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Abstract

To achieve accurate 3D object detection at a low cost for autonomous driving, many
multi-camera methods have been proposed and solved the occlusion problem of monocular
approaches. However, due to the lack of accurate estimated depth, existing multi-camera
methods often generate multiple bounding boxes along a ray of depth direction for diffi-
cult small objects such as pedestrians, resulting in an extremely low recall. Furthermore,
directly applying depth prediction modules to existing multi-camera methods, generally
composed of large network architectures, cannot meet the real-time requirements of self-
driving applications. To address these issues, we propose Cross-view and Depth-guided
Transformers for 3D Object Detection, CrossDTR. First, our lightweight depth predictor
is designed to produce precise object-wise sparse depth maps and low-dimensional depth
embeddings without extra depth datasets during supervision. Second, a cross-view depth-
guided transformer is developed to fuse the depth embeddings as well as image features

from cameras of different views and generate 3D bounding boxes. Extensive experiments
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demonstrated that our method hugely surpassed existing multi-camera methods by 10 per-

cent in pedestrian detection and about 3 percent in overall mAP and NDS metrics. Also,

computational analyses showed that our method is 5 times faster than prior approaches.

Our codes will be made publicly available at https://github.com/sty61010/CrossDTR.

Keywords: Computer Vision, Autonomous Driving, Object Detection

vi doi:10.6342/NTU202301047


http://dx.doi.org/10.6342/NTU202301047

Contents

Verification Letter from the Oral Examination Committee
W%

Abstract

Contents

List of Figures

List of Tables

Chapter 1 Introduction

Chapter 2 Related Work

2.0.1 Monocular 3D Object Detection . . . .. ... ..
2.0.2 Multi-Camera 3D Object Detection . . . . . . . ..

2.0.3 Depth-guided Monocular Methods . . . . . .. ..

Chapter 3 Method

3.0.1 Problem Definition . . .. ... ... .......
3.0.2 Overall Architecture . . . . . .. ... ... ....
3.0.3 Object-wise Sparse DepthMap . . . . . ... ...
3.04 DepthPredictor . . . ... ... ..........

3.0.5 Cross-view and Depth-guided Transformer . . . . .

vil

Page

iii

vii

ix

xi

doi:10.6342/NTU202301047


http://dx.doi.org/10.6342/NTU202301047

3.0.6 3D Detection Headand Loss . . . . . . . ... . ... ..., 13

Chapter 4 Experiments 15
4.0.1 Setup . . . . .. 15
4.0.2 QuantitativeResults . . . . . .. .. ... ... L. 17
4.03 AblationStudy . .. ... ... 18
4.0.4 False Positive Predictions Results . . . . ... ... ... ... .. 18
4.0.5 QualitativeResults . . . . . .. ... ... ... L. 19
Chapter 5 Conclusion 21
References 23

viil doi:10.6342/NTU202301047


http://dx.doi.org/10.6342/NTU202301047

1.1

1.2

List of Figures

Multi-camera methods suffer from inaccurate depth estimation. Red
and green bounding boxes represent inaccurate and accurate predictions
respectively. The above 2D-to-3D projection diagram mainly shows that
(a) previous multi-view methods usually produce a row of false posi-
tives predictions alone a ray of depth, but (b) our method, guided with
depth hints, can precisely predict only one bounding box. Plot (¢) and (d)

demonstrate the corresponding bird-eye view predictions of (a) and (b).

The overall framework of our proposed CrossDTR. First, Multi-view
images are fed into a feature extractor backbone to generate image fea-
tures. Then, image features are fed into our Depth Predictor (in Sec. 3.0.4)
to produce depth embeddings and predicted depth maps. Lastly, given
image features, depth embeddings, and 3D object queries, our Cross-view
and Depth-guided Transformer (in Sec. 3.0.5) conducts cross-view atten-
tion and cross-depth attention to generate 3D bounding boxes. Note that
we minimize the difference between predicted depths and our generated
object-wise sparse depth maps (in Sec. 3.0.3) under supervision during

training. Best viewedincolor. . . . . . ... ... ... ... .. ...,
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3.1 Visualization of false positive predictions on the nuScenes validation
set. We provide two qualitative examples, (1) and (2), with bird-eye-view
(BEV) and camera-view representations. In the first row, the left and right
images illustrate the focused areas of the global and zoomed-in BEVs,
where blue and orange bounding boxes represent predictions and ground
truth respectively. In the second row, the images in the camera view show
predictions from models. Under a fair comparison with the same network
backbone (PETR [20] with ResNet50 backbone [8]), our cross-view and
depth-guided method (c) effectively mitigates the false positive issue in
prior multi-view baselines (a), i.e. does not produce repeated bounding
boxes along the ray of depth. Also, we even surpass methods equipped
with a heavy-weight pretrained depth prediction module (b). Best viewed

incolorand zoom-in. . . . . . . . ... 14

4.1 The precision-recall curve of pedestrian class. Fig. 4.1 shows the com-
parison of AP between baseline (dotted lines) and our method (solid lines).
The red, blue, and green colors represent the distance threshold at 0.5, 1.0,
and 4.0 respectively. Regardless of distance, our method hugely outper-

forms the baseline on small object (e.g. pedestrian) detection. . . . . . . . 19
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Comparison with SOTA methods on the nuScene validation set. PETR[20]
are trained with CBGS[48]. The best results are shown in bold. . . . . . . 14
Comparison with lightweight multi-view methods. We utilize bold to
highlight the bestresults. . . . . . . ... ... ... ... .. ...... 16
Ablation study of depth-guided module. DE denotes Depth Embedding

and DDN Loss denotes Depth Distribution Network Loss. Our method

was built on PETR[20] with DDN Lossand DE. . . . . . ... ... ... 16
Study of false positive predictions for the pedestrian class. We choose
PETR[20] with ResNet50 [8] and PETR[20] with depth-pretrained VoVNetV2
[16] as baselines and compare them with our method, CrossDTR, with dif-

ferent distance thresholds. We utilize bold to highlight the best results. . . 17
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Chapter 1 Introduction

Detecting instances of objects in the 3D space from sensor information, i.e. 3D ob-
ject detection, is crucial for various intelligent systems, such as autonomous driving and
indoor robotics. Previous work tends to rely on accurate depth information from different
sensors, such as LiDAR signals [14, 40, 41] and binocular information [4, | 7], to accom-
plish superior performance. In recent years, in order to achieve high-quality detection at
a low cost, several methods based on commodity cameras have been proposed. Among
them, since naive monocular detection [29, 30, 35, 36, 39, 42, 47] suffers from the prob-
lems of occlusion and deficiency of cross-view information, methods transforming camera
information from multiple views into Bird-Eye-View [5, 10, 11, 18, 20, 21, 31, 37, 45],

called multi-view methods, has received increasing attention.

Though these multi-view methods have made some progress with cross-view infor-
mation and Bird-Eye-View representation [9—11, 18, 28, 46], we observe existing practices
suffered from either extremely low recall in small objects due to inaccurate depth or an
unaffordable computational burden because of complex depth prediction modules. Specif-
ically, while some methods fusing information from multiple views [5, 10, 11, 18,20, 21,

, 37, 45] easily locate the pixel coordinate of small objects in images, they can hardly
estimate precise distances of objects from the image plane. Consequently, these methods

tend to predict a row of false positive bounding boxes along a ray of depth direction in

1 doi:10.6342/NTU202301047


http://dx.doi.org/10.6342/NTU202301047

(2)

[E] (b)

+ Depth

© @

Figure 1.1: Multi-camera methods suffer from inaccurate depth estimation. Red and
green bounding boxes represent inaccurate and accurate predictions respectively. The
above 2D-to-3D projection diagram mainly shows that (a) previous multi-view meth-
ods usually produce a row of false positives predictions alone a ray of depth, but (b) our
method, guided with depth hints, can precisely predict only one bounding box. Plot (c)
and (d) demonstrate the corresponding bird-eye view predictions of (a) and (b).

candidate regions when detecting small objects (shown in Fig. 1.1), leading to low re-
call in perception and poor follow-up prediction and planning. In addition, some previous
monocular approaches utilized complex depth prediction modules [6, 44] or large-scale
depth-pretrained backbone [7, 15, 16, 26] to provide depth cues. Nevertheless, directly
applying them to existing multi-camera methods, generally composed of large network
architectures, cannot meet the real-time requirements of the self-driving application (Tab.
4.1). From the two observations above, we conclude that a module is needed to obtain

depth hints from multiple cameras and fuse both depth and image information from dif-

ferent views in real time.

To achieve the goal, we proposed CrossDTR, a novel end-to-end Cross-view and
Depth-guided Transformer network for multi-camera 3D object detection as shown in Fig.
1.2. To efficiently obtain depth hints for downstream 3D object detection, we leverage a
lightweight depth predictor to produce precise depth maps for each view (Sec. 3.0.4).
Specifically, inspired by previous depth-aware methods [0, 12, 13, 43, 44], the depth pre-

2 doi:10.6342/NTU202301047


http://dx.doi.org/10.6342/NTU202301047

dictor is supervised with our generated object-wise sparse depth maps without extra depth
dataset (Sec. 3.0.3). Then, to fused the depth and image information from multi-view
cameras effectively, we propose a novel cross-view and depth-guided transformer (Sec.
3.0.5). In short, the Transformer Encoder is used to compress high-resolution depth maps
into low-dimensional depth embeddings, and the Transformer Decoder performs the cross-

attention mechanism among depth as well as image information from multi-views.

Experimental results demonstrated that our depth-guided method resolves the prob-
lem of false positive predictions on small objects (Fig. 1.1) and achieves overall improve-
ment with the limited computational burden. Compared with existing multi-camera meth-
ods on the nuScenes dataset [ 1], we increased by 10 percent Average precision (AP) in
pedestrian detection and about 3 percent in mAP and NDS metrics. Also, computational
analyses demonstrated that our lightweight method is 5 times faster than prior methods
under similar network backbones. To sum up, the overall contributions of this work can

be summarized as follows:

* We build up a novel cross-view and depth-guided perception framework, Cross-

DTR, to insert accurate depth cues into multi-view detection methods.

* Our proposed depth-guided module can alleviate the problem of false positive pre-

dictions along the direction of depth for small objects.

* Our framework achieves state-of-the-art 3D detection performance on the nuScenes
dataset [ | ] with fewer computational budgets compared with existing multi-view or

depth-guided methods.

3 doi:10.6342/NTU202301047
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Figure 1.2: The overall framework of our proposed CrossDTR. First, Multi-view im-
ages are fed into a feature extractor backbone to generate image features. Then, image
features are fed into our Depth Predictor (in Sec. 3.0.4) to produce depth embeddings and
predicted depth maps. Lastly, given image features, depth embeddings, and 3D object
queries, our Cross-view and Depth-guided Transformer (in Sec. 3.0.5) conducts cross-
view attention and cross-depth attention to generate 3D bounding boxes. Note that we
minimize the difference between predicted depths and our generated object-wise sparse
depth maps (in Sec. 3.0.3) under supervision during training. Best viewed in color.
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Chapter 2 Related Work

2.0.1 Monocular 3D Object Detection

Monocular 3D object detection [29, 30, 35, 36, 39, 42] has received lots of atten-
tion due to the low cost of commodity cameras. It originates from Orthographic Feature
Transform (OFT) [30], which projects camera features into ego pose coordinate uniformly,
voxelized the features, and uses the detector from PointPillar [14]. OFT [30] is the first
method that deals with camera features in a LiDAR-based [14, 40, 41] technique, but
OFT [30] predicts the depth value of each pixel uniformly and thus results in inaccurate
depth estimation. Extend from OFT, Pseudo-lidar [39, 42] and CaDDN [29] methods use
a convolutional neural network to predict depth distribution and auxiliary loss to enhance
performance. Apart from the above methods, the other monocular methods [35, 36] di-
rectly regression 3D representation in camera coordinate. FCOS3D [36] is built on FCOS
[34], which is a single-stage 2D object detection framework. Furthermore, PGD [35] is
an improved version of FCOS3D [36] with extra depth information. In conclusion, depth

information is critical for monocular methods to enhance performance.

5 doi:10.6342/NTU202301047
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2.0.2 Multi-Camera 3D Object Detection

Multi-camera methods [5, 10, 11, 18, 20, 21, 31, 37, 45] have been proved to solve
the problem of occlusion through temporal and spatial information. DETR-based meth-
ods [18, 20, 21, 37] were first proposed. DETR3D [37] was built based on DETR [2] and
utilized the attention mechanism to select features from different camera. Unlike DETR
[2] in the 2D space, we can not assure the candidate area of objects in the 3D space, so
DETR3D [37] initialize object query randomly with uniform distribution and pick fea-
tures by projecting object position into camera coordinate. As an improved version of
DETR3D [37], PETR [20] enhance performance by initializing object queries with the
method from Anchor DETR [3&] and applying 3D positional embedding to embed 3D
coordinate frustum into multi-head attention. PETRv2 [21] optimized PETR by adding
temporal information. Additionally, some researchers regard that Bird-Eye-View (BEV)
[9, 23, 25, 27, 28, 32, 46] representations can provide better space concepts in 3D co-
ordinates. BEVDet methods [10, 11] transform image features into BEV according to
Lift-Splat-Shoot (LSS) Method [28] and propose BEV data augmentation [ 1] to avoid
over-fitting. BEVFormer [ 8] proposed BEV query and use the deformable attention [49]
to suppress computation. BEVFormer[ 18] also applies temporal information by cross-
attention between BEV queries from different time stamps. However, those methods still

lack accurate depth estimation.

2.0.3 Depth-guided Monocular Methods

Monocular methods can not achieve competitive performance in comparison with
LiDAR-based methods [14, 40, 41] and binocular methods [4, 17]. The main reason is

6 doi:10.6342/NTU202301047
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inaccurate depth estimation, and thus the depth-aware methods [3, 6, 12, 13, 43, 44] are
proposed recently. ASTransformer [3] first proposed to use depth maps supetvision to
enhance the performance of depth estimation. Besides, both MonoDTR [!”] and Mon-
oDETR [43] compose depth-aware embedding from depth maps and are supervised by
ground truth depth maps to enhance the performance of monocular object detection. How-
ever, all the above methods still build on monocular methods and will suffer from complex
post-processing between cameras to aggregate all information and remove repeated pre-
dicted bounding boxes. Multi-camera method with a depth-guided module is still missing

so far.

7 doi:10.6342/NTU202301047
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Chapter 3 Method

3.0.1 Problem Definition

In this work, we aim to precisely detect instances of objects in 3D space given mul-
tiple scanned RGB images [24]. Specifically, let Lscnsors = {Z1, ---s ZNoumerae } TEPresent a
set of scanned multi-view images, and Br;par = {Bi, ..., By,,, } denotes a set of ground
truth bounding boxes, a 3D bounding box Bi € Br,par 1s formulated as a vector with 7
degree of freedom:

[;)i = (‘Icaycazmlawvhae)a (31)

where (., y., 2.) denotes the center of each bounding box. (I, w, h) represents the length,
width, and height of the cuboid respectively. 6 means orientation (yaw) of each object.
Formally, given a set of predicted bounding boxes B, ,par, amulti-view 3D object detector

£}, 1s defined as follows:

BLiDAR = fDet (Isensors)- (32)

3.0.2 Overall Architecture

Fig. 1.2 illustrates our architecture. First, we feed our multi-view images {Z:, ..., Zn......... }
into our model. Without external data, [£] is applied as our backbone to extract fea-

9 doi:10.6342/NTU202301047
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tures Fyew for each view. Then, we feed image features F,;., into Depth Predictor
(in Sec. 3.0.4). Given single-view image features .., the Depth Predictor produces
low-dimensional depth embeddings and depth maps by a Transformer encoder. During
training, we minimize the difference between the predicted depth maps and our generated
sparse depth maps (in Sec. 3.0.3) in a supervised manner. Lastly, given image features,
depth embeddings, and 3D object queries, our Cross-view and Depth-guided Transformer
(in Sec. 3.0.5) conducts cross-view attention and cross-depth attention to generate 3D

bounding boxes.

3.0.3 Object-wise Sparse Depth Map

Unlike some prior depth-guided monocular methods requiring costly dense depth
maps during training, we extend [43] to multi-view scenarios and leverage only the sparse
depth hints provided by the raw LiDAR data, which is more cost-effective. We first detail

our depth generation process below.

Given a camera matrix 7' € R34 and a point p € R? in the LIDAR coordinate, we
define the transformation function 7 from the LiDAR coordinate to the camera coordinate
as follows:

T
T(T,p) = {u v d] )
(3.3)

T

where d - [u v 1] =T -(pad1l),
and @ denotes tensor concatenation. We transform the center point and corners of each
bounding box into each camera view by (3.3). Let p/"",. ., d  P™!  be the center

point, the depth value of the center, and the set of corner points of the bounding box 15; in

10 doi:10.6342/NTU202301047
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the m-th camera coordinate, then

T
p:;;iters = [uc Ve dC:| = T(Tm7pz)7 (34)

ngners = {T(Tmap) | JES C(BZ)}v (35)

T
where T,,, € T, p; = [xc Ye Zc:| and ., Y., z. € B;. C(B) is the function returning
8 corners of the given 3D bounding box B. We further extract the 2D bounding box

B = (Ulin, Uazs Vinins Vinae) With respect to B; in the m-th camera from P77 .. by

min’ “max’ Ymin’ “mazx corners

getting the minimum and maximum (u, v) value in P

corners*

Next, we collect all valid 2D bounding boxes Bf,f{i for each camera and their depth
values d"',.. . to a new set V,,,. We set the pixel value to the depth of the object center
point if the pixel lies in an object’s bounding box. If the pixel lies in multiple bounding
boxes, we set it to the nearest one. Lastly, the object-wise sparse depth map is obtained

by adopting linear-increasing discretization (LID) [33].

3.0.4 Depth Predictor

Inspired by previous depth-guided methods [12, 43] and other methods [9—11, 28,

], we utilize the Depth Predictor from [43] to learn depth information from object-wise
sparse depth maps. To save the memory of our model, we use lightweight architecture
built by convolution layers to predict depth distribution and match the number of depth
bins as 3D positional embedding [20, 21]. Given image features JF;..,, we use light-
weight network f,, to predict depth logits D and depth probability ﬁpmb among each
depth map. Besides, we utilize Transformer encoder ¢; to encode image features F;c.,

11 doi:10.6342/NTU202301047
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into depth embeddings F ., with multi-head attention 1;:

80 = Fm’ew;
E=vi(Eicr, i), i =1, .., 1, (3.6)
fdepth - g];

where & € RE*C represents the depth embeddings from the Transformer encoder in the
depth predictor. C' is the size of the embeddings. L. = H,; x Wj is the length of depth
embeddings. The number ¢ denotes the i-th layer in the encoder, and the encoder contains

total [ layers. The final depth embedding is utilized in Sec. 3.0.5.

3.0.5 Cross-view and Depth-guided Transformer

As the Transformer has successfully been used to fuse different modalities, we adopt
it to combine both image features and depth embeddings. We adopt PETR [20] methods
to conduct attention between different views. Besides, inspired by MonoDETR [43], we

insert depth embedding into multi-view attention from PETR [20].

Cross-view Attention. We follow cross-view attention as methods from PETR [20], and
we feed image features F,;.,, as keys and values. We utilize 3D positional embedding

[20] as query positional embedding.

Cross-depth Attention. Previous methods [20, 21] only use visual information and thus
lack depth cues for the detector. Inspired by [43], [12] and methods [3, 6, 12, 13, 43,

], we suggest inserting depth hints as depth embedding into the detector to provide
more detailed information for small objects. After we obtain depth embeddings Fep, €
REXNxCOxHaxWa from Sec. 3.0.4, we flatten depth embeddings into Fuep, € RLxBxC

12 doi:10.6342/NTU202301047
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where [, = N x H 4 X Wy indicates the flatten depth embeddings F,;, among all camera
views. Then, we follow the previous Sec. 3.0.5 and select depth embeddings as keys and
values for multi-head attention. Those depth embeddings can not only learn pixel-level
depth hints in a single view in Depth Predictor (in Sec. 3.0.4) but also consider depth

messages from the other views during cross attention mechanism.

3.0.6 3D Detection Head and Loss

3D Detection Head. To learn information between the camera view features and 3D po-
sition, we adopt the 3D Detection Head from PETR [20]. The 3D Detection Head from
PETR [20] initialize 3D reference points among 3D space and adopt multi-layer percep-
tion to learn the candidate area in the ego-pose coordinate. Then, the 3D Detection Head

generates 7 degrees of freedom to represent bounding boxes in the ego-pose coordinate.

Depth Distribution Network Loss. To conduct the depth-guided method on a prede-
fined depth map in Sec. 3.0.3, we borrow the depth-guided method from [43] and refer to
CaDDN [29] and adopt Depth Distribution Network Loss (DDN Loss) to regularize the
predicted depth map values and predicted depth map logits. Following CaDDN [29], we

build our loss as the following equation:

Wa Hg

1 .
Eldn = Wd . Hd Z Zﬂ(p(uv U)v D(U, U))? (37)

u=1 v=1

where W, and H,; represent the size of depth map logits, and (u, v) denotes the position

of pixels. FL means adopted Focal Loss [19].
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(a) Baseline

(b) Pretrained Baseline

(c) Ours

1

Figure 3.1: Visualization of false positive predictions on the nuScenes validation set.
We provide two qualitative examples, (1) and (2), with bird-eye-view (BEV) and camera-
view representations. In the first row, the left and right images illustrate the focused areas
of the global and zoomed-in BEVs, where blue and orange bounding boxes represent pre-
dictions and ground truth respectively. In the second row, the images in the camera view
show predictions from models. Under a fair comparison with the same network backbone
(PETR [20] with ResNet50 backbone [£]), our cross-view and depth-guided method (c)
effectively mitigates the false positive issue in prior multi-view baselines (a), i.e. does not
produce repeated bounding boxes along the ray of depth. Also, we even surpass meth-
ods equipped with a heavy-weight pretrained depth prediction module (b). Best viewed
in color and zoom-in.

Table 3.1: Comparison with SOTA methods on the nuScene validation set. PETR[20]

are trained with CBGS[4&]. The best results are shown in bold.

Methods | Backbone  ImgSize #param. | FPS1 GFLOPs| | mAP? NDS? | mATE|, mASE| mAOE| mAVE| mAAE|
CenterNet[47] | DLA 1600%900 - - - 0306 0328 | 0.716 0264  0.609 1426  0.658

FCOS3D[36] | ResNetl01 1600%¥900 52.5M | 1.7 2008.2 0.295 0372 | 0.806 0268  0.511 1315 0170

PGD[35] ResNetl01  1600%900 53.6M | 1.4 2223.0 0.335 0409 | 0.732 0263  0.423 1285 0172

Detr3D[37] | ResNetl01 1600¥900 51.3M |2.0  1016.8 0303 0374 | 0.860 0278 0437 0967  0.235

BEVDet[I1] | Swin-T 1408*512  126.6M | 1.9 2962.6 0.349 0417 | 0.637 0269 0490 0914  0.268

PETR[20] ResNet101 1408*512 592M |53  504.6 0357 0421 | 0710 0270  0.490  0.885  0.224

CrossDTR | ResNetl01 1408*512 53.3M |58 4839 | 0370 0426 | 0.773 0269 0482  0.866  0.203

14

doi:10.6342/NTU202301047


http://dx.doi.org/10.6342/NTU202301047

Chapter 4 Experiments

4.0.1 Setup

Dataset. In this paper, we use the nuScenes dataset [ | ] as our benchmark, which provides
camera, radar, and LiDAR sensor data with 3D bounding box annotations. Its data is
mainly composed of camera data and provides only sparse LiDAR data as an auxiliary.
As it lacks data to provide depth information like dense LiDAR or depth maps, we generate
object-wise sparse depth maps (in Sec. 3.0.3 for the cross-view and depth-guided method.

The nuScenes dataset [ | | contains 1000 scenes and each scene is 20 seconds in length and

annotated at 2HZ.

Implementation Details. Following training policies from [20, 21, 37], we use features
from backbones [&, 15, 16, 22] with downsample scale of % and 3—12 And we feed the
features into both depth predictor and cross-view attention. Besides, we follow [20, 21]

to sample 64 points for depth in 3D positional embeddings and also for depth predictor to
estimate depth distribution. Specifically, we supervise generated depth maps only during
training. We use the AdamW optimizer with a learning rate of 2e-4 to train our model.
We train our model for 24 epochs on 4 Nvidia 3090 GPUS with a total batch size of 8 for
48 hours. We use input images at resolution 512 x 1408 for our baseline model.
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Table 4.1: Comparison with lightweight multi-view methods. We utilize bold to high-
light the best results.

Methods ‘ Backbone  #param. ‘ FPST GFLOPs| ‘ mAP?
DETR3D[37] | ResNetl01 51.3M |20  1016.8 | 0.303
BEVDet[ 1] ResNet50  54.1IM | 93 4520 0.299
BEVFormer[18] | ResNet50  68.7M |23 1303.5 | 0.252
PETR[20] ResNet50  36.6M | 10.4 2972 0.317
CrossDTR | ResNet50  31.8M | 10.6 268.1 | 0.326

Table 4.2: Ablation study of depth-guided module. DE denotes Depth Embedding and
DDN Loss denotes Depth Distribution Network Loss. Our method was built on PETR[20]
with DDN Loss and DE.

Methods | DE  DDN Loss | mAPT NDS?

PETR[20] | | 0357 0.421
CrossDTR | v 0.366 0.423
CrossDTR | v v 0.370 0.426

Baselines. We compare CrossDTR with both monocular and multi-camera approaches.

CenterNet[47], FCOS3D [36], and PGD [35] represent monocular approaches, while DETR3D

[37], PETR [20], and BEVDet [11] serve as the baselines of multi-camera ones. For fair
comparison, we only adopt the performance of these approaches without tricks such as
test-time augmentation [35, 36], CBGS [48], and oversampling [48]. Besides, the com-
parison with the lightweight BEVFormer [ | 8] (from their official repository) without en-

coding extra temporal information is also included.

Evaluation Metrics. We report mean Average Translation Error (mATE), mean Average
Scale Error (mASE), mean Average Orientation Error (mAOE), mean Average Velocity
Error (mAVE), mean Average Attribute Error (mAAE), mean Average Precision (mAP),
and nuScenes detection score (NDS). mAP estimates the distance between the centers of
a predicted and a ground-truth 3D bounding box. To evaluate the efficacy of our method

in solving false positive predictions, we report the Average Precision of pedestrian as our
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Table 4.3: Study of false positive predictions for the pedestrian class; We choose
PETR[20] with ResNet50 [¢] and PETR[20] with depth-pretrained VoV NetV2 [16] as
baselines and compare them with our method, CrossDTR, with different distance thresh-
olds. We utilize bold to highlight the best results.

‘ AP (Pedestrain) @ Dist.]
| [0.5] [1.0] [4.0]

ResNet50 | 0.09  0.401 0.809
v VoVNetV2 | 0.102 0.426 0.870

CrossDTR | ResNet50 | 0.320 0.689 0.875

Methods ‘Depth-pretrained Backbone

PETR[20]

metrics. We also take Frame Per Second (FPS) and Giga Flops (GFLOPs) into consider-

ation to evaluate the real-time ability of multi-camera models.

4.0.2 Quantitative Results

Comparison with State-of-the-art. As shown in Tab. 3.1, our method surpasses other
previous methods and achieves the state-of-the-art performance of mAP and NDS on the
validation dataset [1]. To begin with, CenterNet [47], FCOS3D [36], and PGD[35] are
classic monocular baseline. Our method exceeds by more than 3 percent on mAP and 2
percent on NDS. Additionally, compared with the SOTA multi-camera methods (starting
from the fifth row), our method still surpasses all of them by at least 1.3 percent on
mAP and 0.5 percent on NDS. Swin-T represents Swin-Transformer [22], which is the
strongest backbone among the Tab. 3.1. Our method with ResNet101 also beats BEVDet
[11] with Swin-T [22]. Then, our method needs the least computational resource (483.9
GFLOPs and 5.8 FPS). Our method is lightweight and can conduct real-time 3D detection

on the nuScenes [ 1] dataset.

Comparison with lightweight multi-view methods. Tab. 4.1 shows the comparison

between our method and previous multi-camera methods. Note that all the scores are
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from their official repositories. Since we conduct our experiments on the validation set
with limited computation resources, we choose a smaller backbone ResNet50 [ ] to extract
features from input images at resolution 512 x 1408. Our proposed method overtakes
all previous multi-camera methods, even against DETR3D [37] with stronger ResNet101
backbone [¢] and BEVFormer [ | 8] with temporal information. Our method surpasses the
second best method by 0.9 percent on mAP and 1.1 percent on NDS. Besides, our model
contains the least parameters as shown in Tab. 4.1 and attains the highest score (10.6) on

FPS. The result shows that our model can conduct real-time detection.

4.0.3 Ablation Study

Tab. 4.2 shows the effectiveness of our cross-view and depth-guided module. We
conduct an ablation study to verify the effectiveness of depth embedding (DE) and Depth
Distribution Network Loss (DDN Loss). We take PETR [20] as baseline model . We
find the performance is improved by 0.9 percent on mAP and 0.2 percent on NDS when
we plug depth embeddings into the cross-attention, and the full model achieves the best

performance increasing by 1.3 percent on mAP and 0.5 percent on NDS.

4.0.4 False Positive Predictions Results

To verify whether our method can resolve the false positive problem, we consider
Average Precision (AP). Tab. 4.3 shows the AP of the pedestrian class with different
distance thresholds on the validation set. Our method surpasses our baseline with a depth-
pretrained backbone by over 10 percent on average among each threshold. Moreover,

Fig. 4.1 illustrates our overall performance predominantly exceeds the baseline on all
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Precision

0.0 02 04 0.6 0.8 10
Recall

Figure 4.1: The precision-recall curve of pedestrian class. Fig. 4.1 shows the compari-
son of AP between baseline (dotted lines) and our method (solid lines). The red, blue, and
green colors represent the distance threshold at 0.5, 1.0, and 4.0 respectively. Regardless
of distance, our method hugely outperforms the baseline on small object (e.g. pedestrian)
detection.

thresholds and thus resolves the false positive issue. Red, blue, and green represent the

distance threshold at 0.5, 1.0, and 4.0 respectively.

4.0.5 Qualitative Results

Fig. 3.1 shows the qualitative result. Orange and blue bounding boxes represent
ground truth and predictions respectively. As shown in Fig. 3.1, both PETR [20] with
ResNet50 backbone [£] and PETR [20] with depth-pretrained VoVNetV2 [7, 15, 16, 26]
still predict a row of false positive predictions along the direction of depth for small ob-
jects. Since depth-pretrained backbones are generally pretrained on the external dataset
and contain different settings on camera matrices, we suggest that those backbones can
narrowly deal with the false positive problem due to weak depth estimation. Neverthe-
less, our method can predominately alleviate this problem due to referred depth informa-

tion from the internal dataset [1].

19 doi:10.6342/NTU202301047


http://dx.doi.org/10.6342/NTU202301047

doi:10.6342/NTU202301047



http://dx.doi.org/10.6342/NTU202301047

Chapter S Conclusion

In this paper, we design an end-to-end Cross-view and Depth-guided Transformer,
called CrossDTR, for 3D object detection. To address the false positive bounding boxes
commonly existing in prior multi-view approaches, a lightweight Depth Predictor, su-
pervised by our produced object-wise sparse depth maps, is proposed to generate low-
dimensional depth embeddings. Furthermore, to combine image and depth hints from
different views, a Cross-view and Depth-guided Transformer is developed to fuse this in-
formation efficiently. We are optimistic that our proposed method would pave a new way

for developing a cost-effective and real-time 3D object detector.
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