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摘要
土壤隨機場理論為一種得以描述土壤空間變異性之方法，因此逐漸獲得關注

且發展日益趨於成熟，於邊坡可靠度穩定性分析中，隨機場有限元素分析方法亦

得以有效地分析邊坡穩定性；然而，作為一個常搭配蒙地卡羅分析方法使用之工

具，其費時且可能需消耗大量運算資源。使用隨機有限元素分析方法決定邊坡破

壞機率時，人工智慧是個強大且有潛力於減少大量分析次數之工具；隨著科技與

電腦運算效能的發展，機器學習與深度學習方法已愈具效率且熱門。卷積神經網

路 (convolutional neural network, CNN)為人工智慧領域下的一個類別並得以應用於

大地工程問題之預測上，其優良之影像辨識能力是其一大優點，並已被發現其可

以一系列之隨機場邊坡作為輸入資料，以強度折減法進行之隨機有限元素分析結

果如安全係數或邊坡破壞面作為輸出標籤作模型訓練，並預測邊坡穩定性；然而，

不同卷積神經網路模型於預測未知資料集之表現差異與泛化能力仍尚未被測試和

檢驗。

因此，本研究使用不同卷積神經網路模型作坡角 30◦ 與坡角 50◦ 隨機場邊坡

圖片之訓練和學習，以評估含安全係數與邊坡破壞面兩部分之邊坡穩定性。第一

部分為安全係數預測任務，傳統的淺層卷積神經網路會被使用於預測坡角 40◦ 隨

機場邊坡之邊坡穩定性；與殘差神經網路 (residual neural network, ResNet)結合之

卷積神經網路亦被訓練且作預測結果改善能力、預測表現、以及泛化能力之比較；

此外，卷積神經網路模型之泛化能力將透過多種變異係數與關聯性長度之組合進

行評估。第二部分則使用另一個卷積神經網路對邊坡破壞面進行預測。

研究結果顯示，當訓練資料與測試資料兩資料集具有相同之隨機場來源時，

卷積神經網路模型對安全係數與邊坡破壞面兩結果皆具備優秀的預測能力。然而

當隨機場來源不同時，在預測安全係數任務中殘差神經網路相較傳統淺層卷積神
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經網路表現為佳；在預測邊坡破壞面任務中，卷積神經網路則只能對出現於訓練

資料中之已知坡角之同坡角邊坡作預測，其尚無法預測未知坡角之邊坡破壞面。

因此，卷積神經網路模型應用於未知坡角邊坡破壞面預測之能力仍有待更多研究

佐證。

關鍵字：隨機場、隨機有限元素、邊坡穩定性預測、卷積神經網路、殘差神經網
路
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Abstract

The random field theory of soil has gained attention and become awell-developed ap-

proach for characterizing soil spatial variability. The random finite element method, em-

ployed in slope reliability analysis, effectively evaluates slope failure probability. How-

ever, this method commonly incorporates Monte Carlo analysis, which may have draw-

backs due to its time-consuming process and the computational resources required.

Artificial intelligence is a powerful tool that can potentially eliminate the need for

performing numerous random finite element analyses to determine slope failure probabil-

ities. Machine learning and deep learning are becoming increasingly popular and more

efficient as technology advances and computer calculations. Convolutional neural net-

works (CNNs) are a class of artificial intelligence that can be used to assess geotechnical

engineering predictions. Among the advantages of CNN models is its ability to analyze

visual imagery. It has been found that a CNN model can be trained to predict slope stabil-

ity using a series of random fields of slopes as input data and random finite element results,

including the factor of safety or slip surface predictions, from strength reduction analyses

as output labels. However, the performance differences and generalization abilities of the

CNNs in predicting unknown datasets have not yet been examined.

v
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Therefore, this study uses CNN models to evaluate slope stability predictions by

learning from images of 30◦ and 50◦ random field slopes in two parts: the safety factor

and failure slip surface. Firstly, for predicting the safety factors, a conventional shallow

CNNmodel is employed to predict the slope stability of a 40◦ random field slope. The con-

ventional CNN model and this model incorporating residual neural network (ResNet) are

compared to see the improvement, performance, and generalization ability. Additionally,

the generalization ability of the CNN models is evaluated under various combinations

of the coefficient of variation and correlation length. Secondly, another CNN model is

trained to predict failure slip surfaces.

The results demonstrate that the CNNmodels exhibit excellent predictive capabilities

for the safety factor and slope failure slip predictions when the training and testing data

share the same random field source. However, when the random field sources differ, the

ResNet model outperforms the conventional shallow CNN for safety factor prediction.

Regarding predicting slope failure surfaces, the CNNmodel used in this study is currently

limited to making predictions only for known slope angles included in the training data;

it is not yet capable of predicting failure surfaces for slopes with unknown angles. As

a result, the CNN model’s ability to predict slope failure surfaces with unknown angles

remains to be determined.

Keywords: Random field, random finite element, slope stability prediction, convolu-

tional neural network, residual neural network
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第一章 緒論
1.1 研究背景與動機

在電腦運算效能日益提升的幫助下，近年來人們得以將人工智慧技術應用在

眾多問題中；例如，處理現實問題中大規模的數據並從中提取有價值的訊息，或

是藉由電腦的自動化技術提升效率以及精簡人力，抑或是透過過去問題的規律與

脈絡預測出隱藏的趨勢與模式等等，其應用已涵蓋人們生活所接觸的一切事項。

有鑑於人工智慧的發展已不可避免地成為各領域未來發展中不可或缺的一部份，

如何盡早了解其應用並與未來接軌便顯得愈發重要，尤其變數繁多、問題複雜的

土木工程領域更是適合引進人工智慧方法協助工程師解決問題。以結構工程為例，

人工智慧領域中的機器學習方法可用於評估結構物完工後的結構健康檢測問題

(Bao and Li, 2021)、預測混凝土柱破壞模式及承載力 (Feng et al., 2020)；交通工程

領域中則可協助預測旅行時間、車輛數目、車流量 (Wang et al., 2019)等等，其應

用族繁不及備載。

人工智慧於大地工程領域的研究亦相當地多，包含本研究欲探討的邊坡穩定

性分析。臺灣位於板塊擠壓處，地層間頻繁地作用塑造了層峰、峽谷等景色，在

能安全地一睹這些美景的前提下，邊坡穩定性分析便扮演相當重要的角色。雖然

工程師們得以透過傳統邊坡分析方法，如極限平衡法進行邊坡穩定性分析並計算

出安全係數以及邊坡滑動面，然而其計算通常建立在簡化地層組成的情形下，對

現地真實情況並無法精確地掌握；因此，使用隨機場搭配有限元素方法分析邊坡

穩定有其必要性。而機器學習方法是否能依據有限的邊坡資料預測其他型態邊坡

的破壞，以及模型的極限與泛用能力為何，亦為本研究亟欲探討之目標。
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1.2 研究方法

本研究主要分析方法流程採用前人 (Hsiao et al., 2022)的研究方法，最後分析

之成果為隨機場之安全係數與邊坡破壞面位置；其中，本研究之首要目標為使用

坡角 30◦ 與坡角 50◦ 隨機場邊坡之資料訓練卷積神經網路模型，再測試其是否能

準確預測坡角 40◦ 隨機場邊坡之安全係數與邊坡破壞面位置，研究流程總共可分

成三大部分。第一部分為以技術發展相當成熟的隨機場理論生成隨機場；為了模

擬複雜的土壤分布，本研究使用隨機場作為描述土壤空間變異性的工具，其應用

了統計的概念，將一複雜的問題以平均值、標準差、機率分布以及自相關性函數

等形式描繪出，相比以固定土壤參數當作整個邊坡的土壤性質，隨機場將更貼近

真實情形。由於後續之機器學習環節需使用到一定數量之訓練資料，因此第一部

分將會以隨機場理論生成足夠之土壤隨機場，並將其作為本研究邊坡之土層資料

來源。第二部分則是將隨機場各別匯入有限元軟體 PLAXIS中，並於完成建立邊

坡幾何及網格後，再以其內建之有限元素強度折減法分析出各個隨機場邊坡之安

全係數與剪應變增量值；此兩項結果皆會當作卷積神經網路訓練時之答案標籤，

作為訓練模型以及評估模型預測結果使用。其中，為了增進分析效率，本研究以

自動化之方式代替人工於 PLAXIS介面匯入隨機場資料及建立邊坡等重複工作，

不僅大幅減少不必要之時間花費，也能將人力發揮在需要思考及創造力之工項

中。第三部分則是將經過處理之隨機場邊坡圖片作為卷積神經網路模型之訓練資

料，並搭配 PLAXIS分析出之答案標籤訓練模型，以及進行模型調教。本研究最

後將分別以四個案例測試不同卷積神經網路模型對其對應之隨機場邊坡安全係數

與邊坡破壞面之預測成果，除了測試不同模型之學習能力，也瞭解機器學習方法

在邊坡穩定性分析上之本事與極限；結果與討論章節中亦會針對研究之結果探討

研究方法可改進之方向。

2
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1.3 論文架構

本研究主要分為五個章節；第一章為緒論，此章節主要介紹研究背景與動

機、研究方法，以及整篇論文之架構。第二章則為文獻回顧，藉由文獻回顧瞭解

隨機場邊坡之理論，比較隨機場於大地工程問題中之應用，並點出目前其較不足

之處；接著再針對機器學習於大地工程領域之應用進行介紹，最後說明可延伸之

方向。第三章為研究方法，在本章節中將針對本研究所使用之所有方法做詳細介

紹與描述。第四章為卷積神經網路模型參數調整與預測結果，本章節主要描述本

研究測試卷積神經網路之過程，並展示模型於各項案例中之預測成果。最後一個

章節則是結論與建議，本研究之成果與統整將於此章節中詳細敘述，並於結尾給

出後續研究進行方向之建議。

3
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第二章 文獻回顧
本章節為文獻回顧，內容分為三個大章節，2.1節中主要針對兩邊坡分析方法

進行討論，並決定出較適合隨機場使用之邊坡分析方法；2.2節則是隨機場之建

立方法與應用，這個小節中將以文獻回顧方式了解隨機場中部分參數之概念與應

用，並於最後點出目前方法之不足處；2.3節為機器學習方法與應用之探討，主要

對目前各種機器學習方法於大地工程中之應用作介紹，以及說明本研究欲突破及

創新之方向。

2.1 邊坡分析方法

極限平衡法與有限元素強度折減法常用於邊坡穩定分析，而兩方法間之優劣

亦常被比較。Cheng et al. (2007)使用一均質之二維邊坡案例比較極限平衡法與有

限元素強度折減法分析出之安全係數與邊坡破壞面差異，且共有 23組不同大小組

合之凝聚力與摩擦角被用來測試，其餘的參數如單位重、楊氏模數、泊松比則皆

為定值。經過分析後，研究顯示以有限元素強度折減法分析計算出之安全係數大

部分皆略大於極限平衡法所計算出之安全係數；且當凝聚力不大時 (2 kPa)，兩方

法求出之邊坡破壞面亦相當接近，相反地，當凝聚力較大時 (20 kPa)，兩方法求

出之邊坡破壞面便有一定差距。Liu et al. (2015)比較極限平衡法與有限元素強度

折減法之分析結果差異，在第一個案例中，學者考慮泊松比變化於均值黏土邊坡

的影響，在案例二中則考慮土壤膨脹角變化對均值砂土邊坡的影響；結果指出，

兩方法於兩案例分析出之安全係數皆相當接近。在案例一中若假設邊坡破壞為圓

弧形破壞，則以極限平衡法分析出之安全係數會略高於有限元素強度折減法之安

全係數；而在案例二中極限平衡法分析出之安全係數則皆略低於有限元素強度折

減法求出之安全係數。在第三個案例中，學者於共三層黏土層之黏土邊坡中再加
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入一軟弱層，並比較兩方法之結果差異。以極限平衡法假設非圓弧形破壞時，分

析之邊坡破壞面與使用有限元素強度折減法時計算出之邊坡破壞面亦相當類似；

假設圓弧形破壞時，結果則差異較大。因此，在較複雜的土層中，學者認為使用

有限元素強度折減法進行分析較合適，因其分析時可直接產出破壞面而不用對破

壞面形狀做假設；但相對地，有限元素強度折減法也較消耗運算資源與時間。

相對於使用極限平衡法分析邊坡穩定性，使用有限元素強度折減法有以下優

點；一為關鍵破壞面為強度折減過程中自動找出，而非自行假設破壞面再行計算

評估穩定性；二為不須對邊坡各切片進行剪力分布的假設；三為能應用在較多

較複雜的問題上，且可獲得較多的分析結果，如應力、應變、彎矩、孔隙水壓等

(Wei et al., 2009)。另外，上述案例皆於相對單純與簡單之土層進行分析；然而，

本研究使用之隨機場為複雜許多之土壤組成。Tabarroki et al. (2013)研究了極限平

衡法與有限元素強度折減法於具空間變異性之隨機場土壤中之分析成效，邊坡為

一不排水黏土邊坡，同時也考慮不同變異係數以及關聯性長度等組合。學者於結

論中指出極限平衡法在分析土層分布複雜的隨機場時會遭遇一些困難，例如隨機

場中之破壞面通常為非弧形破壞面，而這導致使用傳統切片法時有相當難度找到

最佳之邊坡破壞面，且在尋找最小安全係數過程中也可能遇到不平衡無法收斂之

情形；相較之下，有限元素強度折減法在分析上遇到之阻礙減少許多。

綜合以上，應用極限平衡法在簡單土層之分析時，與有限元素強度折減法分

析出之安全係數結果差異並不大；然而，當使用土壤隨機場時，使用極限平衡法

分析有諸多困難，直接使用有限元素強度折減法分析較容易，結果也較準確。因

此，本研究中亦以有限元素強度折減法作為邊坡分析工具，求得安全係數與邊坡

破壞發生時之各種土壤參數。
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2.2 以土壤空間變異性建立隨機場

土壤是一種具有空間變異性的天然材料，不同的土壤成分、地形環境、沉積

過程、水文特色及人為活動等原因，皆深深地影響了土壤的分布及其工程性質；

為了描述土壤的分布，學界發展出以統計為基礎而演變出的隨機場理論。

土壤隨機場為土壤在空間和時間上隨機分布的情況，隨機場理論的核心發展

為空間平均 (spatial average)概念 (Vanmarcke, 1977)。以測量雨量為例，水利專家

在解決工程問題時，考慮隱含平均概念的逐小時降雨量較瞬間的降雨量有意義許

多；考量一定空間大小下的降雨高度也較某特定點的降雨高度有用處。擴展到土

壤的分布亦同，相對於考量一定範圍中空間平均概念後的土壤，關注於微小時

間、空間尺度中土壤點與點之間的差異是相對較無意義的。因此，使用隨機場時

應納入空間及時間上的平均處理 (Vanmarcke, 1983)。

假設以一穩態隨機過程產生的一維連續參數 X(t)，其平均值為 µ、變異數

為 σ2、T 為平均時間；則經過移動平均處理 (moving average process)後的新函數

XT (t)可以式2.1表示 (Vanmarcke, 1983):

XT (t) =
1

T

∫ t+T/2

t−T/2

X(u)du (2.1)

圖2.1為原參數 X(t)與平均處理後 XT (t)的比較。考量移動平均處理後的平

均值 µ不變，變異數則會被折減，也因此連續參數 X(t)在時間 T 上的變異性減

少。這樣的概念可以拓展到土壤間的參數分布，以及多維度的空間上。空間平均

的範圍越大，越多的波動 (fluctuation)將會在平均的過程中被折減；折減後與折減

前的變異數比值稱為折減係數 (Vanmarcke, 1977)，可表示為式2.2:
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Γ2(∆z) =
V ar[u∆z]

V ar[u]
(2.2)

u∆z =
1

∆z

∫
∆z

u(z)dz (2.3)

u∆z 為某深度內，土壤參數空間平均後的結果；u則為某個點的土壤參數。

當 ∆z = 0時，空間平均的 u∆z 範圍僅為一個點，因此定義折減係數之值為 1，即

Γ2(0) = 1；而當 ∆z值非 0時，Γ函數則對變異數做出相對應的折減 (考慮式2.3)。

以上述觀念為基礎，接下來之章節將進行更多隨機場理論觀念的討論與文獻回

顧。

Figure 2.1: 隨機參數 X(t)於移動平均處理前後之比較

2.2.1 關聯性長度

關聯性長度 (scale of fluctuation, SOF; or correlation length)常用來描述土壤性

質在空間中的相似程度與關聯性，且也是表現空間平均效應特色的一個相當重要

的參數。關聯性長度越大，單位長度內的土壤間相關性愈高；反之亦然。在現實
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中研究土壤分布時，因為時間、金錢成本等考量，不大可能對整個研究區域的土

壤密集地做鑽探試驗以獲得完整土壤分布情形，然而有一些方法得以從現地 CPT

資料中估算關聯性長度。例如Spry et al. (1988)提出的經驗法則，透過切割與趨勢

線交叉的深度做加權平均，再乘以 0.8獲得估計的關聯性長度 (如圖2.2)。其他方

法像是動差估計法 (method of moments)、最大似然估計 (maximum likelihood)、貝

氏分析 (Bayesian analysis)則是近年來相當常用的方法之一；其中，動差估計法在

推估關聯性長度時的精度較低；最大似然估計方法推算的關聯性長度則對單參數

自相關性函數 (2.2.2)的選擇相當敏感，因此需確認何種自相關性函數較符合現地

土壤情況 (Cami et al., 2020)。另外，關聯性長度的大小也與鑽探間距息息相關，

鑽探間距應小於該土壤實際的關聯性長度以確保能以上述方法估計出較正確之關

聯性長度 (DeGroot and Baecher, 1993)。

Figure 2.2: 以經驗法則求取關聯性長度 (Brigid et al., 2020)

Phoon et al. (1995)根據過去文獻統整出部分土壤參數在水平向與垂直向上的

關聯性長度大小；不排水剪力強度在水平向的關聯性長度約落在數十公尺的區間

內，垂直向的關聯性長度則約落在個位數的區間內，兩方向上的關聯性長度比值

可相差十倍到百倍以上，而這也反映出自然沉積導致的現象。本研究中考慮現地
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土壤實際關聯性長度範圍做假設來產製隨機場，因此，後續將依據此研究結果假

設合理之關聯性長度大小與比值。

2.2.2 自相關性函數

自相關性函數 (auto-correlation function)為與空間中兩點絕對距離大小及關聯

性長度有關之函數，此函數的功用為描述土壤於空間中兩不同位置，其彼此間某

土壤性質的關聯性；因此，其值範圍介於 1 ∼ −1之間。自相關性函數有許多種，

常見如單指數型 (single exponential)、餘弦指數型 (cosine exponential)等等 (Ching

and Phoon, 2019)，其單參數的數學式可分別以下列方程式表示:

ρ(∆z) = exp
{
−2

(
|∆z|
δz

)}
(2.4)

ρ(∆z) = exp
{
−|∆z|

δz

}
cos
(
|∆z|
δz

)
(2.5)

式2.4為單指數型的自相關性函數，式2.5為餘弦型的自相關性函數；∆z 為任

兩點在 z 方向上彼此間的絕對距離，δz 為 z 方向上的關聯性長度。關聯性長度的

大小會影響自相關性函數的分布，其值可被定義為自相關性函數與橫軸間所夾的

面積，意即:

δ =

∫ ∞

−∞
ρ(∆z)d(∆z) (2.6)

關聯性長度愈大則自相關性函數曲線下之面積越大，且代表相同兩點距離

下的土壤性質愈具相關性；因此從圖2.3中可看出，在一樣的 ∆z 距離情況下，

SOF=1時的關聯性 ρ (∆z)會比 SOF=0.5時的關聯性還大。
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Figure 2.3: 不同關聯性長度下之單指數自相關性函數模型

2.2.3 Whittle-Matérn模型

Whittle-Matérn模型是一個自相關性函數模型，它包含了兩個重要的參數，分

別是平滑參數 (smoothness parameter)及關聯性長度。Ching and Phoon (2019)指出

在許多可靠度問題中，關聯性長度常被認為是最重要的參數；然而這取決於該問

題的極限狀態函數 (limit-state function)是否完全地由空間平均掌握，在部分可靠

度問題中，自相關性函數的選擇會對分析結果產生重大影響。圖2.4顯示以同樣標

準差與關聯性長度大小下，但以不同單參數自相關性函數生成的樣本路徑 (sample

path)；其中橫軸 z為沿著深度方向的位置，ϵ(z)為與位置 z有關之土壤參數殘差

值 (depth-dependent spatially variable residual, 與 2.2.5小節提及之 w(z)函數相同)，

且圖中明顯可發現有些自相關性函數生成的樣本路徑相當粗糙，有些則較平滑。

Ching and Phoon (2019)證明了粗糙程度的不同在部分大地工程問題中確實會影響

破壞機率的大小，亦即自相關性函數的選用會影響分析結果；因此，應將能控制

自相關性函數粗糙程度的平滑參數也視為一個與關聯性長度一樣重要的參數。

相對於只考慮關聯性長度單個參數的單參數自相關性函數 (如式2.4、式2.5)，

Whittle-Matérn模型同時考慮了平滑參數與關聯性長度，因此可透過調整平滑參

數來改變粗糙程度。此Whittle-Matérn自相關性函數模型式子如式2.7 (Ching and
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Phoon, 2019):

ρ(∆z) =
21−ν

Γ(ν)
×

(√
2ν × |∆z|

s

)ν

Kν

(√
2ν × |∆z|

s

)
(2.7)

s =
δ

c(ν)
(2.8)

c(ν) =

√
2π × Γ(ν + 0.5)√

ν × Γ(ν)
(2.9)

2.7式中 ν 為平滑係數；s為比例參數 (scale parameter)，其為關聯性長度 δ 與

c(ν)函數 (式2.8)的比值；Γ則為伽瑪函數 (gamma function)；Kν 為修正的第二類

Bessel函數 (modified Bessel function of the second kind)。Ching and Phoon (2019)說

明，在單參數自相關性函數如式2.4中，單指數模型的比例因子 (scale) s = δ/2，

此時 s已經被固定為一個定值；然而在Whittle-Matérn模型中，δ/s為一個可由平

滑參數 ν 控制的非常數值 (式2.9)。當平滑參數接近 0時，自相關函數的衰減速度

快，樣本路徑越粗糙；反之，當平滑參數接近無窮大時，自相關函數樣本路徑則

趨於平滑；也就是說，平滑參數可以調整自相關性函數的形狀和樣本路徑的特

性。例如，ν = 0.5時，Whittle-Matérn模型對應的自相關性函數為單指數型自相

關性函數 (即2.4)；ν = ∞時，則對應到高斯型自相關性函數 (Gaussian or squared

exponential) (Cami et al., 2020)。自相關性函數的選用對於大地問題的分析相當重

要；然而，目前的困難點在於如何根據現地調查資料中的土壤空間分布決定出

適合的平滑參數，以及如何同時決定出適當的關聯性長度與平滑參數 (Ching and

Phoon, 2019)。

前述的討論主要在探討獲得現地土層資料時，土壤間關聯性的模擬方法以及

遇到的難題；本研究中建立之邊坡隨機場為虛擬隨機場，因此Whittle-Matérn模

12
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Figure 2.4: 不同自相關性函數下的零均值隨機場樣本路徑 (Ching and Phoon, 2019)

型僅被使用來幫助建立土壤間的關聯性，現地問題中可能遇到的挑戰故暫不予考

慮。

2.2.4 機率分布

機率分布是統計學中常用於描述隨機變量分布情況的數學模型，常見的機率

分布相當多種如常態 (高斯)分布、對數分布、二項分布或泊松分布等等。在建立

隨機場時，自相關性函數功用為建立關聯性，欲產製隨機場則需要隨機樣本；因

此過程中須採用適當的機率分布，而對數常態分布便適合用來模擬土壤的分布情

形。對數常態分布有幾個特色，一為偏斜性 (skewed distribution)，偏斜使此分布

中的值較多集中在數值較低處，而土壤性質如摩擦角、含水量等參數亦符合這項

特色。第二則是對數分布的特色使得機率分布中的值皆大於 0，對於土壤而言其

參數值亦皆為非負值的數，因此也相當適合。接著是對數分布為連續的分布，土

壤分布情形亦為如此，且可以平均值與標準差描述其行為；綜合以上原因，本研
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究邊坡隨機場之分布將以對數常態分布模擬土壤機率分布行為。

任意隨機變數 X 之對數若服從常態分布，則稱此隨機變數呈現對數常態分

布，以 X ∼ LN(µ, δ)表示；其中 µ為對數平均值，δ為對數變異係數。假設 Z 為

標準常態分布，也就是 Z 為平均值為 1，標準差為 0之機率分布；則對數常態分

布 X 可被定義為：

X = eµ+σZ (2.10)

m = ln

(
µ

1 + δ2

)
(2.11)

s =
√
ln (1 + δ2) (2.12)

其中，式2.11、式2.12中的 m、s分別為從對數平均值 µ以及對數變異係數 δ

轉換成高斯分布後的平均值與標準差。

2.2.5 隨機場

Phoon and Kulhawy (1999)指出，大地工程中土壤的變異性相當複雜且充滿

著不確定性，其中可概括成三種不確定性，其分別為土壤固有的變異性 (inherent

soil variability)、測量及取樣導致之誤差，以及現地資料轉至分析模型時之不確定

性。本研究中在產製隨機場時，主要重點在於模擬土壤固有變異性。Phoon and

Kulhawy (1999)說明，土壤空間的變異性可以兩個分量組合而成，分別為平滑

變化的趨勢函數 (trend function, t(z))，以及一個波動的分量 (deviation from trend,

w(z))，如圖2.5，且可以下式 (2.13)表示:

14

http://dx.doi.org/10.6342/NTU202301805


doi:10.6342/NTU202301805

ξ(z) = t(z) + w(z) (2.13)

ξ 為土壤性質，z 則為深度；其中，w(z)代表的波動分量即為土壤固有的變

異性，也就是建立隨機場時欲模擬的部分。

Figure 2.5: 土壤固有變異性 (Phoon and Kulhawy, 1999)

為了降低複雜度，模擬土壤固有變異性時通常假設其為同質 (homogeneous)

的廣義穩態隨機場 (wide-sense stationary random field)。因此，w(z)函數會建立在

以下兩個統計假設：第一為 w(z)的平均值與變異數在整個隨機場中不隨著距離

或方向而改變；第二則是土壤間的自相關性函數只隨兩點間的絕對距離改變而改

變，而與兩點的所在絕對位置沒有關聯。換句話說，即是描述土壤間關聯性的自

相關性函數其唯一變數為兩點間的絕對距離 (如式2.4、式2.5或式2.7中的 ρ(∆z)中

所示，自相關性函數 ρ(∆z)為只與絕對距離 |∆z|有關之函數)。另外，由於 w(z)

為沿著趨勢 (trend)波動的分量，因此通常假設 w(z)的平均值為 0。根據以上假

設，可以計算 w(z)的標準差與變異係數 (COV)，下式改寫自 Phoon and Kulhawy

(1999)：
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σ =

√√√√ 1

n− 1

n∑
i=1

[w(zi)]
2 (2.14)

COV =
σ

µ
(2.15)

σ為 w(z)的標準差，且因假設 w(z)平均值為 0，故式2.14中之平方項直接以

w(zi)表示；COV 為變異係數，其透過除以整個土壤空間的平均值來衡量數據的

相對變異程度，為模擬隨機場時更常拿來使用的參數。

模擬 w(z)的方法有許多種，例如局部平均細分法 (local average subdivision,

Fenton and Vanmarcke (1990))、傅立葉級數法 (Jha and Ching, 2013)、K-L 展開

法 (Karhunen-Loeve expansion, Phoon et al. (2005)) 以及 Cholesky 分解法 (Colesky

decomposition technique, Suchomel and Masin (2010))等等；而 Cholesky分解在使用

上較簡單且當進行矩陣分解時效率較高，因此本研究中採取 Cholesky分解作為模

擬 w(z)的方法。需注意的是，當隨機場切很密集、接近連續分布時，過大的矩陣

對於 Cholesky分解會造成很大負擔且相當花時間，此時使用傅立葉級數法會較適

合 (Ching and Phoon, 2019)，且傅立葉級數法的另一個優點則是能生成大小不同之

隨機場方格，相對於 Cholesky方法較不侷限。

2.2.6 應用

在大地工程之實務中，由於隨機場牽涉隨機概念，因此其應用多以可靠度分

析進行，即以蒙地卡羅方法分析大量隨機案例，再統計其破壞機率計算出該工程

之可靠度。Haldar and Babu (2008)以不排水黏土隨機場模擬側向加載樁之容許承

載力，其中不排水剪力強度 Su為主要之隨機參數，其他參數如變異係數、關聯性

長度等則會分別以不同大小組合建立不同隨機場，用來測試樁之反應。研究中共

進行 100次的蒙地卡羅試驗來計算樁之破壞機率，研究發現樁可承受之容許力與
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彎矩與變異係數與深度方向的關聯性長度大小息息相關。當變異係數越大且關聯

性長度越小時，樁壁附近之土壤應變大小會愈大，也代表樁之容許承載力愈低；

而當逐漸加大關聯性長度時，樁之容許承載力則會逐漸提高。

Wang et al. (2020) 研究三種多層的排水與不排水邊坡，並評估定值性

(deterministic)參數的邊坡與隨機場邊坡之穩定性，蒙地卡羅法也將被用在計算隨

機場邊坡之安全係數。此三種案例之邊坡分析皆以有限元素強度折減法進行，使

用之組成律為 Mohr-Coulomb模型，土壤強度參數變數包含凝聚力與摩擦角，且

隨機之土壤參數皆是以對數常態分佈進行模擬。計算隨機場邊坡安全係數時，學

者共使用了 1000組資料於蒙地卡羅分析中；其中，在排水邊坡的案例中，隨機場

邊坡之安全係數有 65%至 75%皆小於以定值邊坡計算出之安全係數；在不排水

邊坡之案例中，隨機場邊坡之安全係數有高達 92.6%皆小於以定值邊坡分析出之

安全係數。這結果指出以單一值的土壤參數代表整個邊坡，容易高估其邊坡穩定

性，以隨機場模擬會較適合。

其他隨機場於邊坡之應用相當多，Tabarroki et al. (2013)研究考慮不同變異係

數以及關聯性長度等組合，且邊坡為不排水黏土邊坡時，極限平衡法與有限元素

強度折減法於具空間變異性之隨機場土壤中之安全係數比較。Zhou et al. (2019)使

用隨機場分析邊坡發生坡址破壞時之穩定性，並且研究關聯性長度與破壞機率之

關係；學者最後於結果指出，關聯性長度大小對於邊坡破壞機率有著巨大的影

響。Jha and Ching (2013)對 34個實際邊坡案例以隨機場建模進行可靠度分析，結

論指出垂直關聯性長度與破壞弧長度之比值對隨機有限元素分析方法之結果有相

當的影響。Liu et al. (2018)將隨機場應用於三維不排水隨機場邊坡之可靠度分析，

並發現以某數值為平均值建立之隨機場，其邊坡安全係數幾乎皆不大於以該數

值建立之均值邊坡安全係數，與Wang et al. (2020)之結論相同。Ching and Phoon

(2013)指出於有限元軟體分析隨機場時因連續之隨機場必須被離散化，而切割之

網格大小則會對分析之準確度造成相當影響，尤其是線平均效應不強時。Huang
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et al. (2017a)提出一種結合子集模擬 (subset simulation)與有限元分析之方法來取

代蒙地卡羅試驗，且不需計算安全係數即可獲得與使用一般子集模擬進行可靠度

分析之相同準確率，也大幅地減少分析時間。岩石邊坡亦可使用隨機場模擬及進

行可靠度分析，Huang et al. (2017b)以數個例子之數學推導證明岩坡之摩擦角與凝

聚力可被視為隨機場，其沿著不連續面之凝聚力與摩擦係數兩參數在被視為隨機

參數時，可同樣地以平均值、變異係數、關聯性長度等參數描述其空間關聯性。

隨機場因其能模擬較複雜土層的特色，以及相對定值性分析準確之結果，相

當多的文獻皆以其為底，延伸至各個大地工程領域中；換句話說，原先假設土層

為定值之各種案例如深開挖、淺基礎、邊坡等等，皆可使用隨機場重新進行模擬

以及探討各項參數間之關係。因此，其應用範圍可說是無邊無際。雖然從目前之

文獻回顧中能得知，變異係數與關聯性長度之大小皆會顯著地影響破壞的機率；

然而，以目前的技術而言，從現地獲得精確的土壤變異係數以及關聯性長度仍有

一定難度，儘管其大小足以影響整個大地問題之破壞機率。另外，以蒙地卡羅法

進行可靠度分析也有著相當費時、耗費電腦資源的問題；雖然上述提及之樁分析

只使用 100次蒙地卡羅試驗 (Wang et al., 2020)，然而若有一大地問題其破壞機率

相當小，則欲獲得精確之破壞機率需進行上千甚至上萬次蒙地卡羅試驗 (Li et al.,

2016; Jiang and Huang, 2016)。因此，為了解決大量蒙地卡羅試驗之資源浪費問題，

除了使用 Huang et al. (2017a)提出之想法外，本研究中欲使用機器學習之方法，

測試機器學習模型是否能以少量之樣本數預測出精確之結果；以下章節將接續機

器學習之介紹與應用。

2.3 機器學習

近年來人工智慧（artificial intelligence, AI）正以飛快地速度發展，這是一種

透過電腦等技術來達成人類智慧的一種技術，主要包括感知、理解、學習、推

理、創造等多個方面。機器學習（machine learning, ML）則是 AI的一個子領域，
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藉由對大量的數據進行學習，使機器模型能夠從中提取特徵、發現規律，最後再

進行預測和決策。機器學習主要有監督式學習、非監督式學習、半監督式學習和

強化學習等不同的方法；以下做簡單介紹：

• 監督式學習：訓練機器模型進行學習時，若給予的資料帶有答案標籤

(label)，則稱此為監督式學習。因此，監督式學習應用在已知問題答案，以

及標籤數據容易獲得且準確時，常用於圖像辨識、用戶行為分析等。

• 非監督式學習：與監督式學習相反，非監督式學習的訓練資料並不具備任何

標籤。因此，機器模型主要依據圖片的相似度做分類及處理，使用時機包含

人臉生成、異常訊號處理等。

• 半監督式學習：半監督式學習有部分標籤資料，但通常另有另一部分大量未

標記的數據。此種學習方法透過大量未標籤的數據來增強監督式學習的效

果，利用標記數據和未標記數據來提高預測精度。使用時機通常為標籤數據

較難以大量獲得，或不足以構建有效模型的情況；此時可以利用未標記數據

進行學習，提高模型的預測能力。

• 強化學習：強化學習主透過試錯學習來訓練機器模型，並在特定環境下採取

行動，以達到最大化預期的獎勵。在強化學習中，機器模型不斷地在一個有

明確目標的環境中進行操作，每當機器模型採取一個行動，環境就會給予反

饋（獎勵或懲罰）來指導機器調整其策略，從而使得未來的行動更加符合最

大化獎勵的目標。通常，在強化學習中，機器模型需要在學習過程中探索新

的策略，以求得發現更好的方式來達到目標。強化學習的應用非常廣泛，著

名的使用例子為 AlphaGO。

深度學習 (deep learning, DL)則是機器學習的子領域，其使用人工神經網路使

模型能夠根據非結構化、標記或未標記的資料來學習和做出決策。透過人工神經

網路的疊加，模型得以學習到更細緻的特徵，理解更複雜的邏輯和關聯性，進而
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達成傳統機器學習模型較難達成的任務。深度學習相較於傳統的機器學習方法

有幾個優勢，包含能夠處理大量複雜的數據、有自適應學習能力、能處理較高

維的數據、能夠處理時間序列問題等等。常用的深度學習模型有人工神經網路

(ANN)、卷積神經網路 (CNN)、遞迴神經網路 (RNN)，或生成對抗網路 (GAN)等

模型，不同模型適用於不同預測任務上。以下做簡短介紹：

• 人工神經網路 (artificial neural network, ANN)：人工神經網路是一種模仿生

物神經網路結構和功能的模型，由多個相互連接的神經元組成，其主要優勢

為可以處理大量複雜的非線性問題。實際應用如圖像識別、自然語言處理、

金融預測等等。

• 卷積神經網路 (convolutional neural network, CNN)：卷積神經網路是以人工

神經網路為底而發展出的神經網路，其特別擅長於處理具有空間特徵的資

料，例如圖像辨識、圖像分割、圖像檢測，甚至語音識別等等。

• 遞迴神經網路 (recurrent neural network, RNN)：遞迴神經網路擅長處理序列

數據，它具有反饋循環的結構，可以在處理序列數據時保留先前處理的訊

息，因此非常適合處理具有時序性的數據。例如自然語言、與時間序列相

關的數據等等。長短期記憶網路 (long short-term memory, LSTM)、閘門循環

單元 (Gated recurrent unit, GRU)則為根據循環神經網路的架構進行改良的版

本，兩改良版本引入了閘門門控機制，並能夠更好地捕捉長序列數據中的時

間關係。

• 生成對抗網路 (generative adversarial network, GAN)：生成對抗網路由兩個部

分組成，分別為鑑別網路（discriminating network）與生成網路（generative

network）。生成網路會隨機生成一個假樣本，鑑別網路則試圖區分這個樣本

是真實還是假的；隨著生成網路不斷的學習，模型將逐漸生成更加逼真的樣

本，直到生成網路可以產生足夠真實的樣本。常用領域包含影像生成、音樂

生成、圖像修復等等。
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不論是何種機器學習模型或學習方式，訓練資料的數量及品質對於模型的

學習和預測結果至關重要。如果資料有錯誤、不完整或不準確，則模型的學習

和預測結果也會大打折扣；同時，資料來源也應越多元、越多樣化為佳，使機

器更能變通地學習更多特徵和模式，以提高模型所謂的泛化能力或通用能力

(generalization ability)。因此，在機器學習任務中，應該盡量使用完整、具有代表

性的資料集，並且對資料進行必要的前處理和清理，以提高模型的準確性和可靠

性。本研究是以 CNN作為邊坡破壞判斷的訓練模型，因此後續將對 CNN做專門

的探討，其餘深度學習模型則在下一章節簡單做其在大地工程應用之介紹。

2.3.1 常見深度學習方法於大地工程之應用

深度學習於大地工程中有相當多的應用，早自 1990年代即有學者開始進行相

關研究，以下依據深度網路模型類型進行文獻回顧。

人工神經網路 (ANN)

Shahin et al. (2002)使用 ANN模型預測非凝聚力土壤的淺基礎沉陷量，學者

除了研究模型內各參數對於預測成果的影響，也比較 ANN與傳統方法 (Meyerhof,

1965; Schmertmann et al., 1978; Schultze and Sherif, 1973)的表現，及評估 ANN對於

傳統方法的優點及限制。學者使用現地量測共 189組的沉陷量資料作為比對答案，

相關可能影響沉陷量的參數如基礎寬度、基礎淨乘載壓力、SPT-N值、基礎長寬

比等等則作為訓練資料，輸入只含一層隱藏層 (hidden layer)的模型中，並以平均

絕對誤差 (MAE)評估 ANN模型和上述三種傳統方法計算出的沉陷量數值。結果

顯示，Schmertmann et al. (1978)方法在大沉陷量時傾向過度放大計算出的沉陷量

值；Schultze and Sherif (1973)方法則在大沉陷量時嚴重低估計算結果；Meyerhof

(1965)方法則同時包含前兩種方法的缺點，容易在產生大沉陷量的案例中，嚴重

高估或低估計算結果；ANN方法則具有相當不錯的預測能力，如圖2.6。學者指
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出一旦模型訓練完成，模型將具備快速計算出答案的能力，且節省人工查表等步

驟；然而，由於模型缺乏背後的大地工程理論，在解釋問題解法時將具有相當限

制。但總體而言，在預測非凝聚力土壤的淺基礎沉陷量時，ANN模型仍是相當強

大的工具。

Figure 2.6: ANN與傳統方法之測量與預測沉陷量比較 (Shahin et al., 2002)

Çelik and Tan (2005)使用 ANN模型預測黏土的預壓密應力大小。學者從文

獻資料及實驗室壓密實驗中共蒐集了 76組資料，用來訓練的參數包括不同壓

密階段的孔隙比、不同壓密階段施加的壓力、壓縮指數 (Cc)及再壓縮指數 (Cr)，

輸出參數則為預壓密應力。傳統決定預壓密應力的方法相當多種，學者比較

了 ANN與一些常用方法所求出的預壓密應力值 (Casagrande, 1936; Tavenas et al.,

1979; Butterfield, 1979)，結果同樣指出 ANN模型的學習與預測能力相當地好；且

根據敏感度分析 (sensitivity analysis)，初始階段的孔隙比是影響結果最深的參數。

在邊坡問題中，Kaunda et al. (2010)運用現地邊坡安裝之水壓計、傾斜儀等儀

器測得現地水位高程、地表旋轉角度、地表高程變化等參數，再以 ANN模型進
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行學習與預測邊坡滑動面，並比較以極限平衡法求得之邊坡滑動面之差異。結果

顯示，ANN模型較能捕捉到不規則之破壞面，而極限平衡法僅能求得較簡單之圓

弧型破壞面；因此，ANN模型較傳統極限平衡法在計算邊坡滑動面位置問題中有

更高的精度，如圖2.7。除了透過現地測量資料預測邊坡破壞面，學者另外也嘗試

結合大氣降雨資料及地下水位資料，預測數天後之邊坡位移量；然而，在此考量

時間序列的問題上，ANN模型預測能力並不強。學者認為失敗原因可能為單由降

雨資料及地下水位資料兩參數，其實並無法判斷考慮時間後的邊坡位移量，需要

引入更多參數。作者認為這也可能是因為 ANN模型在預測時間相關的序列問題

上，能力上有稍嫌不足，因此使用 RNN架構的模型在表現上可能會較好些。不

論原因為何，這結果提醒著機器學習模型有其極限，也應針對問題搭配適合的模

型，而非所向無敵。

Figure 2.7: (a) ANN模型預測結果 (b)極限平衡法計算結果
(Kaunda et al., 2010)

ANN 於邊坡問題中仍有相當多之應用。Gao et al. (2020) 使用變形版本的

ICA-ANN與傳統 ANN作為模型，並於有限元數值軟體 OptumG2中對兩層黏土

邊坡以極限平衡法計算安全係數；模型之輸入為邊坡之高度因子、兩層黏土強
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度之比值及邊坡坡角角度，輸出則為無因次之穩定係數 N2c，而預測結果顯示

ICA-ANN在表現上皆較傳統 ANN來的更佳。Ray et al. (2020)研究喜馬拉雅山脈

岩石邊坡風化後之殘餘土壤安全係數，作為訓練資料之參數包含現地邊坡土壤之

楊氏模數、摩擦角、邊坡高度等等，並以傳統 ANN模型預測各邊坡之安全係數，

最後與數值結果做比較後顯示傳統 ANN模型有相當好的預測能力。Rukhaiyar

et al. (2018)以 PSO-ANN之混合模型取代傳統 ANN，並將其用在預測天然邊坡

之安全係數上；Moayedi et al. (2019)也同樣使用 PSO-ANN模型代替傳統 ANN梯

度，並將其應用在預測位於伊朗一邊坡之崩塌敏感值 (LSV)，輸入模型之訓練參

數為邊坡之各種性質如坡向、高程、與斷層的距離、邊坡坡度等等，為一天然邊

坡之崩塌敏感性預測與分析，且預測結果皆顯示複合式之 PSO-ANN模型成效較

佳。Kalantar et al. (2018)以傳統 ANN及其他兩種模型 (SVM、LR)對邊坡崩塌敏

感性做預測，其模型訓練參數亦包含邊坡之各種性質如坡向等等，預測結果亦為

崩塌敏感性預測，然而，傳統 ANN之預測成效並不如其他兩種模型來的好。Safa

et al. (2020)使用 ANN和模糊邏輯 (fuzzy logic)結合的神經模糊網路 (neuro-fuzzy

model)，應用於一經過綠化保護之邊坡，其植披之強度主要以植物根之張力強度

計算，並於數值軟體中以極限平衡法進行安全係數預測，此混合型神經網路亦較

同案例中之傳統 ANN模型成效良好。

與隨機場邊坡和可靠度分析相關之案例相對之下較少，Chok et al. (2016)使用

傳統 ANN方法取代邊坡可靠度分析中常使用之蒙地卡羅方法，輸入模型之參數

包含邊坡坡角角度、土壤變異係數、高度因子等等，預測結果則為異質性凝聚力

邊坡之破壞機率。Cho (2009)使用 ANN計算邊坡之安全係數與極限狀態函數，並

搭配 FORM與 SORM兩可靠度分析方法與蒙地卡羅試驗計算邊坡破壞機率。Shu

and Gong (2016)亦使用以 ANN為底的反應曲面方法 (response surface method)預

測 c-ϕ邊坡之破壞機率，相比上篇文獻，學者在這個研究中輸入更多參數如坡角、

凝聚力變異係數等作為 ANN之訓練資料，結果同樣顯示 ANN有能力預測出精確

之邊坡破壞機率。
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綜合以上各篇文獻，ANN於大部分邊坡問題中仍有相當不錯的預測能力；其

輸入之參數型態多為邊坡土壤強度參數、邊坡幾何參數，預測結果則以安全係數

為大宗。然而，ANN雖然學習能力不差，其於邊坡問題中之應用仍較侷限於安全

係數預測問題及部分分類問題 (如崩塌敏感性預測)，邊坡破壞面預測則相當少見

且也僅止於針對現地測量儀器測量出之數據做預測；另外，ANN對與序列相關之

問題學習能力也較差。因此，是否使用 ANN作為深度學習模型前應評估任務之

困難度，若問題較複雜或是訓練資料輸入與測試資料輸出方式並不適用，則 ANN

將不會是首選。

遞迴神經網路 (RNN)

RNN擅長處理有先後順序之序列問題，然而最原始的 RNN因存在一些梯度

消失或爆炸等影響模型學習效能的問題，因此改進後的 LSTM或 GRU模型為近

年來教熱門且穩定的使用選項。在土壤力學的問題中，Zhang et al. (2021a)應用

LSTM於土壤應力應變關係的模擬。常見模擬土壤行為的組成律模型相當多，如

Mohr coulomb模型、Cam-clay模型等；然而，這些組成律模型通常只適用於特定

種類和組成的土壤，因此學者欲使用深度學習方法求得複雜的土壤應力應變關

係。前饋神經網路 (FFNN)、回饋神經網路 (FBNN，與 RNN概念相同)及 LSTM

被應用在這個分析中，且依據資料來源可分成數值測試組與實驗測試組兩部分。

在數值測試組中，主要是以 PLAXIS軟體作排水三軸壓縮分析取得資料來源，透

過分配不同圍壓給 25種不同種類的土壤，再以 PLAXIS分析來生成 127組應力

應變樣本，且每組樣本內各有 30至 60加載步驟 (steps)；其中，100組將作為訓

練資料來源，27組則作為測試資料。輸入的參數包含則壓縮指數 (λ)、孔隙比、

圍壓及軸向應變；輸出參數為軸向壓力。在實驗測試組中，資料來源主要為其他

文獻中針對不同緊密程度之砂土作實驗而取得之應力應變關係。最後結果指出，

LSTM模型相較於前饋神經網路 (只根據當前的輸入值決定輸出值)或回饋神經網

路 (有考慮過去輸出特徵，但記憶力較 LSTM差)兩模型，學習表現相當優良；以
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實驗測試組為資料來源而訓練的 LSTM模型預測結果之判定係數 (R2)甚至高達

0.99。這結果也呈現出因為應力應變關係與土壤過去應力歷時有關，因此使用前

饋概念的傳統 ANN模型在這類問題上的學習效率較差，而使用進階版回饋神經

網路概念的 LSTM在表現上也較應用簡單版回饋神經網路的 RNN表現為佳。另

外，不論是何種模型，在圍壓低於 200kPa時的偏差 (bias)皆相當大；因此在低圍

壓狀態時，使用上述模型預測應力應變關係的可靠度皆會降低。

隧道鑽掘工程同樣可以應用深度學習方法預測重要參數。Gao et al. (2021)指

出，隧道鑽掘機 (TBM)已經被廣泛地運用在地下及隨道工程，而 TBM鑽掘速率

(peneration rate, PR)為反映當下地質情形與協助工程師調整其他參數的重要指標；

因此，學者以 LSTM為基底，再在其之後加上全連接層 (fully connected layer)建

立起整體架構，進行 TBM鑽掘速率的預測。模型訓練資料來源包括位於杭州的

隧道工程中，TBM實際鑽掘過程獲得的三個參數，其分別為推進力 (thrust froce)、

切削轉盤扭矩 (cutterhead torque)及切削轉盤功率 (cutterhead power)，此三種參數

將被直接作為 LSTM的輸入值；岩石的種類也是影響 TBM鑽掘速率的重要參數

之一，然而，岩石強度在鑽掘過程的數公尺內並無太大差異，因而不應被視為與

時間相關的參數。因此，岩石種類參數將在全連接層中才被加入神經網路模型

中做學習，並結合前一步驟的 LSTM輸出結果，做最後鑽掘速率的預測。另外，

共 2570筆開挖週期 (excavation cycle)的 TBM開挖參數及 127組點荷載實驗 (point

loading test)求得之岩石參數將以 9:1的比例分別做為訓練集與測試集。分析結果

指出，LSTM模型預測出之鑽掘速率均方根誤差 (RMSE)與平均絕對誤差 (MAE)

分別為 4.733與 3.204，在實務鑽掘任務中落在可接受的範圍中；因此，在已知隧

道鑽掘機前進時的三種參數及不同種類岩石性質的情形下，此模型預測出之鑽掘

速率是可以提供鑽掘過程做為參考的。另外，學者另以同訓練資料讓 RNN模型

與 ARIMAX模型做學習 (兩模型皆使用傳統的時間序列預測方法)，結果同樣顯示

LSTM模型的學習與預測能力效果最佳 (如圖2.8)。
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(a) LSTM模型預測結果

(b) RNN模型預測結果

(c) ARIMAX模型預測結果

Figure 2.8: 三種模型之鑽掘速率預測結果 (Gao et al., 2021)
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與時間序列相關的大地工程問題很多，尤其是因降雨所致的土壤孔隙水壓大

小變化問題，其對邊坡的穩定性有直接的影響。針對降雨與土壤孔隙水壓變化

的關聯性與預測，Wei et al. (2021)比較了三種 RNN的變體，包括標準的 RNN、

LSTM、GRU以及較傳統的 ANN四種神經網路的學習成效；其中，孔隙水壓的

資料來源為位於香港國際機場附近一布設大量水壓計之天然邊坡，而判定係數

(R2)和均方根誤差 (RMSE)則被用來評估模型的成效好壞。在這個案例中，整個

降雨觀測歷時約 3個月，前 75%時間的水壓與雨量觀測值將用來作為訓練資料，

後 25%時間的水壓與雨量觀測值則做為測試資料。結果顯示，ANN模型根據降

雨歷時資料所預測的土壤孔隙水壓變化結果雖可接受但不稱不上精確，為四個模

型中最差；標準 RNN模型預測之結果相當不錯，但會受到土壤孔隙水壓變化對降

雨的時間延遲影響預測準確度；LSTM及 GRU則做出較標準 RNN更精確且強大

的預測，且 GRU因整體架構較 LSTM更為精簡，整體模型訓練時間可較 LSTM

少約 30%至 40%。以 GRU模型在測試集之預測結果為例 (圖2.9)，GRU模型對

於沒看過的降雨資料所預測之土壤孔隙水壓變化非常準確，判定係數 (R2)高達

0.998；因此，在土壤組成無太大變化的情形下，如何應用訓練完成之 LSTM或

GRU(效率較高)模型在預防邊坡破壞問題上是相當值得探討的議題，或甚至可以

應用至其他大地問題中。

Figure 2.9: GRU模型於測試集之土壤孔隙水壓測量值與預測值比較
(Wei et al., 2021)
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2.3.2 卷積神經網路 (Convolutional neural network, CNN)

CNN被廣泛應用在圖像辨識等具有空間特徵之資料處理，卷積的概念雖於

1980年代便已被提出，但直到 1998年在一成功辨識手寫數字的研究被發表後

(Lecun et al., 1998)才逐漸發揚光大。Lecun et al. (1998)提出一個名為 LeNet-5的

卷積神經網路，整個模型的架構包含卷積層、池化層和全連接層；藉由卷積層從

圖片像素提去特徵、池化層提取重要特徵並減少維度和複雜度，再經由全連接層

得出最後預測之結果。相較於當時其他的技術，此模型架構以相當優秀的效率完

成辨識手寫數字的任務，也因此奠定了 CNN在深度學習中舉足輕重的地位。本篇

研究選用 CNN進行深度學習，其概念、架構與方法將於3.4.1節中做基本介紹。

2.3.2.1 應用

CNN在大地工程的應用相當多，其圖像辨識能力強的特色更是常應用在各種

邊坡崩塌判識、岩石種類辨認、隧道壁裂縫偵測等分類型任務用途；迴歸型任務

相對分類型任務的研究則較少，其應用包含邊坡安全係數預測、依岩石圖片預測

地震波波速等 (Zhang et al., 2021b)，本篇研究亦為迴歸之預測。以 CNN概念為底

而衍伸的神經網路相當多元，接下來進行相關文獻回顧，概略地了解其於大地工

程中之應用。

結合隨機場理論與有限元分析的數值方法在考量土壤空間變異性的邊坡可

靠度問題上已相當強大，然而其缺點在於計算過程中費時且耗電腦資源；因此，

Wang and Goh (2021)引入 CNN作為模型，試圖以相對蒙地卡羅分析方法較少量

的樣本數訓練 CNN模型並達成同樣的目標精度。研究中位於芝加哥之現實邊坡

主要分為四層土層，學者在考慮土壤空間變異性後以凝聚力以及摩擦角兩隨機參

數生成；此現實邊坡已有幾位學者以可靠度分析對其做過相當多的研究，像是以

極限平衡法或有限元素強度折減法作為邊坡分析方法，再以蒙地卡羅法計算其破
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壞機率，也因此此邊坡過去豐富的可靠度分析結果可與 CNN模型的預測結果做

比對。研究結果指出，以有限元素強度折減法作為邊坡分析方法計算出之破壞機

率相較於以極限平衡法計算之破壞機率大了一個量級，而原因可能是出自於極限

平衡法並無法有效的捕捉關鍵破壞面，有限元素強度折減法相較之下則能捕捉兩

關鍵破壞面同時生成，因此其破壞發生機率相對較高。在安全係數的預測問題中，

以樣本數大小為 400訓練之 CNN模型能預測出與以樣本數大小為 5000之蒙地卡

羅方法分析求得之相同精度破壞機率；這意謂 CNN能以較少的時間和計算成本完

成安全係數的預測。總而言之，CNN能捕捉土壤空間變異性中高維複雜的參數，

且在邊坡破壞機率問題上學習效果相當卓越。

Hsiao et al. (2022)同時使用 ANN與 CNN預測隨機場邊坡安全係數與邊坡破

壞面之結果，並與 PLAXIS以有限元素強度折減法計算出之結果做比較。邊坡

隨機場的生成有相當多種，在此問題中邊坡是以傅立葉級數方法 (Fourier series

method)建立高斯隨機場，再以 PLAXIS進行有限元素強度折減法分析求得安全

係數與邊破破壞面。考慮的隨機場組成分為兩項，一是只考慮凝聚力與摩擦角兩

隨機參數，第二種則是再加入單位重作為隨機參數。結果顯示，在預測安全係數

問題中，第一種只考慮凝聚力和摩擦角作為隨機參數之隨機場中，ANN和 CNN

皆能做出良好的預測；在第二種情境下，CNN表現則優於 ANN。原因可能為只

考慮兩種隨機場時的隨機場邊坡，相比第二種情境下的三種隨機場整體複雜程度

較低，因此 ANN能做出不錯的預測；然而，當複雜程度提升後，CNN與 ANN

之間的差異就逐漸增加。在預測邊坡破壞面的問題上，結果顯示 CNN能力同樣

比 ANN強；因此，CNN更適合用於處理複雜程度相對較高之問題中。另外，不

論是安全係數或是邊坡破壞面的預測問題上，用來訓練深度學習模型的樣本數只

分別需要 200個與 400個即可做出相當不錯的預測，而這也呼應前篇使用深度學

習模型取代傳統蒙地卡羅法的研究成果 (Wang and Goh, 2021)。本篇論文主要便是

接續此篇研究 (Hsiao et al., 2022)做延伸，在已知 CNN效果相較 ANN為佳的基底

上，測試 CNN是否能更進一步預測完全沒看過的不同斜率邊坡。
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其他 CNN於邊坡之應用亦相當地多，Ma et al. (2021)使用 GCN與 GRU兩

CNN與 RNN變形之深度學習方法預測受監測之邊坡破壞，考量了測量儀器彼此

間之相對位置關係與位移後之序列問題，此種複合式模型能預測出準確之邊坡各

點位移。邊坡影像判釋部分，Kubo et al. (2022)以Mask R-CNN模型對邊坡破壞區

域進行偵測，在對影像來源進行數據擴增 (data augmentation)後，此模型成功的提

高了邊坡崩塌影像判釋的準確率。Ruan et al. (2022)應用Mask R-CNN於露天開採

礦坑之邊坡裂痕判釋上，此基於 CNN改進的模型在物體邊緣的判斷上，較單純的

CNN模型精準許多，也因此成為目前領先的目標檢測和語義分割模型之一。Ullo

et al. (2021)亦以Mask R-CNN模型判釋影像中之邊坡崩塌，且同時以數據擴增之

方式增加訓練樣本數量，在搭配 ResNet-101模型的情況下，Mask R-CNN模型對

邊坡崩塌地之判釋相對搭配 ResNet-50模型要來的準確。Habumugisha et al. (2022)

使用 CNN以及其他三種深度學習方法 (DNN、RNN、LSTM)作為崩塌敏感性測

繪之深度學習方法，邊坡斜率、雨量及與斷層距離等圖層為模型之訓練資料，模

型預測之結果則將與已知之崩塌地區做比對，結果顯示 LSTM對於崩塌敏感性預

測之精度最佳，CNN則相對較差些。Ngo et al. (2021)使用 RNN與 CNN於伊朗之

邊坡進行敏感性分析，邊坡高度、邊坡與河的距離、雨量等圖層同樣作為模型之

訓練資料，而結果顯示 RNN之準確率比 CNN來的好些。Lin et al. (2022)以隨機

場建立一個分成兩層之黏土邊坡，並以貝氏 (Bayesian)優化之 CNN模型進行邊坡

可靠度分析；同時，反應曲面方法與傳統 CNN模型也將被用來比較。結果指出以

貝氏優化 CNN模型預測出之安全係數，再計算求出之破壞機率最準確，其值也

與以蒙地卡羅試驗求得之破壞機率相近；也因此貝氏優化 CNN模型有機會能取代

傳統耗費大量時間進行之蒙地卡羅試驗。

CNN模型應用於邊坡案例時，因其圖像辨識能力相當出色，因此實務中常用

於進行邊坡之崩塌判釋或是崩塌偵測，再來則是邊坡的敏感性預測；以資料訓練

CNN模型再比較數值方法求出之邊坡穩定性分析案例則相對少很多。
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2.3.3 殘差網路 (Residual network, ResNet)

2.3.3.1 概念與原理

殘差網路模型由He et al. (2016)提出；在此之前，深度學習的瓶頸在於較深的

模型一開始總能隨著深度增加而良好的學習，然而在一定的深度後學習效果會逐

漸變差。部分學者認為此原因來自深度神經網路在訓練過程中出現梯度消失的問

題，導致訓練逐漸遲緩且影響神經網路學習有效的特徵；而學者則認為這是因為

模型發生退化 (degradation)問題。退化問題原因主要為對於在神經網路較深的層，

因輸入之資料參數需要經過多次的線性或非線性轉換，這反覆的過程導致模型無

法學習到良好的特徵，最後發生訓練效果越來越差的情形。

因此，學者提出了殘差神經網路模型的概念，其中模型使用跳躍連接 (skip

connection)來解決特徵變差的問題。殘差神經網路模型的核心精神為殘差模塊

(如圖2.10) 以 CNN 為例，圖中 F1(x)、F2(x) 表示經過卷積操作後的線性結果，

H1(x)、H2(x)為通過 ReLU轉換後的非線性結果。在整個殘差模塊的最後，透過

跳躍連接，將一連串卷積操作後的結果 F2(x)加上一開始輸入的特徵 x，如此可

確保即使在 F2(x)此函數任何特徵都沒學到的情況下 (即 F2(x) = 0)，模型至少還

會保有 x此原特徵；因此，透過跳躍連接，殘差模塊能有效的處理退化問題，進

而提高深層網路在訓練上的準確性。殘差網路模型架構如圖2.11，對於不同深度

的模型會對殘差模塊數量進行調整以達預定深度。這裡要注意的是，殘差神經網

路模型並不只侷限於 CNN，而是也可以應用在其他各種神經網絡結構中，以改進

模型的學習能力和性能。

需要注意的是，在越深的模型中，參數量與計算量會大幅度的增加；因此”

瓶頸模塊 (bottleneck block)”被提出來做應對 (He et al., 2016)。同樣以 CNN為例，

瓶頸模塊組成為 3層卷積層，其卷積層中之卷積核尺寸 (kernel size)分別為 1× 1、

3× 3與 1× 1，透過一開始的 1× 1大小卷積核可以對特徵圖產生降維效果，從而
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Figure 2.10: 殘差模塊示意圖

降低後續通過 3× 3卷積層的參數量，並達到減少計算量的功效；最後，通過最後

一層 1× 1卷積層時會使用較大之過濾器 (filter)，增加通道數提高特徵圖的維度，

以維持特徵的精度。同樣地，在最後的輸出層會使用跳躍連接以避免因深度增加

而產生的退化問題。

在文獻中，作者使用 CIFAR-10與 CIFAR-100之數據集，對殘差神經網路模

型以及單純堆疊卷積層的模型進行學習與測試，並可發現不論是對哪個數據集做

學習，加入殘差概念的模型皆表現較優。因此，本研究除了測試一般卷積神經網

路外，也將另外測試殘差神經網路模型對於結果的影響。

2.3.3.2 應用

在大地工程的應用中，Xu et al. (2022)使用 U-Net神經網路，並將其應用於土

壤乾裂裂縫的辨識。U-Net為一種以 CNN為底的神經網路，其特點為其具有對稱

的網絡結構，由編碼器（Encoder）和解碼器（Decoder）組成，編碼器主要用於

提取影像特徵並逐漸減少圖像空間尺寸，而解碼器則用於重建影像並逐漸增加空

間尺寸。此外，U-Net在編碼器和解碼器之間使用了 ResNet概念中的跳躍連接，
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Figure 2.11: ResNet-34示意圖 (He et al., 2016)
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這些連接能將編碼器的特徵映射 (mapping)與解碼器相對應的特徵映射進行連接，

進而幫助解碼器更好地恢復細部訊息。傳統作法常將土壤乾裂影像先做灰階化，

再設置閾值將乾裂處與非乾裂處做二元分類而後獲得黑白土壤乾裂圖片；然而，

此做法常受影像亮度、土壤顏色等因素影響，導致成品充滿雜訊或無法明確捕捉

裂縫。相反地，以 U-Net做訓練的深度學習模型在土壤乾裂辨識上相比傳統方法

取得相當好的結果，透過 CNN優秀的特徵擷取特點能精確地將土壤乾裂輪廓抓

取出，同時也減輕圖片亮度、彩度不均等來源品質的影響。

2.3.3.3 小結

目前以機器學習或深度學習方法預測邊坡破壞之文獻相當地多，且應用上

也相當成功，如 2.3.1節中之 ANN與 RNN深度學習方法、抑或是 2.3.2.1節中之

CNN深度學習方法。然而在這些文獻中，真正對安全係數與邊坡破壞面兩大邊坡

穩定性分析結果進行研究之文獻卻相對較少。另外，大部分文獻與方法目前皆僅

應用於對已知邊坡條件 (如：相同坡度之邊坡)做預測，尚未有學者以已知邊坡條

件訓練 CNN模型，再對未知邊坡條件做預測。因此，本研究中將嘗試以已知之坡

角 30◦、坡角 50◦ 邊坡做訓練，再預測未知之 40◦ 邊坡之邊坡穩定性，測試 CNN

模型是否具備泛用性，並更深入研究其應用層面。

最後，機器學習方法於大地工程中之廣泛應用可參考 Zhang et al. (2021b)之研

究，Zhang et al. (2021b)統整出一些基於 FNN、RNN、CNN與 GAN的文獻及介

紹，相當適合初學者理解及查找相關方法在大地工程的應用。至此，文獻回顧部

分告一段落，下一章節將針對本論文內容作方法介紹。
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第三章 研究方法
3.1 概述

本研究之核心目標為使用機器學習中之卷積神經網路 (convolutional neural

network, CNN)模型預測二維隨機場邊坡之安全係數與邊坡破壞面位置，而在訓練

卷積神經網路模型之前，必須預先準備足夠之邊坡訓練資料給予模型學習，以利

模型獲得良好之泛化能力 (generalization ability)。一般邊坡參數來源可從現地佈設

測量儀器，以及現地鑽探取出試體並進行三軸試驗等方式獲得；然而，不論是考

慮設備成本、人力成本、金錢成本抑或是時間成本，欲取得大量之現地資料實屬

不易。因此本研究採取將土壤之空間變異性以隨機場建模之方式，藉由統計方法

建立隨機場邊坡以完成訓練資料之蒐集。本研究選定有效凝聚力與有效摩擦角兩

具空間變異性之土壤參數作為隨機變數，同時考慮關聯性長度在垂直與水平方向

上之差異，再透過Whittle-Matérn模型建立土壤間之空間關聯性，接著產製廣義

之穩態對數常態分佈隨機場 (wide sense stationary lognormal random field)。隨機場

生成後，本研究將模擬邊坡坡角為 30◦ 與 50◦ 之排水隨機場邊坡，以有限元軟體

PLAXIS自動化進行有限元素強度折減法分析，取得各隨機場邊坡之安全係數與

邊坡破壞面位置，而此兩項分析結果也將作為卷積神經網路之訓練集資料來源。

使用訓練資料訓練卷積神經網路，並進行各種參數調整與模型選擇後，本研究將

利用訓練完成之卷積神經網路模型，對以相同方法產製之坡角 40◦ 隨機場邊坡進

行預測，最後比較各模型之優缺及做結果之討論。

綜合上述，本研究方法流程主要可分成三個大項；首先是藉由統計方法產生

一定數量之土壤隨機場；接著以 python自動化方式在有限元分析軟體 PLAXIS中

建立邊坡、匯入產製之隨機場，並逐一分析各個隨機場邊坡之安全係數及邊坡破
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壞面位置；最後則是以深度學習中之卷積神經網路學習隨機場邊坡之特徵，並嘗

試預測邊坡之安全係數與邊坡破壞面位置。以下將逐一解釋各方法內容。

3.2 隨機場生成方法

3.2.1 參數律定

本研究中建立對數隨機場以模擬現地土壤的分佈；在建立對數隨機場前，需

要對部分參數進行假設，包含土壤強度參數 (有效凝聚力 c′ 與有效摩擦角 ϕ′)對

數平均值 (mean)、對數變異係數 (Coefficient of variation, COV)、土壤單位重 (γ)、

水平向和垂直向的關聯性長度 (Scale of fluctuation, SOFh & SOFv)、楊氏模數 (E)

及隨機場大小等等。當隨機場愈多時，某些土壤參數可能具有一定程度之關聯

性，這時需要建立互相關矩陣 (cross-correlation matrix)建立各參數隨機場間之關

聯性 (Liu et al., 2017)；在本研究中凝聚力隨機場與摩擦角隨機場則設定為不具關

連性，即關聯性為 0；且變異係數相同之凝聚力與摩擦角將相疊形成一完整之隨

機場邊坡，不同變異係數之凝聚力與摩擦角將不疊合做為後續機器學習之隨機場

邊坡，如變異係數為 0.1之凝聚力隨機場只與變異係數同為 0.1之摩擦角隨機場疊

合，其餘依此類推。關於變異係數對於土壤參數分布之影響如圖3.1，以凝聚力為

例，使用平均值 15 kPa、變異係數分別為 0.1、0.2與 0.3所繪製出之對數常態機

率分佈在分布上有明顯的差異；變異係數愈大，則隨機產生出之凝聚力數值也愈

廣。Phoon et al. (1995)統整依據不同試驗方法量測出之凝聚力與摩擦角變異係數

大小，其分布相當廣泛，而 0.1至 0.3之變異係數為相當常見之大小，文獻中也常

見此範圍之變異係數選擇 (Tabarroki et al., 2013; Haldar and Babu, 2008)。本研究中

設定之參數值、組合與其於有限元軟體 PLAXIS分析之邊坡數量如表3.1，共對 5

種排列方式的參數組合作邊坡穩定性分析。

另外，本研究中假設整個隨機場大小為 20公尺 × 8公尺，且不論水平向或垂
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(a) COV=0.1之對數常態機率分佈

(b) COV=0.2之對數常態機率分佈

(c) COV=0.3之對數常態機率分佈

Figure 3.1: 三種變異係數下之對數常態機率分佈圖形
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Table 3.1: 土壤參數設定、組合與邊坡分析數量

Group
COV (SOFh, SOFv) Numbers of analysis

c′ ϕ′ c′ ϕ′ 30◦ slope 40◦ slope 50◦ slope

1 0.1 0.1 (10,1) (10,1) 750 210 750

2 0.1 0.1 (10,0.5) (10,0.5) 210 50 210

3 0.1 0.1 (15,0.5) (15,0.5) 210 50 210

4 0.2 0.2 (10,1) (10,1) 210 70 210

5 0.3 0.3 (10,1) (10,1) 210 70 210

Note:

c′ = 15 kPa (Mean value), ϕ′ = 25◦ (Mean value), γ = 16 kN/m3, E = 15, 000 kPa

直向的間距皆為 0.5公尺。亦即，在水平向或垂直向上每 0.5公尺距離內的土壤性

質皆一致。

3.2.2 建立土壤關聯性

於本小節中，將藉由使用關聯性長度與自相關性函數 (auto-correlation

function)描述土壤於空間中之變異性。為了研究 CNN模型在不同隨機場參數假

設下之泛化能力，本研究設定了三種不同關聯性長度組合，其水平向與垂直方向

之關聯性長度比分別為 10 : 1、10 : 0.5與 15 : 0.5；此為現地土壤中常見之比例

(Phoon et al., 1995)，且反映土壤性質在水平方向較垂直方向更高度相關。另外，

因本研究探討二維邊坡的破壞；故將會以Whittle-Matérn模型分別生成水平向及

垂直向兩不同之自相關性函數，用於各別描述水平向和垂直向土壤間之空間關聯

性。

Whittle-Matérn 模型中包含三個由使用者決定之參數，分別為平滑係數

(smoothness parameter, ν)、關聯性長度與兩點間之距離矩陣 (distance matrix, r)。參

考2.2.3章節之公式與參數，平滑係數 ν 取 0.5時可得到單指數之自相關性函數，

於本研究中不論是水平向或垂直向之自相關性函數，平滑係數皆取 ν = 0.5以獲
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得單指數模型；關聯性長度部分，本研究取水平向為 10或 15公尺，垂直向則取

1或 0.5公尺，此比例表示邊坡之土壤性質在水平向上較相近。距離矩陣則描述

在同一方向 (如:水平向)上兩點間之距離；以本研究使用之水平向距離矩陣 (3.1)

為例，若定義矩陣第一列第一行之元素索引值為 a1,1，第一列第二行之元素索引

值為 a1,2，其他依此類推；則 a1,1 元素表示第一個點與第一個點之距離，故距離

相減為 0；a1,2 表示第一個點與第二個點之距離，於本研究中隨機場間距為 0.5公

尺，故距離相減為 −0.5；元素 a2,1 的值代表第二個點與第一個點之距離為 0.5公

尺，相減得 0.5，其他依此類推。於3.2.1節中已律定隨機場尺寸，大小為 20公尺

× 8公尺，間距為 0.5公尺；故此水平向距離矩陣為一大小 40× 40之矩陣；垂直

向距離矩陣大小則為 16× 16 (如式3.2所示)。

決定好平滑係數、關聯性長度、距離矩陣三個參數後，即可應用 Whittle-

Matérn模型各別生成水平向之自相關性函數與垂直向之自相關性函數；至此，土

壤間之關聯性已建立完成，最後將進行隨機場之產製。



0 −0.5 −1 · · · −18.5 −19 −19.5

0.5 0 −0.5 · · · −18 −18.5 −19

... ... ... . . . ... ... ...

19 18.5 18 · · · 0.5 0 −0.5

19.5 19 18.5 · · · 1 0.5 0



水平向距離矩陣 (3.1)
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

0 −0.5 −1 · · · −6.5 −7 −7.5

0.5 0 −0.5 · · · −6 −6.5 −7

... ... ... . . . ... ... ...

7 6.5 6 · · · 0.5 0 −0.5

7.5 7 6.5 · · · 1 0.5 0



垂直向距離矩陣 (3.2)

3.2.3 生成隨機場

本小節應用3.2.1小節假設之對數平均值、對數變異係數，與3.2.2小節中之

水平向、垂直向自相關性函數，建立對數常態分佈隨機場；而生成隨機場之方

式有許多種 (參考2.2.5小節)，本研究採取 Cholesky矩陣分解法 (Cholesky matrix

decomposition method)獲得隨機場；詳細公式如下：

W =
√
Σ · Z = σ ·Qv · Z ·Qh

T (3.3)

√
Σ = σ · chol (ρv ⊗ ρh) = σ ·Qv ⊗Qh (3.4)

在 3.3公式中，W 為平均值為 0之常態分佈隨機場，Σ為 W 之共變異數矩

陣，Z 為標準常態分佈，σ 為土壤參數之標準差；此公式含義為藉由可描述空間

變異性之共變異數矩陣，乘上一隨機標準常態分佈函數，建立一平均值為 0、標

準差為 σ之隨機場。在 3.4公式中，ρv、ρh為由Whittle Matérn模型分別生成之水

平向與垂直向自相關性函數，chol為 Cholesky分解之縮寫，QV、Qh 分別為對共

42

http://dx.doi.org/10.6342/NTU202301805


doi:10.6342/NTU202301805

變異數矩陣 Σ進行 Cholesky下三角分解後之水平向與垂直向矩陣，”⊗”符號為

Kronecker乘積；此公式建立了自相關性函數與隨機場之共變異數矩陣間之關聯，

並透過 Cholesky矩陣分解達到對 Σ開根號之目的。綜合上述，欲生成一零均值高

斯隨機場 (zero-mean Gaussian random field)，可令W =
√
Σ · Z，再以 Cholesky下

三角分解對共變異數矩陣開根號，最後乘上標準常態隨機分佈 Z 及土壤參數標準

差，完成建立一平均值為 0，標準差為 σ之常態分佈隨機場。

本研究目標為生成一考慮土壤參數平均值之對數常態分佈隨機場，故根據

2.2.4節之定義及公式，可將 3.3式延伸成下式：

ξ = em+s·Qv ·Z·Qh
T (3.5)

m、s分別為從對數常態分佈中之對數平均值 µ、對數變異係數 δ經2.2.4節公

式轉換後，成為高斯常態分佈中之平均值 m與標準差 s；ξ 為欲獲得之目標土壤

參數對數常態分佈隨機場。本研究考慮有效凝聚力與有效摩擦角作為土壤隨機變

數，故藉由公式3.5及3.2.1節中律定之參數，以兩土壤參數作為基底之隨機場已可

被完整建立，如圖 3.2所示。

Figure 3.2: 隨機場示意圖
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3.3 有限元素軟體分析

本研究選用 PLAXIS有限元素分析軟體作為後續數值分析工具，分析使用之

組成律為Mohr-Coulomb模型，其為線彈性-完全塑性模型，使用定值的楊氏模數

(Young’s modulus)對土壤勁度進行簡單假設；輸入參數部分，於 PLAXIS軟體中

使用 Mohr-Coulomb模型最少僅需輸入楊氏模數、土壤強度參數 (凝聚力或摩擦

角)兩參數即可進行後續之有限元素強度折減法分析，為使用上相對簡單之組成律

模型。

3.3.1 邊坡設定

邊坡大小設定為長 20公尺、高 8公尺之二維邊坡，坡角則分為 30◦、40◦ 與

50◦三種；其中，坡角 30◦與坡角 50◦隨機場邊坡轉為圖片後將作為後續機器學習

時之訓練資料與部分作為測試用，坡角 40◦ 隨機場邊坡則作為測試資料用；邊坡

尺寸圖如 3.3。

3.3.2 參數設定

本案例中，輸入 Mohr-Coulomb模型之參數有楊氏模數、有效凝聚力、有效

摩擦角及有效單位重，其中有效凝聚力與有效摩擦角是以隨機場之型態輸入，其

他參數在任意斜率之邊坡之任意位置皆為定值。在 PLAXIS內每種土層皆需要設

定一個土層資料，而隨機場內的每一格皆由不同的土壤參數如凝聚力、摩擦角

組成；如圖3.2為由長 40個、高 16個格子所組成，因此在 PLAXIS中需要設定共

40× 16 = 640個土層資料，以建立隨機場中的所有參數資料。

隨機場參數匯入後，下一步接著根據邊坡坡角 (30◦、40◦ 或 50◦)建立邊坡幾

何形狀。建立邊坡幾何形狀時，因隨機場每一格皆代表一種土層資料，因此需依
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(a)坡角 30◦之隨機場邊坡

(b)坡角 40◦之隨機場邊坡

(c)坡角 50◦之隨機場邊坡

Figure 3.3: 不同斜率之隨機場邊坡尺寸
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每一方格頂點對應的座標繪製對應的幾何形狀，再將對應的土層資料匯入該幾何

形狀中；其中，邊坡坡面會將隨機場切出三角形、四邊形或五邊形的不規則格

子，該部分同樣也需依座標繪製對應的幾何形狀，再匯入土層資料，所有步驟完

成後的結果如圖3.4。以上步驟完成後，接著產生網格，本研究中以預設網格密度

(medium)進行網格生成；其中每個網格皆為三角形，坡腳 30◦邊坡中共有 1091個

網格、坡腳 40◦邊坡中共有 1041個網格、坡腳 50◦邊坡中則共有 1016個網格。需

注意的是，當生成之隨機場相當密可視為連續時，Ching and Phoon (2013)指出有

限元軟體切割出之網格大小會對分析結果有相當影響；而本研究之隨機場邊坡因

隨機場較粗糙，故網格大小對於分析結果之影響於本研究暫不討論。

邊坡排水設定為排水，無超額孔隙水壓產生，模擬邊坡長期排水之行為。邊

界條件部分，邊坡之最左側與最右側皆以滾支承 (roller)模擬，即允許垂直向變形

但不允許水平向變形；邊坡上緣為自由邊界 (free)，允許任何方向之變形；邊坡

下緣則為固定邊界 (fixed)，不允許任何方向之變形。以上所有設定中，除了匯入

的隨機場不同與邊坡斜率可能不同外，其餘設定在每一次的分析中皆一樣。

Figure 3.4: PLAXIS軟體內建置之隨機場邊坡示意圖

3.3.3 分析方法與結果產出

邊坡穩定分析方法採用有限元素強度折減法進行分析，產出結果主要為安

全係數與邊坡破壞面位置。在 Plaixs中總共會設立兩個階段 (phase)，第一個階段
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使用重力加載 (gravity loading)方法來模擬邊坡不受任何外力狀況下的自重平衡

階段；在重力加載模式下，初始應力由土壤的體積自重來決定，並適用於非水

平地層的分析。第二個階段則是設定對應有限元素強度折減法的安全分析 (safety

calculation)，在這個階段中，程式將對凝聚力與摩擦角不斷地做折減，每一次的

折減完成皆會計算安全係數，直到結構發生破壞或是達到設定的最大步驟數。需

注意的是，安全分析結果的應力與應變的數值大小並不具實際物理意義，其值在

每一次的折減中皆不斷地累加，直到分析結束後計算出，因此此數值大小不代表

實際的應力應變值；然而其相對大小仍具有實際意義，從結果相對的數值中可判

斷何處為較易發生破壞位置。

最後，每個隨機場皆會產出一個相對應之安全係數，邊坡破壞面位置則是藉

由高斯點座標及其對應之軸差剪應變增量 (incremental deviatoric shear strain)繪製

而成。本小節產出之結果將作為後續機器學習時訓練模型與比對答案使用。

3.3.4 自動化分析

3.3.1章節至3.3.3之步驟為一次邊坡穩定分析的過程；然而，本研究中欲分析

之邊坡隨機場數量多達上千個，以人工將一筆一筆隨機場資料匯入、繪製邊坡幾

何形狀、設定邊界條件、再設定分析階段等等步驟既曠日廢時也不切實際；因此，

本研究使用自動化之方式完成以上步驟。PLAXIS軟體提供了一個基於 HTTP的

應用程式介面 (application programming interface, API)，讓使用者得以使用 python

程式語言在 Jupyter notebook中撰寫指令並與 PLAXIS連動，達成自動化的目的。

整個程式碼的邏輯與順序和手動在 PLAXIS中設定皆相同，只需熟知指令依序撰

寫程式碼即可進行相關操作，對於需要大量重複分析的研究而言相當方便，亦大

大地減少了前期資料準備的時間。
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3.3.5 安全係數︑邊坡破壞面之訓練與測試資料準備

進入機器學習前，需要先準備好足夠之資料作為訓練資料以及其對應的答案

標籤，其中隨機場邊坡圖片可藉由輸入隨機場至 PLAXIS中，再於建模時一併裁

切產出；而答案標籤的數據則可透過 PLAXIS邊坡穩定性分析的結果中獲得。

邊坡破壞面預測任務所使用之訓練資料與在預測安全係數任務時所使用之訓

練資料完全相同，僅差在訓練模型時使用的標籤不同。預測安全係數時，每個隨

機場邊坡圖片皆對應一個安全係數，因此訓練模型時只要確定傳遞給 CNN模型

的隨機場圖片確實對應到其安全係數即可。預測邊坡破壞面時的答案標籤則較複

雜，用於判斷邊坡是否滑動的剪應變增量值可從 PLAXIS邊坡穩定性分析的結果

獲得，且每個高斯點座標皆對應一個剪應變增量值。因此，不同於預測安全係數

時標籤僅為單單一個值，邊坡破壞面預測任務所使用的標籤為一個矩陣，矩陣中

每一個值代表一個剪應變增量值，且同時每張隨機場邊坡圖片之標籤皆為一個矩

陣；因此訓練模型時的標籤或模型進行預測時的輸出實際上皆為一個三維度的張

量 (tensor)。最後，訓練模型時同樣需確保輸入進 CNN模型的隨機場圖片確實對

應到其剪應變增量矩陣。

3.4 卷積神經網路 (CNN)模型

本研究以坡角 30◦ 與坡角 50◦ 邊坡之隨機場圖片作為訓練資料，並以卷積神

經網路模型預測坡角 40◦ 邊坡之安全係數與邊坡破壞面位置。卷積神經網路模型

的學習成效取決於多種因素，包括模型架構、訓練資料品質等；因此，在實際應

用中，不斷調整模型參數以達到最佳訓練成效相當重要，對於複雜的任務而言，

調整模型參數可以大幅提升模型訓練成效。在訓練模型的過程中常遇見過擬合

(overfit)或欠擬合 (underfit)問題，其中又以過擬合最為常見。過擬合是指機器學

習模型在訓練過程中過度擬合了訓練資料、過度學習某些特定的細節和噪聲，導
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致模型在面對未知資料時表現不佳的現象；當模型太過複雜、訓練資料過少或是

過多雜訊時容易發生過擬合。過擬合會導致模型過度依賴訓練資料的細節做學習，

在遇到未知測試資料時容易無法變通，造成模型在未知資料上的泛化能力差；在

機器學習中，避免過擬合是提高模型效果和泛化能力的關鍵。因此，本節主要著

重在調整模型架構及超參數，試著找到最佳之組合以獲得泛化能力最好之卷積神

經網路模型，最後將其應用於預測坡角 40◦邊坡之安全係數與邊坡破壞面位置。

另外，本研究使用 Keras進行卷積神經網路模型的組建與測試；目前 Keras是

以 TensorFlow為基底，再編譯而成的高階 API。Keras提供非常多的工具和模型，

以利於深度學習的開發者可以快速的構建、訓練和評估深度學習模型，是個對於

新手較友善且較容易上手的應用程式介面；以下各參數、模型架構的調整皆是基

於 Keras進行。

3.4.1 概念與原理

人腦在辨識圖片時，一般會以影像中的重要特徵來辨認物體，以圖3.5為例；

影像左邊為一張鳥類圖片，在決定圖片內容物時，人腦不會將影像中的每格像素

皆仔細審視後再做出最後決策，而是依據看到的重要特徵如鳥喙、鳥爪、翅膀、

顏色及物體形狀等等後便可迅速指出這是一隻鳥。CNN應用相同的概念，學習

過程中模型能透過卷積操作將影像特徵辨識出，再依學習到的特徵對輸入的圖

片做判斷與預測；一個比較泛用的 CNN通常會包含幾個常用層，分別為卷積層

(convolution layer)、池化層 (pooling layer)和全連接層 (fully connected layer)，以下

對其概念與計算原理做介紹:

卷積層 (Convolution Layer)

卷積層為整個 CNN網路中的核心架構，影像的特徵主要在此層中進行學習，

其總共可分為三個部分，分別為圖片輸入、特徵擷取與特徵圖輸出。輸入的影
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Figure 3.5: 人腦辨認鳥類影像過程
(來源：Unsplash網站；圖片擁有者：Regine Tholen)

像通常為由紅、綠、藍三原色組成的彩色相片，在模型學習過程中，最一開始

會將影像拆成三個通道 (channel)再接著讀取各個通道內每格像素的值。卷積核

(kernel，或 feature detector)負責特徵擷取，大小由使用者自行定義，功能為依序

與處理後的圖片矩陣做點對點間的相乘運算再全部相加，最後在特徵圖上得出對

應的結果；以 3× 3× 3的尺寸為例，卷積核以此大小的感受域 (receptive field)從

圖片矩陣左上角開始進行計算，並藉由卷積核上的權重和圖片矩陣相乘和相加得

出特徵圖上最左上角的新特徵 (如圖3.6 (a))。接下來，卷積核的感受域移動至下一

格 (移動距離可根據使用者自行定義)，同樣進行矩陣點積運算獲得特徵圖上對應

的新特徵 (如圖3.6 (b))；以上流程依此類推，直到完成整個卷積運算，最後獲得得

一張全新特徵圖 (如圖3.6 (c))。

有些技巧被應用在卷積運算過程中，填充 (padding)應用在當卷積核移動至圖

片矩陣邊緣時，邊緣空白處資料填補的技巧，選項包括填補 0至空白處、以存在

值的區域平均後填入空白處、填入與邊緣處像素相同的值等等方法。填充的特點

在於可以維持輸出圖與輸入圖大小相等，且若圖片邊緣有重要訊息也能被考慮進

去。另一個技巧則是參數共享 (parameter sharing)，因 CNN預測方法主要是學習

圖片的重要特徵，一旦找到卷積核上重要特徵的權重配置後，理論上直接以此權

重將整張圖片掃過一次，即可依照判斷出之特徵做結果預測；因此，參數共享意

義為使同一層卷積層中的卷積核上參數在每一次特徵學習的移動中皆固定，如此

既符合 CNN的判斷準則，也大量減少了運算過程中所需的參數量，進而增進運
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(a)第一次矩陣點積運算

(b)第二次矩陣點積運算

(c)最後一次矩陣點積運算

Figure 3.6: 卷積層運算過程
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算效率也提高學習成效。

池化層 (Pooling Layer)

池化層常用於降低輸入特徵圖的空間尺寸，從而減少參數數量、減少過擬合

發生情形，也有助於增強模型的準確性；需注意的是，並非所有問題在加入池化

層後都能提升模型能力，需經過測試和問題類型決定是否加入池化層，例如著名

的 AlphaGO圍棋人工智慧基礎架構為 CNN，但並沒有使用池化層。常見的池化

層包含最大池化 (maxpooling)、平均池化 (average pooling)等等；如圖3.7，最大池

化層運算時會將特徵圖分割成多個子區域，並取出每個子區域內的最大值作為輸

出特徵圖的值；而平均池化則是對每個子區域內的數值取平均後作為輸出特徵圖

的值。同樣地，池化層的大小與移動的距離可由使用者自行定義。

(a)最大池化層

(b)平均池化層

Figure 3.7: 池化層類別
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全連接層 (Fully Connected Layer)

在 CNN中，全連接層一般常接在最後一層卷積層的後面，全連接層的使用

與否可視任務目標而決定，其作用為從前一層提取特徵，並將其轉換成對輸出的

預測。在分類任務中，全連接層通常用於將卷積層提取的特徵對應到不同的預測

類別上；在迴歸任務中，全連接層則通常用於預測輸出值。如圖3.8所示，全連接

層接收前一層卷積層的所有輸出，並將它們平坦化成一個一維向量，接著同樣進

行參數的學習與調整，最後依照任務任型生成輸出。全連接層本質上是 ANN的

一種，也不局限於只與 CNN架構結合；在深度學習模型中，全連接層常與其他層

組合使用，如 CNN、RNN等，以利構建更強大的模型。

Figure 3.8: 全連接層示意圖
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激勵函數 (Activation function)

在神經網路中，激勵函數常被用來將輸入的訊號轉換為非線性的輸出訊號，

同時增加神經網路的表達能力。可以將激勵函數理解成一種為門檻開關，當輸

入訊號超過閾值時，神經元才會被激勵，並傳遞訊息至下一個神經元；反之，被

認為不重要的特徵訊息將無法往下傳遞。激勵函數之特點為通常具有非線性特

性，如此不僅可以增加神經網路的表達能力，也能使神經網路學習到更複雜的模

式和特徵，進而使模型更加強大。常見的激勵函數包括 sigmoid、ReLU、tanh等

等，根據相當多篇的研究指出，ReLU為目前較有效率且學習效果較佳之激勵函

數 (Indolia et al., 2018)，且能有效防止運算過程中之梯度消失問題。

3.4.2 訓練資料準備

原隨機場像素大小為 40 × 16，在此像素尺寸下，位於邊坡斜面上之隨機場

土壤方格會呈現相當粗糙之鋸齒狀；因此，為了符合較實際之情形，本研究預先

將原隨機場轉換成 1395 × 558大小之灰階圖片 (如圖3.3)，再將有效凝聚力與有

效摩擦角之灰階隨機場圖片疊加在一起，形成一長為 1395、寬為 558，且具有兩

個通道 (channel)之圖片，並作為之後機器學習的訓練資料集。在一般的卷積神

經網路訓練任務中，訓練資料通常為彩色圖片，而一張彩色圖片可表示為一個

H ×W × 3的三維張量 (tensor)，H 表示圖片的高、W 為圖片的寬度，最後一個

數字則表示每個像素都由 3個分別代表 R、G、B的三個通道亮度值組成。在數學

式中，可以表示為：

I ∈ RH×W×C (3.6)

其中 I 表示彩色圖片對應的三維張量。
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彩色圖片包含了相當多維度的資訊，也因此在訓練上會複雜許多；相對地，

灰階圖片相較之下較單純，灰階圖片和彩色圖片組成類似，差別僅在於灰階圖片

為單通道。綜合上述，在將隨機場轉換成圖片時，可將有效凝聚力隨機場與有效

摩擦角隨機場轉換成個別的單通道灰階照片，最後再將兩者疊加，形成同時具有

長寬空間資訊、且具有兩個通道之矩陣，作為卷積神經網路模型的訓練資料集。

另外，模型訓練過程中，通常將訓練資料以 7 : 3或是 8 : 2等比例再分成訓練

資料與驗證資料 (validation data)；訓練資料為模型用來學習的資料集，學習過程

中模型會瀏覽與學習訓練資料中的所有內容，而驗證資料僅用於當模型訓練過程

每完成一個 epoch後，拿來比對當前計算出的答案與驗證資料的差異損失。也就

是說，驗證資料並不會用於模型訓練而僅用於比對答案，模型在經過每個 epoch

後將參考此比對答案調整下一個 epoch的學習方向。

3.4.3 超參數 (Hyperparameters)

超參數是指在訓練機器學習模型時，需要事先設定之參數，且這些參數通常

無法透過訓練過程進行優化，而是由使用者自行決定。超參數包括各種模型參數，

如學習率 (learning rate)、訓練週期 (epoch)、批量大小 (batch size)、神經網路層數

等等，超參數之設置需要使用者通過經驗、實驗和技巧進行調整和優化，以達到

最佳訓練效果和泛化性能；也因此超參數的選擇和調整是訓練機器學習模型中一

個非常重要的工作。以下為一些常見超參數及其說明：
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Table 3.2: 常見超參數

英文名稱 中文名稱 說明

Sample size 樣本數 訓練資料的樣本總數；通常資料樣本越

多、越具多樣性和代表性的訓練資料可

以幫助模型更順利的學習到數據的特徵，

從而提高模型的泛化能力和預測能力。

Epoch 訓練週期 一個訓練週期代表神經網絡中所有訓練

樣本皆已被訓練過一次之情形，一個完

整的模型訓練過程中通常需要進行多個

訓練週期，最後直到達到預定的停止條

件。

Learning rate 學習率 用於控制模型權重的更新步長。學習率

的大小直接影響模型的收斂速度、穩定

性以及泛化能力；學習率太大會導致模

型不穩定，甚至可能導致模型無法收斂；

學習率太小則會導致收斂速度過慢，增

加訓練時間，也可能使模型梯度陷入局

部最小值而非最佳解。
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Batch size 批量大小 為訓練過程中每一次更新模型所使用的

樣本數量。通常選擇較大的批量大小可

以有效提高計算效率，但也可能導致模

型學習不穩定或者過度擬合等問題；選

擇較小的批量大小則會增加模型的隨機

性，有助於模型更好的學習數據的特徵，

但也會增加訓練時間、內存需求及降低

精度。

Number of layer 神經網路層數 神經網路的層數對於模型性能有著重要

影響。一般而言，增加層數可以提高模

型的表示能力，使其更好的擬合複雜的

數據分布；然而，層數增加的同時也增

加了模型參數量及加深模型複雜度，這

通常也帶來過擬合和梯度爆炸等問題，

進而影響模型性能。

Kernel size 卷積核尺寸 指在卷積神經網路中，卷積操作時使用

的矩陣大小。卷積核尺寸影響了特徵提

取的效果，較小的卷積核尺寸可以提取

更細緻的特徵，較大的卷積核尺寸則能

夠學習比較整體的特徵。
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Stride 步長 指在對輸入資料進行卷積運算時，卷積

核每次移動的距離。較大的步長會縮小

特徵圖 (feature map) 輸出的大小，但也

容易失去細部特徵；而較小的步長則可

以保留更多的細節，但會產生較多參數，

較容易發生過擬合問題。

Filter 濾波器 濾波器的多寡會影響到卷積層學習的特

徵抽取的能力和計算效率。通常，較大

的濾波器數量可以提取更多的特徵，但

同時也會增加模型的參數量和計算成本。

Padding 填充 填充此技術用於解決因輸入數據的大

小不同，導致模型無法進行運算與處理

的問題。在卷積神經網絡中，填充通常

用於控制輸出特徵圖的大小，因為卷積

運算會導致輸出特徵圖的大小縮小，所

以為了保持輸入和輸出特徵圖大小相

同，可以使用”same padding” 來對輸入

數據進行填充；而如果不需關心特徵圖

邊緣的特徵訊息，且不需要輸出特徵圖

的大小與輸入相同，則可以使用”valid

padding”，以減少計算量和模型參數的數

量。
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Loss function 損失函數 損失函數是一種衡量模型預測結果和

目標結果之間差異的函數，此函數評估

了模型在學習過程中的表現好壞，並且

通過將這個評估轉化為一個數字，使演

算法可以根據這個函數來決定如何更新

模型的參數。常見損失函數有均方誤差

(Root mean squared error, RMSE)、平均絕

對誤差 (Mean absolute error, MAE)、交叉

熵損失 (Cross-entropy loss)等等。

Activation func-

tion

激勵函數 激勵函數通常為非線性函數，負責將輸

入訊號的總和轉換成輸出信號，其作用

在於增加神經網路的表徵能力 (指神經

網路所能表現的函數類型的能力，表徵

能力越強則所能表達的函數類型就越多

樣化) ，讓神經網路能夠學習複雜的非

線性關係，從而提高模型的準確度和泛

化能力。常見的激勵函數包括 Sigmoid、

ReLU、Tanh等。

Optimizer 優化器 優化器是用來更新神經網路權重的算法，

其目標為通過最小化損失函數來找到

最佳權重值。常見的優化器包括 SGD、

Adam、Adagrad 等，不同的優化器有不

同的更新策略和不同的超參數，如學習

率等；因此，適當的選擇優化器可以提

高模型的收斂速度和準確度。
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Dropout rate – – Dropout是一種正則化方法，透過隨機將

一定比例 (rate)的神經元隱藏以降低模型

的複雜度，進而減少過擬合的風險；其

中，可透過調整 dropout函數的參數來調

整欲隱藏的神經元比例。

Batch normaliza-

tion

批量標準化 批量標準化函數對每一層輸入進行標準

化，使得每一層輸出的分佈都盡可能保

持一致，且可有效的減少模型對初始權

重的依賴並提高模型的收斂速度，最後

提高模型的訓練速度和性能。

Pooling layer 池化層 池化層常用來降低圖像的維度，減少

後續層數的複雜度。常見之池化層有最

大池化 (maxpooling)、平均池化 (average

pooling)等等，最大池化層會依據定義之

池化範圍 (pool size，亦為一種超參數)保

留區域內的最大值；平均池化則對池化

範圍內做加權平均，最後輸出成特徵圖。

L2 regularization L2正則化 L2正則化是一種在神經網路中常用的正

則化方法，在訓練過程中，L2正則化會

將懲罰項添加到模型的損失函數中，其

中懲罰項的大小由 λ（lambda，為一種超

參數）控制。此懲罰項會使模型傾向將

神經網路中的權重降低到較小的值，從

而減少過擬合的風險，同時增加了模型

的泛化能力。
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Earlystopping – – Early stopping會監測訓練集或驗證集的

損失 (loss)表現，當模型的表現不再提升

或開始下降時便停止訓練，避免模型過

度擬合訓練集，進而提高模型的泛化能

力。其中，超參數”patience”可用來調整

決定多早停止訓練。

3.4.4 模型架構

在模型架構的建構中，本研究測試了不同深度的卷積神經網路模型，且為

了避免因神經網路過深而產生的梯度消失、退化問題，不同深度的殘差網路 (參

考2.3.3節)如深度為 18層的 ResNet-18模型、深度為 34層的 ResNet-34模型等等

也會被用來測試成效好壞與否；同時，針對不同架構之神經網路模型，各種超參

數的選擇和配置也將會一一測試，最後決定出泛化能力最好之卷積神經網路模

型。以下使用含兩層卷積層之卷積神經網路模型、以及 ResNet-34殘差網路模型，

來對本研究研究過程中所進行的參數調整及架構調整作簡單介紹；關於卷積神經

網路的原理、運算過程及在土木工程上的應用則可參照2.3.2小節。

3.4.4.1 淺層卷積神經網路

圖3.9為含兩層卷積層之卷積神經網路模型架構，輸入的訓練資料總數為 N

張，在本案例中每個輸入的矩陣尺寸為 558× 1395× 2。模型的構造中，首先為第

一層的卷積層，在 Keras的架構上可對此卷積層進行許多超參數的假設 (以下使用

中文名稱，中英對照及其說明請參考表3.2)，包括濾波器數量、卷積核尺寸、步

長大小、填充模式、是否使用正則化技術如 L2 Regularization及其權重調整等等。

決定好卷積層內的超參數後，接下來可選擇使用批次標準化對卷積操作後的特徵
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Figure 3.9: 卷積神經網路模型架構 (兩層卷積層)

Figure 3.10: 全連接層
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圖做標準化，最後再通過激勵函數 (本研究皆使用 ReLU)，完成一個完整的卷積

運算。

在進行第二次的卷積操作前，可選用特定範圍的最大池化層對特徵圖做特徵

擷取，留下比較重要的特徵，同時也加速模型學習及減少參數量。在第二層卷積

層中，超參數種類與第一層卷積層中之設置大同小異，惟數值會作些許調整；因

此若欲延伸成較深的卷積神經網路，只需將卷積層相接在一起，並考慮是否使用

正則化、池化層等等技巧，即可完成卷積神經網路模型的基礎架構。

最後，有時在卷積層最終輸出的特徵圖後會加上全連接層 (如圖3.10中之藍色

神經元)，全連接層通常用於分類任務及部分的迴歸問題，它可以將之前卷積層和

池化層中提取到的特徵進行平展（flatten）的操作，再將特徵與權重進行矩陣乘法

運算，最後通過激勵函數進行非線性轉換，得到最終的輸出結果；其中，為防止

過擬合，可考慮使用 dropout層來隨機捨棄部分參數。在卷積神經網路中，卷積層

和池化層專精於提取圖像中的局部特徵，而全連接層則擅長捕捉大範圍特徵；需

注意的是，使用全連接層會增加模型的參數量，有時容易導致過擬合，因此應根

據目標任務種類與後續應用來決定是否要在卷積層的最後加上全連接層。另外，

本研究欲預測之結果包含安全係數與邊坡破壞面；因此，根據不同的任務，最後

輸出之神經元數目也應該隨之作調整，以符合欲輸出之結果。

3.4.4.2 殘差網路模型

殘差網路模型 (2.3.3)可透過多層殘差模塊的連接形成不同深度的神經網路，

本研究中測試了 ResNet-6、ResNet-18、ResNet-34及 ResNet-50四種殘差網路模型

的效果，其圖像化架構可參考圖2.11。圖中左側神經網路為深度 34層，且僅靠單

純疊加而成的卷積神經網路；圖中右側則是加入殘差概念而建構成的 ResNet-34

神經網路。

以 ResNet-34為例，殘差模塊通常以兩個卷積層為一個單位，並在第二個卷
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積層的最後以跳躍連接加上輸入的特徵，之後再以同樣超參數設置的殘差模塊

重複進行疊加 3次；進入更深的層數時，為了加強模型學習的能力，會以另一

組同樣為兩個卷積層為單位，但部分超參數設置不同之殘差模塊進行 4次疊加，

形成更深的神經網路。如此反覆進行，直到達到預定神經網路深度後進行攤平

(flatten)，最後輸出結果。相對較深的 ResNet-50或 ResNet-152等等模型中，疊加

手法與上述相同，但為了避免因深度增加而導致過多的參數量與計算量，瓶頸模

塊 (2.3.3)將會應用在神經網路中。

於本研究之殘差網路模型中，輸入的訓練資料與前述淺層卷積神經網路相

同，皆為大小為 558 × 1395 × 2之矩陣，超參數的種類也大同小異，但實驗及調

參之手法會有些許差異。另外，於 Keras介面中也提供相關的殘差神經網路模型

供使用者進行測試，故可直接以 Keras提供的殘差網路架構進行超參數調整。

3.4.5 模型訓練

完成模型架構後，需決定使用的訓練週期、批量大小、損失函數類型及優

化器類型，表3.3為使用的部分超參數範圍及類型。本研究主要使用的優化器為

Adam，損失函數在預測安全係數任務上為MAE，在預測邊坡破壞面位置任務上

則為 Cosine similarity；訓練週期與批量大小則視不同訓練測試更改為不同的值。

另外，本研究將訓練資料集與驗證資料集以 8 : 2比例進行分割，並以”shuffle”功

能打亂每個訓練週期中訓練集的順序，以防止模型過度擬合特定特徵，進而提高

模型泛化能力。決定好以上超參數設定後，在 Keras中命令開始訓練模型之指令

為 model.fit()，將隨機場圖片矩陣和對應的標籤資料如安全係數答案分別置入函數

中，即可開始訓練 CNN模型。
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Table 3.3: 部分超參數設定

Hyperparameters Type or Value range

Epoch 300 ∼ 1000

Batch size 20 ∼ 320

Loss function MAE or Cosine Similarity

Optimizer Adam

3.4.6 超參數調整

模型訓練完成後，可根據模型在訓練資料集上與驗證集資料上的損失 (loss)

做超參數的調整。原則上，在經過前一層卷積層的運算後，輸入進下一層卷積層

的特徵圖留下了較多重要的特徵訊息。因此，在越深的卷積層中，一些超參數如

卷積核尺寸、步長皆應設置較小的範圍與數值，以避免錯過重要特徵，導致學習

效果不佳；而濾波器數量則應設置較多的數量，以利捕捉更多較精華的特徵。

圖3.11為各種擬合情形示意圖。正常擬合指模型能夠很好地擬合訓練數據，

且有較佳的泛化能力，損失圖的訓練損失和驗證損失曲線走勢會較貼近且損失值

低，此種擬合結果為模型訓練的終極目標。

欠擬合代表模型無法很好地擬合訓練數據，通常表現為訓練損失和驗證損失

會較高，且模型的泛化能力也比較差。通常模型複雜度不足或者特徵過少皆有可

能導致欠擬合情形發生；因此，若發生欠擬合情形，可嘗試增加模型的複雜度或

增加特徵，以提高模型的擬合能力。例如，增加卷積層的層數深度、增加過濾器

數量，或是增加訓練資料數量等等。

過擬合則代表模型過度複雜，導致模型過度學習訓練資料中的特徵和細節，

通常會呈現訓練損失低，但驗證損失很高的現象。在過擬合的情況下，可以試著

降低模型的複雜度、增加訓練數據量、加入正則化等手段，以提高模型的泛化能

力。因此，在這種情況下，可以試著使用 L1或 L2正則化、批量標準化，或加入
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(a)正常擬合

(b)欠擬合

(c)過擬合

Figure 3.11: 不同擬合結果示意圖
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dropout層等等，來避免模型過度放大某些特徵的值。另外，在訓練資料集加入較

多元的資料也能避免模型過度學習某些特定的特徵，而導致模型泛化能力差。

依據以上原則，後續將對各種超參數進行各式調整，以求獲得損失較低且正

常擬合之情形，並比較不同參數大小和設置情況下的損失圖，最後測試訓練好的

模型是否能正確地預測安全係數以及邊坡破壞面位置。
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第四章 CNN模型參數調整與預測結
果

本研究之目標為使 CNN模型以監督式學習方式學習坡角為 30◦與 50◦之隨機

場圖片，再以該 CNN模型預測未看過之坡角 40◦ 邊坡之安全係數或邊坡破壞面，

最後比較其成效。一個模型學習成效的好壞與否在於其能否在面對沒看過的資料

時，同樣能表現出足夠準確的辨識與預測能力；例如，在一般的分類物體任務中，

經過學習 1000張標註貓或狗的圖片後，若再給予模型另外 100張完全沒看過但同

樣也是貓和狗的圖片，其能否成功辨識便是評估模型時較重要的。因此，本研究

中之訓練資料與測試資料除了包含三種斜率的邊坡外，也另外以變異係數、關聯

性長度為變數分成兩大組，並在模型學習完成後將交叉比對其是否具備足夠之泛

化能力。

本章節共分為兩部分探討，分別為安全係數的預測與邊坡破壞面的預測，

不論是何項任務的訓練資料皆為凝聚力與摩擦角兩灰階邊坡相疊加之圖片，如

圖4.1所示 (邊框顏色僅做為辨認用，實際輸入之影像的邊框無顏色)。本研究為監

督式學習方式，因此在預測安全係數任務中，可透過 PLAXIS的邊坡穩定性分析

計算結果獲得每個隨機場對應的安全係數，作為答案使用；在預測邊坡破壞面任

務中，同樣也是藉由 PLAXIS的分析結果獲得每個隨機場中所有高斯點的應變增

量，再透過設置閾值繪製出破壞面做為答案使用。各任務之超參數調整以及預測

成果將在接下來的章節進行詳細說明。
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Figure 4.1: 作為訓練資料之凝聚力與隨機場疊加隨機場圖片

4.1 安全係數預測

本研究中，安全係數預測之訓練資料共有兩組，如表4.1所示。第一組為固定

相同的關聯性長度 (即 (SOFh, SOFv) = (10, 1))，比較不同變異係數下 CNN模型

的學習成效與泛化能力；第二組則是固定相同的變異係數 (即 COV = 0.1)，比較

不同關聯性長度下 CNN模型的學習效果與泛化能力。

Table 4.1: 不同訓練資料參數組合

COV = 0.1 COV = 0.2 COV = 0.3

(SOFh, SOFv) = (10, 1) ✓ ✓ ✓
(SOFh, SOFv) = (10, 0.5) ✓ – –

(SOFh, SOFv) = (15, 0.5) ✓ – –

4.1.1 固定關聯性長度

本組訓練資料中之隨機場皆由關聯性長度為 (SOFh, SOFv) = (10, 1)的組合

生成，而變異係數共分為 COV = 0.1、COV = 0.2及 COV = 0.3三組；其中，

COV = 0.1時，坡角 30◦、坡角 50◦ 隨機場邊坡各有 750個；COV = 0.2 & 0.3

時，坡角 30◦、坡角 50◦隨機場邊坡則皆各有 210個，共 840個邊坡。因此，統計
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三種變異係數下所有隨機場邊坡數量後，共有 2340個邊坡資料可供訓練使用，如

表4.2。

Table 4.2: 訓練資料個數 ((SOFh, SOFv) = (10, 1))

Slope COV = 0.1 COV = 0.2 COV = 0.3 Numbers

30◦ 750 210 210 1170

50◦ 750 210 210 1170

Total numbers 2340

本組測試資料之隨機場同樣由與訓練資料相同之關聯性長度組合生成，當

COV = 0.1時有坡角 40◦ 隨機場邊坡 210個，COV = 0.2 & 0.3時則各有 70個。

因此，統計三種變異係數下的測試資料，共有 350個邊坡資料可供做測試使用，

如表4.3。

Table 4.3: 測試資料個數 ((SOFh, SOFv) = (10, 1))

Slope COV = 0.1 COV = 0.2 COV = 0.3 Numbers

40◦ 210 70 70 350

Total numbers 350

另外，以上資料數量僅代表本研究中總共生產的隨機場數量，在學習過程將

依模型給予的回饋調整學習的隨機場數量，因此並非所有的訓練資料或測試資料

皆會被使用在所有模型的學習過程中，特此註明。

4.1.1.1 案例一:訓練資料為 COV=0.1之隨機場邊坡

首先，第一個案例只使用單純 COV = 0.1的 1500個隨機場做學習，除了初步

測試淺層 CNN模型及不同深度殘差神經網路模型的學習能力，同時也可與後續

其他案例作比較。研究中主要有數種情境，每個情境下用於訓練模型的隨機場邊

坡資料變數組成不太相同，其分類與流程如下表4.4與下圖4.2；表格與圖為相同之

內容與概念，差別在於圖中多表示了各案例中有使用到之 CNN模型。
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Table 4.4: 安全係數預測中訓練集與測試集所使用之不同隨機場參數情境

Scenarios Case name Traning set Testing set

Fixed SOF Case1 COV=0.1 COV=0.1

((SOFh, SOFv) Case2 COV=0.1, 0.2, 0.3 COV=0.1, 0.2, 0.3

= (10,1)) Case3 COV=0.2 COV=0.1, 0.3

Fixed COV
Case4 (SOFh, SOFv) = (10, 0.5) (SOFh, SOFv) = (10, 1) & (15, 0.5)

(COV=0.1)

Figure 4.2: 安全係數預測情境分類圖

淺層卷積神經網路

訓練模型過程中，調整的超參數包含隨機場樣本數量、模型深度、epoch、學

習率、批量大小等等，不同模型中調整的超參數不盡相同。在訓練模型的過程中，

最初有較多的超參數需要進行調整，然而隨著不斷地調整可發現雖然用來學習的

隨機場圖片不一樣，但某些超參數在某些特定範圍內表現會較佳；因此，超參數

雖然很多種，但部分超參數的設定範圍與數值其實有跡可循。
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本研究中調整超參數的脈絡大致上為先確認需要多少的樣本數量，足以使模

型學習到足夠的特徵進行預測；再來則是其他各種超參數的調整。參數調整過程

如下:

1. 樣本數 (sample size)損失比較

首先，測試多少隨機場邊坡樣本數足以使淺層 CNN有不錯的學習成果，通

常需要一定數量的樣本才能使模型有較好的學習能力；研究中共測試 100、

200、400、600、800、1000、1200七種不同的樣本數數量。圖4.3為模型學

習完成後的不同樣本數訓練集與測試集損失比較，理想上兩數據集上的損失

越低且越接近，則此模型的學習成效會較好。損失越低表示模型預測的答案

與正解差異越小，兩數據集損失越接近則表示使用訓練集訓練的學習成果

與驗證結果相符，模型會相較穩定。根據以上原則，從圖4.3中可得出樣本

數在 200、800、1000與 1200時模型學習能力看起來較好；除此之外，根據

Hsiao et al. (2022)以及Wang and Goh (2021)的研究成果指出，預測安全係數

時樣本數只需 200或 400個即足以做出穩定預測，不需使用到上千個樣本。

因此，在考量模型學習效率的情況下，進行後續其他超參數測試時將固定樣

本數為 200個。

2. 學習率 (learning rate)損失比較

接下來測試 7種不同學習率的比較，測試的學習率數值依序相差一個級數

(order)，其數值範圍從 0.25至 2.5 × 10−7。圖4.4展示不同學習率的結果比

較，在學習率為 2.5× 10−6時有最好的訓練結果。

3. 卷積層層數損失比較

這裡測試了四種不同的卷積層層數 (深度)，分別為 2、3、4、5層，越深層

的 CNN能學習越多的特徵與細節，然而這同時也意味著模型可能過度學習

現有訓練資料中的細節，或是參數過於複雜降低模型後期學習能力，而導致
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Figure 4.3: 不同樣本數之訓練集與測試集損失比較

Figure 4.4: 不同學習率之訓練集與測試集損失比較

74

http://dx.doi.org/10.6342/NTU202301805


doi:10.6342/NTU202301805

在其他資料集中表現相當差。圖4.5為不同卷積層層數下的訓練結果，可看

出卷積層為 3層或 4層時學習成果應較佳；這裡選擇 3層卷積層作為模型後

續訓練的架構，而這次的比較結果也印證深度學習並非越深越好，而是與訓

練任務複雜程度有關。

Figure 4.5: 不同卷積層層數之訓練集與測試集損失比較

4. 批量大小 (batch size)比較

批量大小為一個訓練週期 (epoch)中，將訓練資料做分批學習的數據集大

小，例如訓練資料總數為 10、批量大小取 2，則每個訓練週期中需要 5次迭

代 (iteration)才能將全部的訓練資料都學習一次；研究中測試 7種不同的批

量大小，分別為 8、16、20、32、40、80、160。圖4.6分別為上述 7種批量

大小的模型訓練結果，在批量大小為 8、16、40時模型學習效果看起來較

佳。因批量大小為每個訓練週期中，每次迭代使用的資料數，為了降低資料

品質對學習可能產生的誤差，這裡選擇批量大小 40作為後續模型學習固定

使用的數值。

5. 其他超參數比較
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還有其他種超參數也被使用在案例一模型的調參數過程，如 L2正則化強

度、dropout rate、卷積核尺寸等等，然而這些超參數在案例一中對提升模型

的學習能力效果較有限，因此不列出其比較成果。

Figure 4.6: 不同批量大小之訓練集與測試集損失比較

經過以上超參數調整後，案例一的最佳模型已被調教完成，其架構如表4.5，

表中左側行為模型學習過程中依序通過不同功能的層，中間行為輸出後的特徵大

小，右側行則是使用的超參數，此表得以解讀成下列敘述。第一層卷積層名為

conv2d，其卷積核尺寸為 3 × 3、步長為 3、濾波器數為 64，且使用了權重為 0.2

的 L2正則化技巧；而輸入之圖片初始大小為 558× 1395× 2，通過第一層卷積層

後，輸出之大小為 186 × 465 × 64。接下來使用了批量標準化的技巧，並在標準

化完後通過名為”ReLU”的激勵函數，至此完成一個較常設計的模型結構。進入

第二次卷積運算前，此模型加入了最大池化層來擷取重要特徵，同時也縮小了特

徵圖的大小，加速模型的運算效率。本研究設計之架構包含 3層卷積層，因此以

上步驟將進行 3次，並於最後接上全連接層。進入全連階層時會將特徵圖攤平成

N × 1的矩陣，並在通過 dropout層隨機刪除 30%的參數後，最後輸出成一個值，
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Table 4.5: 案例一之淺層 CNN模型結構

Layer name Output size Case 1

conv2d 186× 465× 64 3× 3, 64, stride 3, L2 weight 0.2

batch_normalization 186× 465× 64 –

activation 186× 465× 64 ”ReLU”

max_pooling2d 93× 232× 64 2× 2 max pool, stride 2

conv2d_1 91× 230× 128 3× 3, 128, stride 1, L2 weight 0.1

activation_1 91× 230× 128 ”ReLU”

max_pooling2d_1 45× 115× 128 2× 2 max pool, stride 2

conv2d_2 43× 113× 256 3× 3, 256, stride 1, L2 weight 0.01

activation_2 43× 113× 256 ”ReLU”

flatten 1243904 –

dropout 1243904 weight 0.3

dense 1 –

activation_3 1 ”ReLU”

也就是安全係數。至此，完成了一個完整的 CNN模型訓練。

案例一的 CNN模型只學習變異係數為 0.1、坡角包含 30◦ 與 50◦ 的隨機場邊

坡圖片，且訓練過程只使用了 200張圖片，其中 40張作為驗證集的圖片，也就是

說模型真正看過的隨機場邊坡圖片為 160張。測試資料可分成兩部分，一部分為

變異係數同樣為 0.1但模型學習過程中沒看過的坡角 30◦和坡角 50◦隨機場邊坡圖

片；另一部分則是變異係數同樣為 0.1，但模型在學習過程中沒看過的坡角 40◦隨

機場邊坡圖片。圖4.7為案例一模型訓練完成後，對已經看過的訓練集資料再做預

測的結果；圖中斜線為安全係數預測值與 PLAXIS計算出的答案相符區，愈偏離

最適斜線表示模型預測的結果愈差，而此圖顯示模型學習的成果在已經看過的資

料表現上相當良好；其中，分布在圖右上處為坡角 30◦ 邊坡的安全係數分布，左

下則為坡角 50◦邊坡的安全係數。圖4.8為使用同為坡角 30◦、坡角 50◦邊坡但模型

從沒看過的測試資料做預測，結果同樣顯示模型能預測出令人滿意的結果。
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Figure 4.7: 包含坡角 30◦、坡角 50◦邊坡訓練資料預測結果 (案例一)

Figure 4.8: 包含坡角 30◦、坡角 50◦邊坡測試資料預測結果 (案例一)
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本研究之終極目標為給模型其從沒看過的坡角 40◦ 隨機場邊坡圖片，並預測

出正確的安全係數，圖4.9中之綠色三角形即為模型針對沒看過的坡角 40◦ 隨機場

邊坡圖片所預測出之結果。當其他條件一致時，邊坡愈陡峭安全係數應愈低，邊

坡愈平緩則安全係數愈高；坡角 40◦ 邊坡之斜率介於坡角 30◦ 與坡角 50◦ 邊坡之

中，也因此其安全係數確實應介於兩者之間。模型雖沒看過坡角 40◦ 的邊坡，但

仍能從僅有不同灰色程度的隨機場圖片預測出相當接近的安全係數值，表示模型

某種程度上學習到一些規律和模式，使其在安全係數的預測上有相當不錯的能

力。

Figure 4.9: 包含坡角 30◦、坡角 40◦、坡角 50◦邊坡測試資料預測結果 (案例一)
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表4.6為不同數據集預測的表現，MAE 表示平均絕對誤差 (Mean absolute

error)，其值越大代表模型預測出的答案與 PLAXIS分析出的安全係數平均絕對誤

差越大，反之亦然；RMSE為均方誤差 (Root-mean-square error)，MAPE則是平均

絕對百分比誤差 (Mean absolute percentage error)，在模型訓練的結果中上述三種評

估指標皆為越低越好，其公式分別如式4.1、式4.2和式4.3。訓練資料集不論在哪

一項指標中皆為值最低者，而這也反應模型對於已知數據原本就應該有較好的預

測結果；因此，不論機器學習或深度學習，重點皆在於模型在未知數據集的預測

能力，訓練資料集的預測結果對於評估該模型好壞參考價值並不高，而是應著重

在測試資料集的預測結果。在兩組測試資料中，坡角 40◦ 邊坡的各項指標皆略高

於另一組測試資料，但整體與 PLAXIS分析出的安全係數僅有 3.5%的誤差，預測

能力相當優秀。至此，在僅使用變異係數為 0.1之隨機場邊坡做訓練與預測之情

況下，CNN模型之預測能力表現令人眼睛為之一亮。

MAE =
1

n

n∑
i=1

|ŷi − yi| (4.1)

RMSE =

√√√√ 1

n

n∑
i=1

(ŷi − yi)2 (4.2)

MAPE =
100%
n

n∑
i=1

| ŷi − yi
yi

| (4.3)

Table 4.6: 淺層 CNN模型之不同數據集MAE、RMSE與MAPE大小比較 (案例一)

MAE RMSE MAPE

Training data (30◦ & 50◦) 0.0146 0.0245 0.65%

Testing data (30◦ & 50◦) 0.0502 0.0663 2.06%

Testing data (40◦) 0.0844 0.0980 3.50%
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殘差神經網路

案例一中，共使用了 4 種不同深度的殘差神經網路模型做測試，分別為

ResNet-6、ResNet-18、ResNet-34和 ResNet-50。ResNet模型的訓練過程與訓練淺

層神經網路時差異不大，一樣從樣本數量下手開始做測試，再調整其他超參數之

選擇。ResNet-6模型依據測試結果選擇樣本數 400個作為後續模型學習所使用的

資料數量，其對坡角 30◦ 與坡角 50◦ 隨機場邊坡訓練資料之再預測結果如圖4.10，

對坡角 30◦與坡角 50◦隨機場邊坡測試資料之預測結果如圖4.11；而對三種坡角隨

機場邊坡之預測結果則如圖4.12。ResNet-6模型對未知坡角 40◦隨機場邊坡的預測

結果相當不錯，其 RMSE值平均為 0.0767，即每一次的預測結果平均與 PLAXIS

計算出之安全係數只相差 0.0767；不同資料集的完整預測指標表格如表4.7。

Figure 4.10: 包含坡角 30◦、坡角 50◦邊坡訓練資料之 ResNet-6模型預測結果 (案例
一)

以目前結果而言，剩下的三種不同深度的殘差神經網路模型在學習上的效果

皆較普通，如圖4.13，不論是何種深度的殘差神經網路模型，訓練資料與測試資

料的預測值皆不如使用淺層神經網路和 ResNet-6時的效果佳。本研究中對於這三
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Figure 4.11: 包含坡角 30◦、坡角 50◦邊坡測試資料之 ResNet-6模型預測結果 (案例
一)

Figure 4.12: 包含坡角 30◦、坡角 40◦、坡角 50◦邊坡測試資料之 ResNet-6模型預測
結果 (案例一)
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Table 4.7: ResNet-6模型之不同數據集MAE、RMSE與MAPE大小比較 (案例一)

MAE RMSE MAPE

Training data (30◦ & 50◦) 0.0242 0.0335 1.03%

Testing data (30◦ & 50◦) 0.0363 0.0456 1.48%

Testing data (40◦) 0.0648 0.0767 2.67%

個殘差神經網路模型做的超參數測試包含學習率、正則化的強度、epoch數量等

等，由於三種模型的深度皆較本研究中淺層神經網路的深度深的多，因此訓練時

間也相對費時；另外，使用殘差神經網路模型因深度變深同時也加深調整超參數

的難度，且在使用淺層神經網路模型時已可獲得不錯的成果，故在嘗試多次超參

數的調整後，決定暫緩測試上述深度較深的三個殘差神經網路模型。於案例一中

使用過深的殘差網路模型並不如預期中的厲害，不過後續也將在其他案例中繼續

測試殘差神經網路模型，並於所有測試結束後做出對於殘差神經網路模型的結論

與評語。

Figure 4.13: 三種殘差神經網路模型預測結果

4.1.1.2 案例二:訓練資料為 COV=0.1+0.2+0.3之隨機場邊坡

案例二中，訓練資料與測試資料同時加入了三種變異係數供模型做學習和

預測，且同樣測試淺層 CNN模型與殘差神經網路模型的學習能力，相比於案例

中使用 ResNet-18、ResNet-34、ResNet-50，在這個案例中使用的殘差神經網路為

ResNet-6與 ResNet-18。
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淺層卷積神經網路

訓練模型過程如案例一中之流程，而在本案例中調整的超參數包含樣本數

量、批量大小、神經網路深度以及其他一些微小調整。本案例包含三種變異係數，

為了使模型能平衡地學習每一種變異係數的特徵，各變異係數邊坡隨機場圖片將

以相同的數量輸入作為訓練資料。

1. 樣本數 (sample size)損失比較

這裡共比較了 5 種樣本數的比較，分別為 105、210、420、630 及 840。

圖4.14為模型訓練後的成效比較，在樣本數為 210時模型有最好的學習效

果；因此，進行後續其他超參數測試時將固定樣本數為 210個。

Figure 4.14: 不同樣本數之訓練集與測試集損失比較

2. 批量大小 (batch size)損失比較

研究中測試了 6種批量大小，分別為 8、16、33、56、84、168共六種。測

試結果如圖4.15，結果顯示批量大小為 16時，模型有較好的學習成果。
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Figure 4.15: 不同批量大小之訓練集與測試集損失比較

3. 卷積層層數損失比較

這裡測試了 2、3、4、5層共四種不同卷積層層數的比較，如圖4.16。與案

例一相同，淺層 CNN網路在卷積層為 3層或 4層時有較好的學習效果，這

裡同樣選擇層數 3層作為後續訓練模型的架構。

4. 其他超參數比較

從案例一及本案例的超參數的調整過程中可得出部分超參數的設定範圍，例

如批量正歸化 (batch normalization)可在第一層卷積層的後面設置，但若其

他卷積層也加入批量正歸化層會導致模型學習能力降低；又或是學習率基本

上在 10−5至 10−6範圍內會有較佳的模型學習效果等等，這些觀察是在類似

任務情況下的模型學習過程中可以依循的一些模式，而不用每次皆必須重新

考慮超參數的範圍。

案例二調整完成後的模型架構如表4.8。本案例中使用了三種變異係數的隨機

場邊坡圖片作為淺層 CNN模型的訓練資料，數量共 210張，且每個變異係數各

85

http://dx.doi.org/10.6342/NTU202301805


doi:10.6342/NTU202301805

Figure 4.16: 不同卷積層層數之訓練集與測試集損失比較

Table 4.8: 案例二之淺層 CNN模型結構

Layer name Output size Case 2

conv2d 186× 465× 64 7× 7, 64, stride 3, L2 weight 0.05

batch_normalization 186× 465× 64 –

activation 186× 465× 64 ”ReLU”

max_pooling2d 93× 232× 64 2× 2 max pool, stride 2

conv2d_1 90× 229× 128 4× 4, 128, stride 1

activation_1 90× 229× 128 ”ReLU”

max_pooling2d_1 45× 114× 128 2× 2 max pool, stride 2

conv2d_2 44× 113× 256 2× 2, 256, stride 1

activation_2 44× 113× 256 ”ReLU”

max_pooling2d_2 22× 56× 256 2× 2 max pool, stride 2

flatten 315392 –

dropout 315392 weight 0.2

dense 1 –

activation_3 1 ”ReLU”
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70張。測試資料分成兩部分，一部分為同樣也是包含三種變異係數但模型沒看

過的坡角 30◦、坡角 50◦ 隨機場邊坡圖片；另一部分則是同樣包含三種變異係數

但模型沒看過的坡角 40◦ 隨機場邊坡圖片。圖4.17、圖4.18及圖4.19分別為訓練完

成的模型對訓練資料及兩測試資料的預測結果。相比於案例一，案例二中預測出

之安全係數皆較發散，原因可能是訓練資料來源較多元，對於模型來說學習過程

相對較複雜，因此在預測上精度較差；然而，整體預測的準確度仍有相當水準，

整體預測之安全係數與 PLAXIS分析計算出之安全係數誤差最多不超過 5%，如

表4.9所示。

Figure 4.17: 包含坡角 30◦、坡角 50◦邊坡訓練資料預測結果 (案例二)

Table 4.9: 淺層 CNN模型之不同數據集MAE、RMSE與MAPE大小比較 (案例二)

MAE RMSE MAPE

Training data (30◦ & 50◦) 0.0711 0.0980 3.11%

Testing data (30◦ & 50◦) 0.0947 0.1145 3.96%

Testing data (40◦) 0.118 0.1435 4.99%
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Figure 4.18: 包含坡角 30◦、坡角 50◦邊坡測試資料預測結果 (案例二)

Figure 4.19: 包含坡角 30◦、坡角 40◦、坡角 50◦邊坡測試資料預測結果 (案例二)
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殘差神經網路

有鑑於案例一中 ResNet-34、ResNet-50較難訓練，且成效不佳；於本案例中

雖仍然嘗試使用殘差神經網路模型，但神經網路深度僅為 6層與 18層。圖4.20、

圖4.21與圖4.22分別為訓練完成的 ResNet-6模型對訓練資料及兩測試資料的預測

結果，其預測之安全係數能效果並不差；圖4.23、圖4.24及圖4.25則分別為訓練完

成的 ResNet-18模型對訓練資料及兩測試資料的預測結果。更深層的 ResNet-18模

型對已看過的訓練資料再做預測時，坡角 50◦ 隨機場邊坡的安全係數預測值趨勢

為水平，與理想上沿著最適斜線分布並不吻合；預測之坡角 40◦ 隨機場邊坡安全

係數也有類似趨勢發生。如前一小節所述，殘差神經網路模型因深度較深，因

此訓練上較困難也費時，且淺層神經網路模型已經可以預測誤差相對較小的安

全係數。因此，在之後案例的訓練中，將不再嘗試使用 ResNet-18、ResNet-34及

ResNet-50殘差神經網路；而卷積層層數相對淺很多的 ResNet-6則會繼續測試使

用。

Figure 4.20: 包含坡角 30◦、坡角 50◦邊坡訓練資料之 ResNet-6模型預測結果 (案例
二)
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Figure 4.21: 包含坡角 30◦、坡角 50◦邊坡測試資料之 ResNet-6模型預測結果 (案例
二)

Figure 4.22: 包含坡角 30◦、坡角 40◦、坡角 50◦邊坡測試資料之 ResNet-6模型預測
結果 (案例二)
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Figure 4.23: 包含坡角 30◦、坡角 50◦邊坡訓練資料之 ResNet-18模型預測結果 (案
例二)

Figure 4.24: 包含坡角 30◦、坡角 50◦邊坡測試資料之 ResNet-18模型預測結果 (案
例二)
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Figure 4.25: 包含坡角 30◦、坡角 40◦、坡角 50◦邊坡測試資料之 ResNet-18模型預
測結果 (案例二)

4.1.1.3 案例三:訓練資料為 COV=0.2之隨機場邊坡

案例三的案例一與案例二中的模型學習與預測所使用的隨機場圖片皆出自於

同樣的變異係數組合，而本案例之目標為藉由只學習變異係數為 0.2的坡角 30◦與

坡角 50◦ 隨機場邊坡圖片，預測變異係數為 0.1和 0.3的隨機場圖片的安全係數，

也因此將更具挑戰性，模型的預測結果也更能展現其泛化能力的好壞與否。本案

例中除了使用淺層 CNN，也測試 ResNet-6模型的成效。

淺層神經網路

案例三模型調整超參數的方法和原則與前兩個案例幾無差異，故以下直接呈現部

分超參數測試後的選擇，如表4.10。樣本數選擇 420個，模型深度為 4層，批量

大小、學習率、訓練週期則分別為 56、0.00002與 250；訓練完成後之模型結構則

如表4.11所示。
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Table 4.10: 案例三淺層 CNN模型超參數設置

Parameters name Value

Sample size 420

Layer depth 4

Batch size 56

Learning rate 0.00002

Epoch 250

Table 4.11: 案例三之淺層 CNN模型結構

Layer name Output size Case 3

conv2d 186× 465× 64 5× 5, 64, stride 3

batch_normalization 186× 465× 64 –

activation 186× 465× 64 ”ReLU”

max_pooling2d 46× 116× 64 4× 4 max pool, stride 4

conv2d_1 44× 114× 128 3× 3, 128, stride 1

activation_1 44× 114× 128 ”ReLU”

max_pooling2d_1 14× 38× 128 3× 3 max pool, stride 3

conv2d_2 13× 37× 256 2× 2, 256, stride 1

activation_2 13× 37× 256 ”ReLU”

max_pooling2d_2 6× 18× 256 2× 2 max pool, stride 2

flatten 27648 –

dropout 27648 weight 0.05

dense 1 –

activation_3 1 ”ReLU”

本案例中之淺層 CNN模型將直接對變異係數為 0.1與 0.3之測試資料集做預

測，依照訓練資料與測試資料比為 8 : 2的比例，將取 104張模型沒看過的隨機場

邊坡照片做測試資料；其中，52張為變異係數 0.1之圖片，另 52張則為變異係數

0.3之圖片。另外，在各 52張的隨機場邊坡圖片中將再分成 26張坡角 30◦、坡角

50◦邊坡各半之圖片，以及 26張皆為坡角 40◦邊坡之圖片，作為模型的測試資料。

本案例之淺層 CNN模型對同樣為變異係數 0.2之隨機場邊坡進行預測的安全
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Figure 4.26: 以學習 COV=0.2隨機場圖片之淺層 CNN模型對同變異係數隨機場圖
片數據集進行安全係數預測之結果 (案例三)

係數如圖4.26，藍色 X形為對訓練資料再預測的結果，觀察圖可發現不論是訓練

資料抑或是測試資料，模型的預測結果皆相當優秀。而本案例之淺層 CNN模型對

不同變異係數隨機場邊坡安全係數的預測結果則如圖4.27，觀察預測結果可發現，

對變異係數為 0.1之隨機場邊坡進行預測時，模型對整體安全係數的預測值皆偏

低；對變異係數為 0.3之隨機場邊坡進行預測時，模型對整體安全係數的預測值

則偏高，且因變異係數為 0.3時土壤變異性更大，因此分布也較發散。以結果來

說，淺層 CNN模型在訓練過程中雖表現看似優秀，然而當任務為預測其他變異

係數之安全係數時則表現不佳；也代表淺層 CNN模型的泛化能力不佳，對不熟悉

的資料無法進行準確的預測。同時，圖4.26雖看似完美，但卻也隱藏模型過擬合

的可能性，也就是模型過度學習變異係數為 0.2時的隨機場邊坡細節，當預測同

變異係數隨機場時相當游刃有餘，但當其他資料輸入時卻無法舉一反三。
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(a) COV=0.1邊坡安全係數預測

(b) COV=0.3邊坡安全係數預測

Figure 4.27: 以學習 COV=0.2隨機場圖片之淺層 CNN模型對 COV=0.1及
COV=0.3隨機場圖片進行安全係數預測之結果比較 (案例三)
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殘差神經網路

這裡嘗試使用 ResNet-6對變異係數為 0.1與 0.3之測試資料集做預測，訓練完成

後之殘差神經網路模型訓練樣本數為 420個，批量大小、學習率、訓練週期則分

別為 56、0.00001與 250；訓練完成後之模型結構如表4.12所示。

Table 4.12: 案例三 ResNet-6模型超參數設置

Parameters name Value

Sample size 420

Batch size 56

Learning rate 0.00001

Epoch 200

圖4.29為 ResNet-6對同樣變異係數為 0.2之測試集進行安全係數預測之結果，

與淺層 CNN模型一樣，對同樣變異係數的數據集做預測，皆能獲得相當不錯的

成果。圖4.29為分別對變異係數 0.1與 0.3之測試集進行安全係數預測之結果，

ResNet-6模型對變異係數 0.1之邊坡預測結果相當不錯，對坡角 30◦與坡角 50◦邊

坡預測出之安全係數皆與 PLAXIS分析出之安全係數幾乎無差異，MAPE指標達

0.75%，即平均只有 0.75%的誤差；對坡角 40◦邊坡的預測則較差，MAPE指標為

4.49%，但仍然有抓住安全係數分布的趨勢。ResNet-6模型對變異係數 0.3之邊坡

預測結果則仍然不太好，整體仍會高估安全係數的值，且預測出之結果趨近水平

而非沿著最適斜線分布，其坡角 30◦ 與坡角 50◦ 邊坡預測出之安全係數MAPE指

標為 11.1%，坡角 40◦邊坡之MAPE指標則為 4.94%，詳細如表4.13。
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Figure 4.28: 以學習 COV=0.2隨機場圖片之 ResNet-6模型對同變異係數隨機場圖
片數據集進行安全係數預測之結果 (案例三)

Table 4.13: ResNet-6模型之不同數據集MAE、RMSE與MAPE大小比較 (案例三)

COV Data set MAE RMSE MAPE

COV=0.1
Testing data (30◦ & 50◦) 0.0185 0.0245 0.75%

Testing data (40◦) 0.1074 0.1356 4.49%

COV=0.3
Testing data (30◦ & 50◦) 0.2425 0.2818 11.07%

Testing data (40◦) 0.1121 0.1386 4.94%
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(a) COV=0.1邊坡安全係數預測

(b) COV=0.3邊坡安全係數預測

Figure 4.29: 以學習 COV=0.2隨機場圖片之 ResNet-6模型對 COV=0.1及 COV=0.3
隨機場圖片進行安全係數預測之結果比較 (案例三)
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4.1.2 固定變異係數

本組訓練資料中之隨機場皆由變異係數為 0.1 之隨機場邊坡，關聯性長

度則分為三種，分別是 (SOFh, SOFv) = (10, 1)、(SOFh, SOFv) = (10, 0.5) 與

(SOFh, SOFv) = (15, 0.5)共三組；其中，(SOFh, SOFv) = (10, 1)時，坡角 30◦與

坡角 50◦ 隨機場邊坡各有 750個；(SOFh, SOFv) = (10, 0.5)與 (SOFh, SOFv) =

(15, 0.5)時，坡角 30◦ 與坡角 50◦ 隨機場邊坡則各有 210個，共 840個隨機場邊

坡。因此，統計三種關聯性長度組合下，共有 2340個邊坡資料可供訓練使用，如

表4.14。

Table 4.14: 訓練資料個數 (COV = 0.1)

Slope (SOFh, SOFv) =
(10, 1)

(SOFh, SOFv) =
(10, 0.5)

(SOFh, SOFv) =
(15, 0.5)

Numbers

30◦ 750 210 210 1170

50◦ 750 210 210 1170

Total numbers 2340

本組測試資料之隨機場同樣由與訓練資料相同之變異係數生成，當

(SOFh, SOFv) = (10, 1) 時有坡角 40◦ 隨機場邊坡 210 個，(SOFh, SOFv) =

(10, 0.5) & (SOFh, SOFv) = (15, 0.5) 時則各有 50 個。因此，統計三種關聯性

長度組合下的測試資料，共有 310個邊坡資料可供做測試使用，如表4.15。

Table 4.15: 測試資料個數 (COV = 0.1)

Slope (SOFh, SOFv) =
(10, 1)

(SOFh, SOFv) =
(10, 0.5)

(SOFh, SOFv) =
(15, 0.5)

Numbers

40◦ 210 50 50 310

Total numbers 310

同樣地，上述資料數量僅代表本研究中總共生產的隨機場數量，在學習過程

會依照模型給予的回饋調整學習的隨機場數量，因此並非所有的訓練資料或測試

資料皆會被使用在所有模型的學習過程中。
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4.1.2.1 案例四:訓練資料為 (SOFh, SOFv) = (10, 0.5)之隨機場邊坡

本案例之目標為藉由只學習關聯性長度為 (SOFh, SOFv) = (10, 0.5)且變異係

數皆為 0.1的坡角 30◦與坡角 50◦之隨機場邊坡圖片，預測其他兩種關聯性長度組

合之隨機場圖片之安全係數。與案例三相同，此任務相對案例一與案例二將較具

挑戰性。另外，本案例中除了使用淺層 CNN，也測試 ResNet-6模型的成效。

淺層神經網路

表4.16為訓練完成之淺層 CNN模型之部分超參數，樣本數選擇 420個，模型深度

為 3層，批量大小、學習率與訓練週期則分別為 56、0.000001與 150；訓練完成

後之模型結構則如表4.17

Table 4.16: 案例四淺層 CNN模型超參數設置

Parameters name Value

Sample size 420

Layer depth 3

Batch size 56

Learning rate 0.000001

Epoch 150

本案例之淺層 CNN模型對關聯性長度同樣為 (SOFh, SOFv) = (10, 0.5)之隨

機場邊坡進行預測之安全係數如圖4.30，圖4.31則為對其他關聯性長度邊坡隨機場

進行安全係數預測之結果；不論是對哪一種隨機場及不同邊坡斜率的預測，其值

皆能貼合在最適斜線上，與案例三之結果大相逕庭。結果顯示，本研究設定之不

同變異係數數值之影響比本研究設定之關聯性長度比值的影響要大得多。
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Table 4.17: 案例四之淺層 CNN模型結構

Layer name Output size Case 4

conv2d 186× 465× 64 5× 5, 64, stride 3

batch_normalization 186× 465× 64 –

activation 186× 465× 64 ”ReLU”

max_pooling2d 93× 232× 64 2× 2 max pool, stride 2

conv2d_1 91× 230× 128 3× 3, 128, stride 1

activation_1 91× 230× 128 ”ReLU”

max_pooling2d_1 45× 115× 128 2× 2 max pool, stride 2

conv2d_2 44× 114× 256 2× 2, 256, stride 1

activation_2 44× 114× 256 ”ReLU”

max_pooling2d_2 22× 57× 256 2× 2 max pool, stride 2

flatten 321024 –

dense 1 –

activation_3 1 ”ReLU”

殘差神經網路

訓練完成之 ResNet-6 模型部分超參數如表4.18。圖4.32為 ResNet-6 模型對關聯

性長度同樣為 (SOFh, SOFv) = (10, 0.5)之數據集進行預測之結果；圖4.33則為

ResNet-6模型對不同關聯性長度邊坡隨機場之測試結果。與本案例中之淺層 CNN

模型相同，水平與垂直關聯性長度比值之改變對模型預測能力的影響並不如改變

變異係數造成的影響來的大，ResNet-6模型仍舊可以有效地預測不同關聯性長度

比值隨機場邊坡之安全係數，其相關指標如4.19；全部所有案例之指標則如4.20所

示。至此，所有安全係數預測任務皆已結束，下個小節將介紹邊坡破壞面之預

測。
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Figure 4.30: 以學習 (SOFh, SOFv) = (10, 0.5)隨機場圖片之淺層 CNN模型對同關
聯性長度隨機場圖片數據集進行安全係數預測之結果 (案例四)

Table 4.18: 案例四 ResNet-6模型超參數設置

Parameters name Value

Sample size 420

Batch size 84

Learning rate 0.00001

Epoch 200

Table 4.19: ResNet-6模型之不同數據集MAE、RMSE與MAPE大小比較 (案例四)

SOF Data set MAE RMSE MAPE

(SOFh, SOFv) = (10, 1)
Testing data (30◦ & 50◦) 0.0609 0.0794 2.45%

Testing data (40◦) 0.0452 0.0583 1.91%

(SOFh, SOFv) = (15, 0.5)
Testing data (30◦ & 50◦) 0.0483 0.1900 2.08%

Testing data (40◦) 0.0529 0.0700 2.23%
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(a) (SOFh, SOFv) = (10, 1)之邊坡安全係數預測

(b) (SOFh, SOFv) = (15, 0.5)之邊坡安全係數預測

Figure 4.31: 以學習 (SOFh, SOFv) = (10, 0.5)隨機場圖片之淺層 CNN模型對其他
關聯性長度邊坡隨機場圖片進行安全係數預測之結果比較 (案例四)
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Figure 4.32: 以學習 (SOFh, SOFv) = (10, 0.5)隨機場圖片之 ResNet-6模型對同變
異係數隨機場圖片數據集進行安全係數預測之結果 (案例四)

Table 4.20: 所有案例之MAE、RMSE、MAPE大小比較

Case Model Data set MAE RMSE MAPE

Case 1

Shallow CNN
Testing data (30◦ & 50◦) 0.0502 0.0663 2.06%

Testing data (40◦) 0.0844 0.0980 3.5%

ResNet-6
Testing data (30◦ & 50◦) 0.0363 0.0456 1.03%

Testing data (40◦) 0.0648 0.0767 2.67%

ResNet-18
Testing data (30◦ & 50◦) 0.0584 0.0686 2.33%

Testing data (40◦) 0.2372 0.2445 9.87%

ResNet-34
Testing data (30◦ & 50◦) 0.1193 0.1480 4.91%

Testing data (40◦) 0.1780 0.2062 7.40%

ResNet-50
Testing data (30◦ & 50◦) 0.0520 0.0640 2.20%

Testing data (40◦) 0.2964 0.3082 12.34%

Case 2

Shallow CNN
Testing data (30◦ & 50◦) 0.0947 0.1145 3.96%

Testing data (40◦) 0.1180 0.1435 4.99%

ResNet-6
Testing data (30◦ & 50◦) 0.0950 0.1237 4.13%

Testing data (40◦) 0.1560 0.1891 6.55%

ResNet-18
Testing data (30◦ & 50◦) 0.0946 0.1183 4.12%

Testing data (40◦) 0.1018 0.1217 4.32%
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Case 3

Shallow CNN
COV=0.1

Testing data (30◦ & 50◦) 0.3689 0.3739 15.34%
Testing data (40◦) 0.3735 0.3784 15.56%

COV=0.3
Testing data (30◦ & 50◦) 0.3863 0.4193 17.22%

Testing data (40◦) 0.2738 0.3058 12.01%

ResNet-6
COV=0.1

Testing data (30◦ & 50◦) 0.0185 0.0245 0.75%
Testing data (40◦) 0.1074 0.1355 4.49%

COV=0.3
Testing data (30◦ & 50◦) 0.2425 0.2817 11.07%

Testing data (40◦) 0.1121 0.1386 4.94%

Case 4

Shallow CNN

SOFh, SOFv Testing data (30◦ & 50◦) 0.0561 0.0721 2.33%
=10,1 Testing data (40◦) 0.0650 0.0735 2.71%

SOFh, SOFv Testing data (30◦ & 50◦) 0.0489 0.0663 1.99%
=15,0.5 Testing data (40◦) 0.0442 0.0566 1.83%

ResNet-6

SOFh, SOFv Testing data (30◦ & 50◦) 0.0609 0.0794 2.45%
=10,1 Testing data (40◦) 0.0452 0.0583 1.91%

SOFh, SOFv Testing data (30◦ & 50◦) 0.0483 0.1900 2.08%
=15,0.5 Testing data (40◦) 0.0529 0.0700 2.23%
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(a) (SOFh, SOFv) = (10, 1)之邊坡安全係數預測

(b) (SOFh, SOFv) = (15, 0.5)之邊坡安全係數預測

Figure 4.33: 以學習 (SOFh, SOFv) = (10, 0.5)隨機場圖片之 ResNet-6模型對其他
關聯性長度隨機場圖片進行安全係數預測之結果比較 (案例四)
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4.2 邊坡破壞面預測

邊坡破壞面預測任務中，使用的訓練資料、測試資料、訓練模型的流程與概

念等等皆與預測安全係數時皆相同，兩者差別僅在於答案標籤的不一樣。此任務

同樣也是只學習坡角 30◦ 與坡角 50◦ 之隨機場邊坡，並於訓練完成後對沒看過的

坡角 30◦、坡角 40◦ 與坡角 50◦ 邊坡進行預測；其中，本任務中僅使用淺層 CNN

模型進行學習，並無應用殘差神經網路模型在此任務中。

4.2.1 資料處理

3.3.5章節中提及預測邊坡破壞面時的答案標籤形式為一個三維張量，其中每

個隨機場邊坡皆對應一個剪應變增量矩陣；而 CNN模型架構亦應設計成輸出為

同大小之矩陣，以利後續處理。對單一隨機場邊坡而言，PLAXIS邊坡穩定性分

析後的結果和 CNN模型預測出的結果皆為一個剪應變增量的矩陣，為了獲得可

視化之破壞面，需對此矩陣設立閾值抓取出實際應變增量較大的部分。圖4.34為

PLAXIS內建依據剪應變增量繪製出之邊坡壞面，深藍色部分之剪應變增量趨近

為 0，非深藍色部分則是剪應變增量較大處；圖4.35則為將所有剪應變對最大剪應

變增量正歸化後，設立閾值為 0.1所繪製出邊坡破壞面。設立閾值之目的在於排

除掉邊坡沒有發生破壞的區域，而將邊坡破壞面獨立出；在不斷調整及測試閾值

後，其值為 0.1時最接近 PLAXIS繪製出之邊坡破壞面，也因此後續將以此閾值

對 CNN模型預測出之剪應變增量矩陣進行後處理，以獲得圖象化的邊坡破壞面。

以目前使用剪應變增量值繪製邊坡破壞面的方法進行應用時會遭遇部分阻

礙，原因在於設計 CNN模型時，輸入進模型的答案標籤矩陣大小需相同，也就

是各斜率邊坡高斯點的數量需相同。然而，不同斜率的邊坡其高斯點數量有差

異，如單個坡角 30◦ 邊坡之高斯點數量共有 13,092個，而坡角 50◦ 邊坡因較陡峭

高斯點數量只有 12,192個，坡角 40◦邊坡則有 12,492個高斯點。因此，在資料預
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Figure 4.34: PLAXIS繪製之邊坡破壞面

Figure 4.35: 設立閾值後繪製之邊坡破壞面
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處理時，本研究做法為將高斯點數量不足 13,092個的坡角 40◦ 與坡角 50◦ 邊坡矩

陣以填充的方式將 0填充 (padding)在其剪應變增量矩陣的最後面，以此方式使三

種斜率的邊坡答案標籤矩陣大小皆相同，使模型能順利進行學習。最後，模型訓

練完成後預測出之剪應變增量矩陣對於每個不同的隨機場也皆同樣會是個大小為

1× 13092的矩陣，且此時剪應變增量值的排列順序會依照原先從 PLAXIS分析結

果獲得之高斯點座標進行排列，簡單來說即是只要將剪應變增量對應預先儲存好

的高斯點座標即可畫出邊坡破壞面位置圖。然而，這個方式可能也導致模型學習

中出現困難，後續章節將進行說明。

本研究中由 PLAXIS分析出之邊坡破壞面樣貌有幾種形式，圖4.36為凝聚力

與摩擦角在整個坡角 30◦ 邊坡中皆為固定值情形下，和同為坡角 30◦ 但為隨機場

邊坡之邊坡破壞面比較；均值邊坡之結果有較粗之帶寬，隨機場分析結果則有兩

種，分別為一條與兩條之邊坡破壞面。坡角 30◦、坡角 40◦與坡角 50◦之邊坡破壞

面形式如附錄 A所示；坡角 40◦ 邊坡也有兩種破壞面形式，但整體出現數量較坡

角 30◦邊坡少；坡角 50◦邊坡則無兩條破壞面同時出現之情形。

4.2.2 CNN模型訓練

這裡測試了淺層 CNN 模型的部分超參數，如樣本數、批量大小、dropout

rate、學習率等等，調整完成後的模型架構如表4.22，部分超參數的設置則如

表4.21所示，卷積層共含 4層，樣本數為 400個；其中，損失函數與預測安全係

數時使用的不同，這裡使用”cosine similarity”。

Cosine similarity的公式如4.4，中文可翻譯成餘弦相似性。方程式中 A、B為

兩向量，透過兩向量內積再除以兩向量長度相乘的結果可獲得 cosθ；其中 θ 為

兩向量的夾角。當兩向量高度相似時，夾角趨近於 0，而餘弦值則接近 1；反之，

若兩向量呈 90◦ 時，餘弦值則為 0；也就是說，cosine similarity只衡量兩向量的

方向，而與兩向量的長度無關。應用在邊坡破壞面時，CNN模型學習到的邊坡
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(a)坡角 30◦均質邊坡之 PLAXIS邊坡破壞面分析結果

(b)坡角 30◦隨機場邊坡之 PLAXIS邊坡破壞面分析結果 (一)

(c)坡角 30◦隨機場邊坡之 PLAXIS邊坡破壞面分析結果 (二)

Figure 4.36: 坡角 30◦邊坡之邊坡破壞面比較
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Table 4.21: 邊坡破壞面預測任務之淺層 CNN模型超參數設置

Parameters name Value

Sample size 400

Layer depth 4

Batch size 64

Learning rate 0.00001

Epoch 100

Loss function Cosine similarity

Table 4.22: 邊坡破壞面預測任務之淺層 CNN模型結構

Layer name Output size Failure surface prediction

conv2d 93× 233× 32 3× 3, 32, stride 3

batch_normalization 93× 233× 32 –

activation 93× 233× 32 ”ReLU”

dropout 93× 233× 32 weight 0.2

max_pooling2d 46× 116× 32 2× 2 max pool, stride 2

conv2d_1 44× 114× 64 3× 3, 64, stride 1

activation_1 44× 114× 64 ”ReLU”

dropout_1 44× 114× 64 weight 0.2

max_pooling2d_1 22× 57× 64 2× 2 max pool, stride 2

conv2d_2 20× 55× 128 3× 3, 128, stride 1

activation_2 20× 55× 128 ”ReLU”

dropout_2 20× 55× 128 weight 0.2

max_pooling2d_2 10× 27× 128 2× 2 max pool, stride 2

conv2d_3 8× 25× 256 3× 3, 256, stride 1

activation_3 8× 25× 256 ”ReLU”

dropout_3 8× 25× 256 weight 0.2

flatten 51200 –

dense 13092 –

activation_3 13092 ”ReLU”
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破壞面與答案標籤中的破壞面越相似越好，且與其剪應變增量值無關聯；因為

如3.3.3所述，PLAXIS以安全分析計算出之剪應變增量值並無實際意義。因此，

在預測邊坡破壞面的任務中，cosine similarity的特性使其適合作為模型計算誤差

時之損失函數。另外，在 Keras中使用 cosine similarity時，因為模型學習過程中

會試圖將損失降到最低，因此損失為-1時反而表示兩向量有最高的相似性，損失

為 0則代表完全不相似，需特別注意。

cosine similarity =
A · B

||A|| ||B||
(4.4)

4.2.3 邊坡破壞面預測結果

邊破破壞面預測結果同樣分為兩部分，分別為對用來學習的坡角 30◦、坡角

50◦ 邊坡訓練資料再做預測，以及對沒看過的坡角 30◦、坡角 40◦、坡角 50◦ 邊坡

測試資料做預測。圖4.37為訓練完成之 CNN模型對訓練集的預測結果，兩斜率邊

坡之上下圖分別為 PLAXIS的分析結果與模型預測結果比較。在訓練集的再預測

中，平均 cosine similarity值可達-0.8721，表示模型對破壞面的位置有相當地把握

程度。圖4.38則為訓練完成之 CNN模型對測試集的預測結果，對於模型沒看過

的坡角 30◦、坡角 50◦ 邊坡而言，預測結果仍相當不錯，平均 cosine similarity值

可達-0.8604；然而，對於包括連斜率都不一樣的坡角 40◦ 邊坡，模型在這方面的

預測結果卻極差，平均 cosine similarity值只有-0.0399，相似度只有 4%，完全無

法預測出坡角 40◦ 邊坡之破壞面。模型的最大、最小及平均 cosine similarity值如

表4.23所示。

造成邊坡破壞面預測成果不佳的原因有相當多可能，包含資料前處理的手

法、模型超參數仍需調整、淺層 CNN模型的極限、訓練參數過多、損失函數的選

擇等等，種種因素皆可能導致模型最後的成效不佳。關於此問題的改善方法，將
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(a)坡角 30◦邊坡破壞面預測

(b)坡角 50◦邊坡破壞面預測

Figure 4.37: 訓練完成之 CNN模型對訓練資料預測之結果比較
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(a)坡角 30◦邊坡破壞面預測

(b)坡角 40◦邊坡破壞面預測

(c)坡角 50◦邊坡破壞面預測

Figure 4.38: 訓練完成之 CNN模型對測試資料預測之結果比較
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Table 4.23: CNN模型對不同數據集之預測結果指標比較

Data set Best similarity Worst similarity Average similarity

Training data -0.9612 -0.4232 -0.8721

Testing data (w/o 40◦ slope) -0.9558 -0.5154 -0.8604

Testing data (only 40◦ slope) -0.0739 -0.0219 -0.3987

於第5.1章節的結論與建議中，做出總結以及討論可能突破的方向。
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第五章 結論與建議
5.1 結論

本研究透過生產不同條件之隨機場邊坡，以有限元軟體 PLAXIS分析得相對

應之安全係數與邊坡破壞面，再訓練卷積神經網路模型並預測不同條件下隨機場

邊坡之安全係數和邊坡破壞面。研究中較為創新之想法為藉由學習坡角 30◦ 與坡

角 50◦ 之隨機場，預測坡角 40◦ 邊坡之安全係數與邊坡破壞面，且在經過一系列

的比較與測試後，成果各有優劣，以下分成兩大部分進行說明。

安全係數預測部分，案例一與案例二之訓練資料及測試資料在各自的例子

中，來源皆為同樣變異係數和關聯性長度的數據集，而預測結果顯示淺層的 CNN

模型和 ResNet-6模型在這兩個案例中學習的效果很好，不論是何種斜率的邊坡都

能準確地預測出對應的安全係數，且 ResNet-6模型精準度又比淺層 CNN模型再

稍微高些；深度達 18、34，甚至 50層的殘差網路模型表現則差強人意，雖然深

度越深的模型理論上能學到更多的細節與特徵，然而模型卻也更難訓練，同時大

量增加的參數數量也使訓練時間大幅增長。因此，本研究後續捨棄了深層網路，

只以淺層 CNN及 ResNet-6進行其他測試。案例三與案例四之測試資料與其訓練

資料來源則有區別，案例三中兩數據集之隨機場變異係數不相同但關聯性長度相

同；案例四中則相反，兩數據集之隨機場變異係數相同但關聯性長度不同。做

出以上差異可更進一步地測試模型的泛化能力，考驗其在面對不同情形下的通

用程度。測試結果顯示，案例三中以 COV=0.2隨機場做訓練之淺層 CNN模型，

在以同樣是 COV=0.2的資料做預測時能準確命中安全係數的分布，然而應用在

COV=0.1的隨機場時則會低估其值；應用在 COV=0.3之隨機場時則會高估其值。

測驗 ResNet-6模型時也同樣有類似趨勢，差異在於 ResNet-6模型計算出的誤差相
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較淺層 CNN模型要來的少，這顯示 ResNet-6模型有較佳之泛化能力。案例四則

是以水平向關聯性長度與垂直向關聯性長度分別為 10與 0.5組合之隨機場作為訓

練資料，訓練完成之淺層 CNN模型對任何關聯性長度比值隨機場之預測依舊準

確；而 ResNet-6模型亦同，不同的水平向與垂直向關聯性長度比值皆不影響兩模

型的預測成效。根據以上發現，研究可歸納出以下幾項結論：

1. 訓練得宜之卷積神經網路模型能有效地學習到邊坡斜率的不同對安全係數的

影響，不論訓練資料之隨機場變異係數或關聯性長度與測試資料相同與否，

CNN模型皆能推測出坡角 40◦ 邊坡之安全係數應介於其他兩角度邊坡中間

之結果。

2. 欲建立隨機場邊坡以 CNN模型預測時，變異係數大小的選擇對分析結果影

響相當顯著，變異係數直接地影響土壤強度的機率分佈情形，如圖3.1中所

示，也因此若只以單個變異係數生成之隨機場邊坡做為訓練資料，容易導

致模型訓練時過度擬合該組資料，最後造成模型在預測別組變異係數隨機

場邊坡時成效不佳。關聯性長度之大小組合對分析結果之影響同樣相當大

(如2.2.6小節所述)，但在本研究中設定之關聯性長度組合之影響並不如變異

係數來的顯著。

3. 案例三中淺層 CNN 模型與 ResNet-6 模型雖然都有過擬合的疑慮，然而

ResNet-6模型不論是對變異係數為 0.1或變異係數為 0.3之隨機場邊坡預測

出之結果皆較優。造成這現象之可能原因為 ResNet-6深度較深，在案例三

的學習過程中有多達 3百多萬個參數，然而淺層 CNN學習過程中只有約 24

萬個參數，兩者參數量相差 12倍以上；這使得 ResNet-6模型能更有餘裕應

付更多元的問題。同時，殘差的概念使 ResNet-6模型不易因層數加深而發

生退化問題，也因此儘管殘差神經網路隨著深度增加後會愈來愈難訓練且較

費時，但其仍存在其強大的優勢，使用者應在應用時於精確度、效率與時間

成本間取得平衡。因此，綜合所有測試的模型，ResNet-6模型較適合用於本
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研究之案例中。

4. 不論是何項案例，泛化能力較強之 ResNet-6模型皆只需不超過 420個樣本

數，便得以預測出大部分MAPE誤差皆小於 5%之安全係數值；相比以蒙地

卡羅法為主進行的可靠度分析，樣本數需動輒數千個才能獲得相對可靠之破

壞機率 (Wang and Goh, 2021)。雖然在前期訓練 CNN模型時，同樣需要花費

時間及電腦資源；然而，一旦訓練出一個泛化能力夠強的模型，之後只需依

標準流程生成隨機場圖片，後續即可直接使用該模型預測所需結果。本研究

結果顯示訓練得宜的殘差神經網路相當有潛力達成此項目標。

邊坡破壞面預測部分，淺層 CNN模型在訓練資料與測試資料之變異係數、關

聯性長度皆相同的情況下，預測出之坡角 30◦、坡角 50◦邊坡破壞面成效皆令人滿

意，然而對於坡角 40◦ 邊坡卻無法預測出一個面；有幾項導致模型預測成果不佳

的可能性如下:

1. 邊坡破壞面之圖形是依據篩選邊坡內每個高斯點所對應之剪應變增量值，再

以對應之高斯點座標繪製而成。其中，高斯點位置為有限元軟體在生成網格

時依照網格形狀決定；相同形狀與大小的網格，其高斯點分布會相同。然

而，不同斜率之邊坡在坡面處網格為形狀不同之三角形或多邊形，部分高斯

點尤其是靠近坡面處點位之座標也將不一致；也因此，這可能導致了 CNN

模型在學習及預測上產生困難，對於模型沒看過的坡角 40◦邊坡更是很難對

未知的高斯點位置進行精確的剪應變增量值預測。

2. 預測邊坡破壞面時，簡單 3層的 CNN模型總參數量即已接近 1億個；儘管

參數越多模型越有機會得以學習到更細緻的特徵，但這同時也大幅增加模型

運算的負擔，且不保證可與優良的學習成效畫上等號。且由於預測邊坡破壞

面時模型之輸出多達 13092個值，若欲獲得較佳之學習成果，有相當大的可

能性需要多於 1億個參數量才得以泛用在不同案例的邊坡破壞面預測問題
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上。因此，除了嘗試調整模型超參數外，思考如何簡化破壞面之預測方法亦

為未來之可能突破點。

3. 本研究選擇 cosine similarity作為訓練模型時的損失函數。此函數特性為不

考慮兩向量值的大小而只考慮兩向量之夾角 (即相似性)，相當符合 PLAXIS

分析出之剪應變增量的特性；然而其是否為最適合本案例之損失函數實則為

未知，需做更進一步地確認。

5.2 建議

1. 本研究中僅使用兩個隨機參數建構隨機場，且假設其關聯性為 0；但當更多

的參數被引入後，其彼此間將有愈高的機會在某程度上具有相當的關連性。

這時，應該建立參數間之互相關 (cross-correlated)矩陣，以確保參數間非完

全獨立。

2. 訓練模型過程中，應盡量避免根據對測試集做預測後之結果選擇調整超參數

的方向；過度參考某測試資料中之預測結果，容易造成在其他測試資料成效

不佳，進而導致模型泛化能力差。

3. 目前以剪應變增量值大小繪製邊坡破壞面之方法過於複雜，動輒上億的參數

量對電腦運算也相當不友善。建議未來研究方向以簡化破壞面為主，先確認

CNN模型能否進行簡單版本的預測，再思考如何抓取更精細之破壞面。方

法如使用塑性變形點 (plastic point)並只選擇破壞點作為輸出，減少輸出點位

的數量；其他方法如以圖像方式作為答案標籤亦為可行之方式，當使用圖像

作為答案標籤時，CNN可以直接學習從輸入影像到對應的答案的映射關係，

對於學習成果可能也會有相當幫助；或是於驗證資料中加入坡角 40◦隨機場

邊坡可能也有助於模型更好的學習與判斷。

4. 若欲得知 CNN模型在學習過程中學習到哪些特徵，可使用Grad-CAM (Class
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Activation Mapping)方法獲得 heatmap，透過將特徵視覺化的方式了解 CNN

學習過程中關注的重點區域。
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附錄 A—邊坡破壞面形式

(a)坡角 30◦均質邊坡之 PLAXIS邊坡破壞面分析結果

(b)坡角 30◦隨機場邊坡之 PLAXIS邊坡破壞面分析結果 (一)

(c)坡角 30◦隨機場邊坡之 PLAXIS邊坡破壞面分析結果 (二)

Figure A.1: 坡角 30◦邊坡之邊坡破壞面比較
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(a)坡角 40◦均質邊坡之 PLAXIS邊坡破壞面分析結果

(b)坡角 40◦隨機場邊坡之 PLAXIS邊坡破壞面分析結果 (一)

(c)坡角 40◦隨機場邊坡之 PLAXIS邊坡破壞面分析結果 (二)

Figure A.2: 坡角 40◦邊坡之邊坡破壞面比較
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(a)坡角 50◦均質邊坡之 PLAXIS邊坡破壞面分析結果

(b)坡角 50◦隨機場邊坡之 PLAXIS邊坡破壞面分析結果 (一)

Figure A.3: 坡角 50◦邊坡之邊坡破壞面比較
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