國立臺灣大學理學院數學系

博士論文

Department of mathematics

College of science

National Taiwan University

Ph.D Thesis

Two theorems for deformation quantization modules

指導教授:陳榮凱 博士

advisor : Dr. Jung-Kai Chen

中華民國98年10月

October, 2009

Table of Contents

Introduction1
1 Preliminary4
2 Review on the GAGA theorem12
3 Review on the results of Laumon17
4 The first main theorem
5 Applications to <i>D</i> -modules
6 Review on DQ-modules (after K-S)
7 Analytization of a DQ-algebroid42
8 The second main theorem44
References

Acknowledgements

First of all, I would like to thank my advisor Prof. Jungkai Alfred Chen for teaching me algebraic geometry and supporting me when I studied in Taiwan.

Also, I like to express my thanks to Prof. Pierre Schapira for introducing me the theory of deformation quantization modules and helping me with many discussions.

Finally I am grateful to National Taiwan University and the French institute in Taipei for offering me scholarship, without which I would not have been able to complete this research.

Abstract to the Dissertation

Two theorems for deformation quantization modules

The theory of deformation quantization modules have a great improvement recently. In this thesis, we prove two basic theorems about this theory.

The first theorem is a generalization of Riemann-Roch theorem for \mathscr{D} -modules. We generalize the (algebraic) Riemann-Roch theorem for \mathscr{D} -modules of [16] to (analytic) $\widehat{\mathscr{W}}$ -modules.

The second theorem is a generalization of Serre's GAGA theorem [see 6]. Let X be a smooth complex projective variety with associated compact complex manifold X_{an} . If \mathscr{A}_X is a DQalgebroid on X, then there is an induced DQ-algebroid on X_{an} . We show that the natural functor from the derived category of bounded complexes of \mathscr{A}_X -modules with coherent cohomologies to the derived category of bounded complexes of $\mathscr{A}_{X_{an}}$ -modules with coherent cohomologies is an equivalence.

1.7(7%)

Introduction

The theory of deformation quantizaton modules (we usually call DQ-modules) was introduced and developed by M. Kashiwara and P. Schapira recently. In this thesis, two basic theorems are proved.

Let X be a smooth complex algebraic variety or a complex manifold. Set $\mathbb{C}^{\hbar} := \mathbb{C}[[\hbar]]$ and $\mathbb{C}^{\hbar, \text{loc}} := \mathbb{C}((\hbar))$. In [13], M. Kashiwara and P. Schapira introduce the notion of a DQ-algebra \mathscr{A}_X which is a $\mathbb{C}^{\hbar} := \mathbb{C}[[\hbar]]$ -algebra and locally isomorphic to an algebra $(\mathscr{O}_X[[\hbar]], \star)$ where \star is a star product. They also consider the notion of a DQ-algebroid, that is, a \mathbb{C}^{\hbar} -algebroid (in the sense of stacks) locally equivalent to the algebroid associated with a DQ-algebra.

If \mathscr{A}_X is a DQ-algebra or a DQ-algebroid on X, we denote by \mathscr{A}_{X^a} the opposite algebra or algebroid $\mathscr{A}_X^{\text{op}}$ and we denote by $\mathscr{A}_{X_1 \times X_2}$ the external product of \mathscr{A}_{X_i} (i = 1, 2).

If \mathscr{A}_X is a DQ-algebra or a DQ-algebroid on X, then we have the notion of \mathscr{A}_X -modules. We denote by $\operatorname{Mod}(\mathscr{A}_X)$ the category of \mathscr{A}_X -modules, by $\operatorname{D^b}(\mathscr{A}_X)$ its bounded derived category and by $\operatorname{D^b_{coh}}(\mathscr{A}_X)$ the full triangulated subcategory of the bounded derived category $\operatorname{D^b}(\mathscr{A}_X)$ with coherent cohomologies. An object of $\operatorname{D^b}(\mathscr{A}_X)$ is called a kernel.

Similarly, set $\mathscr{A}_X^{\text{loc}} := \mathbb{C}^{\hbar, \text{loc}} \overset{\mathcal{L}}{\otimes}_{\mathbb{C}^\hbar} \mathscr{A}_X$, then we have the notion of good $\mathscr{A}_X^{\text{loc}}$ -modules. We denote by $\text{Mod}(\mathscr{A}_X^{\text{loc}})$ the category of $\mathscr{A}_X^{\text{loc}}$ -modules, by $D^{\mathrm{b}}(\mathscr{A}_X^{\text{loc}})$ its bounded derived category and by $D^{\mathrm{b}}_{\mathrm{gd}}(\mathscr{A}_X^{\mathrm{loc}})$ the full triangulated subcategory of the bounded derived category $D^{\mathrm{b}}(\mathscr{A}_X^{\mathrm{loc}})$ with good cohomologies.

Let (X, \mathscr{A}_X) , (Y, \mathscr{A}_Y) be two complex manifolds endowed with DQ-algebras \mathscr{A}_X and \mathscr{A}_Y . Let $\mathscr{M} \in D^{\mathrm{b}}(\mathscr{A}_X)$ and $\mathscr{K} \in D^{\mathrm{b}}(\mathscr{A}_{X^a \times Y})$ be two kernels. Their convolution is defined as

$$\mathscr{M} \circ \mathscr{K} := Rq_{2!}(\mathscr{K} \overset{\mathrm{L}}{\otimes}_{\mathscr{A}_{X}} q_{1}^{-1}\mathscr{M})$$

here, q_i the *i*-th projection defined on $X \times Y$ (i = 1, 2). One of the main theorems in [13] asserts that if \mathscr{M} and \mathscr{K} are coherent and if q_2 is proper on $q_1^{-1} \operatorname{supp}(\mathscr{M}) \cap \operatorname{supp}(\mathscr{K})$, then $\mathscr{M} \circ \mathscr{K}$ is coherent.

Similarly, If $\mathscr{M}_1 \in \mathrm{D}^{\mathrm{b}}_{\mathrm{gd}}(\mathscr{A}_X^{\mathrm{loc}})$ and $\mathscr{K}_1 \in \mathrm{D}^{\mathrm{b}}_{\mathrm{gd}}(\mathscr{A}_{X^a \times Y}^{\mathrm{loc}})$ are good modules and if q_2 is proper on $q_1^{-1}\mathrm{supp}(\mathscr{M}_1) \cap \mathrm{supp}(\mathscr{K}_1)$, then their convolution $\mathscr{M}_1 \circ \mathscr{K}_1$ is also good.

If X and Y are compact, then a kernel $\mathscr{K} \in D^{\mathrm{b}}_{\mathrm{coh}}(\mathscr{A}_{X^a \times Y})$ defines a functor

$$\circ \mathscr{K} : \mathrm{D}^{\mathrm{b}}_{\mathrm{coh}}(\mathscr{A}_X) \to \mathrm{D}^{\mathrm{b}}_{\mathrm{coh}}(\mathscr{A}_Y)$$

which is called the Fourier-Mukai transform induced by \mathcal{K} . Similarly, a kernel $\mathcal{K}^{\mathrm{loc}} \in \mathrm{D}^{\mathrm{b}}_{\mathrm{gd}}(\mathscr{A}^{\mathrm{loc}}_{X^a \times Y})$ defines a functor

$$\mathfrak{S}^{\mathrm{loc}}:\mathrm{D}^{\mathrm{b}}_{\mathrm{gd}}(\mathscr{A}^{\mathrm{loc}}_X)\to\mathrm{D}^{\mathrm{b}}_{\mathrm{gd}}(\mathscr{A}^{\mathrm{loc}}_Y)$$

which is called the Fourier-Mukai transform induced by \mathscr{K}^{loc} .

The first main theorem of this thesis is the Riemann-Roch theorem for Fourier-Mukai transforms of \mathscr{A}^{loc} -modules.

As an application, we recover the Riemann-Roch formula for \mathscr{D} -modules of [16].

If (X, \mathscr{A}_X) is a smooth complex algebraic variety endowed with a DQ-algebroid, then there is an induced DQ-algebroid $\mathscr{A}_{X_{\mathrm{an}}}$ on the complex manifold X_{an} induced by X. Then we construct a functor $f^* : \mathrm{D}^{\mathrm{b}}_{\mathrm{coh}}(\mathscr{A}_X) \to \mathrm{D}^{\mathrm{b}}_{\mathrm{coh}}(\mathscr{A}_{X_{\mathrm{an}}})$. The second main theorem of this thesis is the following:

Assume that X is projective. Then the functor $f^*: \mathrm{D}^{\mathrm{b}}_{\mathrm{coh}}(\mathscr{A}_X) \to \mathrm{D}^{\mathrm{b}}_{\mathrm{coh}}(\mathscr{A}_{X_{\mathrm{an}}})$ is an equivalence.

This thesis is organized as follows: In Chapter 1, we briefly review the notions of coherent modules, derived categories and the projective limits of 2-categories which are used in the text. In Chapter 2, we review Serre's GAGA theorem and translate this theorem to the derived version. In Chapter 3, we review the Riemann-Roch theorem for \mathscr{D} -modules in [16]. We prove the first main theorem in Chapter 4. In Chapter 5, we use the main results in Chapter 4 to recover the results in Chapter 3. In Chapter 6, we reveiw the notions and results in [13], in particular, Remark 6.6 and Finiteness theorem 6.11 are crucial to the proof of the second main theorem. We show how to induce an analytic DQ-algebroid from an algebraic DQ-algebroid in Chapter 7. In the final chapter, we prove the second main theorem.

Note: Throughout this thesis, all varieties (or schemes) are over \mathbb{C} if not otherwise specified.

1 Preliminary

1.1 Coherency

Let \mathscr{A}_X be a sheaf of rings on a topological space X.

Definition 1.1.

- (1) A (left) \mathscr{A}_X -module \mathscr{F} is said to be *locally finitely generated* if for each $x \in X$ there exist an open neighborhood U of x, an integer $N \in \mathbb{Z}_{\geq 0}$, and epimorphism of $\mathscr{A}_X|_U$ -modules on $U, (\mathscr{A}_X|_U)^{\oplus N} \twoheadrightarrow \mathscr{F}|_U.$
- (2) \mathscr{F} is said to be *locally finitely presented* if for each $x \in X$ there exist an open neighborhood U of x, integers $N_0, N_1 \in \mathbb{Z}_{\geq 0}$, and exact sequence of $\mathscr{A}_X|_U$ -modules on U,

$$(\mathscr{A}_X|_U)^{\oplus N_1} \to (\mathscr{A}_X|_U)^{\oplus N_0} \to \mathscr{F}|_U \to 0.$$

- (3) \mathscr{F} is said to be pseudo-coherent if for every open set U all locally finitely generated $\mathscr{A}_X|_U$ -submodules of $\mathscr{F}|_U$ are locally finitely presented.
- (4) A pseudo-coherent and locally finitely generated \mathscr{A}_X -module is said to be coherent.

We denote by

$$\operatorname{Mod}(\mathscr{A}_X)$$
: the category of \mathscr{A}_X -modules.

Then $\operatorname{Mod}(\mathscr{A}_X)$ is a Grothendieck category [14, Theorem 18.1.6]. Recall that a Grothendieck category \mathscr{C} is an abelian category such that \mathscr{C} admits a generator and inductive limits and filtrant inductive limits are exact. In particular, $\operatorname{Mod}(\mathscr{A}_X)$ has enough injectives. From basic properties of coherent modules (see [11, Proposition A.2 and Proposition A.6]), one can see that the category of coherent \mathscr{A}_X -modules denoted by

 $\operatorname{Mod}_{\operatorname{coh}}(\mathscr{A}_X)$

is a full abelian thick subcategory of $Mod(\mathscr{A}_X)$. Recall that the term *thick* means that it is closed by kernels, cokernels and extensions.

We also denote by

 $K(\operatorname{Mod}_{\operatorname{coh}}(\mathscr{A}_X))$: the Grothendieck group of $\operatorname{Mod}_{\operatorname{coh}}(\mathscr{A}_X)$.

1.2 Homotopy Categories

Let $\mathscr{C} := \operatorname{Mod}(\mathscr{A}_X)$ be an abelian category. A complex M in \mathscr{C} consists of a family $\{(M^n, d_M^n)\}_{n \in \mathbb{Z}}$ where M^n is an object of \mathscr{C} , and d_M^n is a morphism $d_M^n : M^n \to M^{n+1}$, called a differential of M, satisfying $d_M^{n+1} \circ d_M^n = 0$. Denote by $\mathcal{C}(\mathscr{C})$ the additive category of complexes in \mathscr{C} . A morphism $f: M \to N$ in $\mathcal{C}(\mathscr{C})$ consists of a family $\{f^n\}_{n \in \mathbb{Z}}$ of morphisms $f^n: M^n \to N^n$ $(n \in \mathbb{Z})$ satisfying $d_N^n \circ f^n = f^{n+1} \circ d_M^n$. For a complex M and an integer k, define a complex M[k] by $M[k]^n = M^{k+n}$ and $d_{M[k]}^n = (-1)^k d_M^{k+n}$. For $f: M \to N$, define $f[k]: M[k] \to N[k]$ by $f[k]^n = f^{k+n}$.

A complex M is said to be bounded below if $M^n = 0$ $(n \ll 0)$, bounded above if $M^n = 0 (n \gg 0)$, and bounded if it is bounded above and below. Denote by $C^+(\mathscr{C})$, $C^-(\mathscr{C})$, and $C^b(\mathscr{C})$ the full subcategories of $C(\mathscr{C})$ consisting of complexes of bounded below, bounded above and bounded, respectively.

To $X \in \mathscr{C}$, we associate a complex X^n defined by X if n = 0and 0 if $n \neq 0$ and $d_X^n = 0$. We thus consider \mathscr{C} as a full subcategory of $C(\mathscr{C})$. For complexes M and N in \mathscr{C} , define a complex $\operatorname{Hom}(M,N)$ of modules by

$$\operatorname{Hom}(M,N)^n = \prod_k \operatorname{Hom}_{\mathscr{C}}(M^k, N^{k+n}).$$

For $f = (f^k) \in \operatorname{Hom}(M, N)^n$ $(f^k \in \operatorname{Hom}(M^k, N^{k+n}))$, we define the differential $df \in \operatorname{Hom}(M, N)^{n+1}$ by letting its k-th component $(df)^k : M^k \to N^{k+n+1}$ be the sum $M^k \xrightarrow{f^k} N^{k+n} \xrightarrow{d_N^{k+n}} N^{k+n+1}$ and $M^k \xrightarrow{(-1)^{n+1}d_M^k} M^{k+1} \xrightarrow{f^{k+1}} N^{k+n+1}$.

Then $d^2 = 0$ and $\operatorname{Hom}(M, N)$ is a complex of \mathscr{A}_X -modules. The 0-th cocycle

$$Z^{0}(\operatorname{Hom}(M,N)) := \operatorname{Ker}(\operatorname{Hom}(M,N)^{0} \xrightarrow{d} \operatorname{Hom}(M,N)^{1})$$

is nothing but $\operatorname{Hom}_{\mathbb{C}(\mathscr{C})}(M, N)$. We denote by $\operatorname{Ht}(M, N)$ the 0-th coboundary

$$B^{0}(\operatorname{Hom}(M,N)) := \operatorname{Im}(\operatorname{Hom}(M,N)^{-1} \xrightarrow{d} \operatorname{Hom}(M,N)^{0});$$

its element is called a morphism from M to N homotopic to 0. By the definition, $f = (f^n) \in \operatorname{Hom}_{\mathcal{C}(\mathscr{C})}(M, N)$ is homotopic to 0 if and only if there exists $s = (s^n : M^n \to N^{n-1})_{n \in \mathbb{Z}}$ such that

$$f^n = d_N^{n-1} s^n + s^{n+1} d_M^n$$

Define a new additive category $K(\mathscr{C})$ by

$$Ob(K(\mathscr{C})) := Ob(C(\mathscr{C})),$$

 $Hom_{K(\mathscr{C})}(M, N) := H^{0}(Hom(M, N)) = Hom_{C(\mathscr{C})}(M, N)/Ht$
 $(M, N).$

The composition of morphisms is the one induced from $C(\mathscr{C})$. Then $K(\mathscr{C})$ is an additive category. Similarly to the case $C(\mathscr{C})$, we consider \mathscr{C} as a full subcategory of $K(\mathscr{C})$.

1.3 Triangulated Categories

The category $C(\mathscr{C})$ is also an abelian category, but $K(\mathscr{C})$ is not. Instead, $K(\mathscr{C})$ has a structure called a triangulated category.

For a morphism $f : M \to N$ in $\mathbb{C}(\mathscr{C})$, define a new complex M(f), called a mapping cone of f, as follows: $M(f)^n = M^{n+1} \oplus N^n$, and its differential $d_{M(f)}^n : M(f)^n \to M(f)^{n+1}$ is the map such that $M^{n+1} \longrightarrow M(f)^n \xrightarrow{d_{M(f)}^n} M(f)^{n+1}$ is the sum of $M^{n+1} \xrightarrow{f^{n+1}} N^{n+1} \longrightarrow M(f)^{n+1}$ and $M^{n+1} \xrightarrow{-d_M^{n+1}} M^{n+2} \longrightarrow$ $M(f)^{n+1}$ and $N^n \longrightarrow M(f)^n \xrightarrow{d_M^n(f)} M(f)^{n+1}$ equals $N^n \xrightarrow{d_N^n} N^{n+1} \longrightarrow M(f)^{n+1}$. Then $d_{M(f)}^{n+1} \circ d_{M(f)}^n = 0$ and thus M(f)is a complex.

Define morphisms $\alpha_f : N \to M(f)$ and $\beta_f : M(f) \to M[1]$ in $C(\mathscr{C})$ by

$$\alpha_f^n: N^n \to M^{n+1} \oplus N^n = M(f)^n,$$

$$\beta_f^n: M(f)^n = M^{n+1} \oplus N^n \to M^{n+1} = M[1]^n.$$

A diagram $X \xrightarrow{f} Y \xrightarrow{g} Z \xrightarrow{h} X[1]$ in $K(\mathscr{C})$ is called a triangle. A morphism from a triangle $X \to Y \to Z \to X[1]$ to a triangle $X' \to Y' \to Z' \to X'[1]$ is a commutative diagram

If ξ, η and ζ are isomorphisms, these two triangles are said to be isomorphic. A triangle $X \to Y \to Z \to X[1]$ in $K(\mathscr{C})$ is said to be distinguished if there exists a morphism $X' \xrightarrow{f} Y'$ such that the triangle is isomorphic to $X' \xrightarrow{f} Y' \xrightarrow{\alpha_f} M(f) \xrightarrow{\beta_f} X'[1]$. With the automorphism $[1] : \mathcal{K}(\mathscr{C}) \to \mathcal{K}(\mathscr{C})$ sending M to M[1] and distinguished triangles, one can see that $\mathcal{K}(\mathscr{C})$ is a triangulated category.

Similarly, one can define the distinguished categories $K^+(\mathscr{C})$, $K^-(\mathscr{C})$ and $K^b(\mathscr{C})$.

1.4 Derived Categories

A morphism $f: X \to Y$ in $K(\mathscr{C})$ is called a quasi-isomorphism if $H^n(X) \to H^n(Y)$ are isomorphisms for all n.

We obtain the derived category from $K(\mathscr{C})$ by regarding quasiisomorphisms are isomorphisms. More precisely, we define the derived category $D(\mathscr{C})$ as follows:

Define the family $Ob(D(\mathscr{C}))$ of objects in $D(\mathscr{C})$ to equal $Ob(K(\mathscr{C}))$. For $X, Y \in Ob(D(\mathscr{C})) = Ob(K(\mathscr{C}))$, define the family $Hom_{D(\mathscr{C})}(X, Y)$ of morphisms to be $\mathcal{S}(X, Y)/\sim$, where $\mathcal{S}(X, Y)$ is a family given in the following, and \sim is its equivalence relation. $\mathcal{S}(X, Y)/\sim$ denotes the family of \sim equivalence classes in $\mathcal{S}(X, Y)$.

- (1) $\mathcal{S}(X,Y)$ is the set of pairs (s,f) where $s : X' \to X$ is a quasi-isomorphism and $f : X' \to Y$ is a morphism in $\mathcal{K}(\mathscr{C})$.
- (2) for $(s_1, f_1), (s_2, f_2) \in \mathcal{S}(X, Y)$ where $s_i : X'_i \to X$ are quasiisomorphisms and $f_i : X'_i \to Y$ for i = 1, 2, we define $(s_1, f_1) \sim (s_2, f_2)$ if there exists quasi-isomorphisms $t_i :$ $X'_0 \to X'_i$ for i = 1, 2 and a morphism $g : X'_0 \to Y$ such that $s_1 \circ t_1 = s_2 \circ t_2$ and $f_1 \circ t_1 = f_2 \circ t_2 = g$.

Similarly, one can define the derived categories $D^+(\mathscr{C})$, $D^-(\mathscr{C})$ and $D^{b}(\mathscr{C})$. Note that $D^+(\mathscr{C})$ (resp. $D^-(\mathscr{C})$, resp. $D^{b}(\mathscr{C})$) is equivalent to the full subcategory of $D(\mathscr{C})$ consisting of objects X such that $H^n(X) = 0$ for $n \ll 0$ (resp. $n \gg 0$, resp. $|n| \gg 0$).

We denote by

 $D^{b}(\mathscr{A}_{X})$: the bounded derived category of $Mod(\mathscr{A}_{X})$,

 $D^{b}_{coh}(\mathscr{A}_{X})$: the full triangulated subcategory of $D^{b}(\mathscr{A}_{X})$ consisting of complexes with cohomology sheaves belonging to $Mod_{coh}(\mathscr{A}_{X})$,

 $K_{\rm coh}(\mathscr{A}_X)$: the Grothendieck group of $D^{\rm b}_{\rm coh}(\mathscr{A}_X)$.

Note that by [2, P.283 Lemma 1.6], we have

(1.1) $K(\operatorname{Mod}_{\operatorname{coh}}(\mathscr{A}_X)) \simeq K_{\operatorname{coh}}(\mathscr{A}_X).$

1.5 Projective limits of 2-cat

Recall that a presite X is nothing but a category which we denote by \mathcal{C}_X . If \mathfrak{S} is a prestack on X, then we have the morphism $u: U_1 \to U_2$ in \mathcal{C}_X , and the functor $r_u: \mathfrak{S}(U_2) \to \mathfrak{S}(U_1)$ for $U_1, U_2 \in \mathcal{C}_X$.

Definition 1.2. Let \mathfrak{S} be a prestack on X. We denote by $\varprojlim_{U \in \mathcal{C}_X} \mathfrak{S}(U)$ the category defined as follows.

(a) An object F of $\varprojlim_{U \in \mathcal{C}_X} \mathfrak{S}(U)$ is a family $\{(F_U, \varphi_u)\}_{U \in \mathcal{C}_X, u \in \operatorname{Mor}(\mathcal{C}_X)}$ where:

(i) for any $U \in \mathcal{C}_X$, F_U is an object of $\mathfrak{S}(U)$,

(ii) for any morphism $u: U_1 \to U_2$ in $\mathcal{C}_X, \varphi_u: r_u F_{U_2} \xrightarrow{\sim} F_{U_1}$

is an isomorphism such that for any sequence $U_1 \xrightarrow{u} U_2 \xrightarrow{v} U_3$ of morphisms in \mathcal{C}_X , the following diagram commutes (this is a so-called cocycle condition):

(b) For two objects $F = \{(F_U, \varphi_u)\}$ and $F' = \{(F'_U, \varphi'_u)\}$ in $\lim_{U \in \mathcal{C}_X} \mathfrak{S}(U), \operatorname{Hom}_{U \in \mathfrak{C}_X} \mathfrak{S}(U)(F, F') \text{ is the set of families } f = \{f_U\}_{U \in \mathcal{C}_X}$ such that $f_U \in \operatorname{Hom}_{\mathfrak{S}(U)}(F_U, F'_U)$ and the following diagram commutes for any $u: U_1 \to U_2$

$$\begin{array}{cccc} r_{u}F_{U_{2}} & \xrightarrow{\varphi_{u}} & F_{U_{1}} \\ r_{u}(f_{U_{2}}) \downarrow & & \downarrow f_{U_{1}} \\ r_{u}F_{U_{2}}' & \xrightarrow{\varphi'_{u}} & F_{U_{1}}'. \end{array}$$

Therefore,

$$\operatorname{Hom}_{\underset{U \in \mathcal{C}_X}{\lim}} \mathfrak{S}(U)(F, F') \simeq \underset{U \in \mathcal{C}_X}{\lim} \operatorname{Hom}_{\mathfrak{S}|_U}(F_U, F'_U).$$

For any $A \in \mathcal{C}_X^{\wedge} := \operatorname{Fct}(\mathcal{C}_X^{\operatorname{op}}, \operatorname{\mathbf{Set}})$, we set

$$\mathfrak{S}(A) = \varprojlim_{(U \to A) \in \mathcal{C}_A} (\mathfrak{S}|_A)(U) = \varprojlim_{(U \to A) \in \mathcal{C}_A} \mathfrak{S}(U).$$

Hence, $\lim_{U \in \mathcal{C}_X} \mathfrak{S}(U) = \mathfrak{S}(\mathrm{pt}_X)$, where pt_X denotes as usual the terminal object of \mathcal{C}_X^{\wedge} .

We set

$$\mathfrak{S}(X) := \mathfrak{S}(\mathrm{pt}_X) = \varprojlim_{U \in \mathcal{C}_X} \mathfrak{S}(U).$$

A morphism $v: A \to A'$ in \mathcal{C}_X^{\wedge} defines a functor

$$r_v: \mathfrak{S}(A') = \lim_{U \to A'} \mathfrak{S}(U) \to \lim_{U \to A} \mathfrak{S}(U) = \mathfrak{S}(A)$$

and it is easy to check that the conditions of prestack are satisfied.

Proposition 1.3. ([14, §19]) Let \mathfrak{S} be a prestack on the small presite X. Then \mathfrak{S} extends naturally to a prestack on \widehat{X} , where \widehat{X} denotes the presite associated with the category \mathcal{C}_X^{\wedge} .

2 Review on the GAGA Theorem

Let X be a scheme of finite type and let X_{an} be the associated complex analytic space. Denote by $Mod(\mathcal{O}_X)$ (resp. $Mod(\mathcal{O}_{X_{an}})$) the category of sheaves on X (resp. X_{an}) and $Mod_{coh}(\mathcal{O}_X)$ (resp. $Mod_{coh}(\mathcal{O}_{X_{an}})$) the full subcategory of coherent sheaves. There is a continuous map $\varphi : X_{an} \to X$ of the underlying topological spaces and there is also a natural map of the structure sheaves $\varphi^{-1}\mathcal{O}_X \to \mathcal{O}_{X_{an}}$. To $\mathscr{F} \in Mod(\mathcal{O}_X)$, one associates its complex analytic sheaf $\mathscr{F}^{an} := \mathscr{O}_{X_{an}} \otimes_{\varphi^{-1}\mathcal{O}_X} \varphi^{-1} \mathscr{F} \in Mod(\mathcal{O}_{X_{an}})$. Hence we obtain a functor:

$$(*) \qquad \qquad \Upsilon_{\mathbf{X}}: \operatorname{Mod}(\mathscr{O}_X) \to \operatorname{Mod}(\mathscr{O}_{X_{\operatorname{an}}}).$$

If \mathscr{F} is a coherent sheaf, then \mathscr{F}^{an} is also coherent.

The following theorem for a projective scheme is proved in Serre's famous paper GAGA (cf [19]) which is generalized by Grothendieck for a proper scheme (cf [8, XII]).

1510101010

Theorem 2.1. Let X be a projective scheme. Then the functor (*) induces an equivalence of categories

$$\operatorname{Mod}_{\operatorname{coh}}(\mathscr{O}_X) \xrightarrow{\sim} \operatorname{Mod}_{\operatorname{coh}}(\mathscr{O}_{X_{\operatorname{an}}}).$$

Furthemore, for every coherent sheaf \mathscr{F} on X, the natural maps

$$H^i(X;\mathscr{F}) \to H^i(X_{\mathrm{an}};\mathscr{F}^{\mathrm{an}})$$

are isomorphisms, for all $i \geq 0$.

The following lemma is Theorem 2.2.8 in [5].

Lemma 2.2. Let \mathcal{A}' and \mathcal{B}' be thick subcategories of abelian categories \mathcal{A} and \mathcal{B} , respectively, and let $\Phi : \mathcal{A} \to \mathcal{B}$ be an exact

functor that takes \mathcal{A}' to \mathcal{B}' . Assume furthermore that the following properties are satisfied:

1. \mathcal{A} and \mathcal{B} have enough injectives;

2. Φ is an equivalence of categories when restricted to $\mathcal{A}' \to \mathcal{B}'$;

3. Φ induces a natural isomorphism

 $\operatorname{Ext}^{i}_{\mathcal{A}}(F,G) \cong \operatorname{Ext}^{i}_{\mathcal{B}}(\Phi(F),\Phi(G))$

for any $F, G \in \mathcal{A}'$ and any *i*. Then the natural functor $\widetilde{\Phi} : D^{\mathrm{b}}_{\mathcal{A}'}(\mathcal{A}) \to D^{\mathrm{b}}_{\mathcal{B}'}(\mathcal{B})$ induced by Φ is an equivalence of categories.

Proof. We briefly sketch the proof here for reader's convenience. (i) We prove that the functor $\widetilde{\Phi}$ is fully faithful, i.e. that for any $F^{\bullet}, G^{\bullet} \in D^{\mathrm{b}}_{\mathcal{A}'}(\mathcal{A}), \widetilde{\Phi}$ induces an isomorphism

(2.1)
$$\operatorname{Hom}_{\mathrm{D}^{\mathrm{b}}(\mathcal{A})}(F^{\bullet}, G^{\bullet}) \cong \operatorname{Hom}_{\mathrm{D}^{\mathrm{b}}(\mathcal{B})}(\widetilde{\Phi}(F^{\bullet}), \widetilde{\Phi}(G^{\bullet})).$$

We'll use a technique known as $d\acute{e}vissage$ to prove it. The $d\acute{e}vissage$ technique is just induction on the number $n(E^{\bullet})$ defined as

$$n(E^{\bullet}) = \max\{j - i \mid H^j(E^{\bullet}) \neq 0, H^i(E^{\bullet}) \neq 0\}.$$

Hence we shall prove (1.1) by induction on $N = n(F^{\bullet}) + n(G^{\bullet})$. If $N = -\infty$, then one of F^{\bullet} or G^{\bullet} is the zero complex, so there is nothing to prove. If N = 0, then there exist $F \in \mathcal{A}', G \in \mathcal{A}'$ such that $F^{\bullet} = F[a]$ and $G^{\bullet} = G[b]$ for some $a, b \in \mathbb{Z}$. Then

$$\operatorname{Hom}_{\mathcal{D}^{b}(\mathcal{A})}(F^{\bullet}, G^{\bullet}) = \operatorname{Hom}_{\mathcal{D}^{b}(\mathcal{A})}(F[a], G[b]) = \operatorname{Ext}_{\mathcal{A}}^{b-a}(F, G)$$

and

$$\operatorname{Hom}_{\mathrm{D^{b}}(\mathcal{B})}(\widetilde{\Phi}(F^{\bullet}), \widetilde{\Phi}(G^{\bullet})) = \operatorname{Hom}_{\mathrm{D^{b}}(\mathcal{B})}(\widetilde{\Phi}(F[a]), \widetilde{\Phi}(G[b])) \\ = \operatorname{Ext}_{\mathcal{B}}^{b-a}(\Phi(F), \Phi(G)).$$

Hence (2.1) follows from property 3 above.

Assume that $\overline{\Phi}$ induces an isomorphism

 $\operatorname{Hom}_{\operatorname{D^{b}}(\mathcal{A})}(F^{\bullet}, G^{\bullet}) \cong \operatorname{Hom}_{\operatorname{D^{b}}(\mathcal{B})}(\widetilde{\Phi}(F^{\bullet}), \widetilde{\Phi}(G^{\bullet}))$

for all F^{\bullet} , $G^{\bullet} \in D^{b}_{\mathcal{A}'}(\mathcal{A})$ with $n(F^{\bullet}) + n(G^{\bullet}) < N$, and let F^{\bullet} , G^{\bullet} be objects of $D^{b}_{\mathcal{A}'}(\mathcal{A})$ with $n(F^{\bullet}) + n(G^{\bullet}) = N > 0$. We may assume that $n(G^{\bullet}) = N > 0$ and that $G^{i} = 0$ for i < 0, and $H^{0}(G^{\bullet}) \neq 0$.

Let G'^{\bullet} be the complex with single non zero object $H^0(G^{\bullet})$ in degree zero. From the morphism $G'^{\bullet} \to G^{\bullet}$, there exists a distinguished triangle $G''^{\bullet} \to G'^{\bullet} \to G^{\bullet} \to G''^{\bullet}[1]$. By the long exact cohomology sequence, one deduces $n(G''^{\bullet}) < n(G^{\bullet})$; also, from the assumption, $n(G'^{\bullet}) = 0 < n(G^{\bullet})$. From the long exact sequence of Hom's, the five-lemma and the induction hypothesis we conclude that

$$\operatorname{Hom}_{\mathrm{D^{b}}(\mathcal{A})}(F^{\bullet}, G^{\bullet}) \cong \operatorname{Hom}_{\mathrm{D^{b}}(\mathcal{B})}(\widetilde{\Phi}(F^{\bullet}), \widetilde{\Phi}(G^{\bullet}))$$

which is what we needed to prove that $\widetilde{\Phi}$ is fully faithful. (The case when $n(G^{\bullet}) = 0$ but $n(F^{\bullet}) > 0$ follows in a similar way.)

(ii) The functor $\tilde{\Phi}$ is essentially surjective: any object G^{\bullet} of $D^{\mathrm{b}}_{\mathcal{B}'}(\mathcal{B})$ is isomorphic to an object of the form $\tilde{\Phi}(F^{\bullet})$ for some $F^{\bullet} \in D^{\mathrm{b}}_{\mathcal{A}'}(\mathcal{A})$. We prove this by induction on $n = n(G^{\bullet})$: the case $n = -\infty$ is trivial, and n = 0 follows from property 2.

So assume n > 0, and construct a distinguished triangle $G''^{\bullet} \to G'^{\bullet} \to G^{\bullet} \to G''^{\bullet}[1]$ where $G'^{\bullet} = H^0(G^{\bullet}) \neq 0$ and we assume G^{\bullet} is zero in degrees < 0. Since Φ is an equivalence of categories between \mathcal{A}' and \mathcal{B}' , we can find an $F'^{\bullet} \in D^{\mathrm{b}}_{\mathcal{A}'}(\mathcal{A})$ such that $\Phi(F'^{\bullet}) \cong G'^{\bullet}$. Also, by the induction hypothesis, we can find an $F''^{\bullet} \in D^{\mathrm{b}}_{\mathcal{A}'}(\mathcal{A})$ such that $\tilde{\Phi}(F''^{\bullet}) \cong G''^{\bullet}$. Since we proved that $\tilde{\Phi}$ is fully faithful, we can find a map $F''^{\bullet} \to F'^{\bullet}$ whose image by $\tilde{\Phi}$ is just the side of the distinguished triangle constructed before. Again, we have the distinguished triangle $F''^{\bullet} \to F'^{\bullet} \to F^{\bullet} \to F''^{\bullet}[1]$. Then, since $\widetilde{\Phi}$ is a ∂ functor (a functor commutes with the translation functor and sends a distinguished triangle to a distinguished triangle) because Φ is exact, we see that $\widetilde{\Phi}(F^{\bullet})$ is isomorphic to G^{\bullet} , as required. \Box

Let X be a scheme of finite type, set $\mathcal{A} = \operatorname{Mod}(\mathcal{O}_X), \mathcal{B} = \operatorname{Mod}(\mathcal{O}_{X_{\operatorname{an}}}), \mathcal{A}' = \operatorname{Mod}_{\operatorname{coh}}(\mathcal{O}_X) \text{ and } \mathcal{B}' = \operatorname{Mod}_{\operatorname{coh}}(\mathcal{O}_{X_{\operatorname{an}}}), \text{ and denote by } \operatorname{D}^{\operatorname{b}}_{\operatorname{coh}}(X) = \operatorname{D}^{\operatorname{b}}_{\mathcal{A}'}(\mathcal{A}) \text{ and } \operatorname{D}^{\operatorname{b}}_{\operatorname{coh}}(X_{\operatorname{an}}) = \operatorname{D}^{\operatorname{b}}_{\mathcal{B}'}(\mathcal{B}).$ Clearly, \mathcal{A}' (resp. \mathcal{B}') is a full thick subcategory of \mathcal{A} (resp. \mathcal{B}).

As an application of Lemma 2.2, we have

Corollary 2.3. Let X be a projective scheme, then the functor $\Upsilon_{\mathbf{X}}$ of (*) induces an equivalence (we keep the same notation)

 $\Upsilon_{\mathbf{X}}: \mathrm{D}^{\mathrm{b}}_{\mathrm{coh}}(X) \xrightarrow{\sim} \mathrm{D}^{\mathrm{b}}_{\mathrm{coh}}(X_{\mathrm{an}}).$

Proof. We shall apply Lemma 2.2. First note that $\mathscr{O}_{X_{\mathrm{an}},x}$ is a flat $\mathscr{O}_{X,x}$ -module for each $x \in X$, hence the functor $\Upsilon_{\mathbf{X}} : \mathcal{A} \to \mathcal{B}$ is an exact functor. Both \mathcal{A} and \mathcal{B} have enough injectives [see §1.1]. The functor $\Upsilon_{\mathbf{X}}$ is an equivalence by Theorem 2.1. Hence it is sufficient to check condition 3 of Lemma 2.2. It is enough to prove that

(2.2) $\operatorname{RHom}(\mathscr{F},\mathscr{G}) \simeq \operatorname{RHom}(\mathscr{F}^{\operatorname{an}},\mathscr{G}^{\operatorname{an}}) \text{ for } \mathscr{F}, \mathscr{G} \in \mathcal{A}'.$

Since RHom $(\mathscr{F},\mathscr{G}) \simeq \mathrm{R}\Gamma(X,\mathscr{F}^* \overset{\mathrm{L}}{\otimes}_{\mathscr{O}_X} \mathscr{G})$ and RHom $(\mathscr{F}^{\mathrm{an}},\mathscr{G}^{\mathrm{an}})$ $\simeq \mathrm{R}\Gamma(X_{\mathrm{an}}, (\mathscr{F}^{\mathrm{an}})^* \overset{\mathrm{L}}{\otimes}_{\mathscr{O}_{X_{\mathrm{an}}}} \mathscr{G}^{\mathrm{an}})$, where $\mathscr{F}^* = \mathrm{R}\mathscr{H}om_{\mathscr{O}_X}(\mathscr{F}, \mathscr{O}_X)$ and $(\mathscr{F}^{\mathrm{an}})^* = \mathrm{R}\mathscr{H}om_{\mathscr{O}_{X_{\mathrm{an}}}} (\mathscr{F}^{\mathrm{an}}, \mathscr{O}_{X_{\mathrm{an}}})$, we reduce (2.2) to the following isomorphism

(2.3)
$$\mathrm{R}\Gamma(X,\mathscr{F}^{\bullet}) \simeq \mathrm{R}\Gamma(X_{\mathrm{an}},(\mathscr{F}^{\bullet})^{\mathrm{an}}), \text{ where } \mathscr{F}^{\bullet} \in \mathrm{D}^{\mathrm{b}}_{\mathrm{coh}}(X).$$

Assume that (2.3) holds for $\mathscr{F}^{\bullet} \in D^{b}_{coh}(X)$ of amplitude \leq N. Now let \mathscr{F}^{\bullet} be of amplitude N+1. Assume for example

 $H^j(\mathscr{F}^{\bullet})=0$ for $j\notin [a,a+{\rm N}+1]$ and consider the distinguished triangle

$$\tau^{\leq a+N}\mathscr{F}^{\bullet} \longrightarrow \mathscr{F}^{\bullet} \longrightarrow H^{a+N+1}(\mathscr{F}^{\bullet})[-a-N-1] \xrightarrow{+1}$$

Let $b = a + \mathbb{N}$. Since $H^{b+1}(\tau^{\leq b} \mathscr{F}^{\bullet}) = H^{b+1}(H^{b+1}(\mathscr{F}^{\bullet})[-b-1]) = 0$, one deduces that $H^{j}(\mathscr{F}^{\bullet}) = 0$ for $j \notin [a, b]$. Hence by $d\acute{e}vissage$, one reduces \mathscr{F}^{\bullet} to a single sheaf \mathscr{F} . By Theorem 2.1, we have $\mathrm{R}\Gamma(X, \mathscr{F}) \simeq \mathrm{R}\Gamma(X_{\mathrm{an}}, \mathscr{F}^{\mathrm{an}})$ and the result follows.

3 Review on the results of Laumon

Let X, Y be smooth algebraic varieties with sheaf of differential operators \mathscr{D}_X and \mathscr{D}_Y . For a morphism $f : X \to Y$, we have induced morphisms:

(3.1)
$$T^*X \xleftarrow{f_d} X \times_Y T^*Y \xrightarrow{f_\pi} T^*Y$$

where T^*X and T^*Y denote the cotangent bundles of X and Y, respectively.

If f is proper, there are well defined functors (see [16, section 5]):

 $(\mathscr{O}_{X \times_Y T^*Y})$

defined by

$$f_d^!(-) := f_d^*(-) \otimes_{\mathscr{O}_X} \omega_{X/Y}$$

$$f_d^{*-1}(\omega_Y^{\otimes -1}) \otimes_{f^{-1}\mathscr{O}_Y} \omega_X \text{ denotes relative canonical}$$

where $\omega_{X/Y} =$ bundle of fand

(3.3)
$$f_{\pi_*}: \mathrm{D}^{\mathrm{b}}_{\mathrm{coh}}(\mathscr{O}_{X \times_Y T^*Y}) \to \mathrm{D}^{\mathrm{b}}_{\mathrm{coh}}(\mathscr{O}_{T^*Y}).$$

Hence the functors of (3.2) and (3.3) induce group homomorphisms (see [16, 6.2]):

$$f_d^!: K_{\operatorname{coh}}(\mathscr{O}_{T^*X}) \to K_{\operatorname{coh}}(\mathscr{O}_{X \times_Y T^*Y})$$

and

$$f_{\pi_*}: K_{\operatorname{coh}}(\mathscr{O}_{X \times_Y T^*Y}) \to K_{\operatorname{coh}}(\mathscr{O}_{T^*Y}).$$

Let (\mathcal{M}, F) be a filtered \mathcal{D}_X -module with filtration $\{F_i\mathcal{M}\}$. Recall from [10, Definition 2.1.2] that F is a good filtration of \mathcal{M} if the graded module $\operatorname{gr}^F \mathcal{M}$ is coherent over $\pi_* \mathcal{O}_{T^*X}$ where $\operatorname{gr}^F \mathcal{M} := \bigoplus F_i \mathcal{M} / F_{i-1} \mathcal{M}$ and $\pi : T^*X \to X$ is the projection and set

$$\widetilde{\operatorname{gr}^F}\mathscr{M} := \mathscr{O}_{T^*X} \otimes_{\pi^{-1}\pi_*\mathscr{O}_{T^*X}} \pi^{-1} \operatorname{gr}^F \mathscr{M}.$$

If $\mathscr{M} \in \operatorname{Mod}_{\operatorname{coh}}(\mathscr{D}_X)$, then there exists globally a good filtration F on \mathscr{M} (see [10, Theorem 2.1.3]). We denote by $Car(\mathscr{M})$ the element of $K_{\operatorname{coh}}(\mathscr{O}_{T^*X})$ defined by $\operatorname{gr}^F \mathscr{M}$. For a proper morphism $f: X \to Y$, we also denote by $\int_f : K_{\operatorname{coh}}(\mathscr{D}_X) \to K_{\operatorname{coh}}(\mathscr{D}_Y)$ the group homomorphism induced by the direct image functor $\int_f : \operatorname{D}^{\mathrm{b}}_{\operatorname{coh}}(\mathscr{D}_X) \to \operatorname{D}^{\mathrm{b}}_{\operatorname{coh}}(\mathscr{D}_Y)$ given by $\int_f \mathscr{M} = Rf_*(\mathscr{D}_{Y \leftarrow X} \overset{\mathrm{L}}{\otimes}_{\mathscr{D}_X}$ $\mathscr{M})$ for $\mathscr{M} \in \operatorname{D}^{\mathrm{b}}_{\operatorname{coh}}(\mathscr{D}_X)$.

The following theorem is the main result of [16].

Theorem 3.1. Let $f: X \to Y$ be a proper morphism of smooth algebraic varieties. Then the following diagram is commutative

Remark 3.2. Combining (algebraic) Grothendieck-Riemann-Roch formula at the level of cotangent bundles with Theorem 3.1, then we have a Riemann-Roch formula for \mathscr{D} -modules.

Recall that for a smooth algebraic variety X, we have the corresponding complex manifold X^{an} and morphism $\iota : X^{an} \to X$. Then we have a canonical morphism

$$\iota^{-1}\mathscr{D}_X \to \mathscr{D}_{X^{\mathrm{an}}}$$

of sheaves of rings satisfying

$$\mathscr{D}_{X^{\mathrm{an}}} \simeq \mathscr{O}_{X^{\mathrm{an}}} \otimes_{\iota^{-1} \mathscr{O}_X} \iota^{-1} \mathscr{D}_X.$$

Hence we obtain a functor

 $(\bullet)^{\mathrm{an}}: \mathrm{Mod}(\mathscr{D}_X) \to \mathrm{Mod}(\mathscr{D}_{X^{\mathrm{an}}})$

sending \mathscr{M} to $\mathscr{M}^{\mathrm{an}} := \mathscr{D}_{X^{\mathrm{an}}} \otimes_{\iota^{-1}\mathscr{D}_{X}} \iota^{-1}\mathscr{M}$. Note that since $\mathscr{D}_{X^{\mathrm{an}}}$ is faithfully flat over $\iota^{-1}(\mathscr{D}_{X})$, this functor is exact. We denote by $\mathrm{Mod}_{\mathrm{gd}}(\mathscr{D}_{X^{\mathrm{an}}})$ the category of good $\mathscr{D}_{X^{\mathrm{an}}}$ -modules (for definition and its properties, see [11, 4.7]), in particular, $\mathrm{Mod}_{\mathrm{gd}}(\mathscr{D}_{X^{\mathrm{an}}})$ is an abelian thick subcategory of $\mathrm{Mod}(\mathscr{D}_{X^{\mathrm{an}}})$. We also denote by $\mathrm{D}^{\mathrm{b}}_{\mathrm{gd}}(\mathscr{D}_{X^{\mathrm{an}}})$ the full triangulated subcategory of $\mathrm{D}^{\mathrm{b}}(\mathscr{D}_{X^{\mathrm{an}}})$ consisting of complexes with cohomology sheaves belonging to $\mathrm{Mod}_{\mathrm{gd}}(\mathscr{D}_{X^{\mathrm{an}}})$ and $K_{\mathrm{gd}}(\mathscr{D}_{X^{\mathrm{an}}})$ the Grothendieck group of $\mathrm{D}^{\mathrm{b}}_{\mathrm{gd}}(\mathscr{D}_{X^{\mathrm{an}}})$.

Recall from [10, Corollary 1.4.17] that for a coherent \mathscr{D}_X -module \mathscr{M} , \mathscr{M} is generated by a coherent \mathscr{O}_X -module \mathscr{F} , i.e. $\mathscr{M} = \mathscr{D}_X \cdot \mathscr{F}$. Denote by

$$F_i \mathscr{D}_X := \{ P \in \mathcal{E}nd_{\mathbb{C}}(\mathscr{O}_X) \mid [P, f] \in F_{l-1}\mathscr{D}_X, \forall f \in \mathscr{O}_X \} \text{ and} \\ \mathscr{M}_i := F_i \mathscr{D}_X \cdot \mathscr{F}, \end{cases}$$

then $\mathcal{M}_i \subset \mathcal{M}_{i+1}$ for each $i \geq 0$ and $\mathcal{M} = \bigcup_i \mathcal{M}_i = \varinjlim_i \mathcal{M}_i$. Hence we have the well defined functor:

 $\Upsilon: \operatorname{Mod}_{\operatorname{coh}}(\mathscr{D}_X) {\longrightarrow} \operatorname{Mod}_{\operatorname{gd}}(\mathscr{D}_{X^{\operatorname{an}}})$

sending $\mathcal{M} = \bigcup_{i} \mathcal{M}_{i}$ to $\mathcal{M}^{\mathrm{an}} := \bigcup_{i} \mathcal{M}_{i}^{\mathrm{an}}$. On the other hand, if X is proper, then by GAGA theorem, we have the well defined inverse functor to the functor Υ . Hence we get the equivalence:

$$\operatorname{Mod}_{\operatorname{coh}}(\mathscr{D}_X) \xrightarrow{\sim} \operatorname{Mod}_{\operatorname{gd}}(\mathscr{D}_{X^{\operatorname{an}}}).$$

In particular, by [2, P.283 Lemma 1.6], we have

(3.4)
$$K_{\rm coh}(\mathscr{D}_X) \simeq K_{\rm gd}(\mathscr{D}_{X^{\rm an}}).$$

For a morphism $f : X \to Y$ of smooth algebraic varieties, we have the induced analytic morphism of complex manifolds $f^{\text{an}} : X^{\text{an}} \to Y^{\text{an}}$ and the corresponding morphisms to (3.1):

$$T^*X^{\mathrm{an}} \xleftarrow{f_d^{\mathrm{an}}} X^{\mathrm{an}} \times_{Y^{\mathrm{an}}} T^*Y^{\mathrm{an}} \xrightarrow{f_\pi^{\mathrm{an}}} T^*Y^{\mathrm{an}}$$

If f is a proper morphism, then we have the corresponding functors to (3.2) and (3.3):

(3.5)
$$f_d^{\mathrm{an}!} : \mathrm{D}^{\mathrm{b}}_{\mathrm{coh}}(\mathscr{O}_{T^*X^{\mathrm{an}}}) \to \mathrm{D}^{\mathrm{b}}_{\mathrm{coh}}(\mathscr{O}_{X^{\mathrm{an}} \times_{Y^{\mathrm{an}}}T^*Y^{\mathrm{an}}})$$

defined by

$$f_d^{\mathrm{an}!}(-) := f_d^{\mathrm{an}*}(-) \otimes_{\mathscr{O}_{X^{\mathrm{an}}}} \omega_{X^{\mathrm{an}}/Y^{\mathrm{an}}}$$

and

(3.6)
$$f_{\pi^*}^{\mathrm{an}} : \mathrm{D}^{\mathrm{b}}_{\mathrm{coh}}(\mathscr{O}_{X^{\mathrm{an}} \times_{Y^{\mathrm{an}}} T^*Y^{\mathrm{an}}}) \to \mathrm{D}^{\mathrm{b}}_{\mathrm{coh}}(\mathscr{O}_{T^*Y^{\mathrm{an}}}).$$

Hence (3.5) and (3.6) induce group homomorphisms:

ESS.

$$f_d^{\mathrm{an}!}: K_{\mathrm{coh}}(\mathscr{O}_{T^*X^{\mathrm{an}}}) \to K_{\mathrm{coh}}(\mathscr{O}_{X^{\mathrm{an}} \times_{Y^{\mathrm{an}}} T^*Y^{\mathrm{an}}})$$

and

$$f_{\pi^*}^{\mathrm{an}} : K_{\mathrm{coh}}(\mathscr{O}_{X^{\mathrm{an}} \times_{Y^{\mathrm{an}}} T^*Y^{\mathrm{an}}}) \to K_{\mathrm{coh}}(\mathscr{O}_{T^*Y^{\mathrm{an}}}).$$

Hence, by Theorem 3.1 and (3.4), we get following theorem.

and the second

Theorem 3.3. Let $f: X \to Y$ be a proper morphism of proper smooth algebraic varieties, then we have the following commutative diagram

$$\begin{array}{ccc} K_{\mathrm{gd}}(\mathscr{D}_{X^{\mathrm{an}}}) & \xrightarrow{\int_{f^{\mathrm{an}}}} & K_{\mathrm{gd}}(\mathscr{D}_{Y^{\mathrm{an}}}) \\ & & & & \downarrow Car \\ & & & & \downarrow Car \\ K_{\mathrm{coh}}(\mathscr{O}_{T^{*}X^{\mathrm{an}}}) & \xrightarrow{f^{\mathrm{an}}_{\pi}, f^{\mathrm{an}!}_{d}} & K_{\mathrm{coh}}(\mathscr{O}_{T^{*}Y^{\mathrm{an}}}) \end{array}$$

where the group homomorphism $\int_{f^{an}}$ is induced by the direct image functor \int_f .

Remark 3.4. As in Remark 3.2. By using (analytic) Riemann-Roch formula for \mathcal{O} -modules, we get a Riemann-Roch formula for analytic \mathcal{D} -modules.

4 The first main theorem

4.1 Star-products

Let X be a complex manifold (or a smooth variety). We denote by $\delta_X : X \hookrightarrow X \times X$ the diagonal embedding and we set $\Delta_X = \delta_X(X)$. We denote by \mathcal{O}_X the structure sheaf on X, by Ω_X the sheaf of differential forms of maximal degree and by Θ_X the sheaf of vector fields. As usual, we denote by \mathcal{D}_X the sheaf of rings of differential operators on X. Recall that a bi-differential operator P on X is a \mathbb{C} -bilinear morphism $\mathcal{O}_X \times \mathcal{O}_X \to \mathcal{O}_X$ which is obtained as the composition $\delta_X^{-1} \circ \tilde{P}$ where \tilde{P} is a differential operator on $X \times X$ defined on a neighborhood of the diagonal and δ^{-1} is the restriction to the diagonal:

$$P(f,g)(x) = (\tilde{P}(x_1, x_2; \partial_{x_1}, \partial_{x_2})(f(x_1)g(x_2))|_{x_1 = x_2 = x}.$$

Hence the sheaf of bi-differential operators is isomorphic to

where the both \mathscr{D}_X are regarded as \mathscr{O}_X -modules by the left multiplications.

Definition 4.1. A star algebra on $\mathscr{O}_X[[\hbar]]$ is a \mathbb{C}^{\hbar} -bilinear sheaf morphism

 $\star: \mathscr{O}_X[[\hbar]] \times \mathscr{O}_X[[\hbar]] \to \mathscr{O}_X[[\hbar]]$

satisfies the following conditions:

- (i) the star product makes $\mathscr{O}_X[[\hbar]]$ into a sheaf of associated unital \mathbb{C}^{\hbar} -algebra with unit $1 \in \mathscr{O}_X$.
- (ii) there is a sequence $P_i : \mathscr{O}_X \times \mathscr{O}_X \to \mathscr{O}_X$ of bi-differential operators, such that for any two local sections $f, g \in \mathscr{O}_X$ one has

$$f \star g = fg + \sum_{i=1}^{\infty} P_i(f,g)\hbar^i.$$

Note that $f \star g \equiv fg \mod \hbar$, and $P_i(f, 1) = P_i(1, f) = 0$ for all f and i > 0. We call $(\mathscr{O}_X[[\hbar]], \star)$ a star algebra.

4.2 DQ-algebras

Definition 4.2. A DQ-algebra \mathscr{A} on X is a \mathbb{C}^{\hbar} -algebra locally isomorphic to a star-algebra $(\mathscr{O}_X[[\hbar]], \star)$ as a \mathbb{C}^{\hbar} -algebra.

Clearly, a DQ-algebra is a sheaf of \hbar -adically complete flat \mathbb{C}^{\hbar} -algebra on X satisfying $\mathscr{A}/\hbar\mathscr{A} \simeq \mathscr{O}_X$. Note also that for an algebraic variety X, a DQ-algebra \mathcal{A} is called *deformation quantization* of \mathscr{O}_X in [3] and [20].

Remark 4.3. For a smooth projective variety X, there exists a DQ-algebra \mathscr{A}_X on X. For details, one refers to [3].

4.3 Riemann-Roch theorem for DQ-modules

Let X be a complex manifold. To a DQ-algebra \mathscr{A}_X on X, we associate its \hbar -localization, the $\mathbb{C}^{\hbar, \mathrm{loc}}$ -algebra

$$\mathscr{A}_X^{\mathrm{loc}} = \mathbb{C}^{\hbar,\mathrm{loc}} \otimes_{\mathbb{C}^{\hbar}} \mathscr{A}_X.$$

Hence we have an exact functor

$$\operatorname{Mod}(\mathscr{A}_X) \xrightarrow{\otimes_{\mathbb{C}^{\hbar}} \mathbb{C}^{\hbar,\operatorname{loc}}} \operatorname{Mod}(\mathscr{A}_X^{\operatorname{loc}}).$$

If \mathscr{M} is an $\mathscr{A}_X^{\text{loc}}$ -module, \mathscr{M}_0 is an \mathscr{A}_X -submodule and $\mathscr{M}_0 \otimes_{\mathbb{C}^{\hbar}} \mathbb{C}^{\hbar, \text{loc}} \xrightarrow{\sim} \mathscr{M}$, we shall say that \mathscr{M}_0 generates \mathscr{M} .

A coherent $\mathscr{A}_X^{\text{loc}}$ -module \mathscr{M} is good if for any open relatively compact subset U of X, there exists a coherent $\mathscr{A}_X|_U$ -module which generates $\mathscr{M}|_U$.

We denote by $\operatorname{Mod}_{\mathrm{gd}}(\mathscr{A}_X^{\mathrm{loc}})$ the thick abelian subcategory of Mod $(\mathscr{A}_X^{\text{loc}})$ consisting of good $\mathscr{A}_X^{\text{loc}}$ -modules. We denote by $\mathcal{D}_{\mathrm{gd}}^{\mathrm{bc}}(\mathscr{A}_X^{\mathrm{loc}})$ the full triangulated subcategory of $\mathcal{D}^{\mathrm{b}}(\mathscr{A}_X^{\mathrm{loc}})$ consisting of objects with cohomology sheaves belonging to $\operatorname{Mod}_{\mathrm{gd}}(\mathscr{A}_X^{\mathrm{loc}})$. We also denote by $K(\operatorname{Mod}_{\operatorname{gd}}(\mathscr{A}_X^{\operatorname{loc}}))$ the Grothendieck group of $\operatorname{Mod}_{\mathrm{gd}}(\mathscr{A}_X^{\mathrm{loc}})$ and $K_{\mathrm{gd}}(\mathscr{A}_X^{\mathrm{loc}})$ the Grothendieck group of $\mathrm{D}^{\mathrm{b}}_{\mathrm{gd}}(\mathscr{A}_X^{\mathrm{loc}})$ and note that

(4.1)
$$K(\operatorname{Mod}_{\mathrm{gd}}(\mathscr{A}_X^{\operatorname{loc}})) \simeq K_{\mathrm{gd}}(\mathscr{A}_X^{\operatorname{loc}})$$

by [2, P. 283 Lemma 1.6].

If (Y, \mathscr{A}_Y) is another complex manifold endowed with a DQalgebra \mathscr{A}_Y , denote by q_i the *i*-th projection defined on $X \times Y$ (i = 1, 2). Let $\mathscr{M} \in \mathrm{D}^{\mathrm{b}}_{\mathrm{coh}}(\mathscr{A}_X)$ and $\mathscr{K} \in \mathrm{D}^{\mathrm{b}}_{\mathrm{coh}}(\mathscr{A}_{X^a \times Y})$. Set

 $\mathscr{M} \circ \mathscr{K} := Rq_{2!}(\mathscr{K} \overset{\mathrm{L}}{\otimes}_{\mathscr{A}_{X}} q_{1}^{-1}\mathscr{M}).$

If q_2 is proper on q_1^{-1} supp $(\mathcal{M}) \cap$ supp (\mathcal{K}) , then by [13, Theorem 9.1], $\mathcal{M} \circ \mathcal{K} \in \mathrm{D}^{\mathrm{b}}_{\mathrm{coh}}(\mathscr{A}_{Y})$. Similarly, let $\mathcal{M}_{1} \in \mathrm{D}^{\mathrm{b}}_{\mathrm{gd}}(\mathscr{A}_{X}^{\mathrm{loc}})$ and $\mathcal{K}_{1} \in \mathrm{D}^{\mathrm{b}}_{\mathrm{gd}}(\mathscr{A}_{X^{a} \times Y}^{\mathrm{loc}})$. Set

 $\mathscr{M}_1 \circ \mathscr{K}_1 := Rq_{2!}(\mathscr{K}_1 \overset{\mathrm{L}}{\otimes}_{\mathscr{A}_1^{\mathrm{loc}}} q_1^{-1} \mathscr{M}_1).$

If q_2 is proper on $q_1^{-1} \operatorname{supp}(\mathscr{M}_1) \cap \operatorname{supp}(\mathscr{K}_1)$, then $\mathscr{M}_1 \circ \mathscr{K}_1 \in$ $D_{gd}^{b}(\mathscr{A}_{Y}^{loc})$ (see [18, Corollary 3.3.5]).

If X and Y are compact, then a kernel $\mathscr{K} \in \mathrm{D}^{\mathrm{b}}_{\mathrm{coh}}(\mathscr{A}_{X^a \times Y})$ defines a functor

(4.2)
$$\circ \mathscr{K} : \mathrm{D}^{\mathrm{b}}_{\mathrm{coh}}(\mathscr{A}_X) \to \mathrm{D}^{\mathrm{b}}_{\mathrm{coh}}(\mathscr{A}_Y)$$

which is called the Fourier-Mukai transform induced by \mathscr{K} . Hence the Fourier-Mukai transform of (4.2) defines a group homomorphism of Grothendieck groups

$$\circ[\mathscr{K}]: K_{\operatorname{coh}}(\mathscr{A}_X) \to K_{\operatorname{coh}}(\mathscr{A}_Y)$$

where $[\mathscr{K}] \in K_{\operatorname{coh}}(\mathscr{A}_{X^a \times Y})$. Similarly, a kernel $\mathscr{K}^{\operatorname{loc}}$ belongs to $\mathrm{D}^{\mathrm{b}}_{\mathrm{gd}}(\mathscr{A}^{\operatorname{loc}}_{X^a \times Y})$ defines a functor

$$(4.3) \qquad \circ \mathscr{K}^{\mathrm{loc}} : \mathrm{D}^{\mathrm{b}}_{\mathrm{gd}}(\mathscr{A}_X^{\mathrm{loc}}) \to \mathrm{D}^{\mathrm{b}}_{\mathrm{gd}}(\mathscr{A}_Y^{\mathrm{loc}})$$

which is called the Fourier-Mukai transofrm induced by \mathscr{K}^{loc} and the Fourier-Mukai transform of (4.3) defines a group homomorphism of Grothendieck groups

$$\circ[\mathscr{K}^{\mathrm{loc}}]: K_{\mathrm{gd}}(\mathscr{A}_X^{\mathrm{loc}}) \to K_{\mathrm{gd}}(\mathscr{A}_Y^{\mathrm{loc}})$$

where $[\mathscr{K}^{\mathrm{loc}}] \in K_{\mathrm{gd}}(\mathscr{A}_{X^a \times Y}^{\mathrm{loc}}).$ Denote by

(4.4)
$$\operatorname{gr}: \operatorname{D}^{\operatorname{b}}_{\operatorname{coh}}(\mathscr{A}_X) \to \operatorname{D}^{\operatorname{b}}_{\operatorname{coh}}(\mathscr{O}_X)$$

the functor $\mathscr{M} \to \mathbb{C} \overset{\mathrm{L}}{\otimes}_{\mathbb{C}^{\hbar}} \mathscr{M}$ (see [13])

We have the following proposition.

Proposition 4.4. Let (X, \mathscr{A}_X) and (Y, \mathscr{A}_Y) be two compact complex manifolds endowed with DQ-algebras \mathscr{A}_X and \mathscr{A}_Y and let $\mathscr{K} \in D^{\mathrm{b}}_{\mathrm{coh}}(\mathscr{A}_{X^a \times Y})$. Then the following diagram is commutative

$$(4.5) \qquad \begin{array}{ccc} \mathrm{D}^{\mathrm{b}}_{\mathrm{coh}}(\mathscr{A}_{X}) & \xrightarrow{\circ\mathscr{K}} & \mathrm{D}^{\mathrm{b}}_{\mathrm{coh}}(\mathscr{A}_{Y}) \\ & & & & & \downarrow^{\mathrm{gr}} \\ & & & & \downarrow^{\mathrm{gr}} \\ & & \mathrm{D}^{\mathrm{b}}_{\mathrm{coh}}(\mathscr{O}_{X}) & \xrightarrow{\circ(\mathrm{gr}\mathscr{K})} & \mathrm{D}^{\mathrm{b}}_{\mathrm{coh}}(\mathscr{O}_{Y}) \end{array}$$

which induces the following commutative diagram

$$\begin{array}{cccc} K_{\rm coh}(\mathscr{A}_X) & \xrightarrow{\circ[\mathscr{K}]} & K_{\rm coh}(\mathscr{A}_Y) \\ & & & & \downarrow^{\rm gr} \\ & & & & \downarrow^{\rm gr} \\ K_{\rm coh}(\mathscr{O}_X) & \xrightarrow{\circ[{\rm gr}\mathscr{K}]} & K_{\rm coh}(\mathscr{O}_Y) \end{array}$$

where the group homomorphisms gr (4.4) are induced by (4.5). Proof. Using the fact that the functor gr commutes with the convolution \circ .

Definition 4.5. Let X be a compact complex manifold, and denote by $H^*(X, \mathbb{C}) = \bigoplus_i H^i(X, \mathbb{C})$. One defines the Mukai vector of an object $E \in D^{\mathrm{b}}_{\mathrm{coh}}(\mathscr{O}_X)$ as the cohomology class

 $\upsilon: K_{\operatorname{coh}}(\mathscr{O}_X) \to H^*(X, \mathbb{C})$

by the formula

$$\upsilon([E]) = \operatorname{ch}([E]).\sqrt{\operatorname{td}(X)}$$

where ch([E]) is the Chern character of [E] and td(X) is the Todd class of tangent bundle of X.

Let X and Y be compact complex manifolds and let $E \in D^{b}_{coh}(\mathcal{O}_{X \times Y})$. Define the *cohomological integral transform* associated to E

$$\Phi_{[E]}: H^*(X, \mathbb{C}) \to H^*(Y, \mathbb{C})$$

by $\Phi_{[E]}(\alpha) = q_{2*}(\upsilon([E].q_1^*(\alpha)))$, where q_i denotes the *i*-th projection defined on $X \times Y$ (i = 1, 2).

We have the following theorem.

Theorem 4.6. ([5, Proposition 3.1.9] or [9, Corollary 5.29]) The following diagram is commutative

$$\begin{array}{cccc} K_{\operatorname{coh}}(\mathscr{O}_X) & \stackrel{\circ[E]}{\longrightarrow} & K_{\operatorname{coh}}(\mathscr{O}_Y) \\ v & & & \downarrow v \\ H^*(X, \mathbb{C}) & \stackrel{\Phi_{[E]}}{\longrightarrow} & H^*(Y, \mathbb{C}). \end{array}$$

Combining Proposition 4.4 with Theorem 4.6, we obtain the following theorem.

Theorem 4.7. (Riemann-Roch for \mathscr{A} -modules) Let (X, \mathscr{A}_X) and (Y, \mathscr{A}_Y) be two compact complex manifolds endowed with DQalgebras \mathscr{A}_X and \mathscr{A}_Y and let $\mathscr{K} \in D^{\mathrm{b}}_{\mathrm{coh}}(\mathscr{A}_{X^a \times Y})$. Then the following diagram is commutative

4.2 Riemann-Roch theorem for \mathscr{A}^{loc} -modules

First, we need the following lemma.

Lemma 4.8. Let (X, \mathscr{A}_X) be a compact complex manifold endowed with a DQ-algebra \mathscr{A}_X . Let $\mathscr{M} \in \operatorname{Mod}_{\mathrm{gd}}(\mathscr{A}_X^{\mathrm{loc}})$ and let $\mathscr{M}_0 \subset \mathscr{M}$ which generates \mathscr{M} . Then $[\mathscr{M}_0/\hbar \mathscr{M}_0]$ belongs to $K(\operatorname{Mod}_{\mathrm{coh}}(\mathscr{O}_X))$ depends only on \mathscr{M} .

Proof. We consider another generator \mathscr{M}'_0 of \mathscr{M} . Since X is compact, there exists $m, n \geq 0$ such that $\mathscr{M}'_0 \subset \hbar^{-n} \mathscr{M}_0$ and $\mathscr{M}_0 \subset \hbar^{-m} \mathscr{M}'_0$. Hence

$$\mathscr{M}_{0}^{'} \subset \hbar^{-n} \mathscr{M}_{0} \subset \hbar^{-m-n} \mathscr{M}_{0}^{'}.$$

Since our modules have no \hbar -torsion, we have

 $\hbar^{-n}\mathcal{M}_0/\hbar^{-n+1}\mathcal{M}_0\simeq \mathcal{M}_0/\hbar\mathcal{M}_0.$

Hence we may assume that for N large enough, we have

$$\mathscr{M}_{0}^{'}\subset\mathscr{M}_{0}\subset\hbar^{-N}\mathscr{M}_{0}^{'}.$$

We shall prove $[\mathcal{M}_0/\hbar\mathcal{M}_0] = [\mathcal{M}'_0/\hbar\mathcal{M}'_0]$ by induction on $N \ge 0$. When N = 0, it is trivial.

When N = 1, we have the following exact sequences:

$$0 \to \hbar^{-1} \mathscr{M}'_0 / \mathscr{M}_0 \to \hbar^{-1} \mathscr{M}_0 / \mathscr{M}_0 \to \hbar^{-1} \mathscr{M}_0 / \hbar^{-1} \mathscr{M}'_0 \to 0$$
$$0 \to \mathscr{M}_0 / \mathscr{M}'_0 \to \hbar^{-1} \mathscr{M}'_0 / \mathscr{M}'_0 \to \hbar^{-1} \mathscr{M}'_0 / \mathscr{M}_0 \to 0.$$

Since $\hbar^{-1}\mathcal{M}_0/\hbar^{-1}\mathcal{M}'_0 \simeq \mathcal{M}_0/\mathcal{M}'_0$, we get $[\mathcal{M}_0/\hbar\mathcal{M}_0] = [\mathcal{M}'_0/\hbar\mathcal{M}'_0]$. For N > 1. Put $\mathcal{M}''_0 = \mathcal{M}'_0 + \hbar\mathcal{M}_0$. Then

$$\mathcal{M}_{0}^{''} \subset \mathcal{M}_{0} \subset \hbar^{-1} \mathcal{M}_{0}^{''},$$

hence, as above, $[\mathcal{M}_{0}^{''}/\hbar \mathcal{M}_{0}^{''}] = [\mathcal{M}_{0}/\hbar \mathcal{M}_{0}].$ On the other hand,
 $\mathcal{M}_{0}^{'} \subset \mathcal{M}_{0}^{''} \subset \hbar^{-N+1} \mathcal{M}_{0}^{'}$
hence by induction hypothesis, we obtain
 $[\mathcal{M}_{0}^{''}/\hbar \mathcal{M}_{0}^{''}] = [\mathcal{M}_{0}^{'}/\hbar \mathcal{M}_{0}^{'}].$
Hence $[\mathcal{M}_{0}/\hbar \mathcal{M}_{0}] = [\mathcal{M}_{0}^{'}/\hbar \mathcal{M}_{0}^{'}],$ as desired. \Box

Theorem 4.9. Let (X, \mathscr{A}_X) be a compact complex manifold endowed with a DQ-algebra \mathscr{A}_X , then we have a well defined group homomorphism

(4.6)
$$\mu: K(\operatorname{Mod}_{\operatorname{gd}}(\mathscr{A}_X^{\operatorname{loc}})) \to K(\operatorname{Mod}_{\operatorname{coh}}(\mathscr{O}_X)).$$

Proof. Define a function

$$\Gamma: \operatorname{Mod}_{\mathrm{gd}}(\mathscr{A}_X^{\mathrm{loc}}) \to K(\operatorname{Mod}_{\mathrm{coh}}(\mathscr{O}_X))$$

sending \mathscr{M} to $[\mathscr{M}_0/\hbar\mathscr{M}_0]$ with \mathscr{M}_0 a generator of \mathscr{M} . We need to show that Γ is additive. For an exact sequence

$$(\star) \quad 0 \to \mathscr{N}_1 \otimes_{\mathbb{C}^{\hbar}} \mathbb{C}^{\hbar, \mathrm{loc}} \xrightarrow{\alpha} \mathscr{N} \otimes_{\mathbb{C}^{\hbar}} \mathbb{C}^{\hbar, \mathrm{loc}} \xrightarrow{\beta} \mathscr{N}_2 \otimes_{\mathbb{C}^{\hbar}} \mathbb{C}^{\hbar, \mathrm{loc}} \to 0$$

in $\operatorname{Mod}_{\mathrm{gd}}(\mathscr{A}_X^{\mathrm{loc}})$ with $\mathscr{N}_1, \mathscr{N}$ and \mathscr{N}_2 of no \hbar -torsions and set $\mathscr{M}_2 := \beta(\mathscr{N}), \ \mathscr{M} := \mathscr{N}$ and $\mathscr{M}_1 := \ker(\beta|_{\mathscr{N}} : \mathscr{N} \to \beta(\mathscr{N})).$ Then we have the exact sequence

$$(*) \qquad \qquad 0 \to \mathscr{M}_1 \to \mathscr{M} \to \mathscr{M}_2 \to 0$$

in $\operatorname{Mod}_{\operatorname{coh}}(\mathscr{A}_X)$ and $(*) \otimes_{\mathbb{C}^{\hbar}} \mathbb{C}^{\hbar,\operatorname{loc}} \simeq (*)$ with $\mathscr{M}_1, \mathscr{M}$ and \mathscr{M}_2 of no \hbar -torsions. By Lemma 4.8, we have $[\mathscr{N}_1/\hbar \mathscr{N}_1] = [\mathscr{M}_1/\hbar \mathscr{M}_1]$, $[\mathscr{N}/\hbar \mathscr{N}] = [\mathscr{M}/\hbar \mathscr{M}]$ and $[\mathscr{N}_2/\hbar \mathscr{N}_2] = [\mathscr{M}_2/\hbar \mathscr{M}_2]$. Hence from the exact sequence (*), we get $[\mathscr{N}/\hbar \mathscr{N}] = [\mathscr{N}_1/\hbar \mathscr{N}_1] + [\mathscr{N}_2/\hbar \mathscr{N}_2]$. Hence Γ is additive and by universal property, and this defines a group homomorphism $\mu : K(\operatorname{Mod}_{\mathrm{gd}}(\mathscr{A}_X^{\mathrm{loc}})) \to K(\operatorname{Mod}_{\mathrm{coh}}(\mathscr{O}_X))$.

From (1.1) and (4.1), the group homomorphism of (4.6) induces the group homomorphism

(4.7)
$$\lambda: K_{\mathrm{gd}}(\mathscr{A}_X^{\mathrm{loc}}) \to K_{\mathrm{coh}}(\mathscr{O}_X)$$

Now let X, Y be compact complex manifolds. From Lemma 4.8, we obtain the following theorem.

Theorem 4.10. Let (X, \mathscr{A}_X) , (Y, \mathscr{A}_Y) be compact complex manifolds endowed with DQ-algebras \mathscr{A}_X and \mathscr{A}_Y and let $\mathscr{K}^{\text{loc}} \in D^{\text{b}}_{\text{gd}}$ $(\mathscr{A}_{X^a \times Y})$. Then we have the following commutative diagram

$$\begin{array}{cccc} K_{\mathrm{gd}}(\mathscr{A}_X^{\mathrm{loc}}) & \xrightarrow{\circ[\mathscr{K}^{\mathrm{loc}}]} & K_{\mathrm{gd}}(\mathscr{A}_Y^{\mathrm{loc}}) \\ & \lambda & & & \downarrow \lambda \\ & & & & \downarrow \lambda \\ & K_{\mathrm{coh}}(\mathscr{O}_X) & \xrightarrow{\circ\lambda([\mathscr{K}^{\mathrm{loc}}])} & K_{\mathrm{coh}}(\mathscr{O}_Y). \end{array}$$

where λ 's denote the group homomorphisms of (4.7). Proof. Let $\mathscr{K} \in D^{b}_{coh}(\mathscr{A}_{X^{a}\times Y})$ which generates \mathscr{K}^{loc} . Let $\mathscr{M}^{loc} \in D^{b}_{gd}(\mathscr{A}^{loc}_{X})$ and let $\mathscr{M} \in D^{b}_{coh}(\mathscr{A}_{X})$ which generates \mathscr{M}^{loc} . Then $\mathscr{M} \circ \mathscr{K}$ generates $\mathscr{M}^{loc} \circ \mathscr{K}^{loc}$ and $\lambda([\mathscr{M}^{loc} \circ \mathscr{K}^{loc}]) =$ $[\operatorname{gr}(\mathscr{M} \circ \mathscr{K})] = [\operatorname{gr}\mathscr{M} \circ \operatorname{gr}\mathscr{K}] = [\operatorname{gr}\mathscr{M}] \circ [\operatorname{gr}\mathscr{K}] = \lambda[\mathscr{M}^{\operatorname{loc}}] \circ \lambda[\mathscr{K}^{\operatorname{loc}}]$ by Lemma 4.8, as desired. \Box

Combining Theorem 4.6 and Theorem 4.10, we obtain the following theorem.

Theorem 4.11. (Riemann-Roch for \mathscr{A}^{loc} -modules) Let (X, \mathscr{A}_X) and (Y, \mathscr{A}_Y) be two compact complex manifolds endowed with DQ-algebras \mathscr{A}_X and \mathscr{A}_Y and let $\mathscr{K}^{\text{loc}} \in D^{\text{b}}_{\text{gd}}(\mathscr{A}_{X^a \times Y})$. Then the following diagram is commutative

5 Applications to \mathscr{D} -modules

Let X be a complex manifold with sheaf of differential operators \mathscr{D}_X . Recall that the sheaf of $\mathbb{C}^{\hbar,\text{loc}}$ -algebras $\widehat{\mathscr{W}}_{T^*X}$ on the cotangent bundle T^*X has been constructed in [17], see also [18, chapter 3]. This sheaf of algebras contains a subsheaf $\widehat{\mathscr{W}}_{T^*X}(0)$ which is a DQ-algebra such that $\widehat{\mathscr{W}}_{T^*X}(0) \otimes_{\mathbb{C}^{\hbar}} \mathbb{C}^{\hbar,\text{loc}} \xrightarrow{\sim} \widehat{\mathscr{W}}_{T^*X}$. Hence $\widehat{\mathscr{W}}_{T^*X}$ is a \hbar -localization of $\widehat{\mathscr{W}}_{T^*X}(0)$.

Since $\mathscr{W}_{T^*X}|_X$ is flat over \mathscr{D}_X , we have an exact functor (see [18, chapter 3]):

$$(\bullet)^{\mathrm{W}} : \mathrm{Mod}(\mathscr{D}_X) \to \mathrm{Mod}(\mathscr{W}_{T^*X})$$

which sends \mathscr{M} to $\widehat{\mathscr{W}_{T^*X}} \otimes_{\pi^{-1}\mathscr{D}_X} \pi^{-1}\mathscr{M}$, where $\pi : T^*X \to X$ is the projection. Then $(\bullet)^W$ sends $\mathrm{D}^{\mathrm{b}}_{\mathrm{coh}}(\widehat{\mathscr{D}}_X)$ to $\mathrm{D}^{\mathrm{b}}_{\mathrm{coh}}(\widehat{\mathscr{W}_{T^*X}})$ and $\mathrm{D}^{\mathrm{b}}_{\mathrm{gd}}(\widehat{\mathscr{D}}_X)$ to $\mathrm{D}^{\mathrm{b}}_{\mathrm{gd}}(\widehat{\mathscr{W}_{T^*X}})$. Let $f: X \to Y$ be a morphism of complex manifolds. Define

Let $f: X \to Y$ be a morphism of complex manifolds. Define $\widehat{\mathscr{W}}_{T^*X \leftarrow T^*Y}$ as $(\mathscr{D}_{X \leftarrow Y})^{\mathbb{W}}$ and we denote by $\mathscr{K} := \widehat{\mathscr{W}}_{T^*X \leftarrow T^*Y}(0) \in$ $\mathrm{D}^{\mathrm{b}}_{\mathrm{coh}}(\widehat{\mathscr{W}}_{(T^*X)^a \times T^*Y}(0))$, and $\mathscr{K}^{\mathrm{loc}} := \widehat{\mathscr{W}}_{T^*X \leftarrow T^*Y} = \mathscr{K} \otimes_{\mathbb{C}^{\hbar}} \mathbb{C}^{\hbar,\mathrm{loc}} \in$ $\mathrm{D}^{\mathrm{b}}_{\mathrm{gd}}(\widehat{\mathscr{W}}_{(T^*X)^a \times T^*Y})$. We also denote by $\circ \mathscr{K} := \widehat{\mathscr{W}}_{T^*X \leftarrow T^*Y}(0) \overset{\mathrm{L}}{\otimes}_{\widehat{\mathscr{W}}(0)}$ and $\circ \mathscr{K}^{\mathrm{loc}} := \widehat{\mathscr{W}}_{T^*X \leftarrow T^*Y} \overset{\mathrm{L}}{\otimes}_{\widehat{\mathscr{W}}}$. If f is proper, then $\circ \mathscr{K}$ sends $\mathrm{D}^{\mathrm{b}}_{\mathrm{coh}}(\widehat{\mathscr{W}}_{T^*X}(0))$ to $\mathrm{D}^{\mathrm{b}}_{\mathrm{coh}}(\widehat{\mathscr{W}}_{T^*Y}(0))$ and $\circ \mathscr{K}^{\mathrm{loc}}$ sends $\mathrm{D}^{\mathrm{b}}_{\mathrm{gd}}(\widehat{\mathscr{W}}_{T^*X})$ to $\mathrm{D}^{\mathrm{b}}_{\mathrm{gd}}(\widehat{\mathscr{W}}_{T^*X})$ as we mentioned in chapter 4. Hence we have group homomorphisms $\circ[\mathscr{K}] : K_{\mathrm{coh}}(\widehat{\mathscr{W}}_{T^*X}(0)) \to K_{\mathrm{coh}}(\widehat{\mathscr{W}}_{T^*Y}(0))$ and $\circ[\mathscr{K}^{\mathrm{loc}}] : K_{\mathrm{gd}}(\widehat{\mathscr{W}}_{T^*X}) \to K_{\mathrm{gd}}(\widehat{\mathscr{W}}_{T^*Y}).$

Recall that from the proof of [18, Theorem 7.4.4], we have the following commutative diagram

(5.1)
$$\begin{array}{cccc} D^{\mathrm{b}}_{\mathrm{gd}}(\mathscr{D}_{X}) & \xrightarrow{\int_{f}} & D^{\mathrm{b}}_{\mathrm{gd}}(\mathscr{D}_{Y}) \\ & (\bullet)^{\mathrm{W}} & & & \downarrow (\bullet)^{\mathrm{W}} \\ & D^{\mathrm{b}}_{\mathrm{gd}}(\widehat{\mathscr{W}}_{T^{*}X}) & \xrightarrow{\circ\mathscr{K}^{\mathrm{loc}}} & D^{\mathrm{b}}_{\mathrm{gd}}(\widehat{\mathscr{W}}_{T^{*}Y}) \end{array}$$

where \int_{f} is the direct image functor.

Hence we get:

Theorem 5.1. Let $f : X \to Y$ be a proper morphism of complex manifolds and let $\mathscr{K}^{\text{loc}} := \widehat{\mathscr{W}}_{T^*X \leftarrow T^*Y} \in D^{\text{b}}_{\text{gd}}(\widehat{\mathscr{W}}_{(T^*X)^a \times T^*Y})$. Then we have the following commutative diagram

where the group homomorphisms $(\bullet)^{W}$ are induced by (5.1). \Box

æ

We also need the following lemma.

Lemma 5.2. Let X be a compact complex manifold, then the group homomorphism:

$$K_{\mathrm{gd}}(\mathscr{D}_X) \xrightarrow{Car} K_{\mathrm{coh}}(\mathscr{O}_{T^*X})$$

is the composition of group homomorphisms:

$$K_{\mathrm{gd}}(\mathscr{D}_X) \xrightarrow{(\bullet)^{\mathrm{W}}} K_{\mathrm{gd}}(\widehat{\mathscr{W}}_{T^*X}) \xrightarrow{\lambda} K_{\mathrm{coh}}(\mathscr{O}_{T^*X})$$

where λ is the group homomorphism of (4.7). Proof. For $\mathscr{M} \in \mathrm{D}^{\mathrm{b}}_{\mathrm{gd}}(\mathscr{D}_X)$ in $K_{\mathrm{gd}}(\mathscr{D}_X)$, we have $\mathscr{M} = \sum (-1)^i H^i$ (\mathscr{M}). Hence, it is sufficient to prove this for $\mathscr{M} \in \mathrm{Mod}_{\mathrm{gd}}(\mathscr{D}_X)$. Since X is compact, \mathscr{M} has a resolution

$$0 \to \mathscr{D}_X \otimes_{\mathscr{O}_X} \mathscr{F}_N \to \cdots \to \mathscr{D}_X \otimes_{\mathscr{O}_X} \mathscr{F}_0 \to \mathscr{M} \to 0$$

where \mathscr{F}_i are coherent \mathscr{O}_X -modules. Hence it is enough to check for a good \mathscr{D}_X -module $\mathscr{D}_X \otimes_{\mathscr{O}_X} \mathscr{F}$ and this is easy to check. \Box Hence from Theorem 4.10, Theorem 5.1 and Lemma 5.2, we obtain the following theorem.

Theorem 5.3. Let $f : X \to Y$ be a proper morphism of compact complex manifolds and let $\mathscr{K} := \widehat{\mathscr{W}}_{T^*X \leftarrow T^*Y}(0)$. Then we have the following commutative diagram

6 Review on DQ-modules (after K-S)

6.1. Algebroid

In this section, we denote by X a topological space and \mathbb{K} a commutative unital ring. If A is a ring, an A-module means a left A-module. Recall that the notion algebroid was first introduced by Kontsevich [15], see also [1] and [12].

Definition 6.1. A \mathbb{K} -algebroid \mathscr{A} on X is a \mathbb{K} -linear stack such that

- (1) $\mathscr{A}(U)$ is nonempty for $U \subseteq X$,
- (2) two objects of $\mathscr{A}(U)$ are locally isomorphic for $U \subseteq X$.

Let $\mathscr{U} = \{U_i\}_{i \in I}$ be an open covering of X. In the sequel, we set $U_{ij} := U_i \cap U_j, U_{ijk} := U_i \cap U_j \cap U_k$, etc. Consider the data of

(6.1)
$$\begin{cases} a \mathbb{K}\text{-algebroid } \mathscr{A} \text{ on } X \\ \sigma_i \in \mathscr{A}(U) \text{ and isomorphism } \varphi_{ij} : \sigma_j|_{U_{ij}} \to \sigma_i|_{U_{ij}}. \end{cases}$$

To these data, we associate:

• $\mathscr{A}_i = \mathscr{E}nd_{\mathbb{K}}(\sigma_i),$

• $f_{ij} : \mathscr{A}_j|_{U_{ij}} \to \mathscr{A}_i|_{U_{ij}}$ the K-algebra isomorphism $a \mapsto \varphi_{ij} \circ a \circ \varphi_{ij}^{-1}$,

• a_{ijk} , the invertible element of $\mathscr{A}_i(U_{ijk})$ given by $\varphi_{ij} \circ \varphi_{jk} \circ \varphi_{ik}^{-1}$.

Then:

(6.2)
$$\begin{cases} f_{ij} \circ f_{jk} = \operatorname{Ad}(a_{ijk}) \circ f_{ik} \\ a_{ijk}a_{ikl} = f_{ij}(a_{jkl})a_{ijl} \end{cases}$$

(Recall that $\operatorname{Ad}(a)(b) = aba^{-1}$)

Conversely, let \mathscr{A}_i be sheaves of K-algebras on U_i $(i \in I)$, let $f_{ij} : \mathscr{A}_j|_{U_{ij}} \to \mathscr{A}_i|_{U_{ij}}$ $(i, j \in I)$ be K-algebra isomorphisms, and let a_{ijk} $(i, j, k \in I)$ be invertible sections of $\mathscr{A}_i(U_{ij})$ satisfies (6.2). One calls:

(6.3)
$$(\{\mathscr{A}_i\}_{i\in I}, \{f_{ij}\}_{i,j\in I}, \{a_{ijk}\}_{i,j,k\in I})$$

a gluing datum for \mathbb{K} -algebroids on \mathscr{U} .

Theorem 6.2. (See [4], [7]) Assume that the topological space X is paracompact. Considering a gluing datum (6.3) on \mathscr{U} . Then there exist an algebroid \mathscr{A} on X and $\{\sigma_i, \varphi_{ij}\}_{i,j\in I}$ as in (6.1) to which this gluing datum is associated. Moreover, the data $(\mathscr{A}, \sigma_i, \varphi_{ij})$ are unique up to an equivalence of stacks, this equivalence being unique up to a unique isomorphism.

In general, if a topological space X is not paracompact, for example for algebraic varieties, then Theorem 6.2 may be false. Hence we need another local description of such algebraic algebroids.

Definition 6.3. Let \mathscr{A} and \mathscr{A}' be two sheaves of K-algebras. An $\mathscr{A} \otimes \mathscr{A}'$ -module \mathscr{L} is called *bi-invertible* if there exists locally a section ω of \mathscr{L} such that $\mathscr{A} \ni a \mapsto (a \otimes 1)\omega \in \mathscr{L}$ and $\mathscr{A}' \ni a' \mapsto (a' \otimes 1)\omega \in \mathscr{L}$ give isomorphism of \mathscr{A} -modules and \mathscr{A}' -modules, respectively.

Let $\mathscr{U} = \{U_i\}_{i \in I}$ be an open covering of X. Consider the data of

(6.4)
$$\begin{cases} a \ \mathbb{K}\text{-algebroid } \mathscr{A} \text{ on } X \\ \sigma_i \in \mathscr{A}(U). \end{cases}$$

To these data, we associate:

- $\mathscr{A}_i = \mathscr{E}nd_{\mathbb{K}}(\sigma_i),$
- $\mathscr{L}_{ij} := \mathscr{H}om_{\mathscr{A}_i|_{U_{ij}}}(\sigma_j|_{U_{ij}}, \sigma_i|_{U_{ij}})$, hence \mathscr{L}_{ij} is a bi-invertible $\mathscr{A}_i \otimes \mathscr{A}_j^{\mathrm{op}}$ -module on U_{ij} ,
- the natural isomorphisms (6.5) $a_{ijk} : \mathscr{L}_{ij} \otimes_{\mathscr{A}_j} \mathscr{L}_{jk} \xrightarrow{\sim} \mathscr{L}_{ik}.$ Then the diagram below in $\operatorname{Mod}(\mathscr{A}_i \otimes \mathscr{A}_l^{\operatorname{op}}|_{U_{ijkl}})$ commutes: $\mathscr{Q}_{i} \otimes \mathscr{Q} \otimes \mathscr{Q}^{a_{ijk}} \otimes \mathscr{A}_l^{\operatorname{op}}$

(6.6)
$$\begin{array}{c} \mathcal{L}_{ij} \otimes \mathcal{L}_{jk} \mathcal{L}_{kl} \xrightarrow{a_{ijk}} \mathcal{L}_{ik} \otimes \mathcal{L}_{kl} \\ \downarrow^{a_{jkl}} & \downarrow^{a_{ikl}} \\ \mathcal{L}_{ii} \otimes \mathcal{L}_{il} \xrightarrow{a_{ijl}} \mathcal{L}_{il}. \end{array}$$

Conversely, let \mathscr{A}_i be sheaves of \mathbb{K} -algebras on U_i $(i \in I)$, let \mathscr{L}_{ij} be a bi-invertible $\mathscr{A}_i \otimes \mathscr{A}_j^{\mathrm{op}}$ -module on U_{ij} , and let a_{ijk} be isomorphisms as in (6.5) such that the diagram (6.6) commutes. One calls

(6.7)
$$(\{\mathscr{A}_i\}_{i\in I}, \{\mathscr{L}_{ij}\}_{i,j\in I}, \{a_{ijk}\}_{i,j,k\in I})$$

an algebraic gluing datum for \mathbb{K} -algebraids on \mathscr{U} .

Theorem 6.4. (See [13]) Consider an algebraic gluing datum (6.7) on \mathscr{U} . Then there exist an algebroid \mathscr{A} on X and datum $\{\sigma_i, \varphi_{ij}\}_{i,j \in I}$ as in (6.1) to which this gluing datum is associated. Moreover, the data $(\mathscr{A}, \sigma_i, \varphi_{ij})$ are unique up to an equivalence of stacks, this equivalence being unique up to a unique isomorphism.

Sketch of the proof. We define a category $Mod(\mathscr{A}_X)$ as follows. As object $\mathcal{M} \in \operatorname{Mod}(\mathscr{A}_X)$ is defined as a family $\{\mathscr{M}_i, q_{ij}\}_{i,j \in I}$ with $\mathcal{M}_i \in \mathcal{A}_i$ and the $q'_{ij}s$ are isomorphisms

$$q_{ij}:\mathscr{L}_{ij}\otimes_{\mathscr{A}_j}\mathscr{M}_j\xrightarrow{\sim}\mathscr{M}_i$$

making the diagram below commutative:

 $\begin{array}{cccc} \mathscr{L}_{ij} \otimes \mathscr{L}_{jk} \otimes \mathscr{M}_k & \xrightarrow{q_{jk}} \mathscr{L}_{ij} \otimes \mathscr{M}_j \\ & & \downarrow^{a_{jkl}} & & \downarrow^{q_{ij}} \\ \mathscr{L}_{ik} \otimes \mathscr{M}_k & \xrightarrow{q_{ik}} \mathscr{M}_i. \end{array}$ A morphism $\{\mathscr{M}_i, q_{ji}\}_{i,j \in I} \to \{\mathscr{M}'_i, q'_{ji}\}_{i,j \in I}$ in $\operatorname{Mod}(\mathscr{A}_X)$ is a family of morphisms $u_i : \mathscr{M}_i \to \mathscr{M}'_i$ satisfying the natural compatibility conditions. Replacing X with U open in X, we define a prestack $U \to \operatorname{Mod}(\mathscr{A}_U)$ and one easily check that this prestack is a stack and moreover that $Mod(\mathcal{A}_{U_i})$ is equivalent to $Mod(\mathscr{A}_i)$. We denote it by $\mathfrak{Mod}(\mathscr{A})$. Then we define the algebroid \mathscr{A}_X as the substack of $(\mathfrak{Mod}(\mathscr{A}))^{\mathrm{op}}$ consisting of objects locally isomorphic to \mathscr{A}_i on U_i .

For an algebroid \mathscr{A} , one defines the Grothendieck K-linear abelian category $Mod(\mathscr{A})$, whose objects are called \mathscr{A} -modules, by setting:

 $\operatorname{Mod}(\mathscr{A}) := \operatorname{Fct}_{\mathbb{K}}(\mathscr{A}, \mathfrak{Mod}(\mathbb{K}_X)).$

Here $\mathfrak{Mod}(\mathbb{K}_X)$ is the K-linear stack of sheaves of K-modules on X, and $\operatorname{Fct}_{\mathbb{K}}$ is the category of \mathbb{K} -linear functors of stacks.

We have the well defined notion of tensor product for two \mathbb{K} algebroids $\mathscr{C}, \mathscr{C}', \operatorname{say} \mathscr{C} \otimes_{\mathbb{K}} \mathscr{C}'$. For a \mathbb{K} -algebroid $\mathscr{A}, \operatorname{Mod}(\mathscr{A} \otimes_{\mathbb{K}} \mathscr{C})$ $\mathscr{A}^{\mathrm{op}}$) has a canonical object given by

$$\mathscr{A} \otimes_{\mathbb{K}} \mathscr{A}^{\mathrm{op}} \ni (\sigma, \sigma'^{\mathrm{op}}) \mapsto \mathrm{Hom}_{\mathscr{A}}(\sigma', \sigma) \in \mathfrak{Mod}(\mathbb{K}_X).$$

We denote this object by the same letter \mathscr{A} .

For K-algebroids \mathscr{A}_i (i = 1, 2, 3), we have functors:

$$\begin{array}{c} \cdot \otimes_{\mathscr{A}_2} \cdot : \operatorname{Mod}(\mathscr{A}_1 \otimes_{\mathbb{K}} \mathscr{A}_2^{\operatorname{op}}) \times \operatorname{Mod}(\mathscr{A}_2 \otimes_{\mathbb{K}} \mathscr{A}_3^{\operatorname{op}}) = \\ \operatorname{Mod}(\mathscr{A}_1 \otimes_{\mathbb{K}} \mathscr{A}_3^{\operatorname{op}}) \end{array}$$

and

$$\mathscr{H}om_{\mathscr{A}_{1}}(\cdot,\cdot): \operatorname{Mod}(\mathscr{A}_{1} \otimes_{\mathbb{K}} \mathscr{A}_{2}^{\operatorname{op}})^{\operatorname{op}} \times \operatorname{Mod}(\mathscr{A}_{1} \otimes_{\mathbb{K}} \mathscr{A}_{3}^{\operatorname{op}}) \to \operatorname{Mod}(\mathscr{A}_{2} \otimes_{\mathbb{K}} \mathscr{A}_{3}^{\operatorname{op}}).$$

In particular, we have

$$\cdot \otimes_{\mathscr{A}} : \operatorname{Mod}(\mathscr{A}^{\operatorname{op}}) \times \operatorname{Mod}(\mathscr{A}) \to \operatorname{Mod}(\mathbb{K}_X)$$

and

$$\mathscr{H}om_{\mathscr{A}}(\cdot, \cdot) : \operatorname{Mod}(\mathscr{A})^{\operatorname{op}} \times \operatorname{Mod}(\mathscr{A}) \to \operatorname{Mod}(\mathbb{K}_X).$$

Let Y be another topological space and $f : X \mapsto Y$ be a continuous map, and let \mathscr{A} be a K-algebroid on Y. We denote by $f^{-1}\mathscr{A}$ the K-linear stack associated with the prestack \mathfrak{S} given by

 $\mathfrak{S}(U) = \{(\sigma, V); V \text{ is an open subset of } Y \text{ such that } f(U) \subset V$ and $\sigma \in \mathscr{A}(V) \}$ for any open subset U of X,

$$\operatorname{Hom}_{\mathfrak{S}(U)}((\sigma, V), (\sigma', V')) = \Gamma(U, f^{-1}\mathscr{H}om_{\mathscr{A}}(\sigma, \sigma')).$$

Then $f^{-1}\mathscr{A}$ is a \mathbb{K} -algebroid on X.

Notations: For the rest of this chapter, denote by X a complex manifold or a smooth variety and $\mathbb{C}^{\hbar} := \mathbb{C}[[\hbar]]$ the power series algebra.

6.2 Invertible \mathcal{O}_X -algebroids

Definition 6.5. A \mathbb{C} -algebroid \mathscr{P} on X is called an invertible \mathscr{O}_X -algebroid if for any open subset U of X and any $\sigma \in \mathscr{P}(U)$, there is a \mathbb{C} -algebra isomorphism $\mathscr{E}nd_{\mathscr{P}}(\sigma) \simeq \mathscr{O}_U$.

We shall state some properties for invertible \mathcal{O}_X -algebroids.

Let \mathscr{P} be an invertible \mathscr{O}_X -algebroid, then for $\sigma, \sigma' \in \mathscr{P}(U)$, $\mathscr{H}om(\sigma, \sigma')$ is an invertible \mathscr{O}_U -module.

For two invertible \mathcal{O}_X -algebroids \mathscr{P}_1 and \mathscr{P}_2 , we denote by $\mathscr{P}_1 \otimes_{\mathscr{O}_X} \mathscr{P}_2$ the \mathbb{C} -linear stack associated with the prestack whose objects over an open set U is $\mathscr{P}_1(U) \times \mathscr{P}_2(U)$, and $\mathscr{H}om((\sigma_1, \sigma_2), (\sigma'_1, \sigma'_2)) = \mathscr{H}om(\sigma_1, \sigma'_1) \otimes_{\mathscr{O}_X} \mathscr{H}om(\sigma_2, \sigma'_2)$. Then $\mathscr{P}_1 \otimes_{\mathscr{O}_X} \mathscr{P}_2$ is an invertible \mathscr{O}_X -algebroid. Note also that the set of equivalence classes of invertible \mathscr{O}_X -algebroids has a structure of an additive group by the operation $\cdot \otimes_{\mathscr{O}_X} \cdot$, and this group is isomorphic to $H^2(X, \mathscr{O}_X^{\times})$.

The following remark is due to Prof. Joseph Oesterlé and is crucial for the paper.

Remark 6.6. For a smooth algebraic variety X as Zariski topology over \mathbb{C} , the group $H^2(X, \mathscr{O}_X^{\times})$ is trivial. Hence any invertible \mathscr{O}_X -algebroid \mathscr{P} is equivalent to \mathscr{O}_X .

We sketch the proof of it. Let K be the field of rational functions on X, K_X^{\times} , the constant sheaf with stalk the abelian group K^{\times} and denote by $X_1 = \{x \in X | \dim \mathcal{O}_{X,x} = 1\}$ (or the set of closed irreducible hypersurfaces of X). Let $x \in X_1$, since X is a variety, the ring $\mathcal{O}_{X,x}$ is a DVR with valuation v_x and quotient field K. Let $\mathbb{Z}_x = (i_x)_*(\mathbb{Z})$ where $i_x : x \to X$ and let $U \subset X$ be an open set, then $\mathbb{Z}_x(U) = 0$ if $x \notin U$ and $\mathbb{Z}_x(U) = \mathbb{Z}$ if $x \in U$. Considering the sheaf $\bigoplus_{x \in X_1} \mathbb{Z}_x$, then $(\bigoplus_{x \in X_1} \mathbb{Z}_x)(U) = \bigoplus_{x \in X_1} \mathbb{Z}_x(U) = \mathbb{Z}^{U \cap X_1}$. Hence we can define a morphism of sheaves

$$\upsilon: K_X^{\times} \to \bigoplus_{x \in X_1} \mathbb{Z}_x$$

by: $v(f) = (v_x(f))_{x \in X_1 \cap U}$ where U is a nonempty open subset of X and $f \in K_X^{\times}(U) = K^{\times}$. Then one has an exact sequence

$$0 \to \mathscr{O}_X^{\times} \xrightarrow{u} K_X^{\times} \xrightarrow{v} \bigoplus_{x \in X_1} \mathbb{Z}_x \to 0$$

where u is the natural morphism. Since K_X^{\times} is constant, it is a flabby sheaf for the Zariski topology. On the other hand the sheaf $\bigoplus_{x \in X_1} \mathbb{Z}_x$ is also flabby. It follows that $H^j(X, \mathscr{O}_X^{\times})$ is zero for j > 1.

Let $f : X \to Y$ be a morphism of complex manifolds or smooth varieties. For an invertible \mathscr{O}_Y -algebroid \mathscr{P}_Y , we denote by $f^*\mathscr{P}_Y$ the \mathbb{C} -linear stack on X associated with the prestack whose objects on U are the objects of $(f^{-1}\mathscr{P}_Y)(U)$ and $\mathscr{H}om(\sigma, \sigma') = \mathscr{O}_X \otimes_{f^{-1}\mathscr{O}_Y} \mathscr{H}om_{f^{-1}\mathscr{P}_Y}(\sigma, \sigma')$. Then $f^*\mathscr{P}_Y$ is an invertible \mathscr{O}_X -algebroid.

6.3 DQ-algebroids

Definition 6.7. A DQ-algebroid \mathscr{A} on X is a \mathbb{C}^{\hbar} -algebroid such that for each open set $U \subset X$ and each $\sigma \in \mathscr{A}(U)$, the \mathbb{C}^{\hbar} -algebra $\mathscr{H}om_{\mathscr{A}}(\sigma, \sigma)$ is a DQ-algebra on U.

Let \mathscr{A}_X be a DQ-algebroid on X. For an \mathscr{A}_X -module \mathscr{M} , the local notions of being coherent or locally free, etc. make sense.

The category $\operatorname{Mod}(\mathscr{A}_X)$ is a Grothendieck category and we denote by $D(\mathscr{A}_X)$ its derived category and by $D^{\mathrm{b}}(\mathscr{A}_X)$ its bounded

derived category. We denote by $D^{b}_{coh}(\mathscr{A}_{X})$ the full triangulated subcategory of $D^{b}(\mathscr{A}_{X})$ consisting of objects with coherent cohomologies.

6.4 Graded modules

Let \mathscr{A}_X be a DQ-algebroid on X. Let us denote by $\operatorname{gr}(\mathscr{A}_X)$ the \mathbb{C} -algebroid associated with the prestack \mathfrak{S} given by

 $Ob(\mathfrak{S}(U))=Ob(\mathscr{A}_X(U))$ for an open subset U of X,

 $\operatorname{Hom}_{\mathfrak{S}}(\sigma, \sigma') = \operatorname{Hom}_{\mathscr{A}_X}(\sigma, \sigma') / \hbar \operatorname{Hom}_{\mathscr{A}_X}(\sigma, \sigma') \text{ for } \sigma, \sigma' \in \mathscr{A}_X(U).$

Then it is easy to see that $\operatorname{gr}(\mathscr{A}_X)$ is an invertible \mathscr{O}_X -algebroid and the left derived functor of the right exact functor $\operatorname{Mod}(\mathscr{A}_X)$ $\to \operatorname{Mod}(\operatorname{gr}(\mathscr{A}_X))$ given by $\mathscr{M} \to \mathscr{M}/\hbar\mathscr{M}$ is denoted by $\operatorname{gr} :$ $\operatorname{D^b}(\mathscr{A}_X) \to \operatorname{D^b}(\operatorname{gr}(\mathscr{A}_X)).$

The functor gr induces a functor (we keep the same notation):

(6.8)
$$\operatorname{gr}: \operatorname{D}^{\mathrm{b}}_{\mathrm{coh}}(\mathscr{A}_X) \to \operatorname{D}^{\mathrm{b}}_{\mathrm{coh}}(\operatorname{gr}(\mathscr{A}_X)).$$

We need the following lemma in [13].

Lemma 6.8. The functor gr in (6.8) is conservative (i.e., a morphism in $D^{b}_{coh}(\mathscr{A}_{X})$ is an isomorphism as soon as its image by gr is an isomorphism in $D^{b}_{coh}(gr(\mathscr{A}_{X}))$).

Set $D_f^b(\mathbb{C}^{\hbar}) := D_{\mathrm{coh}}^b(\mathbb{C}^{\hbar})$ the full triangulated subcategory of $D^b(\mathbb{C}^{\hbar})$ consisting of objects with finitely generated cohomologies and the same as the category $D_f^b(\mathbb{C})$.

Hence we have a well defined functor $\mathbb{C} \overset{\mathrm{L}}{\otimes}_{\mathbb{C}^{\hbar}} : \mathrm{D}_{f}^{\mathrm{b}}(\mathbb{C}^{\hbar}) \to \mathrm{D}_{f}^{\mathrm{b}}(\mathbb{C})$. As an application of Lemma 6.8, we have

Corollary 6.9. The functor $\mathbb{C} \overset{\mathrm{L}}{\otimes}_{\mathbb{C}^{\hbar}} : \mathrm{D}^{\mathrm{b}}_{f}(\mathbb{C}^{\hbar}) \to \mathrm{D}^{\mathrm{b}}_{f}(\mathbb{C})$ is conservative.

Proof. Apply the functor gr in Lemma 6.8 to $X = {\text{pt}}.$

The following proposition is in [13] which will be used in Theorem 8.2.

Proposition 6.10. Let (X_i, \mathscr{A}_{X_i}) be complex manifolds or smooth varieties endowed with DQ-algebroids \mathscr{A}_{X_i} (i=1,2,3).

(i) Let $\mathscr{K}_{i} \in D^{b}(\mathscr{A}_{X_{i} \times X_{i+1}^{a}})$ (i = 1, 2). Then $\operatorname{gr}(\mathscr{K}_{1} \overset{\mathrm{L}}{\otimes}_{\mathscr{A}_{2}} \mathscr{K}_{2}) \simeq \operatorname{gr}(\mathscr{K}_{1}) \overset{\mathrm{L}}{\otimes}_{\operatorname{gr}(\mathscr{A}_{2})} \operatorname{gr}(\mathscr{K}_{2}).$ (ii) Let $\mathscr{K}_{i} \in D^{b}(\mathscr{A}_{X_{i} \times X_{i+1}})$ (i = 1, 2). Then $\operatorname{gr}\mathscr{H}om_{\mathscr{A}_{2}}(\mathscr{K}_{1}, \mathscr{K}_{2}) \simeq \operatorname{R}\mathscr{H}om_{\operatorname{gr}(\mathscr{A}_{2})}(\operatorname{gr}(\mathscr{K}_{1}), \operatorname{gr}(\mathscr{K}_{2})).$

6.5 Finiteness for DQ-kernels

Recall that we have the following Finiteness theorem.

Finiteness Theorem 6.11. ([13]) Let (X, \mathscr{A}_X) be a compact complex manifold or a smooth projective variety endowed with a DQ-algebroid \mathscr{A}_X and let \mathscr{M} and \mathscr{N} be two objects of $D^{\mathrm{b}}_{\mathrm{coh}}(\mathscr{A}_X)$. Then the object $\mathrm{RHom}_{\mathscr{A}_X}(\mathscr{M}, \mathscr{N})$ belongs to $D^{\mathrm{b}}_f(\mathbb{C}^{\hbar})$.

7 Analytization of a DQ-algebroid

In this chapter, we denote by X a smooth variety, X_{an} the complex manifold and $f: X_{an} \to X$ the continuous map induced by X.

Let \mathscr{A}_X be a DQ-algebroid on X and let $\mathscr{U} = \{U_i\}_{i=1,...,n}$ be a finite affine open covering of X. Consider the data:

$$\begin{cases} a \mathbb{C}\text{-algebroid } \mathscr{A}_X \text{ on } X\\ \sigma_i \in \mathscr{A}_X(U_i). \end{cases}$$

Then by Theorem 6.4, we have the following gluing data:

- $\mathscr{A}_i := \mathscr{E}nd_{\mathscr{A}}(\sigma_i) = (\mathscr{O}_{U_i}[[\hbar]], \star_i),$
- $f_{ij}: \mathscr{A}_j|_{U_{ij}} \to \mathscr{A}_i|_{U_{ij}}$ the \mathbb{C}^{\hbar} -algebra isomorphism,
- a_{ijk} : invertible elements of $\mathscr{A}_i(U_{ijk})$

which satisfies:

$$\begin{cases} f_{ij} \circ f_{jk} = \operatorname{Ad}(a_{ijk}) \circ f_{ik} \\ a_{ijk}a_{ikl} = f_{ij}(a_{jkl})a_{ijl}. \end{cases}$$

Since $\mathscr{A}_i = (\mathscr{O}_{U_i}[[\hbar]], \star_i)$ is a star algebra for each $i = 1, \dots, n$, by definition, we have

$$f_i \star_i g_i = f_i g_i + \sum_{j=1}^{\infty} \beta_j (f_i, g_i) \hbar^j$$
 for $f_i, g_i \in C_i := \Gamma(U_i, \mathscr{O}_X)$

and $\beta_j : \mathscr{O}_{U_i} \times \mathscr{O}_{U_i} \to \mathscr{O}_{U_i}$ is a bi-differential operators for each j.

From the inclusion $C_i \hookrightarrow C_i^{\mathrm{an}} := \Gamma(U_i, \mathscr{O}_{X_{\mathrm{an}}})$, we can define a star product \star_i^{an} on the analytic sheaf \mathscr{O}_{U_i} by

$$f_i^{\mathrm{an}} \star_i^{\mathrm{an}} g_i^{\mathrm{an}} = f_i^{\mathrm{an}} g_i^{\mathrm{an}} + \sum_{j=1}^{\infty} \beta_j^{\mathrm{an}} (f_i^{\mathrm{an}}, g_i^{\mathrm{an}}) \hbar^j \text{ for } f_i^{\mathrm{an}}, g_i^{\mathrm{an}} \in C_i^{\mathrm{an}},$$

where $\beta_j^{\mathrm{an}} : \mathscr{O}_{U_i} \times \mathscr{O}_{U_i} \to \mathscr{O}_{U_i}$ is a bi-differential operators on the analytic sheaf \mathscr{O}_{U_i} for each j. Hence, we obtain the (analytic) star algebra $\mathscr{A}_i^{\mathrm{an}} = (\mathscr{O}_{U_i}[[\hbar]], \star_i^{\mathrm{an}})$ for each i.

Hence, we get the corresponding descent data on X_{an} :

- $\mathscr{A}_i^{\mathrm{an}} = (\mathscr{O}_{U_i}[[\hbar]], \star_i^{\mathrm{an}})$
- $f_{ij}^{\mathrm{an}}: \mathscr{A}_j^{\mathrm{an}}|_{U_{ij}} \to \mathscr{A}_i^{\mathrm{an}}|_{U_{ij}}$ the \mathbb{C}^{\hbar} -algebra isomorphism
- a_{ijk}^{an} , the invertible element of $\mathscr{A}_i^{an}(U_{ijk})$

which satisfies the conditions for algebroid and we obtain the DQ-algebroid $\mathscr{A}_{X_{\mathrm{an}}}$ on X_{an} by Theorem 6.2. (Note that X_{an} is paracompact)

Hence for a DQ-algebroid \mathscr{A}_X on X, we have the induced analytic DQ-algebroid $\mathscr{A}_{X_{\mathrm{an}}}$ on X_{an} .

Furthemore,

$$\mathscr{A}_{X_{\mathrm{an}}} \in \mathrm{Mod}(f^{-1}\mathscr{A}_X \otimes_{\mathbf{k}_0} \mathscr{A}_{X_{\mathrm{an}}}^{\mathrm{op}}).$$

Hence for a DQ-algebroid \mathscr{A}_X on a smooth variety X, we have the functor $f^* := \mathscr{A}_{X_{\mathrm{an}}} \otimes_{f^{-1}(\mathscr{A}_X)} f^{-1}(\cdot) : \mathrm{Mod}(\mathscr{A}_X) \to \mathrm{Mod}(\mathscr{A}_{X_{\mathrm{an}}})$ which sends \mathscr{M} to $\mathscr{A}_{X_{\mathrm{an}}} \otimes_{f^{-1}(\mathscr{A}_X)} f^{-1}(\mathscr{M})$. Denote by $\mathrm{Mod}_{\mathrm{coh}}(\mathscr{A}_X)$ (resp. $\mathrm{Mod}_{\mathrm{coh}}(\mathscr{A}_{X_{\mathrm{an}}})$) the category of \mathscr{A}_X (resp. $\mathscr{A}_{X_{\mathrm{an}}}$) coherent sheaves. If $\mathscr{M} \in \mathrm{Mod}_{\mathrm{coh}}(\mathscr{A}_X)$, then $f^*(\mathscr{M}) \in \mathrm{Mod}_{\mathrm{coh}}(\mathscr{A}_{X_{\mathrm{an}}})$.

8 The second main theorem

In this chapter, we prove the second main theorem of this thesis. Let \mathscr{A}_X be a DQ-algebroid on a smooth algebraic variety X.

8.1 Flatness

Denote by X a smooth variety, X_{an} the complex analytic manifold and $f: X_{an} \to X$ the continuous map induced by X. First, we need the following lemma. The following lemma over one point as a corollary of [13, Theorem 2.6].

Lemma 8.1. The functor $f^* : \operatorname{Mod}(\mathscr{A}_X) \to \operatorname{Mod}(\mathscr{A}_{X_{\operatorname{an}}})$ constructed in chapter 7 is exact. Proof. We may assume that \mathscr{A}_X and $\mathscr{A}_{X_{\operatorname{an}}}$ are DQ-algebras. We need to show that $B := \mathscr{A}_{X_{\operatorname{an}},x}$ is flat over $R := \mathscr{A}_{X,x}$ for each $x \in X$. Note that:

- (a) B has no \hbar -torsion,
- (b) $B_0 := B/\hbar B = \mathscr{O}_{X_{an},x}$ is a flat $R_0 := R/\hbar R = \mathscr{O}_{X,x}$ -module, (c) $B \simeq \varprojlim_n B/\hbar^n B$.

Hence applying Theorem 2.6 in [13] to $X = \{pt\}$, one gets the result.

From Lemma 8.1, the functor $f^* : \operatorname{Mod}(\mathscr{A}_X) \to \operatorname{Mod}(\mathscr{A}_{X_{\operatorname{an}}})$ induces a functor (we keep the same notation):

$$f^* : \mathrm{D}^{\mathrm{b}}_{\mathrm{coh}}(\mathscr{A}_X) \to \mathrm{D}^{\mathrm{b}}_{\mathrm{coh}}(\mathscr{A}_{X_{\mathrm{an}}}).$$

8.2 Fully faithfulness

Now we can prove the following theorem.

Theorem 8.2. Let X be a smooth projective variety, then the functor f^* : $D^{\rm b}_{\rm coh}(\mathscr{A}_X) \to D^{\rm b}_{\rm coh}(\mathscr{A}_{X_{\rm an}})$ is fully faithful. *Proof.* For $\mathscr{M}, \mathscr{N} \in D^{\rm b}_{\rm coh}(\mathscr{A}_X)$, we need to show that the morphism

(8.1)
$$\operatorname{Hom}_{\operatorname{D^b_{coh}}(\mathscr{A}_X)}(\mathscr{M},\mathscr{N}) \to \operatorname{Hom}_{\operatorname{D^b_{coh}}(\mathscr{A}_{X_{an}})}(f^*(\mathscr{M}), f^*(\mathscr{N}))$$

is a bijection. In order to show that the morphism of (8.1) is a bijection, it is sufficient to show that the morphism

(8.2) RHom<sub>D^b_{coh}(
$$\mathscr{A}_X$$
)(\mathscr{M}, \mathscr{N}) \to RHom<sub>D^b_{coh}($\mathscr{A}_{X_{an}}$)($f^*(\mathscr{M}), f^*(\mathscr{N})$)
is an isomorphism. By Theorem 6.11, the two complexes</sub></sub>

$$\operatorname{RHom}_{\operatorname{D^b_{coh}}(\mathscr{A}_X)}(\mathscr{M},\mathscr{N}) \text{ and } \operatorname{RHom}_{\operatorname{D^b_{coh}}(\mathscr{A}_{Xan})}(f^*(\mathscr{M}),f^*(\mathscr{N}))$$

belong to $D_f^b(\mathbb{C}^{\hbar})$. Hence, applying the functor $\mathbb{C} \overset{\mathrm{L}}{\otimes}_{\mathbb{C}^{\hbar}}$ to (8.2) and using Proposition 6.10, we get the morphism in $D_f^b(\mathbb{C})$:

(8.3)

$$\begin{array}{l} \operatorname{RHom}_{\operatorname{D^b_{coh}}(\operatorname{gr}(\mathscr{A}_X))}(\operatorname{gr}\mathscr{M},\operatorname{gr}\mathscr{N}) \to \\ \operatorname{RHom}_{\operatorname{D^b_{coh}}(\operatorname{gr}(\mathscr{A}_{Xan}))}(f^*(\operatorname{gr}\mathscr{M}),f^*(\operatorname{gr}\mathscr{N})). \end{array}$$

Since X is a smooth projective variety and $\operatorname{gr}(\mathscr{A}_X)$ is an invertible \mathscr{O}_X -algebroid, $\operatorname{gr}(\mathscr{A}_X)$ is equivalent to \mathscr{O}_X by Remark 6.6 and hence $\operatorname{gr}(\mathscr{A}_{X_{\mathrm{an}}})$ is equivalent to $\mathscr{O}_{X_{\mathrm{an}}}$. By the equivalence $\operatorname{D}^{\mathrm{b}}_{\mathrm{coh}}(\mathscr{O}_X) \xrightarrow{\sim} \operatorname{D}^{\mathrm{b}}_{\mathrm{coh}}(\mathscr{O}_{X_{\mathrm{an}}})$ (Corollary 2.3), the morphism of (8.3) is an isomorphism. Moreover, the functor $\mathbb{C} \bigotimes_{\mathbb{C}^{\hbar}} \cdot$ is conservative by Corollary 6.9. Therefore, the morphism of (8.2) is an isomorphism and the result follows. \Box

Corollary 8.3. Let X be a smooth projective variety, then the natural functor $f^* : \operatorname{Mod}_{\operatorname{coh}}(\mathscr{A}_X) \to \operatorname{Mod}_{\operatorname{coh}}(\mathscr{A}_{X_{\operatorname{an}}})$ is exact and

fully faithful.

For each n > 0, we denote by

$$\operatorname{Mod}(\mathscr{A}_X/\hbar^n\mathscr{A}_X) \text{ (resp. } \operatorname{Mod}(\mathscr{A}_{X_{\operatorname{an}}}/\hbar^n\mathscr{A}_{X_{\operatorname{an}}}))$$

the full subcategory of

 $\operatorname{Mod}(\mathscr{A}_X)$ (resp. $\operatorname{Mod}(\mathscr{A}_{X_{\operatorname{an}}})$)

consisting of objects of \mathscr{M} such that $\hbar^n : \mathscr{M} \to \mathscr{M}$ is the zero morphism.

Similarly, we denote by

 $\operatorname{Mod}_{\operatorname{coh}}(\mathscr{A}_X/\hbar^n\mathscr{A}_X) \ (\operatorname{resp.} \ \operatorname{Mod}_{\operatorname{coh}}(\mathscr{A}_{X_{\operatorname{an}}}/\hbar^n\mathscr{A}_{X_{\operatorname{an}}}))$

the full subcategory of

 $\operatorname{Mod}_{\operatorname{coh}}(\mathscr{A}_X) \ (\operatorname{resp.}\ \operatorname{Mod}_{\operatorname{coh}}(\mathscr{A}_{X_{\operatorname{an}}}))$

consisting of objects of \mathscr{M} such that $\hbar^n : \mathscr{M} \to \mathscr{M}$ is the zero morphism for each n > 0. Therefore, we have a functor $f_n^* := f^*|_{\operatorname{Mod}_{\operatorname{coh}}(\mathscr{A}_X/\hbar^n \mathscr{A}_X)} : \operatorname{Mod}_{\operatorname{coh}}(\mathscr{A}_X/\hbar^n \mathscr{A}_X) \to \operatorname{Mod}_{\operatorname{coh}}(\mathscr{A}_{X_{\operatorname{an}}})/\hbar^n \mathscr{A}_{X_{\operatorname{an}}}$ for each n > 0.

Note that for n = 1, the category $\operatorname{Mod}_{\operatorname{coh}}(\mathscr{A}_X/\hbar^1\mathscr{A}_X) \simeq \operatorname{Mod}_{\operatorname{coh}}(\mathscr{O}_X)$ is equivalent to the category $\operatorname{Mod}_{\operatorname{coh}}(\mathscr{A}_{X_{\operatorname{an}}}/\hbar^1\mathscr{A}_{X_{\operatorname{an}}}) \simeq \operatorname{Mod}_{\operatorname{coh}}(\mathscr{O}_{X_{\operatorname{an}}})$ by Theorem 1.1.

Corollary 8.4. Let X be a smooth projective variety, then the functor f_n^* : $\operatorname{Mod}_{\operatorname{coh}}(\mathscr{A}_X/\hbar^n\mathscr{A}_X) \to \operatorname{Mod}_{\operatorname{coh}}(\mathscr{A}_{X_{\operatorname{an}}}/\hbar^n\mathscr{A}_{X_{\operatorname{an}}})$ is exact and fully faithful for each n > 0.

8.3 Essential surjectivity

Denote by X a smooth projective variety. Next, we shall prove that the functor $f^*: D^{\mathrm{b}}_{\mathrm{coh}}(\mathscr{A}_X) \to D^{\mathrm{b}}_{\mathrm{coh}}(\mathscr{A}_{X_{\mathrm{an}}})$ is essentially surjective.

We first prove that the functor f_n^* : $\operatorname{Mod}_{\operatorname{coh}}(\mathscr{A}_X/\hbar^n\mathscr{A}_X) \to \operatorname{Mod}_{\operatorname{coh}}(\mathscr{A}_{X_{\operatorname{an}}}/\hbar^n\mathscr{A}_{X_{\operatorname{an}}})$ is essentially surjective for each n > 0. We need the following lemma.

Lemma 8.5. Let \mathcal{A}' and \mathcal{B}' be thick subcategories of abelian categories \mathcal{A} and \mathcal{B} , respectively, and let $\Phi : \mathcal{A} \to \mathcal{B}$ be an exact functor that takes \mathcal{A}' to \mathcal{B}' and such that the natural functor (we keep the same notation) $\Phi : D^{\mathrm{b}}_{\mathcal{A}'}(\mathcal{A}) \to D^{\mathrm{b}}_{\mathcal{B}'}(\mathcal{B})$ induced by Φ is fully faithful. Consider an exact sequence in \mathcal{B}

for some $M \in \mathcal{A}'$.(Note that the middle arrow is an isomorphism)

Proof. Since (*) is an exact sequence, we get the morphism $v : \Phi(M'') \to \Phi(M')[1] = \Phi(M'[1])$ in $D^{b}_{\mathcal{B}'}(\mathcal{B})$. Since Φ is fully faithful, there exists a morphism $u : M'' \to M'[1]$ in $D^{b}_{\mathcal{A}'}(\mathcal{A})$ such that $v = \Phi(u)$. Consider the distinguished triangle

$$M'' \xrightarrow{u} M'[1] \longrightarrow L \xrightarrow{+1},$$

in $D^{b}_{\mathcal{A}'}(\mathcal{A})$ induced by u with $L \in D^{b}_{\mathcal{A}'}(\mathcal{A})$. Then from the long exact sequence

$$\cdots \longrightarrow H^{i}(M'') \longrightarrow H^{i}(M'[1]) \longrightarrow H^{i}(L) \longrightarrow H^{i}(M''[1]) \longrightarrow \cdots,$$

we get $H^i(L) = 0$ for $i \neq -1$. Hence L[-1] is isomorphic to $H^0(L[-1]) \in \mathcal{A}'$ in $D^{\mathrm{b}}_{\mathcal{A}'}(\mathcal{A})$. Denote by $M = H^0(L[-1])$, then from the morphism of distinguished tirangles

we get $N \simeq \Phi(M)$ and the result follows.

Set $\mathcal{A} = \operatorname{Mod}(\mathscr{A}_X/\hbar^n \mathscr{A}_X)$, $\mathcal{A}' = \operatorname{Mod}_{\operatorname{coh}}(\mathscr{A}_X/\hbar^n \mathscr{A}_X)$, $\mathcal{B} = \operatorname{Mod}(\mathscr{A}_{X_{\operatorname{an}}}/\hbar^n \mathscr{A}_{X_{\operatorname{an}}})$ and $\mathcal{B}' = \operatorname{Mod}_{\operatorname{coh}}(\mathscr{A}_{X_{\operatorname{an}}}/\hbar^n \mathscr{A}_{X_{\operatorname{an}}})$. We shall apply Lemma 8.5.

Theorem 8.6. The functor $f_n^* : \operatorname{Mod}_{\operatorname{coh}}(\mathscr{A}_X/\hbar^n \mathscr{A}_X) \to \operatorname{Mod}_{\operatorname{coh}}(\mathscr{A}_{X_{\operatorname{an}}}/\hbar^n \mathscr{A}_{X_{\operatorname{an}}})$ is essentially surjective for each n > 0. *Proof.* We shall prove by induction. When n = 1, it is Theorem 1.1. We shall prove the theorem for n > 1. For $\mathscr{M}^{\operatorname{an}} \in \operatorname{Mod}_{\operatorname{coh}}(\mathscr{A}_{X_{\operatorname{an}}}/\hbar^n \mathscr{A}_{X_{\operatorname{an}}})$, consider the exact sequence

$$0 \to \hbar \mathscr{M}^{\mathrm{an}} \to \mathscr{M}^{\mathrm{an}} \to \mathscr{M}^{\mathrm{an}} / \hbar \mathscr{M}^{\mathrm{an}} \to 0$$

where $\hbar \mathscr{M}^{\mathrm{an}} \in \mathrm{Mod}_{\mathrm{coh}}(\mathscr{A}_{X_{\mathrm{an}}}/\hbar^{n-1}\mathscr{A}_{X_{\mathrm{an}}})$ and $\mathscr{M}^{\mathrm{an}}/\hbar \mathscr{M}^{\mathrm{an}}$ belongs to $\mathrm{Mod}_{\mathrm{coh}}(\mathscr{O}_{X_{\mathrm{an}}})$. Denote by $\mathscr{M}_{1}^{\mathrm{an}} = \hbar \mathscr{M}^{\mathrm{an}}$ and $\mathscr{M}_{2}^{\mathrm{an}} = \mathscr{M}^{\mathrm{an}}/\hbar \mathscr{M}^{\mathrm{an}}$. By induction hypothesis, there exists $\mathscr{M}_{1} \in \mathrm{Mod}_{\mathrm{coh}}$ $(\mathscr{A}_{X}/\hbar^{n-1}\mathscr{A}_{X})$ such that $f_{n-1}^{*}(\mathscr{M}_{1}) \simeq \mathscr{M}_{1}^{\mathrm{an}}$, on the other hand, by Theorem 1.1, there exists $\mathscr{M}_{2} \in \mathrm{Mod}_{\mathrm{coh}}(\mathscr{O}_{X})$ such that $f_{1}^{*}(\mathscr{M}_{2})$ $\simeq \mathscr{M}_{2}^{\mathrm{an}}$. Since $f^{*}|_{\mathcal{A}} : \mathcal{A} \to \mathcal{B}$ is exact by Lemma 8.1 and the functor $\mathrm{D}_{\mathcal{A}'}^{\mathrm{b}}(\mathcal{A}) \to \mathrm{D}_{\mathcal{B}'}^{\mathrm{b}}(\mathcal{B})$ induced by $f^{*}|_{\mathcal{A}}$ is fully faithful by the proof of Theorem 8.2, applying Lemma 8.5, we obtain the following commutative diagram

for some $\mathcal{M} \in \mathcal{A}'$. Hence f_n^* is essentially surjective.

From Corollary 8.4 and Theorem 8.6, we get

Theorem 8.7. The functor $f_n^* : \operatorname{Mod}_{\operatorname{coh}}(\mathscr{A}_X/\hbar^n \mathscr{A}_X) \to \operatorname{Mod}_{\operatorname{coh}}(\mathscr{A}_{X_{\operatorname{an}}}/\hbar^n \mathscr{A}_{X_{\operatorname{an}}})$ is an equivalence for each n > 0.

Now we continue to prove that the functor $f^*: \mathrm{D}^{\mathrm{b}}_{\mathrm{coh}}(\mathscr{A}_X) \to \mathrm{D}^{\mathrm{b}}_{\mathrm{coh}}(\mathscr{A}_{X_{\mathrm{an}}})$ is essentially surjective.

Denote by $\mathbb N$ the set of positive integers, viewed as a category defined by

$$\begin{aligned} \operatorname{Ob}(\mathbb{N}) &= \mathbb{N} \\ \operatorname{Hom}_{\mathbb{N}}(i,j) &= \begin{cases} \{ \operatorname{pt} \} & \text{if } i \leq j, \\ \emptyset & \text{otherwise.} \end{cases} \end{aligned}$$

Define prestacks $\mathfrak{S}, \mathfrak{S}_{an}$ on \mathbb{N} as follows:

• $\mathfrak{S}(n) := \operatorname{Mod}_{\operatorname{coh}}(\mathscr{A}_X/\hbar^n \mathscr{A}_X)$ for $n \in \mathbb{N}$,

• $r_u : \mathfrak{S}(j) \to \mathfrak{S}(i)$ is the functor for $i \leq j$ and $u \in \operatorname{Hom}_{\mathbb{N}}(i, j)$. Similarly,

- $\mathfrak{S}_{\mathrm{an}}(n) := \mathrm{Mod}_{\mathrm{coh}}(\mathscr{A}_{X_{\mathrm{an}}}/\hbar^n \mathscr{A}_{X_{\mathrm{an}}})$ for $n \in \mathbb{N}$,
- $r_u : \mathfrak{S}_{\mathrm{an}}(j) \to \mathfrak{S}_{\mathrm{an}}(i)$ is the functor for $i \leq j$ and $u \in \mathrm{Hom}_{\mathbb{N}}(i,j)$.

We need the following theorem (cf $\S1.5$).

Theorem 8.8. We have the following equivalences:

- (1) $\varprojlim_{n \in \mathbb{N}} \mathfrak{S}(n) \simeq \operatorname{Mod}_{\operatorname{coh}}(\mathscr{A}_X),$
- (2) $\varprojlim_{n\in\mathbb{N}} \mathfrak{S}_{\mathrm{an}}(n) \simeq \mathrm{Mod}_{\mathrm{coh}}(\mathscr{A}_{X_{\mathrm{an}}}).$

Proof. We only need to prove (1) and similar to (2). Let $\mathcal{M} \in Mod_{coh}(\mathscr{A}_X)$, then we obtain the family $\{(F_n, \varphi_u)\}$ where:

(i)
$$F_n := \mathscr{M}/\hbar^n \mathscr{M} \in \mathfrak{S}(n)$$
 for $n \in \mathbb{N}$,

(ii) $\varphi_u : r_u F_j \xrightarrow{\sim} F_i \text{ for } i \leq j, \ u \in \operatorname{Hom}_{\mathbb{N}}(i,j) \text{ and } r_u : \mathfrak{S}(j) \to \mathfrak{S}(i) \text{ is defined by sending } \mathscr{M} \text{ to } \mathscr{M}/\hbar^i \mathscr{M}.$

It is easy to check that $\{(F_n, \varphi_u)\}$ satisfies the cocycle condition (a) and hence $\{(F_n, \varphi_u)\} \in \varprojlim \mathfrak{S}(n)$.

For $\mathcal{M}, \mathcal{M}' \in \operatorname{Mod}_{\operatorname{coh}}(\mathscr{A}_X)$, then these define two objects $F = \{(F_n, \varphi_u)\}$ and $F' = \{(F'_n, \varphi_u)\}$ in $\varprojlim_{n \in \mathbb{N}} \mathfrak{S}(n)$. Let $f : \mathcal{M} \to \mathcal{M}' \in \operatorname{Mod}_{\operatorname{coh}}(\mathscr{A}_X)$, then we have the set of families $\{f_n\}_{n \in \mathbb{N}}$ where $f_n : \mathcal{M}/\hbar^n \mathcal{M} \to \mathcal{M}'/\hbar^n \mathcal{M}' \in \operatorname{Hom}_{\mathfrak{S}(n)}(\mathcal{M}/\hbar^n \mathcal{M}, \mathcal{M}'/\hbar^n \mathcal{M}')$. It is easy to check that $\{f_n\}$ satisfies the commutative diagram for definition (b) and hence $\{f_n\}_{n \in \mathbb{N}} \in \operatorname{Hom}_{\varprojlim_{n \in \mathbb{N}}} \mathfrak{S}(n)$ by sending \mathcal{M} to $\{(F_n, \varphi_u)\}$ and $f \in \operatorname{Hom}_{\mathcal{A}_X}(\mathcal{M}, \mathcal{M}')$ to $\{f_n\}_{n \in \mathbb{N}}$.

On the other hand, if $\{(F_n, \varphi_u)\} \in \varprojlim_{n \in \mathbb{N}} \mathfrak{S}(n)$, then by defini-

tion e.g (a), we have

- (i) $F_n \in \mathfrak{S}(n)$ for $n \in \mathbb{N}$,
- (ii) $\varphi_u : r_u F_j \xrightarrow{\sim} F_i \text{ for } i \leq j, \ u \in \operatorname{Hom}_{\mathbb{N}}(i,j) \text{ and } r_u : \mathfrak{S}(j) \to \mathfrak{S}(i).$

Hence the system $\{F_n\}_{n\in\mathbb{N}}$ is a projective system and $\varprojlim_{n\in\mathbb{N}} F_n \in Mod_{\mathrm{coh}}(\mathscr{A}_X)$ by [13, Lemma 1.13].

For two objects $F = \{(F_n, \varphi_u)\}$ and $F' = \{(F'_n, \varphi'_u)\}$ in $\varprojlim_{n \in \mathbb{N}} \mathfrak{S}(n)$. By definition e.g (b), $\operatorname{Hom}_{\varprojlim_{n \in \mathbb{N}}} \mathfrak{S}(n)(F, F')$ is the set of families $f = \{f_n\}_{n \in \mathbb{N}}$ such that $f_n \in \operatorname{Hom}_{\mathfrak{S}(n)}(F_n, F'_n)$ and the following diagram commutes for $u : i \to j$ and $i \leq j$,

$$\begin{array}{cccc} r_u F_j & \stackrel{\varphi_u}{\longrightarrow} & F_i \\ r_u(f_j) & & & & \downarrow f_i \\ r_u F'_j & \stackrel{\varphi'_u}{\longrightarrow} & F'_i. \end{array}$$

Hence the system $f = \{f_n\}_{n \in \mathbb{N}}$ is a projective system and we get that the morphism $\varprojlim_{n \in \mathbb{N}} f_n$ belongs to $\operatorname{Mod}_{\operatorname{coh}}(\mathscr{A}_X)$. Therefore, we can define a functor $\Psi : \varprojlim_{n \in \mathbb{N}} \mathfrak{S}(n) \to \operatorname{Mod}_{\operatorname{coh}}(\mathscr{A}_X)$ by $\Psi(\{(F_n, \varphi_u)\}) = \varprojlim_{n \in \mathbb{N}} F_n$ and $\Psi(f = \{f_n\}_{n \in \mathbb{N}}) = \varprojlim_{n \in \mathbb{N}} f_n$. Now it is easy to check that $\Phi \circ \Psi \simeq \operatorname{id}_{\varprojlim_{n \in \mathbb{N}}} \mathfrak{S}(n)$ and $\Psi \circ \Phi \simeq \operatorname{id}_{\operatorname{Mod}_{\operatorname{coh}}(\mathscr{A}_X)}$. Therefore, the result follows. \Box

Corollary 8.9. The functor $f^* : \operatorname{Mod}_{\operatorname{coh}}(\mathscr{A}_X) \to \operatorname{Mod}_{\operatorname{coh}}(\mathscr{A}_{X_{\operatorname{an}}})$ is an equivalence. *Proof.* This follows from Theorem 8.7 and Theorem 8.8. \Box

From Theorem 8.2, Corollary 8.9 and the proof of Lemma 1.2 for essentially surjectivity, we get what we want mentioned above.

Corollary 8.10. The natural functor $f^*: D^{\mathrm{b}}_{\mathrm{coh}}(\mathscr{A}_X) \to D^{\mathrm{b}}_{\mathrm{coh}}(\mathscr{A}_{X_{\mathrm{an}}})$ is essentially surjective.

Therefore, we get the second main theorem of this thesis.

Main Theorem 8.11.. The natural functor $f^*: D^{\mathrm{b}}_{\mathrm{coh}}(\mathscr{A}_X) \to D^{\mathrm{b}}_{\mathrm{coh}}(\mathscr{A}_{X_{\mathrm{an}}})$ is an equivalence. Proof. This follows from Theorem 8.2 and Corollary 8.10. \Box

References

- A. D'Agnolo and P. Polesello, Deformation quantization of complex involutive submanifolds, in: Noncommutative geometry and physics, World Sci. Publ., Hackensack, NJ p. 127-137 (2005).
- [2] P. Berthelot and L. Illusie, Grothendieck, A. Théorie des intersections et théorème de Riemann-Roch. Lect. Notes Math
 225. Springer, Berlin Heidelberg New York (1971).
- [3] R. Bezrukavnikov and D. Kaledin, Fedosov quantization in algebraic context, Mosc. Math. J. 4 p. 559-592, (2004).
- [4] L. Breen, On the Classification of 2-gerbes and 2-stacks, Astérisque-Soc. Math. France 225 (1994).
- [5] A. Caldararu, Derived categories of twisted sheaves on Calabi-Yau manifolds, Ph.D thesis, Cornell University (2000).
- [6] Hou-Yi Chen, *GAGA for DQ-algebroids*, To appear in Rendiconti del Seminario Matematico dell'Universita' di Padova.
- [7] J. Giraud, Cohomologie non abélienne, Grundlehren der Math. Wiss 179 Springer-Verlag (1971).
- [8] A. Grothendieck, SGA 1 Revêtements étales et Groupe Fondamental, Lecture Notes in Math. 224, Springer-Verlag, Heidelberg (1971).
- [9] D. Huybrechts, Fourier-Mukai transforms in algebraic variety, Oxford mathematical Monographs, Oxford, (2006).
- [10] R. Hotta, Kiyoshi. Takeuchi, Toshiyuki Tanisaki, *D*modules, Perverse sheaves, and Representation theory,

Progress in Mathematics, Vol. **236**, Birkhauser Boston, Cambridge, MA, 2008.

- [11] M. Kashiwara, *D-modules and Microlocal Calculus*, Iwanami series in Modern Mathematics, Iwanami Shorten, Tokyo, 2000 (in Japanese); Translations of Mathematical Monographs, Vol. **217**, American Mathematical Society, Providence, RI, 2003 (in English; translated by Mutsumi Saito.)
- [12] ____, Quantization of contact manifolds, Publ. RIMS, Kyoto Univ. 32 p. 1-5 (1996).
- [13] M. Kashiwara and P. Schapira, *Deformation quantization modules*, To appear.
- [14] _____, Categories and sheaves, Grundlehren der Math. Wiss.
 332, Springer-Verlag (2006).
- [15] M. Kontsevich, Deformation quantization of algebraic varieties, Euro-Conférence Moshé Flato, Part III (Dijon, 2000)
 Lett. Math. Phys. 56 (3) p. 271-294 (2001).
- [16] G. Laumon, Sur la catégorie dérivée des D-modules filtrés, Algebraic geometry (M. Raumaid amd T. Shioda eds) Lecture Notes in Math. Springer-Verlag 1016 pp. 151-237 (1983).
- [17] P. Polesello and P. Schapira, Stacks of quantizationdeformation modules over complex symplectic manifolds, Int. Math. Res. Notices 49 p. 2637-2664 (2004)
- [18] P. Schapira, From D-modules to deformation quantization modules, course note given at Buenos Aires, July 2008. http://www.math.jussieu.fr/~schapira/

- [19] J-P. Serre, Géométrie algébrique et géométrie analytique, Ann. Inst. Fourier 6 (1956), 1-42.
- [20] A. Yekutieli, Deformation quantization in algebraic geometry, Adv. Math. 198 pp. 383-432 (2005).

