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Abstract to the Dissertation

Two theorems for deformation quantization modules

The theory of deformation quantization modules have a great
improvement recently. In this thesis, we prove two basic theo-
rems about this theory.

The first theorem is a generalization of Riemann-Roch the-
orem for D-modules. We generalize the (algebraic) Riemann-

Roch theorem for D-modules of [16] to (analytic) Ŵ -modules.
The second theorem is a generalization of Serre’s GAGA the-

orem [see 6]. Let X be a smooth complex projective variety
with associated compact complex manifold Xan. If AX is a DQ-
algebroid on X, then there is an induced DQ-algebroid on Xan.
We show that the natural functor from the derived category of
bounded complexes of AX-modules with coherent cohomologies
to the derived category of bounded complexes of AXan

-modules
with coherent cohomologies is an equivalence.
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Introduction

The theory of deformation quantizaton modules (we usually
call DQ-modules) was introduced and developed by M. Kashi-
wara and P. Schapira recently. In this thesis, two basic theorems
are proved.

Let X be a smooth complex algebraic variety or a complex
manifold. Set C~ := C[[~]] and C~,loc := C((~)). In [13], M.
Kashiwara and P. Schapira introduce the notion of a DQ-algebra
AX which is a C~ := C[[~]]-algebra and locally isomorphic to an
algebra (OX [[~]], ?) where ? is a star product. They also consider
the notion of a DQ-algebroid, that is, a C~-algebroid (in the
sense of stacks) locally equivalent to the algebroid associated
with a DQ-algebra.

If AX is a DQ-algebra or a DQ-algebroid on X, we denote
by AXa the opposite algebra or algebroid A op

X and we denote by
AX1×X2

the external product of AXi
(i = 1, 2).

If AX is a DQ-algebra or a DQ-algebroid on X, then we have
the notion of AX-modules. We denote by Mod(AX) the category
of AX-modules, by Db(AX) its bounded derived category and by
Db

coh(AX) the full triangulated subcategory of the bounded de-
rived category Db(AX) with coherent cohomologies. An object
of Db(AX) is called a kernel.

Similarly, set A loc
X := C~,loc L

⊗C~AX , then we have the notion
of good A loc

X -modules. We denote by Mod(A loc
X ) the category

of A loc
X -modules, by Db(A loc

X ) its bounded derived category and
by Db

gd(A loc
X ) the full triangulated subcategory of the bounded

derived category Db(A loc
X ) with good cohomologies.

Let (X,AX), (Y,AY ) be two complex manifolds endowed
with DQ-algebras AX and AY . Let M ∈ Db(AX) and K ∈
Db(AXa×Y ) be two kernels. Their convolution is defined as

M ◦K := Rq2!(K
L
⊗AX

q−1
1 M )
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here, qi the i-th projection defined on X × Y (i = 1, 2). One of
the main theorems in [13] asserts that if M and K are coherent
and if q2 is proper on q−1

1 supp(M ) ∩ supp(K ), then M ◦K is
coherent.

Similarly, If M1 ∈ Db
gd(A loc

X ) and K1 ∈ Db
gd(A loc

Xa×Y ) are good

modules and if q2 is proper on q−1
1 supp(M1) ∩ supp(K1), then

their convolution M1 ◦K1 is also good.
If X and Y are compact, then a kernel K ∈ Db

coh(AXa×Y )
defines a functor

◦K : Db
coh(AX)→ Db

coh(AY )

which is called the Fourier-Mukai transform induced by K .
Similarly, a kernel K loc ∈ Db

gd(A loc
Xa×Y ) defines a functor

◦K loc : Db
gd(A loc

X )→ Db
gd(A loc

Y )

which is called the Fourier-Mukai transform induced by K loc.
The first main theorem of this thesis is the Riemann-Roch

theorem for Fourier-Mukai transforms of A loc-modules.
As an application, we recover the Riemann-Roch formula for

D-modules of [16].
If (X, AX) is a smooth complex algebraic variety endowed

with a DQ-algebroid, then there is an induced DQ-algebroid
AXan

on the complex manifold Xan induced by X. Then we con-
struct a functor f ∗ : Db

coh(AX)→ Db
coh(AXan

). The second main
theorem of this thesis is the following:

Assume that X is projective. Then the functor f ∗: Db
coh(AX)→

Db
coh(AXan

) is an equivalence.

This thesis is organized as follows: In Chapter 1, we briefly
review the notions of coherent modules, derived categories and
the projective limits of 2-categories which are used in the text.
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In Chapter 2, we review Serre’s GAGA theorem and translate
this theorem to the derived version. In Chapter 3, we review
the Riemann-Roch theorem for D-modules in [16]. We prove
the first main theorem in Chapter 4. In Chapter 5, we use the
main results in Chapter 4 to recover the results in Chapter 3. In
Chapter 6, we reveiw the notions and results in [13], in particu-
lar, Remark 6.6 and Finiteness theorem 6.11 are crucial to the
proof of the second main theorem. We show how to induce an
analytic DQ-algebroid from an algebraic DQ-algebroid in Chap-
ter 7. In the final chapter, we prove the second main theorem.

Note: Throughout this thesis, all varieties (or schemes) are
over C if not otherwise specified.
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1 Preliminary

1.1 Coherency

Let AX be a sheaf of rings on a topological space X.

Definition 1.1.

(1) A (left) AX-module F is said to be locally finitely generated
if for each x ∈ X there exist an open neighborhood U of x,
an integer N ∈ Z≥0, and epimorphism of AX |U -modules on
U , (AX |U)⊕N � F |U .

(2) F is said to be locally finitely presented if for each x ∈ X
there exist an open neighborhood U of x, integers N0, N1 ∈
Z≥0, and exact sequence of AX |U -modules on U ,

(AX |U)⊕N1 → (AX |U)⊕N0 → F |U → 0.

(3) F is said to be pseudo-coherent if for every open set U
all locally finitely generated AX |U -submodules of F |U are
locally finitely presented.

(4) A pseudo-coherent and locally finitely generated AX-module
is said to be coherent.

We denote by

Mod(AX): the category of AX-modules.

Then Mod(AX) is a Grothendieck category [14, Theorem 18.1.6].
Recall that a Grothendieck category C is an abelian category
such that C admits a generator and inductive limits and filtrant
inductive limits are exact. In particular, Mod(AX) has enough
injectives.
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From basic properties of coherent modules (see [11, Proposi-
tion A.2 and Proposition A.6]), one can see that the category of
coherent AX-modules denoted by

Modcoh(AX)

is a full abelian thick subcategory of Mod(AX). Recall that the
term thick means that it is closed by kernels, cokernels and ex-
tensions.

We also denote by

K(Modcoh(AX)): the Grothendieck group of Modcoh(AX).

1.2 Homotopy Categories

Let C := Mod(AX) be an abelian category. A complex M in
C consists of a family {(Mn, dnM)}n∈Z where Mn is an object of
C , and dnM is a morphism dnM : Mn →Mn+1, called a differential
of M , satisfying dn+1

M ◦ dnM = 0. Denote by C(C ) the additive
category of complexes in C . A morphism f : M → N in C(C )
consists of a family {fn}n∈Z of morphisms fn : Mn → Nn (n ∈
Z) satisfying dnN ◦ fn = fn+1 ◦ dnM . For a complex M and an
integer k, define a complex M [k] by M [k]n = Mk+n and dnM [k] =

(−1)kdk+n
M . For f : M → N , define f [k] : M [k] → N [k] by

f [k]n = fk+n.
A complex M is said to be bounded below if Mn = 0 (n� 0),

bounded above if Mn = 0(n� 0), and bounded if it is bounded
above and below. Denote by C+(C ), C−(C ), and Cb(C ) the
full subcategories of C(C ) consisting of complexes of bounded
below, bounded above and bounded, respectively.

To X ∈ C , we associate a complex Xn defined by X if n = 0
and 0 if n 6= 0 and dnX = 0. We thus consider C as a full
subcategory of C(C ).
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For complexes M and N in C , define a complex Hom(M ,N)
of modules by

Hom(M ,N)n =
∏
k

HomC (Mk, Nk+n).

For f = (fk) ∈ Hom(M,N)n (fk ∈ Hom(Mk, Nk+n)), we define
the differential df ∈ Hom(M,N)n+1 by letting its k-th com-

ponent (df)k : Mk → Nk+n+1 be the sum Mk fk−→ Nk+n dk+nN−→
Nk+n+1 and Mk (−1)n+1dkM−→ Mk+1 fk+1

−→ Nk+n+1.
Then d2 = 0 and Hom(M,N) is a complex of AX-modules.

The 0-th cocycle

Z0(Hom(M,N)) := Ker(Hom(M,N)0 d→ Hom(M,N)1)

is nothing but HomC(C )(M,N). We denote by Ht(M,N) the
0-th coboundary

B0(Hom(M,N)) := Im(Hom(M,N)−1 d→ Hom(M,N)0);

its element is called a morphism from M to N homotopic to 0.
By the definition, f = (fn) ∈ HomC(C )(M,N) is homotopic to
0 if and only if there exists s = (sn : Mn → Nn−1)n∈Z such that

fn = dn−1
N sn + sn+1dnM .

Define a new additive category K(C ) by

Ob(K(C )) := Ob(C(C )),

HomK(C )(M,N) := H0(Hom(M,N)) = HomC(C )(M,N)/Ht
(M,N).

The composition of morphisms is the one induced from C(C ).
Then K(C ) is an additive category. Similarly to the case C(C ),
we consider C as a full subcategory of K(C ).
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1.3 Triangulated Categories

The category C(C ) is also an abelian category, but K(C ) is
not. Instead, K(C ) has a structure called a triangulated cate-
gory.

For a morphism f : M → N in C(C ), define a new com-
plex M(f), called a mapping cone of f , as follows: M(f)n =
Mn+1 ⊕ Nn, and its differential dnM(f) : M(f)n → M(f)n+1 is

the map such that Mn+1 −→ M(f)n
dnM(f)−→ M(f)n+1 is the sum

of Mn+1 fn+1

−→ Nn+1 −→ M(f)n+1 and Mn+1 −d
n+1
M−→ Mn+2 −→

M(f)n+1 and Nn −→ M(f)n
dnM(f)−→ M(f)n+1 equals Nn dnN−→

Nn+1 −→ M(f)n+1. Then dn+1
M(f) ◦ d

n
M(f) = 0 and thus M(f)

is a complex.
Define morphisms αf : N →M(f) and βf : M(f)→M [1] in

C(C ) by

αnf : Nn →Mn+1 ⊕Nn = M(f)n,

βnf : M(f)n = Mn+1 ⊕Nn →Mn+1 = M [1]n.

A diagram X
f→ Y

g→ Z
h→ X[1] in K(C ) is called a triangle.

A morphism from a triangle X → Y → Z → X[1] to a triangle
X ′ → Y ′ → Z ′ → X ′[1] is a commutative diagram

X −−→ Y −−→ Z −−→ X[1]

ξ

y η

y ζ

y ξ[1]

y
X ′ −−→ Y ′ −−→ Z ′ −−→ X ′[1].

If ξ, η and ζ are isomorphisms, these two triangles are said to be
isomorphic. A triangle X → Y → Z → X[1] in K(C ) is said to

be distinguished if there exists a morphism X ′
f→ Y ′ such that

the triangle is isomorphic to X ′
f→ Y ′

αf→M(f)
βf→ X ′[1].
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With the automorphism [1] : K(C ) → K(C ) sending M to
M [1] and distinguished triangles, one can see that K(C ) is a
triangulated category.

Similarly, one can define the distinguished categories K+(C ),
K−(C ) and Kb(C ).

1.4 Derived Categories

A morphism f : X → Y in K(C ) is called a quasi-isomorphism
if Hn(X)→ Hn(Y ) are isomorphisms for all n.

We obtain the derived category from K(C ) by regarding quasi-
isomorphisms are isomorphisms. More precisely, we define the
derived category D(C ) as follows:

Define the family Ob(D(C )) of objects in D(C ) to equal
Ob(K(C )). For X, Y ∈ Ob(D(C )) = Ob(K(C )), define the
family HomD(C )(X, Y ) of morphisms to be S(X, Y )/ ∼, where
S(X, Y ) is a family given in the following, and ∼ is its equiva-
lence relation. S(X, Y )/ ∼ denotes the family of ∼ equivalence
classes in S(X, Y ).

(1) S(X, Y ) is the set of pairs (s, f) where s : X ′ → X is
a quasi-isomorphism and f : X ′ → Y is a morphism in
K(C ).

(2) for (s1, f1), (s2, f2) ∈ S(X, Y ) where si : X ′i → X are quasi-
isomorphisms and fi : X ′i → Y for i = 1, 2, we define
(s1, f1) ∼ (s2, f2) if there exists quasi-isomorphisms ti :
X ′0 → X ′i for i = 1, 2 and a morphism g : X ′0 → Y such
that s1 ◦ t1 = s2 ◦ t2 and f1 ◦ t1 = f2 ◦ t2 = g.

Similarly, one can define the derived categories D+(C ), D−(C )
and Db(C ). Note that D+(C ) (resp. D−(C ), resp. Db(C )) is
equivalent to the full subcategory of D(C ) consisting of objects
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X such that Hn(X) = 0 for n� 0 (resp. n� 0, resp. |n| � 0).

We denote by

Db(AX): the bounded derived category of Mod(AX),

Db
coh(AX): the full triangulated subcategory of Db(AX)

consisting of complexes with cohomology sheaves belonging to
Modcoh(AX),

Kcoh(AX): the Grothendieck group of Db
coh(AX).

Note that by [2, P.283 Lemma 1.6], we have

(1.1) K(Modcoh(AX)) ' Kcoh(AX).

1.5 Projective limits of 2-cat

Recall that a presite X is nothing but a category which we
denote by CX . If S is a prestack on X, then we have the mor-
phism u : U1 → U2 in CX , and the functor ru : S(U2) → S(U1)
for U1, U2 ∈ CX .

Definition 1.2. Let S be a prestack on X. We denote by
lim←−
U∈CX

S(U) the category defined as follows.

(a) An object F of lim←−
U∈CX

S(U) is a family {(FU , ϕu)}U∈CX ,u∈Mor(CX)

where:

(i) for any U ∈ CX , FU is an object of S(U),

(ii) for any morphism u : U1 → U2 in CX , ϕu : ruFU2

∼−→ FU1

9



is an isomorphism such that for any sequence U1
u→ U2

v→ U3

of morphisms in CX , the following diagram commutes (this is a
so-called cocycle condition):

rurvFU3

ru(ϕv)−−−→ ruFU2

Cu,v
y yϕu

rv◦uFU3

ϕv◦u−−→ FU1

(b) For two objects F = {(FU , ϕu)} and F ′ = {(F ′U , ϕ′u)} in
lim←−
U∈CX

S(U), Hom lim←−
U∈CX

S(U)(F, F
′) is the set of families f = {fU}U∈CX

such that fU ∈ HomS(U)(FU , F
′
U) and the following diagram

commutes for any u : U1 → U2

ruFU2

ϕu−−→ FU1

ru(fU2
)
y yfU1

ruF
′
U2

ϕ′u−−→ F ′U1
.

Therefore,

Hom lim←−
U∈CX

S(U)(F, F
′) ' lim←−

U∈CX
HomS|U (FU , F

′
U).

For any A ∈ C∧X := Fct(Cop
X ,Set), we set

S(A) = lim←−
(U→A)∈CA

(S|A)(U) = lim←−
(U→A)∈CA

S(U).

Hence, lim←−
U∈CX

S(U) = S(ptX), where ptX denotes as usual the

terminal object of C∧X .
We set

S(X) := S(ptX) = lim←−
U∈CX

S(U).

A morphism v : A→ A′ in C∧X defines a functor

10



rv : S(A′) = lim←−
U→A′

S(U)→ lim←−
U→A

S(U) = S(A)

and it is easy to check that the conditions of prestack are satis-
fied.

Proposition 1.3. ([14, §19]) Let S be a prestack on the small
presite X. Then S extends naturally to a prestack on X̂, where
X̂ denotes the presite associated with the category C∧X .

11



2 Review on the GAGA Theorem

Let X be a scheme of finite type and let Xan be the associated
complex analytic space. Denote by Mod(OX) (resp. Mod(OXan

))
the category of sheaves on X (resp. Xan) and Modcoh(OX) (resp.
Modcoh(OXan

)) the full subcategory of coherent sheaves. There
is a continuous map ϕ : Xan → X of the underlying topological
spaces and there is also a natural map of the structure sheaves
ϕ−1OX → OXan

. To F ∈ Mod(OX), one associates its complex
analytic sheaf F an := OXan

⊗ϕ−1OX ϕ
−1F ∈ Mod(OXan

). Hence
we obtain a functor:

(∗) ΥX : Mod(OX)→ Mod(OXan
).

If F is a coherent sheaf, then F an is also coherent.
The following theorem for a projective scheme is proved in

Serre’s famous paper GAGA (cf [19]) which is generalized by
Grothendieck for a proper scheme (cf [8, XII]).

Theorem 2.1. Let X be a projective scheme. Then the functor
(∗) induces an equivalence of categories

Modcoh(OX)
∼−→ Modcoh(OXan

).

Furthemore, for every coherent sheaf F on X, the natural maps

H i(X; F ) → H i(Xan; F an)

are isomorphisms, for all i ≥ 0. �

The following lemma is Theorem 2.2.8 in [5].

Lemma 2.2. Let A′ and B′ be thick subcategories of abelian
categories A and B, respectively, and let Φ : A → B be an exact

12



functor that takes A′ to B′. Assume furthermore that the fol-
lowing properties are satisfied :

1. A and B have enough injectives ;

2. Φ is an equivalence of categories when restricted to A′ →
B′;

3. Φ induces a natural isomorphism

ExtiA(F,G) ∼=ExtiB(Φ(F ),Φ(G))

for any F,G ∈ A′ and any i.
Then the natural functor Φ̃ : Db

A′(A) → Db
B′(B) induced by Φ is

an equivalence of categories.
Proof. We briefly sketch the proof here for reader’s convenience.
(i) We prove that the functor Φ̃ is fully faithful, i.e. that for any
F •, G• ∈ Db

A′(A), Φ̃ induces an isomorphism

(2.1) HomDb(A)(F
•, G•) ∼= HomDb(B)(Φ̃(F •), Φ̃(G•)).

We’ll use a technique known as dévissage to prove it. The
dévissage technique is just induction on the number n(E•) de-
fined as

n(E•) = max{j − i | Hj(E•) 6= 0, H i(E•) 6= 0}.

Hence we shall prove (1.1) by induction on N = n(F •) +n(G•).
If N = −∞, then one of F • or G• is the zero complex, so there
is nothing to prove. If N = 0, then there exist F ∈ A′, G ∈ A′
such that F • = F [a] and G• = G[b] for some a, b ∈ Z. Then

HomDb(A)(F
•, G•)= HomDb(A)(F [a], G[b])=Extb−aA (F,G)

and

HomDb(B)(Φ̃(F •), Φ̃(G•))= HomDb(B)(Φ̃(F [a]), Φ̃(G[b]))

= Extb−aB (Φ(F ),Φ(G)).

13



Hence (2.1) follows from property 3 above.
Assume that Φ̃ induces an isomorphism

HomDb(A)(F
•, G•) ∼= HomDb(B)(Φ̃(F •), Φ̃(G•))

for all F •, G• ∈ Db
A′(A) with n(F •) + n(G•) < N , and let F •,

G• be objects of Db
A′(A) with n(F •) + n(G•) = N > 0. We may

assume that n(G•) = N > 0 and that Gi = 0 for i < 0, and
H0(G•) 6= 0.

Let G′• be the complex with single non zero object H0(G•)
in degree zero. From the morphism G′• → G•, there exists a
distinguished triangle G′′• → G′• → G• → G′′•[1]. By the long
exact cohomology sequence, one deduces n(G′′•) < n(G•); also,
from the assumption, n(G′•) = 0 < n(G•). From the long exact
sequence of Hom’s, the five-lemma and the induction hypothesis
we conclude that

HomDb(A)(F
•, G•) ∼= HomDb(B)(Φ̃(F •), Φ̃(G•))

which is what we needed to prove that Φ̃ is fully faithful. (The
case when n(G•) = 0 but n(F •) > 0 follows in a similar way.)

(ii) The functor Φ̃ is essentially surjective: any object G• of
Db
B′(B) is isomorphic to an object of the form Φ̃(F •) for some

F • ∈ Db
A′(A). We prove this by induction on n = n(G•): the

case n = −∞ is trivial, and n = 0 follows from property 2.
So assume n > 0, and construct a distinguished triangle

G′′• → G′• → G• → G′′•[1] where G′• = H0(G•) 6= 0 and
we assume G• is zero in degrees < 0. Since Φ is an equivalence
of categories between A′ and B′, we can find an F ′• ∈ Db

A′(A)
such that Φ(F ′•) ∼= G′•. Also, by the induction hypothesis, we
can find an F ′′• ∈ Db

A′(A) such that Φ̃(F ′′•) ∼= G′′•. Since we
proved that Φ̃ is fully faithful, we can find a map F ′′• → F ′•

whose image by Φ̃ is just the side of the distinguished triangle
constructed before. Again, we have the distinguished triangle

14



F ′′• → F ′• → F • → F ′′•[1]. Then, since Φ̃ is a ∂ functor
(a functor commutes with the translation functor and sends a
distinguished triangle to a distinguished triangle) because Φ is
exact, we see that Φ̃(F •) is isomorphic to G•, as required. �

Let X be a scheme of finite type, set A = Mod(OX), B =
Mod(OXan

), A′ = Modcoh(OX) and B′ = Modcoh(OXan
), and de-

note by Db
coh(X) = Db

A′(A) and Db
coh(Xan) = Db

B′(B). Clearly,
A′ (resp. B′) is a full thick subcategory of A (resp. B).

As an application of Lemma 2.2, we have

Corollary 2.3. Let X be a projective scheme, then the functor
ΥX of (∗) induces an equivalence (we keep the same notation)

ΥX : Db
coh(X)

∼−→ Db
coh(Xan).

Proof. We shall apply Lemma 2.2. First note that OXan,x is a
flat OX,x-module for each x ∈ X, hence the functor ΥX : A → B
is an exact functor. Both A and B have enough injectives [see
§1.1]. The functor ΥX is an equivalence by Theorem 2.1. Hence
it is sufficient to check condition 3 of Lemma 2.2. It is enough
to prove that

(2.2) RHom(F ,G ) ' RHom(F an,G an) for F ,G ∈ A′.

Since RHom(F ,G ) ' RΓ(X,F ∗ L
⊗OX G ) and RHom(F an,G an)

' RΓ(Xan, (F an)∗
L
⊗OXan

G an), where F ∗ = RH omOX(F ,OX)
and (F an)∗ = RH omOXan

(F an,OXan
), we reduce (2.2) to the

following isomorphism

(2.3) RΓ(X,F •) ' RΓ(Xan, (F •)an), where F • ∈ Db
coh(X).

Assume that (2.3) holds for F • ∈ Db
coh(X) of amplitude ≤

N. Now let F • be of amplitude N+1. Assume for example
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Hj(F •) = 0 for j /∈ [a, a+N + 1] and consider the distinguished
triangle

τ≤a+NF • −→ F • −→ Ha+N+1(F •)[−a− N− 1]
+1−→ .

Let b = a + N. Since Hb+1(τ≤bF •) = Hb+1(Hb+1(F •)[−b −
1]) = 0, one deduces that Hj(F •) = 0 for j /∈ [a, b]. Hence by
dévissage, one reduces F • to a single sheaf F . By Theorem
2.1, we have RΓ(X,F ) ' RΓ(Xan,F an) and the result follows.�
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3 Review on the results of Laumon

Let X, Y be smooth algebraic varieties with sheaf of differential
operators DX and DY . For a morphism f : X → Y , we have
induced morphisms:

(3.1) T ∗X
fd←− X ×Y T ∗Y

fπ−→ T ∗Y

where T ∗X and T ∗Y denote the cotangent bundles of X and Y ,
respectively.

If f is proper, there are well defined functors (see [16, section
5]):

(3.2) f !
d : Db

coh(OT ∗X)→ Db
coh(OX×Y T ∗Y )

defined by

f !
d(−) := f ∗d (−)⊗OX ωX/Y

where ωX/Y = f−1(ω⊗−1
Y ) ⊗f−1OY ωX denotes relative canonical

bundle of f
and

(3.3) fπ∗ : Db
coh(OX×Y T ∗Y )→ Db

coh(OT ∗Y ).

Hence the functors of (3.2) and (3.3) induce group homomor-
phisms (see [16, 6.2]):

f !
d : Kcoh(OT ∗X)→ Kcoh(OX×Y T ∗Y )

and

fπ∗ : Kcoh(OX×Y T ∗Y )→ Kcoh(OT ∗Y ).

Let (M , F ) be a filtered DX-module with filtration {FiM }.
Recall from [10, Definition 2.1.2] that F is a good filtration of
M if the graded module grFM is coherent over π∗OT ∗X where
grFM :=

⊕
FiM /Fi−1M and π : T ∗X → X is the projection

and set
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g̃rFM := OT ∗X ⊗π−1π∗OT∗X π
−1grFM .

If M ∈ Modcoh(DX), then there exists globally a good filtra-
tion F on M (see [10, Theorem 2.1.3]). We denote by Car(M )

the element of Kcoh(OT ∗X) defined by g̃rFM . For a proper mor-
phism f : X → Y , we also denote by

∫
f : Kcoh(DX)→ Kcoh(DY )

the group homomorphism induced by the direct image functor∫
f : Db

coh(DX) → Db
coh(DY) given by

∫
f M = Rf∗(DY←X

L
⊗DX

M ) for M ∈ Db
coh(DX).

The following theorem is the main result of [16].

Theorem 3.1. Let f : X → Y be a proper morphism of smooth
algebraic varieties. Then the following diagram is commutative

Kcoh(DX)

∫
f−−→ Kcoh(DY )

Car

y yCar
Kcoh(OT ∗X)

fπ∗f
!
d−−−→ Kcoh(OT ∗Y ).

�
Remark 3.2. Combining (algebraic) Grothendieck-Riemann-
Roch formula at the level of cotangent bundles with Theorem
3.1, then we have a Riemann-Roch formula for D-modules.

Recall that for a smooth algebraic variety X, we have the
corresponding complex manifold Xan and morphism ι : Xan →
X. Then we have a canonical morphism

ι−1DX → DXan

of sheaves of rings satisfying

DXan ' OXan ⊗ι−1OX ι
−1DX .
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Hence we obtain a functor

(•)an : Mod(DX)→ Mod(DXan)

sending M to M an := DXan⊗ι−1DX
ι−1M . Note that since DXan

is faithfully flat over ι−1(DX), this functor is exact. We denote
by Modgd(DXan) the category of good DXan-modules (for defini-
tion and its properties, see [11, 4.7]), in particular, Modgd(DXan)
is an abelian thick subcategory of Mod(DXan). We also de-
note by Db

gd(DXan) the full triangulated subcategory of Db(DXan)
consisting of complexes with cohomology sheaves belonging to
Modgd(DXan) andKgd(DXan) the Grothendieck group of Db

gd(DXan).

Recall from [10, Corollary 1.4.17] that for a coherent DX-
module M , M is generated by a coherent OX-module F , i.e.
M = DX ·F . Denote by

FiDX := {P ∈ EndC(OX) | [P, f ] ∈ Fl−1DX ,∀f ∈ OX} and
Mi := FiDX ·F ,

then Mi ⊂ Mi+1 for each i ≥ 0 and M =
⋃
i

Mi = lim−→
i

Mi.

Hence we have the well defined functor:

Υ : Modcoh(DX)−→Modgd(DXan)

sending M =
⋃
i

Mi to M an :=
⋃
i

M an
i . On the other hand, if

X is proper, then by GAGA theorem, we have the well defined
inverse funtor to the functor Υ. Hence we get the equivalence:

Modcoh(DX)
∼−→ Modgd(DXan).

In particular, by [2, P.283 Lemma 1.6], we have

(3.4) Kcoh(DX) ' Kgd(DXan).

For a morphism f : X → Y of smooth algebraic varieties,
we have the induced analytic morphism of complex manifolds
f an : Xan → Y an and the corresponding morphisms to (3.1):
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T ∗Xan fan
d←− Xan ×Y an T ∗Y an fan

π−→ T ∗Y an.

If f is a proper morphism, then we have the corresponding
functors to (3.2) and (3.3):

(3.5) f an
d

! : Db
coh(OT ∗Xan)→ Db

coh(OXan×Y anT ∗Y an)

defined by

f an
d

!(−) := f an
d
∗(−)⊗OXan ωXan/Y an

and

(3.6) f an
π ∗ : Db

coh(OXan×Y anT ∗Y an)→ Db
coh(OT ∗Y an).

Hence (3.5) and (3.6) induce group homomorphisms:

f an
d

! : Kcoh(OT ∗Xan)→ Kcoh(OXan×Y anT ∗Y an)

and

f an
π ∗ : Kcoh(OXan×Y anT ∗Y an)→ Kcoh(OT ∗Y an).

Hence, by Theorem 3.1 and (3.4), we get following theorem.

Theorem 3.3. Let f : X → Y be a proper morphism of proper
smooth algebraic varieties, then we have the following commu-
tative diagram

Kgd(DXan)

∫
fan

−−→ Kgd(DY an)

Car

y yCar
Kcoh(OT ∗Xan)

fan
π ∗f

an
d

!

−−−−→ Kcoh(OT ∗Y an)

where the group homomorphism
∫
fan is induced by the direct im-

age functor
∫
f . �

Remark 3.4. As in Remark 3.2. By using (analytic) Riemann-
Roch formula for O-modules, we get a Riemann-Roch formula
for analytic D-modules.

20



4 The first main theorem

4.1 Star-products

Let X be a complex manifold (or a smooth variety). We
denote by δX : X ↪→ X ×X the diagonal embedding and we set
4X = δX(X). We denote by OX the structure sheaf on X, by
ΩX the sheaf of differential forms of maximal degree and by ΘX

the sheaf of vector fields. As usual, we denote by DX the sheaf of
rings of differential operators on X. Recall that a bi-differential
operator P on X is a C-bilinear morphism OX×OX → OX which
is obtained as the composition δ−1

X ◦ P̃ where P̃ is a differential
operator on X × X defined on a neighborhood of the diagonal
and δ−1 is the restriction to the diagonal:

P (f, g)(x) = (P̃ (x1, x2; ∂x1
, ∂x2

)(f(x1)g(x2))|x1=x2=x.

Hence the sheaf of bi-differential operators is isomorphic to

DX ⊗OX DX ,

where the both DX are regarded as OX-modules by the left mul-
tiplications.

Definition 4.1. A star algebra on OX [[~]] is a C~-bilinear sheaf
morphism

? : OX [[~]]× OX [[~]]→ OX [[~]]

satisfies the following conditions:

(i) the star product makes OX [[~]] into a sheaf of associated
unital C~-algebra with unit 1 ∈ OX .

(ii) there is a sequence Pi : OX × OX → OX of bi-differential
operators, such that for any two local sections f, g ∈ OX

one has
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f ? g = fg +
∞∑
i=1

Pi(f, g)~i.

Note that f ? g ≡ fg mod ~, and Pi(f, 1) = Pi(1, f) = 0 for
all f and i > 0. We call (OX [[~]], ?) a star algebra.

4.2 DQ-algebras

Definition 4.2. A DQ-algebra A on X is a C~-algebra locally
isomorphic to a star-algebra (OX [[~]], ?) as a C~-algebra.

Clearly, a DQ-algebra is a sheaf of ~-adically complete flat
C~-algebra on X satisfying A /~A ' OX . Note also that for
an algebraic variety X, a DQ-algebra A is called deformation
quantization of OX in [3] and [20].

Remark 4.3. For a smooth projective variety X, there exists
a DQ-algebra AX on X. For details, one refers to [3].

4.3 Riemann-Roch theorem for DQ-modules

Let X be a complex manifold. To a DQ-algebra AX on X, we
associate its ~-localization, the C~,loc-algebra

A loc
X = C~,loc⊗C~AX .

Hence we have an exact functor

Mod(AX)
⊗C~C~,loc

−→ Mod(A loc
X ).

If M is an A loc
X -module, M0 is an AX-submodule and M0⊗C~

C~,loc ∼−→M , we shall say that M0 generates M .
A coherent A loc

X -module M is good if for any open relatively
compact subset U of X, there exists a coherent AX |U -module
which generates M |U .
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We denote by Modgd(A loc
X ) the thick abelian subcategory of

Mod (A loc
X ) consisting of good A loc

X -modules. We denote by
Db

gd(A loc
X ) the full triangulated subcategory of Db(A loc

X ) consist-

ing of objects with cohomology sheaves belonging to Modgd(A loc
X ).

We also denote by K(Modgd(A loc
X )) the Grothendieck group of

Modgd(A loc
X ) andKgd(A loc

X ) the Grothendieck group of Db
gd(A loc

X )
and note that

(4.1) K(Modgd(A loc
X )) ' Kgd(A loc

X )

by [2, P. 283 Lemma 1.6].
If (Y,AY ) is another complex manifold endowed with a DQ-

algebra AY , denote by qi the i-th projection defined on X × Y
(i = 1, 2). Let M ∈ Db

coh(AX) and K ∈ Db
coh(AXa×Y ). Set

M ◦K := Rq2!(K
L
⊗AX

q−1
1 M ).

If q2 is proper on q−1
1 supp(M )∩supp(K ), then by [13, Theorem

9.1], M ◦K ∈ Db
coh(AY ).

Similarly, let M1 ∈ Db
gd(A loc

X ) and K1 ∈ Db
gd(A loc

Xa×Y ). Set

M1 ◦K1 := Rq2!(K1
L
⊗A loc

X
q−1

1 M1).

If q2 is proper on q−1
1 supp(M1) ∩ supp(K1), then M1 ◦ K1 ∈

Db
gd(A loc

Y ) (see [18, Corollary 3.3.5]).

If X and Y are compact, then a kernel K ∈ Db
coh(AXa×Y )

defines a functor

(4.2) ◦K : Db
coh(AX)→ Db

coh(AY )

which is called the Fourier-Mukai transform induced by K .
Hence the Fourier-Mukai transform of (4.2) defines a group ho-
momorphism of Grothendieck groups

◦[K ] : Kcoh(AX)→ Kcoh(AY )
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where [K ] ∈ Kcoh(AXa×Y ). Similarly, a kernel K loc belongs to
Db

gd(A loc
Xa×Y ) defines a functor

(4.3) ◦K loc : Db
gd(A loc

X )→ Db
gd(A loc

Y )

which is called the Fourier-Mukai transofrm induced by K loc

and the Fourier-Mukai transform of (4.3) defines a group homo-
morphism of Grothendieck groups

◦[K loc] : Kgd(A loc
X )→ Kgd(A loc

Y )

where [K loc] ∈ Kgd(A loc
Xa×Y ).

Denote by

(4.4) gr : Db
coh(AX)→ Db

coh(OX)

the functor M → C
L
⊗C~ M (see [13]).

We have the following proposition.

Proposition 4.4. Let (X,AX) and (Y,AY ) be two compact
complex manifolds endowed with DQ-algebras AX and AY and
let K ∈ Db

coh(AXa×Y ). Then the following diagram is commu-
tative

(4.5)

Db
coh(AX)

◦K−−→ Db
coh(AY )

gr
y ygr

Db
coh(OX)

◦(grK )−−−−→ Db
coh(OY )

which induces the following commutative diagram

Kcoh(AX)
◦[K ]−−−→ Kcoh(AY )

gr
y ygr

Kcoh(OX)
◦[grK ]−−−−→ Kcoh(OY )
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where the group homomorphisms gr (4.4) are induced by (4.5).
Proof. Using the fact that the functor gr commutes with the
convolution ◦. �

Definition 4.5. Let X be a compact complex manifold, and
denote by H∗(X,C) =

⊕
i

H i(X,C). One defines the Mukai

vector of an object E ∈ Db
coh(OX) as the cohomology class

υ : Kcoh(OX)→ H∗(X,C)

by the formula

υ([E]) = ch([E]).
√

td(X)

where ch([E]) is the Chern character of [E] and td(X) is the
Todd class of tangent bundle of X.

Let X and Y be compact complex manifolds and let E ∈ Db
coh

(OX×Y ). Define the cohomological integral transform associated
to E

Φ[E] : H∗(X,C)→ H∗(Y,C)

by Φ[E](α) = q2∗(υ([E].q1
∗(α)), where qi denotes the i-th projec-

tion defined on X × Y (i = 1, 2).

We have the following theorem.

Theorem 4.6.([5, Proposition 3.1.9] or [9, Corollary 5.29])
The following diagram is commutative

Kcoh(OX)
◦[E]−−→ Kcoh(OY )

υ

y yυ
H∗(X,C)

Φ[E]−−→ H∗(Y,C).
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�

Combining Proposition 4.4 with Theorem 4.6, we obtain the
following theorem.

Theorem 4.7.(Riemann-Roch for A -modules) Let (X,AX) and
(Y,AY ) be two compact complex manifolds endowed with DQ-
algebras AX and AY and let K ∈ Db

coh(AXa×Y ). Then the fol-
lowing diagram is commutative

Kcoh(AX)
◦[K ]−−−→ Kcoh(AY )

υ◦gr
y yυ◦gr

H∗(X,C)
Φ[grK ]−−−→ H∗(Y,C).

�

4.2 Riemann-Roch theorem for A loc-modules

First, we need the following lemma.

Lemma 4.8. Let (X,AX) be a compact complex manifold en-
dowed with a DQ-algebra AX. Let M ∈ Modgd(A loc

X ) and let
M0 ⊂ M which generates M . Then [M0/~M0] belongs to
K(Modcoh(OX)) depends only on M .
Proof. We consider another generator M

′

0 of M . Since X is
compact, there exists m,n ≥ 0 such that M

′

0 ⊂ ~−nM0 and
M0 ⊂ ~−mM

′

0. Hence

M
′

0 ⊂ ~−nM0 ⊂ ~−m−nM ′

0.

Since our modules have no ~-torsion, we have

~−nM0/~−n+1M0 'M0/~M0.

Hence we may assume that for N large enough, we have
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M
′

0 ⊂M0 ⊂ ~−NM
′

0.

We shall prove [M0/~M0] = [M
′

0/~M
′

0] by induction on N ≥ 0.
When N = 0, it is trivial.
When N = 1, we have the following exact sequences:

0→ ~−1M
′

0/M0 → ~−1M0/M0 → ~−1M0/~−1M
′

0 → 0

0→M0/M
′

0 → ~−1M
′

0/M
′

0 → ~−1M
′

0/M0 → 0.

Since ~−1M0/~−1M
′

0 'M0/M
′

0, we get [M0/~M0] = [M
′

0/~M
′

0].
For N > 1. Put M

′′

0 = M
′

0 + ~M0. Then

M
′′

0 ⊂M0 ⊂ ~−1M
′′

0 ,

hence, as above, [M
′′

0 /~M
′′

0 ] = [M0/~M0]. On the other hand,

M
′

0 ⊂M
′′

0 ⊂ ~−N+1M
′

0

hence by induction hypothesis, we obtain

[M
′′

0 /~M
′′

0 ] = [M
′

0/~M
′

0].

Hence [M0/~M0] = [M
′

0/~M
′

0], as desired. �

Theorem 4.9. Let (X,AX) be a compact complex manifold
endowed with a DQ-algebra AX, then we have a well defined
group homomorphism

(4.6) µ : K(Modgd(A loc
X ))→ K(Modcoh(OX)).

Proof. Define a function

Γ : Modgd(A loc
X )→ K(Modcoh(OX))

sending M to [M0/~M0] with M0 a generator of M . We need
to show that Γ is additive. For an exact sequence

(?) 0→ N1 ⊗C~ C~,loc α→ N ⊗C~ C~,loc β→ N2⊗C~C~,loc → 0

27



in Modgd(A loc
X ) with N1,N and N2 of no ~-torsions and set

M2 := β(N ), M := N and M1 := ker(β|N : N → β(N )).
Then we have the exact sequence

(∗) 0→M1 →M →M2 → 0

in Modcoh(AX) and (∗)⊗C~ C~,loc ' (?) with M1,M and M2 of
no ~-torsions. By Lemma 4.8, we have [N1/~N1] = [M1/~M1],
[N /~N ] = [M /~M ] and [N2/~N2] = [M2/~M2]. Hence
from the exact sequence (∗), we get [N /~N ] = [N1/~N1] +
[N2/~N2]. Hence Γ is additive and by universal property, and
this defines a group homomorphism µ : K(Modgd(A loc

X )) →
K(Modcoh(OX)). �

From (1.1) and (4.1), the group homomorphism of (4.6) in-
duces the group homomorphism

(4.7) λ : Kgd(A loc
X )→ Kcoh(OX).

Now let X, Y be compact complex manifolds. From Lemma 4.8,
we obtain the following theorem.

Theorem 4.10. Let (X,AX), (Y,AY ) be compact complex man-
ifolds endowed with DQ-algebras AX and AY and let K loc ∈ Db

gd
(AXa×Y ). Then we have the following commutative diagram

Kgd(A loc
X )

◦[K loc]−−−−→ Kgd(A loc
Y )

λ

y yλ
Kcoh(OX)

◦λ([K loc])−−−−−−→ Kcoh(OY ).

where λ′s denote the group homomorphisms of (4.7).
Proof. Let K ∈ Db

coh(AXa×Y ) which generates K loc. Let
M loc ∈ Db

gd(A loc
X ) and let M ∈ Db

coh(AX) which generates M loc.

Then M ◦ K generates M loc ◦ K loc and λ([M loc ◦ K loc]) =
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[gr(M ◦ K )] = [grM ◦ grK ] = [grM ] ◦ [grK ] = λ[M loc] ◦
λ[K loc] by Lemma 4.8, as desired. �

Combining Theorem 4.6 and Theorem 4.10, we obtain the
following theorem.

Theorem 4.11.(Riemann-Roch for A loc-modules) Let (X,AX)
and (Y,AY ) be two compact complex manifolds endowed with
DQ-algebras AX and AY and let K loc ∈ Db

gd(AXa×Y ). Then the
following diagram is commutative

Kgd(A loc
X )

◦[K loc]−−−−→ Kgd(A loc
Y )

υ◦λ
y yυ◦λ

H∗(X,C)
Φλ([K loc])−−−−−→ H∗(Y,C).

�
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5 Applications to D-modules

Let X be a complex manifold with sheaf of differential opera-
tors DX . Recall that the sheaf of C~,loc-algebras ŴT ∗X on the
cotangent bundle T ∗X has been constructed in [17], see also [18,

chapter 3]. This sheaf of algebras contains a subsheaf ŴT ∗X(0)

which is a DQ-algebra such that ŴT ∗X(0) ⊗C~ C~,loc ∼−→ ŴT ∗X .

Hence ŴT ∗X is a ~-localization of ŴT ∗X(0).

Since ŴT ∗X |X is flat over DX , we have an exact functor (see
[18, chapter 3]):

(•)W : Mod(DX)→ Mod(ŴT ∗X)

which sends M to ŴT ∗X ⊗π−1DX
π−1M , where π : T ∗X → X is

the projection. Then (•)W sends Db
coh(DX) to Db

coh(ŴT ∗X) and

Db
gd(DX) to Db

gd(ŴT ∗X).
Let f : X → Y be a morphism of complex manifolds. Define

ŴT ∗X←T ∗Y as (DX←Y )W and we denote by K := ŴT ∗X←T ∗Y (0) ∈
Db

coh(Ŵ(T ∗X)a×T ∗Y (0)), and K loc := ŴT ∗X←T ∗Y = K ⊗C~ C~,loc ∈

Db
gd (Ŵ(T ∗X)a×T ∗Y ). We also denote by ◦K := ŴT ∗X←T ∗Y (0)

L
⊗

Ŵ (0)

and ◦K loc := ŴT ∗X←T ∗Y
L
⊗

Ŵ
. If f is proper, then ◦K sends

Db
coh(ŴT ∗X(0)) to Db

coh(ŴT ∗Y (0)) and ◦K loc sends Db
gd(ŴT ∗X) to

Db
gd(ŴT ∗Y ) as we mentioned in chapter 4. Hence we have group

homomorphisms ◦[K ] : Kcoh(ŴT ∗X(0)) → Kcoh(ŴT ∗Y (0)) and

◦[K loc] : Kgd(ŴT ∗X)→ Kgd(ŴT ∗Y ).
Recall that from the proof of [18, Theorem 7.4.4], we have

the following commutative diagram

(5.1)

Db
gd(DX)

∫
f−−→ Db

gd(DY )

(•)W
y y(•)W

Db
gd(ŴT ∗X)

◦K loc

−−−→ Db
gd(ŴT ∗Y )
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where
∫
f is the direct image functor.

Hence we get:

Theorem 5.1. Let f : X → Y be a proper morphism of complex
manifolds and let K loc := ŴT ∗X←T ∗Y ∈ Db

gd(Ŵ(T ∗X)a×T ∗Y ). Then
we have the following commutative diagram

Kgd(DX)

∫
f−−→ Kgd(DY )

(•)W
y y(•)W

Kgd(ŴT ∗X)
◦[K loc]−−−−→ Kgd(ŴT ∗Y ).

where the group homomorphisms (•)W are induced by (5.1). �

We also need the following lemma.

Lemma 5.2. Let X be a compact complex manifold, then the
group homomorphism:

Kgd(DX)
Car−→ Kcoh(OT ∗X)

is the composition of group homomorphisms:

Kgd(DX)
(•)W−→ Kgd(ŴT ∗X)

λ−→Kcoh(OT ∗X)

where λ is the group homomorphism of (4.7).
Proof. For M ∈ Db

gd(DX) in Kgd(DX), we have M =
∑

(−1)iH i

(M ). Hence, it is sufficient to prove this for M ∈ Modgd(DX).
Since X is compact, M has a resolution

0→ DX ⊗OX FN → · · · → DX ⊗OX F0 →M → 0

where Fi are coherent OX-modules. Hence it is enough to check
for a good DX-module DX ⊗OX F and this is easy to check. �
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Hence from Theorem 4.10, Theorem 5.1 and Lemma 5.2, we
obtain the following theorem.

Theorem 5.3. Let f : X → Y be a proper morphism of compact
complex manifolds and let K := ŴT ∗X←T ∗Y (0). Then we have
the following commutative diagram

Kgd(DX)

∫
f−−→ Kgd(DY )

(•)W
y y(•)W

Kgd(ŴT ∗X)
◦[K loc]−−−−→ Kgd(ŴT ∗Y )

λ

y yλ
Kcoh(OT ∗X)

◦[grK ]−−−−→ Kcoh(OT ∗Y )

where λ′s denote the group homomorphisms of (4.7). In partic-
ular, since grK = ωX ⊗OX ω

⊗−1
Y ⊗OY OX×Y T ∗Y , we recover the

results of Theorem 3.3. �
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6 Review on DQ-modules (after K-S)

6.1. Algebroid

In this section, we denote by X a topological space and K a
commutative unital ring. If A is a ring, an A-module means a
left A-module. Recall that the notion algebroid was first intro-
duced by Kontsevich [15], see also [1] and [12].

Definition 6.1. A K-algebroid A on X is a K-linear stack such
that
(1) A (U) is nonempty for U ⊆ X,

(2) two objects of A (U) are locally isomorphic for U ⊆ X.

Let U = {Ui}i∈I be an open covering of X. In the sequel,
we set Uij := Ui ∩ Uj, Uijk := Ui ∩ Uj ∩ Uk, etc.

Consider the data of

(6.1)

{
a K-algebroid A on X

σi ∈ A (U) and isomorphism ϕij : σj|Uij → σi|Uij .

To these data, we associate:

• Ai =E ndK(σi),

• fij : Aj|Uij → Ai|Uij the K-algebra isomorphism a 7→
ϕij ◦ a ◦ ϕ−1

ij ,

• aijk, the invertible element of Ai(Uijk) given by ϕij ◦ ϕjk ◦
ϕ−1
ik .
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Then:

(6.2)

{
fij ◦ fjk=Ad(aijk) ◦ fik
aijkaikl = fij(ajkl)aijl

(Recall that Ad(a)(b) = aba−1)
Conversely, let Ai be sheaves of K-algebras on Ui (i ∈ I),

let fij : Aj|Uij → Ai|Uij (i, j ∈ I) be K-algebra isomorphisms,
and let aijk (i, j, k ∈ I) be invertible sections of Ai(Uij) satisfies
(6.2). One calls:

(6.3) ({Ai}i∈I , {fij}i,j∈I , {aijk}i,j,k∈I) .

a gluing datum for K-algebroids on U .

Theorem 6.2.(See [4], [7]) Assume that the topological space
X is paracompact. Considering a gluing datum (6.3) on U .
Then there exist an algebroid A on X and {σi, ϕij}i,j∈I as in
(6.1) to which this gluing datum is associated. Moreover, the
data (A , σi, ϕij) are unique up to an equivalence of stacks, this
equivalence being unique up to a unique isomorphism.

In general, if a topological space X is not paracompact, for
example for algebraic varieties, then Theorem 6.2 may be false.
Hence we need another local description of such algebraic alge-
broids.

Definition 6.3. Let A and A ′ be two sheaves of K-algebras.
An A ⊗ A ′-module L is called bi-invertible if there exists lo-
cally a section ω of L such that A 3 a 7→ (a ⊗ 1)ω ∈ L and
A ′ 3 a′ 7→ (a′ ⊗ 1)ω ∈ L give isomorphism of A -modules and
A ′-modules, respectively.
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Let U = {Ui}i∈I be an open covering of X. Consider the
data of

(6.4)

{
a K-algebroid A on X

σi ∈ A (U).

To these data, we associate:

• Ai =E ndK(σi),

• Lij := H omAi|Uij (σj|Uij , σi|Uij), hence Lij is a bi-invertible

Ai ⊗A op
j -module on Uij,

• the natural isomorphisms
(6.5) aijk : Lij ⊗Aj

Ljk
∼−→ Lik.

Then the diagram below in Mod(Ai ⊗A op
l |Uijkl) commutes:

(6.6)

Lij ⊗LjkLkl
aijk−−→ Lik ⊗Lklyajkl yaikl

Lij ⊗Ljl
aijl−−→ Lil.

Conversely, let Ai be sheaves of K-algebras on Ui (i ∈ I), let
Lij be a bi-invertible Ai ⊗ A op

j -module on Uij, and let aijk be
isomorphisms as in (6.5) such that the diagram (6.6) commutes.
One calls

(6.7) ({Ai}i∈I , {Lij}i,j∈I , {aijk}i,j,k∈I)

an algebraic gluing datum for K-algebroids on U .

Theorem 6.4.(See [13]) Consider an algebraic gluing datum
(6.7) on U . Then there exist an algebroid A on X and datum
{σi, ϕij}i,j∈I as in (6.1) to which this gluing datum is associated.
Moreover, the data (A , σi, ϕij) are unique up to an equivalence
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of stacks, this equivalence being unique up to a unique isomor-
phism.

Sketch of the proof. We define a category Mod(AX) as follows.
As object M ∈ Mod(AX) is defined as a family {Mi, qij}i,j∈I
with Mi ∈ Ai and the q′ijs are isomorphisms

qij : Lij ⊗Aj
Mj

∼−→Mi

making the diagram below commutative:

Lij ⊗Ljk ⊗Mk
qjk−−→ Lij ⊗Mjyajkl yqij

Lik ⊗Mk
qik−−→ Mi.

A morphism {Mi, qji}i,j∈I → {M ′
i , q
′
ji}i,j∈I in Mod(AX) is a

family of morphisms ui : Mi →M ′
i satisfying the natural com-

patibility conditions. Replacing X with U open in X, we de-
fine a prestack U → Mod(AU) and one easily check that this
prestack is a stack and moreover that Mod(AUi) is equivalent to
Mod(Ai). We denote it by Mod(A ). Then we define the alge-
broid AX as the substack of (Mod(A ))op consisting of objects
locally isomorphic to Ai on Ui.

For an algebroid A , one defines the Grothendieck K-linear
abelian category Mod(A ), whose objects are called A -modules,
by setting:

Mod(A ) :=FctK(A ,Mod(KX)).

Here Mod(KX) is the K-linear stack of sheaves of K-modules on
X, and FctK is the category of K-linear functors of stacks.

We have the well defined notion of tensor product for two K-
algebroids C , C ′, say C⊗KC ′. For a K-algebroid A , Mod(A ⊗K
A op) has a canonical object given by
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A ⊗K A op 3 (σ, σ
′op) 7→ HomA (σ′, σ) ∈Mod(KX).

We denote this object by the same letter A .

For K-algebroids Ai (i = 1, 2, 3), we have functors:

· ⊗A2
·: Mod(A1 ⊗K A op

2 )× Mod(A2 ⊗K A op
3 )→

Mod(A1 ⊗K A op
3 )

and

H omA1
(·, ·) : Mod(A1 ⊗K A op

2 )op× Mod(A1 ⊗K A op
3 )→

Mod(A2 ⊗K A op
3 ).

In particular, we have

· ⊗A ·: Mod(A op)×Mod(A )→Mod(KX)

and

H omA (·, ·) : Mod(A )op× Mod(A )→Mod(KX).

Let Y be another topological space and f : X 7→ Y be a
continuous map, and let A be a K-algebroid on Y . We denote
by f−1A the K-linear stack associated with the prestack S given
by

S(U) = {(σ, V );V is an open subset of Y such that f(U) ⊂ V

and σ ∈ A (V )} for any open subset U of X,

HomS(U)((σ, V ), (σ′, V ′)) = Γ(U, f−1H omA (σ, σ′)).

Then f−1A is a K-algebroid on X.

Notations: For the rest of this chapter, denote by X a complex
manifold or a smooth variety and C~ := C[[~]] the power series
algebra.
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6.2 Invertible OX-algebroids

Definition 6.5. A C-algebroid P on X is called an invertible
OX-algebroid if for any open subset U of X and any σ ∈P(U),
there is a C-algebra isomorphism E ndP(σ) ' OU .

We shall state some properties for invertible OX-algebroids.

Let P be an invertible OX-algebroid, then for σ, σ′ ∈P(U),
H om(σ, σ′) is an invertible OU -module.

For two invertible OX-algebroids P1 and P2, we denote by
P1 ⊗OX P2 the C-linear stack associated with the prestack
whose objects over an open set U is P1(U) × P2(U), and
H om((σ1, σ2), (σ

′

1, σ
′

2)) = H om(σ1, σ
′

1)⊗OXH om(σ2, σ
′

2). Then
P1⊗OX P2 is an invertible OX-algebroid. Note also that the set
of equivalence classes of invertible OX-algebroids has a structure
of an additive group by the operation · ⊗OX ·, and this group is
isomorphic to H2(X,O×X).

The following remark is due to Prof. Joseph Oesterlé and is
crucial for the paper.

Remark 6.6. For a smooth algebraic varietyX as Zariski topol-
ogy over C, the group H2(X,O×X) is trivial. Hence any invertible
OX-algebroid P is equivalent to OX .

We sketch the proof of it. Let K be the field of rational
functions on X, K×X , the constant sheaf with stalk the abelian
group K× and denote by X1 = {x ∈ X|dimOX,x = 1} (or the set
of closed irreducible hypersurfaces of X). Let x ∈ X1, since X is
a variety, the ring OX,x is a DVR with valuation υx and quotient
field K. Let Zx = (ix)∗(Z) where ix : x→ X and let U ⊂ X be
an open set, then Zx(U) = 0 if x /∈ U and Zx(U) = Z if x ∈ U .
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Considering the sheaf
⊕
x∈X1

Zx, then (
⊕
x∈X1

Zx)(U) =
⊕
x∈X1

Zx(U) =

ZU∩X1. Hence we can define a morphism of sheaves

υ : K×X →
⊕
x∈X1

Zx

by: υ(f) = (υx(f))x∈X1∩U where U is a nonempty open subset
of X and f ∈ K×X(U) = K×. Then one has an exact sequence

0→ O×X
u→ K×X

υ→
⊕
x∈X1

Zx → 0

where u is the natural morphism. Since K×X is constant, it is
a flabby sheaf for the Zariski topology. On the other hand the
sheaf

⊕
x∈X1

Zx is also flabby. It follows that Hj(X,O×X) is zero

for j > 1.

Let f : X → Y be a morphism of complex manifolds or
smooth varieties. For an invertible OY -algebroid PY , we de-
note by f ∗PY the C-linear stack on X associated with the
prestack whose objects on U are the objects of (f−1PY )(U)
and H om(σ, σ′) = OX ⊗f−1OY H omf−1PY

(σ, σ′). Then f ∗PY

is an invertible OX-algebroid.

6.3 DQ-algebroids

Definition 6.7. A DQ-algebroid A on X is a C~-algebroid
such that for each open set U ⊂ X and each σ ∈ A (U), the
C~-algebra H omA (σ, σ) is a DQ-algebra on U .

Let AX be a DQ-algebroid on X. For an AX-module M , the
local notions of being coherent or locally free, etc. make sense.

The category Mod(AX) is a Grothendieck category and we
denote by D(AX) its derived category and by Db(AX) its bounded
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derived category. We denote by Db
coh(AX) the full triangulated

subcategory of Db(AX) consisting of objects with coherent co-
homologies.

6.4 Graded modules

Let AX be a DQ-algebroid on X. Let us denote by gr(AX)
the C-algebroid associated with the prestack S given by

Ob(S(U))=Ob(AX(U)) for an open subset U of X,

HomS(σ, σ′)=HomAX
(σ, σ′)/~HomAX

(σ, σ′) for σ, σ′ ∈ AX(U).

Then it is easy to see that gr(AX) is an invertible OX-algebroid
and the left derived functor of the right exact functor Mod(AX)
→ Mod(gr(AX)) given by M → M /~M is denoted by gr :
Db(AX) → Db(gr(AX)).

The functor gr induces a functor (we keep the same notation):

(6.8) gr : Db
coh(AX)→Db

coh(gr(AX)).

We need the following lemma in [13].

Lemma 6.8. The functor gr in (6.8) is conservative (i.e., a
morphism in Db

coh(AX) is an isomorphism as soon as its image
by gr is an isomorphism in Db

coh(gr(AX))).

Set Db
f(C~) := Db

coh(C~) the full triangulated subcategory of

Db(C~) consisting of objects with finitely generated cohomolo-
gies and the same as the category Db

f(C).

Hence we have a well defined functor C
L
⊗C~: Db

f(C~) →
Db
f(C). As an application of Lemma 6.8, we have
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Corollary 6.9. The functor C
L
⊗C~: Db

f(C~) → Db
f(C) is con-

servative.
Proof. Apply the functor gr in Lemma 6.8 to X = {pt}.

The following proposition is in [13] which will be used in The-
orem 8.2.

Proposition 6.10. Let (Xi,AXi
) be complex manifolds or smooth

varieties endowed with DQ-algebroids AXi
(i=1,2,3).

(i) Let Ki ∈Db(AXi×Xa
i+1

) (i = 1, 2). Then

gr(K1
L
⊗A2

K2) ' gr(K1)
L
⊗gr(A2) gr(K2).

(ii) Let Ki ∈Db(AXi×Xi+1
) (i = 1, 2). Then

grRH omA2
(K1,K2) ' RH omgr(A2)(gr(K1), gr(K2)).

6.5 Finiteness for DQ-kernels

Recall that we have the following Finiteness theorem.

Finiteness Theorem 6.11.([13]) Let (X,AX) be a compact
complex manifold or a smooth projective variety endowed with a
DQ-algebroid AX and let M and N be two objects of Db

coh(AX).
Then the object RHomAX

(M ,N ) belongs to Db
f(C~).
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7 Analytization of a DQ-algebroid

In this chapter, we denote by X a smooth variety, Xan the com-
plex manifold and f : Xan → X the continuous map induced by
X.

Let AX be a DQ-algebroid on X and let U = {Ui}i=1,...,n be
a finite affine open covering of X. Consider the data:{

a C-algebroid AX on X

σi ∈ AX(Ui).

Then by Theorem 6.4, we have the following gluing data:

• Ai := E ndA (σi) =(OUi[[~]], ?i),

• fij : Aj|Uij → Ai|Uij the C~-algebra isomorphism,

• aijk: invertible elements of Ai(Uijk)

which satisfies:{
fij ◦ fjk=Ad(aijk) ◦ fik
aijkaikl = fij(ajkl)aijl.

Since Ai =(OUi[[~]], ?i) is a star algebra for each i = 1, · · · , n,
by definition, we have

fi ?i gi = figi +
∞∑
j=1

βj(fi, gi)~j for fi, gi ∈ Ci := Γ(Ui,OX)

and βj : OUi×OUi → OUi is a bi-differential operators for each j.

From the inclusion Ci ↪→ Can
i := Γ(Ui,OXan

), we can define a
star product ?an

i on the analytic sheaf OUi by
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f an
i ?an

i gan
i = f an

i g
an
i +

∞∑
j=1

βan
j (f an

i , g
an
i )~j for f an

i , g
an
i ∈ Can

i ,

where βan
j : OUi×OUi → OUi is a bi-differential operators on the

analytic sheaf OUi for each j. Hence, we obtain the (analytic)
star algebra A an

i =(OUi[[~]], ?an
i ) for each i.

Hence, we get the corresponding descent data on Xan:

• A an
i =(OUi[[~]], ?an

i )

• f an
ij : A an

j |Uij → A an
i |Uij the C~-algebra isomorphism

• aan
ijk, the invertible element of A an

i (Uijk)

which satisfies the conditions for algebroid and we obtain the
DQ-algebroid AXan

on Xan by Theorem 6.2. (Note that Xan is
paracompact)

Hence for a DQ-algebroid AX on X, we have the induced
analytic DQ-algebroid AXan

on Xan.

Furthemore,

AXan
∈ Mod(f−1AX ⊗k0

A op
Xan

).

Hence for a DQ-algebroid AX on a smooth variety X, we have
the functor f ∗ := AXan

⊗f−1(AX)f
−1(·) : Mod(AX)→Mod(AXan

)
which sends M to AXan

⊗f−1(AX)f
−1(M ). Denote by Modcoh(AX)

(resp. Modcoh(AXan
)) the category of AX (resp. AXan

) coherent
sheaves. If M ∈ Modcoh(AX), then f ∗(M ) ∈ Modcoh(AXan

).
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8 The second main theorem

In this chapter, we prove the second main theorem of this the-
sis. Let AX be a DQ-algebroid on a smooth algebraic variety X.

8.1 Flatness

Denote by X a smooth variety, Xan the complex analytic
manifold and f : Xan → X the continuous map induced by X.
First, we need the following lemma. The following lemma over
one point as a corollary of [13, Theorem 2.6].

Lemma 8.1. The functor f ∗ : Mod(AX) → Mod(AXan
) con-

structed in chapter 7 is exact.
Proof. We may assume that AX and AXan

are DQ-algebras. We
need to show that B := AXan,x is flat over R := AX,x for each
x ∈ X. Note that:

(a) B has no ~-torsion,

(b) B0 := B/~B = OXan,x is a flat R0 := R/~R = OX,x-module,

(c) B ' lim←−
n

B/~nB.

Hence applying Theorem 2.6 in [13] to X = {pt}, one gets the
result. �

From Lemma 8.1, the functor f ∗ : Mod(AX) → Mod(AXan
)

induces a functor (we keep the same notation):

f ∗ : Db
coh(AX) → Db

coh(AXan
).

8.2 Fully faithfulness
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Now we can prove the following theorem.

Theorem 8.2. Let X be a smooth projective variety, then the
functor f ∗: Db

coh(AX) → Db
coh(AXan

) is fully faithful.
Proof. For M ,N ∈ Db

coh(AX), we need to show that the mor-
phism

(8.1) HomDb
coh(AX)(M ,N ) → HomDb

coh(AXan)(f
∗(M ), f ∗(N ))

is a bijection. In order to show that the morphism of (8.1) is a
bijection, it is sufficient to show that the morphism

(8.2) RHomDb
coh(AX)(M ,N )→ RHomDb

coh(AXan)(f
∗(M ), f ∗(N ))

is an isomorphism. By Theorem 6.11, the two complexes

RHomDb
coh(AX) (M ,N ) and RHomDb

coh(AXan)(f
∗(M ), f ∗(N ))

belong to Db
f(C~). Hence, applying the functor C

L
⊗C~ to (8.2)

and using Proposition 6.10, we get the morphism in Db
f(C):

(8.3)

RHomDb
coh(gr(AX))(grM , grN )→

RHomDb
coh(gr(AXan))(f

∗(grM ), f ∗(grN )).

Since X is a smooth projective variety and gr(AX) is an invert-
ible OX-algebroid, gr(AX) is equivalent to OX by Remark 6.6
and hence gr(AXan

) is equivalent to OXan
. By the equivalence

Db
coh(OX)

∼−→ Db
coh(OXan

) (Corollary 2.3), the morphism of (8.3)

is an isomorphism. Moreover, the functor C
L
⊗C~ · is conserva-

tive by Corollary 6.9. Therefore, the morphism of (8.2) is an
isomorphism and the result follows. �

Corollary 8.3. Let X be a smooth projective variety, then the
natural functor f ∗ : Modcoh(AX) → Modcoh(AXan

) is exact and
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fully faithful.

For each n > 0, we denote by

Mod(AX/~nAX) (resp. Mod(AXan
/~nAXan

))

the full subcategory of

Mod(AX) (resp. Mod(AXan
))

consisting of objects of M such that ~n : M → M is the zero
morphism.

Similarly, we denote by

Modcoh(AX/~nAX) (resp. Modcoh(AXan
/~nAXan

))

the full subcategory of

Modcoh(AX) (resp. Modcoh(AXan
))

consisting of objects of M such that ~n : M → M is the
zero morphism for each n > 0. Therefore, we have a functor
f ∗n := f ∗|Modcoh(AX/~nAX) : Modcoh(AX/~nAX) → Modcoh(AXan

/~nAXan
) for each n > 0.

Note that for n = 1, the category Modcoh(AX/~1AX) '
Modcoh (OX) is equivalent to the category Modcoh(AXan

/~1AXan
)

' Modcoh (OXan
) by Theorem 1.1.

Corollary 8.4. Let X be a smooth projective variety, then the
functor f ∗n : Modcoh(AX/~nAX) → Modcoh(AXan

/~nAXan
) is ex-

act and fully faithful for each n > 0.

8.3 Essential surjectivity

Denote by X a smooth projective variety. Next, we shall
prove that the functor f ∗: Db

coh(AX)→ Db
coh(AXan

) is essentially
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surjective.

We first prove that the functor f ∗n : Modcoh(AX/~nAX) →
Modcoh (AXan

/~nAXan
) is essentially surjective for each n > 0.

We need the following lemma.

Lemma 8.5. Let A′ and B′ be thick subcategories of abelian
categories A and B, respectively, and let Φ : A → B be an exact
functor that takes A′ to B′ and such that the natural functor
(we keep the same notation) Φ : Db

A′(A)→ Db
B′(B) induced by Φ

is fully faithful. Consider an exact sequence in B

(∗) 0→ Φ(M ′)→ N → Φ(M ′′)→ 0,

with M ′,M ′′ ∈ A′ and N ∈ B′.
Then there exists a commutative diagram

0 −−→ Φ(M ′) −−→ Φ(M) −−→ Φ(M ′′) −−→ 0∥∥∥ yo ∥∥∥
0 −−→ Φ(M ′) −−→ N −−→ Φ(M ′′) −−→ 0

for some M ∈ A′.(Note that the middle arrow is an isomor-
phism)
Proof. Since (∗) is an exact sequence, we get the morphism
v : Φ(M ′′) → Φ(M ′)[1] = Φ(M ′[1]) in Db

B′(B). Since Φ is fully
faithful, there exists a morphism u : M ′′ → M ′[1] in Db

A′(A)
such that v = Φ(u). Consider the distinguished triangle

M ′′ u−→M ′[1] −→ L
+1−→,

in Db
A′(A) induced by u with L ∈ Db

A′(A). Then from the long
exact sequence

· · · −→ H i(M ′′) −→ H i(M ′[1]) −→ H i(L) −→ H i(M ′′[1]) −→
· · · ,
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we get H i(L) = 0 for i 6= −1. Hence L[−1] is isomorphic to
H0(L[−1]) ∈ A′ in Db

A′(A). Denote by M = H0(L[−1]), then
from the morphism of distinguished tirangles

Φ(M ′) −−→ Φ(M) −−→ Φ(M ′′) −−→ Φ(M ′[1])∥∥∥ y ∥∥∥ ∥∥∥
Φ(M ′) −−→ N −−→ Φ(M ′′) −−→ Φ(M ′[1])

we get N ' Φ(M) and the result follows. �

Set A = Mod(AX/~nAX), A′ = Modcoh(AX/~nAX), B =
Mod (AXan

/~nAXan
) and B′ = Modcoh(AXan

/~nAXan
). We shall

apply Lemma 8.5.

Theorem 8.6. The functor f ∗n : Modcoh(AX/~nAX) → Modcoh

(AXan
/~nAXan

) is essentially surjective for each n > 0.
Proof. We shall prove by induction.
When n = 1, it is Theorem 1.1.
We shall prove the theorem for n > 1.
For M an ∈ Modcoh(AXan

/~nAXan
), consider the exact sequence

0→ ~M an →M an →M an/~M an → 0

where ~M an ∈ Modcoh(AXan
/~n−1AXan

) and M an/~M an be-
longs to Modcoh(OXan

). Denote by M an
1 = ~M an and M an

2 =
M an/~M an. By induction hypothesis, there exists M1 ∈ Modcoh

(AX/~n−1AX) such that f ∗n−1(M1) ' M an
1 , on the other hand,

by Theorem 1.1, there exists M2 ∈ Modcoh(OX) such that f ∗1 (M2)
' M an

2 . Since f ∗|A : A → B is exact by Lemma 8.1 and the
functor Db

A′(A) → Db
B′(B) induced by f ∗|A is fully faithful by

the proof of Theorem 8.2, applying Lemma 8.5, we obtain the
following commutative diagram
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0 −−→ f ∗n(M1) −−→ f ∗n(M ) −−→ f ∗n(M2) −−→ 0yo yo yo
0 −−→ M an

1 −−→ M an −−→ M an
2 −−→ 0

for some M ∈ A′. Hence f ∗n is essentially surjective. �

From Corollary 8.4 and Theorem 8.6, we get

Theorem 8.7. The functor f ∗n : Modcoh(AX/~nAX) → Modcoh

(AXan
/~nAXan

) is an equivalence for each n > 0.

Now we continue to prove that the functor f ∗: Db
coh(AX) →

Db
coh(AXan

) is essentially surjective.

Denote by N the set of positive integers, viewed as a category
defined by

Ob(N) = N

HomN(i, j) =

{
{pt} if i ≤ j,

∅ otherwise.

Define prestacks S,San on N as follows:

• S(n) := Modcoh(AX/~nAX) for n ∈ N,

• ru : S(j)→ S(i) is the functor for i ≤ j and u ∈ HomN(i, j).

Similarly,

• San(n) := Modcoh(AXan
/~nAXan

) for n ∈ N,

• ru : San(j) → San(i) is the functor for i ≤ j and u ∈
HomN(i, j).

We need the following theorem (cf §1.5).

Theorem 8.8. We have the following equivalences:
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(1) lim←−
n∈N

S(n) ' Modcoh(AX),

(2) lim←−
n∈N

San(n) ' Modcoh(AXan
).

Proof. We only need to prove (1) and similar to (2). Let M ∈
Modcoh(AX), then we obtain the family {(Fn, ϕu)} where:

(i) Fn := M /~nM ∈ S(n) for n ∈ N,

(ii) ϕu : ruFj
∼−→ Fi for i ≤ j, u ∈ HomN(i, j) and ru : S(j)→

S(i) is defined by sending M to M /~iM .

It is easy to check that {(Fn, ϕu)} satisfies the cocycle condition
(a) and hence {(Fn, ϕu)} ∈ lim←−

n∈N
S(n).

For M ,M ′ ∈ Modcoh(AX), then these define two objects F =
{(Fn, ϕu)} and F ′ = {(F ′n, ϕu)} in lim←−

n∈N
S(n). Let f : M →M ′ ∈

Modcoh(AX), then we have the set of families {fn}n∈N where
fn : M /~nM → M ′/~nM ′ ∈ HomS(n)(M /~nM ,M ′/~nM ′).
It is easy to check that {fn} satisfies the commutative diagram
for definition (b) and hence {fn}n∈N ∈ Homlim←−

n∈N

S(n)(F, F
′). Hence

we can define a functor Φ : Modcoh(AX)→ lim←−
n∈N

S(n) by sending

M to {(Fn, ϕu)} and f ∈ HomAX
(M ,M ′) to {fn}n∈N.

On the other hand, if {(Fn, ϕu)} ∈ lim←−
n∈N

S(n), then by defini-

tion e.g (a), we have

(i) Fn ∈ S(n) for n ∈ N,

(ii) ϕu : ruFj
∼−→ Fi for i ≤ j, u ∈ HomN(i, j) and ru : S(j)→

S(i).

Hence the system {Fn}n∈N is a projective system and lim←−
n∈N

Fn ∈

Modcoh(AX) by [13, Lemma 1.13].
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For two objects F = {(Fn, ϕu)} and F ′ = {(F ′n, ϕ′u)} in lim←−
n∈N

S(n).

By definition e.g (b), Homlim←−
n∈N

S(n)(F, F
′) is the set of families

f = {fn}n∈N such that fn ∈ HomS(n)(Fn, F
′
n) and the following

diagram commutes for u : i→ j and i ≤ j,

ruFj
ϕu−−→ Fi

ru(fj)

y yfi
ruF

′
j

ϕ′u−−→ F ′i .

Hence the system f = {fn}n∈N is a projective system and we
get that the morphism lim←−

n∈N
fn belongs to Modcoh(AX). There-

fore, we can define a functor Ψ : lim←−
n∈N

S(n) → Modcoh(AX) by

Ψ({(Fn, ϕu)}) = lim←−
n∈N

Fn and Ψ(f = {fn}n∈N) = lim←−
n∈N

fn. Now it is

easy to check that Φ ◦ Ψ ' idlim←−
n∈N

S(n) and Ψ ◦ Φ ' idModcoh(AX).

Therefore, the result follows. �

Corollary 8.9. The functor f ∗ : Modcoh(AX)→ Modcoh(AXan)

is an equivalence.
Proof. This follows from Theorem 8.7 and Theorem 8.8. �

From Theorem 8.2, Corollary 8.9 and the proof of Lemma
1.2 for essentially surjectivity, we get what we want mentioned
above.

Corollary 8.10. The natural functor f ∗: Db
coh(AX)→Db

coh(AXan
)

is essentially surjective.

Therefore, we get the second main theorem of this thesis.

51



Main Theorem 8.11.. The natural functor f ∗: Db
coh(AX) →

Db
coh(AXan

) is an equivalence.
Proof. This follows from Theorem 8.2 and Corollary 8.10. �
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