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Abstract

Malicious attackers can generate targeted adversarial examples by imposing tiny
noises, forcing neural networks to produce specific incorrect outputs. With cross-model
transferability, network models remain vulnerable even in black-box settings. Recent
studies have shown the effectiveness of ensemble-based methods in generating transfer-
able adversarial examples. To further enhance transferability, model augmentation meth-
ods aim to produce more networks participating in the ensemble. However, existing model
augmentation methods are only proven effective in untargeted attacks. In this work, we
propose Diversified Weight Pruning (DWP), a novel model augmentation technique for
generating transferable targeted attacks. DWP leverages the weight pruning method com-
monly used in model compression. Compared with prior work, DWP protects necessary
connections and ensures the diversity of the pruned models simultaneously, which we
show are crucial for targeted transferability. Experiments on the ImageNet-compatible

dataset under various and more challenging scenarios confirm the effectiveness: transfer-
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ring to adversarially trained models, Non-CNN architectures, and Google Cloud Vision.

The results show that our proposed DWP improves the targeted attack success rates with

up to 10.1%, 6.6%, and 7.0% on the combination of state-of-the-art methods, respectively.

The source code will be made available after acceptance.

Keywords: Adversarial Attack, Network Pruning, Computer Vision and Pattern Recog-

nition
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Chapter 1 Introduction
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Figure 1.1: The big picture of DWP. Based on the over-parameterized property of neural
networks, we leverage weight pruning to produce additional diversified pruned models
from existing white-box networks at each iteration. By protecting necessary weight con-
nections in each network, the quality of models is well-preserved. These additional pruned
models can better impose the semantics of the target class onto adversarial images, yield-
ing higher targeted transferability.

While deep learning continues to achieve breakthroughs in various domains, recent

1
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studies have shown vulnerabilities of deep neural networks to adversarial attacks, causing
severe threats in safety-critical applications. For example, in image classification, an at-
tacker can add human-imperceptible perturbations to benign images at testing time. These
adversarial examples can fool a well-trained neural network to yield arbitrary classifica-
tion results. Several attacks have been proposed to improve and evaluate the robustness

of CNNs [2, 21, 42].

In the white-box settings, with complete information on the victim model, the at-
tacker can generate adversarial examples effectively and efficiently. As for black-box
settings, where the attacker only has limited information about the victim model, it is still
possible to create cross-model attacks using a substitute model with white-box adversarial
attack methods. This kind of black-box attack depends on the transferability of adversarial

attacks.

Many methods have been proposed to increase the transferability for untargeted at-
tacks, where the goal is to decrease the accuracy of the victim model. However, there
is still room for improvement in creating transferable targeted attacks, where the attacker
aims to mislead the victim model to produce a predefined specific outcome. Recent works
use an ensemble-based approach to generate transferable targeted adversarial examples
with multiple neural networks as substitute models simultaneously [26, 48]. To further
enlarge the power of the ensemble, model augmentation creates additional networks by
altering the existing ones [&, 23] and generates adversarial examples with these networks

altogether.

However, we find that current methods of model augmentation rarely consider the

importance of neurons and weight connections in networks. While Ghost Networks [23]

b doi:10.6342/NTU202301130



inserts extra dropout layers and random skip connection mechanisms into networks to
produce additional models, these dropout layers randomly drop neurons away without
considering their significance. Authors in [8] introduce another uniform erosion on the
remaining parameters after dropout and skip connection to increase diversity. However,
there is still a lack of protection on necessary parameters. To avoid excessively destroying
the performance of networks, these methods require heavy tuning on the hyperparameters
like dropout rates, the amount of skip connection, the second erosion rates, and the loca-

tions of the inserted dropout layers.

When it comes to transferable targeted attacks, the quality of white-box substitute
models plays a more crucial role. Rather than merely moving away from the original
class, the semantics of targeted adversarial examples need to be close to the target class
to acquire higher transferability [22, 30]. Dropping or disturbing the significant compo-
nents in substitute networks can mislead targeted adversarial examples and yield worse

transferability.

To overcome these problems, we learn from model compression and propose an im-
proved model augmentation method named Diversified Weight Pruning (DWP). Model
compression reduces the storage and computation overhead without substantial influence
on model performances [9, 11, 20, 28]. With the over-parameterized property [4] of neu-
ral networks, weight pruning [!1] can maintain the performance of a network by only
removing redundant weight connections. Figure 1.1 summarizes our attack pipeline. To
generate transferable targeted adversarial examples, we apply random weight pruning to
each single CNN network accessible to form additional ones. These pruned networks re-
main stable since the significant weight connections are protected. We thus improve the

ensemble-based approach with these extra diverse models.

3 doi:10.6342/NTU202301130



To evaluate DWP, we experiment with an ImageNet-compatible dataset used in the
NIPS 2017 adversarial attack competition [ 1 8]. The average targeted success rate of DWP
reaches 81.30% across CNNs. Furthermore, we test DWP in the more challenging sce-
narios of transferring to adversarially trained models and Non-CNN architectures. The
results show that DWP improves the targeted success rate with up to 10.1% and 6.6% on
average in these two settings. Finally, we demonstrate our DWP on the real-world Google

Cloud Vision service and get 7.0% improvement.

In summary, our primary contributions are as follows:

* We propose DWP leveraging weight pruning to improve the existing model aug-
mentation methods on transferable targeted attacks. Experiments show that our

DWP enhances the combination of current state-of-the-art techniques.

* The experiment results show that DWP remains effective in more challenging set-
tings like transferring to adversarially trained models, Non-CNN architectures, and

even the real-world Google Cloud Vision service.

* We analyze the cosine similarities of adversarial perturbations between different
pruned networks to verify that DWP increases the diversity of networks for gener-

ating adversarial perturbations.

» We provide intuitive experiments on explaining the success of targeted attacks with

DWP.

4 doi:10.6342/NTU202301130



Chapter 2 Related Work

2.1 Transferable Attack

Throughout the work, we focus on simple transferable attacks [4&], which require
neither additional data nor model training for attacking compared to resource-intensive
attacks [10, 16, 17, 44, 47]. Recent works aiming for simple transferable attacks mainly
include four categories: gradient optimization, input transformation, advanced loss func-

tion, ensemble, and model augmentation.

2.1.1 Gradient Optimization

With iterative optimization-based methods [2, 19], one can get better solutions to
an objective function for attacking through multiple times of optimization on adversarial
examples and get stronger attacking results. Adjusting gradients used to update adversarial
examples at each iteration appropriately has been shown beneficial for overcoming sub-
optimal results in optimization. [5] combines momentum techniques with iterative attacks,
accumulating gradients at each iteration to escape local optimum and stable the direction of
updating. [24] applies Nesterov accelerated gradient for optimization, giving adversarial

examples an anticipatory updating to yield faster convergence. [43] introduces variance

5 doi:10.6342/NTU202301130



tuning based momentum to reduce variance of gradients at each iteration. [14] leverages
integrated gradients to include smoothing, attention modification and optimization during

attacking.

2.1.2 Input Transformation

Motivated by Data Augmentation [35], several works suggest attacking transformed
input to prevent adversarial examples from overfitting white-box models and failing to
transfer to black-box ones. [45] uses random resizing and padding throughout the itera-
tive attack. [0] enumerates several translated versions for each input image and fuses the
gradients acquired on all of them. [24] leverages the scale-invariant property of CNNs

and employs multiple scale copies from each input image.

2.1.3 Modern Loss Function

Cross entropy loss is widely used in image classification, also serving as the objective
function for adversarial attacks. However, for targeted attacks, cross entropy is pointed
out the saturation problem [22] as the output confidence of target class approaches to
one. To this end, alternative loss functions attempt to provide more suitable gradients for
optimization. [22] leverages Poincaré distance as the loss function, which amplifies the
gradient magnitude as the confidence of the target class grows. [48] proposes a simple

logit loss, which has constant gradient magnitude regardless of the output probability.

6 doi:10.6342/NTU202301130



2.1.4 Ensemble and Model Augmentation

Adversarial examples generated by ensembling multiple white-box networks are more
likely to transfer to black-box networks [26]. Instead of simply fusing the output confi-
dence of each white-box network, [46] suggests reducing the gradient variance of white-
box models during attacking. To further improve ensemble-based approaches, Model
Augmentation produces additional diverse models from the existing white-box networks.
[23] acquires ghost networks for ensemble through perturbing dropout and skip connec-
tions of existing ones. [8] further improves the diversified ensemble via dual-stage ero-

sion.

2.2 Network Pruning

The intensive cost of computation and storage hinders applications of neural net-
works, especially on embedding systems. Network Compression aims to reduce the scale
of networks, making them more feasible for deployment. With the over-parameterized
property [4], several works about removing redundancy in networks, known as Network
Pruning, are proposed and become a branch of Network Compression. [20] uses the
second-derivative information to find redundant weights in networks. [11] shows that
neural networks can highly preserve performance even if trimming more than half of their
connections. Retraining after pruning for better preservation of accuracy is also investi-

gated [9, 28].

7 doi:10.6342/NTU202301130
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Chapter 3 Methodology

Given a neural network ¢ and a benign example x, we generate a targeted adversarial
example 2°% for the target class %% by solving the following constrained optimization
problem:

argmin J(z*V, " 0) st |2

—zl|  <e (3.1)
padv
where J is the loss function for multiclass classification and e is the perturbation budget.

To circumvent the gradient saturation problem of cross-entropy, we use logit loss [48] as

our loss function J.

3.1 Preliminary and Motivation

We start by establishing the roles of current state-of-the-art techniques in our iter-
ative attack. Then, we demonstrate how we apply Weight Pruning to improve targeted

transferability.

3.1.1 Momentum and Nesterov Iterative Method (NI)

Inspired by Nesterov Accelerated Gradient [3 1], Nesterov Iterative Method (NI) [24]

modifies Momentum Iterative-FGSM [5] by adding the historical gradients to current ad-

9 doi:10.6342/NTU202301130



versarial examples z,, and gets =* in advance. Gradients at the ahead 2 instead of
the current z,, will be used for updating. The scheme helps accelerate convergence by

avoiding the local optimum earlier:

Tp" = Tp+ Q- [l o (3.2)
Gn = M gn—1 + vxj(xgesv ytarget; 9) (33)
Tpy1 = ClipS (2, — o - sign(gn)). (3.4)

Here 1 is the decay factor of the historical gradients. The gradient computed encourages
adversarial examples to increase confidence logit output by the white-box network model
0 on the target class through gradient ascent with learning rate o. A clipping operation
onto the e-ball centered at the original input image x is at the end of each iteration. To
preserve more information about the gradient for attacking [49], we don’t include the L1

normalization.

3.1.2 Scale Invariant Method (SI)

Neural networks can preserve output even though the input image = goes through
scale operations such as S,,(x) = z/2™ [24]. With the scale-invariant property, each
composite of white-box networks and scale operations becomes different functions. Ad-

versarial examples can enjoy more diverse gradients:
| M1
gn =1 gt + 57 D Ve (Sm(a)), 5™ 0). (3.5)
m=0

M 1is the number of scaled versions feeding into the network for each image.

10 doi:10.6342/NTU202301130



3.1.3 Diverse Input Patterns (DI)

Inspired by data augmentation techniques [35] used in network training, DI [45] im-
poses random resizing and padding on each image before it feeds into network models to

avoid overfitting. Straightforward cooperation with NI and SI is as follows:

M—1
1
gn = [ Gn—1 T M 7;) VIJ<Sm(T($?LeS7pDI))7 ?/target; 9)- (3.6)

The introduced 7" decides whether to apply random resizing at each iteration with proba-

bility pp;, which degenerates when pp; = 0.

3.1.4 Translation Invariant Method (TI)

To deal with different discriminative regions [6] of various defense neural networks,
TI produces several translated versions for the current image in advance and computes
the gradient for each separately. These gradients will then be fused and used to attack the
current image. [6] also shows that one can approximate the gradient fusion using convo-
lution. The approximation prevents TI from enduring the costly computation on excessive
translated versions for every single image, also yielding the further revised updating pro-
cedure:
M-1
]‘ nes target
o= - gna + W 57 D VeI (S(T(5, pon)), y™=; 0). (3.7)
m=0
W is the convolution kernel matrix applied. Some typical options are linear, uniform, or

Gaussian kernel.

We abbreviate the attacking procedure so far to NI-SI-TI-DI with the combination of

these techniques.

1" doi:10.6342/NTU202301130



3.2 Diversified Weight Pruning

We name the proposed approach Diversified Weight Pruning (DWP) due to the in-
creased diversity of white-box models for ensemble via Weight Pruning. Following Weight
Pruning, we sort the connections of each white-box network by the L1 norm of their weight
values. With a predefined rate r, we only consider the lowest (100 - )% “prunable” since
weights with small absolute values are shown unnecessary [!1]. Networks can preserve

accuracy after these connections are pruned away even without retraining [11].

For our pruning operation, we first identify the set of prunable weights. Let v be the

(100 - (1 — r))-th percentile of weights in §. We formulate the prunable set:

Lo,r)={weblw<y} 6. (3.8)

With I'(0, r) collecting all the prunable weights of 6, we introduce an indicator vector for
it:

HF(@,T) = ()‘17 )\27 ) >\I€>7 (39)

where « is the total number of weights in § = {w;, ws, ..., w,} including non-prunable

ones. J; is determined by whether its corresponding w; € € is in the prunable subset

0o, r):

1, ifw; e 0(0,r)
i = : (3.10)

0, otherwise

Supported by the indicator vector Ilp g, ), our pruning operation P(-) can protect the non-

12 doi:10.6342/NTU202301130



prunable weights by masking:

P(9,r) = (1, = Ipp,) ©b) ©6, (3.11)

where @ denotes the element-wise multiplication and 1, = (1,1,...,1) € R" denotes an
all-one vector. b = (by, b, ..., b,) is a vector with b; i Bernoulli(ppern ), Where pper, is the

probability for pruning each connection independently.

To be specific, Il (g,) and b both are binary masks with identical layout as 0. Iy,
is responsible for protecting non-prunable weights, while b is for random pruning. Each
binary element in IT(y ) © b indicates whether to prune the corresponding weight value in
. The main difference from Dropout [37] used in previous model augmentations [, 23],
is that DWP only considers prunable weights. The detailed comparison will be shown in

the following sections.

Instead of producing all the pruned models beforehand, we acquire pruned models at

each iteration right before gradient computing.

Gn = U+ Gn-1+
wo M-l
a7 > Vo d (ST (2, pon)), = P(0, 7). (3.12)
m=0
With this longitudinal ensemble strategy [&, 23], the storage and computation overhead

are almost identical to the original attack procedure. We summarize the time cost of DWP

in Supplementary Material. With K white-box models, our final DWP attack procedure

13 doi:10.6342/NTU202301130



is shown as follows:

Gn = [ Gn—1+

14 M-1 K

S AT o) 4 PO, G
m=0 k=1

where [, are the ensemble weights, Zszl Bk = 1.

Benefiting from no dependency on network retraining and extra data, our proposed
DWP is simple and lightweight. As there is no further retraining, we select the L1 norm

for pruning since it is better than L2 on preserving accuracy [!1].
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Chapter 4 Experiments

In this section, we first describe the experiment settings and demonstrate the results
of transferable targeted attacks under various scenarios. We then inspect the diversified
property of pruned models in DWP from the view of geometry. Finally, we illustrate an

intuitive explanation of the success of transferable targeted attacks.

4.1 Experimental Setup

4.1.1 Dataset

We use an ImageNet-compatible dataset' containing 1,000 images provided by the
NIPS 2017 adversarial attack competition [ | 8]. Each image in the dataset has an officially

assigned target class for fair comparison.

4.1.2 Networks

We perform experiments on four naturally trained CNNs: Inception-v3 (Inc-v3) [39],
ResNet-50 (Res-50) [12], VGGNet-16 (VGG-16) [36] and DenseNet-121 (Den-121) [13],

four naturally trained Vision Transformers (ViTs): ViT-Small-Patch16-224 (ViT-S-16-

"https://github.com/cleverhans-lab/cleverhans/blob/11ea10/examples/nipsi7_
adversarial_competition/dataset/dev_dataset.csv
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224), ViT-Base-Patch16-224 (ViT-B-16-224)[ 7], Swin-Small-Patch4-Window7-224 (Swin-
S-224), Swin-Base-Patch4-Window7-224 (Swin-B-224)[27], three naturally trained Multi-
Layer Perceptrons (MLPs): Mixer-Base-Patch16-224 (MLP-Mixer) [40], ResMLP-Layer24-
224 (ResMLP) [41], gMLP-Small-Patch16-224 (gMLP) [25], and two adversarially trained
CNNs: ens3-adv-Inception-v3 (Inc-v3ens3) and ens-adv-inception-resnet-v2 (IncRes-v2ens)

[42]. All the networks are publicly accessible.

4.1.3 Hyper-parameters

Our method includes three input transformations TI, DI, and SI. Following [22], we
set the probability pp; of DI to be 0.7 and select a Gaussian kernel with a kernel length
of 5 for Win TI. For SI, due to the limited computing resources, we set the number of
scale copies M = 3. Following [5, 22, 24, 48], the momentum decay factor y is set to
1. For all the iterative attacks in the experiments, we use 100 iterations with learning rate
a = 2/255 as in [48]. We use the perturbation budget ¢ = 16 under L., norm in all the
experiments, complying with the rule in the NIPS 2017 competition. Last but not least,
for our proposed DWP, the probability pyer, is 0.5 and the prunable rate r is 0.7. In other

words, we prune 35% of the connections of each network in expectation at each iteration.

4.1.4 Baseline Methods

We compare the targeted transferability of DWP and the previous model augmenta-
tion methods, Ghost Networks (GN) and Dual-Stage Network Erosion (DSNE) [&, 23],
in combination with the state-of-the-art techniques NI-SI-TI-DI. For non-residual net-

works like VGG-16 and Inc-v3, we insert dropout layers after each activation function.
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As for residual networks such as Res-50 and Den-121, we apply skip connection ero-
sion on the blocks of each network. GN [23] drops activation outputs with a dropout rate
A& and multiplies the skip connection by a factor sampled from the uniform distribution
U1 — AXP 1 + AXP]. Based on GN, DSNE[#] not only uses a dropout rate A%y, but
also scales the values passing dropout by an uniform random factor from U[1— A{3¢, 1+
Al 1. DSNE also alters the skip connections like GN with U[1 — AP - 1 + ASP ],
and introduces an additional bias factor 7. We set AL = 0.012, A%P — (.22, ASP =
0.01, Agale, = 0.1, AS®R . = 0.14, and v = 0.8 following [&, 23]. We do not include VT
[43], SVRE [46], and IG [ 4] due to their specific assumptions or implementation details.

However, we compare the results with them in Supplementary Material.

4.2 Transferable Targeted Attack in Various Scenarios

We consider targeted transferability under four scenarios: transferring across CNNss,
transferring to adversarially trained models, Non-CNN architectures, and the real-world
Google Cloud Vision service. We prepare specified networks for each case. We generate
adversarial examples on the ensemble of the white-box models and evaluate targeted suc-
cess rates on the specified black-box model. No access to the black-box model is allowed
during an attack. Note that for the ensemble, we use equal weights 5, = 1/ K for each of

the K white-box models.

4.2.1 Transferring across Naturally Trained CNNs

As convolution neural networks are widely used, we first examine the cases between

CNNs. We select four classic CNN networks following [48]: Res-50, VGG-16, Den-121,
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Attack -Res-50 -Den-121 -VGG16 -Inc-v3 || Avg

TI-DI 68.2 81.2 75.3 57.6 70.58
+GN 58.7 78.9 77.6 64.0 69.80
+DSNE 55.9 65.4 77.8 57.1 64.05
+DWP 69.0 82.1 81.3 61.4 73.45
NI-SI 29.0 40.1 30.3 34.6 33.5

+GN 49.2 63.0 67.5 40.9 55.15
+DSNE 44.8 58.7 66.8 41.4 52.93
+DWP 52.4 62.6 67.9 40.4 55.83
NI-SI-TI-DI | 76.1 86.7 77.1 66.9 76.70
+GN 68.7 85.0 80.1 72.4 76.55
+DSNE 67.0 75.1 79.1 66.7 71.98
+DWP 77.7 89.4 87.2 70.9 81.30

¢ 9

Table 4.1: The targeted success rates of transferring across CNNs. The “-” prefix stands
for the black-box network with the other three serving as the white-box ones for ensemble.
“+” means the participation of a specific model augmentation method. DWP outperforms
other leading model augmentations GN and DSNE.

and Inc-v3.

Table 4.1 shows the results of transferable targeted attacks between CNNs. DWP
boosts the attack methods and outperforms GN and DSNE. As the four CNNs possess
designs such as Residual, Dense, and Inception blocks, the results demonstrate the bene-
fits of the diversified ensemble in attacking black-box CNNs with different mechanisms
from the white-box substitutes. Protecting necessary connections is also shown to be ad-
vantageous. We also provide untargeted results and transferring from a single model in

Supplementary Material.

4.2.2 Transferring to Adversarially Trained Models

Adpversarial training [29, 42] is one of the primary techniques for defending against

malicious attacks. It brings robustness to models by training them with adversarial exam-
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ples. Under the scenario of transferring to adversarially trained models, we ensemble only
the four naturally trained networks (Res-50, Den-121, VGG16, and Inc-v3) as white-box
models to simulate the situation where attackers have few details about defense. The two
adversarially trained networks (Inc-v3ens3 and IncRes-v2ens) will act as our black-box
model separately. We also include the results of multi-step adversarially trained networks

[33] in Supplementary Material.

Table 4.2 summarizes the results of transferring to adversarially trained networks.
Targeted success rates under this scenario are lower due to the robustness of adversarially
trained models. Under such a challenging scenario, DWP still helps alleviate the discrep-
ancy between white-box naturally trained and black-box adversarially trained networks,
bringing about up to 10.1% improvement on average. The power of the diversified ensem-
ble under the premise of protecting necessary connections is highlighted again, especially

for black-box networks with significant differences from the white-box ones.

4.2.3 Transferring to Non-CNN Architectures

In practice, information about the networks used by defenders remains unknown to
attackers. A targeted attack method is more practical if adversarial examples can trans-
fer to black-box architectures different from the white-box ones accessible by attackers.
Beyond CNNs, recent works attempt to solve computer vision tasks using Vision Trans-
formers (ViTs) [7, 27] and Multi-Layer Perceptrons (MLPs) [25, 40, 41]. To be more

comprehensive, we evaluate the targeted transferability from CNNs to these architectures.

We generate targeted adversarial images on the ensemble of the four naturally trained

CNNs. NI-SI-TI-DI comes with the three model augmentation methods, respectively,
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Attack Method | NI-SI-TI-DI +GN +DSNE +DWP
Inc-v3ens3 50.0 51.6 49.7 65.3
IncRes-v2ens 19.4 29.8 34.5 39.0
Average 34.7 40.7 42.1 52.15

Table 4.2: The targeted success rates of transferring to adversarially trained models. Our
DWP outperforms GN and DSNE over 10%.

Attack Method | NI-SI-TI-DI +GN +DSNE +DWP
ViT-S-16-224 259 31.5 31.1 37.3
ViT-B-16-224 24.8 299 28.4 374
Swin-S-224 26.7 29.1 26.5 36.7
Swin-B-224 23.9 27.1 23.9 329
MLP-Mixer 21.7 24.2 27.0 30.9
ResMLP 51.3 56.5 54.4 64.1
gMLP 20.4 253 26.9 304
Average 27.81 31.94  31.17  38.53

Table 4.3: The targeted success rates of transferring to Non-CNN architectures. Our DWP
maintains higher success rates stably.

including our DWP. From Table 4.3, model augmentations are effective even though the
black-box networks have no convolution operations other than the input projection. Our

DWP improves the results on both ViTs and MLPs, outperforming all the other methods.

4.2.4 Transferring to Google Cloud Vision

For a more practical scenario, we use Google Cloud Vision to evaluate our targeted
adversarial examples. Google Cloud Vision predicts a list of labels with their correspond-
ing confidence scores and only returns label annotations with confidence above 50%.
The scenario is completely black-box since no information about gradients and param-
eters of the underlying system is accessible. Previous works leverage query-based attacks
[1, 3, 15] or black-box transferability [26, 48]. However, query-based methods often re-
quire large numbers of queries, and the existing transferable attacks still have substantial

room for improvement.

In this experiment, we randomly select 100 images correctly labeled by Google Cloud
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NI-SI-TI-DI | +GN | +DSNE | +DWP
27 43 42 50
Table 4.4: Targeted success rates (%) on Google Cloud Vision

- — 5
i :
& T 4 /s bt 2
73a52afd2f818ed5.png 73a52afd2f818ed5_adv.png
Tableware 69% Lock 60%
Beaker 64% Luggage & bags 59%
Tableware 62% Luggage & bags 53%
(a) Clean image (b) NI-SI-TI-DI + DWP

Figure 4.1: A demo of our DWP attack on Google Cloud Vision. The attacked image with
the ground truth label of “Beakers” is recognized as the target class “Padlocks” assigned
by the NIPS 2017 Imagenet-compatible dataset.

Vision from the Imagenet-compatible dataset. Similarly, we use the four naturally trained
CNNss to generate adversarial examples. We identified an image as a successful attack if
at least one of the labels returned by Google Cloud Vision is semantically close to its cor-
responding target class. We summarize the attack results in Table 4.4. DWP outperforms
the previous model augmentation methods by 7%. Figure 4.1 demonstrates an attack on

Google Cloud Vision. We refer readers to Supplementary Material for more demos.

4.3 Perturbations from Different Pruned Models

To investigate whether our method can promote diversity of the ensemble, we exam-
ine the relationship between the generated adversarial perturbations instead of between

model outputs. The reason is that compared to the logit outputs by models, perturba-
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tion vectors are more direct in determining the update of adversarial examples. Recent
works [6, 24] have proposed methods improving transferability with output-preserving
operations. Although these operations retain model outputs, they modify the gradients
and enrich the directions of adversarial perturbations. With these motivations, we focus

on the diversity between perturbations computed from pruned models.

Liu et al. [26] first studied the effectiveness of ensemble in enhancing transferability.
They demonstrate the diversity of the ensemble by showing near-zero cosine similarities
between perturbations from different white-box networks. Following [26], we calculate
cosine similarities between perturbations generated from the additional pruned models
produced by DWP. From each of our four naturally trained CNNs, we acquire five pruned
models with different connections pruned. We term the cosine similarity between per-
turbations of pruned models from an identical CNN as intra-CNN similarity. The case
from different CNNs is termed as inter-CNN similarity. To avoid cherry-picking, both
intra-CNN and inter-CNN similarities come from the average of the first ten images in
the ImageNet-compatible dataset. Futhermore, we only use NI in combination with DWP
to produce perturbations in this experiment to prevent the influence of factors other than

pruning.

Figure 4.2 is a symmetric matrix containing 16 (4 x 4) blocks. The diagonal blocks
summarize ten (C3) intra-CNN similarities while the non-diagonal blocks summarize 25
(5 x 5) inter-CNN similarities in cells. The diagonal cells are all 1.0 since they are all
from two identical perturbation vectors. As for the non-diagonal cells, we find the cell
values in diagonal blocks (intra-CNN) slightly higher than in non-diagonal blocks (inter-
CNN). However, these values are still close to zero, appearing dark red. The results show

that whether two pruned models come from the same CNN, the generated perturbations
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Figure 4.2: Perturbation cosine similarities between pruned models. Each diagonal block
summarizes 10 (C3) intra-CNN similarity cells. Each non-diagonal block summarizes 25
(5 x 5) inter-CNN similarity cells. The pairwise cosine similarity matrix is symmetric and
shows orthogonality between perturbations.

generated are always nearly orthogonal. These observations on orthogonality support our

claim that pruned models obtained via DWP provide more diversity for attacking.

4.4 Semantics of the Target Class

Prior work has shown that targeted adversarial examples semantically close to the
target class tend to be more transferable [16, 17, 30]. To provide more insight into the

success of DWP, we explore the patterns in targeted adversarial examples.

GradCAM [34] uses the mean gradient values of a specific class output confidence

with respect to each intermediate feature map to be its corresponding coefficient. The
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Figure 4.3: The GradCAMs of clean and targeted adversarial images on naturally trained
ResNet-50. The two leftmost columns show GradCAMs of clean images regarding the
ground truth and target class. The other columns provide the GradCAMs of adversarial
images generated by different methods. Targeted perturbations guide the highlighted area
and impose semantics of the target class on images.

weighted average of feature maps using these coefficients provides an explanation of a
particular decision made by the model. In Figure 4.3, we draw GradCAMs on naturally
trained ResNet-50 to provide some explainable observations on adversarial images gen-

erated by different methods.

In the two leftmost columns, we show the GradCAMs of clean images with their
ground truth and target class, respectively. GradCAMs correctly highlight regions about
the ground truth class on the clean images. On the other hand, without adversarial per-
turbations, there is no evident relation between the target class and the corresponding
highlighted areas. The other four columns show the GradCAMs with the target class
of adversarial images generated by NI-SI-TI-DI and NI-SI-TI-DI plus GN, DSNE, and
DWP, respectively. The adversarial perturbations produce target class-specific patterns
and guide the highlighted region of GradCAMs. Note that the perturbation budget is
limited to [, < 16 to ensure the attacks are quasi-imperceptible. For more results of

GradCAMs, we refer readers to Supplementary Material.
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Figure 4.4: The comparison of object detection results of the target class. Compared to
GN and DSNE, adversarial images generated by our DWP are more likely to contain at
least one object detected as the target class.

For quantitative comparison, we leverage an object detector? to detect target-class
patterns in the targeted adversarial images. We set the threshold to 0.1, which is lower than
usual, to capture more potential patterns in images. The bars on the right side of Figure 4.4
summarize the number of images with at least one bounding box detected. Compared to
other methods, DWP is the method most likely to generate adversarial examples with
at least one target-class pattern detected. Notice that under the limit of the perturbation
budget, even though we have a lower threshold, there are still about 150 images without
any target-class object detected according to the bars on the left side of Figure 4.4. Since
we do not integrate object detectors into our attack procedure, the results support that our

DWP is better at producing target-class-specific information.

’https://github.com/ibaiGorordo/ONNX-ImageNet-1K-0bject-Detector
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Chapter S Conclusion

In this paper, we propose Diversified Weight Pruning (DWP) leveraging network
compression to improve the targeted transferability of adversarial attacks. DWP produces
additional pruned models for ensemble via weight pruning. Due to the over-parameterized
property, the quality of pruned models introduced by DWP is well-preserved. Experiments
show that by protecting the necessary weight connections of networks, targeted adversarial
examples are more likely to acquire semantics of the target class. By evaluating DWP on
ImageNet, we show that DWP improves the state-of-the-art model augmentation methods
on transferable targeted attacks, especially for challenging scenarios such as transferring
to adversarially trained models and Non-CNN architectures. We hope that our work can
serve as a bridge between network compression and transferable attack, inspiring more

collaboration.
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Appendix A — Supplementary Material

A.1 Ablation Analysis on Prunable Rates

In the ablation analysis, we explore targeted attack success rates under different prun-
able rates . As the prunable rate determines the number of connections possible to be
pruned during attacking, white-box models can produce more diverse pruned models us-
ing higher prunable rates. However, with excessive connections pruned away, the quality

of pruned networks will be unstable.

To find the sweet spot to the trade-off, we enumerate different prunable rates, con-
ducting the attack experiments with all the other hyper-parameters as default. Figure A.1
shows the trade-off. We select » = 0.7 throughout our experiments as the curve of mean
targeted success rates reaches its maximum. With our designated prunable rate r = 0.7,
DWP prunes about 35% of weight connections. Figure A.2 shows the decline in the ac-

curacy of the four CNNs with different rates of minor weight connections pruned.

A.2 Transferring across CNNs with Similar Architectures

Table A.1 summarizes the targeted attack success rates across Inception-v3 (Inc-v3),

Inception-v4 (Inc-v4), Inception-Resnet-v2 (IncRes-v2) [38] and ResNet-101 (Res-101)
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Figure A.1: The targeted success rates under different prunable rates r on each black-
box model. Each curve shows the trade-off between the diversity and stability of pruned
models. The curve for mean targeted success rates reaches its maximum at r = 0.7.

[12]. The group of CNNs was popular for evaluating attacks [5, 6, 22, 45, 46]. However,
due to similar architectures between these CNNSs, [48] suggests using a group of networks

with relatively diverse designs. For completeness, we also include the targeted success

rates of different model augmentation methods under this group of similar CNNs.

Attacks -Inc-v3 -Inc-v4 -IncRes-v2 -Res-101 || Avg

NI-SI-TI-DI | 65.2 71.3 73.2 20.9 57.65
+GN 77.5 70.0 69.0 26.1 60.65
+DSNE 70.7 60.3 69.5 13.7 53.55
+DWP 83.1 86.1 85.4 40.6 73.80

Table A.1: The targeted success rates of transferring across similar CNN architectures.
The “-” prefix stands for the black-box network with the other three serving as the white-
box ones for the ensemble. “+” means the participation of a specific model augmentation
method. DWP outperforms other leading model augmentation methods GN and DSNE.
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Figure A.2: The decay on the accuracy of each network with respect to the rate of
minor weight connections pruned.

A.3 Transferring to Multi-Step Adversarially Trained Mod-

els

Authors in [42] propose “ensemble adversarial training”, which trains the network
with adversarial examples generated from external models. While the single-step attack
in the procedure is less costly, the models fall short of resisting iterative attacks even in
black-box scenarios. Thus, we explore the black-box targeted attack results on the models

with multi-step adversarial training.

Transferable targeted attacks from naturally trained CNNs to multi-step adversarially
trained networks remain an open problem. Recent attacks only show the non-targeted

results [32]. Even the resource-intensive attack [30] fails to achieve satisfied targeted
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success rates. We borrow the adversarially trained networks from [33] in the following
experiments. Table A.2 shows the failure of transferring targeted attacks from the four

naturally trained CNNs to various three-step adversarially trained models.

Despite the frustrating results, there is a different story when we generate adversarial
examples on multi-step adversarially trained networks. Even if the victim network under-
going multi-step adversarial training has a different architecture, it remains vulnerable to
these attacks. Table A.3 summarizes the targeted attack results of the ensemble composed
of Res-18 (|¢|oc = 2), Res-50 (Je|oc = 2) and WideRes-50-2 (|e|oc = 2). The two up-
per groups in Table A.3 report the targeted success rates on different CNN architectures
and the norm of € used in adversarial training. We also provide the results on naturally
trained CNNs and the ones with ensemble adversarial training. Our DWP stably benefits

the results.

Attack Method NI-SI-TI-DI +GN +DSNE +DWP
Res-18 ([e[oo = 1) 0.2 02 05 0.2
Res-50 (|€|oo = 1) 0.0 0.6 0.8 0.3
WideRes-50-2 (|e|o = 1) 0.0 02 04 0.1
Res-18 (e, = 3) 0.0 0.1 0.1 0.0
Den-121 ([e]; = 3) 0.0 0.0 0.0 0.0
VGGL16 (Je|z = 3) 0.0 0.0 0.0 0.0
Resnext-50 (|e|y = 3) 0.0 0.0 0.1 0.0

Table A.2: The targeted success rates of transferring to three-step adversarially trained
networks from naturally trained CNNs.

A.4 Untargeted and Single-Model Results

Although our work mainly focuses on the targeted attack setting and ensemble strat-
egy, we provide some untargeted results in Table A.4 and attacks without ensemble in

Table A.5.
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Attack Method NI-SI-TI-DI +GN +DSNE +DWP
Res-18 (|€|oo = 1) 33.2 33.6 21.7 37.0
Res-50 (|€|oo = 1) 40.5 394 21.0 41.4
WideRes-50-2 (|e|o = 1) 37.8 354 18.2 39.5
Res-18 ([e|o = 3) 12.6 12.6 12.6 15.2
Den-121 ([e]y = 3) 17.4 18.0 11.3 19.2
VGG16 ([e]o = 3) 12.5 13.3 9.60 15.5
Resnext-50 (|e]; = 3) 19.1 19.2 11.5 21.0
Res-50 21.9 16.8 12.6 223
Den-121 27.6 29.0 15.9 39.0
VGG16 8.60 8.80 6.20 18.6
Inc-v3 17.4 17.9 8.70 26.7
Inc-v3ens3 22.4 233 9.30 30.5
IncRes-v2ens 22.3 22.6 224 30.0

Table A.3: The targeted success rates of transferring to three-step adversarially trained
networks from the ones with different architectures and e.

A.5 Time Cost of DWP

As Adversarial attacks can be more practical with less overhead, we provide the time
cost in Table A.6. The results are from 16 images as a batch and 100 attack iterations.
Each cell is the average of five different runs on a single RTX A5000 GPU. With the same
number of forwards, DWP incurs little overhead to NI-SI-TI-DI. For reference, Table A.7
summarizes the time cost after adding another CNN into the ensemble, which is higher

than applying DWP due to additional forwards.

A.6 Compare with VT, SVRE and IG

VT and SVRE [43, 46] improve the naive logit-averaging ensemble in iterative at-
tacks by reducing the variance of gradients between different iterations and models, re-

spectively. Since the two methods assume the white-box substitute models remain un-

43 doi:10.6342/NTU202301130



Attack NI-SI-TI-DI +DSNE +GN +DWP
Inc-v3ens3 80.3 84.1 83.9  88.0
IncRes-v2ens 52.7 66.0 62.0 67.5
VIT-S-16-224 48.1 57.7 52.0 55.0
ViT-B-16-224 52.5 61.4 58.7 64.8
Swin-S-224 57.6 65.1 63.3 66.5
Swin-B-224 53.9 62.9 61.2 62.1
MLP-Mixer 50.1 57.7 549  59.1
ResMLP 72.7 78.5 777  80.6
gMLP 44.3 55.5 51.0 544

Table A.4: Untargeted success rates on adversarially trained models and Non-CNN archi-
tectures.

white-box: Res-50 white-box: VGG16
—VGG16 —Den-121 —lInc-v3 | -Res-50 —Den-121  —Inc-v3
NI-SI-TI-DI 51.7 75.3 31.6 23.8 26.8 15.0
+DWP 63.0 81.1 42.5 25.3 30.3 16.4
white-box: Den-121 white-box: Inc-v3
—Res-50 —VGGI6 —lInc-v3 | —»Res-50 —VGG16 —Den-121
NI-SI-TI-DI 38.6 24.7 14.4 3.6 3.7 6.4
+DWP 59.2 45.2 31.6 11.6 14.2 18.3

Table A.5: Targeted success rates of transferring to naturally trained CNNs without the
ensemble strategy. The “—” prefix stands for the black-box network.

changed throughout attacking, it may not be trivially compatible with the model augmen-
tation methods altering networks at each iteration. Thus, rather than including VT and
SVRE, we compare the targeted success rates with them. Moreover, 1G [14] uses inte-
grated gradients instead of the traditional ones during attacking. Since the implementation

of IG is highly similar to SI, we replace SI in NI-SI-TI-DI with IG and report the results.

We generate the adversarial examples using the four naturally trained CNNs and eval-
uate the attacks on IncRes-v2ens and ViT-B-16-224. Figure A.3a and Figure A.3b show
the comparison between model augmentation methods, VT, SVRE, and IG. Since SVRE
and VT have different numbers of gradient calculations than the naive ensemble at each
iteration, we take the number of gradient calculations as the horizontal axis following

[46]. Model augmentations have higher targeted success rates with additional models in-
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Time (sec.) | Res-50 Den-121 VGGI16  Inc-v3

NI-SI-TI-DI | 10.50 12.26 17.64  13.19
+DWP 10.86 15.87 18.72 - 15.62

Table A.6: Time cost of NI-SI-TI-DI and DWP on a single CNN.

Time (sec.) Res-50+VGG16  Res-50+Den-121  Res-50+Inc-v3
NI-SI-TI-DI 24.89 19.63 21.18
Time (sec.) | VGG16+Den-121  VGG16+Inc-v3  Den-121+Inc-v3
NI-SI-TI-DI 26.75 28.07 22.74

Table A.7: Time cost of NI-SI-TI-DI on the ensemble of two CNNs.

troduced. Our DWP got the highest targeted transferability with protecting the necessary

connections.
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A.7 Results of DWP on Google Cloud Vision
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A.8 Samples of GradCAM

Clean Tent Clean Conch NI-SI-TI-DI Conch

+GN Band Aid +DSNE Band Aid +DWP Band Aid
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Clean Conch Clean Viaduct NI-SI-TI-DI Viaduct

+GN Viaduct +DSNE Viaduct +DWP Viaduct

Clean Schooner Clean Chainsaw NI-SI-TI-DI Chainsaw

+GN Chainsaw +DSNE Chainsaw +DWP Chainsaw
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+DSNE Rugby Ball +DWP Rugby Ball

+GN Lab Coat +DSNE Lab Coat +DWP Lab Coat
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