R F® i %
H ~ (Gated recurrent unit, GRU) P 5 1395 Ja T 4! 54 B P ZF 18 {7 72 2 PR
o B RER A T WP 85 LR RE B IR Pk

RRE T e

o 4 2 ¥ (generative adversarial network, GAN) @ # & ¥t d & 0
i s ko ow] A FEw] e B (discriminating network ) £2 4 = % g (generative
network ) o 4 g €4 F - BEE A FUREIERF A SBHE A
LEF BRI B EF S PR EenF Y AR B 2 4oik B ek

Ao BPARRERT A RPEFAHRA c FHAR PG E D 3 2
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A PREBETYHISEY A R R i 2 BT D
FYfriRE s I IR bk T3 S5 3 2 F8 7 B AT Y
Fripplg k4 €34 B TR KA BAAZ ~ AR R RS
BLAREr Y L7 Fa oy BRI L a4 N
(generalization ability)  F]p* » A EF Y T5:¢ > Bz E R * =~ L3 4
P E oo £ JF TR LR P R fof I 0 3§ A i feT f
Moo kTG H 2 CNN 1T & f BBl 2] 97 e ) 0 70 18 0 -3 CNN s

ddEt o BAFAEYHAMAT - R0 HE R 1IARET 25

231 WAREBEZFIFEARBIEZIER

FREY M Ap R 5y Skt 0 5 p 1990 £ LWy %i%&pzafwﬁﬁ

BATE o T RgRIE R R RACA e T e
A LA 4% (ANN)

Shahin et al. (2002) & * ANN H-34) 3R 2LE B 4 3 ey AA#H TS > & "F*{
u/Tf TR RAIN B SBCHYIER S S B 0 4 b i ANN 22 {8 42 2 (Meyerhof,
1965; Schmertmann et al., 1978; Schultze and Sherif, 1973) s I > % 3=z ANN #3¢
B E N ELE 1T %‘f;lz L BOpE 189 e FALT L L HE &
BT R e DR AR~ AHFERP RS CSPTN &~ A#E W
WEERIELDRER B~ R 7 - KRR (hidden layer) i3] ¢ o Hu T
F435 4 (MAE) 3= ANN 4o b b= B %2 2308 diguniad 3kE - B %
58 57 » Schmertmann et al. (1978) = /2 & /T KoE PF M w i B 2+ 3 5 ) g g
i# ; Schultze and Sherif (1973) = /2 B & < T g B
(1965) > Z Rl pe gmad fA> 2k 8 F 5 LA 2 A NIEE DR 6P > ki

FREAMBEF RS SANN ZRIE A0S # & 0igRla 4 > w26 § H4p

21 doi:10.6342/NTU202301805


http://dx.doi.org/10.6342/NTU202301805

T
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\ I
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E
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d

‘9‘

DA ML R E N E ki 4 T AL ESH

%;%ﬁ’ﬁ%ﬁy%i%@ﬁkﬁlﬂﬂﬁ’&ﬁ%ﬁﬁﬁ%%ﬁiéwgﬂ

o e a 3 iR ZR R A 23y A THAE BF o ANN #.3] 7 H.4p § 5%

140 140
—~ 120 ; « ANN —~ 120 + Meyerhof (1965)
s — ]
= 100 . < 100
€ - <
Q 3
5 80 g 80
E £
4 60 . % 60 *
® | 2 ¢
8 40 ‘e S 40 - .
-] . | 5 .
2 3 0% ¢
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Figure 2.6: ANN £ i# ¥ j2 2 | & &7 37 [ [5E v $% (Shahin et al., 2002)

Celik and Tan (2005) & * ANN f-3| g plAL2 PR BB R4 < /) o %‘fdﬁu\v
/]?e?‘q‘ii FHREIBRBF&HY 2 WE 76 2F R * KRS dce 7 B R
BIEEETUHOL 3 R R R b PR S R # (C) 2 RS 5 ()
WNSEMNSFRGES - BRATTERBES D22 RF P FH R
7 ANN £2 — i % 2 ox ir R0 endp B % R 4 [ (Casagrande, 1936; Tavenas et al.,
1979; Butterfield, 1979) » & % F fkdp i ANN #-2] ch g 3gplac 4 4p g 2 45 5 °

IR AR & & 7 (sensitivity analysis) » 47 4FF BLerat fA v 2 B & SR S8 o

hf s B3¢ > Kaundaetal (2010) 38 * fp- f3l % 52 (KR - HMARE R

BRERP KB/ AR -2 A BRI E S £ 2 ANN #7):2
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FEYEERERFRG o P RUEIT N R T B a2 A8 o R
MR o ANN BRI BGR 3F 100 7 P12 A6 > A 0T e R R E R E 2 )
AR 5 T ANN BER R @ SR LT s Gt B b B e B R AT §

LBt > 4o FI27 o %7 SERS AR FRTREAAR > BT E R

SEAFERFTHE R T RETHE FREI G2 FHECHBE S RA > AT R
PERE A ) cnk R o ANN BCAFERIG 4 22 58 « F XS A peR FI7 i 5 Hd %

BREFHEE B TORETAS Sl BR T EA LKL ART S OSR S E 0 TR

SIr % Sl (P45 dEx ¥ o ALF] 5 ANN 0T & 9F Rl pe B Ap B o0 71 B 4E
doo A PR o T RNN B HAORA A AR 7 g R o 3

;/"B)g,l}‘]é TF‘ ) ;); li%i%ﬁg_gwsg% 33 -w«mj ﬂ*&m ) 4 }%_IEJ_ ’J’FF {#6ﬁ°1§bm*3—
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Figure 2.7: (a) ANN -3 5g Rl %& % (b) &' 3-T & 5 & %
(Kaunda et al., 2010)
ANN 83 R 3E9 54 4% 5 2 B * - Gao et al. (2020) & * % 2% & ¢h
ICA-ANN £ i# 52 ANN % 5 03] > $30 3 T2 e 0 88 OptumG2 ¢ 5 & 4 2

SR RES T EEY T 3 S EN O PER D LEER T R
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RN RE P XY A LT LEER E R SRR S
ICA-ANN % 7 % # @ % ANN % ch i o Ray etal. (2020) 7 5 & 3 £% . 7%
AR EE R PR AR EL > Dl FRYRTHEL S R FH I
Pl Bt SHFREE S T B ANN AR L B2 % > Gk
Bots BB B 0t i BT 5 ANN 541 4 49§ 45 <n3f 8l i 4 o Rukhaiyar
et al. (2018) 2 PSO-ANN z_;& & #-3|P~ 2 @ 2% ANN» & -2 % 43R X A
2_% > ¥t ; Moayedi et al. (2019) » F $% ¢ * PSO-ANN #-73] % 5 & 5L ANN H-
B Tt BRIt W - 2 SRR (LSV) o B~ B3l s S
Wi fH 2 AP AR e« BAE - SECK uEA  HHB AR R E 0 Lo X A
Boo MR AR PATR A 0 0 RS % S BT AT & 5% 2 PSO-ANN B & scdi
i# o Kalantar et al. (2018) 12 & %t ANN 2 H s & f&#7] (SVM ~ LR) $ 8 5 & 3% 57
EAEGIER - AR ST e T L EER T hed e 23 RIS
ML AR MFER] 0 R o B AL ANN 2 FE R 22T 4 4o d s A3 fEHA] ka4 o Safa
etal. (2020) & * ANN {rfick B 4E (fuzzy logic) % & 4 5 0k & . (neuro-fuzzy
model) » s ¥ — G RE2 Hi 0 HEH 2 AL R IR ES R
P It EcE Y U ELT R R R D RETR R L AR T g B T R

& i@ 20 8% ANN #3] »2 243 o

GrERE few LR A4 M 2 R H 42 T #> > Chok et al. (2016) i *
BHANN = 2BV ERE AT F ¥ 250+ Rk gi;—]»ﬁ:yi 2 #ic
s 7 BB LER I HEFREGRECFATFET S FRIEEFNG R TFIERRS
Wa 2 B S o Cho (2009) @ * ANN -5 B3 2 % > GHcE 'Lk i Sdic > &
# 7 FORM &2 SORM A ¥ L B 2473 2 &2 50 + B@Esk 5 8 U8 5 - Shu
and Gong (2016) 7= & * 2 ANN % Kk o & = j* (response surface method) 3¢
%M@%ﬂiﬂ@%$’wwiﬁéﬁ’éiﬂ*@P”ﬂﬁﬁi SHchod &
ARAREGEETL ANNZREAR > B % kAT ANN F & 4 SRR Il

TSI
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e} )’é};ﬂv/};k ANN * % 2845 83 RAEY 54 49 % 7 48 chigplic 4 5 4
UEES = SFRRE PR 38 S 3F 19 i n AR R UEE = rE S
A F oA > ANNBRE Y4 2 £ > H20 B PP 2 % DR BINE 3
0% BTR R B AT 2 04 A 5 KA (4o 835 SR (L ARR]) o BB B G TRRIRTAR §
Doy W EHIRE P REBRIE D2 BIRRIER G YV b ANNHE RS 2

o Flpt > H FE i *F ANN T2 FAEF Y 837 BTk 2532

e

FALE A4 4 R
FIEER 5 BWATPGE R & A T~ ZRIBET D 2 S 2 4 o B ANN

%3 §LFE -

IR 1B A2 % (RNN)

RNN £ AgZ§ £ 88 B 2 B 53 > A @ B R4 RNN 735 fe— 2 40 B
W& AR SRR S Y vy R 3T 0 F) st 1 LSTM & GRU #5745 iF
ERFAM IR N® Y EE o A3 F 42?5 Zhangetal. (2021a) & *
LSTM *+ 2 3 s+ %M Gepficst » ¥ LRI M EF 5 che S 21034 F 0 4
Mohr coulomb %] ~ Cam-clay 3] % 5 2@ > S o R F © g * 4 2
Ragfriesnd o F F LG ¥ FREY 22 REFRDIH LS BRY
% o w0 44 5 (FFNN) ~ w 44 5 it (FBNN » 22 RNN #£4 4p ¢ ) 2 LSTM
T B AT 0 R FRIGRT A A EERREE R RREES L o
@&@ﬂ%ﬁﬂ’i%iuHAMSﬁ@ﬁﬁﬁi%@ﬁﬁﬁ%@?%%%’E
WA FRIRE2S A7 Ffagad 3 - L2 PLAXIS 247k 4 = 127 e i 4
BB A o T EEHE AR LG 301 60 4 i B (steps) s H ¢ > 100 fm-1E 5
BFA KR 27 ERTE SRR T AL o By~ gl §ORIR S B (V) B

FIURZ $he G 5 5 S 8cs o B4 o AFHKPREY > THARILEZHB

<~

@%ﬂ&%%k?%ﬂﬁzmiﬁ?%a&@z@%@%wﬁoaaé%ﬁm’
LSTM HCAIAp s i A A G e B (2 1295 % 3 el » -2y 0 ) & w4l g
B (34 RiE2 i e RLSTM £) A 403 - £¥ ARy B2
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FoplFEL TR AR PRAOLSTM HAFF RIS F 2 M Lk (R) X 1 5 &
099z %y ERNFIZ R REM GEIEEL A FFGF R Fletr
BPEA nl % ANN B3 A S8 PR B Y 2a i g > A 8 % BIFRT &
PR EL SLSTM AR b 4 ffu* [ H R v 44 S chRNN 25 % o §
o A A PR 0 A RUR K3 200k Pa PF i £ (bias) F AR E < 5 Fl A ME

RRGERE 7 L RTR REM eT RR S

RS AR RT Y FRE Y 2 2R E R S8k - Gaoetal. (2021) 4p
B g AR (TBM) @ SSAR R 43 8% A T 2 S 1 42 > @ TBM 484 @ &
(peneration rate, PR) 5 & pr i T ¥ FiF A it 1 g fr ol B B Sdiiehd & 4p ik
F] o § F 10 LSTM 5 A K > £ & H 2 (&4 F >3 3%k (fully connected layer) 22
S A% W 27 TBM GRiE 3 ehif il o B2l SR KR & 38 ot 4 e

WRiE 1 A2 ¢ 0 TBM § S 4iR G A2 IE (7 o= B Sl B A %] 5 4eie 4 (thrust froce) »

*» ¥ §& 45 3= 4F (cutterhead torque) 2 *7 ¥ #& 4 # 5 (cutterhead power) > #* = & % #c
¥AE & F 5 LSTM mﬂﬁl rIE S B FehfEsE s LR TBM gefid & ohd & ik

Z- o Ra o Br R R AdMEEREk s T a < LR Fa 2 ARG &
PRARM S Flot 0 BT AR FERA 2GR Y A 2 M SRR
ﬂ&??’j%@ﬁ—ﬁ%ﬁLﬂMﬁﬂ%%’&&Qﬁ%i$ﬁﬁmofﬂ,
% 2570 £ B #2:% # (excavation cycle) <0 TBM R 37 $-8ic % 127 ‘e gLjw §* §F % (point
loading test) K182 # 7 S #c#-12 91 vt G| A Bl L TR BB REE o AT RS
a 41 > LSTM $53) 37 ip] 4 2 44 ik 5 352 4938 £ (RMSE) & T 355 $1:8 £ (MAE)
Su S 4733 8232040 AR ARGEE I F AT L PR R e g
EHREAS T e ez B SR A PR BT AT 0 g R 2 4R
AT R RAREAR G £ e T B T BUR R R RNN 03
# ARIMAX 4] a8 % (3 B % @ * B ehpr B 7|3ER 2 2) S5 kAT

LSTM 34| e % g2 7Rl a0 4 2% ke & (4-F2.8)
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Fig. 13. ARIMAX model prediction.
(¢) ARIMAX #2315 Bl %
Figure 2.8: = 8 #-3] 2. 4R ¢ 5 77 R 5% % (Gao etal, 2021)
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BEF RSP R AR 0 A E T A SR ) HIL KR 4
TRORA A HER R EROEE - SRR HRR R
¢HBg B 1287 3] > Wei et al. (2021) +* $7 = 48 RNN e B > & 3548 28 53 RNN «

LSTM ~ GRU 1 % g i@ 5oeh ANN w 64 (i ch 8 4 22k 8¢ 5 SUR KR

\

TR KR R g B g S R TR PR LT

(R%) fri5~ 42324 (RMSE) B4t * &3/ HAleha sadd i o bz B & o) - BB

o BLBIREPEX) 3 B Y o W 75% PERY KR 2 B BRI R E L TRE AL

(5 25% PEM ek B g A BRI B RIS RIE TR o B % ATF > ANN HET] 40 4 5

RO TR TR IR B RV B 2 3 MR S B

¢ B A SR RNNHAFRRIZ S5 4pg 7 4 0 2 § X T2 I HOKRE T
R enpE A 2 B RS p B Ar B 5 LSTM 2 GRU R ) k3 RNN  HFr ¥ 5
sifR) > ¥ GRU FIE M ZE R LSTM { 5 #H § - B R PR ¥ & LSTM
¥ 30% 1 40% - 4 GRU $C3] A pl# # 2 SRR % & &) (B12.9) » GRU #-3]
WL g B R TR 2 3 A RR R 2 s Sk (RY) R &
0998 ; Flpt » At MEXE X A FL AT > o B ¥ VR A2 LSTM &
GRUCZF R B) A AE P f AR A F A4 B emkig 84 27 1
i I Rl L

$ 6l o MeasuredPWP A A4p T T T T
= 14| GRU b b 20 e GRU R2=0.998
Q 12f P\ RMSE = 0.50 kPa "
? 10F p ¥ 16 - Q
g sf : A ‘ 5 o3
e 6 % 12 + b ]
L 4r o [
g 2 = 8
o ofF A
o 2} 3
oo, . . . A . g ol

o 1998 2028 2058 2088 2118 2148 -

]

—~ 4L < 8
& ; P Error range : -0.53 to 1.56kPa-| &
T o ~\~ A —A- 8 ol
[ 2N
e 12t
w-4r ! ! ! 1 ! ! ! ! ! !

N 19I95 zolza 20.58 zolss 21.15 z1l45 12 8 4 0 4 8 12 16 20 24
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Figure 2.9: GRU R %25 & 2 3 BV B KRR B & 2 0 0
(Wei et al., 2021)
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2.3.2 BAE# & 493 (Convolutional neural network, CNN)

CNN# R ZfE* AR I 2 L 5 32 B TR 2 > ¥ g et
1980 & i if @ AF Ao e B 3| 1998 & - = # FEmE BT T T AR & (8
(Lecun et al., 1998) 4 i i3 4 £ ~ o Lecun et al. (1998) #& 11 - B % 5 LeNet-5 9
TRA SRR FREAISEE M s P e B RR ;f%‘:} AR
B2 ok d s % R RBE & PSR s > LY DA
BB TR Bk o AR R B g LA R RS g R

FFERE BEF OESH o 2 F R0 ONN AFAEY P Rlygdaw m o 2

iy

FLEY CNNEFASY » Hh B HE 2 28034187 @i+ 45 -

2321 EA

CNN Z= 3 1fechfp® fpd 5 > ARG g d { LV R i/
W M 2 B TR R BRI A Ear i A E A
AR E Y RS > B ¢ 7% > BB~ R E R R R AER
R & (Zhangetal., 2021b) » & B F2 5 7* I%;fcff' 7Rl o 2 CNN £ 4 2 &
MOATH A S RERLAPE P o BT 7\%51”71‘51’&5?/]%‘?”@? AL E A Y S

G ASEEY

BEEPHIEHE T A~ lE > Z AT EI R RRE LT
FAFIE e g et RAn BABANITHERY PREEETHT R T
Wang and Goh (2021) 31 » CNN £ 5 #i4] » FRUApHF+ F rr 2 280 £
SR AR A CNN B A S E SR RAOPIEH R - P LR 2RF
IEAGERIE CFF AT RIMITFRBLLE RS 12 BLA TR S
B2 3 P RFER e FREEFUTRARAITHE B E P Y A

BTz VA ZRRITRZ TSRS32 FugE t R
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Bgp s oon FttfHiEd BT LR A1 % T 8 ONN B3] i iRl g % i
TE P E S L E-EIREVE B ST FI8 SR ORI R RS [E T £
FARFT AR T G 2 BB F S0 - BR e A RFT R A p R
TR A E G s BB AR G > 3R F R RATRE AR T R RS
MAEE g o pFd 2 Fpt H o 2 S AP o % > eI RIN AR
YUt A B o] 5 400 27 Rz. ONN BEA] R0 FER) 918 vk A i o) S 5000 20 5 B+
B RE2ZpFHRAEE S 2L ONN e apF et 8 3 2 %
SE > GBAPTFR R A T2 CNNAHFRIETIFRE NS 3 RiF e

ERRTTS:E 3 E AR S BT By T

Hsiao et al. (2022) f¢ P& i@ * ANN £2 CNN FE R 388 % > Gl S8
w2 g% TEPLAXIS 1§ UAZ R RATp 238 N2 2% bt o f 4
EWH A S A E S AR AEY F A 2 F s 2 (Fourier series
method) 2 * 3 #7483 > £ 2 PLAXIS i 75 "T~ % % R 4T A 47 R EF % 2
B FEAEG o YRR SF RIS S AT - AR Y RARS B REELS
" S S AR AR e  E L TS Sl BRHT 0 RARIE 2 ik
FAY > 5 - A8 3 a4 o d v g S8 P37 » ANN fr CNN

b

= »
[y

P AF TR AR - AR T o CNN 2 R B ANN - R F]¥ & 5 ¥

F R PSRRI EE o 0 F - AR T s AR A e R
g o F]pt ANN fy e d 2 45 c3f R Am o FAF e A& 5 0 CNN & ANN
2 [ L B RRE B 4 o BRI G R ALY 0 B % MR ONN G
L ANN 35 5 F]pb > ONN if & % 2 AUTiF e e A AP HIRE 2 ALY o ¥ 7 » 7
A > Gl IR B IR R > RPIBURRE Y RA gk AR
AT 200 B 400 BT AR E B AR TR B Ed TR @ ER S
WO B @ AL g e+ B2 9T 3 & % (Wang and Goh, 2021) » hHhe o &g E
B KA 7 (Hsiao etal, 2022) st # > &® 5o CNN »2% 4p i ANN 5 @ ik &

b R ONN L3 a0 Lie- HIER 2 2R g 807 b A F i o
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His CNN>#sz2 g* 4p %+ 5 > Maetal (2021) i# * GCN £ GRU &
CNN 2 RNN %22 R R E ¥ 2 2R L TRl Fam 87 R RBr s
B2 pHCEM e B2 R A &N A Ep B B
B4 o W EL PGB RA > Kubo etal. (2022) 12 Mask R-CNN 52 #8523 %
BB F WP ¥R kIR (7 Bcdp 9% 2 (data augmentation) & 0t HCF] = F ek
%0 FE ISP LR S o Ruan et al. (2022) & * Mask R-CNN *t & % B &
Tz BH B AL o g A ONN s i) dr B i cn2| 87 RE & eh
CNN #4825 5 > & Tt 2 5 p B4 L ehp e plfoE & » 2 H32 - - Ullo
etal. (2021) 7= 2 Mask R-CNN #-3] 2| B 1@ 2 #3235 > ¥ | P50 g a3 2
S K e U A R o RgE e ResNet-101 $24) i > Mask R-CNN #2444
@ 3 e 2 2 4p 435 e ResNet-50 $ic3] & k e02% 77 - Habumugisha et al. (2022)
% CNN 22 2 = f68A £ % = 2 (DNN -~ RNN ~ LSTM) 1% % # 35 7 & 1239
B2 EREY 2 HuaF A g ETRFERE BIA 5 BRI T 0 W
AR 2 B % Bl e Sr2 HOE R R GO $ 0 R BT LSTM 30 M g 11aF
B2k B B iE 0 CNN PIAp ¥ £ & - Ngo etal. (2021) # * RNN £2 CNN > iz % 2_
B aR s FEFAE B 2R  x EERA FRITL L2
PIRF AL > @ B % B RNN 2 B vt CNN sk ehd# & o Lin et al. (2022) 12 5T %
iz - @A LA k2403 B4 > ) X (Bayesian) it 22 CNN #7338 7 1§ 3
FRAA R F B G 22 B A CNN HCA] S B kot g e S dn
B iEi CNN AR N2 % 2k £33 RO 2 B S b m > 2 B4
B R L2 BRI ARIT 5+ Flet BV CNN A 5 8 ¢ s B 8
My A BRI L TR Rk

CNN #24)  * *S s 2 6(pF > FIH B faesa 4 4pd hd > T @ and § v
ST E 2 ML AN I R B ORP AR et g TR TR

CNN 3 £ v flie @2 2 R 2 BT 56 R4 s -

31 doi:10.6342/NTU202301805


http://dx.doi.org/10.6342/NTU202301805

2.3.3 &£ 4% (Residual network, ResNet)

2331 BMARRE

AL pRHA Y Heetal (2016) 3 01 5 Byt 2 % » jRE B ¥ L8 o fURS
Bl - BoRa CFFRH em LEDFY > Ra - TOFREEY %% §7

S A o WA ﬁﬁé&&ﬂ%é%&ﬁ@&&&?ﬁﬁﬂﬂmm#&ﬁi%ﬁ

—5\ %i’( EK ﬁ /bﬁﬁ \2 %K#é l‘i&%ﬁ%é‘ 3143 {m’}“ 44({ s m § p,\s .v —~E’7~Krﬂ =
B4 24 1914 (degradation) F* AL o 131 AL R F]A & L A SRR PEIFOE

Flig » 2 FTH 8T & GBS RN AR o o F R AERED A

EEY P UF e RSB AP POrE AR RARL ) o

At B D AL SRR OmE 0 B AR Y g 3 (skip
connection) k fE AR L N RE o AR A A SR DA LA L K
(4= B§12.10) 12 CNN % & > B ¥ Fi(z) ~ Fy(z) % 7 58 % f4 4% 175 cnE 8 % >
Hi(z) ~ Ho(z) 5 i i ReLU 4 {4 chzb b 2 % o A B BA L WM hh is > 56
B 0 M- 8P SR TR R R Fy(n) do b - BASE i fa ) Aot T
FEET it Fy(x) ¢ Sl o B B Bl et T (T Fy(x) = 0) 0 B3 R
€3 x it REH Tl BERR A AL HOELN R R iR
h R FA R AR gt o A A PR HE Ao RI2AL HY 2 RIRER

A ERA AR KTEFAF VIR URR - GRL AL DI RLAHMW G
B d| 2 R iRt CNN > & B gt i L gelofd » e

-~

BA g A 4 foida o

FERALDL BAFOHAY o S I BT E g R DA e T
¥1,.58 B8 (bottleneck block)” 4% #& 1 % &t ¥ (He et al., 2016) » ¢ 72 CNN % & >
AEHRESI3EERE > HEHE Y 2 5H P ¢+ (kernelsize) » % 5 1 x 1~

Ix3E1Ix1>FiE- BAPlx1 A [ SR/RPET UHFHBIA L " asxsk > &0
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Figure 2.10: 7% Z #8771 & Bl

CRISPE SRCEPERES 3 TS S S SUP R S e RO NPT N
SR I TR P A 2 IR E (filter) o 4ol Hoik B B AR N RR
SR R o AR bt Pl T § T MR R L TR A A e

A OA 4 AT BT

B jﬁﬁqc’ ) uFJF’f i * CIFAR-10 ¥ CIFAR-100 2 #icdp & > 78 £ 4 5 i
A0 H A S A Y SR E TR R LRl B R
Vo e ALPEL DRI Y ARRE P AP LF 0 R R AR

Btk o MT IR LA AR R $0  % R

2332 EAH

BA R R ¢ > Xuetal (2022) @ * U-Net # i » o 32 o 3t 3
Hie A B eyt o U-Net 5 — 802 CNN 5 Rl S5iege > B4 ELS H 2 4 40
kB d %5 % (Encoder) frj2ss % (Decoder) = » Ynfh F i & * »°
PP A e b O R B o @ R BRI T £ P R 4 3

PR o<t o pt2h s U-Net &b Bfcfzsg B2 F ¢ * 7 ResNet P4 ¥ chpt i 4% >
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Figure 2.11: ResNet-34 7+ &, @] (He et al., 2016)
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T R R M-S B endd Pk B (mapping) ¥ i35 B AR M O A S T
eh FT e Rm B EFE B I L o BRI L BB R R
PHRERESGC A B 2 it s ~ o fgmn S EE 2 I T HAB YT 5 KA
PREZEFXPGRRRCIEFI EFEZRE ERSFABRMS £ P Y A
HaoApk ¥ > 2 U-Net " UeriF R E ¥ #0341 &2 Mg Ays g B35 2
BAEAR E R en % o 58 ONN B % o i B 4 Bh s M AT -2 3 52 20 B i

Bl S RAER Y AR TR I0E KRS TR

2333 &

Tuﬁﬁﬁ“‘m&%“1%ﬁﬂﬁﬂ&@ié@@éyé’fﬁﬁ_
AApE F 0 4r23.08 7 2 ANN & RNNGEAR S ¥ 352 ~ s §.232.14 ¢ 2
CNNERH Y 3% o fka gl v fr? o 3 0% 2 Gl FH ARG 5 4 4
%iﬁgﬁé%@ﬁpﬁiéﬁwwﬁﬁéofﬂ’+%¢¢%ﬁ%&5ﬁ?@
Bt vt il EEE (dot AP s B 2 B BOER FEH e iR
22 CNN #24) - £ A B0 2 RSEiR o B > AFT Y P EE B w2y
£ 30° 3 & 50° BB R FOIRRI A rz 40° sz B M FE R 0 R CNN
WAL LG A FLFE FLER BB o

s EEY S E k1 4eP 2 BT ¥ 44 Zhangetal. (2021b) 2. 72
i » Zhang et al. (2021b) e — &= AL >> FNN ~ RNN ~ CNN £ GAN 1% gr 2 4

GoAEEEAEEEIEE AN At B IR o 2 @ e e

BA - BT T R EMEHARY NG E AR
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HF=F HRF*E

3.1 ik

AFTZPC PRI RYPEEY P 2L HFA LB (convolutional neural
network, CNN) H74] 7 i8] A B i 2 % > fls @AM e =4 > 4 Lol
EH SRR iAl w0 QEFAER L2 FHYRTRLT ALY > )
HoAJE 18 243 2 3£ 1Y i 4 (generalization ability) o — &if 3 S8k R T KR F K
miiﬁ’uiﬁ%ﬁ%%Hﬁﬁlgm—%éﬁiﬁﬁﬁﬁ:ﬁa’%%iﬁ

2

ﬂ\"{"G\'ﬁ\ $ﬁ‘%\'ﬂ\j’>l"gﬂf\ﬂéfﬁ&é‘ﬂ\’,ﬁj\g"f‘#‘\ngﬂ.f‘

=l
s
:Mﬂ
paz

KA
FA oo Bt AR B d 2 TR RA ORI 2 N Jpd et
LR i o it B SRR AN REP2Z AR o AFTETG AR B 0 BELS
ERFREAMZ I RS ETIERRE PP RMBEE R ALE LTS o
+2 43> %5 Whittle-Matérn #3415 > 2 2 2 MY RFEAUR &
2 fE ¥ ECE & 4 L8 3 (wide sense stationary lognormal random field) o % % 5~
A AP R EE & 5 3008 50° 2 RS EE 0 v Ui
PLAXIS p # v 32 {7F "L R 5% RATRZE A 47> B0 L3-8 2 % > e
BHAEG = 0 A A EAPTEE S BT A SRR RE TR KR
B RT R RE EA ERE D LB AR SRR G A%
Fl# R A2 EFA SRR HAR 2 A28 4 400 E SR e
AR > Befo R E R 2 B 2 g R 23t o
FE I AP RNRIRT AF B F AL AP 2 A
- THcE 2 2 NI 45 F M opython p o #+ it B U g PUR 4 47 4088 PLAXIS ¢

s AR TR - AT L BRESSEE 2 % > 2 Jua

@
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Fed =8 5 BBREEREY P SN SRR BV i 2 e & F

BAREH L % PR SH ARG o T HE- R AN e

32 BB ERFTE

321 L2RER

AFT R P E BRSO A ) A 2 SR ST 0§
LRSS REFER ¢ FAERR S G RRRS BB O)H
#H T 9 (mean) ~ ¥ #c ¥ R % #k (Coefficient of variation, COV) ~ 4 3 ¥ = & () »

KT fod-B o kg B £ B (Scale of fluctuation, SOF), & SOF,) ~ 1§ = ## (E)

\\Xr

ERERH AL ER  FREBHA I FLEIRFET AL G - TR HE
Moo BPFEE R 2 35 4 M AL (cross-correlation matrix) i > A RSB HF 2 M
mi (Liuetal, 2017) 5 a5 ¢ R 4 "E1 350 B & 850X * 2B
@ik WHIMEL 0 2 R BEipF 2 RRS B REART S - R F2LNE
BHEEH > T FRE B RRS HARBRLE IR ERI IR EEY 2B
B e R Glch 0.1 28RS ERF TR R Gk 2 01 2 AL gl
Lo Hahin ) d 4 o MO B GHCH L A HA T 2 BRI  LEEA B
Bl % T¥afE 1SkPas B fhdcAh W 5 015022 03 #7010 2 ik i
Faofitas® by PREOLR SRR GEG S RIEWAL D2 RER BKiEs §
B o Phoonetal. (1995) st x5 % Fidsk > 2 Bl 2 R4 2 B i %2 Gk
P BAFAERL A 015 032 RE GBS H L2 <)o T o

Rt ge 2 % & Tk dciE # (Tabarroki et al., 2013; Haldar and Babu, 2008) - 7= 3 ¥

‘&‘r

Y 5, 2.
HEEEAE S SR

Ht 4 TR M PLAXIS # 472 S BB 40431 > £ 45

R N gl TR RS T -
L N j\;ggza Bk BB L 52028 X822 5 ¥ A% KT o Ak
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Lognormal Distribution
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Lognormal Distribution
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Figure 3.1: = fA % & Th#ic™ 2 ¥ 8c¥ L5 4 7 B
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Table 3.1: * 3 48k T~ 2L 88 A {78 d

Group Cov (SOF},, SOF,) Numbers of analysis
d | ¢ d ¢ 30° slope | 40° slope 50° slope
1 o1]o1]| (10,1) | (10,1) 750 210 750
2 10101 ](100.5) | (10,05 | 210 50 210
310101 ](1505) | (1505) | 210 50 210
4 1021]02] (10,1) | (10,1 210 70 210
5 103103 (10,1) | (10,1) 210 70 210
Note:
¢ =15 kPa (Mean value), ¢’ = 25° (Mean value), v = 16 kN/m?, E = 15,000 kPa

=1

Ew R 505 2% o ¥ ok T Ak F e P A 0.5 2 ¢ RN il g

- s

(<

322 @y BB

O S %%ﬁ‘d i * B E R ¥ B AP B ML S B (auto-correlation
function) fw it 2 337 P 2 B M o L7 7 CNN A A7 bS8 3 S8k

KTz d v s AT RTTZAARMEBEEREL kT e

1\ﬂ\

5
2 BB E R AR L 10:1510:05215:05 5 g4 Z 3 3P §F L2 1§
(Phoonetal, 1995)» ® F pe 4 P H &K T2 L3 > > L 3 RAPM o § 7
Fl A7 3R S s u Rl - € 0 Whittle-Matérn #23] 4 %) 4 &k T 2
LEHA AR pAPM S P LR R T e e e 2T L T B M

1 e

Whittle-Matérn $=%] ¢ & 2 = B d @& * —Jﬁ Ak il A u s Tk
(smoothness parameter, v) ~ B B j2 £ & 22 3 B8R 2 jE44F"L (distance matrix, r) ° %
$2023F §2 280 f o T tdoy B 05 PEV W T H 2 foAp B S

WAL AmAKT e AL e pARM RSl T iy Por =05 K
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FH B ENY S MBLE RA  AFE R KT e 4 108 152 8 0 8w B
TR 0522 > Bt pldm sz 3 P T A kT o b Rpif o seged plf
Bl - S (e kT o) b B2 GEEE G AR % 2 kT mEgaE (3.0)

* &

(\h
..)ey.

éf}‘]’%ii%“i%‘;d%‘ﬁ ;‘*'}?1 E;am"";‘;']%?

=

B B iR Rl a, R AT R - BREY - BELZ R IRy
RSO0 a2 % - BEE S - BRI AR ERFTIEL 05 2
T FEEAPR R 055 A Foag, hEAA S BRE Y - BR2ZEERL 052

AR 0.5 0 B ikt e 0 3208 0 ¢ BRS04 ) G20 2 8
X8 s FEES 0.5 28 5 2ok T pRap et h — 4] 40 x 40 2 4B £ F

w IR AR < ] Pl E 16 X 16 (ArFt3.2%77) o

A dE T Gl MM E R - ERELZ B S8R 0 TF K Whittle-
Matérn $-3] & W2 kT o2 A ipM B8 w2 p AP Sl 200 0 2

ER2ZMEMEe 222 AR gBF2 A9 -

0 —-05 -1 --- —185 —19 -195
05 0 —05 --- —18 —185 —19
kE e pEAEAEL (3.1)
19 185 18 --- 05 0 —05
195 19 185 --- 1 0.5 0
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0 —05 -1 —65 -7 -T5
05 0 —05 -~ —6 —65 -7
L8 o EdEt (3.2)
7 65 6 05 0 —05
75 7 65 -~ 1 05 0

323 AmEE%G

AP ERFI2D) EBER BT OE S R Gl 2322/ &7 2
KT s £ o fAPM St 2 M A GRS A 4 S e
NF S (5225 ) &) AFEF $ P Cholesky 4B 4 fi2 % (Cholesky matrix

decomposition method) & {F“g#3 ; Fim 2 40T o

W=vVy-Z=0-Q, 7 -Q," (3.3)

VI =0 chol (py @ pn) =0 - Q, @ Qp, (3.4)

£3325%9 W AT E 02 BRIFHEE S 2 W 2 598 dE
Lo ZAHEEFEAT o A EFRLHFL LIS IR T RELR
Mz X RRgced s P -gpREFEsGadgk 22— ToE5 04

o2 FWH o 34 255¢ o p, s p, 54 Whittle Matérn $-3] 4~ B 4 220k

g\i

%3
e
T rd-F % p4p A S#c 0 chol 2 Cholesky A\ﬁ’éi,%f”ﬁ% Qv QA H R HE
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FRHEL Y27 Cholesky T2 & A f2{62 kT m BBdt paE' » "Q” 255
Kronecker 3k #f 5 2t 3% 2 7 p AR {2 et N2 & R R Bl B2 B o
¥ 1% 1 Cholesky 4E*E & 23 T4 N B0z P eho 358 ik v gid - 230E 3
#75F 8 3 (zero-mean Gaussian random field) > ¥ £ W = /X -Z » £ 12 Cholesky ~*
ARSI R R R R R RV AR G 2 2 2 SR

£ zdEr - TiE L 00 B L L o2 FEA FAESE -

SEAE TERTES PRI TR RE T IR S R

224 & 2. % HE O8N s V33N AT N

¢ = mteQuZan” (3.5)

mo s A G EHEY BT LT IEE o HERA B0 522452
NG SEFENAALGY 2T E m BEERET s LA EEZPELE
FHHBEY EA IR ML T RTFOGRY B oc BTS2 BB R
%’ﬁ%é2§&ﬂ3lﬁﬁwiii§&’u&jﬁ%&ﬁgg@iﬁﬁgﬁv

R 2 o) 3.2 #E R o

=
[e)}
Effective cohesion (kN/m?)

Figure 3.2: “§ #3577 % B
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3.3 ARAERBEIH

A TEY PLAXIS 7 R~ A 475 17 5 BB EAITLE SR 2
= % Mohr-Coulomb 73] » H 2 & E-% > H] - @ % @i < ik
(Young’s modulus) ¥+ 1 3£ & & i€ {7 f§ ¥ K ﬁi%J » B3R A > 3 PLAXIS $icfg ¥
i# * Mohr-Coulomb #-3] & > & F @?] AR 2R R SR GRRS A B
£)d FHITTREFEF2Z U FRAITRELAIT SR P pHFE 2L 22

Al e

331 #EHR

B AR LR 2008 v F 8 vz - s o B Ep A S 300400 &2
50° =46 Y > 4 30° B & SO RE S EHE L B Y BRITL BB EEY
P2 TR AL RIS L PR o B & 400 W HEE AT L RRTHEY s

%t Bl4r 3.3 -

332 ZBHER

AEGIP ﬁi%J » Mohr-Coulomb #-7] 2. %83 1§ = ficlic ~ 7 B 4 ~ 7 9%
Bfedk 2 grelH g Bd 5 ou@B 4 gy s L0 “i?.ﬁ“i*iﬂ%%?]” v H

BABAEAMF L WM B YA UE APLAXISP F 2 KW 3R

e AeR325d £ 40 - B 16 BR G T > F]P . PLAXIS ¢ F &R 2k

40 x 16 = 640 B 2 & FAL > r1aE 2 SEHHY St ST -

EWHF ST S T - HBRFRBpESE L (300 40° & 50°) F 2 EH B

A o S A B R - b S A Bl R TR T
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8m ~ 6.93 m ~ 5.07m
[}

4m
20m
(a) B & 30° 2 g H
| 8m | ~ 4.77 m | ~ 7.23 m |
4m
20m
(b) ¥ & 40° 2 "FHsHE 4
8m | ~ 3.37m | ~ 8.63m
4m

20 m
(€) B & 50° 2 KE s B
Figure 3.3: 7 Fr AL F 2 S8 388 =
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F - R ORI SRS Rk Rl R TR R
e S HP o B §RERE D2 £ w BN T A3 BRI
o EA R RS FRAREAHROS PR LB L K TR ST HH
SRR RI3A I AR AL BRFALRR ALY R ERRA
(medium) & Fiefed & 9 5B 5= £ Bar300 #8725 1091 B
Gedh s BYPA0° B P E 4 1041 B~ HUr50° B Y P2 F 1016 B A 0 3
AR NE A D2 Mg EAp Y %7 AR 5 @ P > Ching and Phoon (2013) PN
LAGH BN R A EHATREFRERE ) A AP 2RI T

MR R o SR ] A T B R L B AT T AR 2 -

SRR RSPk RARTIHORRAL  HREHED R kL 75 o if
FoiEnA o BE 2 B R B Y PR A K (roller) HOHE 0 T LD B 7
e uF kT g B G i pd BR (free) » LFizm = w2 835 F4
TR E AR (fixed) F ATFE RS b L BT USRS T R

T R EB AT T LT R HAX T AE - aa e k- oo

Flgure 3.4: PLAXIS ﬁii P\ FE 2 SR8 AR

333 oM HZERERER

FHBILPTEHEY TV FRAETPREFA T ANEF LR L X

PSR G 8 o & Plaixs ¥ ¥ % = A BFEE (phase) > ¥ - BRFE
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i * £ 4 4o (gravity loading) > 2 kR 3 LA

(RN S ST S S L L F

WO AT o B BRI R ET

ook 4w T g £
T ki Tk Az

& %R ATIRE hE 3 & 47 (safety

calculation) » iz BFFE P - AN B4 B 4 &7 B b 7 ¥k TR 0 F - S en

R R
LR

BTiF s P B 2 BUR

Bois o KBRS 6 A

Yt SRR IES T DT T 50
PN TRTAEY Ry X ST

B8

HESTHEEY T -

&
—?Ws;}wmﬁi ’;E’T/

i
o
=
=
=
fE
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N
o=
W

ﬁ\F
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=
beic
)
)
(e
+
El
e

M- AR % 2 TRl R ARG R PR

B ATELARE B R dhA TR ¥ H £ (incremental deviatoric shear strain) 3§

EE jxfj )?-_ 17\‘4%%,?"\&7 fﬁgaggss E]é;——‘;xl ﬁﬁ":‘qllbﬁbb‘li_}-'é B H o

3.3.4 AL

33.0% § 33332 % F 5 - = H AL XA B AT

Ra o> AT AT

ZBHERH R S B AR - SRS TRE s RS

ALK SRR EE LR ISR

EETTEE TN RS TR

AFERY pEit 23 a3 PLAXIS #e# 3k %0 — B A HTTP eh

B* #2£3% 4 & (application programming interface, API) » & @ * % {8 12 & * python
pp prog g : Py

#2354 3% 7 % Jupyter notebook ¥ ¥ B 4p 4

¥ g2 PLAXIS i & >

FapHitagp o

BB A5 A BB S i A fo L B 6 PLAXIS ¥ R AP 0 B R RAod 4 A K

BAENB T RN N IR AEEAALATIFET A S HE L 0 T

A=

SR T T AL R
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3.3.5 Z2AGE - BERHUEREZIREBIXTH R

ErPEEY > FEARRF A2 FTHRELIDRTHEZE AHREDE %
W Y gl BT ﬁd ﬁ% S H-1 PLAXIS ¥ » Rt g - & R

A D A § R ERSBIEP] T 56 PLAXIS B A8 T A 45 et & ¢ B

WH ARG R I IR L DVRF AL RIS > BT AT 2
RER 24P CL AP RERN MR R oo FERIE D P 0 K B
WH AR S PR BE 2 GE F D RECR R & @R CONN R
AP SR Y AR HETE X > R o R ARG P R AR R R RAT
Feo 2| ET R E R E T R A R B 7 K PLAXIS S H £ T A Tk %
BE > P E BRI ARYHE- BYREHEE o F > 3 BNIERIF 2 Gk
PFEATIHEE - BE > FHpe RlEaarR r R 5 - B> sprtd
F-BEALZ-BTREHMIE P PPFEETPFILARS2ERT Z - B
S5 B RBCA] PR A S OB AR i R R Y S - B2 R Pk

£ (tensor) ° B {8 > P'RBAPFIF R 3 /E’éifﬁvﬁs?] ~ i CNN B3] i 13- & /29 4

XA T %R T EL -

3.4 A4 % (CNN) BER

Ay E 30028 & 500 FH 2 PFR T FLVRT A XA FA
SRR ECATERIEL E 40° 2 X > RS FH EE G mE o BHA SRR
G Y E ORI S EF R o F BRI VRTESTE T AR
TP AT A S E T R GRS AP R ¥R E R D o
PERCA] ST SRR A R A T e AR i AT ¥ 8 LR A
(overfit) &% % #t & (underfit) R 3L > # ¢~ B E B Z ¥ L o EHR L AP RS
VPHA AP RERY BRRE TVRTH CEARAEY RS fog s &
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CHEA Bt HA T RPE LIRS GORG 5 F B S AT PR

[

LB ARET AR S R R 3 UL A TR Lt 4 L5
BEE Y Y RS LA AR el M e TR A AR F
EANEWIEIEE RSl RES TR G2 B A R i Rk A

BRI Bt MH R SIERE A 40° M 2 % > GiE BH AE R E o

¥oeb o AFy i % Keras i {7 5 4 SRBEAT hieZ i plzd ) p o Keras &
2 TensorFlow 5 A & » £ % m = thg FF APl - Keras #% 525 % % cha B {eoicd)] »
MAPYFERE Y R AT g ol TR e R R AR Y D AR HE

FERALIRG R AR AN e T A

\\\Xr

B~ WU e A LA

*t Keras & {7 o

341 BASHERHE

AP AFERRIT R - g MR G R IR U RIBSE B
Pz s - REFR Y > AATBYPFPFE A7 R hE RiE
R mFARLE RN R AK o LRy I E R Ao R 5N S 2
e PRI TRR NG - £ 5 cCNNE* okt > B
@ﬁafwiﬁﬁ%ﬁﬁﬁ%%%ﬁﬁﬁpﬂ’ﬁﬁg?ﬁﬁ%&%ﬁxﬁ@
B ST EIER - Bty CONNE K g FABF K A8 EHE
(convolution layer) ~ # it & (pooling layer) f- 2 18 4% & (fully connected layer) » 1

WHPr L B8 RIB i

##& & (Convolution Layer)

LA GERCNNRE? chbos 4 Blonifi & a0 P 278y
BT LG

R LA A L#ﬁ;?l)‘ . %3‘74;‘{9::]#79»&5’:}3‘74{9:]%]@?1 dr o @?]?\ 227
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Figure 3.5: % "G¥¥in b 5E 8% j@ A2
(% & : Unsplash % == ; B * $#£7 ¥ © Regine Tholen)

G F s e BN FZ RS A o ARAE Y ERY 0 B B
§ #-F AT = B (channel) £ £ FH P BULE N F R G DE - L {1
(kernel » & feature detector) fi F FrichiP~ > * [ d R ¥ Fp FXLE > #iv 5 &5
BRJILIS O] PR BB R AR RE R L 2P A 0 BB R N
B % 3 03 x3x3 R~ Gk BRI S ) R X B (receptive field) £
Bl Rl b e Bty li*ﬁr' ERP L ELE R P e L gk fotp e 7
NEHR L B2 TR (rRB6@) BT R SR PR EBHH I T -
B (B B BB {45 & * F p (7 TE) FHREFELEREIL LT HKE H
RTHE M (4eB3.6 (b)) U F AR R AR > BRI RS EREREL > AL EFE

— 3 2 ATHCE (4-F3.6 (0)) °

FERETRRY AEFELEMLY > E L (padding) B AF EHPHSE LB

e

iy

AR s BT 0 R TREA T E S dEHA 0T 79 e

5]
™

I
P

ol
Z;EHT
(FR:

AT Y .3@#??@%:’1%]1&2’@?])\ RSN I I P S Y
4 o ¥ - BHITR E_%¥E 3 (parameter sharing) » F] CNN FFp| > 2 L & £ 8 ¥
B B8 - LB IEHP EEHMTELRYE G EH BRI
TRFERR S - o TE RIS 2 PR R R FI > Sk § R

RLRF- AESFRY hEHPL SBAE - XBEEY BB L FL o

&

F 4 & CNN enZ|§r8p) > & & F 0 BT TR h iR 0 A e
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Figure 3.6: ¥ # & VA
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A4t (Pooling Layer)

L B SRR f@g]»#sg(gg]ﬁq;g& S A R AR R U EERL
FANA S G e R R AR PR BT PR A
B A WA 4 0 FEE R R A A A R T e~ R Bl F L
7 AlphaGO FIHE 4 1 AT & A 2 5 CNN» L 22§ @ % 3% it o F L engs i
K & 7 B+ ¥ i (maxpooling) ~ T 3534 it (average pooling) ¥ % ; 4-@3.7 > B < #
A E S “gﬁ%k@gﬂ‘?%iﬁﬁ’i%m’ﬁiﬁ‘wﬁﬁa@ﬁé%

P

MR S A T30 R HE BT R R E BT I5 T L g A ]
f&

E o PR o B R BB R EERT D R Y AP TR -

1| 3 | 2 1

2 2 5 2 Max Pooling . S
4 0 1 2 il ((2222)) * ?
1 | 3 1 0

(a) Bt 34 1

N 2 1

2 2 5 2 Average Pooling 2 2.3
4 o | 1| 2 ) : .
1 | 3 1 0

(b) X 354 i+
Figure 3.7: 7 i* & %7 %)
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4323 & (Fully Connected Layer)

GONNY - rajelf - S¥ R ed - K SMAPis  2lEE PR
B TR D A et BT L CH - K ST 3 g e
TRl e BAMEY o 2RRELF TR R PAH BT b i
BN R EEAEY o 2R R F  NIERE N o doBI38HT T 0 2R
B#ed - B S A T s BT P a Ao o e § 0 RFRRE
FRBTE Y EAE R RREREAL SHN . 2BRE AT LANN o
—fEo s B AU ECNN RS E S AFAFYEAY > 2@ REVEE LK

2L @ * > 4o CNN ~ RNN % > 2452 {5 % smh0g] -

Input Hidden layer Output

Figure 3.8: > 4%k 7 & B
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B % B (Activation function)

A SRR o R S BoW AR Y R~ UL R S 2R ol T SUEL
o PEH S R A G S o T LR S IR - S PR
PAPACER B A G AR T REALI T - BHEA S F 2o R
WAFER RN LR LT B ol S dc BRI R G M
Moo degt AT UM AR SRR R EN S 0 2 R RA GRRES Y D AR
Ao A @A L 4o S o F R gl Sl ? 3 sigmoid ~ ReLU - tanh ¥
EoRBAE SRS LA N 0 ReLU 3 P # G 2 2 F Y oonk it 2 g S

# (Indolia et al., 2018) » ¥ 4t % »cbr o {8 5 427 2 $ i) 4 K 4T

342 JkEHEE

BOEWSE G <) 5 40 x 160 fyt ok o 4T o pov i A G b 2 WS
FHES R EE AP EER T A0 B ERFELF ) AT HA
MRCES F e D 1305 x 558 < | 2 AFA B Y (4cBI3.3)c E#F AR A By
PeBBE A 2 AR Y b4 A - £ 51395 B 55580 B4 A
B (channel) 22 B % » ¥ T2 2 BB BEY P RFTHRE o - ehE 4
ERERVIREIEY C VRFRLF LLIBY A - DI BT AT L B
HxW x3e=z2%% (tensor) > H 2 7 Bl *eng W B P OE R Bis -
BFREAAFBHFFI IBAYALAR -G Bz BUFERRE LS o AIKH

RO T AR

I € REXWxC (3.6)

B [ AA44 RS HEDZ GEE -
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6 MP e Y FRARDT M L F AR EAFRTF S e
AR T AR TRE S AR oA BV SR LN E A AR
RHUE cSFE T RGPS EESFTE T R 2R RE Y G ok
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Table 3.3: %4 47 S #ck T

Hyperparameters Type or Value range
Epoch 300 ~ 1000

Batch size 20 ~ 320

Loss function MAE or Cosine Similarity
Optimizer Adam
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Table 4.4: % 2> GBIER| P VRELRIFEE TR Y 27 b EHF 2R
Scenarios Case name Traning set Testing set
Fixed SOF Casel COV=0.1 COV=0.1
((SOF,, SOF,) Case2 COV=0.1,0.2,0.3 COV=0.1,0.2,0.3
— (10,1)) Case3 | COV=0.2 COV=0.1,0.3
Fixed COV
Case4 | (SOF,, SOF,) = (10,0.5) | (SOF,, SOF,) = (10,1) & (15,0.5)
(COV=0.1)
Fixed SOF Fixed COV
(SOFy,SOF,) = (10,1) (cov=o0.1)
Case 1: Case 2: Case 3: Case 4:
cov=0.1 COV=0.1+0.2+0.3] cov=0.2 1 (soF,, s0F,) = (10,0.5)
Employed model : Employed model : Employed model : Employed model :
1. CNN 1. CNN 1. CNN 1. CNN
2. ResNet-6 2. ResNet-6 2. ResNet-6 2. ResNet-6
3. ResNet-18 3. ResNet-18
4. ResNet-34
5. ResNet-50
: Model training
: Casids Model testing
Case 1: : Case 2: : Case 3: : (SOF,,SOF,) = (10,1) &
Ccov=20.1 é CoOvV=014+0.2+40.3 é cCov=01+03 i (SOF},SOF,) = (15,0.5)
1. Predict training data
2. Predict testing data (30° ~ 50°)
3. Predict testing data (40°)
, : ¥ ‘
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Table 4.5: % b - 2% & CNN #-3) %4

Layer name Output size Case 1
conv2d 186 x 465 x 64 3 x 3, 64, stride 3, L2 weight 0.2
batch normalization 186 x 465 x 64 —
activation 186 x 465 x 64 ”ReLU”
max_pooling2d 93 x 232 x 64 2 X 2 max pool, stride 2
conv2d 1 91 x 230 x 128 3 x 3, 128, stride 1, L2 weight 0.1
activation_1 91 x 230 x 128 ”ReLU”
max_pooling2d 1 45 x 115 x 128 2 X 2 max pool, stride 2
conv2d 2 43 x 113 x 256 3 x 3, 256, stride 1, L2 weight 0.01
activation 2 43 x 113 x 256 ”ReLU”
flatten 1243904 —
dropout 1243904 weight 0.3
dense 1 -
activation 3 1 “ReLU”
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%465 * 3y B IE R h & B> MAE 4 7 T 5% ¥ % (Mean absolute
error) > H A% & % & AR D 0 E k2 PLAXIS A 47 01 en% > el 3558 $:E
A%+ > F 27728 ; RMSE Z 357 2% (Root-mean-square error) * MAPE p| & & 35
%4\ ~ 3L (Mean absolute percentage error) » f -] 2 HeniE & ¢ b it = fEiE
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1 n
MAE = = i — Ui 4.1
RX; |95 — vl (4.1)
1 n
RMSE = | = (§: — )’ (4.2)
n =1
100 :
MAPE = ‘4§:| Yi (4.3)
no = Yi

Table 4.6: 3% & CNN %3] 2. 7 F #c#h 8 MAE ~ RMSE £ MAPE + /| it $i (% 51— )

MAE | RMSE | MAPE
Training data (30° & 50°) | 0.0146 | 0.0245 | 0.65%
Testing data (30° & 50°) | 0.0502 | 0.0663 | 2.06%

Testing data (40°) 0.0844 | 0.0980 | 3.50%
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Table 4.7: ResNet-6 #3| 2. 7 Ir #icdp = MAE ~ RMSE £2 MAPE = -] v i (% 6 - )

MAE | RMSE | MAPE
Training data (30° & 50°) | 0.0242 | 0.0335 | 1.03%
Testing data (30° & 50°) | 0.0363 | 0.0456 | 1.48%

Testing data (40°) 0.0648 | 0.0767 | 2.67%
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Table 4.8: % &)= 2_ % & CNN #i-3] .fé;—%f#_
Layer name Output size Case 2
conv2d 186 x 465 x 64 7 x 7, 64, stride 3, L2 weight 0.05
batch normalization 186 x 465 x 64 —
activation 186 x 465 x 64 ”ReLU”
max_pooling2d 93 x 232 x 64 2 X 2 max pool, stride 2
conv2d 1 90 x 229 x 128 4 x 4,128, stride 1
activation 1 90 x 229 x 128 ”ReLU”
max_pooling2d 1 45 x 114 x 128 2 X 2 max pool, stride 2
conv2d 2 44 x 113 x 256 2 x 2,256, stride 1
activation 2 44 x 113 x 256 ”ReLU”
max_pooling2d 2 22 x 56 x 256 2 X 2 max pool, stride 2
flatten 315392 —
dropout 315392 weight 0.2
dense 1 —
activation 3 1 ”ReLU”
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Table 4.9: & & CNN #c3]2 7 Fr #icdy & MAE ~ RMSE & MAPE = /] vb i (% 6512 )

MAE | RMSE | MAPE
Training data (30° & 50°) | 0.0711 | 0.0980 | 3.11%
Testing data (30° & 50°) | 0.0947 | 0.1145 | 3.96%

Testing data (40°) 0.118 | 0.1435 | 4.99%
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Table 4.10: % &= ;¥ & CNN #7347 S8k &

Parameters name Value
Sample size 420
Layer depth 4

Batch size 56
Learning rate 0.00002
Epoch 250

Table 4.11: % ] = 2% & CNN #-3) %4

Layer name Output size Case 3

conv2d 186 x 465 x 64 5 X 5, 64, stride 3
batch normalization 186 x 465 x 64 —
activation 186 x 465 x 64 ”ReLU”

max_pooling2d 46 x 116 x 64 4 x 4 max pool, stride 4
conv2d 1 44 x 114 x 128 3 x 3, 128, stride 1
activation 1 44 x 114 x 128 ”ReLU”

max_pooling2d 1 14 x 38 x 128 3 x 3 max pool, stride 3
conv2d 2 13 x 37 x 256 2 x 2,256, stride 1
activation 2 13 x 37 x 256 ”ReLU”

max_pooling2d 2 6 x 18 x 256 2 X 2 max pool, stride 2

flatten 27648 —
dropout 27648 weight 0.05
dense 1 —
activation 3 1 ”ReLU”
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T E R ResNet-6 %% B fhdic s 0.1 87 0.3 2 BIE TR & TRl 2z &
(2 M AN SRR AEE 4203 0 &5 Y F 25 R
B 5 56 ~ 0.00001 £ 250 ; 3" HRR {8 20 50T, *Tﬁ%lr'% 4124751 o
Table 4.12: % ] = ResNet-6 |42 83k ¥

Parameters name Value
Sample size 420
Batch size 56
Learning rate 0.00001
Epoch 200

B429% ResNet-6 ¥t % R a#ic: 02 2 B3R B2 FX > GETERZ 5%
2Rk CNNHZ - > $F %R Glnlicdy & GO0 F R ETAE * &0
F koo B4205 A WK R 2801 L 032 pREREAE > GEKIFRZEE
ResNet-6 #4145 B 48 0.1 2 BB FFRIZ %405 7 & » $H3L & 30° 221 & 50° if
HARRI N2 % > iy 2 PLAXIS A 4712 % » ic® T & £ 8 > MAPE 45 #&-i¢
0.75% » L3885 0.75% anf-4 ; #3t & 40° FH O RIplIR L > MAPE 4% %
4.49% > e v R 3 PREF > e # 8% o ResNet-6 #4143 % 8 %8 03 2 4
ERIGFERVIRT 24> FRVEB X 20EDE > RN B RABT kT
AL F R AR o B & 30° i & 50° BRI 2 % 2 Tk MAPE 4

5 11.1% > # & 40° i#3 2 MAPE 35450 5 4.94% > #Eimbr£ 413 ¢
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351 x Training data (30 & 50 degree)
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s

25

@AA

Predicted FOS from CNN
[\S)
=)

1.5¢

1.0 1.5 2.IO 215 3.0 35
FOS from FEM

Figure 4.28: & % COV=0.2 "3 B & 2. ResNet-6 -4 ¥ IF % £ 2 BT 18 5B
PRI REEFE DGRIERIZ S (F6]2)

Table 4.13: ResNet-6 #-3] 2 7 = #x & MAE ~ RMSE £ MAPE = | v i (k6] =)

COVv Data set MAE | RMSE | MAPE
Testing data (30° & 50°) | 0.0185 | 0.0245 | 0.75%
Testing data (40°) 0.1074 | 0.1356 | 4.49%
Testing data (30° & 50°) | 0.2425 | 0.2818 | 11.07%
Testing data (40°) 0.1121 | 0.1386 | 4.94%

COV=0.1

COV=0.3
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412 BEREEMAK

AEPRF A L E R

%

R HEcs 01

BBIA S =480 A % E (SOF, SOF,) = (10,1) -

(SOF,, SOF,) = (15,05) £ = & : # ¢ » (SOF,, SOF,) = (10,1)

Bo& 50° S EEE £ 1 750 B 5 (SOF,, SOF,) = (10,0.5)

(15,0.5) P¥ » B & 30° 223 & 50° S H-FH A & F 210 B >

(SOF,, SOF,) =

s EW AR M

(10,0.5) £

pE oo 30° &

% (SOF,, SOF,) =

£ 840 1 L4 38

Boo Tl 0 A3z EMIMEE R DT o £ 4 2340 BH FHET EIRE Y 0 4o
%414 -
Table 4.14: 3" R F 4L B # (COV =0.1)
(SOFy, SOF,) = (SOF,, SOF,) = (SOFy, SOF,) =
Slope (10,1) (10,0.5) (15,0.5) Numbers
30° 750 210 210 1170
50° 750 210 210 1170
Total numbers 2340
ANEPIRFTFEZEWFI R RS EIRTEAREZRE BEKE S

(SOF,,SOF,) = (10,1) F5 4 # & 40° % # 38 & 210 &

(10,0.5) & (SOF,, SOF,) = (15,0.5) ¥ & 3 50 % o 7]

i

EREETEORETH
Table 4.15: |3 F 4L B # (COV = 0.1)

» (SOF,, SOF,)

_L)J_~

’ vu‘:

78 B T 42

v X% 310 BEH FTRET BURER Y o ok 4150
f 7

(SOF,,SOF,) = (SOF,,SOF,) = (SOF,,SOF,) =
Slope (10,1) (10,0.5) (15,0.5) Numbers
40° 210 50 50 310
Total numbers 310
iy o FPHEFHEETALAFT Y B2 4 2 B3 RE > YV ER
§ RS B Y R o T K 2L P T R

PR gAY ATy AR Y e o
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4121 EH v JREHA (SOF, SOF,) = (10,0.5) 2 15 iEHk

ARG BRI HD R FY MBI RS (SOF, SOF,) = (10,0.5) * % & 1
Bod B 0.1 e & 300 ¢ i £ 50° 2 EHFH B Y o FRIE LS BHEEER 2
FLMLWHR T LA 2Tl BRGZAR o S ERARE RO - &R 6D B

PR o T b A% g “ﬁ% Ti % & CNN v » B3 ResNet-6 i3] e 22 o

R AR AR

#4165 " A2 % A CNN H031 2 3840 48 S8 > H A BGE 8 420 B > B31IFAR
S3k PR BEY FE YA L N L 56 0.000001 £ 150 ; T RE A
18 2 WEA SR A £ 4.17

Table 4.16: % e & & CNN #7442 S8k

Parameters name Value
Sample size 420
Layer depth 3

Batch size 56
Learning rate 0.000001
Epoch 150

% pl2 % & CNN 2 S M B L B F# 5 (SOF, SOF,) = (10,0.5) 2 '

W B (TR % > GHcAeB4.30 0 BA318] 5 HE © M E B S HE S

BITE >GEIPRZES S F 3 SICUE R Ee aE A Fanigpl 2B

B AR > BRBZ 2 SR AP BEMT AP T R TL

F‘_k

W e Bb

R4

i

Bk 2 B AT R AL MR B PR g

o

EEN
RSN

% 2
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Table 4.17: % t]w 2 & & CNN #-3] 54

Layer name Output size Case 4

conv2d 186 x 465 x 64 5 x b, 64, stride 3
batch _normalization 186 x 465 x 64 —
activation 186 x 465 x 64 “RelLU”

max_pooling2d 93 x 232 x 64 2 x 2 max pool, stride 2
conv2d 1 91 x 230 x 128 3 x 3, 128, stride 1
activation 1 91 x 230 x 128 ”ReLU”

max_pooling2d 1 45 x 115 x 128 2 X 2 max pool, stride 2
conv2d 2 44 x 114 x 256 2 x 2,256, stride 1
activation 2 44 x 114 x 256 ”ReLU”

max_pooling2d 2 22 x 57 x 256 2 x 2 max pool, stride 2

flatten 321024 -
dense 1 -
activation_3 1 “ReLU”

BRI

P % & 2 ResNet-6 #7328 4 42 S #icdr £4.18 o §]4.32 5 ResNet-6 Hi-7) 44 b 55
BE R FH# 5 (SOF,, SOF,) = (10,0.5) 2 #ic4p & & (7351 2 & % 5 Bl4.330] &
ResNet-6 #-3] %17 o M E 2 & R PR RS2 RIGFR % - 22567 2% K CNN
Wealdp e o ok T E MR R B2 e RGBT dore g
%3 G S ket > ResNet-6 #5317 57 1405 22 FERI 7 B BB E R
VBRI H R 2 % > Tl H A B 3p H4cd. 19 5 230975 & B2 dp 1R R 404.20 %7

oo Dt AT X > GRERTEREIEY S TR RIS EHEAEKG 2
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35F X Training data (30 & 50 degree)
O  Testing data (30 & 50 degree)
A Testing data (40 degree)
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Figure 4.30: © § ¥ (SOF,, SOF,) = (10,0.5) {13 B * 2 & & CNN #2414 B
TR RIS R S EGREETX 2 GETER RS (2hn)

Table 4.18: % ]z ResNet-6 #3442 2 #ck ¥

Parameters name Value
Sample size 420
Batch size 84
Learning rate 0.00001
Epoch 200

Table 4.19: ResNet-6 3] 2 7 I¢ #icdyp # MAE ~ RMSE £ MAPE = /] vt i (% b2 )

SOF Data set MAE | RMSE | MAPE
Testing data (30° & 50°) | 0.0609 | 0.0794 | 2.45%
Testing data (40°) 0.0452 | 0.0583 | 1.91%
Testing data (30° & 50°) | 0.0483 | 0.1900 | 2.08%
Testing data (40°) 0.0529 | 0.0700 | 2.23%

(SOF,, SOF,) = (10, 1)

(SOFy, SOE,) = (15,0.5)
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35 o Testing data (30 & 50 degree)
A Testing data (40 degree)
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Figure 431: 2 8% (SOF,, SOF,) = (10,0.5) "E 5 %8 * 2 % & CNN 2|4 2 ¢
ML R SH TSR Y AR > GROTRZ SR R (S0
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Figure 4.32: & ¥ (SOF),, SOF,) = (10,0.5) <L # 38 5 2. ResNet-6 ¥4 ¥ F %
PLBER TR A EREEATE > GETFRZEE (F0e)

Table 4.20: *73 % ]2 MAE ~ RMSE ~ MAPE = /] +* &

Case Model Data set MAE | RMSE | MAPE
Testing data (30° & 50°) 0.0502 | 0.0663 | 2.06%
Shallow CNN Testing data (40°) 0.0844 | 0.0980 | 3.5%
Testing data (30° & 50°) 0.0363 | 0.0456 | 1.03%
ResNet-6 Testing data (40°) 0.0648 | 0.0767 | 2.67%
Case | Testing data (30° & 50°) 0.0584 | 0.0686 | 2.33%
ResNet-18 Testing data (40°) 0.2372 | 0.2445 | 9.87%
Testing data (30° & 50°) 0.1193 | 0.1480 | 4.91%
ResNet-34 Testing data (40°) 0.1780 | 0.2062 | 7.40%
Testing data (30° & 50°) 0.0520 | 0.0640 | 2.20%
ResNet-50 Testing data (40°) 0.2964 | 0.3082 | 12.34%
Testing data (30° & 50°) 0.0947 | 0.1145 | 3.96%
Shallow CNN Testing data (40°) 0.1180 | 0.1435 | 4.99%
Testing data (30° & 50°) 0.0950 | 0.1237 | 4.13%
Case2 ) ResNet-6 Testing data (40°) 0.1560 | 0.1891 | 6.55%
Testing data (30° & 50°) 0.0946 | 0.1183 | 4.12%
ResNet-18 Testing data (40°) 0.1018 | 0.1217 | 4.32%
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Testing data (30° & 50°) | 0.3689 | 0.3739 | 15.34%
COvV=0.1 Testing data (40°) | 0.3735 | 0.3784 | 15.56%
Shallow CNN Testing data (30° & 50°) | 0.3863 | 0.4193 | 17.22%
COvV=03 Testing data (40°) | 0.2738 | 0.3058 | 12.01%
Case 3 Testing data (30° & 50°) | 0.0185 | 0.0245 | 0.75%
COvV=0.1 Testing data (40°) | 0.1074 | 0.1355 | 4.49%
ResNet-6 .
Testing data (30° & 50°) | 0.2425 | 0.2817 | 11.07%
COV=0.3 Testing data (40°) | 0.1121 | 0.1386 | 4.94%
SOF,, SOF, | Testing data (30° & 50°) | 0.0561 | 0.0721 | 2.33%
10,1 Testing data (40°) | 0.0650 | 0.0735 | 2.71%
Shallow CNN 7 5 12 "SOF, | Testing data (30° & 50°) | 0.0489 | 0.0663 | 1.99%
~15,0.5 Testing data (40°) | 0.0442 | 0.0566 | 1.83%
Case 4 SOF,, SOF, | Testing data (30° & 50°) | 0.0609 | 0.0794 | 2.45%
~10,1 Testing data (40°) | 0.0452 | 0.0583 | 1.91%
ResNet-6 :
SOF,, SOF, | Testing data (30° & 50°) | 0.0483 | 0.1900 | 2.08%
~15,0.5 Testing data (40°) | 0.0529 | 0.0700 | 2.23%
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Figure 4.33: & ¥ (SOF,, SOF,) = (10,0.5) & i%FE] 2 esNet 6 H-A ¥ s
BE T2 £ R LA SR Y ‘ET"-‘:?_‘/T‘@Z iR 2 (BT )
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Table 4.21: i# sl AL & 7R 2452 % & CNN #2042 S0k &

Parameters name Value
Sample size 400
Layer depth 4

Batch size 64
Learning rate 0.00001
Epoch 100

Loss function Cosine similarity

Table 4.22: 3t B3k & 7 p] iE 452 % & CNN 03] 41

Layer name Output size  Failure surface prediction
conv2d 93 x 233 x 32 3 x 3,32, stride 3
batch normalization 93 x 233 x 32 —
activation 93 x 233 x 32 “ReLU”
dropout 93 x 233 x 32 weight 0.2
max_pooling2d 46 x 116 x 32 2 x 2 max pool, stride 2
conv2d 1 44 x 114 x 64 3 x 3, 64, stride 1
activation_1 44 x 114 x 64 “ReLU”
dropout 1 44 x 114 x 64 weight 0.2
max_pooling2d 1 22 x 57 x 64 2 x 2 max pool, stride 2
conv2d 2 20 x 55 x 128 3 x 3, 128, stride 1
activation 2 20 x 55 x 128 “ReLU”
dropout_2 20 x 55 x 128 weight 0.2
max_pooling2d 2 10 x 27 x 128 2 x 2 max pool, stride 2
conv2d 3 8 x 25 x 256 3 x 3,256, stride 1
activation 3 8 X 25 X 256 ”ReLU”
dropout_3 8 X 25 % 256 weight 0.2
flatten 51200 —
dense 13092 —
activation 3 13092 ”ReLU”
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Table 4.23: CNN #-3]$4 7 I g & 2 SRRl 5% Aptert i’

Data set Best similarity Worst similarity ~Average similarity
Training data -0.9612 -0.4232 -0.8721
Testing data (w/o 40° slope) -0.9558 -0.5154 -0.8604
Testing data (only 40° slope) -0.0739 -0.0219 -0.3987
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