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Abstract

This thesis presents a comprehensive exploration of feature representations for chal-
lenging classification tasks. The research efforts focus on four key aspects: learning with
multi-instance data distributions, learning with unlabeled data distributions, learning with

real-world data distributions, and learning with ordering data distributions.

In the context of multi-instance data, we introduce a novel cross-attention pooling
approach, incorporating attention guidance, to effectively represent a bag of instances
given a specific query. The proposed method captures essential features and enables accu-
rate classification. To address the challenge of unlabeled data distributions, a decoupled
contrastive learning framework is proposed. This framework alleviates the issue of large
batch sizes in contrastive learning and discusses the implications of various approaches for
subsequent classification tasks. Real-world data distributions present unique challenges,
such as fine-grained and long-tailed issues. To tackle these complexities, we present an

adaptive batch confusion norm (ABC-Norm) that addresses both issues and enables the
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learning of robust feature representations tailored to real-world scenarios: Finally, we

address the representation of deepfake images, which involve multiple manipulated com=

ponents and ordering issues. The problem is decomposed into deepfake classification,

multi-label localization, and manipulation ordering tasks. A multi-label ranking mech-

anism, combined with a contrastive multi-instance scenario, is proposed to recover the

ordering data distributions.

Through algorithmic design and extensive experimentation, this thesis contributes to

the advancement of representation learning for classification tasks. It discusses state-of-

the-art methodologies, pinpoints the challenges associated with each aspect, and proposes

effective research approaches. The findings of this research provide useful insights into

the field of representation learning for tackling challenging classification tasks.

Keywords: representation learning, multi-instance learning, self-supervised, real-world

distributions, ordering data distributions.
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Chapter 1 Introduction

Representation learning is a fascinating field of research that revolves around the ac-
quisition of concise and meaningful numerical representations for various types of signal
sources. The predominant signal sources in representation learning include video, text,
audio, and images. The primary objective of this thesis is to harness these learned repre-
sentations specifically for image-based tasks, including information retrieval and classifi-
cation. An exemplary illustration of this concept can be observed in the popular scenario
of searching for images on Google. When a user enters text keywords, Google employs
representation learning techniques to retrieve and present a set of images that are most

relevant to the provided words.

In the field of computer vision, representation learning is commonly accomplished by
training deep learning models to transform raw input into numerical vectors, also known
as embeddings. When dealing with image data, these numerical vectors are typically mul-
tidimensional to capture and preserve the underlying information of the objects within the

images.

An effective representation model offers numerous advantages. Firstly, it provides
optimal initial weights for other related tasks, such as object detection and semantic seg-

mentation. By leveraging the knowledge encoded within the learned representations, these

1 doi:10.6342/NTU202301574
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Figure 1.1: The model trained from random initialization needs more iterations to con-
verge in the object detection task.

subsequent tasks can benefit from a solid starting point, facilitating more accurate and
efficient results. Secondly, a well-designed representation model can significantly expe-
dite the training process. By utilizing a pre-trained model with well-established embed-
dings, the learning process can converge more rapidly, saving valuable time and compu-
tational resources. Figure 1.1 [52] visually demonstrates the advantages of employing
a high-quality pre-trained model, which supplies an excellent initial representation for

downstream tasks.

In this thesis, we present an extensive landscape of in-depth research efforts focused
on addressing a series for exploring feature representations for challenging classification
tasks. The primary objective is to investigate feature representations from different per-

spectives, encompassing the following aspects:
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Learning with Multi-Instance Data Distributions: This aspect explores the represen-
tation of a collection of instances, commonly referred to as a “bag,” when given a specific
query. The goal is to develop effective techniques that capture essential features encom-

passing the entire bag, enabling accurate classification.

Learning with Unlabeled Data Distributions: This aspect lies in representing images
that lack any form of annotation or labeling. The challenge is to devise methodologies
that can extract meaningful representations from these unlabeled images, facilitating sub-

sequent classification tasks.

Learning with Real-World Data Distributions: This aspect delves into representa-
tions derived from real-world data distributions, which often encompass fine-grained and
long-tailed issues. The focus is on developing robust feature representations that can ef-
fectively handle the challenges posed by such complex distributions, ultimately leading to

improved classification performance.

Learning with Ordering Data Distributions: This aspect specifically addresses the
representation of deepfake images, which typically involve multiple manipulated compo-
nents with ordering issues. The objective is to devise representation learning techniques
that can effectively capture and encode the intricate manipulations within these images,

enabling accurate classification and recovering the order of manipulations.

We provide a comprehensive overview of the aforementioned aspects, highlighting
the challenges associated with each and discussing state-of-the-art methodologies pro-

posed in the literature. The presented research landscape contributes to the advancement

3 doi:10.6342/NTU202301574
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of classification tasks by enabling the development of more powerful and robust feature

representations.
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Chapter 2 Learning with
Multi-Instance Data

Distributions

2.1 Introduction

Supervised learning techniques that rely on deep neural networks have made sig-
nificant progress in active research fields of artificial intelligence such as classification
[53, ], the mainstream of computer vision applications. In solving an image classifi-
cation problem, each training sample often comprises a raw image and the corresponding
class/category label. However, such a classification setting may not be sufficient to satis-
factorily account for real-life applications nowadays. With the rapid advances of machine

learning research, it becomes feasible to simultaneously explore all the useful information

of either an image or a batch of images. In other words, image classification is no longer
restricted to the problem where an image is labeled as a single category. Among the vari-
ants of classification frameworks, e.g., as illustrated in Figure 2.1, we aim to address the
multi-instance multi-label learning (MIML) in [150] from a novel viewpoint of learning

through queries.
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The MIML problem is characterized by that an object or a bag consists of several
instances with multiple class labels. While MIMLSVM [149] is proposed to deal with the
problem, deep MIML in [42] is shown to be more effective than other traditional methods.
Notably, existing supervised learning approaches for MIML are provided with the full
binary label vector associated with each training bag, and thus have access to the presence
of any class label in a bag. Such a learning setting requires extensive manual efforts
in annotating the vast amount of training bags. In our method, a query-driven multiple
instance learning (QMIL) framework is proposed to tackle MIML without specifying the
full binary label vector. In fact, the gMIL formulation requires only a binary label for
each bag along with the corresponding label query. The proposed method thus has two
main advantages. First, it is flexible to introduce new classes into the model without the
need to modify the labeling information in the existing training data and the classification
layer. Second, the query mechanism enables qMIL to inherently and additionally perform

zero-shot classification in a crude way.

2.2 Related Work

For the ease of discussion, we divide the literature survey of relevant techniques
into three groups, namely, multi-instance learning, attention mechanism, and zero-shot

learning.

Multi-instance Learning The MIL paradigm deals with those learning problems for
which labels only exist for sets of data points. A set of data points is typically termed
as a bag and each data point is considered as an instance. Following [31], a bag is said

to be positive with respect to a certain binary label if at least one instance within the
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Figure 2.1: Variants of supervised-learning tasks: (a) Classification (b) Multi-instance
learning (MIL) (c) Multi-instance multi-label learning (MIML) (d) Query-driven multi-
instance learning (qQMIL).

bag is positive. The strategy of [22] maps each bag into a feature space defined by the
instances in the training bags via an instance similarity measure and ¢;-norm SVM is
applied to select important features as well as construct classifiers simultaneously. In
[79], the authors construct nearest-neighbor graphs among instances and uncover positive
instances within positively-labeled groups. The MIL formulation in [95] is designed to
learn a semantic segmentation model based on weak image-level labels. More recently,
[128] employs neural networks that aim at solving the MIL problems in an end-to-end
manner. An attention-based neural network model is proposed in [59] to detect positive
instances automatically. In [29], a recurrent neural network model called MI-RNN is
developed to find out the signature, which is linked to those positive instances in a bag.
Among the aforementioned classical MIL problems, each bag has only one corresponding

label. However, in many practical applications, a complex bag (such as an image), which
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contains various instances like pixels, may have more than one relevant label. The MIML
framework of [149] is established to tackle the complicated scene classification. Over
the past few years, assorted algorithms, ranging from traditional, e.g., SVM [6, 917 and
k-nearest neighbor (KNN) [142], to popular like deep neural network learning [42], have

been proposed to address the MIML problem.

Attention Mechanism The attention mechanism has a significant impact on designing
deep learning architecture to solve challenging applications in artificial intelligence, in-
cluding image captioning, e.g., [ 134, ], visual question answering, e.g., [£5], and ma-
chine translation, e.g., [86]. For solving the MIL or MIML problems, as the individual
instance labels of training data are not given, the attention distribution is often learned

implicitly via optimizing the bag-level objective function.

Zero-shot Learning A critical limitation of deep learning is that it often takes a mas-
sive amount of samples to train a satisfactory model, and the classifier, such as trained
by cats and dogs, can only classify cats and dogs. This means that the classifier is not
able to be directly applied to recognize other species. On the contrary, zero-shot learning
(ZSL) refers to the learning of classifying samples of unseen categories. It implies that
the training classes and the zero-shot testing classes are different. For example, the ZSL
algorithm proposed in [71] guides the model to classify unseen categories, empowering

machines the capacity for reasoning and true intelligence.

Our Approach To establish the proposed qMIL, we first need to generate a training
dataset of bags. Specifically, for each query about a certain class label, a bag of instances

from randomly-selected classes are generated. If there exists at least one instance from
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the query class, the underlying bag is said to be positive and its binary label is set to 1.
Otherwise, it is a negative bag with label 0. Notice that only the examples from the ¢classes
of interest can be included in a bag. Our setting is different from that in-[29] where a
positive bag is composed of one or a few positive instances and several negative instances,
which are usually noise, i.e., not from any of the underlying classes of interest. In qMIL,
each training sample/bag is annotated with a binary label, rather than a binary label vector
over all classes as in the MIML setting. However, the proposed method still satisfactorily
solves the MIML problem in that a proper bag representation for classification can be
obtained by gqMIL via more effectively estimating the query-adapted attention distribution
over instances within a bag. We summarize the main advantages of the proposed qMIL

over other existing techniques below.

1. The gMIL formulation is flexible. When new data of additional classes are included,
all binary labelings of the existing training data remain the same, whereas annotating
with a full label vector as in the conventional MIML needs to modify all the labeling

information.

2. The gMIL network architecture is general. When additional new classes are intro-
duced, the network architecture remains the same. It can be readily fine-tuned to
classify the new classes by generating the queries of new classes and the correspond-
ing training bags. However, with the MIML architecture, one would need to expand

the classification layer to account for the new classes.

3. The gMIL framework enables zero-shot classification. When data of unseen classes
are added in the testing bags, we perform iterative queries to first remove most

positive instances of seen classes from a given testing bag, and then compute a
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more reliable attention distribution for each query of an unseen class to decide if

any positive instance of an unseen class is present or not.

2.3 Approach

The qMIL framework is developed to learn a neural network model that adapts to the
underlying query and dynamically yields a proper bag representation for classification.
To comprehend the main ideas, we focus on describing: 1) how to generate the training
data; 2) how to establish a generalized compatibility measure to facilitate the query-visual
co-embedding; 3) how to employ label-dependent regularization to yield the desirable
attention distribution over bag instances; and 4) how to use attention pooling to obtain the
query-adapted bag representation for classification. Finally, we detail a handy procedure

resulted from qMIL to carry out zero-shot classification via iterative queries.

2.3.1 The qMIL Problem

In the classical supervised learning such as multi-class classification, the aim is to
train a model that predicts a target label y € {1,...,C} for a given test sample x € R”,
where C represents the number of classes. However, in the formulation of qMIL, each
example is represented as a bag of instances, X = {xy, ..., Xk, }, where Ky is the number
of instances and could vary over bags with a pre-specified upper bound K. Notice that
neither dependency nor ordering relationships are considered in generating the instances

for each bag.

To incorporate the query mechanism into qMIL, we have a set of C' queries, () =

{q1,-..,qc}, where the query ¢, inquires the existence of class label ¢ in a bag, and is
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encoded with the corresponding class name/word. The proposed gMIL implicitly solves
a more challenging MIML problem than the conventional one. The critical distinction
is that each bag X in the training data of qMIL comes with only a single binary ground
truth Y indicating the existence of at least one instance of a particular class in X, while the
original MIML setting requires a full C'-dimensional binary vector describing the presence
of all the class labels in X. When C' = 1, this is exactly the form of training data used for
solving a binary MIL problem. For C' > 1, we use a triplet (X, Y, ¢) to indicate that the
bag label Y depends on the query ¢ € () and is defined by

0. iff S I(g = yi) =0,
Yy — (2.1)

1, otherwise,
where y, € {1,...,C} is the class label of the instance x; in X. The notation I(¢ =
yx) is an indicator function for signaling whether the query ¢ concerns the label y;. We
emphasize that the instance-level labels y; are not available in learning the qMIL model.
They are included in (2.1) solely for providing an analytic form in defining the bag label

Y with respect to the query gq.

With (2.1), it is insightful to describe how the training data of gqMIL are generated.
Suppose we intend to work with a query subset, ' C ), and N training bags. Thus,
for each query ¢ € @', we generate N /|Q)’| bags, which can be divided into two equal-
numbered positive and negative subsets, denoted as {(X;",Y; = 1,¢)} U {(X;,Y; =
0, q)}. The total number of instances in each bag is randomly decided with an upper bound
K, and only instances with a class label in {1, ..., C'} are considered. These |Q)’| query-
dependent collections of bags form the final training dataset S of N bags. It indicates that

the training procedure considers equal number of positive and negative training bags for
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Figure 2.2: The proposed qMIL neural network architecture.

each ¢ € (), which enables focusing on learning to solve the classification task without
imposing any presumed distribution on the data. In the experiments, we demonstrate that
the inference performance of qMIL does not significantly vary with respect to the ratio

between the numbers of positive and negative bags.

2.3.2 Query-adapted Attention Pooling

Although the number of instances in a qMIL bag could vary, we hereafter assume
that all bags have K instances. After all, null instances can be introduced when needed.
The unified bag size makes the batch training of learning the neural network, as shown
in Figure 2.2, more convenient. Now consider an arbitrary training bag (X, Y’ q), we use
word2vec [90] to represent the query ¢ as a 300-D feature vector and pass it through a
two-layer MLP to obtain the query embedding ¢(q) € R% On the other hand, the image
feature vector of each instance x is forward propagated through a three-layer MLP to yield
its visual embedding which is denoted as 1(x) € R% The two mappings can be aligned
to achieve query-visual co-embedding. To this end, we construct a network component .4

to function as a generalized compatibility measure for better exploring the co-embedding.
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Specifically, we have

A(9(q), ¢ (x)) = a2(WTar (V($(x) © ¢(q)))), (2.2)

where w € R and V' € REY*4 are network parameters, ® denotes the element-wise
product, and o4, 05 are activation functions. When L = d and linear activation functions
in (2.2) are used, the generalized compatibility measure .4 simply reduces to taking inner

product between 1 (x) and ¢(q) if both V' and w are fixed as the identity versions.

It follows from (2.2) that we can use the compatibility measure A to compute the
unnormalized attention o, = A(¢p(q), (X)) for each instance x;, € X to a given query
q. Then the attention-weighted pooling is utilized to obtain the bag representation z for

X, which adapts to the query ¢ as follows:

zZ= iﬁk X, and [, = ;Xp{ak/T} , (2.3)
k=1 Zj:l exp{a;/7}

where 7 is the temperature parameter and [y, is the normalized attention of instance x;, € X

to q.

2.3.3 Loss Function and Regularization

For each training triplet (X,Y,q) € S, we now know how to derive the bag’s fea-
ture vector z according to (2.3) and the corresponding unnormalized attention vector o =
(a1, ..., ak)T. To train the network to perform the (binary) classification task for predict-
ing the bag label with respect to ¢, we need to define a proper loss function £ to accomplish

the qMIL learning. Specifically, we consider a label-dependent attention-regularized loss
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function:

L(S) = L1(S) + N L(S), (2.4)

where ) is the weighting parameter, and the two losses for classifying each (XY, ¢) € S

arc

L£1(X) =Y log p(X) + (1 - Y)log (1 — p(X)), (2.5)

Lo(X) =Y [a(X)|i + (1 - Y){Var(a(X))}2. (2.6)

L1 in (2.5) is the cross-entropy loss and the attention regularization loss £, in (2.6) plays
a crucial role in the proposed qMIL formulation. Here we justify the form of the proposed

regularization loss in (2.6) for the two possible cases.

* When Y = 1, the training bag X has a positive label to ¢ and L5 = ||c||;. The ¢4-
norm regularization effect is to find a sparse distribution of the instance attention.
The preference is reasonable in the case where at least one instance is relevant to
the query ¢ and the sparse prior aims to distribute most attention to the relevant

instances.

* When Y = 0, we have £, = y/Var(a) = ||a — &]|2. In this case all instances in
the training bag X are irrelevant to the query ¢. The use of /5-norm thus encourages

the attention to uniformly spread over all the instances.
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2.3.4 Zero-shot Classification via Queries

Thus far we have described how to leverage with the query mechanism to implicitly
solve an MIML problem with a (triplet) training dataset, where each training bag is an-
notated only with a single binary label. We now explain how to apply a learned gMIL
model to tackle the following zero-shot scenario. Suppose that in generating testing bags,
we decide to consider instances from both the seen and unseen classes. Then, inquiring
an arbitrary testing bag X with a query about an unseen class would result in zero-shot
classification. We use an explicit example to depict the scenario. Let car be a seen class
and truck an unseen class. A testing bag X includes at least one instance of car and
all the other instances are not truck. A query about truck for X would most likely
confuse the gqMIL model and yields a positive return for the false existence of a truck
instance. The confusion is caused by that car and truck are similar in the space in-
duced by word2vec. Thus, to tackle the resulting zero-shot classification, we consider a
two-stage procedure. In stage one, we iteratively perform queries of all the seen classes to
identify strong positive instances, and exclude them from further considerations. In stage
two, now without the severe distraction from the evident instances of seen classes, qMIL
can then estimate a proper attention distribution and thus refine the bag representation for

zero-shot classification. Further details are provided in the experimental results.

2.4 Experimental Results

We evaluate our method mainly on the MNIST-based dataset (MNIST-BAGS) [59]
and CIFAR10-based dataset (CIFAR10-BAGS). Besides the pilot study on zero-shot clas-

sification, there are three groups of experimental results. The first set of experiments
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concerns a standard MIL problem where we compare qMIL with the deep MIL in [59]./In
this setting, the total number of query class is just one. The second set of experiments is
then extended to dealing with the MIML problem. As we have pointed out that despite us-
ing less-annotated training data, QMIL yields convincing results and shows effectiveness
over the compared methods. The third set of experiments deals with a popular real-life ap-
plication, action recognition. The proposed qMIL is applied to determine whether a given
video clip contains a specific action to the query, where we have tested with a subset of

Activity Net [41].

Learning with gMIL is advantageous, especially in creating training data. We just
need to focus, in turn, on each particular category of interest, and mark whether the bag
assumes the label or not. This can reduce human errors when annotating multiple labels
and effectively reduce data noise. After all, in practical applications, we most likely care
about only the categories we are interested in. Finally, given a novel query about an
unseen class, the gMIL model is demonstrated to make reasonable predictions that are

significantly better than random guesses.

2.4.1 Data Sampling

Table 2.1: Single query results on MNIST/CIFAR over ten runs of training/testing data
sampling.

MNIST CIFAR10
GatedAttnDMIL qMIL ‘ GatedAttnDMIL qMIL
Query Query

accuracy  attention acc.  accuracy  attention acc. ‘ accuracy  attention acc.  accuracy  attention acc.
0 954+£37 99.6+12 969 +22 99.6+12 | plane 824+17 827432 899+17 848+£15
1 97.0+41 99612 98.0 £24 99.8 + 0.6 car 89.6+1.8 957+129 90.7+14 951+14
2 93.7+£36 99.6+t12 95.7+£2.7 99.6 1.2 bird 724+26 60.0£227 73.6+24 69.7+9.0
3 932+£36 99.8+0.6 96.0 £2.3 100.0 £ 0.0 cat 754+£3.0 541+128 763+29 59.7+10.3
4 947+£25 992+£09 96.5+13 99.4+0.9 deer 71.4+31 66.6£59 73.8+£24 67.6 £5.6
5 940+£58 100.0+0.0 97.0+2.2 100.0+0.0 dog 741+£23 622+£200 743+18 69.8+6.9
6 947+41 99.00+13 971+24 992+13 frog 822+3.0 87.8+19 82.6 £24 884+L25
7 942+31 1000+00 961+1.6 100.0+0.0 | horse 82.7+29 77.8+19.6 828+19 828+79
8 8903+69 9920+£09 921+59 99.6+0.8 ship 87.8+£25 89.1+18 884+19 898+14
9 913+£3.6 9820+19 929+31 982+19 truck 855+£1.8 904+2.6 859+16 91.6+24
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We follow the similar data sampling method in [59] to create the MNIST-BAGS
MIL dataset from MNIST [72] and analogously from CIFAR10 [70]. The standard MIL
problem with one single query proceeds as follows. In MNIST or in CIFAR 10, each of the
ten categories will be chosen in turn as the one of interest, and the remaining are treated
as background/noise. The instances in each bag are randomly included, and the number
of instances is an integer arbitrarily sampled from the normal distribution A/ (10,2). To
speed up the training process, after data sampling and when necessary, zero images are
generated to ensure that each bag has exactly K image instances. We next turn to the
MIML scenario. For each image we now have multiple labels but do not indicate the
specific label of each instance. (We have described how we construct such training data
in establishing the qMIL problem.) There are two kinds of inference tasks for MIML.
One is the classical MIML problem, and the other is ours, which is query-driven. For fair
comparisons, we adopt the MIML Scene dataset [149] as the benchmark and report 10-
fold cross-validation results. Note that the numbers of positive bags and negative bags to
a query in the MIML Scene dataset is unbalanced. The ratio between positive and negative
bags is about 3 : 1. The last experiment is about action recognition. In this case, a video

clip can be thought of as a bag, while each frame is an instance.

2.4.2 Training and Inference

In the experiments of MNIST-MIL and CIFAR10-MIL, the hyperparameters can be
kept the same. This implies that the proposed attention regularization in (2.6) is general
and not data-sensitive. In MNIST, our CNN model conforms to the LeNet architecture
[72] which comprises two conv layers for MNIST, and three conv layers for CIFAR10.

The learning rate is 10~ at initialization and the optimization method is Adam [6&]. The
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weight decay is 1075, while X in (2.4) is 10~ for all the experiments. We'fix 7 in (2.3)
as 0.5. o1 and o9 in (2.2) are tanh and linear mapping. For single query, the results are
reported with the mean and standard deviation from ten different runs of random data
sampling. For multiple queries, five random runs are instead evaluated for the sake of

efficiency.

Metrics In both our model and the compared method, the output of the bag-level pre-
diction to the MIL problem is a probability p. Thus to compute the accuracy of the bag-
level prediction, the decision threshold is set as p > 0.5 with label Y = 1 and p < 0.5
with label Y = 0. Consider now an arbitrary bag X = (xq,...,Xx). In both MNIST-
MIL and CIFAR10-MIL, we indeed have access to the class label of each instance, i.e.,
(y1,--.,yK)- The instance-level ground truth can be used to evaluate the accuracy of the
predicted instance attention in each bag. We name the resulting quantity as the instance-
level accuracy. The attention accuracy is evaluated as follows. Each time we predict the
bag label as Y = 1 for a triplet (X, Y, q), we check the instance label y;+ of the most man-
ifest instance x;+ where k* = argmax, () from (2.3). If y4~ = 1, then we have correct

instance attention.

2.4.3 Standard MIL

In standard MIL experiments, for each single query to a specific class label we first
sample 500 training bags, including 250 positive and 250 negative bags from MNIST.
Analogously, another 1000 bags (500 “+” & 500 “-”) are also generated for testing. The
setting for CIFAR10 is the same. We compare our method with the state-of-the-art deep
MIL model, denoted as GatedAttnDMIL [59] and report the results in Table 2.1. The
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proposed qMIL achieves better performances in both bag-level accuracy ‘and instance-
level attention accuracy. In Table 2.2, we report the performance versus different numbers
of training bags for the CIFAR10 dataset. The results are on 500 testing bags. To achieve
bag-level predictions of high confidence, qMIL needs 5000 training bags (2500 “+” &
2500 “-”) for a single query. Our method also achieves better results in both accuracy

metrics.

Table 2.2: Single query on CIFAR10. N: total # of training bags. (ace: accuracy, att:
attention)

N bags 100 500 1000 2000 5000
GatedAttnDMIL [59] ace 55186 621+67 612+£62 706+43 824+1.7
gMIL 563+45 628+39 634+41 71.8+28 89.9+1.7
GatedAttnDMIL [59] att ace 492 £20.1 582+134 66783 768+44 82.7+32
gMIL 553+11.3 61.2+81 672+52 782+21 848+15

Table 2.3: Performance with respect to # of queries on CIFAR10. The notation qMIL™
denotes that the regularization loss £, in (2.6) is not used in training. For each query, we
sample 5000 training bags.

# queries 1 3 5 7 10
gMIL~ ace 824+ 1.7 81.22+18 7123+34 6566+46 7833+23
qMIL 80.9+1.7 81.77+14 7945+2.7 82.09+2.1 86.14+1.3
qMIL~ att ace 82.7+32 6552+£99 53.21£10.37 4566+203 70.64L£54
gMIL 848+15 87.22+1.1 8330+13 86.01+12 89.18+1.0

Table 2.4: 10-fold cross validation on MIML Scene dataset.

accuracy
deep MIML [42] 89.45 + 1.22
qMIL 90.20 + 0.96

244 MIML

In the MIML problem, we have two ways of testing. One is to make the testing data
the same form by our labeling scheme on training data, and the other is the standard MIML
task that a bag of instances has several labels to be predicted. Table 2.3 shows the perfor-
mances with respect to the numbers of query classes. When excluding the use of £, in (2.6)
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(shown as qMIL ™~ in Table 2.3), we have trained with many different hyperparameters and
report the best results. It can be observed that with the attention regularization term, L,
learning the model becomes easier and more stable during training. (Further details about

the regularization effect with £, can be found in the supplementary material.)

We have also tested according to the standard MIML task by evaluating the model
with each query for a given bag. Table 2.4 and Figure 2.3 include the results of the MIML
task on the MIML Scene dataset and the comparison with the deep MIML [42] which is
shown to outperform MIML SVM, MIML KNN, MIML RBF and MIML Boost [150].
We adopt a pre-trained ResNet50 [53] and re-implement the deep MIML by following the
details described in the paper. The resulting deep MIML architecture consists of the pre-
trained ResNet50, 2D sub-concept layer for multiple instances, and max pooling twice to

yield the multi-label prediction. It is trained from scratch and learned end-to-end.

To better capture the effect of attention regularization, we investigate how the atten-
tion weights of a bag vary with respect to different queries of a class label. Table 2.5 shows
the bag-level prediction of probability p and the attention weight distribution according to

each query at testing.

Table 2.5: Given a testing bag (13 instances), the instance attention weights vary w.r.t.
different queries.

plane 0.04 0.07 0.02 0.01 0.02 0.01 0.03 0.05 0.01 0.12 0.55 0.05 0.01 0.99
car 0.00 0.00 0.01 0.81 0.01 0.00 0.01 0.01 0.00 0.11 0.01 0.0 0.00 0.99
bird 0.03 0.07 0.03 0.01 0.02 0.03 0.02 0.54 0.03 0.01 0.02 0.03 0.15 0.98
cat  0.07 0.24 0.19 0.01 0.05 0.11 0.02 0.04 008 0.01 002 0.02 0.16 0.96
deer 0.15 0.09 0.08 0.01 0.03 0.04 033 0.07 006 0.03 0.03 0.03 0.05 0.01
dog 0.04 0.09 029 0.01 0.01 0.08 0.01 0.02 037 0.01 0.01 0.01 0.06 0.99
frog 0.07 0.08 0.11 0.11 0.04 0.14 0.05 0.06 0.07 0.07 0.03 0.04 0.12 0.01

horse 0.06 0.03 0.05 0.01 0.01 0.02 0.68 0.02 0.06 0.02 0.01 0.02 0.02 0.96
ship 0.01 0.02 0.00 0.01 0.53 0.01 0.00 0.01 0.00 0.01 0.04 036 0.01 0.99
truck 0.05 0.05 0.07 0.13 0.05 0.03 0.08 0.05 0.04 0.26 0.08 0.09 0.02 0.01
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Figure 2.3: From column 2 to column 6: Each includes an attention heatmap and its bag-
level probability, while the input image is shown in the first column.

Bag: video (16 snippets), Irkstance: snippet (16 frames)

Figure 2.4: gMIL for action recognition. Each video clip comprises 16 snippets. Three
different queries are chosen for testing. p is the bag-level probability prediction for sup-

porting a query.

2.4.5 MIML for Video Applications

The proposed gqMIL can be readily applied to deal with video-related applications.
Particularly, we explore the problem involving the Activity Net [41] and convert the prob-
lem into our formulation described in the proposed gMIL. Following [124], each snippet
comprises 16 consecutive frames, and a video clip can thus be represented as a sequence
of snippets. Under such a setting, a video clip is a bag and each snippet is an instance,
while its bag label is defined with respect to the query. In our experiment, we consider
those video clips related to the following three action classes, namely, shot put, discus
throw, and tumbling. Figure 2.4 shows the result of the proposed qMIL approach to ac-

tion recognition.
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Table 2.6: Zero-shot testing accuracy with seven seen classes and three unseen classes.
Test data are sampled from seen+unseen (ten classes) or from unseen/(seven classes):
IQP denotes the iterative query process.

horse ship truck total

seen & unseen 58.80 62.20 59.60 60.20
seen & unseen (IQP) 57.80 64.20 63.00 61.67
unseen 66.66 72.00 66.33 68.33

2.4.6 Zero-shot Scenarios

We also test qMIL for zero-shot classification on CIFAR10. Specifically, we train the
proposed gMIL with seven seen classes and test on the remaining three unseen classes.
Each bag in the training data is randomly composed of instances from the seven seen
classes, and the testing data are formed based on two kinds of sampling methods. The
fist scenario is that the testing bags are sampled only from the three unseen classes, and
the other is sampled from all of the ten classes (seen & unseen). For the latter case, the
learned qMIL is carried out with the help of iterative queries as described in Zero-shot
Classification via Queries. The experimental results of zero-shot classification are shown
in Table 2.6 and Figure 2.5. We remark that the zero-shot scenario is essentially different
from the conventional formulation. Therefore, it is not appropriate to directly compare it
with other specific zero-shot learning techniques, which are cast in a very different way.
The application demonstrates that the advantages and flexibility of the proposed qMIL

formulation over conventional MIL frameworks.

2.5 Conclusions

From the viewpoint of problem reduction, the proposed qMIL framework indeed can
be considered as decomposing MIML into a series of query-driven MIL sub-tasks. The
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(a) 0.04 (b) 0.04 (c)0.12 (d) 0.03 (e)0.05

() 0.13 (g) 0.03 (h) 0.03 (i) 0.05 (i) 0.03 (k) 0.43

Figure 2.5: The “truck” class is not in the training data. Given the query of unseen “truck”,
gMIL with IQP will pay more attention to the “truck” image in a bag and the bag-level
probability is p = 0.96. The numbers are the attention weights.

reduction yields advantages in two different aspects. First, annotating each training bag
requires a single binary label, rather than a binary label vector. It also has the flexibility
to expand the training dataset to include data of new classes without the need to modify
the labeling information in the existing training bags. Second, the reduced sub-tasks can
all be cast as query-driven MIL, and thus can be addressed in a unified neural network
architecture. By focusing on solving the reduced MIML problem, we are able to establish
a query-visual co-embedding with the label-adapted regularization in (2.6) and represent
a given MIL bag with a proper representation for more effective classification. Our future
work will focus on improving the qMIL attention mechanism and expanding its application

aspect in image/video processing.
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Chapter 3 Learning with Unlabeled

Data Distributions

3.1 Introduction

As a fundamental task in machine learning, representation learning aims to extract
useful information from the raw data for the downstream tasks. It has been regarded as
a long-acting goal over the past decades. Recent progress on representation learning has
achieved a significant milestone over self-supervised learning (SSL), facilitating feature
learning with its competence in exploiting massive raw data without any annotated super-
vision. In the early stage of SSL, representation learning has focused on exploiting pretext
tasks, which are addressed by generating pseudo-labels to the unlabeled data through dif-
ferent transformations, such as solving jigsaw puzzles [92], colorization [ 1 43] and rotation
prediction [45]. Though these approaches succeed in computer vision, there is a large gap
between these methods and supervised learning. Recently, there has been a significant
advancement in using contrastive learning [19, 51, , , ] for self-supervised pre-
training, which significantly closes the gap between the SSL method and supervised learn-
ing. Contrastive SSL methods, e.g., SImMCLR [19], in general, try to pull different views of

the same instance close and push different instances far apart in the representation space.
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Figure 3.1: An overview of the batch size issue is that general contrastive approaches
need large batch sizes to perform better: (a) shows the NPC multiplier ¢p in different
batch sizes. As the batch size gradually increases, the ¢g will approach to 1 with a small
coefficient of variation (C, = ¢/u); and (b) illustrates the distribution of g5 with various
batch sizes and indicates that the mode value of ¢ will shift towards 1 when the batch size
increases. Note that the o and . are the standard deviation and mean of ¢z, respectively.
The coefficient of variation, C,,, measures the dispersion of a frequency distribution.

Despite the evident progress of the state-of-the-art contrastive SSL methods, there
have been facing several challenges into future development in this direction, including
1) The SOTA models, e.g., [51] may require specific structures such as the momentum
encoder and large memory queues, which may complicate the underlying representation
learning. 2) The contrastive SSL models, e.g., [19] often depend on large batch size and
huge epoch numbers to achieve competitive performance, posing a computational chal-
lenge for academia to explore this direction. 3) They tend to be sensitive to hyperparam-
eters and optimizers, introducing additional difficulty reproducing the results on various

benchmarks.

Through the analysis of the widely adopted InfoNCE loss in contrastive learning, we
identified a negative-positive-coupling (NPC) multiplier ¢z in the gradient as shown in
Proposition 1. The NPC multiplier modulates the gradient of each sample, and it reduces
the learning efficiency due to easy SSL classification tasks: 1) when a positive sample is

very close to the anchor; 2) when negative samples are far away from the anchor; and 3)
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when there is only a small number of negative samples (i.e., a small batch size). A less-
informative (nearby) positive view would reduce the gradient from a batch of informative
negative samples or vice versa. Such a coupling exacerbates when smaller batch sizes are

used.

Meanwhile, we also investigate the relationship between ¢p and batch size through
the baseline, SImCLR. As can be seen in Figure 3.1, the distribution of ¢p has a strong
positive correlation with the batch size. Figure 3.1(a) shows that when batch size gradually
increases, ¢p not only approaches 1 but also reduces the coefficient of variation C,. The
distribution with larger C), has low statistical dispersion and vice versa. Figure 3.1(b)
indicates that the mode value of ¢ will also shift from 0 to 1 when the batch size becomes

larger. Hence, it is reasonable to fix the value of ¢, alleviating the influence of batch size.

By removing the coupling term from the Info-NCE loss, we reach a new formula-
tion, the decoupled contrastive learning (DCL). The new objective function significantly
improves the training efficiency with less sensitivity to sub-optimal hyper-parameters re-
quires neither large batches, momentum encoding, or large epochs to achieve competitive
performance on various benchmarks. The main contributions of the proposed DCL can

be characterized as follows:

1) We provide both theoretical analysis and empirical evidence to show the NPC effect

in the InfoNCE-based contrastive learning;

2) We introduce DCL objective, which casts off the NPC coupling phenomenon, sig-
nificantly improves the training efficiency, and it is less sensitive to sub-optimal

hyper-parameters;

3) Extensive experiments are provided to show the effectiveness of the proposed method
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Figure 3.2: Contrastive learning and negative-positive coupling (NPC). (a) In SimCLR,
each sample x; has two augmented views {xgl), xz@)}. They are encoded by the same en-

coder f and further projected to {zgl), ZZ@)} by a normalized MLP. (b) According to Equa-
( (1

comes from the other view x

tion 3.4. For the view x 1), the cross-entropy loss L ) leads to a positive force zl@), which

(

all the negative samples, i.e. {zgl)\l € {1,2},j # i}. However, the gradient —V ) L§1

? ofx and a negative force, which is a weighted average of
)

is proportional to the NPC multiplier. (¢) We show two cases when the NPC term affects
learning efficiency. The positive sample is close to the anchor and less informative on the
top. However, the gradient from the negative samples is also reduced. On the bottom,
when the negative samples are far away and less informative, the learning rate from the
positive sample is mistakenly reduced. In general, the NPC multiplier from the InfoNCE
loss makes the SSL task simpler to solve, leading to reduced learning efficiency.

that DCL achieves competitive performance without large batch sizes, large train-
ing epochs, momentum encoding, or additional tricks such as stop-gradient and
multi-cropping, etc. This leads to a plug-and-play improvement to the widely adopted

InfoNCE-based contrastive learning;

4) We show that DCL can be easily combined with the SOTA contrastive methods, e.g.

NNCLR [39], to achieve further improvements.

3.2 Related Work

Contrastive Learning. Contrastive learning (CL) constructs positive and negative sam-
ple pairs to extract information from the data itself. In CL, each anchor image in a batch
has only one positive sample to construct a positive sample pair [19, 49, 51]. CPC [120]
predicts the future output of sequential data by using current output as prior knowledge,
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which can improve the feature representing the ability of the model. Instance discrim-
ination [133] proposes a non-parametric cross-entropy loss to optimize the model at the
instance level. Inv. spread [ | 36] makes use of data augmentation invariant and the spread-
out property of instance to learn features. MoCo [51] proposes a dictionary to maintain a
negative sample set, thus increasing the number of negative sample pairs. Different from
the aforementioned self-supervised CL approaches, [66] proposes a supervised CL that

considers all the same categories as positive pairs to increase the utility of images.

Collapsing Issue on the Number of Negatives. In CL, the objective is to maximize
the mutual information between the positive pairs. However, to avoid the “collapsing
output”, vast quantities of negative samples are needed so that the learning objectives
obtain the maximum similarity and have the minimum similarity with negative samples.
For instance, in SImCLR [ 19], training requires many negative samples, leading to a large
batch size (i.e., 4096). Furthermore, to optimize such a huge batch, a specially designed
optimizer LARS [138] is used. Similarly, MoCo [51] needs a vast queue (i.e., 65536) to
achieve competitive performance. BYOL [46] does not collapse output without using any
negative samples by considering all the images are positive and to maximize the similarity
of “projection” and “prediction ” features. On the other hand, SimSiam [21] leverages the
Siamese network to introduce inductive biases for modeling invariance. With the small
batch size (i.e., 256), SimSiam is a rival to BYOL (i.e., 4096). Unlike both approaches that
achieved their success through empirical studies, we tackle from a theoretical perspective,
proving that an intertwined multiplier ¢z of positive and negative is the main issue to

contrastive learning.

Batch Size Sensitivity on InfoNCE. Several works of literature focus on batch size sen-

sitivity concerning the InfoNCE objective function. [119] proposes an objective based on
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relative predictive coding that maintains the balance between training stability and batch
size sensitivity. [54] follows the [4] and extends the idea between the local and global
features. [93] proposes a Wasserstein distance to prevent the encoder from learning any
other differences between unpaired samples. [62] and [101] learn better representation by
sampling hard negatives, particularly for small batches. Other recent works [40, 151] aim
to mitigate the issue of small batch size in InfoNCE loss. Although the basic principle of
recent works and DCL is derived from InfoNCE objective function, we provide a novel
perspective to support the decoupling between positive and negative terms in InfoNCE
loss is essential. Simply removing the term from the denominator pre-training to positive
pairs can drastically improve the performance and keep the objective function invariant to

batch size sensitivity.

3.3 Decouple Negative and Positive Samples in Contrastive

Learning

We choose to start from SimCLR because of its conceptual simplicity. Given a batch

(1)

of N samples (e.g. images), {X1,...,Xy}, let x\! ,x@) be two augmented views of the
1 K g

sample z; and B be the set of all of the augmented views in the batch, i.e. B = {xgk) |k €

{1,2},i € [1, N]}. As shown by Figure 3.2(a), each of the views xgk) is sent into the same
(k)

encoder network f and the output h;”’ = f (Xl(-k)) is then projected by a normalized MLP

projector that ng) = g(hgk))/Hg(hgk)) ||. For each augmented view x*), SimCLR solves a

i

classification problem by using the rest of the views in B as targets, and assigns the only

(k)

i

positive label to xgu), where u # k. So SimCLR creates a cross-entropy loss function L
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(k)

for each view x;"’, and the overall loss function is L = Zke{l 2},i€[1,N] Lgk)

(3.1)

where

U= >,  exp((z".2)/7) (3.2)

le{1,2},j€[1,N].j#i

means the summation of negative terms for the view k of the sample .

Proposition 1. : There exists a negative-positive coupling (NPC) multiplier q( ) in the
gradient of LE ).
(
-V <1)L(-1) =
W IO
i (2 exp(z; .z )/T (1)
. ( 216{1 2},5€[1,N],j#i Um] "z >
W (3.3)
-V (2)L(-1) 3B, Zgl)
' T M 40
(1) _ _ dapsiexpl(z )T (1)
L _vz§l) LZ — ?_ U'L 1 . ZZ
where the NPC multiplier qj(g) is:
) (2
=1 ol . 2)/7) 64
B, — .
exp((z,2%) /7) + Ui

(1)

and Ui = 32 1c1 0} je[1,N],j4i exp(( 2 >/7’) Due to the symmetry, a similar NPC

multiplier qB; exists in the gradient ofLik ke {1,2},i € [1,N]J.

As we can see, all of the partial gradients in Equation 3.3 are modified by the com-

mon NPC multiplier q}(;)i

in Equation 3.4. Equation 3.4 makes intuitive sense: when the
SSL classification task is easy, the gradient would be reduced by the NPC term. However,
the positive samples and negative samples are strongly coupled. When the negative sam-
ples are far away and less informative (easy negatives), the gradient from an informative,

positive sample would be reduced by the NPC multiplier qg)i. On the other hand, when

the positive sample is close (easy positive) and less informative, the gradient from a batch
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of informative negative samples would also be reduced by the NPC multiplier. When the
batch size is smaller, the SSL classification problem can be significantly simpler to solve.
As a result, the learning efficiency can be significantly reduced with a small batch size

setting.

Figure 3.1(b) shows the NPC multiplier ¢p distribution shift w.r.t. different batch
sizes for a pre-trained SImCLR baseline model. While all of the shown distributions have
prominent fluctuation, the smaller batch size makes ¢p cluster towards 0, while the larger
batch size pushes the distribution towards 6(1). Figure 3.1(a) shows the averaged NPC
multiplier (¢5) changes w.r.t. the batch size and the relative fluctuation. The small batch
sizes introduce significant NPC fluctuation. Based on this observation, we propose to re-
move the NPC multipliers from the gradients, which corresponds to the case ¢g n_ . This
leads to the decoupled contrastive learning formulation. [127] also proposes an alignment
& uniformity loss which does not have the NPC. However, a similar analysis introduces
negative-negative coupling from different positive samples. In other words, [127] con-
siders all the negative samples in the batch together, which may cause the gradient to be
dominated by a specific negative pair. In Appendix 5, we provide a thorough discussion

and demonstrate the advantage of DCL loss against [127].

Proposition 2. the DCL Loss: Removing the positive pair from the denominator of
Equation 3.1 leads to a decoupled contrastive learning loss. If we remove the NPC mul-
tiplier qgf; from Equation 3.3, we reach a decoupled contrastive learning loss Lpc =

k k) .
Zke{l,?},ie[{l,N]] L(Dé,i’ where LSD)C,i 1§/

exp((z",2)) /1)

L) = —log L% (3.5)
e exp((z 522 /1) + Ui
= —(z",2") /7 + log Uyy; (3.6)

The proofs of Proposition 1 and 2 are given in Appendix. Further, we can generalize

the loss function L to Lpow by introducing a weighting function for the positive pairs
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. (4,k)
ie. Lpcw = Zke{l,Q},iE[[l,N]] Lpcw,i-

<L~

LS = —w(@), 27 (20,27 /7) + log Uy (3.7)

where we can intuitively choose w to be a negative von Mises-Fisher weighting function

M) @) _ o _ o 2?)/o)
thatw(Zi ) Z; )_2 Ei[exp((ZEU,ZEQ)VU)

and we can see that lim,_,.o Lpcw = Lpc. The intuition behind w(z(l) Z(Q)) is that

T 0

] and E [w] = 1. Lp¢ is a special case of Lpow

there is more learning signal when a positive pair of samples are far from each other, and
E w(zgl), Z§2))<ZZ(1), zz@w ~F [(zgl), zl@)ﬂ . Other similar weight functions also provide

similar results. In general, we find such a weighting function, which gives a larger weight

to the hard positives tend to increase the representation quality.

3.4 Experiments

This section empirically evaluates the proposed decoupled contrastive learning (DCL)
and compares it to general contrastive learning methods. We summarize the experiments
and analysis as the following: (1) the proposed work significantly outperforms the gen-
eral InfoNCE-based contrastive learning on both large-scale and small-scale vision bench-
marks; (2) we show that the enhanced version of DCL, DCLW, could further improve the
representation quality; and (3) we further analyze DCL with ablation studies on ImageNet-
1K, hyperparameters, and few learning epochs, which shows fast convergence of the pro-
posed DCL. Note that all the experiments are conducted with 8 Nvidia V100 GPUs on a

single machine.

3.4.1 Implementation Details

ImageNet. For a fair comparison on ImageNet data, we implement the proposed decou-
pled structure, DCL, by following SimCLR [19] with ResNet-50 [53] as the encoder back-
bone and use cosine annealing schedule with SGD optimizer. We set the temperature 7 to

0.1 and the latent vector dimension to 128. Following the OpenSelfSup benchmark [140],
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Figure 3.3: Comparisons on ImageNet-1K with/without DCL under different numbers of
(a): batch sizes for SImCLR and (b): queues for MoCo. Without DCL, the top-1 accuracy
significantly drops when batch size (SImCLR) or queues (MoCo) becomes very small.
Note that the temperature 7 is 0.1 for SimCLR and 0.07 for MoCo in the comparison.

we evaluate the pre-trained models by training a linear classifier with frozen learned em-
bedding on ImageNet data. We further consider evaluating DCL on ImageNet-100, a se-
lected subset of 100 classes of ImageNet-1K. Note that all models on ImageNet are trained

for 200 epochs.

CIFAR and STL10. For CIFAR10, CIFAR100, and STL10, ResNet-18 [53] is used as
the encoder architecture. Following the small-scale benchmark [130], we set the tem-
perature 7 to 0.07. All models are trained for 200 epochs with SGD optimizer, a base
Ir = 0.03 * batchsize /256, and evaluated by k nearest neighbor (kNN) classifier. Note
that on STL10, we include both the train and unlabeled set for model pre-training. We
further use ResNet-50 as a stronger backbone by following the implementation [ 100], us-

ing the same backbone and hyperparameters.

3.4.2 [Experiments and Analysis

DCL on ImageNet. This section illustrates the effect of DCL against InfoNCE-based
approaches under different batch sizes and queues. The initial setup is to have 1024 batch
size (SImCLR) and 65536 queues (MoCo [51]) and gradually reduce the batch size (Sim-

CLR) and queue (MoCo) to show the corresponding top-1 accuracy by linear evaluation.
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Table 3.1: Comparisons with/without DCL under different batch sizes from 32 to 512.
Results show the effectiveness of DCL on five widely used benchmarks. The performance
of DCL keeps steadier than the SImCLR baseline while the batch size is varied.

Batch Size 32 64 128 256 512

Dataset ‘ ImageNet-1K (kNN / Linear)

Baseline (ResNet-50) | 40.2/56.8 42.9/58.9 45.1/60.6 46.3/61.8 49.4/64.0
w/ DCL (ResNet-50) | 43.7/61.5 46.3/63.4 48.5/64.3 49.8/65.9 50.1/65.8

Dataset ‘ ImageNet-100 (kNN / Linear)

Baseline (ResNet-50) | 67.8/74.2 71.9/77.6 73.2/79.3 74.6/80.7 75.4/81.3
w/ DCL (ResNet-50) | 74.9/80.8 76.3/82.0 76.5/81.9 76.9/83.1 76.8/82.8

Dataset | CIFAR-10 (kNN / Linear)

Baseline (ResNet-18) | 78.9/79.8 80.4/81.3 81.1/82.8 81.4/83.0 81.3/83.3
w/ DCL (ResNet-18) | 83.7/85.1 84.4/85.9 84.4/85.7 84.2/85.3 83.5/84.7

Dataset CIFAR-100 (kNN / Linear)
Baseline (ResNet-18) | 49.4/51.3 50.3/53.8 51.8/55.3 52.0/56.3 52.4/56.8
w/ DCL (ResNet-18) | 51.1/55.4 54.3/58.3 54.6/58.9 54.9/58.5 55.0/58.4

Dataset STL-10 (kNN / Linear)
Baseline (ResNet-18) | 74.1/76.2  77.6/77.8 79.3/80.0 80.7/81.3 81.3/81.5
w/ DCL (ResNet-18) | 82.0/85.2 82.8/86.3 81.8/86.1 81.2/85.7 81.0/85.6

Figure 3.3 indicates that without DCL, the top-1 accuracy drastically drops when batch
size (SimCLR) or queue (MoCo) becomes very small. While with DCL, the performance
keeps steadier than baselines (SimCLR: —4.1% vs. —8.3%, MoCo: —0.4% vs. —5.9%).

Specifically, Figure 3.3 further shows that in SimCLR, the performance with DCL
improves from 61.8% to 65.9% under 256 batch size; MoCo with DCL improves from
54.7% to 60.8% under 256 queues. The comparison fully demonstrates the necessity of
DCL, especially when the number of negatives is small. Although batch size increases to

1024, DCL (66.1%) still improves over the SImCLR baseline (65.1%).

We further observe the same phenomenon on ImageNet-100 data. Table 3.1 shows
that, with DCL, the top-1 linear performance only drops 2.3% compared to the InfoNCE
baseline (SImCLR) of 7.1% when the batch size is varied.

In summary, it is worth noting that, while the batch size is small, the strength of ¢ ;,

which is used to push the negative samples away from the positive sample, is also relatively
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Table 3.2: Comparisons between SImCLR baseline, DCL, and DCLW. The linear and kNN
top-1 (%) results indicate that DCL improves baseline performance, and DCLW further
provides an extra boost. Note that results are under batch size 256 and epoch 200. All
models are both trained and evaluated with the same experimental settings. The backbones
are ResNet-18 and ResNet-50 for CIFAR and ImageNet, respectively.

Dataset ‘ CIFAR10 (kNN) CIFAR100 (kNN) ImageNet-100 (linear) ImageNet-1K (linear)

SimCLR 81.4 52.0 80.7 61.8
DCL 84.2 (+2.8) 54.9 (+2.9) 83.1 (+2.4) 65.9 (+4.1)
DCLW 84.8 (+3.4) 55.2 (+3.2) 84.2 (+3.5) 66.9 (+5.1)

Table 3.3: Improve the DCL model performance on ImageNet-1K with tuned hyperparam-
eters: temperature and learning rate, and stronger image augmentation. Note that models
are trained with 256 batch size and 200 epochs.

ImageNet-1K (256 Batch size; 200 epoch) \ Linear Top-1 Accuracy (%)

DCL 65.9
+ optimal (7,1,) = (0.2, 0.07) 67.8 (+1.9)
+ asymmetric augmentation [46] 68.2 (+0.4)

weak. This phenomenon tends to reduce the efficiency of learning representation. While
taking advantage of DCL alleviates the performance gap between small and large batch
sizes. Hence, through the analysis, we find out DCL can simply tackle the batch size issue
in contrastive learning. With this considerable advantage given by DCL, general SSL
approaches can be implemented with fewer computational resources or lower standard
platforms. Compared to InfoNCE, DCL is more applicable across all large-scale SSL

applications.

DCL on CIFAR and STL10. For STL10, CIFAR10, and CIFAR100, we implement
DCL with ResNet-18 as encoder backbone. In Table 3.1, it is observed that DCL also
demonstrates its strong effectiveness on small-scale benchmarks. In the evaluation (kNN
/ Linear) summary, DCL outperforms its baseline by 4.8% / 5.3% (CIFAR10) and 1.7%
/ 4.4% (CIFAR100) under a small batch size 32. The accuracy (kNN / Linear) of the
SimCLR baseline on STL10 is also improved significantly by 7.9% / 9.0%.

Decoupled Objective with Re-Weighting DCLW. We only replace L pc with Lpey with
no possible advantage from additional tricks. Both DCL and the baselines apply the same

training instruction of the OpenSelfSup benchmark for fairness. Note that we empirically
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choose o = 0.5 in the experiments. Results in Table 3.2 indicates that, DCLW achieves
extra 5.1% (ImageNet-1K), 3.5% (ImageNet-100) gains compared to the baseline. | For
CIFAR data, an extra 3.4% (CIFAR10) 3.2% is gained from the addition.of DCLW. It is
worth noting that, trained with 200 epochs, DCLW reaches 66.9% with batch size 256,
surpassing the SImCLR baseline: 66.2% with batch size 8192.

3.4.3 Ablations

We perform extensive ablations on the hyperparameters of DCL on both ImageNet
data and other small-scale data, i.e., CIFAR and STL10. By seeking better configurations
empirically, we see that DCL gives consistent gains over the standard InfoNCE baselines
(SimCLR and MoCo-v2). In other ablations, we see that DCL achieves more gains over
both SimCLR and MoCo-v2, i.e., InfoNCE-based baselines, also when training for 100

epochs only.

DCL Ablations on ImageNet. In Table 3.3, we have slightly improved the DCL model
performance on ImageNet-1K: 1) tuned hyperparameters, temperature 7 and learning rate
; 2) asymmetric image augmentation (e.g., BYOL). To obtain a stronger baseline, we
conduct an empirical hyperparameter search with batch size 256 and 200 epochs. This
improves DCL from 65.9% to 67.8% top-1 accuracy on ImageNet-1K. We further adopt
the asymmetric augmentation policy from BYOL and improve DCL from 67.8% to 68.2%

top-1 accuracy on ImageNet-1K.

DCL Ablations on CIFAR. Further experiments are conducted based on the ResNet-50
backbone and large learning epochs (i.e., 500 epochs). The DCL model with kNN eval,
batch size 32, and 500 epochs of training could reach 86.1% compared to 82.2%. For the
following experiments in Table 3.4, we show DCL ResNet-50 performance on CIFAR10
and CIFAR100. In these comparisons, we vary the batch size to show the effectiveness of

DCL.

MoCo-v2 with DCL. We are aware that it is more convincing to compare the proposed

DCL against a more compelling version, MoCo-v2. Comparisons on both ImageNet-1K
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Table 3.4: The comparisons with/without DCL under various batch sizes from 32 to 512
on ResNet-50.

Architecture@epoch ‘ ResNet-50@500 epoch

Dataset | CIFAR10 (kNN) | CIFAR100 (kNN)
Batch Size ‘ 32 64 128 256 512 ‘ 32 64 128 256 512
SimCLR 82.2 859 88.5 889 89.1|49.8 553 599 60.6 6l.1

SimCLR w/ DCL 86.1 883 899 90.1 90.3 | 543 584 61.6 62.0 62.2

Table 3.5: Linear top-1 accuracy (%) comparison with MoCo-V2 on ImageNet-1K and
ImageNet-100.

Queue Size ‘ 32 64 128 256 8192 ‘ 64 256 65536
Dataset ‘ ImageNet-100 (Linear) ‘ ImageNet-1K (Linear)

MoCo-v2 Baseline (ResNet-50) | 73.7 76.4 787 78.7 79.8 | 63.9 67.1 67.5
MoCo-v2 w/DCL (ResNet-50) | 76.2 783 79.6 79.6 80.5 | 65.8 67.6 67.7

and ImageNet-100 in Table 3.5 indicate that DCL becomes significantly more effective

than MoCo-v2 when the queue size gets smaller.

—Loss (w/ DCL)

-~ Loss (baseline)
—Accuracy@1 (w/ DCL)
|- Accuracy@1 (baseline) | Z

nnnnnn

InfoNCE@Epoch 5 InfoNCE@Epoch 40 InfoNCE@Epoch 70

—Loss (w/DCL)
Loss (baseline)
—Accuracy@1 (w/ DCL) =
- Accuracy@1 (baseline)| e

DCL@Epoch 5 DCL@Epoch 40 DCL@Epoch 70

(b) STL10 T
(c) t-SNE visualization

Figure 3.4: Comparisons between DCL and InfoNCE-based baseline (SimCLR) on (a)
CIFARI10 and (b) STL10 data. DCL speeds up the model convergence during the SSL
pre-training and provides better performance than the baseline on CIFAR and STL10 data.
(c) t-SNE visualization of CIFAR-10 with 32 batch size. DCL shows a stronger separation
force between the features than SimCLR.

Few Learning Epochs. DCL can alleviate the shortcoming of the traditional contrastive

learning framework, which needs a large batch size long learning epochs to achieve higher
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Table 3.6: ImageNet-1K top-1 accuracy (%) on SImCLR and MoCo-v2 with/without DCL
under few training epochs. We further list results under 200 epochs for clear comparison:
With DCL, the performance of SImCLR trained under 100 epochs nearly reaches its per-
formance under 200 epochs. The MoCo-v2 with DCL also reaches higher accuracy than
the baseline under 100 epochs.

‘ SimCLR SimCLR w/ DCL MoCo-v2 MoCo-v2 w/ DCL

100 Epoch 57.5 64.6 63.6 64.4
200 Epoch 61.8 65.9 67.5 67.7

performance. The previous state-of-the-art, SImCLR, heavily relies on large quantities of
learning epochs to obtain high top-1 accuracy. (e.g., 69.3% with up to 1000 epochs). DCL
aims to achieve higher learning efficiency with few learning epochs. We demonstrate the
effectiveness of DCL in InfoNCE-based frameworks SimCLR and MoCo-v2 [20]. We
choose the batch size of 256 (queue of 65536) as the baseline and train the model with only
100 epochs. We make sure other parameter settings are the same for a fair comparison.
Table 3.6 shows the result on ImageNet-1K using linear evaluation. With DCL, SimCLR
can achieve 64.6% top-1 accuracy with only 100 epochs compared to SimCLR baseline:
57.5%; MoCo-v2 with DCL reaches 64.4% compared to MoCo-v2 baseline: 63.6% with

100 epochs pre-training.

We further demonstrate that, with DCL, learning representation becomes faster dur-
ing the early stage of training compared to the InfoNCE-based learning scheme. The
reason is that DCL successfully solves the decoupled issue between positive and negative
pairs. Figure 3.4 on (a) CIFAR10 and (b) STL10 shows that DCL improves the speed
of convergence and reaches higher performance than the baseline on CIFAR and STL10
data. The t-SNE visualization in Figure 3.4 (c) also supports the proposed theoretical
derivation that removing the batch-size dependent impact (i.e., NPC multiplier) should

improve representation learning abilities over the InfoNCE-based learning scheme.
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Table 3.7: Linear top-1 accuracy (%) comparison of SSL approaches on ImageNet-
1K. Given lower computational budget, DCL model are better than recent SOTA ap-
proaches. Its effectiveness does not rely on large batch size and epochs (SimCLR [19],
NNCLR [39]), momentum encoding (BYOL [46], MoCo-v2 [20]), or other tricks such as
stop-gradient (SimSiam [2|]) and multi-cropping (SWAV [12]).

ResNet-50 w/ | SimCLR  BYOL SwAV | MoCo-v2  SimSiam | Barlow Twins | NNCLR | NNCLR +DCL
Epoch 400 400 300 1000 400
Batch Size 4096 256 256 256/512 | 256/512

ImageNet-1K (Linear) 69.8 73.2 70.7 71.0 70.8 70.7 68.7/71.7 71.1/72.3

3.5 Discussion

Comparison with other SOTA SSL Approaches. The primary goal of this work is to pro-
vide an efficient and effective improvement to the widely used InfoNCE-based contrastive
learning, where we decouple the positive and negative terms to achieve better represen-
tation quality. DCL is less sensitive to suboptimal hyperparameters and achieves com-
petitive results with minimal requirements. Its effectiveness does not rely on large batch
size and learning epochs, momentum encoding, negative sample queues, or additional tac-
tics (e.g., stop-gradient and multi-cropping). Overall, DCL provides a more robust base-
line for the contrastive-based SSL approaches. Though this work aims not to provide a
SOTA SSL approach, DCL can be combined with the SOTA contrastive learning methods,
such as NNCLR [39], to achieve better performance without large batch size and learn-
ing epochs. In Table 3.7, we provide extensive comparisons to SOTA SSL approaches
on ImageNet-1K to validate the effectiveness of DCL. In Table 3.8, we further show that
DCL achieves competitive results compared to VICReg [2], Barlow Twins [139], Sim-

Siam [21], SWAV [11], and DINO [13] on ImageNet-100 and CIFAR-10.

Generalization of DCL to Different Domains. DCL can be easily adapted to different
domains (e.g., speech and language models) to achieve competitive performance. We
demonstrate that DCL can be combined with SOTA SSL speech models, e.g., wav2vec
2.0 [1] which uses transformer backbone and requires enormous computation resources.
We evaluate wav2vec 2.0 on its downstream tasks and perform better by applying the
DCL method. Detailed results and discussion can be found in Appendix. To the best

of our knowledge, DCL can be potentially combined with a transformer-based language
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Table 3.8: kNN & linear top-1 accuracy (%) comparison of SSL approaches on CIFAR10
and ImageNet-100.

ResNet-18 @ 256 Batch Size ‘ DINO SwAV SimSiam VICReg Barlow Twins NNCLR NNCLR+DCL
CIFAR-10, 1000 Epoch (kNN) 89.5 89.2 90.5 92.1 92.1 91.8 92.3
ImageNet-100, 400 Epoch (Linear) | 74.9 74.0 74.5 79.2 80.2 79.8 80.6

Table 3.9: Results of DCL and SimCLR with large batch size and learning epochs.

ImageNet-1K (ResNet-50) \ Batch Size Epoch Top-1 Accuracy (%)

SimCLR 256 200 61.8
SimCLR 256 400 64.8
SimCLR 1024 400 67.3
SimCLR w/ DCL 256 200 67.8 (+6.0)
SimCLR w/ DCL 256 400 69.5 (+4.7)
SimCLR w/ DCL 1024 400 69.9 (+2.6)

model, CLIP [98], which uses a very large batch size of 32768. With DCL, CLIP shall
maintain its complexity and achieve huge learning efficiency when the batch size becomes

smaller. Note that it has been implemented by [125].

DCL Convergence for Large Batch Sizes. The performance of DCL appears to have
less gain compared to InfoNCE-based baseline when the batch size is large. According to
Figure 3.1 and the theoretical analysis, the reason is that the NPC multiplier g5 — 0 when
the batch size is large (e.g., 1024). As shown in the analysis, InfoNCE loss converges to the
DCL loss as the batch size approaches infinity. With 400 training epochs, the ImageNet-
1K top-1 accuracy slightly increases from 69.5% to 69.9% when the batch size increases

from 256 to 1024. Please refer to Table 3.9.

3.6 Conclusion

We identify the negative-positive-coupling (NPC) effect in the widely used InfoNCE
loss, making the SSL task significantly easier to solve with smaller batch size. By remov-
ing the NPC effect, we reach a new objective function, decoupled contrastive learning
(DCL). The proposed DCL loss function requires minimal modification to the SimCLR

baseline and provides efficient, reliable, and nontrivial performance improvement on var-
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ious benchmarks. Given the conceptual simplicity of DCL and that it requires neither
momentum encoding, large batch size, or long epochs to reach competitive performance.
Notably, DCL can be combined with the SOTA contrastive learning method, NNCLR, to
achieve 72.3% ImageNet-1K top-1 accuracy with 512 batch size in 400 epochs. We wish
that DCL can serve as a strong baseline for the contrastive-based SSL methods. Further,
an important lesson from the DCL loss is that a more efficient SSL task shall maintain its

complexity when the batch size becomes smaller.
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Chapter 4 Learning with Real-World

Data Distributions

4.1 Introduction

The performance of an image classification model critically depends on the underly-
ing data distribution, both during the training and the testing stages. For the majority of
real-world applications, their underlying data distributions can substantially deviate from
those of conventional benchmark collections established solely for research evaluations.
Indeed, the distribution of real-world data is often not regular, and for many practical ap-
plications, it tends to be more or less fine-grained and even complicated with long-tailed
imbalance. To account for such discrepancies in data distribution, recent datasets, e.g.,
iNaturalist 2018 [121], have been proposed to bridge the gap so that their resulting clas-
sification techniques can be widely applied. Figure 4.1 illustrates two notable and chal-
lenging aspects of iNaturalist. First, it exhibits a long-tailed distribution, characterized
by extremely imbalanced ratios between head and tail categories. In particular, the al-
most three orders of magnitude difference in the number of training instances embodied
in the long-tailed distribution imposes a difficult task in learning proper representations
of tail classes. Second, the object categories in this dataset are also fine-grained, while
inter-class similarity and intra-class variations are subtly intertwined. Performing classifi-
cations over iNaturalist 2018 is essentially a daunting task, no matter what a specific group
(many, mediumor few) of fine-grained object classes is under consideration. Motivated

by these challenges, we aim to simultaneously address both the fine-grained and long-
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Figure 4.1: The distribution of real-world data can include various subtleties such as fine-
grained and long-tailed complications. In terms of algorithm design, these two aspects
of challenges can be exemplified by iNaturalist 2018 [121]. As illustrated, the extremely
imbalanced numbers of instances among its object classes could derange learning proper
features of tail classes for effective classification. Meanwhile, model overfitting could
become a major concern in that it is hard to disentangle the fine-grained ambiguities due
to the inter-class similarities and intra-class variations in the underlying object categories.

tailed issues in designing classification techniques for practically dealing with real-world

data.
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Figure 4.2: Left: Different datasets exhibit varying degrees of long-tailed and fine-grained
characteristics. Right: Mainstream techniques focus on solving one aspect of the two
characteristics, where DTRG [&1] (blue dot) and LA [89] (green dot) are respectively
current SOTA techniques for tackling the fine-grained and long-tailed classification tasks.
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Fine-grained visual classification (FGVC) is an active and challenging problem-in
computer vision. Such a recognition task differs from the classical problem of large-scale
visual classification (LSVC) by focusing on differentiating similar sub-categories of the
same meta-category. While the inter-class similarity among the object categories is per-
vasive, the intra-class variations further impose ambiguities in learning a unified and dis-
criminative representation for the FGVC task. On the other hand, considering the issue of
long-tailed distribution brings in another aspect of difficulty in developing practical clas-
sification techniques. The significantly large numbers of samples from head categories
tend to dominate the training procedure. Even with sophisticated learning strategies, the
resulting classification model often ends up performing poorly for the tail categories, com-
pared with the expected result on the head counterparts. In fact, the performance curve

somewhat resembles the shape of a long-tailed distribution.

We note from existing literature of object classification research that there are only
a few attempts to simultaneously solve the two aforementioned challenging issues. Rel-
evant developments mainly focus on tackling either of the two tasks. In FGVC, most
of the recent research efforts have converged to learning pivotal local/part details related
to distinguishing fine-grained categories e.g., [43, , ]. Moreover, to improve the
classification performance further, a number of these efforts require the fusion of sev-
eral sophisticated computer vision techniques, such as in [36, 44]. In resolving the long-
tailed difficulty, previous approaches have drawn on balanced data sampling to rectify
their model training [56, 63, ]. For example, the recent technique of [63] first learns
the representation and then refines the classifier by balanced sampling. All these differ-
ent research attempts involve varying degrees of fine-grained and long-tailed factors. As
shown in Figure 4.2 (Left), we take the maximum imbalanced ratio and the normalized fea-
ture cosine similarity between object categories as the respective criterion to measure the
fine-grained and long-tailed factors and characterize the two aspects of difficulties among
popular datasets adopted in object recognition research. Moreover, Figure 4.2 (Right) in-
dicates that a purely fine-grained state-of-the-art (SOTA) approach does not necessarily
perform well for the long-tailed case, and vice versa, while our approach provides a unified

solution to tackling the two challenging issues of image classification.
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Figure 4.3: Overview of adaptive batch confusion norm (ABC-Norm). The adaptive batch
prediction P can be obtained by class-wise modulating the predicted probabilities P with
respect to the adaptive matrix A that encodes the underlying data distribution. Our for-
mulation then adds slight classification confusions to yield an adversarial regularization
effect in model training. Despite that ABC-Norm converges to a higher training loss than
other techniques, it indeed achieves better validation accuracy.

In this work, we focus on establishing a fundamental approach based on exploring
the characteristics of the real-world data distributions rather than relying on various data
augmentation schemes and sophisticated DNN-based engineering tricks. From the two
plots in Figure 4.3, we observe that when the objective function during training converges
very close to zero, the results in testing are often not the best. To avoid being trapped with
over-optimizing the underlying model, previous approaches have adopted regularization
techniques to resolve this matter. Take, for example, the inclusion of margin in the triplet
loss [105]. The design principle of triplet loss is to separate positive and negative samples
by at least a default margin, say m, which turns out to play a pivotal role in boosting the
learning efficacy. Different from typical regularization techniques, it implicitly raises the

learning difficulty of the objective function, instead of limiting the model capacity.

The concept of incorporating extra difficulty into training has also been proposed in
dealing with the FGVC problem. Pairwise Confusion (PC) [37] and Maximum Entropy
(MaxEnt) [38] are two such approaches, closely related to our proposed method. PC ar-
gues that slightly confusing the model in training can prevent overfitting problems. Max-
Ent observes that the data diversity of FGVC is usually smaller than that of a large-scale
classification dataset, e.g., ImageNet. It thus presumes that the entropy of the model’s pre-
diction should tend to be higher than that of typical classification scenarios. Both PC and
MaxEnt add a confusion-like loss to improve the FGVC performances of their resulting

models. Still, there are currently no relevant arguments in addressing fine-grained and
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long-tailed issues simultaneously.

We are thus motivated to develop a new classification technique, termed adaptive
batch confusion norm (ABC-Norm), to regularize its corresponding adaptive batch pre-
diction (ABP) matrix to better account for real-world data distributions. ABC-Norm can
be used to deal with both fine-grained and long-tailed factors and to construct an adver-
sarial loss for enhancing the training efficacy. Optimizing with respect to the ABC-Norm
drives the learning process to (class-wise) adaptively add confusions to achieve better clas-
sification results. We also provide a mathematical derivation to justify the concept and the
ideas it represents. Figure 4.3 illustrates an overview of ABC-Norm. We characterize the

advantages of our method as follows.

* The computation of ABC-Norm regularization is efficient and does not incur signif-

icant increase in training time.

* Unlike related techniques, e.g., [63, 1 29] that decouple representation learning from
classification or learn multiple distribution-aware experts, our regularization-based

method leads to an end-to-end trainable implementation.

» Without relying on complicated model design or sophisticated data augmentations
such as in, e.g., [36, &1, ], ABC-norm not only provides a unified solution to
resolving fine-grained and long-tailed issues but also improves the baselines to

achieve competitive classification results.

4.2 Related Work

In addressing conventional computer vision tasks, the underlying distribution of train-
ing data is often relatively balanced. The numbers of samples across various object cat-
egories do not differ substantially, and in addition, the diversity among the categories is
typically high. However, the data distributions for real-world applications are far more
complicated; it could even contain fine-grained and long-tailed complexities at the same

time. Recent related work for image classification tends to emphasize either aspect of
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the two difficulties, but not both. Taking such development into account, we divide the
literature survey of relevant techniques into two groups, namely, fine-grained visual clas-

sification and long-tailed visual recognition.

4.2.1 Fine-grained visual classification

The Fine-Grained Visual Classification (FGVC) problem is notably characterized by
two intriguing properties, significant inter-class similarity and intra-class variations, which
cause learning an effective FGVC classifier a challenging task. Driven by impressive
research progress, the setting of FGVC has gradually evolved from strong labels to weak

labels.

Early work In the initial efforts for tackling FGVC, the developed methods mostly as-
sume that the training datasets are made with comprehensive annotations, such as the part
location labels in CUB-200 [122]. Along this line, Berg et al. [5] explore the labeled part
locations to eliminate highly similar object categories for improving the classifier. Huang
et al. [58] introduce an approach established based on a two-stream classification network
to capture both object-level and part-level information explicitly. However, due to the
rapid research advances in visual classification, the most recent FGVC approaches are
designed to complete the model learning based on the category labels solely. Hence, with-
out accessing the part location labels, how to learn the discriminative parts automatically

becomes the next research direction.

Discriminative parts Existing FGVC approaches usually draw on data augmentations
and specific attention mechanisms to effectively learn the discriminative parts. Yang et
al. [135] propose a self-supervision mechanism to localize informative regions without
the need of bounding-box and part annotations. Wang et al. [131] present a filter bank
within a CNN framework to learn high-quality discriminative patches. Zheng et al. [146]
introduce a trilinear attention sampling network for fine-grained image recognition, which

can learn rich feature representations from hundreds of part proposals. Chen et al. [24]
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propose a destruction and construction learning (DCL) framework for fine-grained im-
age recognition. DCL partitions each training image into several local regions-and then
shuffles them by a region confusion mechanism (RCM). It implicitly excludes the global
object structure information and forces the model to predict the category label based on
local information. Moreover, construction learning can model the semantic correlation
among parts of the object. In other words, the ability to identify the object category from
local details is expected to be enhanced through shape destruction. Du et al. [36] apply
a progressive training strategy to address the fine-grained classification task. They for-
mulate a framework named progressive multi-granularity (PMGQG) training with two key
components. One is a training strategy that progressively fuses multi-granularity features,
and the other is a puzzle generator to form images containing information of different gran-
ularity levels. Chang et al.[14] propose a mutual-channel loss (MCLoss) that drives the
model to learn channel diversity and emphasize different discriminative regions. In sum-
mary, the above techniques are established based on employing richer augmentations and
specialized attention mechanisms. In the case of the top-performing PMG, each iteration
requires four different phases of augmentation combined with four classifiers. Although
the results are state-of-the-art, PMG requires more training time and extensive model pa-

rameters.

Auxiliary task variants Several related approaches include an additional branch to ex-
plore auxiliary information. Shu ez al. [111] propose a self-training framework for FGVC
with insufficient data annotation by considering an additional auxiliary task path to gen-
erate pseudo labels. They leverage the Grad-CAM technique [106] to generate salient
regions for seeking discriminative parts, which can be further extended to yield multiple
attention maps for improving the quality of the representation. Chang et al. [15] intro-
duce a novel FGVC problem setting by generalizing it from single-label to multiple-label
predictions on a predefined label hierarchy. A user study is also provided to show that a
multi-granular label hierarchy is more expressive and probably preferred. Their proposed
solution shows that the inherent coarse-fine hierarchical relationship can improve FGVC

performance.
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Regularization effects The regularization-related formulations for dealing with intra-
class variations and inter-class similarity in FGVC generally have two main implications.
First, it can be applied to alleviate the overfitting problem in learning an FGVC model.
Dubey et al. [37] propose to divide each batch into two groups and train the model with a
loss function including pairwise confusion (PC). The design reasons that bringing the class-
wise probabilities closer could prevent the learned FGVC model from overfitting. Second,
the regularization tactic implicitly maximizes the prediction entropy. MaxEnt [38] as-
sumes that the data diversity of FGVC is intuitively smaller than the large-scale dataset,
ImageNet. So the prediction entropy for the FGVC task is reasonable to become more
prominent than usual. In other words, regularization approaches escalate the training dif-
ficulty on the total loss, which complicates the training convergence and forces the model
to search for an ideal local minimum. In [81], Liu et al. introduce dynamic target relation
graphs (DTRG) to address the fine-grained classification problem with a self-supervised
regularization. DTRG evaluates every training sample to calculate the class center online.
And then, DTRG aims to reduce the intra-class distance between each training feature and
its corresponding class center, while keeping the class centers to be away from each other.
It can be observed that the regularization principle of DTRG is quite different from the
entropy-based confusion view entailed in PC and MaxEnt. In addition, the training pro-
cess of DTRG is more intricate and also requires substantial augmentation techniques to

strengthen the outcome of model learning.

4.2.2 Long-tailed visual recognition

Distribution re-balancing Existing techniques for long-tailed visual recognition that
consider distribution re-balancing can be divided into two groups: re-sampling and re-
weighting. As described in [16, 35, 50, 87], re-sampling involves adjusting the sampling
frequencies of different categories based on their sample count via under-sampling for
head categories and over-sampling for tail categories. The approach of class-balanced
sampling [108] weights each image based on the number of samples in its category. In

[4&], the dynamic-sampling mechanism, termed as repeat factor sampling (RFS) by Gupta
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et al. [48], also aims to balance the number of instances across categories. While the goal
of re-sampling is to reduce the overfitting of head data, the tactic may not always be a
reliable solution. It could cause over-sampling of small amounts of tail data, resulting in
insufficient sample diversity and under-sampling of large amounts of head data,- leading

to insufficient learning.

Loss re-weighting The strategy of re-weighting has been widely utilized in the loss
calculation of a classification task. Unlike re-sampling, re-weighting offers greater flex-
ibility and ease of computation, making it a popular choice for resolving the challenge
of long-tailed distribution in more complex tasks such as object detection and instance
segmentation. When an image contains multiple objects that need to be detected or seg-
mented, it is often more manageable to reweigh the loss at the image level rather than
sample by category. Re-weighting implementations range from reverse weighting based
on category distribution to more advanced methods such as Hard Example Mining [110],
Focal loss [ 78], and Label-Distribution-Aware Margin (LDAM) loss [¢], which adjust the
weight according to the classification credibility without the need for category knowledge.
Owing to its ease of implementation, re-weighting has been shown to yield competitive

results in complex tasks [27, 61, 113].

Model training strategies Another viewpoint for solving the long-tailed visual recogni-
tion problem is that the re-balancing technique should be applied only to the classifier, and
the distribution of image features during representation learning should remain unchanged.
This two-stage training strategy, in which the classifier is trained with re-balanced data
and the representation is learned with the original data, is considered an effective solution
for handling the long-tailed distribution. Kang et al. [64] divide the training of a long-
tailed classification model into two steps, first directly learning a representation model
from traditional classification with raw data and then connecting a separate classifier via
class-balanced sampling learning. Zhou et al. [147] realize the two-step learning with a
two-branch model where both branches share parameters and are dynamically weighted,

one branch learning from raw data and the other from re-sampled data. Li ez al. [75] adopt
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a two-stage learning approach and introduce a balanced group softmax module into the
classification head. Meanwhile, Hu et al. [55] tackle the long-tailed distribution scenario
through incremental learning from the head to the tail. Wang et al. [126] add a separate
classifier to calibrate prediction logits, while Tang et al. [ 1 | 5] compute the moving-average
vector of a feature in the traditional training framework, excluding it from the gradient cal-
culation. Menon et al. [89] revisit the classic idea of logit adjustment based on statistical
information, encouraging a large relative margin between the logits of rare and dominant
labels. Tian et al. [117] address long-tailed object recognition with the VL-LTR model,
which jointly trains the image and text encoders by considering co-embedding between
class-wise linguistic and visual information. Wang ef al. [123] establish a quantitative
measure, defining an overlap coefficient between von Mises-Fisher distributions, to eval-

uate representation quality for long-tailed learning.

In summary, the majority of the aforementioned methods for long-tailed learning
emphasize exploring the aspect of data distribution. Such approaches, as we have just
described, can be broadly categorized into three groups: distribution re-sampling, loss
re-weighting, and model training strategies. In this work, we introduce a novel approach
to addressing fine-grained and long-tailed issues at the same time. By infusing pivotal
statistical characteristics of the data distribution into an adaptive matrix, the proposed

regularization learning with an adversarial loss is shown to be a promising solution.

4.3 QOur Method

Consider now learning a classification model &, as illustrated in Figure 4.3, with
respect to a dataset D of C' object categories, where each sample x € D is specified with
a one-hot class label vector y. For an arbitrary training batch B = {xy, X, ..., X/} from
D and M < (), forward propagation via ® yields M predicted (softmax) probabilities,

denoted as

P = [p17p27 R 7p]Vf] € RCXM? (41)
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where ®(x;) = p; € R is the predicted probability distribution. Let p; ; be the probability
of x; being class j. We have Z;’;l p:;; = 1. The batch prediction matrix P in (4.1) is
central to our approach—its rank property is closely related to how our approach resolves

the fine-grained issue.

The data distribution over the C' object classes in D reflects the long-tailed charac-
teristic. Let N, be the sample size of class j and N be the averaged sample size over the
C' classes. We express the ratio of N; to N as r; = N;/N and consider a unit-coefficient
power function of ;, namely g(r;) = r7, to model the underlying long-tailed distribution.
Note that the real-valued power 7 is a hyper-parameter of our method, and its value is to
be adjusted according to the extent of long-tailed distribution. Specifically, to encode the
class-wise imbalance, we define an adaptive matrix A = [4;;] € R%*¢ by

r;)=rl, ifi =7,
4, = g(rj) =r7] j 42)

0, otherwise,
where (as we will explain later) the value of 7, along with 7, reflects the degree of long-

tailed attribute and can be adaptively set to account for different application scenarios.

4.3.1 Adaptive Batch Confusion Norm

We aim to introduce a regularization based framework to simultaneously address the
fine-grained and long-tailed issues of object classification. Based on (4.1) and (4.2), we

construct an Adaptive Batch Prediction (ABP) matrix P e RMxC by

A

P=rT4A, (4.3)

where the adjusted softmax prediction of each sample in B now forms a row vector of
P. Observe from (4.2) that how the adaptive matrix A modifies the prediction outputs
depends on the exponent 7 and the imbalanced factor r; of each class j in the training
data D. When r; — 1 or the exponent 7 — 0, A would approach the identity matrix /.

In other words, the ABP matrix in (4.3) will be reduced to PT when the distribution of
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training data is class-wise balanced, or 7 is set to 0. Both cases exclude the long-tailed

consideration of P.

The main idea of our approach is to establish a unified regularization mechanism from
the ABP matrix P so that the model training process can effectively improve its inference
performance on our targeted classification scenarios. To this end, we propose the Adaptive
Batch Confusion Norm (ABC-Norm) to assess the corresponding loss, expressed as £ 45¢,
which realizes the desired regularization effects for addressing the fine-grained and long-

tailed issues. Specifically, we define the loss term for the ABC-Norm regularization as
1 D2
Lapc = MHPHFv (4.4)

where || - || » denotes the Frobenius norm and M is the batch size as in (4.1). Unlike other
existing techniques that are often developed by integrating several sophisticated classifi-
cation modules to tackle the fine-grained or long-tailed difficulties, our formulation learns

the proposed model by directly optimizing the following objective function:
Lioat = (1 = A) Leg + A Lasc, (4.5)

where \ € [0, 1] is a weight parameter,

1
Lop = =37 2 D Vi logPis (4.6)

=1 j5=1

is the conventional cross-entropy loss, and

1 | M
_ A2 _ -2
»CABC—M“PHF_MZZPZ‘J

i=1 j=1
1 M C

= YO Al (4.7)
i=1 j=1

Empirically, we set 7 = 0.5 and consider A € {0.1,0.3, 0.5} for various datasets to achieve
the best performance accounting for different fine-grained and long-tailed characteristics

of real-world distributions. Since the regularization term Lapc in (4.5) is the only factor
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that distinguishes our method from a vanilla classification scheme, the performance gains

reported in our experiments are evidently owing to the ABC-Norm efficacy.

4.3.2 ABC-Norm: Justifications and Properties

The rank of the ABP matrix P in (4.3) plays a pivotal role in our formulation, and is
closely related to the ABC-Norm regularization. Assume for the moment that minimizing
L apc can lead to rank minimization of P. 1t would then reduce the variability among the
M softmax predictions of P from a batch B, and infuse slight classification confusions
into the training procedure. Whereas correct predictions would always be penalized with
the confusion loss as in (4.5), the training would be driven to further improve the model
by reducing the cross-entropy loss as much as possible, and consequently better solve the
fine-grained classification problem. Such an adversarial regularization idea is analogous
to enhancing the model learning by introducing an extra margin to increase the difficulty

of a correct prediction.

It is known that the rank-related minimization problems are often NP-hard. We fol-
low [99] and consider convex relaxation so that the underlying rank minimization of P

can be reduced to the minimization of its nuclear norm,

M
1P =" oi(P), (4.8)
1=1

where o;(-) yields the ith singular value of the corresponding matrix. However, training
a deep neural network with an objective function that involves solving singular values of
a non-trivial matrix is not practically feasible. It is also the main reason that we do not
establish the ABC-Norm regularization based on the nuclear norm. We instead consider
minimizing its upper bound as in (4.4). In this way, rank minimization of P can be ef-
ficiently achieved by employing £ 45c. To complete the mathematical derivation of our

method, we are left to justify the following upper-bound property.
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Property 1. If the batch size M is set as less or equal to the number of classes C, then

1 - 1=\
= —||P|Z > —=|P|. ) . 4.
Cane = 3171 = (5711 (“9)

It follows that minimizing the nuclear norm of P can be achieved by including Lapc
in the total loss. That is, rank minimization is implicitly carried out during the model
training of the classifier . To verify the upper-bound property stated in (4.9), we have,

from the matrix norm definitions and Cauchy-Schwarz inequality,

1A2 1 2( T
Lane = 37 1PIE = 37 22, oH(P)
1

We now turn our attention to explaining how the adaptive matrix A € R®*“ in
P = PTAis used in dealing with the long-tailed issue. Notice that A is a diagonal matrix
whose jth diagonal entry Aj; = 7 = (N;/ N)™ adjusts the predicted probability p; ;
for the jth class. When learning with a long-tailed training dataset D, its head classes
are those that include more training samples and thus have r; > 1. Hence the adaptive
effects on these head classes are to enforce more confusions/difficulties in classify their
abundant samples. On the contrary, tail classes are characterized with r; < 1 and the
adaptive matrix A is used to instead lessen their confusion regularization so that learning

with these scarce data can be guided by the cross-entropy loss.
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4.3.3 ABC-Norm vs. Relevant Regularization

To our knowledge, there are no existing regularization techniques that are developed
to simultaneously tackle both the fine-grained and long-tailed classifications. The two
most relevant approaches, but focusing on only the fine-grained aspect, are Pairwise Con-
fusion (PC) [37] and Maximum Entropy (MaxEnt) [38]. We describe their design princi-

ples and relevance to the ABC-Norm regularization below.

PC Regularization This is the first work [37] that brings in the “confusion” concept
to solve the fine-grained classification task. The purpose of confusion energy is twofold.
Besides preventing the model training form overfitting, it implicitly increases the learning
difficulty to aim for performance gains in testing. PC randomly divides each batch into
two equal-size sub-batches. While computing the individual cross-entropy losses for each
sample of the whole batch, it evaluates the pairwise confusion loss, denoted as Lpc, by
sampling from the two parts. Specifically, we have

5 M2
Lpc = i Zﬂ(yi = y@'+M/2)Hpi - Pi+M/2H27 (4.10)

i=1

where [(-) is the indicator function to signal whether two paired training samples are of

the same category.

MaxEnt Regularization The maximum entropy criterion is proposed in [38] to more
effectively address the fine-grained classification problem. As the inter-class variations
between fine-grained classes could be subtly minimal, MaxEnt regularization assumes no
prior distributions other than the uniform one should be imposed on the softmax predic-
tions. Analogous to PC, the maximum entropy regularization also increases the learning
difficulty and therefore drives the optimization process to work harder in tackling the
challenging classification scenario. The corresponding loss for MaxEnt regularization is

defined as follows:

-1 M C
£MaxEnt = M Z Z Pi,; log Pij- (411)

i=1 j=1

57 doi:10.6342/NTU202301574


http://dx.doi.org/10.6342/NTU202301574

Comparing the three regularization schemes, ABC-Norm, PC and MaxEnt, their most
distinction is that our formulation tackles not only the fine-grained but also the long-tailed
difficulty. Furthermore, by setting the adaptive matrix A in (4.3) to the identity matrix £,
we can look further into how their design improves the performance on fine-grained clas-
sification. The three techniques resemble each other by imposing adversarial difficulty
in the model training to enhance the classification efficacy. For PC versus ABC-Norm,
both are established based on the concept of confusion, while ABC-Norm has the advan-
tage of exploring the adversarial measure from an entire batch at the same time, rather
than the pairwise mechanism as in PC. For MaxEnt versus ABC-Norm, while the softmax
prediction of each sample in the batch B being a uniform distribution is a minimum for
both regularization losses, Lapc is more general in accommodating other minima. In our
experiments, we replace Lapc in the total loss in (4.5) with Lpc and Lygaxene, respectively

to thoroughly compare their performances on various datasets and settings.

4.4 Experiments

4.4.1 Datasets

We conduct experiments on the six datasets listed in Table 4.1. In particular, our main
objective is to evaluate the efficacy of the proposed ABC-Norm approach to the real-world
classification challenges over the two datasets, CUB-LT [104] and iNaturalist2018 [121].
To further analyze its performance, we evaluate ABC-Norm on three fine-grained datasets
(CUB, CAR, AIR) and a long-tailed dataset (ImageNet-LT), respectively. The results of
our experiments demonstrate that ABC-Norm can effectively and efficiently tackle the

challenging classification tasks posed by these benchmark datasets.

Real-world We begin by evaluating the ABC-Norm regularization on the two real-world
datasets, CUB-LT [104] and iNaturalist2018 [121], each of which includes both fine-

grained and long-tailed distribution characteristics. iNaturalist2018 is a large-scale col-
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Table 4.1: Dataset splits in our experiments.

Dataset # Train  # Val/Test # Category
iNaturalist2018 437,513 24,426 8,142

CUB-LT 2,945 2,348 200

CUB 5,994 5,794 200

CAR 8,144 8,041 196

AIR 6,667 3,333 100

ImageNet-LT 115,846 20,000 1,000

lection. Owing to its challenging nature, as demonstrated in recent literature [9, 63], the

performance on this dataset could serve as an objective measure for the effectiveness of

each particular method.

FGVC We then compare solely the fine-grained classification results from four different
regularization approaches, adaptive batch confusion Norm (ABC-Norm), pairwise con-
fusion (PC) [37], maximum entropy (MaxEnt) [38], and dynamic target relation graphs
(DTRG) [81] on the three popular fine-grained visual classification datasets, namely, CUB-
200-2011 [122], Stanford Cars [69], and FGVC-Aircraft [88]. The size ratio between train-
ing and testing sets is about 1 : 1 for CUB-200-2011 and Stanford Cars, and about 2 : 1 for
FGVC-Aircraft. The class distribution of the three datasets is nearly balanced, which can
be used to measure the proposed method’s performance only in the fine-grained scenario.
Notice that the adaptive matrix A will be reduced to an identity matrix [ in dealing with

the balanced data distribution.

Long-tailed Finally, we carry out experiments on the long-tailed dataset ImageNet-LT
[83], which can be considered to have a low fine-grained factor. The study aims to con-
firm the capability of ABC-Norm to tackle long-tailed learning over purely imbalanced
datasets. In line with the definition in [63], we divide the categories into three groups:
Many, Medium, and Few, representing the categories with instance numbers in ranges

(100, +00), (20, 100], and (0, 20], respectively.
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4.4.2 Implementation Details

We now describe the implementation details of the experiments on the real-world;
fine-grained, and long-tailed datasets. All results are obtained from end-to-end training,
and the numerical outcomes represent the mean of three runs. We implement our method
using the PyTorch framework [94] on a platform with four Nvidia V100 GPUs. The source

code will be made available for public use.

Real-world These results pertain to the CUB-LT and iNaturalist2018 datasets. To en-
sure a fair comparison, our training settings mostly conform to those outlined in [63, 123].
The backbone network is ResNet-50 with an input size of 224 x 224 and 90 training epochs,
optimized using SGD. The batch size is set to 16 for CUB-LT and 128 for iNaturalist2018.
The initial learning rate is set to 0.004 x M, where M denotes the batch size, and is de-
creased by a cosine annealing schedule. The regularization weight A\ is set to 0.5, and the

value of 7 for the adaptive matrix A is set to 0.5.

FGVC We evaluate the performance of the ABC-Norm on popular classification archi-
tectures, including ResNet series [53] and DenseNet-161 [57], in the fine-grained visual
classification task. The training setup for the different regularization terms remains consis-
tent. We adopt the data augmentation strategy from [24], using an input size of 448 x 448
and randomly applying horizontal flipping. The initial learning rate, the weighting factor
A, and 7 are set to 0.008, 0.3, and 0.5, respectively. The training batch size is 16 when the
GPU memory allows, and the adopted optimization algorithm is Momentum SGD with
cosine annealing [84] for the learning rate decay. Taking account of the smaller scale of
FGVC datasets compared to iNaturalist2018, we train the model for 200 epochs to assess

the outcomes of different regularization methods.

Long-tailed visual recognition We further evaluate the proposed ABC-Norm on an im-
balanced dataset, ImageNet-LT. The implementation details follow the training process

described in [63]. We report results for both ResNeXt-50 and ResNeXt-152, and observe
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Figure 4.4: Compare the proposed ABC-Norm with other long-tailed and fine-grained
approaches on CUB-LT.

consistent behavior between shallow and deep models. Given the substantial imbalance
present in the ImageNet-LT with a low fine-grained factor, we set the hyper-parameters A

and 7 to 0.1 and 0.5, respectively.

4.4.3 Real-world Data

Before we delve into the real-world data, let us quickly look at a small-scale one,
CUB-LT, which contains both fine-grained and long-tailed factors. It is an appropriate
dataset for investigating the performances among the respective approaches for fine-grained [36,
37] and for long-tailed [63, 89, 104]. As shown in Figure 4.4, PC and MaxEnt, which are
proposed to account for the fine-grained factor, only show slight improvements for resolv-
ing the long-tailed issue. PMG provides a strong performance, but requires more advanced
data augmentations and larger model sizes. Meanwhile, LDAM, LWS, vMF, and Dragon
demonstrate that addressing the long-tailed issue can also improve performance on real-
world data distributions. However, the proposed ABC-Norm significantly outperforms

these approaches by explicitly tackling both the fine-grained and long-tailed challenges.

Table 4.2 shows the experimental results on the large-scale and real-world distribu-
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Table 4.2: Compare the ABC-Norm with other primary approaches on iNaturalist2018.
The backbone model used in this experiment is vanilla ResNet-50 baseline without using
additional parameters and advanced augmentation schemes.

Method ‘ Many Medium Few Total
| 90 epochs
Baseline 72.2 63.0 572 61.7
Focal [78] - - - 61.1
Re-weighted - - - 64.9
cRT - - - 65.2
PCT [37] 70.9 64.6 59.6 62.1
MaxEnt! [38] 69.8 65.1 594 619
LDAM [9] - - - 64.6
LDAM w/ DRW [9] - - - 68.0
LWS [63] 65.0 66.3 65.5 659
LA [89] - - - 66.4
ABC-Norm 66.6 68.0 68.2 68.4
ABC-Norm? 66.5 734  69.2 70.8
200 epochs
Baseline 75.7 66.9 61.7 65.8
cRT 73.2 68.8 66.1 68.2
PCT [37] 67.8 64.2 60.2 62.8
MaxEnt! [38] 70.8 653 59.1 62.1
DTRG [81] - - - 65.5
DTRG w/ DRW [&81] - - - 69.5
LWS [63] 71.0 69.8 68.8 69.5
VMF [123] 72.8 71.7 70.0 71.0
ABC-Norm? \ 68.1 73.2 70.4 714

' Re-implement with the same setting as ours.
" Follow the data augmentation scheme in [123].

tion dataset, iNaturalist2018. The adaptive matrix A enables the ABC-Norm to emphasize
the head categories but scale down the regularization effect on the tail categories. Note that
our models are trained not only with the most common way of data sampling, i.e., instance-
balanced sampling, but also in an end-to-end manner. In contrast, LWS [63] learns the
model in two stages, which requires the use of class-balanced sampling. Notwithstanding
that LA [89] has the same starting point as ours, which also proposes an approach that
does not require any extra parameters, strong augmentation schemes, and data sampling
strategies, the ABC-Norm regularization does yield a better performance. The main ad-

vantage of ABC-Norm over LA on this real-world dataset is that the proposed ABC-Norm
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Figure 4.5: The distribution of L?-norm weight magnitude ||w;| for baseline, PC and
ABC-Norm, where w; is the classifier weight vector of category .

provides a unified solution to addressing both long-tailed and fine-grained factors.

Recall that PC [37], MaxEnt [37] and DTRG [&81] are introduced to validate that
proper regularization is useful for dealing with the fine-grained problem. We, however,
observe that the three techniques only yield slight improvements on the real-world dataset.
In fact, to properly tackle the long-tailed difficulty, DTRG [¢1] has adopted the DRW [&]
schedule. Compared with DTRG, ABC-Norm achieves better performance without rely-
ing on additional schemes such as Mixup and DRW. (We have also reported in Table 4.2
the result of ABC-Norm using the data augmentation scheme from [123].) Overall, our
ABC-Norm method provides a general and flexible approach to solving real-world classi-

fication tasks.

4.4.4 Model Analysis

We begin by evaluating the effect of regularization on the magnitude of the classi-
fier weight w; for each category i, as depicted in Figure 4.5. While the L?-norm magni-
tude distribution ||w;|| of the baseline method exhibits a long-tailed pattern, the proposed

ABC-Norm instead produces a smoother magnitude distribution for the head categories,
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Figure 4.6: Grad-CAM heatmap visualization for six testing images. In each example, the
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Table 4.3: Head-to-head comparisons among four different regularization approaches,
ABC-Norm, PC, MaxEnt and DTRG, on the standard FGVC datasets CUB-200-2011
(CUB), Stanford Cars (CAR), and FGVC-Aircraft (AIR).

Model ResNet-50 ResNeXt-50 ResNeXt-101 DenseNet-161
CUB CAR AIR CUB CAR AIR CUB CAR AIR CUB CAR AIR
Baseline 855 927 903 863 931 909 873 935 916 875 934 927
PC[37] 87.0 924 90.1 875 932 912 882 937 924 882 93.6 929
MaxEnt [38] 87.2 919 903 876 928 91.3 882 934 925 883 933 93.0
DTRG™ [81] 88.3 94.8 93.0 - - - - - - 89.0 94.8 94.0

ABC-Norm  87.8 943 932 88.1 944 933 88.6 945 935 892 948 935

The notation ~ indicates the results by DTRG without using Mixup, as reported in the original paper [81].

reducing their dominance. In comparison, PC also lessens the dominance of head cate-
gories, but the distribution remains largely unchanged, indicating the persistence of the

long-tailed issue.

Next, we conduct an ablation study on the iNaturalist2018 dataset to assess the impact
of different batch sizes on the various regularization approaches, including ABC-Norm,
PC, and MaxEnt. Figure 4.7 shows that the performance variations among different batch
sizes are similar across all regularization methods as well as the baseline. This suggests
that the influence of batch size stems from the use of “batch normalization” and the corre-
lation between the performance of ABC-Norm and batch size is weak. Hence, choosing

a specific batch size for ABC-Norm is generally not an issue of concern.
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cates at 0.5.

The long-tailed issue often requires the selection of an appropriate value of hyper-
parameter 7 to incorporate the statistical information embodied in the training data. Fig-
ure 4.8 shows the results of varying the 7 value, where the resulting curve exhibits a
downward parabolic trend from 7 = 0.1 to 7 = 1.0, with the best performance achieved

at 7 = 0.5.

We also investigate the optimal regularization weight A between cross-entropy loss
and ABC-Norm in (4.5). Figure 4.9 displays the probing result of such search. The classi-
fication performance gradually improves as )\ increases, reaching a sweet spot at A = 0.5.
Beyond this point, further increasing the A value leads to a decrease in performance, sug-

gesting that the suitable range of A is [0.1, 0.5].

We conclude our analysis by providing a qualitative comparison of the baseline, PC,
and ABC-Norm methods using the class activation mapping (Grad-CAM) [106] on the
CUB dataset. As shown in Figure 4.6, the results reveal that PC and ABC-Norm correctly
predict more samples than the baseline. The redder an area is, the more significant the
model’s prediction is, while the bluer the area indicates the opposite. For instance, PC and
ABC-Norm focus on the appropriate regions to identify the object rather than the back-
ground. Moreover, as in the right panel of Figure 4.6, ABC-Norm can correctly classify
even the challenging samples that the PC and baseline fail to recognize. This is because

that ABC-Norm further exploits the inter-class similarity information to ensure the result-

ing classifier to focus on the most discriminative parts.
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Table 4.4: Accuracy versus batch size on the CUB dataset.

Batch Size 2 4 8 16 32

Baseline 809 84.5 854 85.5 855
PC [37] 81.1 85.8 86.7 87.0 86.9
MaxEnt [38] 81.4 859 86.9 87.2 87.0

ABC-Norm 81.2 86.1 87.5 87.8 87.7

4.4.5 More on Fine-grained

To investigate the compatibility of the proposed ABC-Norm on the FGVC datasets,
we conduct experiments with different backbones against PC [37], MaxEnt [38] and DTRG [
respectively. The backbones are chosen from shallow to deep, including ResNet-50,
ResNeXt-50, ResNeXt101 and DenseNet-161. We re-implement PC and MaxEnt with
the same training condition. Table 4.3 shows the head-to-head comparison; the experi-
mental results imply that ABC-Norm outperforms both PC and MaxEnt. Compared to
DTRG, although the performances are about even, the training process of ABC-Norm is
simple and essentially the same as the baseline case. Moreover, we also conduct an abla-
tion study to gauge the batch-size influence. Table 4.4 shows that the batch-size influence
is still similar to that in Figure 4.7. It suggests that we only need to pay more attention
to the hyper-parameters A and 7. Among the confusion-based techniques, ABC-Norm is
not only more effective in fine-grained classification than PC and MaxEnt but also valid

when dealing with the long-tailed issue.

4.4.6 More on Long-tailed

Since ImageNet-LT has a low fine-grained factor but poses strong long-tailed diffi-
culty, we perform experiments on it to confirm the effectiveness of ABC-Norm for purely
long-tailed learning. Following the training formulation in [63], we decompose the train-
ing process into two stages, representation learning and classifier learning. In stage one for
representation learning, the data sampling strategy is instance-balanced which can also be

called a baseline. Next, the sampling strategy turns class-balanced to fine-tune the classi-
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Table 4.5: Following [63], the experiment on ImageNet-LT is carried out with ResNeXt-
50 and ResNeXt-152, respectively.

ResNeXt-50 / ResNeXt-152

Method

Many Median Few Total
Baseline 65.9/69.1 37.5/41.4 7.7/10.4 44.4/47.8
with LWS 60.2/63.5 47.2/50.4 30.3/34.2 49.9/53.3
PC 63.9/66.9 35.5/37.3 8.8/10.2 42.8/45.1
PC + LWS 57.3/59.5 46.4/48.7 29.8/32.6 48.4/50.6
MaxEnt 63.4/66.1 35.9/37.8 8.6/10.1 42.5/44.8

MaxEnt + LWS 59.3/61.9 46.1/47.8 29.5/30.8 48.9/50.9

ABC-Norm 65.5/68.7 43.1/45.5 10.9/12.3 47.5/49.9
ABC-Norm + LWS 60.7/63.6 49.7/51.8 33.1/35.5 51.7/54.2

fier at stage two. Table 4.5 first shows the results based on ResNeXt-50. At stage one, with
end-to-end training, the baseline, PC, and MaxEnt are prone to overfit the head categories
since these methods do not take account of the imbalanced distribution of the training set.
On the contrary, the results show that the ABC-Norm significantly improves and alleviates
the domination problem of head categories. Furthermore, through stage two, fine-tuning
the classifier with LWS can improve the representation model learned from ABC-Norm.
In conclusion, tackling the long-tailed distribution with our method can learn a better rep-

resentation model than PC and MaxEnt.

To further verify the robustness of the proposed ABC-Norm regularization, we re-
evaluate the experiment with the same setting but using a deeper backbone, ResNeXt-152.
The experimental results are also presented in Table 4.5. We see that no matter how deep
or shallow the model is, ABC-Norm still achieves consistent improvements, which again

confirms the compatibility of the ABC-Norm approach.

4.4.7 Additional Results

Finally, to demonstrate that it is no coincidence that ABC-Norm improves via suffi-
cient training, we also explore the experiment on both a deep network and longer training

epochs. Following the training procedure from previous work [63, 89], we apply the ABC-
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Table 4.6: iNaturalist2018 classification by different methods with ResNet-152, based on
90 and 200 training epochs.

Setting ‘ 90 epochs 200 epochs
Baseline 65.0 69.0
Re-weighted 68.1 69.9
PCT [37] 66.9 69.3
MaxEnt' [38] 66.6 69.2
LWS [63] 69.1 72.1
LA [89] 68.9 69.9
ABC-Norm 71.7 72.6
ABC-Norm? 73.8 74.0

' Re-implement with the same setting as ours.
" Follow the data augmentation scheme in [ 123].

Norm to the ResNet-152 backbone and report the experimental results trained with 90 and
200 epochs on the real-world dataset, iNaturalist2018. This additional experiment is de-
signed to justify the robustness of our method and address the concern that the ABC-Norm
is effective only for a specific setting. The experimental results are shown in Table 4.6.
For the same data augmentation and the complete model, the results are consistent with
those of Table 4.2. Meanwhile, the other two regularization-based approaches, PC and
MaxEnt, still do not perform well in this experiment, which includes both fine-grained
and long-tailed difficulties in the underlying real-world dataset. With all our extensive
experimental results, we demonstrate that the proposed approach, ABC-Norm, is generic

and not specific.

4.5 Conclusions

We introduce Adaptive Batch Confusion Norm (ABC-Norm), a general regulariza-
tion technique to tackle the challenging problem of fine-grained and long-tailed image
classification. Our method is simple in design, consisting of only the cross-entropy and
the ABC-Norm regularization terms. During training, the ABC-Norm regularization adap-
tively generates confusion for each object category and activates an adversarial-like learn-

ing mechanism, leading to improved learning efficiency and more discriminative features
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within regions of interest. Through experiments, we show that ABC-Norm outperforms
other relevant (adversarial) regularization-based approaches, such as PC and MaxEnt, and
effectively reduces overfitting in training. In future work, we plan to generalize this regu-

larization concept to transformer-based networks and enhance its effectiveness with atten-

tion mechanisms.
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Chapter 5 Learning with Ordering

Data Distributions

5.1 Introduction

With the rapid growth of face-swapping techniques, deep forgery has become a con-
cerned issue on social media. An effective solution to address the matter is to utilize
neural network-based approaches to decide the authenticity of given images. The task of
deepfake classification is usually formulated as a binary classification problem. Recent
research efforts on deepfake classification have delivered saturated performances [7, 18,

, , ]. Nevertheless, owing to the impressive development of generative net-
works, e.g., StyleGAN and diffusion models [65, 67, ], deep forgery is no longer lim-
ited to face-to-face interchange. In particular, Shao et al. [107] propose a sequential facial
manipulation dataset, Seq-DeepFake, in which the fake facial images are manipulated with
the requested sequential constraints from the source (e.g., components and attributes) by
StyleMapGAN [67]. Take, for example, in Figure 5.1, the annotation of “Eyebrow-Hair-
Lip” indicates that the resulting facial image has been successively manipulated with the
eyebrow, hair, and lip in the specified order. The sequential manipulation can be treated
as a multi-label “localization” problem to decide not only which facial components have
been manipulated but also what the manipulation order is. The latter task further compli-
cates the localization scenario into a multi-label ranking problem, which poses significant

challenges and opens a new frontier for deepfake-related research.
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Figure 5.1: Besides the conventional deepfake setting as binary classification that sim-
ply dichotomies the images into genuine/fake, this work focuses on the subtle scenario
that forged images through deepfake mechanisms may be locally manipulated by one or
more than one facial component/attribute. We introduce a multi-label ranking approach to
tackling the “fine-grained” deepfake task (i.e., to localize the modified facial components
and to identify the order of manipulations), and also develop a contrastive multi-instance
learning (MIL) framework to solve the binary classification.

Detecting the sequential facial manipulations is more challenging than conventional
deepfake classification. It causes that most of the existing deepfake solutions are no longer
applicable. For example, the success of Face X-ray [73] is based on the observation that
a fake facial image must have an essential blending operator to smooth the face boundary
to make the forged image more natural during the face-swapping process. The particular
method then focuses on learning how to capture the blending region from the paired source
and target images. However, the tactic apparently does not work well on the sequential
facial manipulation dataset, SeqDeepFake [107]. The inefficiency is caused by two main
factors. First, the paired source and target information of each manipulated image in Se-
gDeepFake is not available. Second, the resulting classifier from adversarial learning is
often highly related to the generator. Therefore, it is hard to generalize the method to
distinguish the sequentially manipulated images without completely updating the genera-
tive model in [73]. Such inappropriateness to work on component-wise deepfake indeed
applies to the majority of related methods, e.g., [17, 18, 34, , 145]. After all, they are
developed to solve a binary classification problem, rather than dealing with the sequential

deepfake manipulation.

Aiming to establish a unified approach to deepfake detection, we decompose the

underlying problem into three subtasks, including deepfake classification, deepfake local-
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ization, and manipulation order. In resolving the first subtask, we propose contrastive
multiple instance learning (MIL) that treats an image as a bag and the spatial features as
instances to tackle deepfake classification via minimizing a contrastive MIL loss. We then
establish a multi-label ranking formulation to address the other two subtasks. Concerning
the ability to identify which facial components have been forged, we loosely term the pro-
cess as deepfake localization. In addition, it is reasonable to incorporate ranking reasoning
into the stage so that the ranked list of multi-label probabilities can reflect the sequential
modification order. With such, training the network model can be done via multi-task
learning, and results in an effective deepfake detection model capable of accomplishing

the three aforementioned tasks. We characterize our main contributions as follows.

* We decompose the general deepfake problem into three parts, deepfake classifica-
tion, deepfake localization, and manipulation order which lead to a systematic view

of solving the deepfake problem comprehensively.

* We propose a contrastive multi-instance learning formulation for binary deepfake
classification. The synergy between the two learning paradigms improves the model
learning effectively, and more importantly, it gives rise to a well-established concept

of how to define the probability of a given image being deepfake.

* We develop a multi-label ranking approach to coupling multi-label predictions with
ranking reasoning. In inference, the sequential order of deepfake manipulations can

be readily obtained from the rank order of the output multi-label probabilities.

* We establish a unified approach to deepfake classification and localization, and

achieve state-of-the-art performances on popular benchmark datasets.

5.2 Related work

Deepfake detection. Owing to the active development of face manipulation technol-
ogy and the upsurge of people’s awareness about multimedia security, more research ef-

forts have been paid to develop all sorts of deepfake detection methods in recent years.
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Deepfake detection can be categorized into two types of approaches based on the un-
derlying data format: image-based [7, 18, 34, 73, 80, , s , | and video-
based [26, 47, 74, ]. For image-based deepfake detection, Zhu et al. [152] propose
a two-stream architecture to enrich the face feature for detection. One is a conventional
network, and the other is a 3D decomposition framework that aims to find more clues
and details on the face image. Chen et al. [1 8] fuse the RGB and frequency features with
a cross-attention module to learn an artifact mask decoder from the fake images. The
decoder uses the source and target information from the manipulated image to generate
the mask as a ground-truth label. Cao et al. [7] regard the detection problem as anomaly
detection and utilize an encoder-decoder framework for real-fake representation learning.
Liu et al. [80] determine the forgery image from the phase spectrum variation between the
original and up-sampled images. Zhao et al. [144] introduce multiple attention modules
to capture different discriminative locations and insert a texture enhancement block in the
backbone for extracting the high-frequency features. Several other methods attempt to cap-
ture the artifacts generated by swapping faces from two images. For example, Lietal. [73]
propose a face X-ray to find the blended region from the forgery image. Moreover, Zhao
et al. [145] exploit the fact that forgery faces are manipulated from two different sources
and propose an inconsistent image generator for supporting the classifier learning the con-
sistency mask. Based on a similar entry point, Dong et al. [34] utilize the self-attention
mechanism to form an identity consistency transformer for detecting a forgery image. To
extend the above concepts, Shiohara et al. [109] introduce a self-blended framework that

can learn the blended clues from the proposed augmentation technique.

For video-based deepfake detection, Cozzolino et al. [26] use a three-dimensional
morphable model to generate the deepfake video and learn a temporal network to embed
the sequence features for the video classifier. Zhou et al. [148] present a two-plus-one

joint detection model for tackling both manipulated visual and auditory modalities.

More recently, Shao et al. [107] generalize the image-based deepfake detection from
a binary classification problem to a multi-label classification problem. Specifically, the

image is now manipulated from sequential components/attributes, dramatically increasing
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the detection challenge.

Multiple instance learning. The multiple instance learning (MIL) [37] paradigm de-
fines a “bag” as positive if it contains at least one positive instance. In other words, all
instances in a negative bag are assumed to be negative. A previous approach by Chen et
al. [23] transforms each sample bag into a high-dimensional feature space and adopts the
Support Vector Machine (SVM) to determine essential features and construct the classi-
fier simultaneously. Ilse et al. [60] introduce MIL attention pooling that leverages neu-
ral networks to parameterize the distribution of instances in a bag to detect predefined
positive instances. In medical imaging, several approaches regard MIL-related tasks on
histopathology datasets as weakly supervised learning. Zhang et al. [141] introduce the
pseudo-bag concept to enrich the sample bags to address the insufficiency of whole slide
images. Furthermore, Thandiackal ez al. [116] present ZoomMIL that utilizes a multi-level

zooming mechanism to fuse multiple magnifications and reduce the computation cost.

Ranking mechanism. A ranking scheme is designed to find the optimal sorting function
that can rank the sequential input. While early efforts [3, 77] propose the bitonic sorting
network to solve the rank issue, techniques of current trend rely on the neural network
to achieve the differential ranking operation. Petersen et al.first present Differentiable
Sorting Networks [96] and take it as an extension by enforcing monotonicity and limit-
ing the bound of approximation error. They subsequently introduce a differential top-k

network [97] to address the multi-class problem via the ranking mechanism.

5.3 Method

We consider a general formulation of deepfake detection that the underlying photo-
realistic manipulations can be applied to either the whole facial region or some of the
predefined facial components. For the sake of discussion, we categorize the former task

as deepfake classification and the latter as deepfake localization, where in this scenario we
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Figure 5.2: The model architecture of our method. There are two types of input tokens:
patch tokens extracted from CNN+FPN and learnable class tokens. The stage of model
training is driven by three loss terms: Lcrs, Lpcg and Lgaqk to achieve contrastive multiple
instance learning, multi-label localization and ranking, respectively. In the inference stage,
the sequential order of deepfake manipulations can be readily obtained from the rank order
of the output multi-label probabilities.

also need to recover the sequential order of the component-wise deepfake manipulations

as described in [107].

Problem formulation. Suppose there are totally L facial components to which photore-
alistic manipulations can be applied. Since the exact order of modifying the facial com-
ponents does matter, we cast the task of deepfake localization as a multi-label ranking
problem [30]. Consider now a deepfake dataset D = {(x,Y")}, where x is an image and
Y = {l;}}_, with k& < L is an ordered subset of {1,2,..., L}, indicating that the ith
(¢ < k) deepfake modification has been performed on the /;th facial component. When
Y is an empty set, it implies that x is a genuine facial image. It is convenient to generate
from Y two L-dimensional vectors y = (y;) and r = (r;) by
1, ifi=1;€Y;

Yi = (5.1)
0, otherwise,

and

, ifi=10 €Y,
A : (52)
L, otherwise,

where y is the standard multi-label binary vector and r is the corresponding rank vector.
We realize the above definitions with a hands-on example. Assume that totally five facial
components can be modified, i.e., L = 5, and a deepfake image has been created by first

manipulating facial component 4 and then facial component 2. Our definitions imply that
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Y ={4,2},y=1(0,1,0,1,0) and r = (5,2, 5,1, 5).

To train a deepfake detection model with the training data D, we consider a CNN-
transformer network, as illustrated in Figure 5.2. For each training sample (x,Y), the
CNN-+FPN module transforms x into feature maps of size R”*"*4 which can be reshaped
and row-wise /»-normalized into a token vector 7 € RV*% and N = w x h is the spatial

size.

We then form two vectors of tokens, including the patch tokens U € RY*? and
the learnable class tokens, V € RE*?. The two sets of tokens are passed through the

transformer encoder ¢, which carries out self attention to correlate their features by
v, RV y 0LV erix (5.3)
We compute the similarity values of each patch token to all other tokens by
S =max(UU",0) € RV, (5.4)

where S is rectified into a nonnegative matrix such that all of its elements are in [0, 1].
Since the similarity matrix is symmetric and we concern only the correlations of each token
to all other tokens, it is sufficient to focus on the upper triangular part of S, excluding those
in the diagonal. We arrange thees entries of interest in an ascending order of similarity
value and denote them by

u = (U, U, ..., Uy), (5.5)

where n = N (N — 1)/2 corresponds to the size of upper triangle of S.

MIL deepfake classification. With the sorted list u of similarity responses between
patch tokens, we can consider the task of deepfake detection from the multiple instance
learning (MIL) viewpoint. That is, we consider a face image x as a bag and the positive
label 1 indicates that x is indeed fabricated as a deepfake one. In terms of the elements in
u, if x is a deepfake image, we expect to uncover that there exists at least one u; (starting

from the front end of u) with a small value close to 0. On the other hand, a negative bag
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(i.e., x is not a deepfake image) implies all u; are close to 1. To incorporate the above
observations into the model learning process, we introduce a contrastive formulation to
realize the MIL concept for deepfake detection. Assume that a deepfake image X results
in the k& smallest similarity responses in the front end of the sorted list u. We propose to
compute its probability of being deepfake by contrasting the average responses from the

positive and negative distributions:

Plxch) exp(u* (k)/7) 56

—exp(ut(k)/7T) + exp(u=(k)/7)

where 7 is the temperature parameter,

ut (k) = %(a - Z; ui>, (5.7)
u (k) = - i 2 (a — Z:;Hl ui>, (5.8)

and a is a scalar that is set to 1 in our implementation. The contrastive ratio in (5.6) can

be used to predict the probability of a given image x being a deepfake one by

P(x) = max P(x;k), (5.9)

1<k<n

where the reason for seeking a maximum is supported by the existence of at least one

positive/fake instance. We thus define the contrastive MIL loss for each (x,Y’) € D as
b (x) = —J(Y)log P(x) — (1 = J(Y)) log(1 — P(x)) (5.10)

where J(Y') = 1 ifasample (x, Y) is a deepfake image, and 0, otherwise. In addition, for
an authentic image X, it is reasonable to expect that all the similarity responses u; should be
close to 1. The useful observation motivates the inclusion of the following regularization

loss:

lrea(¥) = Y |11 = ], (5.11)
i=1
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to ensure proper similarity responses for a real x. We can then express the'loss function

for deepfake classification as

Las= Y hu(x)+ (1= J(Y)) lreg(x). (5.12)

(x,Y)eD

Multi-label localization and ranking. The contrastive MIL formulation leads to a new
loss term specified in (5.12) for learning deepfake classification. To extend our method
for deepfake localization, we consider multi-label ranking to uncover which facial com-
ponents have been modified as well as the underlying order of manipulations. The Trans-
former encoder ¢ generates, for each sample (x,Y"), two sets of features from the patch
tokens, U € RV*4 and the class tokens, V € RL*? as in (5.3). Our network model ap-
plies convolutions to U and then carries out average pooling to obtain the patch-token
logits fV = (V) € RL. In a similar way, we have the class-token logits f = (fY) € R~
By independently applying a sigmoid function o to each logit, we obtain two sets of multi-
label predictions as

Pr*(x)=o(f*)€[0,1], i=1,...,L, (5.13)

where X’ can be replaced by U or V' to respectively imply that the predictions are based on
the features from patch tokens or class tokens. Recall that the ground-truth label vector Y
yields the corresponding multi-label binary vector y = (y;) and the rank vector r = (r;),
which are both L-dimensional. With the multi-label predictions given by (5.13), we define
the multi-label BCE loss as

Lieg= Y 1-0%x), (5.14)

(x,Y)eD

where “-” denotes inner product, 1 is all-ones vector, and the ith element of /¥ (x) € R-
is defined by
6 (x) = —yilog P (x) — (1 — y;) log(1 — P (x)). (5.15)

It is worth mentioning that both the multi-label predictions PV and PV from (5.13) are

computed only during the training stage. Including the two loss terms L5 and L}x
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helps regulate the model training and more critically align the class-wise logits from the

patch-token and class-token streams.

We are now ready to solve the multi-label ranking problem. To begin with, we av-

erage the patch-token and the class-token logits to obtain f = (f;) = (fV + fV)/2. The

L
1=1>°

fusion between the two streams gives rise to multi-label predictions { P;(x) };,, analogous
to those from (5.13). The main idea behind our formulation is as follows: by construct-
ing a rank-aware loss term, the learned network model is expected to output multi-label
predictions { P;(x)}~_, that respect the rank order r = (r;), implied by the given sample
(x,Y) € D. In other words, if i, j € Y and r; < r; (i.e., facial component i is modified
before facial component j is manipulated), the network is trained to make multi-label pre-
dictions with P,(x) > P;(x). To this end, we design the following loss term for tackling

multi-label ranking,

Lrane = Y W(r {Pi(x)})-£(x), (5.16)

(x,Y)eD
where /(x) € R’ is analogously defined as in (5.15) but with multi-label predictions
{P;(x)}L_, based on the fused logits f. To complete the explanation of (5.16), it remains
to elaborate how the rank-aware weight vector w(r, { P;(x)}) is designed. As our aim to
preserve the rank order r in the multi-label predictions { P;(x)}L ,, weleto = (0;) € RL to
encode the rank order (non-increasing order of probability values) among the multi-label
predictions. We then define the weight vector w(r, { P;(x)}) = (w;) € RL by

a, ifi¢Y ANri>|Y]
w; = (5.17)
a X |o; — 1|, otherwise,
where « is a hyperparameter to our method. We now justify the definition of w. Given a
deepfake sample (x,Y') € D, there are |Y'| < L components that have been modified. The
first condition in (5.17) indicates that facial component 7 is genuine and its corresponding
prediction P;(x) is not among the |Y'| largest outputs of {P(x)}£ ;. Such an outcome is
preferable, and thus w; is uniformly set to a.. The second condition includes two scenarios.
The first is that i ¢ Y and r; < |Y'|. This implies that the network model predicts a high-

rank deepfake probability to a genuine facial component, which should be penalized with
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a X |o; — L|. (Note that from (5.2), when i ¢ Y, we set r; = L.) The second scenario
concerns the case that: € Y, i.e., facial component 7 has been changed. We thus formulate
the definition of w; to enforce reducing the difference between o; and r;. We conclude
that by adding L.k to our formulation, the learned network model can output multi-label
predictions {P;(x)}~, to detect which facial components have been manipulated, and
also the order of modifications, which is implied by the resulting order of probability

magnitudes.

Total loss. To train the proposed network model for simultaneously carrying out deep-

fake classification and localization, our method considers the following total loss:

Lrotal = Lers + A1 Lace + A2 Lranks (5.18)

where \; and )\, are parameters to weigh the effects of specific loss terms, and Lgcg =
L5cg +LYcx- Note that the two sets of multi-label probability predictions { PU } and { P }
are computed only in the training stage so that L5 and L} can be utilized to achieve
effective model training. In inference, the multi-label prediction is provided solely from

the Lranx head, as shown in Figure 5.2.

Finally, we emphasize that the proposed approach provides a unified solution to the
deepfake problem. When dealing with a classical task of binary deepfake classification,
it is convenient to exclude the Ly, term from the total loss in (5.18) and simply set the
number of learnable class tokens to one to achieve binary classification.

Table 5.1: The experimental results with multi-label and ranking scenarios on the Seq-
FaceComp and Seq-FaceAttr datasets.

Seq-FaceComp Acc. Seqg-FaceAttr Acc.

Method Backbone Multi—labe(l] (%) Iizanking (%) Multi—label(}%) Ranking (%)
Baseline 78.32 69.66 85.14 66.99
DETR [10] - 69.87 . 67.93
SeqFakeFormer [107] ResNet-34 [57] - 72.13 - 67.99

Ours 81.24 1 2.92 72.76 1 3.10 86.38 1 1.24 68.53 1 1.54
Baseline 79.54 69.75 88.23 66.66
DETR [10] . 69.75 . 67.62
SeqFakeFormer [107] | RESNet-50 [57] - 72.65 - 68.86
Ours 82.77 1323 73.34 13.59 90.12 1 1.89 69.28 1 2.62
Ours Swin [52] 83.01 1 3.47 7352 13.87 90.43 1 200 69.75 1 3.09
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5.4 Experimental results

We report comparisons with other techniques and experimental results on the sequen-
tial deepfake dataset [107], the multi-label scenario and traditional binary deepfake clas-
sification. A comprehensive ablation study is also provided to validate the effects of the

key elements in our method.

Sequential deepfake datasets. The Seq-DeepFake dataset, introduced in a recent study
[107], comprises two collections of sequential image manipulations, namely sequential fa-
cial components manipulation and sequential facial attributes manipulation. To simplify
the notation, we refer the two as Seq-FaceComp and Seq-FaceAttr, respectively. In Seq-
FaceComp, facial components are transplanted from a source image to a target image,
resulting in manipulated images that exhibit distinct face components and orders. This
dataset contains 35,166 facial images, including both manipulated and genuine images,
annotated with 28 different manipulation sequences. The proportion of manipulation se-
quence lengths ranges from 1 to 5, with percentages of approximately 20.48%, 20.06%,
18.62%, 20.88%, and 19.96%, respectively. In contrast, Seq-FaceAttr directly modifies
specific attributes on the target face without relying on source images. It consists 0f 49, 920
facial images, each of which is annotated with one of the 26 manipulation sequence types.
And the distribution of each sequence length is balanced. Notably, both Seq-FaceComp
and Seqg-FaceAttr have a maximum sequence length of 5, denoted as I, = 5 in the proposed
formulation described in Section 2.3. Moreover, we can also evaluate the multi-label sce-

nario on Seq-FaceComp and Seq-FaceAttr without the ordering factor.

Binary deepfake datasets. Deepfake detection has several benchmark datasets avail-
able, including FaceForensics++ (FF++) [103], Celeb-DF (CDF) [76], WildDeepfake
(WDF) [153], DeepFakeDetection (DFD) [103], and DeepFake Detection Challenge [33]
(DFDC). These datasets have been extensively employed to investigate the binary classifi-
cation problem. FF++ is the most commonly used dataset, comprising four manipulation

techniques with 1,000 videos for each. CDF uses an improved deepfake algorithm that
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generates 5,639 fake videos and 590 genuine videos. WDF is a real-world dataset with
3,509 fake and 3,805 genuine face sequences. DFD offers 1,000 deepfake videos. DFDC
is a large-scale dataset that contains 2,500 genuine and 2,500 fake videos in the public test
set. Our approach is readily applicable to the binary deepfake classification when"Lrank
is excluded from (5.18) to form the total training loss, and the number of learnable class
tokens is reduced to one.

Table 5.2: The experimental results with intra-testing and cross-testing. The model for
cross-testing is only trained on the FF++ dataset.

Intra-testing AUC Cross-testing (Train on FF++ only) AUC
Method Backbone FF++ (%) CDF (%) CDF (%) WDF (%)  DFDC (%)  DFD (%)
Baseline Xception [25] 96.30 99.73 61.80 62.72 48.98 87.86
Baseline EfficientNet-B4 [114] | 99.70 99.81 64.29 63.83 -
Multi-Att [144] | EfficientNet-B4 [114] | 99.29 99.94 67.44 59.74 -
SPSL [80] Xception [25] 96.91 - 76.88 - 66.16
RECCE [7] Xception [25] 99.32 99.94 68.71 64.31 69.06 -
Face X-Ray [73] Xception [25] 99.17 - 80.58 - 80.92 95.40
LRL [18] Xception [25] 99.46 - 78.26 - 76.53 89.24
SBIs [109] EfficientNet-B4 [114] | 99.64 93.74 93.18 - 72.42 97.56
SBIs* [109] Swin [82] 99.72 95.68 89.12 70.56 71.08 97.34
Ours Swin [82] 99.82 1352  99.98 1025 | 91.567129.76 73.41110.69 75.17126.19 97.88 1 10.02

Implementation details. To ensure a fair comparison with SeqFakeFormer [107] on
the problem of sequential facial manipulations, we implement our method by adopting
ResNet-34 and ResNet-50 [53] as the CNN backbone for generating features. We then
transform the spatial features into a sequential form, represented as tokens, and concate-
nate them with L learnable class tokens to form the input to a 1-layer transformer. The
model is trained using the described loss function in (5.18), with hyper-parameters A\, Ao,
7, and a set to 1, 1, 0.2, and 1, respectively. The model is trained for 200 epochs using
a cosine annealing schedule, with the initial learning rate set to 0.00025 and decayed to
0. Moreover, we also provide the experimental results with Swin [82], a transformer ar-
chitecture, as the feature extractor backbone for the subsequent experiments. To train a
model based on Swin, we follow the training settings described in [82], but increase the

number of training epochs to 400.

For the conventional deepfake classification task, we begin by extracting facial im-
ages from the videos using RetinaFace [28] and resizing them to 384 x 384. The training
process is similar to that of the sequential facial manipulation scenario with Swin as the

backbone, except that we set L = 1 and A\, = 0. These minor adjustments demonstrate
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the flexibility and versatility of our proposed approach in Section 2.3 for various tasks.

It is imperative to consider that the computation scale of n is roughly O(N%), where
N denotes the size of the feature map. Therefore, a brute-force search of k from 1 to
n in (5.9) and (5.10) can have a significant impact on training speed and efficiency. To
overcome this limitation, we adopt a strategy where we uniformly sample the k£ values
from 1 to n with 100 points, rather than conducting an exhaustive search. This approach
improves the training efficiency and also allows us to achieve our multi-instance learning

goal.

Data augmentation. Inspired by the concept of SBIs [ 109] for enhancing model robust-
ness and generalization, we propose two augmentation techniques. The first technique,
referred to as strong augmentation, involves creating a pseudo fake image that simulates
a fake label from a genuine face. To achieve this, we extract the facial landmarks from
the real image and perturb them to generate a similar but counterfeit face. The second
technique, referred to as weak augmentation, is a widely-used approach in image classi-
fication training such as horizontal flip, random crop, color jitter, and Gaussian blur. To
incorporate strong and weak augmentation into model training, we first apply the strong
augmentation method to produce a pseudo fake image from the original genuine image.
Then, we randomly select a fake image from the dataset and combine it with the genuine

and pseudo fake images to ensure their comparable quantities.

5.4.1 Comparison

Sequential deepfake manipulation. In the sequential facial manipulation problem, the
primary objective is to compare our method with SeqFakeFormer [107]. The SeqFake-
Former model employs a combination of CNN and transformer models, along with an
auto-regressive mechanism to address the sequential challenge. In contrast, we introduce
aranking mechanism for the multi-label scenario instead of an auto-regressive mechanism,
which results in our model being more efficient during training and inference. To evaluate

the performance of the proposed approach, we adopt the fixed accuracy (Fixed-Acc) [107]
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metric on Seq-FaceComp and Seq-FaceAttr datasets. The Fixed-Acc metric'computes the
accuracy between the prediction and annotation sequences while considering their rank-
wise dependencies. The performance comparison of our approach with baseline, DETR,
and SeqFakeFormer is presented in Table 5.1. The proposed approach is practical and ef-
fective for addressing sequential deepfake issues and has demonstrated better performance

than the aforementioned methods.

Multi-label deepfake scenario. In real-world applications, identifying the forged com-
ponents/attributes of a manipulated facial image can often be more crucial than determin-
ing the ordering of the manipulations. To address this, we simplify the sequential facial
manipulation problem into a multi-label scenario. The performance of the multi-label
classification approach can be considered as an upper bound for the sequential problem.
Therefore, in Table 5.1, we present experimental results for both the baseline and ours in
the multi-label column. Without the ordering issue, the performance improvement can be

attributed to the proposed data augmentation strategy and the contrastive MIL loss Lcps.

Binary deepfake classification. In binary deepfake classification, we evaluate the pro-
posed approach using both intra-testing and cross-testing scenarios. Recent research on
deepfake classification can be classified into two groups. The first group focuses solely on
classification [ 10, 80, 144], utilizing only genuine and fake annotations. The second group
has no training limitations [34, 73, , ], and many researchers have incorporated an
adversarial learning mechanism to enrich the fake samples, thereby strengthening the clas-
sifier. In our work, we combine the advantages of both groups, utilizing the proposed data

augmentation strategy with an end-to-end training approach.

Intra-testing. The process of intra-testing involves training and testing a model on the
same dataset. Table 5.2 with “Intra-testing” column displays that most approaches have
successfully tackled the deepfake classification problem, with even baseline models such
as Xception and EfficientNet-B4 exhibiting high performance. While the proposed method
achieves the best performance, the improvement is marginal. As previously discussed in

the introduction, the standard classification scenario is approaching saturation. Hence, the
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Figure 5.3: Qualitative results by Grad-CAM [106] between baseline and the proposed
approach. Four test images from the Seq-FaceComp with “Lip”, “Nose”, “Eye-Nose”
and “Eyebrow” manipulation. (a) Although the heatmap from the baseline has noticed
the accurate region sporadically, it still has a gap to improve. (b) The heatmap from the
proposed approach has successfully focused on the manipulation region.

main challenge of deepfake classification has transferred to the cross-testing scenario.

Cross-testing. In the cross-testing scenario, the model is exclusively trained on the FF+
+ dataset, as is typical in the deepfake setting. It is then assessed on the test sets of Celeb-
DF, WDF, DFDC, and DFD. The experimental findings are reported in the “Cross-testing”
column of Table 5.2. The proposed approach demonstrates promising results. In the in-
terest of equitable comparison, we have also implemented the results of SBIs with Swin
backbone, identified as SBIs*. Our results show significant improvement, particularly on
the DFDC dataset, due to the augmentation strategy and Lcrs. Consequently, exploiting

the fine-grained information between each patch token is highly significant.

5.4.2 Analysis and discussion

In this section, we present an ablation study of the proposed approach in Table 5.3.
It is worth noting that, unlike the baseline presented in Table 5.1, the ResNet-50 model
with £ in Table 5.3 generates only multi-label predictions. These predictions are sub-
sequently sorted based on the probability of each component for evaluation. Without the
proposed Lrank, although the multi-label performance achieved by ResNet-50 in Table 5.1
is commendable, the Fixed-Acc metric declines significantly due to the incorrect order of

the generated sequence. Hence, the proposed Lgay is crucial in transforming multi-label
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Table 5.3: An ablation study of the proposed losses on the Seq-FaceComp with multi-label
ranking setting (ResNet-50).

Model ‘CgCE ﬁgaa ‘CgLS ‘Cgank Squ;;;glzn(l% ;A ¢
I v 51.22
1II v v 53.14
11 v v 71.12
v v v v 72.18
\Y v v v 71.64
VI v v v v 73.34

predictions into sequence predictions. Additionally, the proposed contrastive MIL loss,

Lcrs, significantly improves the performance of the model.

We proceed to present qualitative results using Grad-CAM [106] on Seq-FaceComp,
as shown in Figure 5.3. The heatmaps are generated by backpropagating the “Eyebrow”
and “Eye-Nose” logits. As a result of the contrastive MIL and ranking mechanism, Fig-
ure 5.3 (b) displays a more focused and accurate heatmap than the baseline. In addition,
we provide the mean self-similarity values in (5.4) for each area to highlight the effect of
Lcrs. As expected, the patch with a lower similarity value compared to others indicates

the location of the manipulation region.

Lastly, we evaluate the effectiveness of the proposed contrastive MIL loss, Lcrs. To
illustrate, we present in Figure 5.4 a histogram of the average distribution ﬁ > puon
the FF++ test set. Figure 5.4(a) depicts a phenomenon where the classifier can accurately
distinguish genuine and fake facial images from a small variation distribution, despite it
being challenging for humans to do so. However, with the introduction of the proposed
LcLs, we are able to clearly define and simplify the distribution between genuine and fake.
When looking at Figure 5.4 (b) from an alternative perspective, we note that a fake facial
image typically results from two genuine facial images. As a result, the affected regions
often appear at the facial boundary or composite parts, while the inner and outer face
regions remain genuine. Consequently, the proportion of these affected regions is small
compared to the full image. This phenomenon is consistent with the hypothesis of the

MIL viewpoint that a fake image exists in minimal & points, where £ < n.
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Figure 5.4: The histogram of averaged distribution ﬁ > pu. (a) The histograms from
the baseline are like an “U” shape, no matter whether the images are genuine or fake. (b)
With the contrastive MIL loss L¢rs, we regularize the u close to 1 in genuine images and
encourage the £ values from u to approaching 0 in fake images.

5.5 Conclusion

We present a unified approach for simultaneously addressing sequential deepfake

manipulation and binary deepfake classification. To achieve this, we systematically de-

compose the general deepfake problem into three parts: deepfake classification, deepfake

localization, and manipulation order. Our method introduces novel contrastive MIL learn-

ing and multi-label ranking to address the classification and sequential manipulation as-
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pects, respectively. The extended experimental results demonstrate the effectiveness and
flexibility of the proposed formulation in solving the various deepfake tasks. The provided

analyses are also reasonable to support the usefulness of our method.
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Chapter 6 Conclusion

In conclusion, this thesis has made significant contributions to the field of represen-
tation learning in the context of challenging classification problems. The research efforts
have focused on addressing various data distributions and proposing novel techniques to

enhance representation quality and classification performance.

The thesis begins by introducing representation learning as a powerful approach for
tackling complex classification problems. It highlights the importance of learning ef-
fective representations that can capture and encode essential features from diverse data

Sources.

To address the multi-instance data distribution, an attention mechanism equipped
with a query has been proposed. This mechanism enables the representation of a bag
of instances, considering the relationships and dependencies among the instances. The
approach has demonstrated promising results in accurately representing multi-instance

data and achieving improved classification performance.

To improve the training efficiency of self-supervised learning in the unlabeled data
distribution, a decoupled contrastive learning framework has been introduced. This frame-
work enhances the learning process by decoupling the positive and negative samples, lead-

ing to more efficient and effective representation learning from unlabeled data.

In the context of real-world data distribution, a regularization term called ABC-Norm
has been proposed. This term enhances the reliability of representations by incorporating
fine-grained and long-tailed issues often encountered in real-world datasets. The ABC-

Norm regularization contributes to more robust representations, resulting in improved
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classification performance on real-world data.

Furthermore, to tackle the ordering data distribution, a multi-label ranking objective
combined with a contrastive multi-instance scenario has been introduced. This approach
effectively addresses the challenges associated with deepfake images, which contain mul-
tiple manipulated components with ordering issues. The proposed objective facilitates
accurate representation learning for deepfake images, enabling reliable identification and

classification.

Collectively, the contributions of this thesis demonstrate the importance and effective-
ness of representation learning techniques in addressing challenging classification prob-
lems. The proposed attention mechanism, decoupled contrastive learning, ABC-Norm
regularization, and multi-label ranking objective offer valuable insights and solutions for
different data distributions. The findings from this research advance the field of represen-
tation learning, providing practical tools and methodologies for improving classification

performance.

In conclusion, this thesis provides a comprehensive exploration of representation
learning approaches and their applicability in addressing challenging classification prob-
lems. The proposed methodologies contribute to the existing body of knowledge and open

new avenues for future research in representation learning and its applications.
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