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摘要

本文對具有挑戰性的分類任務的特徵表示進行了全面探索。研究工作聚焦於

四個關鍵方面：多實例數據分佈的學習、無標籤數據分佈的學習、現實世界數據

分佈的學習以及順序數據分佈的學習。首先在多實例數據的情境下，我們引入了

一種新穎的跨注意力池化方法，結合注意力引導，有效地表示給定特定查詢的一

組實例。所提出的方法捕捉了關鍵特徵，實現了準確的分類。接著，為應對無標

籤數據分佈的挑戰，本文提出了一種解耦對比學習框架。該框架緩解了對比學習

中大批量數據的問題，並討論了各種方法對後續分類任務的影響。然後，在面對

現實世界數據分佈帶來的獨特挑戰時，例如細粒度和長尾問題，我們提出了一種

自適應批次混淆規範（ABC-Norm）。該方法同時解決了這兩項問題，實現了針

對現實世界情境的表徵學習。最後，在處理多個偽造組件和順序問題的深偽影像

的表徵問題時，我們將該問題分解為深偽分類、多標籤定位和偽造順序恢復的任

務，並提出了一種多標籤排序機制，結合對比的多實例情境，以恢復順序數據分

佈。透過廣泛的實驗，本文為分類任務的表徵學習做出了重要貢獻，我們討論了

最先進的方法，並且在每個方面中的挑戰都提出了新穎的方法並取得突出的研究

成果。

關鍵字：表徵學習、多實例學習、自監督學習、現實世界分佈、順序數據分佈。
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Abstract

This thesis presents a comprehensive exploration of feature representations for chal-

lenging classification tasks. The research efforts focus on four key aspects: learning with

multi-instance data distributions, learning with unlabeled data distributions, learning with

real-world data distributions, and learning with ordering data distributions.

In the context of multi-instance data, we introduce a novel cross-attention pooling

approach, incorporating attention guidance, to effectively represent a bag of instances

given a specific query. The proposed method captures essential features and enables accu-

rate classification. To address the challenge of unlabeled data distributions, a decoupled

contrastive learning framework is proposed. This framework alleviates the issue of large

batch sizes in contrastive learning and discusses the implications of various approaches for

subsequent classification tasks. Real-world data distributions present unique challenges,

such as fine-grained and long-tailed issues. To tackle these complexities, we present an

adaptive batch confusion norm (ABC-Norm) that addresses both issues and enables the
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learning of robust feature representations tailored to real-world scenarios. Finally, we

address the representation of deepfake images, which involve multiple manipulated com-

ponents and ordering issues. The problem is decomposed into deepfake classification,

multi-label localization, and manipulation ordering tasks. A multi-label ranking mech-

anism, combined with a contrastive multi-instance scenario, is proposed to recover the

ordering data distributions.

Through algorithmic design and extensive experimentation, this thesis contributes to

the advancement of representation learning for classification tasks. It discusses state-of-

the-art methodologies, pinpoints the challenges associated with each aspect, and proposes

effective research approaches. The findings of this research provide useful insights into

the field of representation learning for tackling challenging classification tasks.

Keywords: representation learning, multi-instance learning, self-supervised, real-world

distributions, ordering data distributions.
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Chapter 1 Introduction

Representation learning is a fascinating field of research that revolves around the ac-

quisition of concise and meaningful numerical representations for various types of signal

sources. The predominant signal sources in representation learning include video, text,

audio, and images. The primary objective of this thesis is to harness these learned repre-

sentations specifically for image-based tasks, including information retrieval and classifi-

cation. An exemplary illustration of this concept can be observed in the popular scenario

of searching for images on Google. When a user enters text keywords, Google employs

representation learning techniques to retrieve and present a set of images that are most

relevant to the provided words.

In the field of computer vision, representation learning is commonly accomplished by

training deep learning models to transform raw input into numerical vectors, also known

as embeddings. When dealing with image data, these numerical vectors are typically mul-

tidimensional to capture and preserve the underlying information of the objects within the

images.

An effective representation model offers numerous advantages. Firstly, it provides

optimal initial weights for other related tasks, such as object detection and semantic seg-

mentation. By leveraging the knowledge encodedwithin the learned representations, these
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Figure 1.1: The model trained from random initialization needs more iterations to con-
verge in the object detection task.

subsequent tasks can benefit from a solid starting point, facilitating more accurate and

efficient results. Secondly, a well-designed representation model can significantly expe-

dite the training process. By utilizing a pre-trained model with well-established embed-

dings, the learning process can converge more rapidly, saving valuable time and compu-

tational resources. Figure 1.1 [52] visually demonstrates the advantages of employing

a high-quality pre-trained model, which supplies an excellent initial representation for

downstream tasks.

In this thesis, we present an extensive landscape of in-depth research efforts focused

on addressing a series for exploring feature representations for challenging classification

tasks. The primary objective is to investigate feature representations from different per-

spectives, encompassing the following aspects:
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Learning with Multi-Instance Data Distributions: This aspect explores the represen-

tation of a collection of instances, commonly referred to as a “bag,” when given a specific

query. The goal is to develop effective techniques that capture essential features encom-

passing the entire bag, enabling accurate classification.

Learning with Unlabeled Data Distributions: This aspect lies in representing images

that lack any form of annotation or labeling. The challenge is to devise methodologies

that can extract meaningful representations from these unlabeled images, facilitating sub-

sequent classification tasks.

Learning with Real-World Data Distributions: This aspect delves into representa-

tions derived from real-world data distributions, which often encompass fine-grained and

long-tailed issues. The focus is on developing robust feature representations that can ef-

fectively handle the challenges posed by such complex distributions, ultimately leading to

improved classification performance.

Learning with Ordering Data Distributions: This aspect specifically addresses the

representation of deepfake images, which typically involve multiple manipulated compo-

nents with ordering issues. The objective is to devise representation learning techniques

that can effectively capture and encode the intricate manipulations within these images,

enabling accurate classification and recovering the order of manipulations.

We provide a comprehensive overview of the aforementioned aspects, highlighting

the challenges associated with each and discussing state-of-the-art methodologies pro-

posed in the literature. The presented research landscape contributes to the advancement

3
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of classification tasks by enabling the development of more powerful and robust feature

representations.

4
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Chapter 2 Learning with

Multi-Instance Data

Distributions

2.1 Introduction

Supervised learning techniques that rely on deep neural networks have made sig-

nificant progress in active research fields of artificial intelligence such as classification

[53, 112], the mainstream of computer vision applications. In solving an image classifi-

cation problem, each training sample often comprises a raw image and the corresponding

class/category label. However, such a classification setting may not be sufficient to satis-

factorily account for real-life applications nowadays. With the rapid advances of machine

learning research, it becomes feasible to simultaneously explore all the useful information

of either an image or a batch of images. In other words, image classification is no longer

restricted to the problem where an image is labeled as a single category. Among the vari-

ants of classification frameworks, e.g., as illustrated in Figure 2.1, we aim to address the

multi-instance multi-label learning (MIML) in [150] from a novel viewpoint of learning

through queries.

5

http://dx.doi.org/10.6342/NTU202301574


doi:10.6342/NTU202301574

The MIML problem is characterized by that an object or a bag consists of several

instances with multiple class labels. While MIMLSVM [149] is proposed to deal with the

problem, deep MIML in [42] is shown to be more effective than other traditional methods.

Notably, existing supervised learning approaches for MIML are provided with the full

binary label vector associated with each training bag, and thus have access to the presence

of any class label in a bag. Such a learning setting requires extensive manual efforts

in annotating the vast amount of training bags. In our method, a query-driven multiple

instance learning (qMIL) framework is proposed to tackle MIML without specifying the

full binary label vector. In fact, the qMIL formulation requires only a binary label for

each bag along with the corresponding label query. The proposed method thus has two

main advantages. First, it is flexible to introduce new classes into the model without the

need to modify the labeling information in the existing training data and the classification

layer. Second, the query mechanism enables qMIL to inherently and additionally perform

zero-shot classification in a crude way.

2.2 Related Work

For the ease of discussion, we divide the literature survey of relevant techniques

into three groups, namely, multi-instance learning, attention mechanism, and zero-shot

learning.

Multi-instance Learning The MIL paradigm deals with those learning problems for

which labels only exist for sets of data points. A set of data points is typically termed

as a bag and each data point is considered as an instance. Following [31], a bag is said

to be positive with respect to a certain binary label if at least one instance within the

6
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Figure 2.1: Variants of supervised-learning tasks: (a) Classification (b) Multi-instance
learning (MIL) (c) Multi-instance multi-label learning (MIML) (d) Query-driven multi-
instance learning (qMIL).

bag is positive. The strategy of [22] maps each bag into a feature space defined by the

instances in the training bags via an instance similarity measure and ℓ1-norm SVM is

applied to select important features as well as construct classifiers simultaneously. In

[79], the authors construct nearest-neighbor graphs among instances and uncover positive

instances within positively-labeled groups. The MIL formulation in [95] is designed to

learn a semantic segmentation model based on weak image-level labels. More recently,

[128] employs neural networks that aim at solving the MIL problems in an end-to-end

manner. An attention-based neural network model is proposed in [59] to detect positive

instances automatically. In [29], a recurrent neural network model called MI-RNN is

developed to find out the signature, which is linked to those positive instances in a bag.

Among the aforementioned classical MIL problems, each bag has only one corresponding

label. However, in many practical applications, a complex bag (such as an image), which

7
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contains various instances like pixels, may have more than one relevant label. The MIML

framework of [149] is established to tackle the complicated scene classification. Over

the past few years, assorted algorithms, ranging from traditional, e.g., SVM [6, 91] and

k-nearest neighbor (KNN) [142], to popular like deep neural network learning [42], have

been proposed to address the MIML problem.

Attention Mechanism The attention mechanism has a significant impact on designing

deep learning architecture to solve challenging applications in artificial intelligence, in-

cluding image captioning, e.g., [134, 137], visual question answering, e.g., [85], and ma-

chine translation, e.g., [86]. For solving the MIL or MIML problems, as the individual

instance labels of training data are not given, the attention distribution is often learned

implicitly via optimizing the bag-level objective function.

Zero-shot Learning A critical limitation of deep learning is that it often takes a mas-

sive amount of samples to train a satisfactory model, and the classifier, such as trained

by cats and dogs, can only classify cats and dogs. This means that the classifier is not

able to be directly applied to recognize other species. On the contrary, zero-shot learning

(ZSL) refers to the learning of classifying samples of unseen categories. It implies that

the training classes and the zero-shot testing classes are different. For example, the ZSL

algorithm proposed in [71] guides the model to classify unseen categories, empowering

machines the capacity for reasoning and true intelligence.

Our Approach To establish the proposed qMIL, we first need to generate a training

dataset of bags. Specifically, for each query about a certain class label, a bag of instances

from randomly-selected classes are generated. If there exists at least one instance from

8
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the query class, the underlying bag is said to be positive and its binary label is set to 1.

Otherwise, it is a negative bag with label 0. Notice that only the examples from the classes

of interest can be included in a bag. Our setting is different from that in [29] where a

positive bag is composed of one or a few positive instances and several negative instances,

which are usually noise, i.e., not from any of the underlying classes of interest. In qMIL,

each training sample/bag is annotated with a binary label, rather than a binary label vector

over all classes as in the MIML setting. However, the proposed method still satisfactorily

solves the MIML problem in that a proper bag representation for classification can be

obtained by qMIL via more effectively estimating the query-adapted attention distribution

over instances within a bag. We summarize the main advantages of the proposed qMIL

over other existing techniques below.

1. The qMIL formulation is flexible. When new data of additional classes are included,

all binary labelings of the existing training data remain the same, whereas annotating

with a full label vector as in the conventional MIML needs to modify all the labeling

information.

2. The qMIL network architecture is general. When additional new classes are intro-

duced, the network architecture remains the same. It can be readily fine-tuned to

classify the new classes by generating the queries of new classes and the correspond-

ing training bags. However, with the MIML architecture, one would need to expand

the classification layer to account for the new classes.

3. The qMIL framework enables zero-shot classification. When data of unseen classes

are added in the testing bags, we perform iterative queries to first remove most

positive instances of seen classes from a given testing bag, and then compute a

9
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more reliable attention distribution for each query of an unseen class to decide if

any positive instance of an unseen class is present or not.

2.3 Approach

The qMIL framework is developed to learn a neural network model that adapts to the

underlying query and dynamically yields a proper bag representation for classification.

To comprehend the main ideas, we focus on describing: 1) how to generate the training

data; 2) how to establish a generalized compatibility measure to facilitate the query-visual

co-embedding; 3) how to employ label-dependent regularization to yield the desirable

attention distribution over bag instances; and 4) how to use attention pooling to obtain the

query-adapted bag representation for classification. Finally, we detail a handy procedure

resulted from qMIL to carry out zero-shot classification via iterative queries.

2.3.1 The qMIL Problem

In the classical supervised learning such as multi-class classification, the aim is to

train a model that predicts a target label y ∈ {1, . . . , C} for a given test sample x ∈ RD,

where C represents the number of classes. However, in the formulation of qMIL, each

example is represented as a bag of instances,X = {x1, . . . , xKX
}, whereKX is the number

of instances and could vary over bags with a pre-specified upper bound K. Notice that

neither dependency nor ordering relationships are considered in generating the instances

for each bag.

To incorporate the query mechanism into qMIL, we have a set of C queries, Q =

{q1, . . . , qC}, where the query qc inquires the existence of class label c in a bag, and is

10
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encoded with the corresponding class name/word. The proposed qMIL implicitly solves

a more challenging MIML problem than the conventional one. The critical distinction

is that each bag X in the training data of qMIL comes with only a single binary ground

truth Y indicating the existence of at least one instance of a particular class inX , while the

original MIML setting requires a fullC-dimensional binary vector describing the presence

of all the class labels inX . When C = 1, this is exactly the form of training data used for

solving a binary MIL problem. For C > 1, we use a triplet (X,Y, q) to indicate that the

bag label Y depends on the query q ∈ Q and is defined by

Y =


0, iff

∑KX

k=1 I(q ≡ yk) = 0,

1, otherwise,
(2.1)

where yk ∈ {1, . . . , C} is the class label of the instance xk in X . The notation I(q ≡

yk) is an indicator function for signaling whether the query q concerns the label yk. We

emphasize that the instance-level labels yk are not available in learning the qMIL model.

They are included in (2.1) solely for providing an analytic form in defining the bag label

Y with respect to the query q.

With (2.1), it is insightful to describe how the training data of qMIL are generated.

Suppose we intend to work with a query subset, Q′ ⊆ Q, and N training bags. Thus,

for each query q ∈ Q′, we generate N/|Q′| bags, which can be divided into two equal-

numbered positive and negative subsets, denoted as {(X+
i , Yi = 1, q)} ∪ {(X−

i , Yi =

0, q)}. The total number of instances in each bag is randomly decided with an upper bound

K, and only instances with a class label in {1, . . . , C} are considered. These |Q′| query-

dependent collections of bags form the final training dataset S ofN bags. It indicates that

the training procedure considers equal number of positive and negative training bags for

11
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Figure 2.2: The proposed qMIL neural network architecture.

each q ∈ Q′, which enables focusing on learning to solve the classification task without

imposing any presumed distribution on the data. In the experiments, we demonstrate that

the inference performance of qMIL does not significantly vary with respect to the ratio

between the numbers of positive and negative bags.

2.3.2 Query-adapted Attention Pooling

Although the number of instances in a qMIL bag could vary, we hereafter assume

that all bags have K instances. After all, null instances can be introduced when needed.

The unified bag size makes the batch training of learning the neural network, as shown

in Figure 2.2, more convenient. Now consider an arbitrary training bag (X,Y, q), we use

word2vec [90] to represent the query q as a 300-D feature vector and pass it through a

two-layer MLP to obtain the query embedding ϕ(q) ∈ Rd. On the other hand, the image

feature vector of each instance x is forward propagated through a three-layer MLP to yield

its visual embedding which is denoted as ψ(x) ∈ Rd. The two mappings can be aligned

to achieve query-visual co-embedding. To this end, we construct a network componentA

to function as a generalized compatibility measure for better exploring the co-embedding.

12
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Specifically, we have

A(ϕ(q), ψ(x)) = σ2(w⊺σ1(V (ψ(x)⊙ ϕ(q)))), (2.2)

where w ∈ RL×1 and V ∈ RL×d are network parameters, ⊙ denotes the element-wise

product, and σ1, σ2 are activation functions. When L = d and linear activation functions

in (2.2) are used, the generalized compatibility measure A simply reduces to taking inner

product between ψ(x) and ϕ(q) if both V and w are fixed as the identity versions.

It follows from (2.2) that we can use the compatibility measure A to compute the

unnormalized attention αk = A(ϕ(q), ψ(xk)) for each instance xk ∈ X to a given query

q. Then the attention-weighted pooling is utilized to obtain the bag representation z for

X , which adapts to the query q as follows:

z =
K∑
k=1

βk xk and βk =
exp{αk/τ}∑K
j=1 exp{αj/τ}

, (2.3)

where τ is the temperature parameter and βk is the normalized attention of instance xk ∈ X

to q.

2.3.3 Loss Function and Regularization

For each training triplet (X,Y, q) ∈ S , we now know how to derive the bag’s fea-

ture vector z according to (2.3) and the corresponding unnormalized attention vectorα =

(α1, . . . , αK)
⊺. To train the network to perform the (binary) classification task for predict-

ing the bag label with respect to q, we need to define a proper loss functionL to accomplish

the qMIL learning. Specifically, we consider a label-dependent attention-regularized loss

13
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function:

L(S) = L1(S) + λL2(S), (2.4)

where λ is the weighting parameter, and the two losses for classifying each (X,Y, q) ∈ S

are

L1(X) = Y log p(X) + (1− Y ) log (1− p(X)), (2.5)

L2(X) = Y ∥α(X)∥1 + (1− Y ){Var(α(X))}
1
2 . (2.6)

L1 in (2.5) is the cross-entropy loss and the attention regularization loss L2 in (2.6) plays

a crucial role in the proposed qMIL formulation. Here we justify the form of the proposed

regularization loss in (2.6) for the two possible cases.

• When Y = 1, the training bag X has a positive label to q and L2 = ∥α∥1. The ℓ1-

norm regularization effect is to find a sparse distribution of the instance attention.

The preference is reasonable in the case where at least one instance is relevant to

the query q and the sparse prior aims to distribute most attention to the relevant

instances.

• When Y = 0, we have L2 =
√
Var(α) = ∥α − ᾱ∥2. In this case all instances in

the training bagX are irrelevant to the query q. The use of ℓ2-norm thus encourages

the attention to uniformly spread over all the instances.

14
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2.3.4 Zero-shot Classification via Queries

Thus far we have described how to leverage with the query mechanism to implicitly

solve an MIML problem with a (triplet) training dataset, where each training bag is an-

notated only with a single binary label. We now explain how to apply a learned qMIL

model to tackle the following zero-shot scenario. Suppose that in generating testing bags,

we decide to consider instances from both the seen and unseen classes. Then, inquiring

an arbitrary testing bag X with a query about an unseen class would result in zero-shot

classification. We use an explicit example to depict the scenario. Let car be a seen class

and truck an unseen class. A testing bag X includes at least one instance of car and

all the other instances are not truck. A query about truck for X would most likely

confuse the qMIL model and yields a positive return for the false existence of a truck

instance. The confusion is caused by that car and truck are similar in the space in-

duced by word2vec. Thus, to tackle the resulting zero-shot classification, we consider a

two-stage procedure. In stage one, we iteratively perform queries of all the seen classes to

identify strong positive instances, and exclude them from further considerations. In stage

two, now without the severe distraction from the evident instances of seen classes, qMIL

can then estimate a proper attention distribution and thus refine the bag representation for

zero-shot classification. Further details are provided in the experimental results.

2.4 Experimental Results

We evaluate our method mainly on the MNIST-based dataset (MNIST-BAGS) [59]

and CIFAR10-based dataset (CIFAR10-BAGS). Besides the pilot study on zero-shot clas-

sification, there are three groups of experimental results. The first set of experiments
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concerns a standard MIL problem where we compare qMIL with the deep MIL in [59]. In

this setting, the total number of query class is just one. The second set of experiments is

then extended to dealing with the MIML problem. As we have pointed out that despite us-

ing less-annotated training data, qMIL yields convincing results and shows effectiveness

over the compared methods. The third set of experiments deals with a popular real-life ap-

plication, action recognition. The proposed qMIL is applied to determine whether a given

video clip contains a specific action to the query, where we have tested with a subset of

Activity Net [41].

Learning with qMIL is advantageous, especially in creating training data. We just

need to focus, in turn, on each particular category of interest, and mark whether the bag

assumes the label or not. This can reduce human errors when annotating multiple labels

and effectively reduce data noise. After all, in practical applications, we most likely care

about only the categories we are interested in. Finally, given a novel query about an

unseen class, the qMIL model is demonstrated to make reasonable predictions that are

significantly better than random guesses.

2.4.1 Data Sampling

Table 2.1: Single query results on MNIST/CIFAR over ten runs of training/testing data
sampling.

MNIST CIFAR10

Query GatedAttnDMIL qMIL Query GatedAttnDMIL qMIL

accuracy attention acc. accuracy attention acc. accuracy attention acc. accuracy attention acc.

0 95.4 ± 3.7 99.6 ± 1.2 96.9 ± 2.2 99.6 ± 1.2 plane 82.4 ± 1.7 82.7 ± 3.2 89.9 ± 1.7 84.8 ± 1.5
1 97.0 ± 4.1 99.6 ± 1.2 98.0 ± 2.4 99.8 ± 0.6 car 89.6 ± 1.8 95.7 ± 12.9 90.7 ± 1.4 95.1 ± 1.4
2 93.7 ± 3.6 99.6 ± 1.2 95.7 ± 2.7 99.6 ± 1.2 bird 72.4 ± 2.6 60.0 ± 22.7 73.6 ± 2.4 69.7 ± 9.0
3 93.2 ± 3.6 99.8 ± 0.6 96.0 ± 2.3 100.0 ± 0.0 cat 75.4 ± 3.0 54.1 ± 12.8 76.3 ± 2.9 59.7 ± 10.3
4 94.7 ± 2.5 99.2 ± 0.9 96.5 ± 1.3 99.4 ± 0.9 deer 71.4 ± 3.1 66.6 ± 5.9 73.8 ± 2.4 67.6 ± 5.6
5 94.0 ± 5.8 100.0 ± 0.0 97.0 ± 2.2 100.0 ± 0.0 dog 74.1 ± 2.3 62.2 ± 20.0 74.3 ± 1.8 69.8 ± 6.9
6 94.7 ± 4.1 99.00 ± 1.3 97.1 ± 2.4 99.2 ± 1.3 frog 82.2 ± 3.0 87.8 ± 1.9 82.6 ± 2.4 88.4 ± 2.5
7 94.2 ± 3.1 100.0 ± 0.0 96.1 ± 1.6 100.0 ± 0.0 horse 82.7 ± 2.9 77.8 ± 19.6 82.8 ± 1.9 82.8 ± 7.9
8 89.3 ± 6.9 99.20 ± 0.9 92.1 ± 5.9 99.6 ± 0.8 ship 87.8 ± 2.5 89.1 ± 1.8 88.4 ± 1.9 89.8 ± 1.4
9 91.3 ± 3.6 98.20 ± 1.9 92.9 ± 3.1 98.2 ± 1.9 truck 85.5 ± 1.8 90.4 ± 2.6 85.9 ± 1.6 91.6 ± 2.4
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We follow the similar data sampling method in [59] to create the MNIST-BAGS

MIL dataset from MNIST [72] and analogously from CIFAR10 [70]. The standard MIL

problem with one single query proceeds as follows. In MNIST or in CIFAR10, each of the

ten categories will be chosen in turn as the one of interest, and the remaining are treated

as background/noise. The instances in each bag are randomly included, and the number

of instances is an integer arbitrarily sampled from the normal distribution N (10, 2). To

speed up the training process, after data sampling and when necessary, zero images are

generated to ensure that each bag has exactly K image instances. We next turn to the

MIML scenario. For each image we now have multiple labels but do not indicate the

specific label of each instance. (We have described how we construct such training data

in establishing the qMIL problem.) There are two kinds of inference tasks for MIML.

One is the classical MIML problem, and the other is ours, which is query-driven. For fair

comparisons, we adopt the MIML Scene dataset [149] as the benchmark and report 10-

fold cross-validation results. Note that the numbers of positive bags and negative bags to

a query in theMIML Scene dataset is unbalanced. The ratio between positive and negative

bags is about 3 : 1. The last experiment is about action recognition. In this case, a video

clip can be thought of as a bag, while each frame is an instance.

2.4.2 Training and Inference

In the experiments of MNIST-MIL and CIFAR10-MIL, the hyperparameters can be

kept the same. This implies that the proposed attention regularization in (2.6) is general

and not data-sensitive. In MNIST, our CNN model conforms to the LeNet architecture

[72] which comprises two conv layers for MNIST, and three conv layers for CIFAR10.

The learning rate is 10−4 at initialization and the optimization method is Adam [68]. The
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weight decay is 10−5, while λ in (2.4) is 10−4 for all the experiments. We fix τ in (2.3)

as 0.5. σ1 and σ2 in (2.2) are tanh and linear mapping. For single query, the results are

reported with the mean and standard deviation from ten different runs of random data

sampling. For multiple queries, five random runs are instead evaluated for the sake of

efficiency.

Metrics In both our model and the compared method, the output of the bag-level pre-

diction to the MIL problem is a probability p. Thus to compute the accuracy of the bag-

level prediction, the decision threshold is set as p > 0.5 with label Y = 1 and p ≤ 0.5

with label Y = 0. Consider now an arbitrary bag X = (x1, . . . , xK). In both MNIST-

MIL and CIFAR10-MIL, we indeed have access to the class label of each instance, i.e.,

(y1, . . . , yK). The instance-level ground truth can be used to evaluate the accuracy of the

predicted instance attention in each bag. We name the resulting quantity as the instance-

level accuracy. The attention accuracy is evaluated as follows. Each time we predict the

bag label as Y = 1 for a triplet (X,Y, q), we check the instance label yk∗ of the most man-

ifest instance xk∗ where k∗ = argmaxk βk from (2.3). If yk∗ = 1, then we have correct

instance attention.

2.4.3 Standard MIL

In standard MIL experiments, for each single query to a specific class label we first

sample 500 training bags, including 250 positive and 250 negative bags from MNIST.

Analogously, another 1000 bags (500 “+” & 500 “-”) are also generated for testing. The

setting for CIFAR10 is the same. We compare our method with the state-of-the-art deep

MIL model, denoted as GatedAttnDMIL [59] and report the results in Table 2.1. The
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proposed qMIL achieves better performances in both bag-level accuracy and instance-

level attention accuracy. In Table 2.2, we report the performance versus different numbers

of training bags for the CIFAR10 dataset. The results are on 500 testing bags. To achieve

bag-level predictions of high confidence, qMIL needs 5000 training bags (2500 “+” &

2500 “-”) for a single query. Our method also achieves better results in both accuracy

metrics.

Table 2.2: Single query on CIFAR10. N : total # of training bags. (acc: accuracy, att:
attention)

N bags 100 500 1000 2000 5000

GatedAttnDMIL [59] acc 55.1 ± 8.6 62.1 ± 6.7 61.2 ± 6.2 70.6 ± 4.3 82.4 ± 1.7
qMIL 56.3 ± 4.5 62.8 ± 3.9 63.4 ± 4.1 71.8 ± 2.8 89.9 ± 1.7

GatedAttnDMIL [59] att acc 49.2 ± 20.1 58.2 ± 13.4 66.7 ± 8.3 76.8 ± 4.4 82.7 ± 3.2
qMIL 55.3 ± 11.3 61.2 ± 8.1 67.2 ± 5.2 78.2 ± 2.1 84.8 ± 1.5

Table 2.3: Performance with respect to # of queries on CIFAR10. The notation qMIL−

denotes that the regularization loss L2 in (2.6) is not used in training. For each query, we
sample 5000 training bags.

# queries 1 3 5 7 10

qMIL−
acc 82.4 ± 1.7 81.22 ± 1.8 71.23 ± 3.4 65.66 ± 4.6 78.33 ± 2.3

qMIL 89.9 ± 1.7 81.77 ± 1.4 79.45 ± 2.7 82.09 ± 2.1 86.14 ± 1.3

qMIL−
att acc 82.7 ± 3.2 65.52 ± 9.9 53.21 ± 10.37 45.66 ± 20.3 70.64 ± 5.4

qMIL 84.8 ± 1.5 87.22 ± 1.1 83.30 ± 1.3 86.01 ± 1.2 89.18 ± 1.0

Table 2.4: 10-fold cross validation on MIML Scene dataset.

accuracy

deep MIML [42] 89.45 ± 1.22
qMIL 90.20 ± 0.96

2.4.4 MIML

In the MIML problem, we have two ways of testing. One is to make the testing data

the same form by our labeling scheme on training data, and the other is the standardMIML

task that a bag of instances has several labels to be predicted. Table 2.3 shows the perfor-

manceswith respect to the numbers of query classes. When excluding the use ofL2 in (2.6)
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(shown as qMIL− in Table 2.3), we have trained with many different hyperparameters and

report the best results. It can be observed that with the attention regularization term, L2,

learning the model becomes easier and more stable during training. (Further details about

the regularization effect with L2 can be found in the supplementary material.)

We have also tested according to the standard MIML task by evaluating the model

with each query for a given bag. Table 2.4 and Figure 2.3 include the results of the MIML

task on the MIML Scene dataset and the comparison with the deep MIML [42] which is

shown to outperform MIML SVM, MIML KNN, MIML RBF and MIML Boost [150].

We adopt a pre-trained ResNet50 [53] and re-implement the deep MIML by following the

details described in the paper. The resulting deep MIML architecture consists of the pre-

trained ResNet50, 2D sub-concept layer for multiple instances, and max pooling twice to

yield the multi-label prediction. It is trained from scratch and learned end-to-end.

To better capture the effect of attention regularization, we investigate how the atten-

tion weights of a bag vary with respect to different queries of a class label. Table 2.5 shows

the bag-level prediction of probability p and the attention weight distribution according to

each query at testing.

Table 2.5: Given a testing bag (13 instances), the instance attention weights vary w.r.t.
different queries.

p

plane 0.04 0.07 0.02 0.01 0.02 0.01 0.03 0.05 0.01 0.12 0.55 0.05 0.01 0.99
car 0.00 0.00 0.01 0.81 0.01 0.00 0.01 0.01 0.00 0.11 0.01 0.01 0.00 0.99
bird 0.03 0.07 0.03 0.01 0.02 0.03 0.02 0.54 0.03 0.01 0.02 0.03 0.15 0.98
cat 0.07 0.24 0.19 0.01 0.05 0.11 0.02 0.04 0.08 0.01 0.02 0.02 0.16 0.96
deer 0.15 0.09 0.08 0.01 0.03 0.04 0.33 0.07 0.06 0.03 0.03 0.03 0.05 0.01
dog 0.04 0.09 0.29 0.01 0.01 0.08 0.01 0.02 0.37 0.01 0.01 0.01 0.06 0.99
frog 0.07 0.08 0.11 0.11 0.04 0.14 0.05 0.06 0.07 0.07 0.03 0.04 0.12 0.01
horse 0.06 0.03 0.05 0.01 0.01 0.02 0.68 0.02 0.06 0.02 0.01 0.02 0.02 0.96
ship 0.01 0.02 0.00 0.01 0.53 0.01 0.00 0.01 0.00 0.01 0.04 0.36 0.01 0.99
truck 0.05 0.05 0.07 0.13 0.05 0.03 0.08 0.05 0.04 0.26 0.08 0.09 0.02 0.01
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Figure 2.3: From column 2 to column 6: Each includes an attention heatmap and its bag-
level probability, while the input image is shown in the first column.

Bag: video (16 snippets), Instance: snippet (16 frames)

Snippet

0.96
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Query: Tumbling

Query: Shot put

Query: Discus throw

A
tt

e
n

ti
o

n
 w

e
ig

h
t

Snippet

Figure 2.4: qMIL for action recognition. Each video clip comprises 16 snippets. Three
different queries are chosen for testing. p is the bag-level probability prediction for sup-
porting a query.

2.4.5 MIML for Video Applications

The proposed qMIL can be readily applied to deal with video-related applications.

Particularly, we explore the problem involving the Activity Net [41] and convert the prob-

lem into our formulation described in the proposed qMIL. Following [124], each snippet

comprises 16 consecutive frames, and a video clip can thus be represented as a sequence

of snippets. Under such a setting, a video clip is a bag and each snippet is an instance,

while its bag label is defined with respect to the query. In our experiment, we consider

those video clips related to the following three action classes, namely, shot put, discus

throw, and tumbling. Figure 2.4 shows the result of the proposed qMIL approach to ac-

tion recognition.
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Table 2.6: Zero-shot testing accuracy with seven seen classes and three unseen classes.
Test data are sampled from seen+unseen (ten classes) or from unseen (seven classes).
IQP denotes the iterative query process.

horse ship truck total

seen & unseen 58.80 62.20 59.60 60.20
seen & unseen (IQP) 57.80 64.20 63.00 61.67
unseen 66.66 72.00 66.33 68.33

2.4.6 Zero-shot Scenarios

We also test qMIL for zero-shot classification on CIFAR10. Specifically, we train the

proposed qMIL with seven seen classes and test on the remaining three unseen classes.

Each bag in the training data is randomly composed of instances from the seven seen

classes, and the testing data are formed based on two kinds of sampling methods. The

fist scenario is that the testing bags are sampled only from the three unseen classes, and

the other is sampled from all of the ten classes (seen & unseen). For the latter case, the

learned qMIL is carried out with the help of iterative queries as described in Zero-shot

Classification viaQueries. The experimental results of zero-shot classification are shown

in Table 2.6 and Figure 2.5. We remark that the zero-shot scenario is essentially different

from the conventional formulation. Therefore, it is not appropriate to directly compare it

with other specific zero-shot learning techniques, which are cast in a very different way.

The application demonstrates that the advantages and flexibility of the proposed qMIL

formulation over conventional MIL frameworks.

2.5 Conclusions

From the viewpoint of problem reduction, the proposed qMIL framework indeed can

be considered as decomposing MIML into a series of query-driven MIL sub-tasks. The
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(a) 0.04 (b) 0.04 (c) 0.12 (d) 0.03 (e) 0.05

(f) 0.13 (g) 0.03 (h) 0.03 (i) 0.05 (j) 0.03 (k) 0.43

Figure 2.5: The “truck” class is not in the training data. Given the query of unseen “truck”,
qMIL with IQP will pay more attention to the “truck” image in a bag and the bag-level
probability is p = 0.96. The numbers are the attention weights.

reduction yields advantages in two different aspects. First, annotating each training bag

requires a single binary label, rather than a binary label vector. It also has the flexibility

to expand the training dataset to include data of new classes without the need to modify

the labeling information in the existing training bags. Second, the reduced sub-tasks can

all be cast as query-driven MIL, and thus can be addressed in a unified neural network

architecture. By focusing on solving the reduced MIML problem, we are able to establish

a query-visual co-embedding with the label-adapted regularization in (2.6) and represent

a given MIL bag with a proper representation for more effective classification. Our future

workwill focus on improving the qMIL attentionmechanism and expanding its application

aspect in image/video processing.
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Chapter 3 Learning with Unlabeled

Data Distributions

3.1 Introduction

As a fundamental task in machine learning, representation learning aims to extract

useful information from the raw data for the downstream tasks. It has been regarded as

a long-acting goal over the past decades. Recent progress on representation learning has

achieved a significant milestone over self-supervised learning (SSL), facilitating feature

learning with its competence in exploiting massive raw data without any annotated super-

vision. In the early stage of SSL, representation learning has focused on exploiting pretext

tasks, which are addressed by generating pseudo-labels to the unlabeled data through dif-

ferent transformations, such as solving jigsaw puzzles [92], colorization [143] and rotation

prediction [45]. Though these approaches succeed in computer vision, there is a large gap

between these methods and supervised learning. Recently, there has been a significant

advancement in using contrastive learning [19, 51, 118, 120, 133] for self-supervised pre-

training, which significantly closes the gap between the SSL method and supervised learn-

ing. Contrastive SSLmethods, e.g., SimCLR [19], in general, try to pull different views of

the same instance close and push different instances far apart in the representation space.
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Figure 3.1: An overview of the batch size issue is that general contrastive approaches
need large batch sizes to perform better: (a) shows the NPC multiplier qB in different
batch sizes. As the batch size gradually increases, the qB will approach to 1 with a small
coefficient of variation (Cv = σ/µ); and (b) illustrates the distribution of qB with various
batch sizes and indicates that the mode value of qB will shift towards 1when the batch size
increases. Note that the σ and µ are the standard deviation and mean of qB, respectively.
The coefficient of variation, Cv, measures the dispersion of a frequency distribution.

Despite the evident progress of the state-of-the-art contrastive SSL methods, there

have been facing several challenges into future development in this direction, including

1) The SOTA models, e.g., [51] may require specific structures such as the momentum

encoder and large memory queues, which may complicate the underlying representation

learning. 2) The contrastive SSL models, e.g., [19] often depend on large batch size and

huge epoch numbers to achieve competitive performance, posing a computational chal-

lenge for academia to explore this direction. 3) They tend to be sensitive to hyperparam-

eters and optimizers, introducing additional difficulty reproducing the results on various

benchmarks.

Through the analysis of the widely adopted InfoNCE loss in contrastive learning, we

identified a negative-positive-coupling (NPC) multiplier qB in the gradient as shown in

Proposition 1. The NPC multiplier modulates the gradient of each sample, and it reduces

the learning efficiency due to easy SSL classification tasks: 1) when a positive sample is

very close to the anchor; 2) when negative samples are far away from the anchor; and 3)
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when there is only a small number of negative samples (i.e., a small batch size). A less-

informative (nearby) positive view would reduce the gradient from a batch of informative

negative samples or vice versa. Such a coupling exacerbates when smaller batch sizes are

used.

Meanwhile, we also investigate the relationship between qB and batch size through

the baseline, SimCLR. As can be seen in Figure 3.1, the distribution of qB has a strong

positive correlation with the batch size. Figure 3.1(a) shows that when batch size gradually

increases, qB not only approaches 1 but also reduces the coefficient of variation Cv. The

distribution with larger Cv has low statistical dispersion and vice versa. Figure 3.1(b)

indicates that the mode value of qB will also shift from 0 to 1when the batch size becomes

larger. Hence, it is reasonable to fix the value of qB, alleviating the influence of batch size.

By removing the coupling term from the Info-NCE loss, we reach a new formula-

tion, the decoupled contrastive learning (DCL). The new objective function significantly

improves the training efficiency with less sensitivity to sub-optimal hyper-parameters re-

quires neither large batches, momentum encoding, or large epochs to achieve competitive

performance on various benchmarks. The main contributions of the proposed DCL can

be characterized as follows:

1) We provide both theoretical analysis and empirical evidence to show the NPC effect

in the InfoNCE-based contrastive learning;

2) We introduce DCL objective, which casts off the NPC coupling phenomenon, sig-

nificantly improves the training efficiency, and it is less sensitive to sub-optimal

hyper-parameters;

3) Extensive experiments are provided to show the effectiveness of the proposedmethod
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Negative force (repel): Weight average of all the negative samples.

When negative samples are far away from the anchor: 

attract force is reduced caused by the NPC multiplier qB.
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Figure 3.2: Contrastive learning and negative-positive coupling (NPC). (a) In SimCLR,
each sample xi has two augmented views {x(1)i , x(2)i }. They are encoded by the same en-
coder f and further projected to {z(1)i , z(2)i } by a normalized MLP. (b) According to Equa-
tion 3.4. For the view x(1)i , the cross-entropy loss L(1)

i leads to a positive force z(2)i , which
comes from the other view x(2)i of x and a negative force, which is a weighted average of
all the negative samples, i.e. {z(l)j |l ∈ {1, 2}, j ̸= i}. However, the gradient −∇z(2)i

L
(1)
i

is proportional to the NPC multiplier. (c) We show two cases when the NPC term affects
learning efficiency. The positive sample is close to the anchor and less informative on the
top. However, the gradient from the negative samples is also reduced. On the bottom,
when the negative samples are far away and less informative, the learning rate from the
positive sample is mistakenly reduced. In general, the NPC multiplier from the InfoNCE
loss makes the SSL task simpler to solve, leading to reduced learning efficiency.

that DCL achieves competitive performance without large batch sizes, large train-

ing epochs, momentum encoding, or additional tricks such as stop-gradient and

multi-cropping, etc. This leads to a plug-and-play improvement to thewidely adopted

InfoNCE-based contrastive learning;

4) We show that DCL can be easily combined with the SOTA contrastive methods, e.g.

NNCLR [39], to achieve further improvements.

3.2 Related Work

Contrastive Learning. Contrastive learning (CL) constructs positive and negative sam-

ple pairs to extract information from the data itself. In CL, each anchor image in a batch

has only one positive sample to construct a positive sample pair [19, 49, 51]. CPC [120]

predicts the future output of sequential data by using current output as prior knowledge,
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which can improve the feature representing the ability of the model. Instance discrim-

ination [133] proposes a non-parametric cross-entropy loss to optimize the model at the

instance level. Inv. spread [136] makes use of data augmentation invariant and the spread-

out property of instance to learn features. MoCo [51] proposes a dictionary to maintain a

negative sample set, thus increasing the number of negative sample pairs. Different from

the aforementioned self-supervised CL approaches, [66] proposes a supervised CL that

considers all the same categories as positive pairs to increase the utility of images.

Collapsing Issue on the Number of Negatives. In CL, the objective is to maximize

the mutual information between the positive pairs. However, to avoid the “collapsing

output”, vast quantities of negative samples are needed so that the learning objectives

obtain the maximum similarity and have the minimum similarity with negative samples.

For instance, in SimCLR [19], training requires many negative samples, leading to a large

batch size (i.e., 4096). Furthermore, to optimize such a huge batch, a specially designed

optimizer LARS [138] is used. Similarly, MoCo [51] needs a vast queue (i.e., 65536) to

achieve competitive performance. BYOL [46] does not collapse output without using any

negative samples by considering all the images are positive and to maximize the similarity

of “projection” and “prediction ” features. On the other hand, SimSiam [21] leverages the

Siamese network to introduce inductive biases for modeling invariance. With the small

batch size (i.e., 256), SimSiam is a rival to BYOL (i.e., 4096). Unlike both approaches that

achieved their success through empirical studies, we tackle from a theoretical perspective,

proving that an intertwined multiplier qB of positive and negative is the main issue to

contrastive learning.

Batch Size Sensitivity on InfoNCE. Several works of literature focus on batch size sen-

sitivity concerning the InfoNCE objective function. [119] proposes an objective based on
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relative predictive coding that maintains the balance between training stability and batch

size sensitivity. [54] follows the [4] and extends the idea between the local and global

features. [93] proposes a Wasserstein distance to prevent the encoder from learning any

other differences between unpaired samples. [62] and [101] learn better representation by

sampling hard negatives, particularly for small batches. Other recent works [40, 151] aim

to mitigate the issue of small batch size in InfoNCE loss. Although the basic principle of

recent works and DCL is derived from InfoNCE objective function, we provide a novel

perspective to support the decoupling between positive and negative terms in InfoNCE

loss is essential. Simply removing the term from the denominator pre-training to positive

pairs can drastically improve the performance and keep the objective function invariant to

batch size sensitivity.

3.3 DecoupleNegative andPositive Samples inContrastive

Learning

We choose to start from SimCLR because of its conceptual simplicity. Given a batch

of N samples (e.g. images), {x1, . . . , xN}, let x(1)i , x(2)i be two augmented views of the

sample xi and B be the set of all of the augmented views in the batch, i.e. B = {x(k)i |k ∈

{1, 2}, i ∈ [[1, N ]]}. As shown by Figure 3.2(a), each of the views x(k)i is sent into the same

encoder network f and the output h(k)i = f(x(k)i ) is then projected by a normalized MLP

projector that z(k)i = g(h(k)i )/∥g(h(k)i )∥. For each augmented view x(k)i , SimCLR solves a

classification problem by using the rest of the views in B as targets, and assigns the only

positive label to x(u)i , where u ̸= k. So SimCLR creates a cross-entropy loss function L(k)
i
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for each view x(k)i , and the overall loss function is L =
∑

k∈{1,2},i∈[[1,N ]] L
(k)
i .

L
(k)
i = − log

exp(⟨z(1)i , z(2)i ⟩/τ)
exp(⟨z(1)i , z(2)i ⟩/τ) + Ui,k

, (3.1)

where

Ui,k =
∑

l∈{1,2},j∈[[1,N ]],j ̸=i

exp(⟨z(k)i , z(l)j ⟩/τ) (3.2)

means the summation of negative terms for the view k of the sample i.

Proposition 1. : There exists a negative-positive coupling (NPC) multiplier q(1)B,i in the

gradient of L(1)
i :



−∇z(1)i
L
(1)
i =

q
(1)
B,i

τ

(
z(2)i −

∑
l∈{1,2},j∈[[1,N ]],j ̸=i

exp ⟨z(1)i ,z(l)j ⟩/τ
Ui,1

· z(l)j
)

−∇z(2)i
L
(1)
i =

q
(1)
B,i

τ
· z(1)i

−∇z(l)j
L
(1)
i = − q

(1)
B,i

τ

exp ⟨z(1)i ,z(l)j ⟩/τ
Ui,1

· z(1)i

(3.3)

where the NPC multiplier q(1)B,i is:

q
(1)
B,i = 1− exp(⟨z(1)i , z(2)i ⟩/τ)

exp(⟨z(1)i , z(2)i ⟩/τ) + Ui,1

(3.4)

and Ui,1 =
∑

l∈{1,2},j∈[[1,N ]],j ̸=i exp(⟨z
(1)
i , z(l)j ⟩/τ). Due to the symmetry, a similar NPC

multiplier q(k)B,i exists in the gradient of L(k)
i , k ∈ {1, 2}, i ∈ [[1, N ]].

As we can see, all of the partial gradients in Equation 3.3 are modified by the com-

mon NPC multiplier q(k)B,i in Equation 3.4. Equation 3.4 makes intuitive sense: when the

SSL classification task is easy, the gradient would be reduced by the NPC term. However,

the positive samples and negative samples are strongly coupled. When the negative sam-

ples are far away and less informative (easy negatives), the gradient from an informative,

positive sample would be reduced by the NPC multiplier q(1)B,i. On the other hand, when

the positive sample is close (easy positive) and less informative, the gradient from a batch
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of informative negative samples would also be reduced by the NPC multiplier. When the

batch size is smaller, the SSL classification problem can be significantly simpler to solve.

As a result, the learning efficiency can be significantly reduced with a small batch size

setting.

Figure 3.1(b) shows the NPC multiplier qB distribution shift w.r.t. different batch

sizes for a pre-trained SimCLR baseline model. While all of the shown distributions have

prominent fluctuation, the smaller batch size makes qB cluster towards 0, while the larger

batch size pushes the distribution towards δ(1). Figure 3.1(a) shows the averaged NPC

multiplier ⟨qB⟩ changes w.r.t. the batch size and the relative fluctuation. The small batch

sizes introduce significant NPC fluctuation. Based on this observation, we propose to re-

move the NPCmultipliers from the gradients, which corresponds to the case qB,N→∞. This

leads to the decoupled contrastive learning formulation. [127] also proposes an alignment

& uniformity loss which does not have the NPC. However, a similar analysis introduces

negative-negative coupling from different positive samples. In other words, [127] con-

siders all the negative samples in the batch together, which may cause the gradient to be

dominated by a specific negative pair. In Appendix 5, we provide a thorough discussion

and demonstrate the advantage of DCL loss against [127].

Proposition 2. the DCL Loss: Removing the positive pair from the denominator of

Equation 3.1 leads to a decoupled contrastive learning loss. If we remove the NPC mul-

tiplier q(k)B,i from Equation 3.3, we reach a decoupled contrastive learning loss LDC =∑
k∈{1,2},i∈[[1,N ]] L

(k)
DC,i, where L

(k)
DC,i is:

L
(k)
DC,i = − log

exp(⟨z(1)i , z(2)i ⟩/τ)
hhhhhhhhhexp(⟨z(1)i , z(2)i ⟩/τ) + Ui,k

(3.5)

= −⟨z(1)i , z(2)i ⟩/τ + logUi,k (3.6)

The proofs of Proposition 1 and 2 are given in Appendix. Further, we can generalize

the loss function LDC to LDCW by introducing a weighting function for the positive pairs
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i.e. LDCW =
∑

k∈{1,2},i∈[[1,N ]] L
(i,k)
DCW,i.

L
(k)
DCW,i = −w(z(1)i , z(2)i )(⟨z(1)i , z(2)i ⟩/τ) + logUi,k (3.7)

where we can intuitively choose w to be a negative von Mises-Fisher weighting function

that w(z(1)i , z(2)i ) = 2− exp(⟨z(1)i ,z(2)i ⟩/σ)
E i

[
exp(⟨z(1)i ,z(2)i ⟩/σ)

] and E [w] = 1. LDC is a special case of LDCW

and we can see that limσ→∞ LDCW = LDC . The intuition behind w(z(1)i , z(2)i ) is that

there is more learning signal when a positive pair of samples are far from each other, and

E
[
w(z(1)i , z(2)i )⟨z(1)i , z(2)i ⟩

]
≈ E

[
⟨z(1)i , z(2)i ⟩

]
. Other similar weight functions also provide

similar results. In general, we find such a weighting function, which gives a larger weight

to the hard positives tend to increase the representation quality.

3.4 Experiments

This section empirically evaluates the proposed decoupled contrastive learning (DCL)

and compares it to general contrastive learning methods. We summarize the experiments

and analysis as the following: (1) the proposed work significantly outperforms the gen-

eral InfoNCE-based contrastive learning on both large-scale and small-scale vision bench-

marks; (2) we show that the enhanced version of DCL, DCLW, could further improve the

representation quality; and (3) we further analyze DCLwith ablation studies on ImageNet-

1K, hyperparameters, and few learning epochs, which shows fast convergence of the pro-

posed DCL. Note that all the experiments are conducted with 8 Nvidia V100 GPUs on a

single machine.

3.4.1 Implementation Details

ImageNet. For a fair comparison on ImageNet data, we implement the proposed decou-

pled structure, DCL, by following SimCLR [19] with ResNet-50 [53] as the encoder back-

bone and use cosine annealing schedule with SGD optimizer. We set the temperature τ to

0.1 and the latent vector dimension to 128. Following the OpenSelfSup benchmark [140],
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Figure 3.3: Comparisons on ImageNet-1K with/without DCL under different numbers of
(a): batch sizes for SimCLR and (b): queues for MoCo. Without DCL, the top-1 accuracy
significantly drops when batch size (SimCLR) or queues (MoCo) becomes very small.
Note that the temperature τ is 0.1 for SimCLR and 0.07 for MoCo in the comparison.

we evaluate the pre-trained models by training a linear classifier with frozen learned em-

bedding on ImageNet data. We further consider evaluating DCL on ImageNet-100, a se-

lected subset of 100 classes of ImageNet-1K. Note that all models on ImageNet are trained

for 200 epochs.

CIFAR and STL10. For CIFAR10, CIFAR100, and STL10, ResNet-18 [53] is used as

the encoder architecture. Following the small-scale benchmark [130], we set the tem-

perature τ to 0.07. All models are trained for 200 epochs with SGD optimizer, a base

lr = 0.03 ∗ batchsize/256, and evaluated by k nearest neighbor (kNN) classifier. Note

that on STL10, we include both the train and unlabeled set for model pre-training. We

further use ResNet-50 as a stronger backbone by following the implementation [100], us-

ing the same backbone and hyperparameters.

3.4.2 Experiments and Analysis

DCL on ImageNet. This section illustrates the effect of DCL against InfoNCE-based

approaches under different batch sizes and queues. The initial setup is to have 1024 batch

size (SimCLR) and 65536 queues (MoCo [51]) and gradually reduce the batch size (Sim-

CLR) and queue (MoCo) to show the corresponding top-1 accuracy by linear evaluation.
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Table 3.1: Comparisons with/without DCL under different batch sizes from 32 to 512.
Results show the effectiveness of DCL on five widely used benchmarks. The performance
of DCL keeps steadier than the SimCLR baseline while the batch size is varied.

Batch Size 32 64 128 256 512

Dataset ImageNet-1K (kNN / Linear)

Baseline (ResNet-50) 40.2/56.8 42.9/58.9 45.1/60.6 46.3/61.8 49.4/64.0
w/ DCL (ResNet-50) 43.7/61.5 46.3/63.4 48.5/64.3 49.8/65.9 50.1/65.8

Dataset ImageNet-100 (kNN / Linear)

Baseline (ResNet-50) 67.8/74.2 71.9/77.6 73.2/79.3 74.6/80.7 75.4/81.3
w/ DCL (ResNet-50) 74.9/80.8 76.3/82.0 76.5/81.9 76.9/83.1 76.8/82.8

Dataset CIFAR-10 (kNN / Linear)

Baseline (ResNet-18) 78.9/79.8 80.4/81.3 81.1/82.8 81.4/83.0 81.3/83.3
w/ DCL (ResNet-18) 83.7/85.1 84.4/85.9 84.4/85.7 84.2/85.3 83.5/84.7

Dataset CIFAR-100 (kNN / Linear)
Baseline (ResNet-18) 49.4/51.3 50.3/53.8 51.8/55.3 52.0/56.3 52.4/56.8
w/ DCL (ResNet-18) 51.1/55.4 54.3/58.3 54.6/58.9 54.9/58.5 55.0/58.4

Dataset STL-10 (kNN / Linear)
Baseline (ResNet-18) 74.1/76.2 77.6/77.8 79.3/80.0 80.7/81.3 81.3/81.5
w/ DCL (ResNet-18) 82.0/85.2 82.8/86.3 81.8/86.1 81.2/85.7 81.0/85.6

Figure 3.3 indicates that without DCL, the top-1 accuracy drastically drops when batch

size (SimCLR) or queue (MoCo) becomes very small. While with DCL, the performance

keeps steadier than baselines (SimCLR: −4.1% vs. −8.3%, MoCo: −0.4% vs. −5.9%).

Specifically, Figure 3.3 further shows that in SimCLR, the performance with DCL

improves from 61.8% to 65.9% under 256 batch size; MoCo with DCL improves from

54.7% to 60.8% under 256 queues. The comparison fully demonstrates the necessity of

DCL, especially when the number of negatives is small. Although batch size increases to

1024, DCL (66.1%) still improves over the SimCLR baseline (65.1%).

We further observe the same phenomenon on ImageNet-100 data. Table 3.1 shows

that, with DCL, the top-1 linear performance only drops 2.3% compared to the InfoNCE

baseline (SimCLR) of 7.1% when the batch size is varied.

In summary, it is worth noting that, while the batch size is small, the strength of qB,i,

which is used to push the negative samples away from the positive sample, is also relatively
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Table 3.2: Comparisons between SimCLR baseline, DCL, andDCLW. The linear and kNN
top-1 (%) results indicate that DCL improves baseline performance, and DCLW further
provides an extra boost. Note that results are under batch size 256 and epoch 200. All
models are both trained and evaluated with the same experimental settings. The backbones
are ResNet-18 and ResNet-50 for CIFAR and ImageNet, respectively.

Dataset CIFAR10 (kNN) CIFAR100 (kNN) ImageNet-100 (linear) ImageNet-1K (linear)

SimCLR 81.4 52.0 80.7 61.8
DCL 84.2 (+2.8) 54.9 (+2.9) 83.1 (+2.4) 65.9 (+4.1)
DCLW 84.8 (+3.4) 55.2 (+3.2) 84.2 (+3.5) 66.9 (+5.1)

Table 3.3: Improve the DCLmodel performance on ImageNet-1K with tuned hyperparam-
eters: temperature and learning rate, and stronger image augmentation. Note that models
are trained with 256 batch size and 200 epochs.

ImageNet-1K (256 Batch size; 200 epoch) Linear Top-1 Accuracy (%)

DCL 65.9
+ optimal (τ, lr) = (0.2, 0.07) 67.8 (+1.9)
+ asymmetric augmentation [46] 68.2 (+0.4)

weak. This phenomenon tends to reduce the efficiency of learning representation. While

taking advantage of DCL alleviates the performance gap between small and large batch

sizes. Hence, through the analysis, we find out DCL can simply tackle the batch size issue

in contrastive learning. With this considerable advantage given by DCL, general SSL

approaches can be implemented with fewer computational resources or lower standard

platforms. Compared to InfoNCE, DCL is more applicable across all large-scale SSL

applications.

DCL on CIFAR and STL10. For STL10, CIFAR10, and CIFAR100, we implement

DCL with ResNet-18 as encoder backbone. In Table 3.1, it is observed that DCL also

demonstrates its strong effectiveness on small-scale benchmarks. In the evaluation (kNN

/ Linear) summary, DCL outperforms its baseline by 4.8% / 5.3% (CIFAR10) and 1.7%

/ 4.4% (CIFAR100) under a small batch size 32. The accuracy (kNN / Linear) of the

SimCLR baseline on STL10 is also improved significantly by 7.9% / 9.0%.

DecoupledObjective with Re-WeightingDCLW.We only replaceLDC withLDCW with

no possible advantage from additional tricks. Both DCL and the baselines apply the same

training instruction of the OpenSelfSup benchmark for fairness. Note that we empirically
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choose σ = 0.5 in the experiments. Results in Table 3.2 indicates that, DCLW achieves

extra 5.1% (ImageNet-1K), 3.5% (ImageNet-100) gains compared to the baseline. For

CIFAR data, an extra 3.4% (CIFAR10) 3.2% is gained from the addition of DCLW. It is

worth noting that, trained with 200 epochs, DCLW reaches 66.9% with batch size 256,

surpassing the SimCLR baseline: 66.2% with batch size 8192.

3.4.3 Ablations

We perform extensive ablations on the hyperparameters of DCL on both ImageNet

data and other small-scale data, i.e., CIFAR and STL10. By seeking better configurations

empirically, we see that DCL gives consistent gains over the standard InfoNCE baselines

(SimCLR and MoCo-v2). In other ablations, we see that DCL achieves more gains over

both SimCLR and MoCo-v2, i.e., InfoNCE-based baselines, also when training for 100

epochs only.

DCL Ablations on ImageNet. In Table 3.3, we have slightly improved the DCL model

performance on ImageNet-1K: 1) tuned hyperparameters, temperature τ and learning rate

; 2) asymmetric image augmentation (e.g., BYOL). To obtain a stronger baseline, we

conduct an empirical hyperparameter search with batch size 256 and 200 epochs. This

improves DCL from 65.9% to 67.8% top-1 accuracy on ImageNet-1K. We further adopt

the asymmetric augmentation policy from BYOL and improve DCL from 67.8% to 68.2%

top-1 accuracy on ImageNet-1K.

DCL Ablations on CIFAR. Further experiments are conducted based on the ResNet-50

backbone and large learning epochs (i.e., 500 epochs). The DCL model with kNN eval,

batch size 32, and 500 epochs of training could reach 86.1% compared to 82.2%. For the

following experiments in Table 3.4, we show DCL ResNet-50 performance on CIFAR10

and CIFAR100. In these comparisons, we vary the batch size to show the effectiveness of

DCL.

MoCo-v2 with DCL. We are aware that it is more convincing to compare the proposed

DCL against a more compelling version, MoCo-v2. Comparisons on both ImageNet-1K
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Table 3.4: The comparisons with/without DCL under various batch sizes from 32 to 512
on ResNet-50.

Architecture@epoch ResNet-50@500 epoch

Dataset CIFAR10 (kNN) CIFAR100 (kNN)

Batch Size 32 64 128 256 512 32 64 128 256 512

SimCLR 82.2 85.9 88.5 88.9 89.1 49.8 55.3 59.9 60.6 61.1
SimCLR w/ DCL 86.1 88.3 89.9 90.1 90.3 54.3 58.4 61.6 62.0 62.2

Table 3.5: Linear top-1 accuracy (%) comparison with MoCo-V2 on ImageNet-1K and
ImageNet-100.

Queue Size 32 64 128 256 8192 64 256 65536

Dataset ImageNet-100 (Linear) ImageNet-1K (Linear)

MoCo-v2 Baseline (ResNet-50) 73.7 76.4 78.7 78.7 79.8 63.9 67.1 67.5
MoCo-v2 w/DCL (ResNet-50) 76.2 78.3 79.6 79.6 80.5 65.8 67.6 67.7

and ImageNet-100 in Table 3.5 indicate that DCL becomes significantly more effective

than MoCo-v2 when the queue size gets smaller.

(a) CIFAR10

(b) STL10

InfoNCE@Epoch 5 InfoNCE@Epoch 40 InfoNCE@Epoch 70

DCL@Epoch 5 DCL@Epoch 40 DCL@Epoch 70

(c) t-SNE visualization

Figure 3.4: Comparisons between DCL and InfoNCE-based baseline (SimCLR) on (a)
CIFAR10 and (b) STL10 data. DCL speeds up the model convergence during the SSL
pre-training and provides better performance than the baseline on CIFAR and STL10 data.
(c) t-SNE visualization of CIFAR-10 with 32 batch size. DCL shows a stronger separation
force between the features than SimCLR.

Few Learning Epochs. DCL can alleviate the shortcoming of the traditional contrastive

learning framework, which needs a large batch size long learning epochs to achieve higher
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Table 3.6: ImageNet-1K top-1 accuracy (%) on SimCLR andMoCo-v2 with/without DCL
under few training epochs. We further list results under 200 epochs for clear comparison.
With DCL, the performance of SimCLR trained under 100 epochs nearly reaches its per-
formance under 200 epochs. The MoCo-v2 with DCL also reaches higher accuracy than
the baseline under 100 epochs.

SimCLR SimCLR w/ DCL MoCo-v2 MoCo-v2 w/ DCL

100 Epoch 57.5 64.6 63.6 64.4
200 Epoch 61.8 65.9 67.5 67.7

performance. The previous state-of-the-art, SimCLR, heavily relies on large quantities of

learning epochs to obtain high top-1 accuracy. (e.g., 69.3%with up to 1000 epochs). DCL

aims to achieve higher learning efficiency with few learning epochs. We demonstrate the

effectiveness of DCL in InfoNCE-based frameworks SimCLR and MoCo-v2 [20]. We

choose the batch size of 256 (queue of 65536) as the baseline and train the model with only

100 epochs. We make sure other parameter settings are the same for a fair comparison.

Table 3.6 shows the result on ImageNet-1K using linear evaluation. With DCL, SimCLR

can achieve 64.6% top-1 accuracy with only 100 epochs compared to SimCLR baseline:

57.5%; MoCo-v2 with DCL reaches 64.4% compared to MoCo-v2 baseline: 63.6% with

100 epochs pre-training.

We further demonstrate that, with DCL, learning representation becomes faster dur-

ing the early stage of training compared to the InfoNCE-based learning scheme. The

reason is that DCL successfully solves the decoupled issue between positive and negative

pairs. Figure 3.4 on (a) CIFAR10 and (b) STL10 shows that DCL improves the speed

of convergence and reaches higher performance than the baseline on CIFAR and STL10

data. The t-SNE visualization in Figure 3.4 (c) also supports the proposed theoretical

derivation that removing the batch-size dependent impact (i.e., NPC multiplier) should

improve representation learning abilities over the InfoNCE-based learning scheme.
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Table 3.7: Linear top-1 accuracy (%) comparison of SSL approaches on ImageNet-
1K. Given lower computational budget, DCL model are better than recent SOTA ap-
proaches. Its effectiveness does not rely on large batch size and epochs (SimCLR [19],
NNCLR [39]), momentum encoding (BYOL [46], MoCo-v2 [20]), or other tricks such as
stop-gradient (SimSiam [21]) and multi-cropping (SwAV [12]).

ResNet-50 w/ SimCLR BYOL SwAV MoCo-v2 SimSiam Barlow Twins NNCLR NNCLR +DCL

Epoch 400 400 300 1000 400
Batch Size 4096 256 256 256 / 512 256 / 512
ImageNet-1K (Linear) 69.8 73.2 70.7 71.0 70.8 70.7 68.7 / 71.7 71.1 / 72.3

3.5 Discussion

Comparisonwith other SOTASSLApproaches. The primary goal of this work is to pro-

vide an efficient and effective improvement to the widely used InfoNCE-based contrastive

learning, where we decouple the positive and negative terms to achieve better represen-

tation quality. DCL is less sensitive to suboptimal hyperparameters and achieves com-

petitive results with minimal requirements. Its effectiveness does not rely on large batch

size and learning epochs, momentum encoding, negative sample queues, or additional tac-

tics (e.g., stop-gradient and multi-cropping). Overall, DCL provides a more robust base-

line for the contrastive-based SSL approaches. Though this work aims not to provide a

SOTA SSL approach, DCL can be combined with the SOTA contrastive learning methods,

such as NNCLR [39], to achieve better performance without large batch size and learn-

ing epochs. In Table 3.7, we provide extensive comparisons to SOTA SSL approaches

on ImageNet-1K to validate the effectiveness of DCL. In Table 3.8, we further show that

DCL achieves competitive results compared to VICReg [2], Barlow Twins [139], Sim-

Siam [21], SwAV [11], and DINO [13] on ImageNet-100 and CIFAR-10.

Generalization of DCL to Different Domains. DCL can be easily adapted to different

domains (e.g., speech and language models) to achieve competitive performance. We

demonstrate that DCL can be combined with SOTA SSL speech models, e.g., wav2vec

2.0 [1] which uses transformer backbone and requires enormous computation resources.

We evaluate wav2vec 2.0 on its downstream tasks and perform better by applying the

DCL method. Detailed results and discussion can be found in Appendix. To the best

of our knowledge, DCL can be potentially combined with a transformer-based language
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Table 3.8: kNN & linear top-1 accuracy (%) comparison of SSL approaches on CIFAR10
and ImageNet-100.

ResNet-18 @ 256 Batch Size DINO SwAV SimSiam VICReg Barlow Twins NNCLR NNCLR+DCL

CIFAR-10, 1000 Epoch (kNN) 89.5 89.2 90.5 92.1 92.1 91.8 92.3
ImageNet-100, 400 Epoch (Linear) 74.9 74.0 74.5 79.2 80.2 79.8 80.6

Table 3.9: Results of DCL and SimCLR with large batch size and learning epochs.

ImageNet-1K (ResNet-50) Batch Size Epoch Top-1 Accuracy (%)

SimCLR 256 200 61.8
SimCLR 256 400 64.8
SimCLR 1024 400 67.3

SimCLR w/ DCL 256 200 67.8 (+6.0)
SimCLR w/ DCL 256 400 69.5 (+4.7)
SimCLR w/ DCL 1024 400 69.9 (+2.6)

model, CLIP [98], which uses a very large batch size of 32768. With DCL, CLIP shall

maintain its complexity and achieve huge learning efficiency when the batch size becomes

smaller. Note that it has been implemented by [125].

DCL Convergence for Large Batch Sizes. The performance of DCL appears to have

less gain compared to InfoNCE-based baseline when the batch size is large. According to

Figure 3.1 and the theoretical analysis, the reason is that the NPC multiplier qB → 0when

the batch size is large (e.g., 1024). As shown in the analysis, InfoNCE loss converges to the

DCL loss as the batch size approaches infinity. With 400 training epochs, the ImageNet-

1K top-1 accuracy slightly increases from 69.5% to 69.9% when the batch size increases

from 256 to 1024. Please refer to Table 3.9.

3.6 Conclusion

We identify the negative-positive-coupling (NPC) effect in the widely used InfoNCE

loss, making the SSL task significantly easier to solve with smaller batch size. By remov-

ing the NPC effect, we reach a new objective function, decoupled contrastive learning

(DCL). The proposed DCL loss function requires minimal modification to the SimCLR

baseline and provides efficient, reliable, and nontrivial performance improvement on var-
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ious benchmarks. Given the conceptual simplicity of DCL and that it requires neither

momentum encoding, large batch size, or long epochs to reach competitive performance.

Notably, DCL can be combined with the SOTA contrastive learning method, NNCLR, to

achieve 72.3% ImageNet-1K top-1 accuracy with 512 batch size in 400 epochs. We wish

that DCL can serve as a strong baseline for the contrastive-based SSL methods. Further,

an important lesson from the DCL loss is that a more efficient SSL task shall maintain its

complexity when the batch size becomes smaller.

42

http://dx.doi.org/10.6342/NTU202301574


doi:10.6342/NTU202301574

Chapter 4 Learning with Real-World

Data Distributions

4.1 Introduction

The performance of an image classification model critically depends on the underly-

ing data distribution, both during the training and the testing stages. For the majority of

real-world applications, their underlying data distributions can substantially deviate from

those of conventional benchmark collections established solely for research evaluations.

Indeed, the distribution of real-world data is often not regular, and for many practical ap-

plications, it tends to be more or less fine-grained and even complicated with long-tailed

imbalance. To account for such discrepancies in data distribution, recent datasets, e.g.,

iNaturalist 2018 [121], have been proposed to bridge the gap so that their resulting clas-

sification techniques can be widely applied. Figure 4.1 illustrates two notable and chal-

lenging aspects of iNaturalist. First, it exhibits a long-tailed distribution, characterized

by extremely imbalanced ratios between head and tail categories. In particular, the al-

most three orders of magnitude difference in the number of training instances embodied

in the long-tailed distribution imposes a difficult task in learning proper representations

of tail classes. Second, the object categories in this dataset are also fine-grained, while

inter-class similarity and intra-class variations are subtly intertwined. Performing classifi-

cations over iNaturalist 2018 is essentially a daunting task, no matter what a specific group

(many, medium or few) of fine-grained object classes is under consideration. Motivated

by these challenges, we aim to simultaneously address both the fine-grained and long-
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of challenges can be exemplified by iNaturalist 2018 [121]. As illustrated, the extremely
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Figure 4.2: Left: Different datasets exhibit varying degrees of long-tailed and fine-grained
characteristics. Right: Mainstream techniques focus on solving one aspect of the two
characteristics, where DTRG [81] (blue dot) and LA [89] (green dot) are respectively
current SOTA techniques for tackling the fine-grained and long-tailed classification tasks.
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Fine-grained visual classification (FGVC) is an active and challenging problem in

computer vision. Such a recognition task differs from the classical problem of large-scale

visual classification (LSVC) by focusing on differentiating similar sub-categories of the

same meta-category. While the inter-class similarity among the object categories is per-

vasive, the intra-class variations further impose ambiguities in learning a unified and dis-

criminative representation for the FGVC task. On the other hand, considering the issue of

long-tailed distribution brings in another aspect of difficulty in developing practical clas-

sification techniques. The significantly large numbers of samples from head categories

tend to dominate the training procedure. Even with sophisticated learning strategies, the

resulting classification model often ends up performing poorly for the tail categories, com-

pared with the expected result on the head counterparts. In fact, the performance curve

somewhat resembles the shape of a long-tailed distribution.

We note from existing literature of object classification research that there are only

a few attempts to simultaneously solve the two aforementioned challenging issues. Rel-

evant developments mainly focus on tackling either of the two tasks. In FGVC, most

of the recent research efforts have converged to learning pivotal local/part details related

to distinguishing fine-grained categories e.g., [43, 135, 146]. Moreover, to improve the

classification performance further, a number of these efforts require the fusion of sev-

eral sophisticated computer vision techniques, such as in [36, 44]. In resolving the long-

tailed difficulty, previous approaches have drawn on balanced data sampling to rectify

their model training [56, 63, 132]. For example, the recent technique of [63] first learns

the representation and then refines the classifier by balanced sampling. All these differ-

ent research attempts involve varying degrees of fine-grained and long-tailed factors. As

shown in Figure 4.2 (Left), we take the maximum imbalanced ratio and the normalized fea-

ture cosine similarity between object categories as the respective criterion to measure the

fine-grained and long-tailed factors and characterize the two aspects of difficulties among

popular datasets adopted in object recognition research. Moreover, Figure 4.2 (Right) in-

dicates that a purely fine-grained state-of-the-art (SOTA) approach does not necessarily

performwell for the long-tailed case, and vice versa, while our approach provides a unified

solution to tackling the two challenging issues of image classification.

45

http://dx.doi.org/10.6342/NTU202301574


doi:10.6342/NTU202301574

Batch of Images

Classification 

Model

Predicted Probabilities

Adaptive Matrix

0

0

Long-tailed Distribution Adjustment 

Adaptive Batch Prediction Rank Minimization for fine-grained prediction 

Confusion concept for fine-grained tasks: 

Higher Training Convergence Loss with Better Validation Accuracy

Adaptive Batch Prediction 

Adaptive Batch Confusion Norm 

Loss Accuracy

Figure 4.3: Overview of adaptive batch confusion norm (ABC-Norm). The adaptive batch
prediction P̂ can be obtained by class-wise modulating the predicted probabilities P with
respect to the adaptive matrix A that encodes the underlying data distribution. Our for-
mulation then adds slight classification confusions to yield an adversarial regularization
effect in model training. Despite that ABC-Norm converges to a higher training loss than
other techniques, it indeed achieves better validation accuracy.

In this work, we focus on establishing a fundamental approach based on exploring

the characteristics of the real-world data distributions rather than relying on various data

augmentation schemes and sophisticated DNN-based engineering tricks. From the two

plots in Figure 4.3, we observe that when the objective function during training converges

very close to zero, the results in testing are often not the best. To avoid being trapped with

over-optimizing the underlying model, previous approaches have adopted regularization

techniques to resolve this matter. Take, for example, the inclusion of margin in the triplet

loss [105]. The design principle of triplet loss is to separate positive and negative samples

by at least a default margin, say m, which turns out to play a pivotal role in boosting the

learning efficacy. Different from typical regularization techniques, it implicitly raises the

learning difficulty of the objective function, instead of limiting the model capacity.

The concept of incorporating extra difficulty into training has also been proposed in

dealing with the FGVC problem. Pairwise Confusion (PC) [37] and Maximum Entropy

(MaxEnt) [38] are two such approaches, closely related to our proposed method. PC ar-

gues that slightly confusing the model in training can prevent overfitting problems. Max-

Ent observes that the data diversity of FGVC is usually smaller than that of a large-scale

classification dataset, e.g., ImageNet. It thus presumes that the entropy of the model’s pre-

diction should tend to be higher than that of typical classification scenarios. Both PC and

MaxEnt add a confusion-like loss to improve the FGVC performances of their resulting

models. Still, there are currently no relevant arguments in addressing fine-grained and
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long-tailed issues simultaneously.

We are thus motivated to develop a new classification technique, termed adaptive

batch confusion norm (ABC-Norm), to regularize its corresponding adaptive batch pre-

diction (ABP) matrix to better account for real-world data distributions. ABC-Norm can

be used to deal with both fine-grained and long-tailed factors and to construct an adver-

sarial loss for enhancing the training efficacy. Optimizing with respect to the ABC-Norm

drives the learning process to (class-wise) adaptively add confusions to achieve better clas-

sification results. We also provide a mathematical derivation to justify the concept and the

ideas it represents. Figure 4.3 illustrates an overview of ABC-Norm. We characterize the

advantages of our method as follows.

• The computation of ABC-Norm regularization is efficient and does not incur signif-

icant increase in training time.

• Unlike related techniques, e.g., [63, 129] that decouple representation learning from

classification or learn multiple distribution-aware experts, our regularization-based

method leads to an end-to-end trainable implementation.

• Without relying on complicated model design or sophisticated data augmentations

such as in, e.g., [36, 81, 117], ABC-norm not only provides a unified solution to

resolving fine-grained and long-tailed issues but also improves the baselines to

achieve competitive classification results.

4.2 Related Work

In addressing conventional computer vision tasks, the underlying distribution of train-

ing data is often relatively balanced. The numbers of samples across various object cat-

egories do not differ substantially, and in addition, the diversity among the categories is

typically high. However, the data distributions for real-world applications are far more

complicated; it could even contain fine-grained and long-tailed complexities at the same

time. Recent related work for image classification tends to emphasize either aspect of
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the two difficulties, but not both. Taking such development into account, we divide the

literature survey of relevant techniques into two groups, namely, fine-grained visual clas-

sification and long-tailed visual recognition.

4.2.1 Fine-grained visual classification

The Fine-Grained Visual Classification (FGVC) problem is notably characterized by

two intriguing properties, significant inter-class similarity and intra-class variations, which

cause learning an effective FGVC classifier a challenging task. Driven by impressive

research progress, the setting of FGVC has gradually evolved from strong labels to weak

labels.

Early work In the initial efforts for tackling FGVC, the developed methods mostly as-

sume that the training datasets are made with comprehensive annotations, such as the part

location labels in CUB-200 [122]. Along this line, Berg et al. [5] explore the labeled part

locations to eliminate highly similar object categories for improving the classifier. Huang

et al. [58] introduce an approach established based on a two-stream classification network

to capture both object-level and part-level information explicitly. However, due to the

rapid research advances in visual classification, the most recent FGVC approaches are

designed to complete the model learning based on the category labels solely. Hence, with-

out accessing the part location labels, how to learn the discriminative parts automatically

becomes the next research direction.

Discriminative parts Existing FGVC approaches usually draw on data augmentations

and specific attention mechanisms to effectively learn the discriminative parts. Yang et

al. [135] propose a self-supervision mechanism to localize informative regions without

the need of bounding-box and part annotations. Wang et al. [131] present a filter bank

within a CNN framework to learn high-quality discriminative patches. Zheng et al. [146]

introduce a trilinear attention sampling network for fine-grained image recognition, which

can learn rich feature representations from hundreds of part proposals. Chen et al. [24]
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propose a destruction and construction learning (DCL) framework for fine-grained im-

age recognition. DCL partitions each training image into several local regions and then

shuffles them by a region confusion mechanism (RCM). It implicitly excludes the global

object structure information and forces the model to predict the category label based on

local information. Moreover, construction learning can model the semantic correlation

among parts of the object. In other words, the ability to identify the object category from

local details is expected to be enhanced through shape destruction. Du et al. [36] apply

a progressive training strategy to address the fine-grained classification task. They for-

mulate a framework named progressive multi-granularity (PMG) training with two key

components. One is a training strategy that progressively fuses multi-granularity features,

and the other is a puzzle generator to form images containing information of different gran-

ularity levels. Chang et al.[14] propose a mutual-channel loss (MCLoss) that drives the

model to learn channel diversity and emphasize different discriminative regions. In sum-

mary, the above techniques are established based on employing richer augmentations and

specialized attention mechanisms. In the case of the top-performing PMG, each iteration

requires four different phases of augmentation combined with four classifiers. Although

the results are state-of-the-art, PMG requires more training time and extensive model pa-

rameters.

Auxiliary task variants Several related approaches include an additional branch to ex-

plore auxiliary information. Shu et al. [111] propose a self-training framework for FGVC

with insufficient data annotation by considering an additional auxiliary task path to gen-

erate pseudo labels. They leverage the Grad-CAM technique [106] to generate salient

regions for seeking discriminative parts, which can be further extended to yield multiple

attention maps for improving the quality of the representation. Chang et al. [15] intro-

duce a novel FGVC problem setting by generalizing it from single-label to multiple-label

predictions on a predefined label hierarchy. A user study is also provided to show that a

multi-granular label hierarchy is more expressive and probably preferred. Their proposed

solution shows that the inherent coarse-fine hierarchical relationship can improve FGVC

performance.
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Regularization effects The regularization-related formulations for dealing with intra-

class variations and inter-class similarity in FGVC generally have two main implications.

First, it can be applied to alleviate the overfitting problem in learning an FGVC model.

Dubey et al. [37] propose to divide each batch into two groups and train the model with a

loss function including pairwise confusion (PC). The design reasons that bringing the class-

wise probabilities closer could prevent the learned FGVCmodel from overfitting. Second,

the regularization tactic implicitly maximizes the prediction entropy. MaxEnt [38] as-

sumes that the data diversity of FGVC is intuitively smaller than the large-scale dataset,

ImageNet. So the prediction entropy for the FGVC task is reasonable to become more

prominent than usual. In other words, regularization approaches escalate the training dif-

ficulty on the total loss, which complicates the training convergence and forces the model

to search for an ideal local minimum. In [81], Liu et al. introduce dynamic target relation

graphs (DTRG) to address the fine-grained classification problem with a self-supervised

regularization. DTRG evaluates every training sample to calculate the class center online.

And then, DTRG aims to reduce the intra-class distance between each training feature and

its corresponding class center, while keeping the class centers to be away from each other.

It can be observed that the regularization principle of DTRG is quite different from the

entropy-based confusion view entailed in PC and MaxEnt. In addition, the training pro-

cess of DTRG is more intricate and also requires substantial augmentation techniques to

strengthen the outcome of model learning.

4.2.2 Long-tailed visual recognition

Distribution re-balancing Existing techniques for long-tailed visual recognition that

consider distribution re-balancing can be divided into two groups: re-sampling and re-

weighting. As described in [16, 35, 50, 87], re-sampling involves adjusting the sampling

frequencies of different categories based on their sample count via under-sampling for

head categories and over-sampling for tail categories. The approach of class-balanced

sampling [108] weights each image based on the number of samples in its category. In

[48], the dynamic-sampling mechanism, termed as repeat factor sampling (RFS) by Gupta
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et al. [48], also aims to balance the number of instances across categories. While the goal

of re-sampling is to reduce the overfitting of head data, the tactic may not always be a

reliable solution. It could cause over-sampling of small amounts of tail data, resulting in

insufficient sample diversity and under-sampling of large amounts of head data, leading

to insufficient learning.

Loss re-weighting The strategy of re-weighting has been widely utilized in the loss

calculation of a classification task. Unlike re-sampling, re-weighting offers greater flex-

ibility and ease of computation, making it a popular choice for resolving the challenge

of long-tailed distribution in more complex tasks such as object detection and instance

segmentation. When an image contains multiple objects that need to be detected or seg-

mented, it is often more manageable to reweigh the loss at the image level rather than

sample by category. Re-weighting implementations range from reverse weighting based

on category distribution to more advanced methods such as Hard Example Mining [110],

Focal loss [78], and Label-Distribution-Aware Margin (LDAM) loss [8], which adjust the

weight according to the classification credibility without the need for category knowledge.

Owing to its ease of implementation, re-weighting has been shown to yield competitive

results in complex tasks [27, 61, 113].

Model training strategies Another viewpoint for solving the long-tailed visual recogni-

tion problem is that the re-balancing technique should be applied only to the classifier, and

the distribution of image features during representation learning should remain unchanged.

This two-stage training strategy, in which the classifier is trained with re-balanced data

and the representation is learned with the original data, is considered an effective solution

for handling the long-tailed distribution. Kang et al. [64] divide the training of a long-

tailed classification model into two steps, first directly learning a representation model

from traditional classification with raw data and then connecting a separate classifier via

class-balanced sampling learning. Zhou et al. [147] realize the two-step learning with a

two-branch model where both branches share parameters and are dynamically weighted,

one branch learning from raw data and the other from re-sampled data. Li et al. [75] adopt
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a two-stage learning approach and introduce a balanced group softmax module into the

classification head. Meanwhile, Hu et al. [55] tackle the long-tailed distribution scenario

through incremental learning from the head to the tail. Wang et al. [126] add a separate

classifier to calibrate prediction logits, while Tang et al. [115] compute themoving average

vector of a feature in the traditional training framework, excluding it from the gradient cal-

culation. Menon et al. [89] revisit the classic idea of logit adjustment based on statistical

information, encouraging a large relative margin between the logits of rare and dominant

labels. Tian et al. [117] address long-tailed object recognition with the VL-LTR model,

which jointly trains the image and text encoders by considering co-embedding between

class-wise linguistic and visual information. Wang et al. [123] establish a quantitative

measure, defining an overlap coefficient between von Mises-Fisher distributions, to eval-

uate representation quality for long-tailed learning.

In summary, the majority of the aforementioned methods for long-tailed learning

emphasize exploring the aspect of data distribution. Such approaches, as we have just

described, can be broadly categorized into three groups: distribution re-sampling, loss

re-weighting, and model training strategies. In this work, we introduce a novel approach

to addressing fine-grained and long-tailed issues at the same time. By infusing pivotal

statistical characteristics of the data distribution into an adaptive matrix, the proposed

regularization learning with an adversarial loss is shown to be a promising solution.

4.3 Our Method

Consider now learning a classification model Φ, as illustrated in Figure 4.3, with

respect to a dataset D of C object categories, where each sample x ∈ D is specified with

a one-hot class label vector y. For an arbitrary training batch B = {x1, x2, . . . , xM} from

D and M ≤ C, forward propagation via Φ yields M predicted (softmax) probabilities,

denoted as

P = [p1, p2, . . . , pM ] ∈ RC×M , (4.1)
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whereΦ(xi) = pi ∈ RC is the predicted probability distribution. Let pi,j be the probability

of xi being class j. We have
∑C

j=1 pi,j = 1. The batch prediction matrix P in (4.1) is

central to our approach—its rank property is closely related to how our approach resolves

the fine-grained issue.

The data distribution over the C object classes in D reflects the long-tailed charac-

teristic. Let Nj be the sample size of class j and sN be the averaged sample size over the

C classes. We express the ratio of Nj to sN as rj = Nj/ sN and consider a unit-coefficient

power function of rj , namely g(rj) = rτj , to model the underlying long-tailed distribution.

Note that the real-valued power τ is a hyper-parameter of our method, and its value is to

be adjusted according to the extent of long-tailed distribution. Specifically, to encode the

class-wise imbalance, we define an adaptive matrix A = [Aij] ∈ RC×C by

Aij =

 g(rj) = rτj , if i = j,

0, otherwise,
(4.2)

where (as we will explain later) the value of τ , along with rj , reflects the degree of long-

tailed attribute and can be adaptively set to account for different application scenarios.

4.3.1 Adaptive Batch Confusion Norm

We aim to introduce a regularization based framework to simultaneously address the

fine-grained and long-tailed issues of object classification. Based on (4.1) and (4.2), we

construct an Adaptive Batch Prediction (ABP) matrix P̂ ∈ RM×C by

P̂ = P ⊺A , (4.3)

where the adjusted softmax prediction of each sample in B now forms a row vector of

P̂ . Observe from (4.2) that how the adaptive matrix A modifies the prediction outputs

depends on the exponent τ and the imbalanced factor rj of each class j in the training

data D. When rj → 1 or the exponent τ → 0, A would approach the identity matrix I .

In other words, the ABP matrix in (4.3) will be reduced to P ⊺ when the distribution of
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training data is class-wise balanced, or τ is set to 0. Both cases exclude the long-tailed

consideration of P̂ .

Themain idea of our approach is to establish a unified regularizationmechanism from

the ABP matrix P̂ so that the model training process can effectively improve its inference

performance on our targeted classification scenarios. To this end, we propose the Adaptive

Batch Confusion Norm (ABC-Norm) to assess the corresponding loss, expressed asLABC ,

which realizes the desired regularization effects for addressing the fine-grained and long-

tailed issues. Specifically, we define the loss term for the ABC-Norm regularization as

LABC =
1

M
∥P̂∥2F , (4.4)

where ∥ · ∥F denotes the Frobenius norm andM is the batch size as in (4.1). Unlike other

existing techniques that are often developed by integrating several sophisticated classifi-

cation modules to tackle the fine-grained or long-tailed difficulties, our formulation learns

the proposed model by directly optimizing the following objective function:

Ltotal = (1− λ)LCE + λLABC, (4.5)

where λ ∈ [0, 1] is a weight parameter,

LCE = − 1

M

M∑
i=1

C∑
j=1

yi,j logpi,j (4.6)

is the conventional cross-entropy loss, and

LABC =
1

M
||P̂ ||2F =

1

M

M∑
i=1

C∑
j=1

p̂2i,j

=
1

M

M∑
i=1

C∑
j=1

Aj,jp2i,j. (4.7)

Empirically, we set τ = 0.5 and consider λ ∈ {0.1, 0.3, 0.5} for various datasets to achieve

the best performance accounting for different fine-grained and long-tailed characteristics

of real-world distributions. Since the regularization term LABC in (4.5) is the only factor
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that distinguishes our method from a vanilla classification scheme, the performance gains

reported in our experiments are evidently owing to the ABC-Norm efficacy.

4.3.2 ABC-Norm: Justifications and Properties

The rank of the ABP matrix P̂ in (4.3) plays a pivotal role in our formulation, and is

closely related to the ABC-Norm regularization. Assume for the moment that minimizing

LABC can lead to rank minimization of P̂ . It would then reduce the variability among the

M softmax predictions of P from a batch B, and infuse slight classification confusions

into the training procedure. Whereas correct predictions would always be penalized with

the confusion loss as in (4.5), the training would be driven to further improve the model

by reducing the cross-entropy loss as much as possible, and consequently better solve the

fine-grained classification problem. Such an adversarial regularization idea is analogous

to enhancing the model learning by introducing an extra margin to increase the difficulty

of a correct prediction.

It is known that the rank-related minimization problems are often NP-hard. We fol-

low [99] and consider convex relaxation so that the underlying rank minimization of P̂

can be reduced to the minimization of its nuclear norm,

∥P̂∥∗ =
M∑
i=1

σi(P̂ ) , (4.8)

where σi(·) yields the ith singular value of the corresponding matrix. However, training

a deep neural network with an objective function that involves solving singular values of

a non-trivial matrix is not practically feasible. It is also the main reason that we do not

establish the ABC-Norm regularization based on the nuclear norm. We instead consider

minimizing its upper bound as in (4.4). In this way, rank minimization of P̂ can be ef-

ficiently achieved by employing LABC . To complete the mathematical derivation of our

method, we are left to justify the following upper-bound property.
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Property 1. If the batch sizeM is set as less or equal to the number of classes C, then

LABC =
1

M
∥P̂∥2F ≥

(
1

M
∥P̂∥∗

)2

. (4.9)

It follows that minimizing the nuclear norm of P̂ can be achieved by including LABC

in the total loss. That is, rank minimization is implicitly carried out during the model

training of the classifier Φ. To verify the upper-bound property stated in (4.9), we have,

from the matrix norm definitions and Cauchy-Schwarz inequality,

LABC =
1

M
∥P̂∥2F =

1

M

∑M

i=1
σ2
i (P̂ )

=
1

M2

(∑M

i=1
σ2
i (P̂ )

)(∑M

i=1
12
)

≥ 1

M2

(∑M

i=1
σi(P̂ ) · 1

)2

=

(
1

M

∑M

i=1
σi(P̂ )

)2

=

(
1

M
||P̂ ||∗

)2

.

We now turn our attention to explaining how the adaptive matrix A ∈ RC×C in

P̂ = P ⊺A is used in dealing with the long-tailed issue. Notice that A is a diagonal matrix

whose jth diagonal entry Ajj = rτj = (Nj/ sN)τ adjusts the predicted probability pi,j

for the jth class. When learning with a long-tailed training dataset D, its head classes

are those that include more training samples and thus have rj ≫ 1. Hence the adaptive

effects on these head classes are to enforce more confusions/difficulties in classify their

abundant samples. On the contrary, tail classes are characterized with rj ≪ 1 and the

adaptive matrix A is used to instead lessen their confusion regularization so that learning

with these scarce data can be guided by the cross-entropy loss.
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4.3.3 ABC-Norm vs. Relevant Regularization

To our knowledge, there are no existing regularization techniques that are developed

to simultaneously tackle both the fine-grained and long-tailed classifications. The two

most relevant approaches, but focusing on only the fine-grained aspect, are Pairwise Con-

fusion (PC) [37] and Maximum Entropy (MaxEnt) [38]. We describe their design princi-

ples and relevance to the ABC-Norm regularization below.

PC Regularization This is the first work [37] that brings in the “confusion” concept

to solve the fine-grained classification task. The purpose of confusion energy is twofold.

Besides preventing the model training form overfitting, it implicitly increases the learning

difficulty to aim for performance gains in testing. PC randomly divides each batch into

two equal-size sub-batches. While computing the individual cross-entropy losses for each

sample of the whole batch, it evaluates the pairwise confusion loss, denoted as LPC, by

sampling from the two parts. Specifically, we have

LPC =
2

M

M/2∑
i=1

I(yi = yi+M/2)||pi − pi+M/2||2 , (4.10)

where I(·) is the indicator function to signal whether two paired training samples are of

the same category.

MaxEnt Regularization The maximum entropy criterion is proposed in [38] to more

effectively address the fine-grained classification problem. As the inter-class variations

between fine-grained classes could be subtly minimal, MaxEnt regularization assumes no

prior distributions other than the uniform one should be imposed on the softmax predic-

tions. Analogous to PC, the maximum entropy regularization also increases the learning

difficulty and therefore drives the optimization process to work harder in tackling the

challenging classification scenario. The corresponding loss for MaxEnt regularization is

defined as follows:

LMaxEnt =
−1

M

M∑
i=1

C∑
j=1

pi,j logpi,j. (4.11)

57

http://dx.doi.org/10.6342/NTU202301574


doi:10.6342/NTU202301574

Comparing the three regularization schemes, ABC-Norm, PC andMaxEnt, their most

distinction is that our formulation tackles not only the fine-grained but also the long-tailed

difficulty. Furthermore, by setting the adaptive matrix A in (4.3) to the identity matrix I ,

we can look further into how their design improves the performance on fine-grained clas-

sification. The three techniques resemble each other by imposing adversarial difficulty

in the model training to enhance the classification efficacy. For PC versus ABC-Norm,

both are established based on the concept of confusion, while ABC-Norm has the advan-

tage of exploring the adversarial measure from an entire batch at the same time, rather

than the pairwise mechanism as in PC. For MaxEnt versus ABC-Norm, while the softmax

prediction of each sample in the batch B being a uniform distribution is a minimum for

both regularization losses, LABC is more general in accommodating other minima. In our

experiments, we replace LABC in the total loss in (4.5) with LPC and LMaxEnt, respectively

to thoroughly compare their performances on various datasets and settings.

4.4 Experiments

4.4.1 Datasets

We conduct experiments on the six datasets listed in Table 4.1. In particular, our main

objective is to evaluate the efficacy of the proposed ABC-Norm approach to the real-world

classification challenges over the two datasets, CUB-LT [104] and iNaturalist2018 [121].

To further analyze its performance, we evaluate ABC-Norm on three fine-grained datasets

(CUB, CAR, AIR) and a long-tailed dataset (ImageNet-LT), respectively. The results of

our experiments demonstrate that ABC-Norm can effectively and efficiently tackle the

challenging classification tasks posed by these benchmark datasets.

Real-world Webegin by evaluating theABC-Norm regularization on the two real-world

datasets, CUB-LT [104] and iNaturalist2018 [121], each of which includes both fine-

grained and long-tailed distribution characteristics. iNaturalist2018 is a large-scale col-
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Table 4.1: Dataset splits in our experiments.

Dataset # Train # Val/Test # Category

iNaturalist2018 437,513 24,426 8,142
CUB-LT 2,945 2,348 200
CUB 5,994 5,794 200
CAR 8,144 8,041 196
AIR 6,667 3,333 100
ImageNet-LT 115,846 20,000 1,000

lection. Owing to its challenging nature, as demonstrated in recent literature [9, 63], the

performance on this dataset could serve as an objective measure for the effectiveness of

each particular method.

FGVC We then compare solely the fine-grained classification results from four different

regularization approaches, adaptive batch confusion Norm (ABC-Norm), pairwise con-

fusion (PC) [37], maximum entropy (MaxEnt) [38], and dynamic target relation graphs

(DTRG) [81] on the three popular fine-grained visual classification datasets, namely, CUB-

200-2011 [122], Stanford Cars [69], and FGVC-Aircraft [88]. The size ratio between train-

ing and testing sets is about 1 : 1 for CUB-200-2011 and Stanford Cars, and about 2 : 1 for

FGVC-Aircraft. The class distribution of the three datasets is nearly balanced, which can

be used to measure the proposed method’s performance only in the fine-grained scenario.

Notice that the adaptive matrix A will be reduced to an identity matrix I in dealing with

the balanced data distribution.

Long-tailed Finally, we carry out experiments on the long-tailed dataset ImageNet-LT

[83], which can be considered to have a low fine-grained factor. The study aims to con-

firm the capability of ABC-Norm to tackle long-tailed learning over purely imbalanced

datasets. In line with the definition in [63], we divide the categories into three groups:

Many, Medium, and Few, representing the categories with instance numbers in ranges

(100,+∞), (20, 100], and (0, 20], respectively.
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4.4.2 Implementation Details

We now describe the implementation details of the experiments on the real-world,

fine-grained, and long-tailed datasets. All results are obtained from end-to-end training,

and the numerical outcomes represent the mean of three runs. We implement our method

using the PyTorch framework [94] on a platformwith four Nvidia V100GPUs. The source

code will be made available for public use.

Real-world These results pertain to the CUB-LT and iNaturalist2018 datasets. To en-

sure a fair comparison, our training settings mostly conform to those outlined in [63, 123].

The backbone network is ResNet-50with an input size of 224×224 and 90 training epochs,

optimized using SGD. The batch size is set to 16 for CUB-LT and 128 for iNaturalist2018.

The initial learning rate is set to 0.004 ×M , where M denotes the batch size, and is de-

creased by a cosine annealing schedule. The regularization weight λ is set to 0.5, and the

value of τ for the adaptive matrix A is set to 0.5.

FGVC We evaluate the performance of the ABC-Norm on popular classification archi-

tectures, including ResNet series [53] and DenseNet-161 [57], in the fine-grained visual

classification task. The training setup for the different regularization terms remains consis-

tent. We adopt the data augmentation strategy from [24], using an input size of 448× 448

and randomly applying horizontal flipping. The initial learning rate, the weighting factor

λ, and τ are set to 0.008, 0.3, and 0.5, respectively. The training batch size is 16 when the

GPU memory allows, and the adopted optimization algorithm is Momentum SGD with

cosine annealing [84] for the learning rate decay. Taking account of the smaller scale of

FGVC datasets compared to iNaturalist2018, we train the model for 200 epochs to assess

the outcomes of different regularization methods.

Long-tailed visual recognition We further evaluate the proposed ABC-Norm on an im-

balanced dataset, ImageNet-LT. The implementation details follow the training process

described in [63]. We report results for both ResNeXt-50 and ResNeXt-152, and observe
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Figure 4.4: Compare the proposed ABC-Norm with other long-tailed and fine-grained
approaches on CUB-LT.

consistent behavior between shallow and deep models. Given the substantial imbalance

present in the ImageNet-LT with a low fine-grained factor, we set the hyper-parameters λ

and τ to 0.1 and 0.5, respectively.

4.4.3 Real-world Data

Before we delve into the real-world data, let us quickly look at a small-scale one,

CUB-LT, which contains both fine-grained and long-tailed factors. It is an appropriate

dataset for investigating the performances among the respective approaches for fine-grained [36,

37] and for long-tailed [63, 89, 104]. As shown in Figure 4.4, PC and MaxEnt, which are

proposed to account for the fine-grained factor, only show slight improvements for resolv-

ing the long-tailed issue. PMGprovides a strong performance, but requires more advanced

data augmentations and larger model sizes. Meanwhile, LDAM, LWS, vMF, and Dragon

demonstrate that addressing the long-tailed issue can also improve performance on real-

world data distributions. However, the proposed ABC-Norm significantly outperforms

these approaches by explicitly tackling both the fine-grained and long-tailed challenges.

Table 4.2 shows the experimental results on the large-scale and real-world distribu-
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Table 4.2: Compare the ABC-Norm with other primary approaches on iNaturalist2018.
The backbone model used in this experiment is vanilla ResNet-50 baseline without using
additional parameters and advanced augmentation schemes.

Method Many Medium Few Total

90 epochs

Baseline 72.2 63.0 57.2 61.7
Focal [78] - - - 61.1
Re-weighted - - - 64.9
cRT - - - 65.2
PC† [37] 70.9 64.6 59.6 62.1
MaxEnt† [38] 69.8 65.1 59.4 61.9
LDAM [9] - - - 64.6
LDAM w/ DRW [9] - - - 68.0
LWS [63] 65.0 66.3 65.5 65.9
LA [89] - - - 66.4

ABC-Norm 66.6 68.0 68.2 68.4
ABC-Norm‡ 66.5 73.4 69.2 70.8

200 epochs

Baseline 75.7 66.9 61.7 65.8
cRT 73.2 68.8 66.1 68.2
PC† [37] 67.8 64.2 60.2 62.8
MaxEnt† [38] 70.8 65.3 59.1 62.1
DTRG [81] - - - 65.5
DTRG w/ DRW [81] - - - 69.5
LWS [63] 71.0 69.8 68.8 69.5
vMF [123] 72.8 71.7 70.0 71.0

ABC-Norm‡ 68.1 73.2 70.4 71.4
† Re-implement with the same setting as ours.
‡ Follow the data augmentation scheme in [123].

tion dataset, iNaturalist2018. The adaptive matrixA enables the ABC-Norm to emphasize

the head categories but scale down the regularization effect on the tail categories. Note that

our models are trained not only with the most commonway of data sampling, i.e., instance-

balanced sampling, but also in an end-to-end manner. In contrast, LWS [63] learns the

model in two stages, which requires the use of class-balanced sampling. Notwithstanding

that LA [89] has the same starting point as ours, which also proposes an approach that

does not require any extra parameters, strong augmentation schemes, and data sampling

strategies, the ABC-Norm regularization does yield a better performance. The main ad-

vantage of ABC-Norm over LA on this real-world dataset is that the proposed ABC-Norm
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Figure 4.5: The distribution of L2-norm weight magnitude ∥wi∥ for baseline, PC and
ABC-Norm, where wi is the classifier weight vector of category i.

provides a unified solution to addressing both long-tailed and fine-grained factors.

Recall that PC [37], MaxEnt [37] and DTRG [81] are introduced to validate that

proper regularization is useful for dealing with the fine-grained problem. We, however,

observe that the three techniques only yield slight improvements on the real-world dataset.

In fact, to properly tackle the long-tailed difficulty, DTRG [81] has adopted the DRW [8]

schedule. Compared with DTRG, ABC-Norm achieves better performance without rely-

ing on additional schemes such as Mixup and DRW. (We have also reported in Table 4.2

the result of ABC-Norm using the data augmentation scheme from [123].) Overall, our

ABC-Norm method provides a general and flexible approach to solving real-world classi-

fication tasks.

4.4.4 Model Analysis

We begin by evaluating the effect of regularization on the magnitude of the classi-

fier weight wi for each category i, as depicted in Figure 4.5. While the L2-norm magni-

tude distribution ∥wi∥ of the baseline method exhibits a long-tailed pattern, the proposed

ABC-Norm instead produces a smoother magnitude distribution for the head categories,
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Figure 4.6: Grad-CAM heatmap visualization for six testing images. In each example, the
resulting heatmap is specified by the corresponding model (ResNet-50, ResNet-50+PC,
ResNet-50+ABC). Results of correct classification are marked with “  ” and otherwise,
“ ”.

Table 4.3: Head-to-head comparisons among four different regularization approaches,
ABC-Norm, PC, MaxEnt and DTRG, on the standard FGVC datasets CUB-200-2011
(CUB), Stanford Cars (CAR), and FGVC-Aircraft (AIR).

Model ResNet-50 ResNeXt-50 ResNeXt-101 DenseNet-161

CUB CAR AIR CUB CAR AIR CUB CAR AIR CUB CAR AIR

Baseline 85.5 92.7 90.3 86.3 93.1 90.9 87.3 93.5 91.6 87.5 93.4 92.7
PC [37] 87.0 92.4 90.1 87.5 93.2 91.2 88.2 93.7 92.4 88.2 93.6 92.9
MaxEnt [38] 87.2 91.9 90.3 87.6 92.8 91.3 88.2 93.4 92.5 88.3 93.3 93.0
DTRG− [81] 88.3 94.8 93.0 - - - - - - 89.0 94.8 94.0

ABC-Norm 87.8 94.3 93.2 88.1 94.4 93.3 88.6 94.5 93.5 89.2 94.8 93.5

The notation − indicates the results by DTRG without using Mixup, as reported in the original paper [81].

reducing their dominance. In comparison, PC also lessens the dominance of head cate-

gories, but the distribution remains largely unchanged, indicating the persistence of the

long-tailed issue.

Next, we conduct an ablation study on the iNaturalist2018 dataset to assess the impact

of different batch sizes on the various regularization approaches, including ABC-Norm,

PC, and MaxEnt. Figure 4.7 shows that the performance variations among different batch

sizes are similar across all regularization methods as well as the baseline. This suggests

that the influence of batch size stems from the use of “batch normalization” and the corre-

lation between the performance of ABC-Norm and batch size is weak. Hence, choosing

a specific batch size for ABC-Norm is generally not an issue of concern.
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sus batch size on iNatural-
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larization methods: ABC-
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Figure 4.9: An ablation
study of the regularization
weight λ on iNaturalist2018.
We observe that the suitable
value for λ locates in the
range [0.1, 0.6].

The long-tailed issue often requires the selection of an appropriate value of hyper-

parameter τ to incorporate the statistical information embodied in the training data. Fig-

ure 4.8 shows the results of varying the τ value, where the resulting curve exhibits a

downward parabolic trend from τ = 0.1 to τ = 1.0, with the best performance achieved

at τ = 0.5.

We also investigate the optimal regularization weight λ between cross-entropy loss

and ABC-Norm in (4.5). Figure 4.9 displays the probing result of such search. The classi-

fication performance gradually improves as λ increases, reaching a sweet spot at λ = 0.5.

Beyond this point, further increasing the λ value leads to a decrease in performance, sug-

gesting that the suitable range of λ is [0.1, 0.5].

We conclude our analysis by providing a qualitative comparison of the baseline, PC,

and ABC-Norm methods using the class activation mapping (Grad-CAM) [106] on the

CUB dataset. As shown in Figure 4.6, the results reveal that PC and ABC-Norm correctly

predict more samples than the baseline. The redder an area is, the more significant the

model’s prediction is, while the bluer the area indicates the opposite. For instance, PC and

ABC-Norm focus on the appropriate regions to identify the object rather than the back-

ground. Moreover, as in the right panel of Figure 4.6, ABC-Norm can correctly classify

even the challenging samples that the PC and baseline fail to recognize. This is because

that ABC-Norm further exploits the inter-class similarity information to ensure the result-

ing classifier to focus on the most discriminative parts.
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Table 4.4: Accuracy versus batch size on the CUB dataset.

Batch Size 2 4 8 16 32

Baseline 80.9 84.5 85.4 85.5 85.5
PC [37] 81.1 85.8 86.7 87.0 86.9
MaxEnt [38] 81.4 85.9 86.9 87.2 87.0

ABC-Norm 81.2 86.1 87.5 87.8 87.7

4.4.5 More on Fine-grained

To investigate the compatibility of the proposed ABC-Norm on the FGVC datasets,

we conduct experimentswith different backbones against PC [37], MaxEnt [38] andDTRG [81],

respectively. The backbones are chosen from shallow to deep, including ResNet-50,

ResNeXt-50, ResNeXt101 and DenseNet-161. We re-implement PC and MaxEnt with

the same training condition. Table 4.3 shows the head-to-head comparison; the experi-

mental results imply that ABC-Norm outperforms both PC and MaxEnt. Compared to

DTRG, although the performances are about even, the training process of ABC-Norm is

simple and essentially the same as the baseline case. Moreover, we also conduct an abla-

tion study to gauge the batch-size influence. Table 4.4 shows that the batch-size influence

is still similar to that in Figure 4.7. It suggests that we only need to pay more attention

to the hyper-parameters λ and τ . Among the confusion-based techniques, ABC-Norm is

not only more effective in fine-grained classification than PC and MaxEnt but also valid

when dealing with the long-tailed issue.

4.4.6 More on Long-tailed

Since ImageNet-LT has a low fine-grained factor but poses strong long-tailed diffi-

culty, we perform experiments on it to confirm the effectiveness of ABC-Norm for purely

long-tailed learning. Following the training formulation in [63], we decompose the train-

ing process into two stages, representation learning and classifier learning. In stage one for

representation learning, the data sampling strategy is instance-balanced which can also be

called a baseline. Next, the sampling strategy turns class-balanced to fine-tune the classi-
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Table 4.5: Following [63], the experiment on ImageNet-LT is carried out with ResNeXt-
50 and ResNeXt-152, respectively.

Method ResNeXt-50 / ResNeXt-152

Many Median Few Total

Baseline 65.9/69.1 37.5/41.4 7.7/10.4 44.4/47.8
with LWS 60.2/63.5 47.2/50.4 30.3/34.2 49.9/53.3

PC 63.9/66.9 35.5/37.3 8.8/10.2 42.8/45.1
PC + LWS 57.3/59.5 46.4/48.7 29.8/32.6 48.4/50.6

MaxEnt 63.4/66.1 35.9/37.8 8.6/10.1 42.5/44.8
MaxEnt + LWS 59.3/61.9 46.1/47.8 29.5/30.8 48.9/50.9

ABC-Norm 65.5/68.7 43.1/45.5 10.9/12.3 47.5/49.9
ABC-Norm + LWS 60.7/63.6 49.7/51.8 33.1/35.5 51.7/54.2

fier at stage two. Table 4.5 first shows the results based on ResNeXt-50. At stage one, with

end-to-end training, the baseline, PC, and MaxEnt are prone to overfit the head categories

since these methods do not take account of the imbalanced distribution of the training set.

On the contrary, the results show that the ABC-Norm significantly improves and alleviates

the domination problem of head categories. Furthermore, through stage two, fine-tuning

the classifier with LWS can improve the representation model learned from ABC-Norm.

In conclusion, tackling the long-tailed distribution with our method can learn a better rep-

resentation model than PC and MaxEnt.

To further verify the robustness of the proposed ABC-Norm regularization, we re-

evaluate the experiment with the same setting but using a deeper backbone, ResNeXt-152.

The experimental results are also presented in Table 4.5. We see that no matter how deep

or shallow the model is, ABC-Norm still achieves consistent improvements, which again

confirms the compatibility of the ABC-Norm approach.

4.4.7 Additional Results

Finally, to demonstrate that it is no coincidence that ABC-Norm improves via suffi-

cient training, we also explore the experiment on both a deep network and longer training

epochs. Following the training procedure from previous work [63, 89], we apply the ABC-
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Table 4.6: iNaturalist2018 classification by different methods with ResNet-152, based on
90 and 200 training epochs.

Setting 90 epochs 200 epochs

Baseline 65.0 69.0
Re-weighted 68.1 69.9
PC† [37] 66.9 69.3
MaxEnt† [38] 66.6 69.2
LWS [63] 69.1 72.1
LA [89] 68.9 69.9

ABC-Norm 71.7 72.6
ABC-Norm‡ 73.8 74.0

† Re-implement with the same setting as ours.
‡ Follow the data augmentation scheme in [123].

Norm to the ResNet-152 backbone and report the experimental results trained with 90 and

200 epochs on the real-world dataset, iNaturalist2018. This additional experiment is de-

signed to justify the robustness of our method and address the concern that the ABC-Norm

is effective only for a specific setting. The experimental results are shown in Table 4.6.

For the same data augmentation and the complete model, the results are consistent with

those of Table 4.2. Meanwhile, the other two regularization-based approaches, PC and

MaxEnt, still do not perform well in this experiment, which includes both fine-grained

and long-tailed difficulties in the underlying real-world dataset. With all our extensive

experimental results, we demonstrate that the proposed approach, ABC-Norm, is generic

and not specific.

4.5 Conclusions

We introduce Adaptive Batch Confusion Norm (ABC-Norm), a general regulariza-

tion technique to tackle the challenging problem of fine-grained and long-tailed image

classification. Our method is simple in design, consisting of only the cross-entropy and

the ABC-Norm regularization terms. During training, the ABC-Norm regularization adap-

tively generates confusion for each object category and activates an adversarial-like learn-

ing mechanism, leading to improved learning efficiency and more discriminative features
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within regions of interest. Through experiments, we show that ABC-Norm outperforms

other relevant (adversarial) regularization-based approaches, such as PC andMaxEnt, and

effectively reduces overfitting in training. In future work, we plan to generalize this regu-

larization concept to transformer-based networks and enhance its effectiveness with atten-

tion mechanisms.
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Chapter 5 Learning with Ordering

Data Distributions

5.1 Introduction

With the rapid growth of face-swapping techniques, deep forgery has become a con-

cerned issue on social media. An effective solution to address the matter is to utilize

neural network-based approaches to decide the authenticity of given images. The task of

deepfake classification is usually formulated as a binary classification problem. Recent

research efforts on deepfake classification have delivered saturated performances [7, 18,

109, 144, 145]. Nevertheless, owing to the impressive development of generative net-

works, e.g., StyleGAN and diffusion models [65, 67, 102], deep forgery is no longer lim-

ited to face-to-face interchange. In particular, Shao et al. [107] propose a sequential facial

manipulation dataset, Seq-DeepFake, in which the fake facial images aremanipulated with

the requested sequential constraints from the source (e.g., components and attributes) by

StyleMapGAN [67]. Take, for example, in Figure 5.1, the annotation of “Eyebrow-Hair-

Lip” indicates that the resulting facial image has been successively manipulated with the

eyebrow, hair, and lip in the specified order. The sequential manipulation can be treated

as a multi-label “localization” problem to decide not only which facial components have

been manipulated but also what the manipulation order is. The latter task further compli-

cates the localization scenario into a multi-label ranking problem, which poses significant

challenges and opens a new frontier for deepfake-related research.
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Figure 5.1: Besides the conventional deepfake setting as binary classification that sim-
ply dichotomies the images into genuine/fake, this work focuses on the subtle scenario
that forged images through deepfake mechanisms may be locally manipulated by one or
more than one facial component/attribute. We introduce a multi-label ranking approach to
tackling the “fine-grained” deepfake task (i.e., to localize the modified facial components
and to identify the order of manipulations), and also develop a contrastive multi-instance
learning (MIL) framework to solve the binary classification.

Detecting the sequential facial manipulations is more challenging than conventional

deepfake classification. It causes that most of the existing deepfake solutions are no longer

applicable. For example, the success of Face X-ray [73] is based on the observation that

a fake facial image must have an essential blending operator to smooth the face boundary

to make the forged image more natural during the face-swapping process. The particular

method then focuses on learning how to capture the blending region from the paired source

and target images. However, the tactic apparently does not work well on the sequential

facial manipulation dataset, SeqDeepFake [107]. The inefficiency is caused by two main

factors. First, the paired source and target information of each manipulated image in Se-

qDeepFake is not available. Second, the resulting classifier from adversarial learning is

often highly related to the generator. Therefore, it is hard to generalize the method to

distinguish the sequentially manipulated images without completely updating the genera-

tive model in [73]. Such inappropriateness to work on component-wise deepfake indeed

applies to the majority of related methods, e.g., [17, 18, 34, 109, 145]. After all, they are

developed to solve a binary classification problem, rather than dealing with the sequential

deepfake manipulation.

Aiming to establish a unified approach to deepfake detection, we decompose the

underlying problem into three subtasks, including deepfake classification, deepfake local-
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ization, and manipulation order. In resolving the first subtask, we propose contrastive

multiple instance learning (MIL) that treats an image as a bag and the spatial features as

instances to tackle deepfake classification via minimizing a contrastive MIL loss. We then

establish a multi-label ranking formulation to address the other two subtasks. Concerning

the ability to identify which facial components have been forged, we loosely term the pro-

cess as deepfake localization. In addition, it is reasonable to incorporate ranking reasoning

into the stage so that the ranked list of multi-label probabilities can reflect the sequential

modification order. With such, training the network model can be done via multi-task

learning, and results in an effective deepfake detection model capable of accomplishing

the three aforementioned tasks. We characterize our main contributions as follows.

• We decompose the general deepfake problem into three parts, deepfake classifica-

tion, deepfake localization, andmanipulation orderwhich lead to a systematic view

of solving the deepfake problem comprehensively.

• We propose a contrastive multi-instance learning formulation for binary deepfake

classification. The synergy between the two learning paradigms improves themodel

learning effectively, andmore importantly, it gives rise to a well-established concept

of how to define the probability of a given image being deepfake.

• We develop a multi-label ranking approach to coupling multi-label predictions with

ranking reasoning. In inference, the sequential order of deepfake manipulations can

be readily obtained from the rank order of the output multi-label probabilities.

• We establish a unified approach to deepfake classification and localization, and

achieve state-of-the-art performances on popular benchmark datasets.

5.2 Related work

Deepfake detection. Owing to the active development of face manipulation technol-

ogy and the upsurge of people’s awareness about multimedia security, more research ef-

forts have been paid to develop all sorts of deepfake detection methods in recent years.
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Deepfake detection can be categorized into two types of approaches based on the un-

derlying data format: image-based [7, 18, 34, 73, 80, 109, 144, 145, 152] and video-

based [26, 47, 74, 148]. For image-based deepfake detection, Zhu et al. [152] propose

a two-stream architecture to enrich the face feature for detection. One is a conventional

network, and the other is a 3D decomposition framework that aims to find more clues

and details on the face image. Chen et al. [18] fuse the RGB and frequency features with

a cross-attention module to learn an artifact mask decoder from the fake images. The

decoder uses the source and target information from the manipulated image to generate

the mask as a ground-truth label. Cao et al. [7] regard the detection problem as anomaly

detection and utilize an encoder-decoder framework for real-fake representation learning.

Liu et al. [80] determine the forgery image from the phase spectrum variation between the

original and up-sampled images. Zhao et al. [144] introduce multiple attention modules

to capture different discriminative locations and insert a texture enhancement block in the

backbone for extracting the high-frequency features. Several othermethods attempt to cap-

ture the artifacts generated by swapping faces from two images. For example, Li et al. [73]

propose a face X-ray to find the blended region from the forgery image. Moreover, Zhao

et al. [145] exploit the fact that forgery faces are manipulated from two different sources

and propose an inconsistent image generator for supporting the classifier learning the con-

sistency mask. Based on a similar entry point, Dong et al. [34] utilize the self-attention

mechanism to form an identity consistency transformer for detecting a forgery image. To

extend the above concepts, Shiohara et al. [109] introduce a self-blended framework that

can learn the blended clues from the proposed augmentation technique.

For video-based deepfake detection, Cozzolino et al. [26] use a three-dimensional

morphable model to generate the deepfake video and learn a temporal network to embed

the sequence features for the video classifier. Zhou et al. [148] present a two-plus-one

joint detection model for tackling both manipulated visual and auditory modalities.

More recently, Shao et al. [107] generalize the image-based deepfake detection from

a binary classification problem to a multi-label classification problem. Specifically, the

image is nowmanipulated from sequential components/attributes, dramatically increasing
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the detection challenge.

Multiple instance learning. The multiple instance learning (MIL) [32] paradigm de-

fines a “bag” as positive if it contains at least one positive instance. In other words, all

instances in a negative bag are assumed to be negative. A previous approach by Chen et

al. [23] transforms each sample bag into a high-dimensional feature space and adopts the

Support Vector Machine (SVM) to determine essential features and construct the classi-

fier simultaneously. Ilse et al. [60] introduce MIL attention pooling that leverages neu-

ral networks to parameterize the distribution of instances in a bag to detect predefined

positive instances. In medical imaging, several approaches regard MIL-related tasks on

histopathology datasets as weakly supervised learning. Zhang et al. [141] introduce the

pseudo-bag concept to enrich the sample bags to address the insufficiency of whole slide

images. Furthermore, Thandiackal et al. [116] present ZoomMIL that utilizes amulti-level

zooming mechanism to fuse multiple magnifications and reduce the computation cost.

Rankingmechanism. A ranking scheme is designed to find the optimal sorting function

that can rank the sequential input. While early efforts [3, 77] propose the bitonic sorting

network to solve the rank issue, techniques of current trend rely on the neural network

to achieve the differential ranking operation. Petersen et al.first present Differentiable

Sorting Networks [96] and take it as an extension by enforcing monotonicity and limit-

ing the bound of approximation error. They subsequently introduce a differential top-k

network [97] to address the multi-class problem via the ranking mechanism.

5.3 Method

We consider a general formulation of deepfake detection that the underlying photo-

realistic manipulations can be applied to either the whole facial region or some of the

predefined facial components. For the sake of discussion, we categorize the former task

as deepfake classification and the latter as deepfake localization, where in this scenario we
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Figure 5.2: The model architecture of our method. There are two types of input tokens:
patch tokens extracted from CNN+FPN and learnable class tokens. The stage of model
training is driven by three loss terms: LCLS,LBCE andLRank to achieve contrastive multiple
instance learning, multi-label localization and ranking, respectively. In the inference stage,
the sequential order of deepfake manipulations can be readily obtained from the rank order
of the output multi-label probabilities.

also need to recover the sequential order of the component-wise deepfake manipulations

as described in [107].

Problem formulation. Suppose there are totally L facial components to which photore-

alistic manipulations can be applied. Since the exact order of modifying the facial com-

ponents does matter, we cast the task of deepfake localization as a multi-label ranking

problem [30]. Consider now a deepfake dataset D = {(x, Y )}, where x is an image and

Y = {li}ki=1 with k ≤ L is an ordered subset of {1, 2, . . . , L}, indicating that the ith

(i ≤ k) deepfake modification has been performed on the lith facial component. When

Y is an empty set, it implies that x is a genuine facial image. It is convenient to generate

from Y two L-dimensional vectors y = (yi) and r = (ri) by

yi =

 1, if i = lj ∈ Y ;

0, otherwise,
(5.1)

and

ri =

 j, if i = lj ∈ Y ;

L, otherwise,
(5.2)

where y is the standard multi-label binary vector and r is the corresponding rank vector.

We realize the above definitions with a hands-on example. Assume that totally five facial

components can be modified, i.e., L = 5, and a deepfake image has been created by first

manipulating facial component 4 and then facial component 2. Our definitions imply that
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Y = {4, 2}, y = (0, 1, 0, 1, 0) and r = (5, 2, 5, 1, 5).

To train a deepfake detection model with the training data D, we consider a CNN-

transformer network, as illustrated in Figure 5.2. For each training sample (x, Y ), the

CNN+FPNmodule transforms x into feature maps of sizeRw×h×d, which can be reshaped

and row-wise ℓ2-normalized into a token vector T ∈ RN×d and N = w × h is the spatial

size.

We then form two vectors of tokens, including the patch tokens U ∈ RN×d and

the learnable class tokens, V ∈ RL×d. The two sets of tokens are passed through the

transformer encoder ϕ, which carries out self attention to correlate their features by

U
ϕ−−−→ Ũ ∈ RN×d , V

ϕ−−−→ Ṽ ∈ RL×d. (5.3)

We compute the similarity values of each patch token to all other tokens by

S = max(Ũ Ũ⊤, 0) ∈ RN×N , (5.4)

where S is rectified into a nonnegative matrix such that all of its elements are in [0, 1].

Since the similaritymatrix is symmetric andwe concern only the correlations of each token

to all other tokens, it is sufficient to focus on the upper triangular part of S, excluding those

in the diagonal. We arrange thees entries of interest in an ascending order of similarity

value and denote them by

u = (u1, u2, . . . , un), (5.5)

where n = N(N − 1)/2 corresponds to the size of upper triangle of S.

MIL deepfake classification. With the sorted list u of similarity responses between

patch tokens, we can consider the task of deepfake detection from the multiple instance

learning (MIL) viewpoint. That is, we consider a face image x as a bag and the positive

label 1 indicates that x is indeed fabricated as a deepfake one. In terms of the elements in

u, if x is a deepfake image, we expect to uncover that there exists at least one ui (starting

from the front end of u) with a small value close to 0. On the other hand, a negative bag
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(i.e., x is not a deepfake image) implies all ui are close to 1. To incorporate the above

observations into the model learning process, we introduce a contrastive formulation to

realize the MIL concept for deepfake detection. Assume that a deepfake image x results

in the k smallest similarity responses in the front end of the sorted list u. We propose to

compute its probability of being deepfake by contrasting the average responses from the

positive and negative distributions:

P (x; k) =
exp(u+(k)/τ)

exp(u+(k)/τ) + exp(u−(k)/τ)
(5.6)

where τ is the temperature parameter,

u+(k) =
1

k

(
a−

∑k

i=1
ui

)
, (5.7)

u−(k) =
1

n− k

(
a−

∑n

i=k+1
ui

)
, (5.8)

and a is a scalar that is set to 1 in our implementation. The contrastive ratio in (5.6) can

be used to predict the probability of a given image x being a deepfake one by

P (x) = max
1≤k≤n

P (x; k), (5.9)

where the reason for seeking a maximum is supported by the existence of at least one

positive/fake instance. We thus define the contrastive MIL loss for each (x, Y ) ∈ D as

ℓMIL(x) = −J(Y ) logP (x)− (1− J(Y )) log(1− P (x)) (5.10)

where J(Y ) = 1 if a sample (x, Y ) is a deepfake image, and 0, otherwise. In addition, for

an authentic image x, it is reasonable to expect that all the similarity responses ui should be

close to 1. The useful observation motivates the inclusion of the following regularization

loss:

ℓReg(x) =
n∑

i=1

∥1− ui∥2, (5.11)
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to ensure proper similarity responses for a real x. We can then express the loss function

for deepfake classification as

LCLS =
∑

(x,Y )∈D

ℓMIL(x) + (1− J(Y )) ℓReg(x). (5.12)

Multi-label localization and ranking. The contrastive MIL formulation leads to a new

loss term specified in (5.12) for learning deepfake classification. To extend our method

for deepfake localization, we consider multi-label ranking to uncover which facial com-

ponents have been modified as well as the underlying order of manipulations. The Trans-

former encoder ϕ generates, for each sample (x, Y ), two sets of features from the patch

tokens, U ∈ RN×d and the class tokens, V ∈ RL×d as in (5.3). Our network model ap-

plies convolutions to U and then carries out average pooling to obtain the patch-token

logits fU = (fU
i ) ∈ RL. In a similar way, we have the class-token logits fV = (fV

i ) ∈ RL.

By independently applying a sigmoid function σ to each logit, we obtain two sets of multi-

label predictions as

PX
i (x) = σ(fX

i ) ∈ [0, 1], i = 1, . . . , L, (5.13)

whereX can be replaced by U or V to respectively imply that the predictions are based on

the features from patch tokens or class tokens. Recall that the ground-truth label vector Y

yields the corresponding multi-label binary vector y = (yi) and the rank vector r = (ri),

which are bothL-dimensional. With the multi-label predictions given by (5.13), we define

the multi-label BCE loss as

LX
BCE =

∑
(x,Y )∈D

1 · ℓX (x), (5.14)

where “·” denotes inner product, 1 is all-ones vector, and the ith element of ℓX (x) ∈ RL

is defined by

ℓXi (x) = −yi logPX
i (x)− (1− yi) log(1− PX

i (x)). (5.15)

It is worth mentioning that both the multi-label predictions PU and P V from (5.13) are

computed only during the training stage. Including the two loss terms LU
BCE and LV

BCE
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helps regulate the model training and more critically align the class-wise logits from the

patch-token and class-token streams.

We are now ready to solve the multi-label ranking problem. To begin with, we av-

erage the patch-token and the class-token logits to obtain f = (fi) = (fU + fV )/2. The

fusion between the two streams gives rise to multi-label predictions {Pi(x)}Li=1, analogous

to those from (5.13). The main idea behind our formulation is as follows: by construct-

ing a rank-aware loss term, the learned network model is expected to output multi-label

predictions {Pi(x)}Li=1 that respect the rank order r = (ri), implied by the given sample

(x, Y ) ∈ D. In other words, if i, j ∈ Y and ri < rj (i.e., facial component i is modified

before facial component j is manipulated), the network is trained to make multi-label pre-

dictions with Pi(x) > Pj(x). To this end, we design the following loss term for tackling

multi-label ranking,

LRank =
∑

(x,Y )∈D

w(r, {Pi(x)}) · ℓ(x), (5.16)

where ℓ(x) ∈ RL is analogously defined as in (5.15) but with multi-label predictions

{Pi(x)}Li=1 based on the fused logits f. To complete the explanation of (5.16), it remains

to elaborate how the rank-aware weight vector w(r, {Pi(x)}) is designed. As our aim to

preserve the rank order r in the multi-label predictions {Pi(x)}Li=1, we let o = (oi) ∈ RL to

encode the rank order (non-increasing order of probability values) among the multi-label

predictions. We then define the weight vector w(r, {Pi(x)}) = (wi) ∈ RL by

wi =

 α, if i /∈ Y ∧ ri > |Y |;

α× |oi − ri|, otherwise,
(5.17)

where α is a hyperparameter to our method. We now justify the definition of w. Given a

deepfake sample (x, Y ) ∈ D, there are |Y | ≤ L components that have been modified. The

first condition in (5.17) indicates that facial component i is genuine and its corresponding

prediction Pi(x) is not among the |Y | largest outputs of {Pi(x)}Li=1. Such an outcome is

preferable, and thuswi is uniformly set to α. The second condition includes two scenarios.

The first is that i /∈ Y and ri ≤ |Y |. This implies that the network model predicts a high-

rank deepfake probability to a genuine facial component, which should be penalized with
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α × |oi − L|. (Note that from (5.2), when i /∈ Y , we set ri = L.) The second scenario

concerns the case that i ∈ Y , i.e., facial component i has been changed. We thus formulate

the definition of wi to enforce reducing the difference between oi and ri. We conclude

that by adding LRank to our formulation, the learned network model can output multi-label

predictions {Pi(x)}Li=1 to detect which facial components have been manipulated, and

also the order of modifications, which is implied by the resulting order of probability

magnitudes.

Total loss. To train the proposed network model for simultaneously carrying out deep-

fake classification and localization, our method considers the following total loss:

LTotal = LCLS + λ1 LBCE + λ2 LRank, (5.18)

where λ1 and λ2 are parameters to weigh the effects of specific loss terms, and LBCE =

LU
BCE+LV

BCE. Note that the two sets of multi-label probability predictions {PU
i } and {P V

i }

are computed only in the training stage so that LU
BCE and LV

BCE can be utilized to achieve

effective model training. In inference, the multi-label prediction is provided solely from

the LRank head, as shown in Figure 5.2.

Finally, we emphasize that the proposed approach provides a unified solution to the

deepfake problem. When dealing with a classical task of binary deepfake classification,

it is convenient to exclude the LRank term from the total loss in (5.18) and simply set the

number of learnable class tokens to one to achieve binary classification.

Table 5.1: The experimental results with multi-label and ranking scenarios on the Seq-
FaceComp and Seq-FaceAttr datasets.

Method Backbone Seq-FaceComp Acc. Seq-FaceAttr Acc.
Multi-label (%) Ranking (%) Multi-label (%) Ranking (%)

Baseline

ResNet-34 [53]

78.32 69.66 85.14 66.99
DETR [10] - 69.87 - 67.93
SeqFakeFormer [107] - 72.13 - 67.99
Ours 81.24 ↑ 2.92 72.76 ↑ 3.10 86.38 ↑ 1.24 68.53 ↑ 1.54
Baseline

ResNet-50 [53]

79.54 69.75 88.23 66.66
DETR [10] - 69.75 - 67.62
SeqFakeFormer [107] - 72.65 - 68.86
Ours 82.77 ↑ 3.23 73.34 ↑ 3.59 90.12 ↑ 1.89 69.28 ↑ 2.62
Ours Swin [82] 83.01 ↑ 3.47 73.52 ↑ 3.87 90.43 ↑ 2.20 69.75 ↑ 3.09
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5.4 Experimental results

We report comparisons with other techniques and experimental results on the sequen-

tial deepfake dataset [107], the multi-label scenario and traditional binary deepfake clas-

sification. A comprehensive ablation study is also provided to validate the effects of the

key elements in our method.

Sequential deepfake datasets. The Seq-DeepFake dataset, introduced in a recent study

[107], comprises two collections of sequential image manipulations, namely sequential fa-

cial components manipulation and sequential facial attributes manipulation. To simplify

the notation, we refer the two as Seq-FaceComp and Seq-FaceAttr, respectively. In Seq-

FaceComp, facial components are transplanted from a source image to a target image,

resulting in manipulated images that exhibit distinct face components and orders. This

dataset contains 35,166 facial images, including both manipulated and genuine images,

annotated with 28 different manipulation sequences. The proportion of manipulation se-

quence lengths ranges from 1 to 5, with percentages of approximately 20.48%, 20.06%,

18.62%, 20.88%, and 19.96%, respectively. In contrast, Seq-FaceAttr directly modifies

specific attributes on the target facewithout relying on source images. It consists of 49, 920

facial images, each of which is annotated with one of the 26manipulation sequence types.

And the distribution of each sequence length is balanced. Notably, both Seq-FaceComp

and Seq-FaceAttr have amaximum sequence length of 5, denoted asL = 5 in the proposed

formulation described in Section 2.3. Moreover, we can also evaluate the multi-label sce-

nario on Seq-FaceComp and Seq-FaceAttr without the ordering factor.

Binary deepfake datasets. Deepfake detection has several benchmark datasets avail-

able, including FaceForensics++ (FF++) [103], Celeb-DF (CDF) [76], WildDeepfake

(WDF) [153], DeepFakeDetection (DFD) [103], and DeepFake Detection Challenge [33]

(DFDC). These datasets have been extensively employed to investigate the binary classifi-

cation problem. FF++ is the most commonly used dataset, comprising four manipulation

techniques with 1,000 videos for each. CDF uses an improved deepfake algorithm that
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generates 5,639 fake videos and 590 genuine videos. WDF is a real-world dataset with

3,509 fake and 3,805 genuine face sequences. DFD offers 1,000 deepfake videos. DFDC

is a large-scale dataset that contains 2,500 genuine and 2,500 fake videos in the public test

set. Our approach is readily applicable to the binary deepfake classification when LRank

is excluded from (5.18) to form the total training loss, and the number of learnable class

tokens is reduced to one.

Table 5.2: The experimental results with intra-testing and cross-testing. The model for
cross-testing is only trained on the FF++ dataset.

Method Backbone Intra-testing AUC Cross-testing (Train on FF++ only) AUC
FF++ (%) CDF (%) CDF (%) WDF (%) DFDC (%) DFD (%)

Baseline Xception [25] 96.30 99.73 61.80 62.72 48.98 87.86
Baseline EfficientNet-B4 [114] 99.70 99.81 64.29 63.83 - -
Multi-Att [144] EfficientNet-B4 [114] 99.29 99.94 67.44 59.74 - -
SPSL [80] Xception [25] 96.91 - 76.88 - 66.16 -
RECCE [7] Xception [25] 99.32 99.94 68.71 64.31 69.06 -
Face X-Ray [73] Xception [25] 99.17 - 80.58 - 80.92 95.40
LRL [18] Xception [25] 99.46 - 78.26 - 76.53 89.24
SBIs [109] EfficientNet-B4 [114] 99.64 93.74 93.18 - 72.42 97.56
SBIs* [109] Swin [82] 99.72 95.68 89.12 70.56 71.08 97.34
Ours Swin [82] 99.82 ↑ 3.52 99.98 ↑ 0.25 91.56 ↑ 29.76 73.41 ↑ 10.69 75.17 ↑ 26.19 97.88 ↑ 10.02

Implementation details. To ensure a fair comparison with SeqFakeFormer [107] on

the problem of sequential facial manipulations, we implement our method by adopting

ResNet-34 and ResNet-50 [53] as the CNN backbone for generating features. We then

transform the spatial features into a sequential form, represented as tokens, and concate-

nate them with L learnable class tokens to form the input to a 1-layer transformer. The

model is trained using the described loss function in (5.18), with hyper-parameters λ1, λ2,

τ , and α set to 1, 1, 0.2, and 1, respectively. The model is trained for 200 epochs using

a cosine annealing schedule, with the initial learning rate set to 0.00025 and decayed to

0. Moreover, we also provide the experimental results with Swin [82], a transformer ar-

chitecture, as the feature extractor backbone for the subsequent experiments. To train a

model based on Swin, we follow the training settings described in [82], but increase the

number of training epochs to 400.

For the conventional deepfake classification task, we begin by extracting facial im-

ages from the videos using RetinaFace [28] and resizing them to 384× 384. The training

process is similar to that of the sequential facial manipulation scenario with Swin as the

backbone, except that we set L = 1 and λ2 = 0. These minor adjustments demonstrate
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the flexibility and versatility of our proposed approach in Section 2.3 for various tasks.

It is imperative to consider that the computation scale of n is roughly O(N4), where

N denotes the size of the feature map. Therefore, a brute-force search of k from 1 to

n in (5.9) and (5.10) can have a significant impact on training speed and efficiency. To

overcome this limitation, we adopt a strategy where we uniformly sample the k values

from 1 to n with 100 points, rather than conducting an exhaustive search. This approach

improves the training efficiency and also allows us to achieve our multi-instance learning

goal.

Data augmentation. Inspired by the concept of SBIs [109] for enhancing model robust-

ness and generalization, we propose two augmentation techniques. The first technique,

referred to as strong augmentation, involves creating a pseudo fake image that simulates

a fake label from a genuine face. To achieve this, we extract the facial landmarks from

the real image and perturb them to generate a similar but counterfeit face. The second

technique, referred to as weak augmentation, is a widely-used approach in image classi-

fication training such as horizontal flip, random crop, color jitter, and Gaussian blur. To

incorporate strong and weak augmentation into model training, we first apply the strong

augmentation method to produce a pseudo fake image from the original genuine image.

Then, we randomly select a fake image from the dataset and combine it with the genuine

and pseudo fake images to ensure their comparable quantities.

5.4.1 Comparison

Sequential deepfake manipulation. In the sequential facial manipulation problem, the

primary objective is to compare our method with SeqFakeFormer [107]. The SeqFake-

Former model employs a combination of CNN and transformer models, along with an

auto-regressive mechanism to address the sequential challenge. In contrast, we introduce

a rankingmechanism for themulti-label scenario instead of an auto-regressivemechanism,

which results in our model being more efficient during training and inference. To evaluate

the performance of the proposed approach, we adopt the fixed accuracy (Fixed-Acc) [107]
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metric on Seq-FaceComp and Seq-FaceAttr datasets. The Fixed-Acc metric computes the

accuracy between the prediction and annotation sequences while considering their rank-

wise dependencies. The performance comparison of our approach with baseline, DETR,

and SeqFakeFormer is presented in Table 5.1. The proposed approach is practical and ef-

fective for addressing sequential deepfake issues and has demonstrated better performance

than the aforementioned methods.

Multi-label deepfake scenario. In real-world applications, identifying the forged com-

ponents/attributes of a manipulated facial image can often be more crucial than determin-

ing the ordering of the manipulations. To address this, we simplify the sequential facial

manipulation problem into a multi-label scenario. The performance of the multi-label

classification approach can be considered as an upper bound for the sequential problem.

Therefore, in Table 5.1, we present experimental results for both the baseline and ours in

the multi-label column. Without the ordering issue, the performance improvement can be

attributed to the proposed data augmentation strategy and the contrastive MIL loss LCLS.

Binary deepfake classification. In binary deepfake classification, we evaluate the pro-

posed approach using both intra-testing and cross-testing scenarios. Recent research on

deepfake classification can be classified into two groups. The first group focuses solely on

classification [10, 80, 144], utilizing only genuine and fake annotations. The second group

has no training limitations [34, 73, 109, 145], and many researchers have incorporated an

adversarial learning mechanism to enrich the fake samples, thereby strengthening the clas-

sifier. In our work, we combine the advantages of both groups, utilizing the proposed data

augmentation strategy with an end-to-end training approach.

Intra-testing. The process of intra-testing involves training and testing a model on the

same dataset. Table 5.2 with “Intra-testing” column displays that most approaches have

successfully tackled the deepfake classification problem, with even baseline models such

asXception and EfficientNet-B4 exhibiting high performance. While the proposedmethod

achieves the best performance, the improvement is marginal. As previously discussed in

the introduction, the standard classification scenario is approaching saturation. Hence, the
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Figure 5.3: Qualitative results by Grad-CAM [106] between baseline and the proposed
approach. Four test images from the Seq-FaceComp with “Lip”, “Nose”, “Eye-Nose”
and “Eyebrow” manipulation. (a) Although the heatmap from the baseline has noticed
the accurate region sporadically, it still has a gap to improve. (b) The heatmap from the
proposed approach has successfully focused on the manipulation region.

main challenge of deepfake classification has transferred to the cross-testing scenario.

Cross-testing. In the cross-testing scenario, the model is exclusively trained on the FF+

+ dataset, as is typical in the deepfake setting. It is then assessed on the test sets of Celeb-

DF,WDF, DFDC, and DFD. The experimental findings are reported in the “Cross-testing”

column of Table 5.2. The proposed approach demonstrates promising results. In the in-

terest of equitable comparison, we have also implemented the results of SBIs with Swin

backbone, identified as SBIs*. Our results show significant improvement, particularly on

the DFDC dataset, due to the augmentation strategy and LCLS. Consequently, exploiting

the fine-grained information between each patch token is highly significant.

5.4.2 Analysis and discussion

In this section, we present an ablation study of the proposed approach in Table 5.3.

It is worth noting that, unlike the baseline presented in Table 5.1, the ResNet-50 model

with LU
BCE in Table 5.3 generates only multi-label predictions. These predictions are sub-

sequently sorted based on the probability of each component for evaluation. Without the

proposed LRank, although the multi-label performance achieved by ResNet-50 in Table 5.1

is commendable, the Fixed-Acc metric declines significantly due to the incorrect order of

the generated sequence. Hence, the proposed LRank is crucial in transforming multi-label
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Table 5.3: An ablation study of the proposed losses on the Seq-FaceCompwith multi-label
ranking setting (ResNet-50).

Model LU
BCE LV

BCE LU
CLS LU

Rank
Seq-FaceComp Acc.

Ranking (%)
I ✓ 51.22
II ✓ ✓ 53.14
III ✓ ✓ 71.12
IV ✓ ✓ ✓ 72.18
V ✓ ✓ ✓ 71.64
VI ✓ ✓ ✓ ✓ 73.34

predictions into sequence predictions. Additionally, the proposed contrastive MIL loss,

LCLS, significantly improves the performance of the model.

We proceed to present qualitative results using Grad-CAM [106] on Seq-FaceComp,

as shown in Figure 5.3. The heatmaps are generated by backpropagating the “Eyebrow”

and “Eye-Nose” logits. As a result of the contrastive MIL and ranking mechanism, Fig-

ure 5.3 (b) displays a more focused and accurate heatmap than the baseline. In addition,

we provide the mean self-similarity values in (5.4) for each area to highlight the effect of

LCLS. As expected, the patch with a lower similarity value compared to others indicates

the location of the manipulation region.

Lastly, we evaluate the effectiveness of the proposed contrastive MIL loss, LCLS. To

illustrate, we present in Figure 5.4 a histogram of the average distribution 1
|D|

∑
D u on

the FF++ test set. Figure 5.4(a) depicts a phenomenon where the classifier can accurately

distinguish genuine and fake facial images from a small variation distribution, despite it

being challenging for humans to do so. However, with the introduction of the proposed

LCLS, we are able to clearly define and simplify the distribution between genuine and fake.

When looking at Figure 5.4 (b) from an alternative perspective, we note that a fake facial

image typically results from two genuine facial images. As a result, the affected regions

often appear at the facial boundary or composite parts, while the inner and outer face

regions remain genuine. Consequently, the proportion of these affected regions is small

compared to the full image. This phenomenon is consistent with the hypothesis of the

MIL viewpoint that a fake image exists in minimal k points, where k ≪ n.
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Figure 5.4: The histogram of averaged distribution 1
|D|

∑
D u. (a) The histograms from

the baseline are like an “U” shape, no matter whether the images are genuine or fake. (b)
With the contrastive MIL loss LCLS, we regularize the u close to 1 in genuine images and
encourage the k values from u to approaching 0 in fake images.

5.5 Conclusion

We present a unified approach for simultaneously addressing sequential deepfake

manipulation and binary deepfake classification. To achieve this, we systematically de-

compose the general deepfake problem into three parts: deepfake classification, deepfake

localization, and manipulation order. Our method introduces novel contrastive MIL learn-

ing and multi-label ranking to address the classification and sequential manipulation as-
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pects, respectively. The extended experimental results demonstrate the effectiveness and

flexibility of the proposed formulation in solving the various deepfake tasks. The provided

analyses are also reasonable to support the usefulness of our method.
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Chapter 6 Conclusion

In conclusion, this thesis has made significant contributions to the field of represen-

tation learning in the context of challenging classification problems. The research efforts

have focused on addressing various data distributions and proposing novel techniques to

enhance representation quality and classification performance.

The thesis begins by introducing representation learning as a powerful approach for

tackling complex classification problems. It highlights the importance of learning ef-

fective representations that can capture and encode essential features from diverse data

sources.

To address the multi-instance data distribution, an attention mechanism equipped

with a query has been proposed. This mechanism enables the representation of a bag

of instances, considering the relationships and dependencies among the instances. The

approach has demonstrated promising results in accurately representing multi-instance

data and achieving improved classification performance.

To improve the training efficiency of self-supervised learning in the unlabeled data

distribution, a decoupled contrastive learning framework has been introduced. This frame-

work enhances the learning process by decoupling the positive and negative samples, lead-

ing to more efficient and effective representation learning from unlabeled data.

In the context of real-world data distribution, a regularization term called ABC-Norm

has been proposed. This term enhances the reliability of representations by incorporating

fine-grained and long-tailed issues often encountered in real-world datasets. The ABC-

Norm regularization contributes to more robust representations, resulting in improved
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classification performance on real-world data.

Furthermore, to tackle the ordering data distribution, a multi-label ranking objective

combined with a contrastive multi-instance scenario has been introduced. This approach

effectively addresses the challenges associated with deepfake images, which contain mul-

tiple manipulated components with ordering issues. The proposed objective facilitates

accurate representation learning for deepfake images, enabling reliable identification and

classification.

Collectively, the contributions of this thesis demonstrate the importance and effective-

ness of representation learning techniques in addressing challenging classification prob-

lems. The proposed attention mechanism, decoupled contrastive learning, ABC-Norm

regularization, and multi-label ranking objective offer valuable insights and solutions for

different data distributions. The findings from this research advance the field of represen-

tation learning, providing practical tools and methodologies for improving classification

performance.

In conclusion, this thesis provides a comprehensive exploration of representation

learning approaches and their applicability in addressing challenging classification prob-

lems. The proposed methodologies contribute to the existing body of knowledge and open

new avenues for future research in representation learning and its applications.
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