
doi:10.6342/NTU202301047

國立臺灣大學電機資訊學院資訊工程學系

碩士論文

Department of Computer Science and Information Engineering

College of Electrical Engineering and Computer Science

National Taiwan University

Master Thesis

深度引導跨視角多目相機三維物體檢測

CrossDTR: Cross­view and Depth­guided Transformers
for 3D Object Detection

曾靖渝

Ching­Yu Tseng

指導教授: 陳文進博士、徐宏民博士

Advisor: Wen­Chin Chen, Ph.D., Winston H.Hsu, Ph.D.

中華民國 112年 6月

June, 2023

http://dx.doi.org/10.6342/NTU202301047


doi:10.6342/NTU202301047

http://dx.doi.org/10.6342/NTU202301047


doi:10.6342/NTU202301047ii

http://dx.doi.org/10.6342/NTU202301047


doi:10.6342/NTU202301047

摘要

為了在自駕車中以低成本實現準確的三維物體檢測，許多多目相機方法被提

出來解決單相機方法中的遮擋問題。然而，由於缺乏準確的深度估計，現有的

多目相機方法通常會在深度方向的射線上因難以檢測的小型物體（如行人）而

預測多個邊界框，導致召回率極低。此外，直接將通常由大型網絡結構組成的

深度預測模塊應用於現有的多目相機方法，無法滿足自駕車應用的即時預測要

求。為了解決這些問題，我們提出了用於深度引導跨視角多目相機三維物體檢測

（CrossDTR）。首先，我們設計了輕量級的「深度預測器」，以在監督過程中生成

精確的物體稀疏深度圖和低維深度嵌入向量，而無需額外的深度數據集來監督。

其次，我們開發了一個「深度引導跨視角多目變換器」，用於融合來自不同相機視

角的深度嵌入和影像特徵，並生成三維邊界框。廣泛的實驗表明，我們的方法在

行人檢測方面總共超過現有的多目相機方法 10％，在整體平均精度（mAP）和標

准化檢測得分（NDS）指標方面超過約 3％。此外，計算分析顯示，我們的方法比

先前的方法快 5倍。我們的代碼將在 https://github.com/sty61010/CrossDTR公開提

供。

關鍵字：電腦視覺、自駕車、物件偵測
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Abstract

To achieve accurate 3D object detection at a low cost for autonomous driving, many

multi­cameramethods have been proposed and solved the occlusion problem ofmonocular

approaches. However, due to the lack of accurate estimated depth, existing multi­camera

methods often generate multiple bounding boxes along a ray of depth direction for diffi­

cult small objects such as pedestrians, resulting in an extremely low recall. Furthermore,

directly applying depth prediction modules to existing multi­camera methods, generally

composed of large network architectures, cannot meet the real­time requirements of self­

driving applications. To address these issues, we propose Cross­view and Depth­guided

Transformers for 3D Object Detection, CrossDTR. First, our lightweight depth predictor

is designed to produce precise object­wise sparse depth maps and low­dimensional depth

embeddings without extra depth datasets during supervision. Second, a cross­view depth­

guided transformer is developed to fuse the depth embeddings as well as image features

from cameras of different views and generate 3D bounding boxes. Extensive experiments

v
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demonstrated that our method hugely surpassed existing multi­camera methods by 10 per­

cent in pedestrian detection and about 3 percent in overall mAP and NDS metrics. Also,

computational analyses showed that our method is 5 times faster than prior approaches.

Our codes will be made publicly available at https://github.com/sty61010/CrossDTR.

Keywords: Computer Vision, Autonomous Driving, Object Detection
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Chapter 1 Introduction

Detecting instances of objects in the 3D space from sensor information, i.e. 3D ob­

ject detection, is crucial for various intelligent systems, such as autonomous driving and

indoor robotics. Previous work tends to rely on accurate depth information from different

sensors, such as LiDAR signals [14, 40, 41] and binocular information [4, 17], to accom­

plish superior performance. In recent years, in order to achieve high­quality detection at

a low cost, several methods based on commodity cameras have been proposed. Among

them, since naive monocular detection [29, 30, 35, 36, 39, 42, 47] suffers from the prob­

lems of occlusion and deficiency of cross­view information, methods transforming camera

information from multiple views into Bird­Eye­View [5, 10, 11, 18, 20, 21, 31, 37, 45],

called multi­view methods, has received increasing attention.

Though these multi­view methods have made some progress with cross­view infor­

mation and Bird­Eye­View representation [9–11, 18, 28, 46], we observe existing practices

suffered from either extremely low recall in small objects due to inaccurate depth or an

unaffordable computational burden because of complex depth predictionmodules. Specif­

ically, while some methods fusing information from multiple views [5, 10, 11, 18, 20, 21,

31, 37, 45] easily locate the pixel coordinate of small objects in images, they can hardly

estimate precise distances of objects from the image plane. Consequently, these methods

tend to predict a row of false positive bounding boxes along a ray of depth direction in

1
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Figure 1.1: Multi­camera methods suffer from inaccurate depth estimation. Red and
green bounding boxes represent inaccurate and accurate predictions respectively. The
above 2D­to­3D projection diagram mainly shows that (a) previous multi­view meth­
ods usually produce a row of false positives predictions alone a ray of depth, but (b) our
method, guided with depth hints, can precisely predict only one bounding box. Plot (c)
and (d) demonstrate the corresponding bird­eye view predictions of (a) and (b).

candidate regions when detecting small objects (shown in Fig. 1.1), leading to low re­

call in perception and poor follow­up prediction and planning. In addition, some previous

monocular approaches utilized complex depth prediction modules [6, 44] or large­scale

depth­pretrained backbone [7, 15, 16, 26] to provide depth cues. Nevertheless, directly

applying them to existing multi­camera methods, generally composed of large network

architectures, cannot meet the real­time requirements of the self­driving application (Tab.

4.1). From the two observations above, we conclude that a module is needed to obtain

depth hints from multiple cameras and fuse both depth and image information from dif­

ferent views in real time.

To achieve the goal, we proposed CrossDTR, a novel end­to­end Cross­view and

Depth­guided Transformer network for multi­camera 3D object detection as shown in Fig.

1.2. To efficiently obtain depth hints for downstream 3D object detection, we leverage a

lightweight depth predictor to produce precise depth maps for each view (Sec. 3.0.4).

Specifically, inspired by previous depth­aware methods [6, 12, 13, 43, 44], the depth pre­

2

http://dx.doi.org/10.6342/NTU202301047


doi:10.6342/NTU202301047

dictor is supervised with our generated object­wise sparse depth maps without extra depth

dataset (Sec. 3.0.3). Then, to fused the depth and image information from multi­view

cameras effectively, we propose a novel cross­view and depth­guided transformer (Sec.

3.0.5). In short, the Transformer Encoder is used to compress high­resolution depth maps

into low­dimensional depth embeddings, and the Transformer Decoder performs the cross­

attention mechanism among depth as well as image information from multi­views.

Experimental results demonstrated that our depth­guided method resolves the prob­

lem of false positive predictions on small objects (Fig. 1.1) and achieves overall improve­

ment with the limited computational burden. Compared with existing multi­camera meth­

ods on the nuScenes dataset [1], we increased by 10 percent Average precision (AP) in

pedestrian detection and about 3 percent in mAP and NDS metrics. Also, computational

analyses demonstrated that our lightweight method is 5 times faster than prior methods

under similar network backbones. To sum up, the overall contributions of this work can

be summarized as follows:

• We build up a novel cross­view and depth­guided perception framework, Cross­

DTR, to insert accurate depth cues into multi­view detection methods.

• Our proposed depth­guided module can alleviate the problem of false positive pre­

dictions along the direction of depth for small objects.

• Our framework achieves state­of­the­art 3D detection performance on the nuScenes

dataset [1] with fewer computational budgets compared with existing multi­view or

depth­guided methods.

3
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Figure 1.2: The overall framework of our proposed CrossDTR. First, Multi­view im­
ages are fed into a feature extractor backbone to generate image features. Then, image
features are fed into our Depth Predictor (in Sec. 3.0.4) to produce depth embeddings and
predicted depth maps. Lastly, given image features, depth embeddings, and 3D object
queries, our Cross­view and Depth­guided Transformer (in Sec. 3.0.5) conducts cross­
view attention and cross­depth attention to generate 3D bounding boxes. Note that we
minimize the difference between predicted depths and our generated object­wise sparse
depth maps (in Sec. 3.0.3) under supervision during training. Best viewed in color.

4

http://dx.doi.org/10.6342/NTU202301047


doi:10.6342/NTU202301047

Chapter 2 Related Work

2.0.1 Monocular 3D Object Detection

Monocular 3D object detection [29, 30, 35, 36, 39, 42] has received lots of atten­

tion due to the low cost of commodity cameras. It originates from Orthographic Feature

Transform (OFT) [30], which projects camera features into ego pose coordinate uniformly,

voxelized the features, and uses the detector from PointPillar [14]. OFT [30] is the first

method that deals with camera features in a LiDAR­based [14, 40, 41] technique, but

OFT [30] predicts the depth value of each pixel uniformly and thus results in inaccurate

depth estimation. Extend from OFT, Pseudo­lidar [39, 42] and CaDDN [29] methods use

a convolutional neural network to predict depth distribution and auxiliary loss to enhance

performance. Apart from the above methods, the other monocular methods [35, 36] di­

rectly regression 3D representation in camera coordinate. FCOS3D [36] is built on FCOS

[34], which is a single­stage 2D object detection framework. Furthermore, PGD [35] is

an improved version of FCOS3D [36] with extra depth information. In conclusion, depth

information is critical for monocular methods to enhance performance.

5
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2.0.2 Multi­Camera 3D Object Detection

Multi­camera methods [5, 10, 11, 18, 20, 21, 31, 37, 45] have been proved to solve

the problem of occlusion through temporal and spatial information. DETR­based meth­

ods [18, 20, 21, 37] were first proposed. DETR3D [37] was built based on DETR [2] and

utilized the attention mechanism to select features from different camera. Unlike DETR

[2] in the 2D space, we can not assure the candidate area of objects in the 3D space, so

DETR3D [37] initialize object query randomly with uniform distribution and pick fea­

tures by projecting object position into camera coordinate. As an improved version of

DETR3D [37], PETR [20] enhance performance by initializing object queries with the

method from Anchor DETR [38] and applying 3D positional embedding to embed 3D

coordinate frustum into multi­head attention. PETRv2 [21] optimized PETR by adding

temporal information. Additionally, some researchers regard that Bird­Eye­View (BEV)

[9, 23, 25, 27, 28, 32, 46] representations can provide better space concepts in 3D co­

ordinates. BEVDet methods [10, 11] transform image features into BEV according to

Lift­Splat­Shoot (LSS) Method [28] and propose BEV data augmentation [11] to avoid

over­fitting. BEVFormer [18] proposed BEV query and use the deformable attention [49]

to suppress computation. BEVFormer[18] also applies temporal information by cross­

attention between BEV queries from different time stamps. However, those methods still

lack accurate depth estimation.

2.0.3 Depth­guided Monocular Methods

Monocular methods can not achieve competitive performance in comparison with

LiDAR­based methods [14, 40, 41] and binocular methods [4, 17]. The main reason is

6
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inaccurate depth estimation, and thus the depth­aware methods [3, 6, 12, 13, 43, 44] are

proposed recently. ASTransformer [3] first proposed to use depth maps supervision to

enhance the performance of depth estimation. Besides, both MonoDTR [12] and Mon­

oDETR [43] compose depth­aware embedding from depth maps and are supervised by

ground truth depth maps to enhance the performance of monocular object detection. How­

ever, all the above methods still build on monocular methods and will suffer from complex

post­processing between cameras to aggregate all information and remove repeated pre­

dicted bounding boxes. Multi­camera method with a depth­guided module is still missing

so far.

7
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Chapter 3 Method

3.0.1 Problem Definition

In this work, we aim to precisely detect instances of objects in 3D space given mul­

tiple scanned RGB images [24]. Specifically, let Isensors = {I1, ..., INcameras} represent a

set of scanned multi­view images, and BLiDAR = {B1, ...,BNbox
} denotes a set of ground

truth bounding boxes, a 3D bounding box B̂i ∈ BLiDAR is formulated as a vector with 7

degree of freedom:

B̂i = (xc, yc, zc, l, w, h, θ), (3.1)

where (xc, yc, zc) denotes the center of each bounding box. (l, w, h) represents the length,

width, and height of the cuboid respectively. θ means orientation (yaw) of each object.

Formally, given a set of predicted bounding boxes B̂LiDAR, amulti­view 3Dobject detector

fDet is defined as follows:

B̂LiDAR = fDet(Isensors). (3.2)

3.0.2 Overall Architecture

Fig. 1.2 illustrates our architecture. First, we feed ourmulti­view images {I1, ..., INcameras}

into our model. Without external data, [8] is applied as our backbone to extract fea­

9

http://dx.doi.org/10.6342/NTU202301047


doi:10.6342/NTU202301047

tures Fview for each view. Then, we feed image features Fview into Depth Predictor

(in Sec. 3.0.4). Given single­view image features Fview, the Depth Predictor produces

low­dimensional depth embeddings and depth maps by a Transformer encoder. During

training, we minimize the difference between the predicted depth maps and our generated

sparse depth maps (in Sec. 3.0.3) in a supervised manner. Lastly, given image features,

depth embeddings, and 3D object queries, our Cross­view and Depth­guided Transformer

(in Sec. 3.0.5) conducts cross­view attention and cross­depth attention to generate 3D

bounding boxes.

3.0.3 Object­wise Sparse Depth Map

Unlike some prior depth­guided monocular methods requiring costly dense depth

maps during training, we extend [43] to multi­view scenarios and leverage only the sparse

depth hints provided by the raw LiDAR data, which is more cost­effective. We first detail

our depth generation process below.

Given a camera matrix T ∈ R3×4 and a point p ∈ R3 in the LiDAR coordinate, we

define the transformation function T from the LiDAR coordinate to the camera coordinate

as follows:

T (T, p) =

[
u v d

]T
,

where d ·
[
u v 1

]T
= T · (p⊕ 1),

(3.3)

and ⊕ denotes tensor concatenation. We transform the center point and corners of each

bounding box into each camera view by (3.3). Let pm,i
centers, d

m,i
centers,Pm,i

corners be the center

point, the depth value of the center, and the set of corner points of the bounding box Bi in

10
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them­th camera coordinate, then

pm,i
centers =

[
uc vc dc

]T
= T (Tm, pi), (3.4)

Pm,i
corners = {T (Tm, p) | p ∈ C(Bi)}, (3.5)

where Tm ∈ T, pi =
[
xc yc zc

]T
and xc, yc, zc ∈ Bi. C(B) is the function returning

8 corners of the given 3D bounding box B. We further extract the 2D bounding box

B2d
m,i = (ui

min, u
i
max, v

i
min, v

i
max) with respect to Bi in the m­th camera from Pm,i

corners by

getting the minimum and maximum (u, v) value in Pm,i
corners.

Next, we collect all valid 2D bounding boxes B2d
m,i for each camera and their depth

values dm,i
centers to a new set Vm. We set the pixel value to the depth of the object center

point if the pixel lies in an object’s bounding box. If the pixel lies in multiple bounding

boxes, we set it to the nearest one. Lastly, the object­wise sparse depth map is obtained

by adopting linear­increasing discretization (LID) [33].

3.0.4 Depth Predictor

Inspired by previous depth­guided methods [12, 43] and other methods [9–11, 28,

29], we utilize the Depth Predictor from [43] to learn depth information from object­wise

sparse depth maps. To save the memory of our model, we use lightweight architecture

built by convolution layers to predict depth distribution and match the number of depth

bins as 3D positional embedding [20, 21]. Given image features Fview, we use light­

weight network fddn to predict depth logits D̂ and depth probability D̂prob among each

depth map. Besides, we utilize Transformer encoder ψi to encode image features Fview

11
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into depth embeddings Fdepth with multi­head attention ψi:

E0 = Fview,

Ei = ψi(Ei−1,ψi−1), i = 1, ..., I,

Fdepth = EI ,

(3.6)

where Ei ∈ RL×C represents the depth embeddings from the Transformer encoder in the

depth predictor. C is the size of the embeddings. L = Hd × Wd is the length of depth

embeddings. The number i denotes the i­th layer in the encoder, and the encoder contains

total I layers. The final depth embedding is utilized in Sec. 3.0.5.

3.0.5 Cross­view and Depth­guided Transformer

As the Transformer has successfully been used to fuse different modalities, we adopt

it to combine both image features and depth embeddings. We adopt PETR [20] methods

to conduct attention between different views. Besides, inspired by MonoDETR [43], we

insert depth embedding into multi­view attention from PETR [20].

Cross­view Attention. We follow cross­view attention as methods from PETR [20], and

we feed image features Fview as keys and values. We utilize 3D positional embedding

[20] as query positional embedding.

Cross­depth Attention. Previous methods [20, 21] only use visual information and thus

lack depth cues for the detector. Inspired by [43], [12] and methods [3, 6, 12, 13, 43,

44], we suggest inserting depth hints as depth embedding into the detector to provide

more detailed information for small objects. After we obtain depth embeddings Fdepth ∈

RB×N×C×Hd×Wd from Sec. 3.0.4, we flatten depth embeddings into Fdepth ∈ RĹ×B×C

12
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where Ĺ = N ×Hd×Wd indicates the flatten depth embeddingsFdepth among all camera

views. Then, we follow the previous Sec. 3.0.5 and select depth embeddings as keys and

values for multi­head attention. Those depth embeddings can not only learn pixel­level

depth hints in a single view in Depth Predictor (in Sec. 3.0.4) but also consider depth

messages from the other views during cross attention mechanism.

3.0.6 3D Detection Head and Loss

3D Detection Head. To learn information between the camera view features and 3D po­

sition, we adopt the 3D Detection Head from PETR [20]. The 3D Detection Head from

PETR [20] initialize 3D reference points among 3D space and adopt multi­layer percep­

tion to learn the candidate area in the ego­pose coordinate. Then, the 3D Detection Head

generates 7 degrees of freedom to represent bounding boxes in the ego­pose coordinate.

Depth Distribution Network Loss. To conduct the depth­guided method on a prede­

fined depth map in Sec. 3.0.3, we borrow the depth­guided method from [43] and refer to

CaDDN [29] and adopt Depth Distribution Network Loss (DDN Loss) to regularize the

predicted depth map values and predicted depth map logits. Following CaDDN [29], we

build our loss as the following equation:

Lddn =
1

Wd ·Hd

Wd∑

u=1

Hd∑

v=1

FL(D(u, v), D̂(u, v)), (3.7)

where Wd and Hd represent the size of depth map logits, and (u, v) denotes the position

of pixels. FL means adopted Focal Loss [19].
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(a) Baseline (b) Pretrained Baseline (c) Ours
(1)

(2)

Figure 3.1: Visualization of false positive predictions on the nuScenes validation set.
We provide two qualitative examples, (1) and (2), with bird­eye­view (BEV) and camera­
view representations. In the first row, the left and right images illustrate the focused areas
of the global and zoomed­in BEVs, where blue and orange bounding boxes represent pre­
dictions and ground truth respectively. In the second row, the images in the camera view
show predictions from models. Under a fair comparison with the same network backbone
(PETR [20] with ResNet50 backbone [8]), our cross­view and depth­guided method (c)
effectively mitigates the false positive issue in prior multi­view baselines (a), i.e. does not
produce repeated bounding boxes along the ray of depth. Also, we even surpass meth­
ods equipped with a heavy­weight pretrained depth prediction module (b). Best viewed
in color and zoom­in.

Table 3.1: Comparison with SOTAmethods on the nuScene validation set. PETR[20]
are trained with CBGS[48]. The best results are shown in bold.
Methods Backbone Img Size #param. FPS↑ GFLOPs↓ mAP↑ NDS↑ mATE↓ mASE↓ mAOE↓ mAVE↓ mAAE↓

CenterNet[47] DLA 1600*900 ­ ­ ­ 0.306 0.328 0.716 0.264 0.609 1.426 0.658
FCOS3D[36] ResNet101 1600*900 52.5M 1.7 2008.2 0.295 0.372 0.806 0.268 0.511 1.315 0.170
PGD[35] ResNet101 1600*900 53.6M 1.4 2223.0 0.335 0.409 0.732 0.263 0.423 1.285 0.172

Detr3D[37] ResNet101 1600*900 51.3M 2.0 1016.8 0.303 0.374 0.860 0.278 0.437 0.967 0.235
BEVDet[11] Swin­T 1408*512 126.6M 1.9 2962.6 0.349 0.417 0.637 0.269 0.490 0.914 0.268
PETR[20] ResNet101 1408*512 59.2M 5.3 504.6 0.357 0.421 0.710 0.270 0.490 0.885 0.224

CrossDTR ResNet101 1408*512 53.3M 5.8 483.9 0.370 0.426 0.773 0.269 0.482 0.866 0.203

14

http://dx.doi.org/10.6342/NTU202301047


doi:10.6342/NTU202301047

Chapter 4 Experiments

4.0.1 Setup

Dataset. In this paper, we use the nuScenes dataset [1] as our benchmark, which provides

camera, radar, and LiDAR sensor data with 3D bounding box annotations. Its data is

mainly composed of camera data and provides only sparse LiDAR data as an auxiliary.

As it lacks data to provide depth information like dense LiDAR or depthmaps, we generate

object­wise sparse depth maps (in Sec. 3.0.3 for the cross­view and depth­guided method.

The nuScenes dataset [1] contains 1000 scenes and each scene is 20 seconds in length and

annotated at 2HZ.

Implementation Details. Following training policies from [20, 21, 37], we use features

from backbones [8, 15, 16, 22] with downsample scale of 1
16 and 1

32 . And we feed the

features into both depth predictor and cross­view attention. Besides, we follow [20, 21]

to sample 64 points for depth in 3D positional embeddings and also for depth predictor to

estimate depth distribution. Specifically, we supervise generated depth maps only during

training. We use the AdamW optimizer with a learning rate of 2e­4 to train our model.

We train our model for 24 epochs on 4 Nvidia 3090 GPUS with a total batch size of 8 for

48 hours. We use input images at resolution 512× 1408 for our baseline model.
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Table 4.1: Comparison with lightweight multi­view methods. We utilize bold to high­
light the best results.

Methods Backbone #param. FPS↑ GFLOPs↓ mAP↑

DETR3D[37] ResNet101 51.3M 2.0 1016.8 0.303
BEVDet[11] ResNet50 54.1M 9.3 452.0 0.299
BEVFormer[18] ResNet50 68.7M 2.3 1303.5 0.252
PETR[20] ResNet50 36.6M 10.4 297.2 0.317

CrossDTR ResNet50 31.8M 10.6 268.1 0.326

Table 4.2: Ablation study of depth­guided module. DE denotes Depth Embedding and
DDN Loss denotes Depth Distribution Network Loss. Our method was built on PETR[20]
with DDN Loss and DE.

Methods DE DDN Loss mAP↑ NDS↑

PETR[20] 0.357 0.421

CrossDTR ! 0.366 0.423
CrossDTR ! ! 0.370 0.426

Baselines. We compare CrossDTR with both monocular and multi­camera approaches.

CenterNet[47], FCOS3D [36], and PGD [35] representmonocular approaches, while DETR3D

[37], PETR [20], and BEVDet [11] serve as the baselines of multi­camera ones. For fair

comparison, we only adopt the performance of these approaches without tricks such as

test­time augmentation [35, 36], CBGS [48], and oversampling [48]. Besides, the com­

parison with the lightweight BEVFormer [18] (from their official repository) without en­

coding extra temporal information is also included.

Evaluation Metrics. We report mean Average Translation Error (mATE), mean Average

Scale Error (mASE), mean Average Orientation Error (mAOE), mean Average Velocity

Error (mAVE), mean Average Attribute Error (mAAE), mean Average Precision (mAP),

and nuScenes detection score (NDS). mAP estimates the distance between the centers of

a predicted and a ground­truth 3D bounding box. To evaluate the efficacy of our method

in solving false positive predictions, we report the Average Precision of pedestrian as our
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Table 4.3: Study of false positive predictions for the pedestrian class. We choose
PETR[20] with ResNet50 [8] and PETR[20] with depth­pretrained VoVNetV2 [16] as
baselines and compare them with our method, CrossDTR, with different distance thresh­
olds. We utilize bold to highlight the best results.

Methods Depth­pretrained Backbone AP (Pedestrain) @ Dist.↑

[0.5] [1.0] [4.0]

PETR[20] ResNet50 0.09 0.401 0.809
! VoVNetV2 0.102 0.426 0.870

CrossDTR ResNet50 0.320 0.689 0.875

metrics. We also take Frame Per Second (FPS) and Giga Flops (GFLOPs) into consider­

ation to evaluate the real­time ability of multi­camera models.

4.0.2 Quantitative Results

Comparison with State­of­the­art. As shown in Tab. 3.1, our method surpasses other

previous methods and achieves the state­of­the­art performance of mAP and NDS on the

validation dataset [1]. To begin with, CenterNet [47], FCOS3D [36], and PGD[35] are

classic monocular baseline. Our method exceeds by more than 3 percent on mAP and 2

percent on NDS. Additionally, compared with the SOTA multi­camera methods (starting

from the fifth row), our method still surpasses all of them by at least 1.3 percent on

mAP and 0.5 percent on NDS. Swin­T represents Swin­Transformer [22], which is the

strongest backbone among the Tab. 3.1. Our method with ResNet101 also beats BEVDet

[11] with Swin­T [22]. Then, our method needs the least computational resource (483.9

GFLOPs and 5.8 FPS). Ourmethod is lightweight and can conduct real­time 3D detection

on the nuScenes [1] dataset.

Comparison with lightweight multi­view methods. Tab. 4.1 shows the comparison

between our method and previous multi­camera methods. Note that all the scores are
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from their official repositories. Since we conduct our experiments on the validation set

with limited computation resources, we choose a smaller backbone ResNet50 [8] to extract

features from input images at resolution 512 × 1408. Our proposed method overtakes

all previous multi­camera methods, even against DETR3D [37] with stronger ResNet101

backbone [8] and BEVFormer [18] with temporal information. Our method surpasses the

second best method by 0.9 percent onmAP and 1.1 percent on NDS. Besides, our model

contains the least parameters as shown in Tab. 4.1 and attains the highest score (10.6) on

FPS. The result shows that our model can conduct real­time detection.

4.0.3 Ablation Study

Tab. 4.2 shows the effectiveness of our cross­view and depth­guided module. We

conduct an ablation study to verify the effectiveness of depth embedding (DE) and Depth

Distribution Network Loss (DDN Loss). We take PETR [20] as baseline model . We

find the performance is improved by 0.9 percent on mAP and 0.2 percent on NDS when

we plug depth embeddings into the cross­attention, and the full model achieves the best

performance increasing by 1.3 percent on mAP and 0.5 percent on NDS.

4.0.4 False Positive Predictions Results

To verify whether our method can resolve the false positive problem, we consider

Average Precision (AP). Tab. 4.3 shows the AP of the pedestrian class with different

distance thresholds on the validation set. Our method surpasses our baseline with a depth­

pretrained backbone by over 10 percent on average among each threshold. Moreover,

Fig. 4.1 illustrates our overall performance predominantly exceeds the baseline on all
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Figure 4.1: The precision­recall curve of pedestrian class. Fig. 4.1 shows the compari­
son of AP between baseline (dotted lines) and our method (solid lines). The red, blue, and
green colors represent the distance threshold at 0.5, 1.0, and 4.0 respectively. Regardless
of distance, our method hugely outperforms the baseline on small object (e.g. pedestrian)
detection.

thresholds and thus resolves the false positive issue. Red, blue, and green represent the

distance threshold at 0.5, 1.0, and 4.0 respectively.

4.0.5 Qualitative Results

Fig. 3.1 shows the qualitative result. Orange and blue bounding boxes represent

ground truth and predictions respectively. As shown in Fig. 3.1, both PETR [20] with

ResNet50 backbone [8] and PETR [20] with depth­pretrained VoVNetV2 [7, 15, 16, 26]

still predict a row of false positive predictions along the direction of depth for small ob­

jects. Since depth­pretrained backbones are generally pretrained on the external dataset

and contain different settings on camera matrices, we suggest that those backbones can

narrowly deal with the false positive problem due to weak depth estimation. Neverthe­

less, our method can predominately alleviate this problem due to referred depth informa­

tion from the internal dataset [1].
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Chapter 5 Conclusion

In this paper, we design an end­to­end Cross­view and Depth­guided Transformer,

called CrossDTR, for 3D object detection. To address the false positive bounding boxes

commonly existing in prior multi­view approaches, a lightweight Depth Predictor, su­

pervised by our produced object­wise sparse depth maps, is proposed to generate low­

dimensional depth embeddings. Furthermore, to combine image and depth hints from

different views, a Cross­view and Depth­guided Transformer is developed to fuse this in­

formation efficiently. We are optimistic that our proposed method would pave a new way

for developing a cost­effective and real­time 3D object detector.
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