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摘要

惡意攻擊者可以透過添加微小的擾動生成目標性對抗例，促使神經網路產生

特定的錯誤輸出。在跨模型的遷移性下，即使無法直接存取神經網路模型的參

數，模型一樣可能受到對抗例的攻擊。現今研究提出以集成式方法來生成對抗例

以增加遷移性。為了更加提升遷移性，模型增強法會增加參與集成式方法的模型

數量。然而，現存的模型增強法只在無目標性攻擊的設定上進行。在本作中，我

們提出多樣化權重修剪，一個新穎的模型增強法，來產生目標性攻擊。相較於以

往的研究，多樣化權重修剪會保護模型中必要的權重，並同時確保修剪後模型的

多樣性。我們將在實驗中呈現此對目標性攻擊的重要性。我們在 ImageNet兼容資

料集上，提供了更具挑戰性的設定下的實驗結果：分別是遷移到經過對抗訓練的

模型、非捲積神經網路模型以及 Google雲端電腦視覺服務。結果顯示我們提出

的多樣化權重修剪分別能在三個設定下，基於最新方法，提升目標性攻擊成功率

10.1%, 6.6%,以及 7.0%。我們將會在投稿接受後開放程式碼。

關鍵字：對抗式攻擊、神經網路修剪、電腦視覺與圖型識別
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Abstract

Malicious attackers can generate targeted adversarial examples by imposing tiny

noises, forcing neural networks to produce specific incorrect outputs. With cross-model

transferability, network models remain vulnerable even in black-box settings. Recent

studies have shown the effectiveness of ensemble-based methods in generating transfer-

able adversarial examples. To further enhance transferability, model augmentation meth-

ods aim to producemore networks participating in the ensemble. However, existingmodel

augmentation methods are only proven effective in untargeted attacks. In this work, we

propose Diversified Weight Pruning (DWP), a novel model augmentation technique for

generating transferable targeted attacks. DWP leverages the weight pruning method com-

monly used in model compression. Compared with prior work, DWP protects necessary

connections and ensures the diversity of the pruned models simultaneously, which we

show are crucial for targeted transferability. Experiments on the ImageNet-compatible

dataset under various and more challenging scenarios confirm the effectiveness: transfer-
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ring to adversarially trained models, Non-CNN architectures, and Google Cloud Vision.

The results show that our proposed DWP improves the targeted attack success rates with

up to 10.1%, 6.6%, and 7.0% on the combination of state-of-the-art methods, respectively.

The source code will be made available after acceptance.

Keywords: Adversarial Attack, Network Pruning, Computer Vision and Pattern Recog-

nition
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Chapter 1 Introduction
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Figure 1.1: The big picture of DWP. Based on the over-parameterized property of neural
networks, we leverage weight pruning to produce additional diversified pruned models
from existing white-box networks at each iteration. By protecting necessary weight con-
nections in each network, the quality of models is well-preserved. These additional pruned
models can better impose the semantics of the target class onto adversarial images, yield-
ing higher targeted transferability.

While deep learning continues to achieve breakthroughs in various domains, recent

1
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studies have shown vulnerabilities of deep neural networks to adversarial attacks, causing

severe threats in safety-critical applications. For example, in image classification, an at-

tacker can add human-imperceptible perturbations to benign images at testing time. These

adversarial examples can fool a well-trained neural network to yield arbitrary classifica-

tion results. Several attacks have been proposed to improve and evaluate the robustness

of CNNs [2, 21, 42].

In the white-box settings, with complete information on the victim model, the at-

tacker can generate adversarial examples effectively and efficiently. As for black-box

settings, where the attacker only has limited information about the victim model, it is still

possible to create cross-model attacks using a substitute model with white-box adversarial

attack methods. This kind of black-box attack depends on the transferability of adversarial

attacks.

Many methods have been proposed to increase the transferability for untargeted at-

tacks, where the goal is to decrease the accuracy of the victim model. However, there

is still room for improvement in creating transferable targeted attacks, where the attacker

aims to mislead the victim model to produce a predefined specific outcome. Recent works

use an ensemble-based approach to generate transferable targeted adversarial examples

with multiple neural networks as substitute models simultaneously [26, 48]. To further

enlarge the power of the ensemble, model augmentation creates additional networks by

altering the existing ones [8, 23] and generates adversarial examples with these networks

altogether.

However, we find that current methods of model augmentation rarely consider the

importance of neurons and weight connections in networks. While Ghost Networks [23]

2
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inserts extra dropout layers and random skip connection mechanisms into networks to

produce additional models, these dropout layers randomly drop neurons away without

considering their significance. Authors in [8] introduce another uniform erosion on the

remaining parameters after dropout and skip connection to increase diversity. However,

there is still a lack of protection on necessary parameters. To avoid excessively destroying

the performance of networks, these methods require heavy tuning on the hyperparameters

like dropout rates, the amount of skip connection, the second erosion rates, and the loca-

tions of the inserted dropout layers.

When it comes to transferable targeted attacks, the quality of white-box substitute

models plays a more crucial role. Rather than merely moving away from the original

class, the semantics of targeted adversarial examples need to be close to the target class

to acquire higher transferability [22, 30]. Dropping or disturbing the significant compo-

nents in substitute networks can mislead targeted adversarial examples and yield worse

transferability.

To overcome these problems, we learn from model compression and propose an im-

proved model augmentation method named Diversified Weight Pruning (DWP). Model

compression reduces the storage and computation overhead without substantial influence

on model performances [9, 11, 20, 28]. With the over-parameterized property [4] of neu-

ral networks, weight pruning [11] can maintain the performance of a network by only

removing redundant weight connections. Figure 1.1 summarizes our attack pipeline. To

generate transferable targeted adversarial examples, we apply random weight pruning to

each single CNN network accessible to form additional ones. These pruned networks re-

main stable since the significant weight connections are protected. We thus improve the

ensemble-based approach with these extra diverse models.

3
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To evaluate DWP, we experiment with an ImageNet-compatible dataset used in the

NIPS 2017 adversarial attack competition [18]. The average targeted success rate of DWP

reaches 81.30% across CNNs. Furthermore, we test DWP in the more challenging sce-

narios of transferring to adversarially trained models and Non-CNN architectures. The

results show that DWP improves the targeted success rate with up to 10.1% and 6.6% on

average in these two settings. Finally, we demonstrate our DWP on the real-world Google

Cloud Vision service and get 7.0% improvement.

In summary, our primary contributions are as follows:

• We propose DWP leveraging weight pruning to improve the existing model aug-

mentation methods on transferable targeted attacks. Experiments show that our

DWP enhances the combination of current state-of-the-art techniques.

• The experiment results show that DWP remains effective in more challenging set-

tings like transferring to adversarially trained models, Non-CNN architectures, and

even the real-world Google Cloud Vision service.

• We analyze the cosine similarities of adversarial perturbations between different

pruned networks to verify that DWP increases the diversity of networks for gener-

ating adversarial perturbations.

• We provide intuitive experiments on explaining the success of targeted attacks with

DWP.

4
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Chapter 2 Related Work

2.1 Transferable Attack

Throughout the work, we focus on simple transferable attacks [48], which require

neither additional data nor model training for attacking compared to resource-intensive

attacks [10, 16, 17, 44, 47]. Recent works aiming for simple transferable attacks mainly

include four categories: gradient optimization, input transformation, advanced loss func-

tion, ensemble, and model augmentation.

2.1.1 Gradient Optimization

With iterative optimization-based methods [2, 19], one can get better solutions to

an objective function for attacking through multiple times of optimization on adversarial

examples and get stronger attacking results. Adjusting gradients used to update adversarial

examples at each iteration appropriately has been shown beneficial for overcoming sub-

optimal results in optimization. [5] combinesmomentum techniques with iterative attacks,

accumulating gradients at each iteration to escape local optimum and stable the direction of

updating. [24] applies Nesterov accelerated gradient for optimization, giving adversarial

examples an anticipatory updating to yield faster convergence. [43] introduces variance

5



doi:10.6342/NTU202301130

tuning based momentum to reduce variance of gradients at each iteration. [14] leverages

integrated gradients to include smoothing, attention modification and optimization during

attacking.

2.1.2 Input Transformation

Motivated by Data Augmentation [35], several works suggest attacking transformed

input to prevent adversarial examples from overfitting white-box models and failing to

transfer to black-box ones. [45] uses random resizing and padding throughout the itera-

tive attack. [6] enumerates several translated versions for each input image and fuses the

gradients acquired on all of them. [24] leverages the scale-invariant property of CNNs

and employs multiple scale copies from each input image.

2.1.3 Modern Loss Function

Cross entropy loss is widely used in image classification, also serving as the objective

function for adversarial attacks. However, for targeted attacks, cross entropy is pointed

out the saturation problem [22] as the output confidence of target class approaches to

one. To this end, alternative loss functions attempt to provide more suitable gradients for

optimization. [22] leverages Poincaré distance as the loss function, which amplifies the

gradient magnitude as the confidence of the target class grows. [48] proposes a simple

logit loss, which has constant gradient magnitude regardless of the output probability.

6
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2.1.4 Ensemble and Model Augmentation

Adversarial examples generated by ensemblingmultiplewhite-box networks aremore

likely to transfer to black-box networks [26]. Instead of simply fusing the output confi-

dence of each white-box network, [46] suggests reducing the gradient variance of white-

box models during attacking. To further improve ensemble-based approaches, Model

Augmentation produces additional diverse models from the existing white-box networks.

[23] acquires ghost networks for ensemble through perturbing dropout and skip connec-

tions of existing ones. [8] further improves the diversified ensemble via dual-stage ero-

sion.

2.2 Network Pruning

The intensive cost of computation and storage hinders applications of neural net-

works, especially on embedding systems. Network Compression aims to reduce the scale

of networks, making them more feasible for deployment. With the over-parameterized

property [4], several works about removing redundancy in networks, known as Network

Pruning, are proposed and become a branch of Network Compression. [20] uses the

second-derivative information to find redundant weights in networks. [11] shows that

neural networks can highly preserve performance even if trimming more than half of their

connections. Retraining after pruning for better preservation of accuracy is also investi-

gated [9, 28].

7
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Chapter 3 Methodology

Given a neural network θ and a benign example x, we generate a targeted adversarial

example xadv for the target class ytarget by solving the following constrained optimization

problem:

argmin
xadv

J(xadv, ytarget; θ) s.t.
∥∥xadv − x

∥∥
∞ ≤ ϵ, (3.1)

where J is the loss function for multiclass classification and ϵ is the perturbation budget.

To circumvent the gradient saturation problem of cross-entropy, we use logit loss [48] as

our loss function J .

3.1 Preliminary and Motivation

We start by establishing the roles of current state-of-the-art techniques in our iter-

ative attack. Then, we demonstrate how we apply Weight Pruning to improve targeted

transferability.

3.1.1 Momentum and Nesterov Iterative Method (NI)

Inspired by Nesterov Accelerated Gradient [31], Nesterov Iterative Method (NI) [24]

modifies Momentum Iterative-FGSM [5] by adding the historical gradients to current ad-

9
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versarial examples xn and gets xnesn in advance. Gradients at the ahead xnesn instead of

the current xn will be used for updating. The scheme helps accelerate convergence by

avoiding the local optimum earlier:

xnesn = xn + α · µ · gn−1 (3.2)

gn = µ · gn−1 +∇xJ(x
nes
n , ytarget; θ) (3.3)

xn+1 = Clipϵx(xn − α · sign(gn)). (3.4)

Here µ is the decay factor of the historical gradients. The gradient computed encourages

adversarial examples to increase confidence logit output by the white-box network model

θ on the target class through gradient ascent with learning rate α. A clipping operation

onto the ϵ-ball centered at the original input image x is at the end of each iteration. To

preserve more information about the gradient for attacking [49], we don’t include the L1

normalization.

3.1.2 Scale Invariant Method (SI)

Neural networks can preserve output even though the input image x goes through

scale operations such as Sm(x) = x/2m [24]. With the scale-invariant property, each

composite of white-box networks and scale operations becomes different functions. Ad-

versarial examples can enjoy more diverse gradients:

gn = µ · gn−1 +
1

M

M−1∑
m=0

∇xJ(Sm(x
nes
n ), ytarget; θ). (3.5)

M is the number of scaled versions feeding into the network for each image.

10
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3.1.3 Diverse Input Patterns (DI)

Inspired by data augmentation techniques [35] used in network training, DI [45] im-

poses random resizing and padding on each image before it feeds into network models to

avoid overfitting. Straightforward cooperation with NI and SI is as follows:

gn = µ · gn−1 +
1

M

M−1∑
m=0

∇xJ(Sm(T (x
nes
n , pDI)), y

target; θ). (3.6)

The introduced T decides whether to apply random resizing at each iteration with proba-

bility pDI, which degenerates when pDI = 0.

3.1.4 Translation Invariant Method (TI)

To deal with different discriminative regions [6] of various defense neural networks,

TI produces several translated versions for the current image in advance and computes

the gradient for each separately. These gradients will then be fused and used to attack the

current image. [6] also shows that one can approximate the gradient fusion using convo-

lution. The approximation prevents TI from enduring the costly computation on excessive

translated versions for every single image, also yielding the further revised updating pro-

cedure:

gn = µ · gn−1 +W ∗ 1

M

M−1∑
m=0

∇xJ(Sm(T (x
nes
n , pDI)), y

target; θ). (3.7)

W is the convolution kernel matrix applied. Some typical options are linear, uniform, or

Gaussian kernel.

We abbreviate the attacking procedure so far to NI-SI-TI-DI with the combination of

these techniques.

11
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3.2 Diversified Weight Pruning

We name the proposed approach Diversified Weight Pruning (DWP) due to the in-

creased diversity ofwhite-boxmodels for ensemble viaWeight Pruning. FollowingWeight

Pruning, we sort the connections of eachwhite-box network by the L1 norm of their weight

values. With a predefined rate r, we only consider the lowest (100 · r)% “prunable” since

weights with small absolute values are shown unnecessary [11]. Networks can preserve

accuracy after these connections are pruned away even without retraining [11].

For our pruning operation, we first identify the set of prunable weights. Let γ be the

(100 · (1− r))-th percentile of weights in θ. We formulate the prunable set:

Γ(θ, r) = {w ∈ θ|w < γ} ⊆ θ. (3.8)

With Γ(θ, r) collecting all the prunable weights of θ, we introduce an indicator vector for

it:

ΠΓ(θ,r) = (λ1, λ2, ..., λκ), (3.9)

where κ is the total number of weights in θ = {w1, w2, ..., wκ} including non-prunable

ones. λi is determined by whether its corresponding wi ∈ θ is in the prunable subset

Γ(θ, r):

λi =


1, if wi ∈ Γ(θ, r)

0, otherwise

. (3.10)

Supported by the indicator vector ΠΓ(θ,r), our pruning operation P (·) can protect the non-

12
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prunable weights by masking:

P (θ, r) = (1κ − ΠΓ(θ,r) ⊙ b)⊙ θ, (3.11)

where ⊙ denotes the element-wise multiplication and 1κ = (1, 1, ..., 1) ∈ Rκ denotes an

all-one vector. b = (b1, b2, ..., bκ) is a vector with bi
i.i.d∼ Bernoulli(pbern), where pbern is the

probability for pruning each connection independently.

To be specific, ΠΓ(θ,r) and b both are binary masks with identical layout as θ. ΠΓ(θ,r)

is responsible for protecting non-prunable weights, while b is for random pruning. Each

binary element inΠΓ(θ,r)⊙b indicates whether to prune the corresponding weight value in

θ. The main difference from Dropout [37] used in previous model augmentations [8, 23],

is that DWP only considers prunable weights. The detailed comparison will be shown in

the following sections.

Instead of producing all the pruned models beforehand, we acquire pruned models at

each iteration right before gradient computing.

gn = µ · gn−1+

W
M

∗
M−1∑
m=0

∇xJ(Sm(T (x
nes
n , pDI)), y

target;P (θ, r)). (3.12)

With this longitudinal ensemble strategy [8, 23], the storage and computation overhead

are almost identical to the original attack procedure. We summarize the time cost of DWP

in Supplementary Material. With K white-box models, our final DWP attack procedure

13
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is shown as follows:

gn = µ · gn−1+

W
M

∗
M−1∑
m=0

K∑
k=1

βk∇xJ(Sm(T (x
nes
n , pDI)), y

target;P (θk, r)), (3.13)

where βk are the ensemble weights,
∑K

k=1 βk = 1.

Benefiting from no dependency on network retraining and extra data, our proposed

DWP is simple and lightweight. As there is no further retraining, we select the L1 norm

for pruning since it is better than L2 on preserving accuracy [11].

14
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Chapter 4 Experiments

In this section, we first describe the experiment settings and demonstrate the results

of transferable targeted attacks under various scenarios. We then inspect the diversified

property of pruned models in DWP from the view of geometry. Finally, we illustrate an

intuitive explanation of the success of transferable targeted attacks.

4.1 Experimental Setup

4.1.1 Dataset

We use an ImageNet-compatible dataset1 containing 1,000 images provided by the

NIPS 2017 adversarial attack competition [18]. Each image in the dataset has an officially

assigned target class for fair comparison.

4.1.2 Networks

We perform experiments on four naturally trained CNNs: Inception-v3 (Inc-v3) [39],

ResNet-50 (Res-50) [12], VGGNet-16 (VGG-16) [36] and DenseNet-121 (Den-121) [13],

four naturally trained Vision Transformers (ViTs): ViT-Small-Patch16-224 (ViT-S-16-
1https://github.com/cleverhans-lab/cleverhans/blob/11ea10/examples/nips17_

adversarial_competition/dataset/dev_dataset.csv
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224), ViT-Base-Patch16-224 (ViT-B-16-224)[7], Swin-Small-Patch4-Window7-224 (Swin-

S-224), Swin-Base-Patch4-Window7-224 (Swin-B-224)[27], three naturally trainedMulti-

Layer Perceptrons (MLPs): Mixer-Base-Patch16-224 (MLP-Mixer) [40], ResMLP-Layer24-

224 (ResMLP) [41], gMLP-Small-Patch16-224 (gMLP) [25], and two adversarially trained

CNNs: ens3-adv-Inception-v3 (Inc-v3ens3) and ens-adv-inception-resnet-v2 (IncRes-v2ens)

[42]. All the networks are publicly accessible.

4.1.3 Hyper-parameters

Our method includes three input transformations TI, DI, and SI. Following [22], we

set the probability pDI of DI to be 0.7 and select a Gaussian kernel with a kernel length

of 5 for W in TI. For SI, due to the limited computing resources, we set the number of

scale copies M = 3. Following [5, 22, 24, 48], the momentum decay factor µ is set to

1. For all the iterative attacks in the experiments, we use 100 iterations with learning rate

α = 2/255 as in [48]. We use the perturbation budget ϵ = 16 under L∞ norm in all the

experiments, complying with the rule in the NIPS 2017 competition. Last but not least,

for our proposed DWP, the probability pbern is 0.5 and the prunable rate r is 0.7. In other

words, we prune 35% of the connections of each network in expectation at each iteration.

4.1.4 Baseline Methods

We compare the targeted transferability of DWP and the previous model augmenta-

tion methods, Ghost Networks (GN) and Dual-Stage Network Erosion (DSNE) [8, 23],

in combination with the state-of-the-art techniques NI-SI-TI-DI. For non-residual net-

works like VGG-16 and Inc-v3, we insert dropout layers after each activation function.

16
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As for residual networks such as Res-50 and Den-121, we apply skip connection ero-

sion on the blocks of each network. GN [23] drops activation outputs with a dropout rate

Λdrop
GN and multiplies the skip connection by a factor sampled from the uniform distribution

U [1 − Λskip
GN , 1 + Λskip

GN ]. Based on GN, DSNE[8] not only uses a dropout rate Λdrop
DSNE, but

also scales the values passing dropout by an uniform random factor from U [1−Λscale
DSNE, 1+

Λscale
DSNE]. DSNE also alters the skip connections like GN with U [1 − Λskip

DSNE, 1 + Λskip
DSNE],

and introduces an additional bias factor γ. We set Λdrop
GN = 0.012,Λskip

GN = 0.22,Λdrop
DSNE =

0.01,Λscale
DSNE = 0.1,Λskip

DSNE = 0.14, and γ = 0.8 following [8, 23]. We do not include VT

[43], SVRE [46], and IG [14] due to their specific assumptions or implementation details.

However, we compare the results with them in Supplementary Material.

4.2 Transferable Targeted Attack in Various Scenarios

We consider targeted transferability under four scenarios: transferring across CNNs,

transferring to adversarially trained models, Non-CNN architectures, and the real-world

Google Cloud Vision service. We prepare specified networks for each case. We generate

adversarial examples on the ensemble of the white-box models and evaluate targeted suc-

cess rates on the specified black-box model. No access to the black-box model is allowed

during an attack. Note that for the ensemble, we use equal weights βk = 1/K for each of

theK white-box models.

4.2.1 Transferring across Naturally Trained CNNs

As convolution neural networks are widely used, we first examine the cases between

CNNs. We select four classic CNN networks following [48]: Res-50, VGG-16, Den-121,

17
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Attack -Res-50 -Den-121 -VGG16 -Inc-v3 Avg
TI-DI 68.2 81.2 75.3 57.6 70.58
+GN 58.7 78.9 77.6 64.0 69.80
+DSNE 55.9 65.4 77.8 57.1 64.05
+DWP 69.0 82.1 81.3 61.4 73.45
NI-SI 29.0 40.1 30.3 34.6 33.5
+GN 49.2 63.0 67.5 40.9 55.15
+DSNE 44.8 58.7 66.8 41.4 52.93
+DWP 52.4 62.6 67.9 40.4 55.83
NI-SI-TI-DI 76.1 86.7 77.1 66.9 76.70
+GN 68.7 85.0 80.1 72.4 76.55
+DSNE 67.0 75.1 79.1 66.7 71.98
+DWP 77.7 89.4 87.2 70.9 81.30

Table 4.1: The targeted success rates of transferring across CNNs. The “-” prefix stands
for the black-box network with the other three serving as the white-box ones for ensemble.
“+” means the participation of a specific model augmentation method. DWP outperforms
other leading model augmentations GN and DSNE.

and Inc-v3.

Table 4.1 shows the results of transferable targeted attacks between CNNs. DWP

boosts the attack methods and outperforms GN and DSNE. As the four CNNs possess

designs such as Residual, Dense, and Inception blocks, the results demonstrate the bene-

fits of the diversified ensemble in attacking black-box CNNs with different mechanisms

from the white-box substitutes. Protecting necessary connections is also shown to be ad-

vantageous. We also provide untargeted results and transferring from a single model in

Supplementary Material.

4.2.2 Transferring to Adversarially Trained Models

Adversarial training [29, 42] is one of the primary techniques for defending against

malicious attacks. It brings robustness to models by training them with adversarial exam-
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ples. Under the scenario of transferring to adversarially trained models, we ensemble only

the four naturally trained networks (Res-50, Den-121, VGG16, and Inc-v3) as white-box

models to simulate the situation where attackers have few details about defense. The two

adversarially trained networks (Inc-v3ens3 and IncRes-v2ens) will act as our black-box

model separately. We also include the results of multi-step adversarially trained networks

[33] in Supplementary Material.

Table 4.2 summarizes the results of transferring to adversarially trained networks.

Targeted success rates under this scenario are lower due to the robustness of adversarially

trained models. Under such a challenging scenario, DWP still helps alleviate the discrep-

ancy between white-box naturally trained and black-box adversarially trained networks,

bringing about up to 10.1% improvement on average. The power of the diversified ensem-

ble under the premise of protecting necessary connections is highlighted again, especially

for black-box networks with significant differences from the white-box ones.

4.2.3 Transferring to Non-CNN Architectures

In practice, information about the networks used by defenders remains unknown to

attackers. A targeted attack method is more practical if adversarial examples can trans-

fer to black-box architectures different from the white-box ones accessible by attackers.

Beyond CNNs, recent works attempt to solve computer vision tasks using Vision Trans-

formers (ViTs) [7, 27] and Multi-Layer Perceptrons (MLPs) [25, 40, 41]. To be more

comprehensive, we evaluate the targeted transferability from CNNs to these architectures.

We generate targeted adversarial images on the ensemble of the four naturally trained

CNNs. NI-SI-TI-DI comes with the three model augmentation methods, respectively,
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Attack Method NI-SI-TI-DI +GN +DSNE +DWP
Inc-v3ens3 50.0 51.6 49.7 65.3
IncRes-v2ens 19.4 29.8 34.5 39.0
Average 34.7 40.7 42.1 52.15

Table 4.2: The targeted success rates of transferring to adversarially trained models. Our
DWP outperforms GN and DSNE over 10%.

Attack Method NI-SI-TI-DI +GN +DSNE +DWP
ViT-S-16-224 25.9 31.5 31.1 37.3
ViT-B-16-224 24.8 29.9 28.4 37.4
Swin-S-224 26.7 29.1 26.5 36.7
Swin-B-224 23.9 27.1 23.9 32.9
MLP-Mixer 21.7 24.2 27.0 30.9
ResMLP 51.3 56.5 54.4 64.1
gMLP 20.4 25.3 26.9 30.4
Average 27.81 31.94 31.17 38.53

Table 4.3: The targeted success rates of transferring to Non-CNN architectures. Our DWP
maintains higher success rates stably.

including our DWP. From Table 4.3, model augmentations are effective even though the

black-box networks have no convolution operations other than the input projection. Our

DWP improves the results on both ViTs and MLPs, outperforming all the other methods.

4.2.4 Transferring to Google Cloud Vision

For a more practical scenario, we use Google Cloud Vision to evaluate our targeted

adversarial examples. Google Cloud Vision predicts a list of labels with their correspond-

ing confidence scores and only returns label annotations with confidence above 50%.

The scenario is completely black-box since no information about gradients and param-

eters of the underlying system is accessible. Previous works leverage query-based attacks

[1, 3, 15] or black-box transferability [26, 48]. However, query-based methods often re-

quire large numbers of queries, and the existing transferable attacks still have substantial

room for improvement.

In this experiment, we randomly select 100 images correctly labeled byGoogle Cloud
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NI-SI-TI-DI +GN +DSNE +DWP
27 43 42 50

Table 4.4: Targeted success rates (%) on Google Cloud Vision

(a) Clean image (b) NI-SI-TI-DI + DWP

Figure 4.1: A demo of our DWP attack on Google Cloud Vision. The attacked image with
the ground truth label of “Beakers” is recognized as the target class “Padlocks” assigned
by the NIPS 2017 Imagenet-compatible dataset.

Vision from the Imagenet-compatible dataset. Similarly, we use the four naturally trained

CNNs to generate adversarial examples. We identified an image as a successful attack if

at least one of the labels returned by Google Cloud Vision is semantically close to its cor-

responding target class. We summarize the attack results in Table 4.4. DWP outperforms

the previous model augmentation methods by 7%. Figure 4.1 demonstrates an attack on

Google Cloud Vision. We refer readers to Supplementary Material for more demos.

4.3 Perturbations from Different Pruned Models

To investigate whether our method can promote diversity of the ensemble, we exam-

ine the relationship between the generated adversarial perturbations instead of between

model outputs. The reason is that compared to the logit outputs by models, perturba-
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tion vectors are more direct in determining the update of adversarial examples. Recent

works [6, 24] have proposed methods improving transferability with output-preserving

operations. Although these operations retain model outputs, they modify the gradients

and enrich the directions of adversarial perturbations. With these motivations, we focus

on the diversity between perturbations computed from pruned models.

Liu et al. [26] first studied the effectiveness of ensemble in enhancing transferability.

They demonstrate the diversity of the ensemble by showing near-zero cosine similarities

between perturbations from different white-box networks. Following [26], we calculate

cosine similarities between perturbations generated from the additional pruned models

produced by DWP. From each of our four naturally trained CNNs, we acquire five pruned

models with different connections pruned. We term the cosine similarity between per-

turbations of pruned models from an identical CNN as intra-CNN similarity. The case

from different CNNs is termed as inter-CNN similarity. To avoid cherry-picking, both

intra-CNN and inter-CNN similarities come from the average of the first ten images in

the ImageNet-compatible dataset. Futhermore, we only use NI in combination with DWP

to produce perturbations in this experiment to prevent the influence of factors other than

pruning.

Figure 4.2 is a symmetric matrix containing 16 (4× 4) blocks. The diagonal blocks

summarize ten (C5
2 ) intra-CNN similarities while the non-diagonal blocks summarize 25

(5 × 5) inter-CNN similarities in cells. The diagonal cells are all 1.0 since they are all

from two identical perturbation vectors. As for the non-diagonal cells, we find the cell

values in diagonal blocks (intra-CNN) slightly higher than in non-diagonal blocks (inter-

CNN). However, these values are still close to zero, appearing dark red. The results show

that whether two pruned models come from the same CNN, the generated perturbations
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Figure 4.2: Perturbation cosine similarities between pruned models. Each diagonal block
summarizes 10 (C5

2 ) intra-CNN similarity cells. Each non-diagonal block summarizes 25
(5×5) inter-CNN similarity cells. The pairwise cosine similarity matrix is symmetric and
shows orthogonality between perturbations.

generated are always nearly orthogonal. These observations on orthogonality support our

claim that pruned models obtained via DWP provide more diversity for attacking.

4.4 Semantics of the Target Class

Prior work has shown that targeted adversarial examples semantically close to the

target class tend to be more transferable [16, 17, 30]. To provide more insight into the

success of DWP, we explore the patterns in targeted adversarial examples.

GradCAM [34] uses the mean gradient values of a specific class output confidence

with respect to each intermediate feature map to be its corresponding coefficient. The
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Clean image
Vase

Clean image
Marmoset

NI-SI-TI-DI
Marmoset

+GN Mar-
moset

+DSNE Mar-
moset

+DWP Mar-
moset

Clean image
Thatch

Clean image
Poodle

NI-SI-TI-DI
Poodle +GN Poodle +DSNE Poodle +DWP Poodle

Figure 4.3: The GradCAMs of clean and targeted adversarial images on naturally trained
ResNet-50. The two leftmost columns show GradCAMs of clean images regarding the
ground truth and target class. The other columns provide the GradCAMs of adversarial
images generated by different methods. Targeted perturbations guide the highlighted area
and impose semantics of the target class on images.

weighted average of feature maps using these coefficients provides an explanation of a

particular decision made by the model. In Figure 4.3, we draw GradCAMs on naturally

trained ResNet-50 to provide some explainable observations on adversarial images gen-

erated by different methods.

In the two leftmost columns, we show the GradCAMs of clean images with their

ground truth and target class, respectively. GradCAMs correctly highlight regions about

the ground truth class on the clean images. On the other hand, without adversarial per-

turbations, there is no evident relation between the target class and the corresponding

highlighted areas. The other four columns show the GradCAMs with the target class

of adversarial images generated by NI-SI-TI-DI and NI-SI-TI-DI plus GN, DSNE, and

DWP, respectively. The adversarial perturbations produce target class-specific patterns

and guide the highlighted region of GradCAMs. Note that the perturbation budget is

limited to l∞ ≤ 16 to ensure the attacks are quasi-imperceptible. For more results of

GradCAMs, we refer readers to Supplementary Material.
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Figure 4.4: The comparison of object detection results of the target class. Compared to
GN and DSNE, adversarial images generated by our DWP are more likely to contain at
least one object detected as the target class.

For quantitative comparison, we leverage an object detector2 to detect target-class

patterns in the targeted adversarial images. We set the threshold to 0.1, which is lower than

usual, to capture more potential patterns in images. The bars on the right side of Figure 4.4

summarize the number of images with at least one bounding box detected. Compared to

other methods, DWP is the method most likely to generate adversarial examples with

at least one target-class pattern detected. Notice that under the limit of the perturbation

budget, even though we have a lower threshold, there are still about 150 images without

any target-class object detected according to the bars on the left side of Figure 4.4. Since

we do not integrate object detectors into our attack procedure, the results support that our

DWP is better at producing target-class-specific information.

2https://github.com/ibaiGorordo/ONNX-ImageNet-1K-Object-Detector
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Chapter 5 Conclusion

In this paper, we propose Diversified Weight Pruning (DWP) leveraging network

compression to improve the targeted transferability of adversarial attacks. DWP produces

additional pruned models for ensemble via weight pruning. Due to the over-parameterized

property, the quality of prunedmodels introduced byDWP is well-preserved. Experiments

show that by protecting the necessary weight connections of networks, targeted adversarial

examples are more likely to acquire semantics of the target class. By evaluating DWP on

ImageNet, we show that DWP improves the state-of-the-art model augmentation methods

on transferable targeted attacks, especially for challenging scenarios such as transferring

to adversarially trained models and Non-CNN architectures. We hope that our work can

serve as a bridge between network compression and transferable attack, inspiring more

collaboration.
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Appendix A — Supplementary Material

A.1 Ablation Analysis on Prunable Rates

In the ablation analysis, we explore targeted attack success rates under different prun-

able rates r. As the prunable rate determines the number of connections possible to be

pruned during attacking, white-box models can produce more diverse pruned models us-

ing higher prunable rates. However, with excessive connections pruned away, the quality

of pruned networks will be unstable.

To find the sweet spot to the trade-off, we enumerate different prunable rates, con-

ducting the attack experiments with all the other hyper-parameters as default. Figure A.1

shows the trade-off. We select r = 0.7 throughout our experiments as the curve of mean

targeted success rates reaches its maximum. With our designated prunable rate r = 0.7,

DWP prunes about 35% of weight connections. Figure A.2 shows the decline in the ac-

curacy of the four CNNs with different rates of minor weight connections pruned.

A.2 Transferring acrossCNNswith SimilarArchitectures

Table A.1 summarizes the targeted attack success rates across Inception-v3 (Inc-v3),

Inception-v4 (Inc-v4), Inception-Resnet-v2 (IncRes-v2) [38] and ResNet-101 (Res-101)
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Figure A.1: The targeted success rates under different prunable rates r on each black-
box model. Each curve shows the trade-off between the diversity and stability of pruned
models. The curve for mean targeted success rates reaches its maximum at r = 0.7.

[12]. The group of CNNs was popular for evaluating attacks [5, 6, 22, 45, 46]. However,

due to similar architectures between these CNNs, [48] suggests using a group of networks

with relatively diverse designs. For completeness, we also include the targeted success

rates of different model augmentation methods under this group of similar CNNs.

Attacks -Inc-v3 -Inc-v4 -IncRes-v2 -Res-101 Avg
NI-SI-TI-DI 65.2 71.3 73.2 20.9 57.65
+GN 77.5 70.0 69.0 26.1 60.65
+DSNE 70.7 60.3 69.5 13.7 53.55
+DWP 83.1 86.1 85.4 40.6 73.80

Table A.1: The targeted success rates of transferring across similar CNN architectures.
The “-” prefix stands for the black-box network with the other three serving as the white-
box ones for the ensemble. “+” means the participation of a specific model augmentation
method. DWP outperforms other leading model augmentation methods GN and DSNE.
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Figure A.2: The decay on the accuracy of each network with respect to the rate of
minor weight connections pruned.

A.3 Transferring toMulti-StepAdversarially TrainedMod-

els

Authors in [42] propose “ensemble adversarial training”, which trains the network

with adversarial examples generated from external models. While the single-step attack

in the procedure is less costly, the models fall short of resisting iterative attacks even in

black-box scenarios. Thus, we explore the black-box targeted attack results on the models

with multi-step adversarial training.

Transferable targeted attacks from naturally trained CNNs to multi-step adversarially

trained networks remain an open problem. Recent attacks only show the non-targeted

results [32]. Even the resource-intensive attack [30] fails to achieve satisfied targeted
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success rates. We borrow the adversarially trained networks from [33] in the following

experiments. Table A.2 shows the failure of transferring targeted attacks from the four

naturally trained CNNs to various three-step adversarially trained models.

Despite the frustrating results, there is a different story when we generate adversarial

examples on multi-step adversarially trained networks. Even if the victim network under-

going multi-step adversarial training has a different architecture, it remains vulnerable to

these attacks. Table A.3 summarizes the targeted attack results of the ensemble composed

of Res-18 (|ϵ|∞ = 2), Res-50 (|ϵ|∞ = 2) and WideRes-50-2 (|ϵ|∞ = 2). The two up-

per groups in Table A.3 report the targeted success rates on different CNN architectures

and the norm of ϵ used in adversarial training. We also provide the results on naturally

trained CNNs and the ones with ensemble adversarial training. Our DWP stably benefits

the results.

Attack Method NI-SI-TI-DI +GN +DSNE +DWP
Res-18 (|ϵ|∞ = 1) 0.2 0.2 0.5 0.2
Res-50 (|ϵ|∞ = 1) 0.0 0.6 0.8 0.3
WideRes-50-2 (|ϵ|∞ = 1) 0.0 0.2 0.4 0.1
Res-18 (|ϵ|2 = 3) 0.0 0.1 0.1 0.0
Den-121 (|ϵ|2 = 3) 0.0 0.0 0.0 0.0
VGG16 (|ϵ|2 = 3) 0.0 0.0 0.0 0.0
Resnext-50 (|ϵ|2 = 3) 0.0 0.0 0.1 0.0

Table A.2: The targeted success rates of transferring to three-step adversarially trained
networks from naturally trained CNNs.

A.4 Untargeted and Single-Model Results

Although our work mainly focuses on the targeted attack setting and ensemble strat-

egy, we provide some untargeted results in Table A.4 and attacks without ensemble in

Table A.5.
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Attack Method NI-SI-TI-DI +GN +DSNE +DWP
Res-18 (|ϵ|∞ = 1) 33.2 33.6 21.7 37.0
Res-50 (|ϵ|∞ = 1) 40.5 39.4 21.0 41.4
WideRes-50-2 (|ϵ|∞ = 1) 37.8 35.4 18.2 39.5
Res-18 (|ϵ|2 = 3) 12.6 12.6 12.6 15.2
Den-121 (|ϵ|2 = 3) 17.4 18.0 11.3 19.2
VGG16 (|ϵ|2 = 3) 12.5 13.3 9.60 15.5
Resnext-50 (|ϵ|2 = 3) 19.1 19.2 11.5 21.0
Res-50 21.9 16.8 12.6 22.3
Den-121 27.6 29.0 15.9 39.0
VGG16 8.60 8.80 6.20 18.6
Inc-v3 17.4 17.9 8.70 26.7
Inc-v3ens3 22.4 23.3 9.30 30.5
IncRes-v2ens 22.3 22.6 22.4 30.0

Table A.3: The targeted success rates of transferring to three-step adversarially trained
networks from the ones with different architectures and ϵ.

A.5 Time Cost of DWP

As Adversarial attacks can be more practical with less overhead, we provide the time

cost in Table A.6. The results are from 16 images as a batch and 100 attack iterations.

Each cell is the average of five different runs on a single RTX A5000 GPU. With the same

number of forwards, DWP incurs little overhead to NI-SI-TI-DI. For reference, Table A.7

summarizes the time cost after adding another CNN into the ensemble, which is higher

than applying DWP due to additional forwards.

A.6 Compare with VT, SVRE and IG

VT and SVRE [43, 46] improve the naive logit-averaging ensemble in iterative at-

tacks by reducing the variance of gradients between different iterations and models, re-

spectively. Since the two methods assume the white-box substitute models remain un-
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Attack NI-SI-TI-DI +DSNE +GN +DWP
Inc-v3ens3 80.3 84.1 83.9 88.0
IncRes-v2ens 52.7 66.0 62.0 67.5
ViT-S-16-224 48.1 57.7 52.0 55.0
ViT-B-16-224 52.5 61.4 58.7 64.8
Swin-S-224 57.6 65.1 63.3 66.5
Swin-B-224 53.9 62.9 61.2 62.1
MLP-Mixer 50.1 57.7 54.9 59.1
ResMLP 72.7 78.5 77.7 80.6
gMLP 44.3 55.5 51.0 54.4

Table A.4: Untargeted success rates on adversarially trained models and Non-CNN archi-
tectures.

white-box: Res-50 white-box: VGG16
→VGG16 →Den-121 →Inc-v3 →Res-50 →Den-121 →Inc-v3

NI-SI-TI-DI 51.7 75.3 31.6 23.8 26.8 15.0
+DWP 63.0 81.1 42.5 25.3 30.3 16.4

white-box: Den-121 white-box: Inc-v3
→Res-50 →VGG16 →Inc-v3 →Res-50 →VGG16 →Den-121

NI-SI-TI-DI 38.6 24.7 14.4 3.6 3.7 6.4
+DWP 59.2 45.2 31.6 11.6 14.2 18.3

Table A.5: Targeted success rates of transferring to naturally trained CNNs without the
ensemble strategy. The “→” prefix stands for the black-box network.

changed throughout attacking, it may not be trivially compatible with the model augmen-

tation methods altering networks at each iteration. Thus, rather than including VT and

SVRE, we compare the targeted success rates with them. Moreover, IG [14] uses inte-

grated gradients instead of the traditional ones during attacking. Since the implementation

of IG is highly similar to SI, we replace SI in NI-SI-TI-DI with IG and report the results.

We generate the adversarial examples using the four naturally trained CNNs and eval-

uate the attacks on IncRes-v2ens and ViT-B-16-224. Figure A.3a and Figure A.3b show

the comparison between model augmentation methods, VT, SVRE, and IG. Since SVRE

and VT have different numbers of gradient calculations than the naive ensemble at each

iteration, we take the number of gradient calculations as the horizontal axis following

[46]. Model augmentations have higher targeted success rates with additional models in-
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Time (sec.) Res-50 Den-121 VGG16 Inc-v3
NI-SI-TI-DI 10.50 12.26 17.64 13.19
+DWP 10.86 15.87 18.72 15.62

Table A.6: Time cost of NI-SI-TI-DI and DWP on a single CNN.

Time (sec.) Res-50+VGG16 Res-50+Den-121 Res-50+Inc-v3
NI-SI-TI-DI 24.89 19.63 21.18
Time (sec.) VGG16+Den-121 VGG16+Inc-v3 Den-121+Inc-v3
NI-SI-TI-DI 26.75 28.07 22.74

Table A.7: Time cost of NI-SI-TI-DI on the ensemble of two CNNs.

troduced. Our DWP got the highest targeted transferability with protecting the necessary

connections.
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Figure A.3: Comparison of targeted transferability between model augmentation
methods and VT, SVRE, and IG.
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A.7 Results of DWP on Google Cloud Vision

Bagel→ Spider Toy Shop→ Consomme Mortarboard→ Paddle

Menu→ Jay Dog→ Stage Dowitcher→ Cock

Butterfly→ Dog Eagle→ Geta Beetle→Weight Machine
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Monastery→ Fence Goose→ Conch Turtle→ Cock

Rifle→ Taxi Fox→ Squirrel Beetle→ Cockatoo

Jeep→ Linnet Otter→Mask Dam→ Sea Slug
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A.8 Samples of GradCAM

Clean Tent Clean Conch NI-SI-TI-DI Conch

+GN Conch +DSNE Conch +DWP Conch

Clean Pickelhaube Clean Band Aid NI-SI-TI-DI Band Aid

+GN Band Aid +DSNE Band Aid +DWP Band Aid
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Clean Conch Clean Viaduct NI-SI-TI-DI Viaduct

+GN Viaduct +DSNE Viaduct +DWP Viaduct

Clean Schooner Clean Chainsaw NI-SI-TI-DI Chainsaw

+GN Chainsaw +DSNE Chainsaw +DWP Chainsaw
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Clean Revolver Clean Rugby Ball NI-SI-TI-DI Rugby Ball

+GN Rugby Ball +DSNE Rugby Ball +DWP Rugby Ball

Clean Racing Car Clean Lab Coat NI-SI-TI-DI Lab Coat

+GN Lab Coat +DSNE Lab Coat +DWP Lab Coat
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